
Department of Mathematical Sciences
Aarhus University

January 19, 2010

Ruin Problems and Tail Asymptotics

Anders Rønn-Nielsen

<anders@imf.au.dk>

PhD dissertation.
Supervisor: Søren Asmussen





Contents

Contents iii

Preface & acknowledgments v

Introduction 1

1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Risk processes and ruin probabilities . . . . . . . . . . . . . . . 3

3 The setup for Paper A and Paper B . . . . . . . . . . . . . . . 4

4 The results in Paper A . . . . . . . . . . . . . . . . . . . . . . . 7

5 The results in Paper B . . . . . . . . . . . . . . . . . . . . . . . 8

6 The setup and results of Paper D . . . . . . . . . . . . . . . . . 9

7 The setup and results of Paper C . . . . . . . . . . . . . . . . . 10

Bibliography 13

A The Ruin Time for a certain Class of Diffusion Processes

with Jumps 17

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Introduction

1 Summary

This thesis contains a short introductory section followed by four papers. The
introduction presents the topics and main results of the papers. The papers A,
B and D concerns risk theory. In A and B premium depending risk processes
are studied, while the subject in Paper D is an additive model in a Markovian
environment. Paper C is about failure recovery via RESTART.

Paper A A certain class of diffusions with jumps is considered. Between
jumps the process behaves like a Cox–Ingersoll–Ross process driven by a Brow-
nian motion independent of the jump process. The jumps arrive with expo-
nential waiting times and are allowed to be two–sided. The jumps that are
mixtures of exponential distributions are assumed to form an independent,
identically sequence, independent of everything else. The fact that downward
jumps are always allowed makes passage of a given lower level possible both
by continuity and by a jump. In case of passage by a jump the resulting un-
dershoot is considered too. As one of the main results of the paper, the joint
Laplace transform of the first passage time and the undershoot is determined.
So is the probability of passage in finite time. Both the joint Laplace trans-
form and the probability of passage in finite time are decomposed according
to the type of passage: Jump or continuity.

Paper B A class of Ornstein–Uhlenbeck processes driven by compound
Poisson processes is considered. The jumps arrive with exponential waiting
times and are allowed to be two-sided. The jumps are assumed to form an
iid sequence with distribution a mixture (not necessarily convex) of exponen-
tial distributions, independent of everything else. When the drift is negative
the probability of ever crossing a given lower level is less than one and its
asymptotic behaviour when the initial state of the process tends to infinity
is determined explicitly. The situation where the level to cross decreases to
minus infinity is more involved: The level to cross under plays a much more
fundamental role in the expressions for the ruin probabilities than the initial
state of the process. The asymptotics of the ruin probability in the positive
drift case and the limit of the distribution of the undershoot in the nega-
tive drift case is derived in the case where the lower limit decreases to minus
infinity.
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Introduction

Paper C A task such as the execution of a computer program or the
transfer of a file on a communications link may fail and then needs to be
restarted. Let the ideal task time be a constant ℓ and the actual task time
X, a random variable. Tail asymptotics for P(X > x) is given under three
different models: 1: a time-dependent failure rate µ(t); 2: Poisson failures and
a time-dependent deterministic work rate r(t); 3: as 2, but r(t) is random and
a function of a finite Markov process. Also results close to being necessary and
sufficient are presented for X to be finite a.s. The results complement those of
Asmussen, Fiorini, Lipsky, Rolski & Sheahan [ Math. Oper. Res. 33, 932–944,
2008] who took r(t) ≡ 1 and assumed the failure rate to be a function of the
time elapsed

Paper D This is a work in progress. We consider a risk process {R}t≥0

with the property that the rate β of the Poisson arrival process and the dis-
tribution B of the claim sizes depends on the state of an underlying Har-
ris recurrent Markov process {Xt}t≥0. In this setup we derive a version of
Lundberg’s Inequality. This involves finding eigenfunctions in the setup of a
Markov–modulated random walk.

2



2. Risk processes and ruin probabilities

2 Risk processes and ruin probabilities

Risk theory is often associated with the mathematical problems that are faced
by an insurance company that has to decide how much the premiums should
cost and how big the capital reserve should be in order to minimise the prob-
ability of bankruptcy.

The capital reserve is modelled over time by the so–called risk reserve
process {Rt}t≥0. Let u = R0 denote the initial reserve, and let ψ(u) be the
probability of ultimate ruin – the probability that the reserve ever drops below
zero. For this define τ(u) = inf{t ≥ 0 | Rt < 0} as the time of ruin (when the
initial value is u). Then

ψ(u) = P(τ(u) <∞) = P( inf
t≥0

Rt < 0 | R0 = u) .

Often this setup is reformulated into using the claim surplus process {St}t≥0

defined by St = u−Rt. Then instead

τ(u) = inf{t ≥ 0 | St > u} ,

and ψ(u) can be expressed as

ψ(u) = P(τ(u) <∞) = P(M > u) ,

where M = supt≥0 St.

The claim surplus process is very often assumed to have the following basic
form

St =

Nt∑

i=1

Ui − pt ,

where {Ui} are the claims and Nt the number of claims in the time interval
[0, t]. Furthermore p is rate at which the premiums flow in per time unit. To
make the definition meaningful it is necessary that Nt is finite for all t.

A classical version of this is the Cramér–Lundberg model, where the claims
{Ui}i∈N are assumed to be iid, and {Nt}t≥0 is a time homogeneous Poisson
process independent of {Ui}i∈N. For this model several more and less specific
results for ψ(u) are well–known and can e.g. be seen in Chapter III of [6]. A
classical result is the Cramér–Lundberg Approximation, stating

ψ(u) ∼ Ce−γu

as u → ∞, where γ is derived as the solution of the so–called Lundberg
equation.

A meaningful generalisation of this model is Markov–modulation. Instead
of having constant claim intensity and identically distributed claims, one could
assume that they depend on some underlying Markov process. An example
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Introduction

is that both claim sizes and the number of claims reasonably depend on the
type of weather (sun, wind, rain, etc). Such a model in a rather general setup
is studied in Paper D.

A type of model that differs from the classical setup is when the premiums
depend on the current reserve. Then the risk process {Rt} is modelled by the
equation

Rt = u−
Nt∑

i=1

Ui +

∫ t

0
p(Rs) ds ,

where r(t) is some function that decides how big the premiums should be
depending on the current reserve. Such a model is the subject of study both
in Paper A and Paper B.

Note that in the classical model only the difference between the starting point
u and the level to cross under (which is zero) is of importance because of the
additive structure. This is not the case in a premium depending model. Hence
different levels to cross under – denoted ℓ – will be of interest in Paper A and
Paper B.

3 The setup for Paper A and Paper B

In Paper A the risk process of interest, X, is given by the following stochastic
differential equation

dXt = κXt dt+ dVt + σ
√

|Xt| dBt (3.1)

and in Paper B the simpler process

dXt = κXt dt+ dVt , (3.2)

is the subject. In both (3.1) and (3.2) {Vt}t≥0 is a compound Poisson process
defined by

Vt =
Nt∑

n=1

Un .

Here {Un} are iid with distribution G, and {Nt} is a homogeneous Poisson
process with parameter λ independent of {Un}. In (3.1) {Bt} is a Brownian
motion independent of everything else.

In both (3.1) and (3.2) some assumptions concerning the jumps are made. It is
assumed that the downward part of the jump distribution G has a distribution
that has a density that is a linear combination of exponential densities. We
use the decomposition G = pG−+ qG+, where 0 < p ≤ 1, q = 1−p, G− is the
restriction to R− =] −∞; 0[, and G+ is the restriction to R+ =]0;∞[. Then
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3. The setup for Paper A and Paper B

it is assumed that

G−(du) = g−(u) du =

r∑

k=1

αkµke
µku for u < 0 . (3.3)

In Paper B and in some situations of Paper A also the upward part of the
jumps are assumed to be such linear combinations of exponential distributions

G+(du) = g+(u) du =

s∑

d=1

βdνde
−νdu for u > 0 . (3.4)

The distribution parameters are supposed to secure that the definitions above
actually form distributions (e.g.

∑

i αi = 1 and g+ ≥ 0). The parameters are
arranged such that 0 < µ1 < · · · < µr and 0 < ν1 < · · · < νs.

The process in (3.2) behaves deterministically like an exponential function

Figure .1: Illustrates a path for the process defined in (3.2)

between jumps. A path of the process can be seen in Figure .1. The process in
the figure has a negative drift paramtre κ. In that case the process is recurrent.
If on the other hand the drift is positive, the process will be transient.

The process given by (3.1) is not deterministic between jumps. Instead it
evolves like the following Cox–Ingersoll–Ross diffusion process

dYt = κYt dt+ σ
√

|Yt| dBt .

An important property of this process is that 0 is an absorbing state.
A simulated path of the process (3.1) is seen in Figure .2. Also for this
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Figure .2: Illustrates a path for the process defined in (3.1)

process the sign of the drift parametre κ is substantial: If κ < 0 the process
is recurrent, while it is transient when κ > 0.

Assume that x > 0 and write Px for the probability space, where X0 = x
Px–almost surely. Let Ex be the corresponding expectation. For some ℓ < x
we shall (both in Paper A and B) be interested in the stopping time τ (the
ruin time) given by

τ = τ(ℓ) = inf{t > 0|Xt ≤ ℓ} (3.5)

Furthermore define the undershoot Z

Z = ℓ−Xτ , (3.6)

which is well–defined on the set {τ < ∞}. It is important to notice that in
most cases the level ℓ can by crossed through continuity as well as a result
of a downward jump. Nevertheless the process in (3.1) might not be able to
cross ℓ through continuity. That will be in one of the two situations 1: κ > 0,
ℓ > 0 or 2: κ < 0, ℓ < 0.

In Paper A the joint distribution of τ and Z will be of interest. This distribu-
tion can be expressed through the joint Laplace transform for τ and Z which
may be defined as

Ex[e
−θτ−ζZ ;Aj ] and Ex[e

−θτ ;Ac] , (3.7)

where Aj and Ac is a partition of the set {τ < ∞} into the jump case Aj =
{τ <∞,Xτ < ℓ} and the continuity case Ac = {τ <∞,Xτ = ℓ}.
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4. The results in Paper A

In Paper B the focus will particularly be on the probability of ruin within
finite time given by Px(τ <∞). Note that for both of the processes (3.1) and
(3.2) this probability will be 1 in the recurrent situations, where κ < 0.

4 The results in Paper A

The aim in Paper A is to describe the joint distribution of τ and Z for the
model (3.1) through finding an explicit expression for the joint Laplace trans-
form given by (3.7). The method applied in this paper for finding the joint
Laplace transform has previously been used in [34], where the simpler model
(3.2) was studied.

In the present paper a version of Itô’s formula is established

e−θ(τ∧t)f(Xτ∧t) = f(X0) +

∫ τ∧t

0
e−θs(Af(Xs)− θf(Xs)) ds +Mt , (4.1)

where A is the infinitesimal generator for X:

Af(x) = κxf ′(x) + σ2

2 |x|f ′′(x) + λ

∫

R

(

f(x+ y)− f(x)
)

G(dy)

defined for x ∈ [ℓ,∞[\{x}. here M is some mean–zero martingale. Suppose
that a partial eigenfunction for A can be found. That is a function f : R → C

that is bounded and continuous on [ℓ,∞[ and furthermore two times differen-
tiable on [ℓ,∞[\{x} with

Af(x) = θf(x) for all x ∈ [ℓ,∞[ .

Then obviously (4.1) becomes much simpler, and from using optional stopping
it is obtained that

Ex

[

e−θτf(Xτ )
]

= f(x) .

If f furthermore have the form

f(x) = e−ζ(ℓ−x)

on the interval ]−∞, ℓ[ then the equation becomes

Ex[e
−θτ−ζZ ;Aj ] + fi(ℓ)Ex[e

−θτ ;Ac] = f(x) .

This can be solved w.r.t. Ex[e
−θτ−ζZ ;Aj ] and Ex[e

−θτ ;Ac] if two partial eigen-
functions for A are found.

After this the main task is to construct such partial eigenfunctions. These
partial eigenfunctions are defined as linear combinations of functions on the
form

fΓ(y) =

{ ∫

Γ ψi(z)e
−yz dz y ≥ ℓ

0 y < ℓ
, (4.2)
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where ψ1 and ψ2 are some specified complex integration kernel and Γ some
(as well specified) contours in the complex plane.

For these functions the generator is particularly nice (it is achieved that (A−
θI)f is a simple exponential function on [ℓ,∞[) and hence with f an adequate
combination of these fΓ–functions makes (A− θI)f = 0 on [ℓ,∞[.

A major part of the work is finding an adequate number of contours Γ such
that the right linear combination of the fΓ–functions is possible. The choice
of these contours seems to depend on the parameters of the downward jump
distribution (3.3) if ℓ > 0, and both the downward and the upward jump part
in the case, where ℓ < 0.

5 The results in Paper B

In this paper the simpler model (3.2) is considered. When the drift parameter
κ is positive we have (as mentioned above) that

Px(τ(ℓ) <∞) < 1 .

We are studying the behaviour of this probability when either x → ∞ or
ℓ → −∞. The basis for this study is the results from [34], where an explicit
formula for the probability was derived. It turns out that the results in [34]
need to be reformulated in a way that resembles the formulation in Paper A.
Also the choice of integration contours will have to be slightly different.

For the x→ ∞ limit it all boils down to finding the asymptotic behaviour of
the fΓ–functions which is done in two central lemmas. After this the main
result is easily derived:

lim
x→∞

Px(τ(ℓ) <∞)

e−µ1xx−
pα1λ

κ
−1

= K ,

where K is some specified constant, and µ1 is the dominating part of the
downward jumps.

In the ℓ→ −∞ case things get more complicated since ℓ is a more fundamental
part of the definition of the partial eigenfunction than the initial state x.
When ℓ changes, the constants in the linear combination defining the partial
eigenfunction also changes. Hence finding the limit is a question about keeping
track of the solution vector of a multidimensional linear equation. Here results
similar to the Lemmas mentioned above are used to describe each parameter
in the equation system. The following result is obtained

lim
ℓ→∞

Px(τ(ℓ) <∞) = −
r∑

i=1

cif
1
Γi,1

(x) ,

where the functions f1Γi,1
(x) are on the form described in (4.2) and {ci} are

some specified constants.
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6. The setup and results of Paper D

Finally also the limit when ℓ → −∞ of the Laplace transform for the under-
shoot is studied in the case, where κ < 0 and hence Px(τ(ℓ) < ∞) = 1. This
involves arguments similar to the ones in the limℓ→−∞ Px(τ(ℓ) <∞) case, and
it is obtained that for all ζ ≥ 0

lim
ℓ→−∞

Ex[e
−ζZ ] =

µ1
µ1 + ζ

.

Hence the undershoot converges to a simple exponential distribution defined
by the dominating exponential parameter in the downward jump distribution.

6 The setup and results of Paper D

This paper is a work in progress. It can be regarded as a first attempt to
consider ruin problems in the presented rather general setup.

Setup

We assume that the arrivals are not homogeneous in time but are determined
by the process X, where X is a Harris recurrent Markov process. Given X the
sum

∑Nt
i=1 Ui is an inhomogeneous Poisson process: Claims are independent

and at time t

• The arrival intensity is β(Xt)

• A claim arriving has distribution BXt .

Among several other regularity conditions we assume that

x 7→ β(x) and x 7→ B̂x[α]

are bounded functions (here the notation B̂x[s] =
∫

R
esyBx(dy) has been used).

Let ψx(u) := P(τ(u) <∞), where Px is defined such that X0 = x.

Results

Apparently the direction of the drift of {St} is seen from the sign of η defined
below.

For each x ∈ E let µ(x) :=
∫∞
0 y Bx(dy) and µ(2)(x) =

∫∞
0 y2Bx(dy)

denote the mean and second order moment of Bx. Define

ρ(x) := β(x)µ(x) ,

and let furthermore

ρ∗ :=
∫

E
ρ(x)π(dx) and η :=

1− ρ∗

ρ∗
.

9
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Then it is shown that
St/t

Px−a.s.−→ ρ∗ − 1 ,

and thereby that ψx(u) = 1 if η ≤ 0, and that ψx(u) < 1 if η > 0.

Hence the case, where η > 0, is of interest when considering the asymptotics
of ψx(u). The main idea is changing measure to a situation, where η < 0. A
fundamental part of this change of measure is the existence of an eigenfunction
for the operator

Pα
t f(x) = Ex[e

αStf(Xt)]

with α chosen such that the corresponding eigenvalue is 1. If h is this eigen-
function it is shown that

Lαt =
h(Xt)

h(x)
eαSt−tκ(α)

is a non–negative martingale with mean 1. Then the changed measure is
defined with {Lαt } being the likelihood process. Furthermore it is shown that
under the changed measure Pαx the process {St,Xt} has a distribution similar
to the original distribution under Px, but now with η < 0. Thereby it becomes
possible to derive asymptotic results for ψx(u).

7 The setup and results of Paper C

We consider a RESTART setting with some job that ordinarily would take
the task time (ideal task time) T to be executed. At some point during the
execution a failure may occur at time S1. After that the execution will have
to be restarted, and at this point the time until the task is performed is
supposed to be T . However another failure may occur at time S2 and after
this the system will have to be restarted again. This procedure will go on until
the task has been performed without failures, that is an interval between two
failure occurrences of size at least T .

The total task time will be denoted X. Hence obviously X ≥ T . Furthermore
we shall denote the waiting times between failure times {Un}n∈N (that is
Un = Sn − Sn−1). With the definition

R := inf{n ∈ N | Un > T}

we have that
X = SR−1 + T .

In this setup we are interested in the asymptotic behaviour of the probability

P(X > x) ,

when x→ ∞.

10



7. The setup and results of Paper C

In Asmussen et al. [8] these tail asymptotics were found under a variety of
distributions of T and the U–waiting times. It is assumed that the {Un}–
variables are iid with some common distribution. A particular important case
is the one with exponential waiting times (hence {Sn} is a Poisson process)
and a fixed ideal task time T ≡ ℓ. Then it can be shown that

P(X > x) ∼ ce−γx , (7.1)

where c is some constant, and γ is found as the root of

1 =

∫ ℓ

0
µe(γ−µ)ydy , (7.2)

with µ the parameter of the exponential waiting times.

In Paper C we consider a variety of slightly different scenarios. First we as-
sume that the Poisson process {Sn} is non–homogeneous with some varying
(but deterministic) rate µ(t). A very similar problem is assuming that {Sn}
has constant rate but that the system works on the task with some determin-
istically varying rate r(t). A third model, that is considered in the paper, is
where the rate depends on an underlying Markov process. Altogether we have
the three models:

Model 1 Failures at time t after the start of the task occur at deterministic
rate µ(t).

Model 2 Failures occur according to a Poisson(µ∗) process with constant rate
µ∗. At time t after the start of the task the system works on the task at rate
r(t).

Model 3 As Model 2, but the rate function r(t) is given as r(t) = rV (t) where{
V (t)

}

t≥0
is an ergodic Markov process with p < ∞ states and r1, . . . , rp are

constants with ri > 0 for at least one i.

In both Model 1 and Model 2 it is possible that P(X = ∞) > 0, and a first
result shows that

lim sup
t→∞

µ(t)/ log(t) < 1/ℓ ⇒ P(X = ∞) = 0

lim inf
t→∞

µ(t)/ log(t) > 1/ℓ ⇒ P(X = ∞) > 0 .

Hence only a modest increase in µ(t) may cause that the task never terminates.
A similar result is reached for Model 2 stating that with a small decrease
in r(t) it is obtained that P(X = ∞) > 0. The results for Model 2 follow
from the similar results concerning Model 1 via a rather simple time–change
argument.

In the cases of a decreasing µ(t) in Model 1 and an increasing r(t) in Model

11
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2, where obviously P(X = ∞) = 0, we study the asymptotics of P(X > x)
when x→ ∞. For Model 1 we have with µ(t) ∼ at−β and 0 < β < 1 that

P(X > x) ≈log e−c1x log x = x−c1x ,

where c1 = (1−β)/ℓ (with the notation f(x) ≈log g(x) if log f(x) ∼ log g(x)).
The proof is based on an exponential change of measure to a situation, where
the sequence {Un} is iid with distributions concentrated on [0, ℓ]. A similar
result is obtained for Model 2: If r(t) ∼ atη with η > 0, then

P(X > x) ≈log e−c2x
η+1 log x = x−c2x

η+1
,

where c2 = aη/(η + 1)ℓ. Also here the arguments are derived rather easily
from Model 1 by applying a time–change argument.

Both with respect to proof and result Model 3 resembles the simple model
in (7.1). From applying the Markov renewal theorem it is obtained that

P(X > x) ∼ ce−γx ,

where γ is found as the solution of some multi–dimensional version of (7.2).

12
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A
The Ruin Time for a certain Class

of Diffusion Processes with Jumps

Anders Rønn-Nielsen

Abstract

A certain class of diffusions with jumps is considered. Between jumps the
process behaves like a Cox–Ingersoll–Ross process driven by a Brownian
Motion independent of the jump process. The jumps arrive with expo-
nential waiting times and are allowed to be two–sided. The jumps that
are mixtures of exponential distributions are assumed to form an indepen-
dent, identically sequence, independent of everything else. The fact that
downward jumps are always allowed makes passage of a given lower level
possible both by continuity and by a jump. In case of passage by jump the
resulting undershoot is considered too. As one of the main results of the
thesis, the joint Laplace transform of the first passage and the undershoot
is determined. So is the probability of passage in finite time. Both the
joint Laplace transform and the probability of passage in finite time are
decomposed according to the type of passage: Jump or continuity.

Determining the Laplace transform uses the martingales that can be
derived from Itô’s formula if a partial eigenfunction for the infinitesimal
generator of the process can be found.

Finding partial eigenfunctions involve using complex contour integrals
as the eigenfunctions are defined as linear combinations of such integrals.
An important part of the search for a partial eigenfunction is finding the
sufficient number of contours for integration.
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1 Introduction

In the present paper the process

dXt = κXt dt+ dUt + σ
√

|Xt| dBt (1.1)

is studied where (Ut) is a compound Poisson process with jumps (both the
upward and downward parts) that are allowed to have densities that are linear
combinations of exponential densities. Furthermore (Bt) is a Brownian motion
independent of (Ut). The aim is to determine the distribution of the first
passage time of a given level ℓ when the process has initial state x > ℓ. The
passage of the lower level ℓ can be a result of a downward jump as well as
a continuous motion. We shall distinguish between the two types of passage
when considering the passage time. In case of passage because of a jump the
distribution of the so–called undershoot will be determined as well.

The joint distribution of the passage time and the undershoot will be de-
termined by establishing an expression for the joint Laplace transform. This
is found from Itô’s formula applied to partial eigenfunctions for the infinites-
imal generator A for X. The method has previously been used in [13]. Here
the simpler model corresponding to the case σ = 0 for the process mentioned
above was studied (that is an Ornstein–Uhlenbeck process driven by the com-
pound Poisson process U). A major part of the work in [13] and the present
paper is the very construction of the partial eigenfunctions. They are defined
as linear combinations of functions given as contour integrals in the complex
plane. It turns out to be crucial that the jump structure is given as mentioned
above and that the waiting times between jumps are exponential. With these
assumptions it is obtained that when the generator A is applied to the con-
tour integral functions, the resulting functions are simple linear combinations
of exponentials. When an adequate number of these functions are combined
in the right way it can be obtained that the combination is a partial eigen-
function. Hence a crucial part in the construction of the partial eigenfunction
will be finding the adequate number of integration contours in the complex
plane.

As a result of the larger complexity of the model (1.1) compared to the
one studied in [13] both establishing Itô’s formula and finding the sufficient
number of contours becomes more involved: For Itô to be true some additional
constraints are imposed to the eigenfunction and now contours for two different
integration kernels are requested as a result of the more complicated version
of the generator A.

The technique of using partial eigenfunctions for the infinitesimal generator
has appeared before. In [17] Paulsen and Gjessing considers a model like (1.1)
but in the more general (and also different) setup

dXt = (p+ κXt) dt− dUt +
√

σ21 + σ22X
2
t dBt +XtdŨt . (1.2)
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Here both U and Ũ are compound Poisson processes. In [17] it is shown that a
partial eigenfunction for the corresponding infinitesimal generator for (1.2) will
lead to the ruin probability and also the Laplace transform for the ruin time.
In [8] Gaier and Grandits show – without σ21 and Ũ in the model – the existence
of this partial eigenfunction under some smoothness assumptions about the
jump distributions in U . This result is extended to weaker assumptions in [9].

The fact that both the ruin distribution and the undershoot is of interest is
reflected in the literature through the so–called Gerber–Shiu penalty function

Φx(α) = Ex[g(Xτ−,Xτ )e
−ατ ] .

In [4] integro–differential equations similar to the ones involved in finding
partial eigenfunctions are derived for Φx(α). This is in the model (1.2), but
with σ21 = 0 and some assumptions about the jump distribution.

Another example of solving equations that is similar to finding partial
eigenfunctions for the generator can be found in [6]. Here – as it is also done
in the present paper – the ruin probability is decomposed into ruin as a result
of a jump and ruin due to continuity and the equations that these functions
satisfy are expressed.

For the OU case where σ = 0 and κ > 0 some explicit results are achieved
in [17] for models with negative jumps (positive jumps are not allowed). The
jumps are either a mixture of two exponential distributions or a Γ distribution.
Here an explicit formula for the Laplace transform of the time to ruin is
expressed. For the case of exponential negative jumps also see Asmussen [2],
Chapter VII.

In Novikov et al [16] an OU–process very much like the one in [13] and
[17] is studied. But here it is assumed that the drift κ is negative and only
negative jumps are allowed. In both the cases exponential and uniform jumps
the Laplace transform for the passage time is determined. The technique is
finding a partial eigenfunction for the infinitesimal generator. In [3] this re-
sult is extended to a more general driving Lévy process instead of a compound
Poisson process. Whereas the only downward jumps allowed are still expo-
nentials. A model similar to the one in [16] is studied in Kella and Stadje
[15]. But here the first hitting time (not passage) is considered for both an
upper and a lower level. In the case of a lower level the hitting time obviously
differs from the passage time. For both the upper and lower level the Laplace
transform for the hitting time is expressed in terms of real valued integrals.

A technique very similar to the present paper and [13] was used in [10]
and [12]. In [12] the Markov additive model given by

Xt = x+

∫ t

0
βJs ds+

∫ t

0
σJs−dBs −

Nt∑

n=1

Un (1.3)

is considered, and in [10] a similar but simpler model is the subject. Above J
is a discrete spaced Markov Chain that also governs the jump times of (Nt).
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Here a version of Itô’s formula for the joint process (X,J) is established and
partial eigenfunctions for the generator of this process are requested. The
eigenfunctions are constructed as simple linear combinations of exponential
functions. The much more complex partial eigenfunctions constructed in the
present paper for the model (1.1) makes these phase–type waiting times from
(1.3) too complicated to handle.

The paper is organised in a way that resembles [13], but all results will have
to be reformulated and proved again due to the more complicated setup. First
(Section 2) the setup is defined. In Section 3 some constraints are found for
the functions that Itô’s formula can be applied to. The additional conditions
that makes these functions partial eigenfunctions are stated afterwards. In
Section 4 the joint Laplace transform for the passage time and the undershoot
is expressed under the assumption that it is possible to find two functions that
meet the conditions from Section 3. In the following Section 5 a skeleton of
how these functions look like is defined and it is proved that they actually
meet the conditions from above if a sufficient number of integration contours
for some complex kernel can be found. Finally in Section 6 a suggestion of
how to choose these contours is made. It is shown that the proposed contours
fulfil the conditions established in Section 5 and it is also argued that no more
contours can be found.

2 The model

We consider a process X defined by the following stochastic differential equa-
tion:

dXt = κXt dt+ dUt + σ
√

|Xt| dBt (2.1)

where (Bt) is a standard Brownian motion and (Ut) is a compound Poisson
process defined by

Ut =

Nt∑

n=1

Vn. (2.2)

Here (Vn) are iid with distribution G and (Nt) is a Poisson process with
parameter λ.

The solution process X is a process that between jumps behaves like a con-
tinuous diffusion process (with drift part κXtdt and diffusion part σ

√

|Xt| dBt).
The jumps arrive with exponential waiting times.

Assume that x > 0 and write Px for the probability space where X0 = x
Px–almost surely. Let Ex be the corresponding expectation. Define for ℓ < x
the stopping time τ by

τ = τ(ℓ) := inf{t > 0|Xt ≤ ℓ} . (2.3)

For ease of notation ℓ is most often suppressed. Furthermore define the un-
dershoot Z

Z := ℓ−Xτ (2.4)
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which is well defined on the set {τ <∞}. Of interest is the joint distribution
of τ and Z. This distribution will be expressed through the joint Laplace
transform defined by

Ex[e
−θτ−ζZ ;Aj ] and Ex[e

−θτ ;Ac] , (2.5)

where Aj and Ac is a partition of the set {τ < ∞} into the jump case Aj =
{τ <∞,Xτ < ℓ} and the continuity case Ac = {τ <∞,Xτ = ℓ}.

It can be shown that the process is transient with

Px(τ(ℓ) <∞) < 1

if the drift is positive, and recurrent with

Px(τ(ℓ) <∞) = 1

if the drift is negative.

3 Itô’s formula

We are looking for some functions f for which the following version of Itô’s
formula holds

e−θ(τ∧t)f(Xτ∧t) = f(X0)+

∫ τ∧t

0
e−θs(Af(Xs)− θf(Xs)) ds+

∫ τ∧t

0
e−θs dMs .

(3.1)
Here A is the generator of X and M is some suitable martingale. By consid-
ering the diffusion part and the jump part of the process X separately we can
find an expression for the generator and by that the martingale as well.

Between jumps the process behaves like the diffusion process Y given by
the following differential equation

dYt = κYt dt+ σ
√

|Yt| dBt .

It can be shown that 0 is an absorbing state for this process (the arguments can
be carried out via the results formulated in e.g. Freedman [7]). That means
that the original process X can be absorbed by 0 between jumps. When the
next jump arrives the X–process will leave the state again.

Because of the special property of the state 0 some difficulties arise when
applying the standard Itô formula to this process. Therefore the process Ỹ is
considered where

dỸt = κỸt d(t ∧ τ̃a) + σ

√

|Ỹt| dBt∧τ̃a

and
τ̃a = inf{t > 0|Ỹt ≤ a}
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with a > 0. Itô gives that the following result holds

df(Ỹt) = (κf ′(Ỹt)Yt + 1
2f

′′(Ỹt)σ
2|Ỹt|) d(τ̃a ∧ t) + f ′(Ỹt)σ

√

|Ỹt| dB
τ̃a
t (3.2)

when f is bounded and two times differentiable (on the interval [a,∞[).

Similarly we can find the generator and martingale for the jump part of
X. The jump part is simply the process (Ut) that can be viewed as a marked
point process. The following result is obtained by using the version of Itô’s
formula that concerns marked point process theory (see [11]):

f(Ut) = f(U0) + λ

∫

]0;t]×R

(f(Us + y)− f(Us)) G(dy) ds + M̃t ,

where (M̃t) is the martingale defined by

M̃t =

∫

]0,t]×R

f(Us− + y)− f(Us−))M◦(ds, dy) .

Here M◦ is the martingale measure from the Poisson jump structure:

M◦(ds, dy) = µ(ds, dy)− λdsG(dy)

with µ the counting measure defined by for all t ≥ 0 and B ∈ B

µ(]0, t]×B) = number of jumps in the time

interval ]0, t] of a size within B .

Combining the results for the continuous part and the jump part gives the
following version of Itô on the interval [0, τa] when f is bounded and two
times differentiable and furthermore Af is bounded

f(Xτa∧t) = f(X0) +

∫ τa∧t

0
Af(Xs) ds +Mτa∧t , (3.3)

where τa is the stopping time for X that corresponds to τ̃a:

τa = inf{t > 0|Xt ≤ a} .

Here a > 0. The generator A is

Af(x) = κxf ′(x) + σ2

2 |x|f ′′(x) + λ

∫

R

(f(x+ y)− f(x)) G(dy) , (3.4)

and (Mτa∧t) is a zero–mean martingale given by

dMt = f ′(Xt−)σ
√

Xt− dBt +
∫

R

f(Xt− + y)− f(Xt−)M
◦(dt, dy) . (3.5)
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Hence we get that for all θ ≥ 0

e−θ(τa∧t)f(Xτa∧t) = f(X0)+

∫ τa∧t

0
e−θs(Af(Xs)−θf(Xs)) ds+

∫ τa∧t

0
e−θs dMs ,

(3.6)
where the last part is a martingale.

The aim in the following is to find the class of functions f where the formula
(3.6) holds on all the time interval [0, τ ].

If ℓ > 0 we can just choose a = ℓ. Remembering that τ = τ(ℓ) gives the
formula (3.1) when f is a bounded and two times differentiable function such
that Af is bounded as well.

The case when ℓ ≤ 0

If ℓ ≤ 0 the problem becomes more complicated as a result of the passage of
the state 0. We have conditions on the functions f such that (3.6) is fulfilled
on the interval [a,∞[.

Now consider a bounded, continuous function f : R → C that is two times
differentiable on [ℓ,∞[\{0} and satisfy that Af is bounded on [ℓ,∞[\{0}.
With such a function f the formula (3.6) holds for all a > 0 and thereby it
makes sense to consider the limit when a→ 0.

On the set {Xτ0 ≤ 0,Xτ0− > 0} it follows easily that

e−θ(τ0∧t)f(Xτ0∧t) = f(X0)+

∫ τ0∧t

0
e−θs(Af(Xs)−θf(Xs)) ds+

∫ τ0∧t

0
e−θs dMs ,

(3.7)
because an a > 0 could be found such that τa = τ0.

The situation that corresponds to the set {Xτ0 = 0,Xτ0− = 0} is more com-
plicated. Now the process reaches the state 0 as a result of a continuous
movement. As f is assumed to be continuous the left hand side of (3.6) has
the limit

e−θ(τ0∧t)f(0) .

When the left hand side has a limit when a → 0 the right hand side must
have one as well. Because both f and Af are assumed to be bounded each of
the two integrals will even converge separately. So the desired formula is now
shown until the time τ0:

e−θtf(Xt) = f(X0) +

∫ t

0
e−θs(Af(Xs)− θf(Xs)) ds +

∫ t

0
e−θs dMs (3.8)

for t ∈ [0; τ0]. It should be noted that Af(Xs) is not defined at the time point
τ0, but this is not essential as it is the integrand in a Lebesgue integral.

The next problem is to show that the formula is still satisfied after the time τ0
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on the set {Xτ0 = 0,Xτ0− = 0}. As mentioned above the state 0 is absorbing
for the diffusion part of X, so on the set {Xτ0 = 0,Xτ0− = 0} the process will
stay in the state until the next jump. The time of this jump is denoted as

τ∗ = inf{t > τ0|Xt 6= 0} ,

and the formula (3.8) is considered on the time interval ]τ0, τ
∗[. On this

interval X ≡ 0 so the left hand side of (3.8) is simply

e−θtf(0) , (3.9)

and the question is whether the right hand side can be reduced to something
similar. In order to make the expression meaningful an extension of the defi-
nition of A to cover the situation x = 0 seems necessary. Hence define

Af(0) = λ

∫

R

(f(y)− f(0))G(dy) . (3.10)

A change in the definition of M as well will be convenient:

dMt = f ′(Xt−)σ
√

Xt−1(Xt− 6=0) dBt +

∫

R

f(Xt− + y)− f(Xt−)M
◦(dt, dy).

(3.11)
It is important to notice that this is equivalent to the previous definition of M
on the time interval [0, τ0] so the results obtained till now will also hold with
this definition. By using (3.10) and (3.11) some straightforward calculations
show that the left hand side of (3.8) reduces to (3.9) .

By this it has been shown that the equation (3.8) is true for all t ∈ [0, τ∗[.
That the formula is still true at the time point τ∗ can be shown rather easily:
At the left hand side the increment

e−θτ
∗
(f(Xτ∗)− f(0)) (3.12)

is observed while the right hand side is affected by the increment

∫

{τ∗}
e−θs dMs =

∫

{τ∗}×R

e−θu
(
f(0 + y)− f(0)

)(
µ(du, dy)

= e−θτ
∗
(f(Xτ∗)− f(0)) ,

that equals (3.12).

At time τ∗ the process will leave 0 by virtue of a jump. This jump can be
either positive or negative. In the first case an analogous argument will explain
why (3.8) is true until the next time where the state 0 is attained and passed.
So two new stopping times are defined:

τ02 = inf{t > τ∗|Xt ≤ 0} and τ∗2 = inf{t > τ02|Xt 6= 0} ,
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and similar to the previous arguments it is shown that (3.8) holds on the time
intervals [τ∗, τ02] and ]τ02, τ

∗
2 ] .

In the case of a negative jump – where Xτ∗ < 0 – the formula is shown in the
same way as above. This is a result of the symmetry around 0 of the original
Itô’s formula on the interval [0, τa]: If the starting point x is negative and the
stopping time

τ ′a = inf{t ≥ 0|Xt ≥ a}

is defined for some a > x the formula (3.8) can be shown for all t ∈ [0, τ ′a ∧ τ ].
By extension arguments that involve stopping times similar to τ0 and τ∗ it
can be concluded that (3.8) is true until the next time 0 is passed.

Overall it has been shown that in spite of the possible movements across the
state 0 the formula (3.8) is true on all the interval [0, τ ]. Hence

e−θ(τ∧t)f(Xt) = f(X0) +

∫ τ∧t

0
e−θs(Af(Xs)− θf(Xs)) ds +

∫ τ∧t

0
e−θs dMs

(3.13)
for all t ∈ R where M is defined by (3.11).

It is left to show that the last part in (3.13) is a martingale.

Given that t 7→ e−θt is bounded it satisfies to show that (Mτ∧t)t≥0 is a mar-
tingale. Using (3.13) with θ = 0 yields

Mτ∧t = f(Xτ∧t)− f(X0)−

∫ τ∧t

0
Af(Xs) ds

from which it can be seen that (Mτ∧t)0≤s≤t is bounded for all t ≥ 0 since both
f and Af are assumed to be bounded. A further result of f being bounded
is that (

∫

[0;τ∧t]×R

f(Xs− + y)− f(Xs−)M
◦(ds, dy)

)

t≥0

is a martingale. In addition to this

(∫ τ∧t

0
f ′(Xs−)σ

√

|Xs−|1(Xs− 6=0) dBs

)

t≥0

is a local martingale since the integrand is predictable. Furthermore (Mτ∧t)t≥0

can be written as the sum of two local martingales

Mτ∧t =
∫ τ∧t

0
f ′(Xs−)σ

√

|Xs−|1(Xs− 6=0) dBs

+

∫

[0;τ∧t]×R

f(Xs− + y)− f(Xs−)M
◦(ds, dy)
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and hence it is a local martingale itself. Additionally (Mτ∧t)t≥0 is shown to
be bounded on finite intervals so it is a true martingale.

All together it is shown that if f : R → C is continuous and bounded and
satisfy that if

ℓ > 0:

• f is two times differentiable on [ℓ,∞[ and

• Af defined by

Af(x) = κxf ′(x) + σ2

2 |x|f ′′(x) + λ

∫

R

(f(x+ y)− f(x)) G(dy)

for x ∈ [ℓ,∞[ is bounded, and if

ℓ < 0:

• f is two times differentiable on [ℓ,∞[\{0} and

• Af defined by

Af(x) =

{

κxf ′(x) + σ2

2 |x|f ′′(x) + λ
∫

R
(f(x+ y)− f(x)) G(dy) x 6= 0

λ
∫

R
(f(y)− f(0))G(dy) x = 0

for x ∈ [l,∞[ is bounded,

then it holds that

e−θ(τ∧t)f(Xt) = f(X0) +

∫ τ∧t

0
Af(Xs)− θf(Xs) ds +

∫ τ∧t

0
e−θs dMs (3.14)

for all t ∈ R, where the last part is a zero–mean martingale.

Now assume the function f : R → C to be continuous and bounded, two
times differentiable on [ℓ,∞[\{0} (or [l,∞[ in the l > 0 case) and is chosen
such that it is a partial eigenfunction for A on [ℓ,∞[\{0}:

Af(x) = θf(x) for all x ∈ [l;∞[\{0} . (3.15)

With this property satisfied Af is of course bounded. If in addition to this f
in the ℓ < 0 case satisfy the condition

f(0) = −
λ

λ+ θ

∫

R

f(y)G(dy) ⇔ θf(0) = λ

∫

R

(f(y)− f(0))G(dy) ,

the definition Af(0) = λ
∫

R
(f(y)−f(0))G(dy) yields that Af(0) = θf(0). By

this the above conditions are satisfied such that (3.13) is true. Besides the
formula can be rewritten in the following much simpler way:

e−θ(τ∧t)f(Xt) = f(X0) +

∫ τ∧t

0
e−θs dMs . (3.16)
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4. The Laplace Transform

Since the last part is a zero mean martingale taking expectation on both sides
gives the following

Exe
−θ(τ∧t)f(Xτ∧t) = f(x) for all t ≥ 0 . (3.17)

All together we have obtained the following result

Lemma 3.1. For a function f : R → C the equation (3.17) holds if

ℓ > 0: • f is bounded, continuous and two times differentiable on [ℓ;∞[

• Af(y) = θf(y) for y ∈ [ℓ;∞[

• f(y) = Le−ζ(l−y) for y < l

ℓ = 0: • f is bounded and continuous on [0;∞[, together with two times
differentiable on ]0;∞[

• Af(y) = θf(y) for y ∈]0;∞[

• f(y) = Le−ζ(ℓ−y) for y < ℓ

ℓ < 0: • f is continuous and bounded on [ℓ;∞[

• f is two times differentiable on [ℓ;∞[\{0}

• Af(y) = θf(y) for y ∈ [ℓ;∞[\{0}

• f(0) = λ
λ+θ

∫

R
f(u)G(du)

• f(y) = Le−ζ(ℓ−y) for y < ℓ .

4 The Laplace Transform

In this section the joint Laplace transform is derived under the assumption
that a sufficient number of partial eigenfunctions f can be found satisfying
the conditions in Lemma 3.1.

The θ > 0 case

Since f is assumed to be bounded the use of dominated convergence yields
the following in the equation (3.17) when t→ ∞

Exe
−θτf(Xτ ) = f(x) . (4.1)

Remark that on the set {τ = ∞} the expression has limit 0 since f is bounded.
This means that the expectation is well–defined although there is no contri-
bution from this set.

Hence only the set {τ < ∞} is of interest when taking expectation. The
set is divided into the two cases Aj = {τ < ∞,Xτ < ℓ} and Ac = {τ <
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∞,Xτ = ℓ}. A partitioning that separate the case where τ is reached as a
result of a jump from the continuous case. This gives

Ex[e
−θτf(Xτ );Aj ] + f(ℓ)Ex[e

−θτ ;Ac] = f(x) . (4.2)

To make the formula less complicated it is assumed that f has the following
form on ]−∞; l[

f(x) = Le−ζ(ℓ−x) when x < ℓ . (4.3)

This yields that (4.2) can be rewritten as follows

LEx[e
−θτ−ζZ ;Aj ] + f(ℓ)Ex[e

−θτ ;Ac] = f(x) . (4.4)

It is from this equation the two requested expressions for the joint Laplace
transform are attained. This requires two different partial eigenfunctions f1
and f2 that both satisfy the conditions and have the form (4.3) on the interval
] − ∞; l[. From these functions two versions of the equation (4.4) emerge.
From this expressions for both Ex[e

−θτ−ζZ ;Aj ] and Ex[e
−θτ ;Ac] can be found:

Ex[e
−θτ−ζZ ;Aj ] =

f1(ℓ)f2(x)− f1(x)f2(ℓ)

L2f1(ℓ)− L1f2(ℓ)
(4.5)

Ex[e
−θτ ;Ac] =

L2f1(x)− L1f2(x)

L2f1(ℓ)− L1f2(ℓ)
. (4.6)

The θ = 0 case

When it is assumed that θ = 0 the equation (3.17) must be treated differently.
Now it has the form

Exf(Xτ∧t) = f(x)

that can be divided into

Ex[f(Xτ ); τ ≤ t] + Ex[f(Xt); τ > t] = f(x) .

If it aside from the assumption that f is bounded is assumed that either
limt→∞ f(Xt) = 0 a.s. on {τ = ∞} or Px(τ < ∞) = 1 then using dominated
convergence yields that

Ex[f(Xτ ); τ <∞] = f(x) .

By dividing into the jump and the conituity cases the equation becomes the
following when it is assumed that f has the form (4.3) on the interval ]−∞; l[

LEx[e
−ζZ ;Aj ] + f(ℓ)Px(Ac) = f(x) . (4.7)

If two partial eigenfunctions f1 and f2 with the requested properties can be
found the expressions for the joint Laplace transform is as follows – similar to
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(4.5) and (4.6):

Ex[e
−ζZ ;Aj ] =

f1(ℓ)f2(x)− f1(x)f2(ℓ)

L2f1(ℓ)− L1f2(ℓ)
(4.8)

Px(Ac) =
L2f1(x)− L1f2(x)

L2f1(ℓ)− L1f2(ℓ)
. (4.9)

If ζ = 0 as well (4.7) becomes even more simple

LPx(Aj) + f(ℓ)Px(Ac) = f(x) . (4.10)

5 Partial Eigenfunctions

In Section 4 an expression for the joint Laplace transform was derived. This
was done under the assumption that two partial eigenfunctions f1 and f2
could be found. That is the assumption that two functions f1 and f2 satisfy
the conditions formulated in Lemma 3.1.

In this section a template for how these functions could look like is made. In
the next section this template is exploited more concrete. The main focus will
be on the partial eigenfunction part of the conditions:

Af(y) = θf(y) for y ∈ [ℓ,∞[\{0} .

Subsequently the other conditions will be considered. It seems practical to
decompose the jump distribution into a positive and a negative part

G = pG− + qG+,

where 0 < p ≤ 1, q = 1− p, G+ is a distribution on R+ =]0;∞[ and G− is a
distribution on R− =] −∞; 0[. In addition it is assumed that G− is a linear
combination of exponential distributions:

G−(du) = g−(u) du =
r∑

k=1

αkµke
µku for u < 0 , (5.1)

where it is assumed that r ∈ N, 0 < µ1 < · · · < µr and that the αk’s fulfil that
αk 6= 0 and g− is a density on R−. The last property induce that

∑
αk = 1

and the fact that g− is a density induce that α1 > 0.

This assumption concerning the structure of the downward jumps is essen-
tial in the further calculations since it causes thatAf(y) attains an exponential
structure. This restriction is not as hard as it might seem since the class of
these distributions is dense among all distributions on R (with respect to the
topology induced by week convergence).

It seems necessary to consider the cases l < 0 and l ≥ 0 separately.
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The situation where l is non–negative

Now define f0 : R → C by

f0(y) =

{
0 y ≥ ℓ

Le−ζ(ℓ−y) y < ℓ
, (5.2)

where L is some complex constant. By straightforward calculations it can be
shown that

(A− θI)f0(y) = λL

r∑

k=1

αkµk
µk+ζ

eµk(ℓ−y) .

Furthermore define fΓ : R → C by

fΓ(y) =

{ ∫

Γ ψ0(z)e
−yz dz y ≥ ℓ

0 y < ℓ
, (5.3)

where ψ0 is some suitable complex–valued kernel and Γ is a contour in the
positive part of the complex plane C+ = {z ∈ C : z ≥ 0}. Γ is assumed to
have the form

Γ = {γ(t) : δ1 < t < δ2}

with γ a continuous function that is differentiable except at a finite num-
ber of points. An expression for fΓ(y) can be found by using the following
substitution when y ≥ ℓ

fΓ(y) =

∫

Γ
ψ0(z)e

−yz dz =

∫ δ2

δ1

γ′(t)ψ0(γ(t))e
−yγ(t) dt . (5.4)

The integral is well–defined if

∫

|Γ|
|ψ0(z)|e

−yRez dz :=

∫ δ2

δ1

|γ′(t)ψ0(γ(t))|e
−yRe(γ(t)) dt <∞

and with the same notation it holds that
∫

|Γ|
|ψ0(z)|e

−y1Rez dz ≥

∫

|Γ|
|ψ0(z)|e

−y2Rez dz

whenever y1 ≤ y2. Furthermore it holds that

∣
∣
∣fΓ(y)

∣
∣
∣ ≤

∫

|Γ|
|ψ0(z)|e

−yRez dz .

By this it is seen that fΓ is bounded and two times differentiable on [ℓ;∞[
with

f ′Γ(y) =
∫

Γ
ψ0(z)(−z)e

−yz dz og f ′′Γ(y) =
∫

Γ
ψ0(z)z

2e−yz dz ,

when y ∈ [l;∞[ if only
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•
∫

|Γ| |ψ0(z)|e
−ℓRez dz <∞

•
∫

|Γ| |ψ0(z)| |z|e
−ℓRez dz

•
∫

|Γ| |ψ0(z)| |z|
2e−ℓRez dz .

The strategy of the following is to choose ψ0 and Γ in such a way that (A −
θI)fΓ(y) attains the same exponential structure as (A − θI)f0(y) when y ∈
[ℓ;∞[.

We shall assume that ψ0 has the form

ψ0(z) =
(
σ2

2κz − 1
) θ
κ+

∑ 2pλαk

2κ−µkσ2 −1
z−

θ
κ−1

×

(
r∏

k=1

(z − µk)
− 2pλαk

2κ−µkσ2
)

exp
(qλ

κ
F (z)

)

(5.5)

with F (z) some primitive of
h(z)

σ2

2κz − 1
.

With these definitions we have the result:

Theorem 5.1. Let Γ = {γ(t) : δ1 < t < δ2} ⊆ C+ be a complex curve with γ
a continuous function that is differentiable except at a finite amount of points.
Assume that a version of ψ0 (given by (5.5)) exists that is holomorphic in an
area containing Γ. Assume furthermore that

(i)
∫

|Γ| |ψ0(z)|e
−ℓRez dz <∞

(ii)
∫

|Γ| |ψ0(z)| |z|e
−ℓRez dz <∞

(iii)
∫

|Γ| |ψ0(z)| |z|
2e−ℓRez dz <∞

(iv)
∫

|Γ| |
ψ0(z)
z−µk |e

−ℓRez dz <∞

(v) ψ0(γ(δ1))γ(δ1)
(
κ−σ2

2 γ(δ1)
)
e−yγ(δ1) = ψ0(γ(δ2))γ(δ2)

(
κ−σ2

2 γ(δ2)
)
e−yγ(δ2)

for y ≥ ℓ .

Then with fΓ defined by

fΓ(y) =

{ ∫

Γ ψ0(z)e
−yz dz y ≥ l

0 y < ℓ
,

it holds for y ≥ l that

(A− θI)fΓ(y) = pλ

r∑

k=1

αkµk

( ∫

Γ

ψ0(z)

z − µk
e−ℓz dz

)

eµk(ℓ−y) ,
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where

Mk
Γi

=

∫

Γi

ψ0(z)

z − µk
e−ℓz dz . (5.6)

Proof. For y ≥ ℓ it is seen that

(A− θI)fΓ(y) = y

∫

Γ
ψ0(z)z(

σ2

2 z − κ)e−yz dz

+pλ

∫ 0

ℓ−y

r∑

k=1

αkµke
µku

∫

Γ
ψ0(z)e

−(y+u)z dz du

+qλ

∫ ∞

0

∫

Γ
ψ0(z)e

−(y+u)z dz G+(du)

−(λ+ θ)

∫

Γ
ψ0(z)e

−yz dz . (5.7)

A substitution similar to (5.4) used on the first term yields that it equals

y

∫ δ2

δ1

γ′(t)ψ0(γ(t))γ(t)(
σ2

2 γ(t)− κ)e−yγ(t) dt

and by partial integration and another substitution this expression

= −

∫

Γ

(

ψ0(z)(κ − σ2z) + ψ′
0(z)z(κ − σ2

2 z)
)

e−yz dz

under the condition that

ψ0(γ(δ1))γ(δ1)
(
κ− σ2

2 γ(δ1)
)
e−yγ(δ1) = ψ0(γ(δ2))γ(δ2)

(
κ− σ2

2 γ(δ2)
)
e−yγ(δ2) .

Straightforward calculations applied to the second term in (5.7) gives that it

= pλ

∫

Γ
ψ0(z)

( r∑

k=1

αkµk
µk − z

)

e−yz dz

+pλ

r∑

k=1

αkµk

( ψ0(z)

z − µk
e−ℓz dz

)

eµk(ℓ−y) .

Now define L+ as the generalised Laplace transform for the G+ distribution:

L+(z) =

∫ ∞

0
e−zuG+(du) .

This is well-defined for all complex numbers z with Rez ≥ 0. By this definition
the third term from (5.7) can be rewritten in the following way

qλ

∫

Γ
ψ0(z)L+(z)e

−yz dz .
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Altogether (5.7) has become

(A− θI)fΓ(y) = −

∫

Γ

(

ψ0(z)(κ − σ2z) + ψ′
0(z)z(κ − σ2

2 z)
)

e−yz dz

+pλ

∫

Γ
ψ0(z)

( r∑

k=1

αkµk
µk − z

)

e−yz dz

+pλ

r∑

k=1

αkµk

(∫

Γ

ψ0(z)

z − µk
e−ℓz dz

)

eµk(l−y)

+qλ

∫

Γ
ψ0(z)L+(z)e

−yz dz

−(λ+ θ)

∫

Γ
ψ0(z)e

−yz dz . (5.8)

If all terms including an integral of the form
∫

Γ(· · · )e
−yz dz has the sum 0

(5.8) is reduced to

(A− θI)fΓ(y) = pλ

r∑

k=1

αkµk

(∫

Γ

ψ0(z)

z − µk
e−ℓz dz

)

eµk(l−y) .

That result is achieved if the integration kernel ψ0 solves the differential equa-
tion

ψ0(z)(κ−σ
2z)+ψ′

0(z)z(κ−
σ2

2 z) = ψ0(z)
(

−(λ+θ)+
r∑

k=1

pλαk
µk

µk − z
+qλL+(z)

)

,

that is equivalent with the equation

ψ′
0(z) =

1

κz(σ
2

2κz − 1)

(

θ+κ−σ2z+
r∑

k=1

pλαk
z

z − µk
+ qλzh(z)

)

ψ0(z) , (5.9)

where

h(z) =
1− L+(z)

z
.

Since the kernel ψ0 solves this equation the result from the Theorem has been
proved.

It has been shown that for both f0 and fΓ it holds that (A−θI)f0 and (A−
θI)fΓ respectively are linear combinations of the exponential functions y 7→
eµk(ℓ−y). A solution strategy is to define (the potential partial eigenfunction)
f as some suitable linear combination of f0 and the fΓ–functions. With this
idea in mind we have the following result from the use of Theorem 5.1:
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Theorem 5.2. Let θ ≥ 0 and ζ ≥ 0 be given, and assume that f0 and fΓi for
i = 1, . . . ,m are defined as in Theorem 5.1 such that the conditions (i) − (v)
are satisfied. Define

f(y) =

m∑

i=1

cifΓi(y) + f0(y) . (5.10)

If the constants c1, . . . , cm and L solve the equations

m∑

i=1

ciM
k
Γi

+ L
1

µk + ζ
= 0 (5.11)

for k = 1, . . . , r, then f is a partial eigenfunction for the generator A on [l,∞[:

(A− θI)f(y) = 0 for y ∈ [ℓ,∞[ (5.12)

Remark 5.1. The theorem explains what it takes to construct partial eigen-
functions: Sufficiently many fΓi–functions should be constructed in order to be
able to construct the equations (5.11). That boils down to finding sufficiently
many different integration contours Γi for the kernel ψ0. It is a homogeneous
linear equation system consisting of r equations and the m + 1 unknowns
c1, . . . , cm and L. Hence m = r contours are necessary to construct a partial
eigenfunction.

Since two partial eigenfunctions f1 and f2 are needed to solve the equations
(4.4) and (4.7) at least one of the integration contours in f2 should be different
from the ones in f1. All together that takes m = r + 1 contours.

Furthermore it is worth considering which amount of difference is required
between the m = r+1 integration contours. E.g.: Obviously the same contour
should not be reused several times. Here it is crucial that the equation system
given by (5.11) can be solved w.r.t c1, . . . , cm and L. Hence the vectors of
constants

MΓi = (M1
Γi
, . . . ,Mm

Γi
)

associated to the contours Γi for i = 1, . . . , r should be linearly independent.
Otherwise this would correspond to a situation with less unknowns in the equa-
tion system.

When ℓ is negative

In this case it is necessary to make assumptions about both the upward and
downward jumps. So assume that the positive part of the jump has the same
structure as the negative:

G+(du) = g+(u)du =

s∑

d=1

βdνde
−νdu .
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Furthermore define the function f0 as before, but replace the definition of fΓ
with the following

f1Γ1
(y) =

{ ∫

Γ1
ψ1(z)e

−yz dz y ≥ 0

0 y < 0
(5.13)

f2Γ2
(y) =

{ ∫

Γ2
ψ2(z)e

−yz dz ℓ ≤ y ≤ 0

0 otherwise
, (5.14)

where Γ1 ⊂ C+, Γ2 ⊂ C are contours as before and ψ1 and ψ2 are integration
kernels given by

ψ1(z) =
(
σ2

2κz − 1
) θ
κ+

∑r 2pλαk

2κ−µkσ2 +
∑s 2qλβd

2κ+νdσ2
−1
z−

θ
κ−1

×

(
r∏

k=1

(z − µk)
− 2pλαk
2κ−µkσ2

)(
s∏

d=1

(z + νd)
− 2qλβd
2κ+νdσ2

)

and

ψ2(z) =
(−σ2

2κ z − 1
) θ
κ+

∑r 2pλαk

2κ+µkσ2
+
∑s 2qλβd

2κ−νdσ2 −1
z−

θ
κ−1

×

(
r∏

k=1

(z − µk)
− 2pλαk

2κ+µkσ2

)(
s∏

d=1

(z + νd)
− 2qλβd
2κ−νdσ2

)

.

Definition 5.1. For convenience we shall use the following definitions

M1k
Γi

=

∫

Γi1

ψ1(z)

z − µk
dz i = 1, . . . ,m, k = 1, . . . , r

M2d
Γi

=

∫

Γi1

ψ1(z)

νd + z
dz i = 1, . . . ,m, d = 1, . . . , s

N1k
Γj

=

∫

Γj2

ψ2(z)

µk − z
dz j = 1, . . . , n, k = 1, . . . , r

N2d
Γj

=

∫

Γj2

ψ2(z)

νd + z
dz j = 1, . . . , n, d = 1, . . . , s

N3k
Γj

=

∫

Γj2

ψ2(z)

z − µk
e−lzdz j = 1, . . . , n, k = 1, . . . , r .

Similar to the conditions (i)−(v) in Theorem 5.1 we will refer to the conditions
in the Notation below.

Notation 5.1. Let θ ≥ 0, ζ ≥ 0 be given and let f0, f
1
Γi1

and f2Γj2
be defined

as above for i = 1, . . . ,m and j = 1, . . . , n such that for all f tΓit
it is true that

Γi1 = {γi1(u) : δ
i1
1 < u < δi12 } ⊆ C+ and Γi2 = {γi2(u) : δ

i2
1 < u < δi22 } ⊆ C

are complex curves with γit continuous functions that are differentiable except
at finitely many points for t = 1, 2. Furthermore assume that there exists a
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holomorphic version of each of the ψ-kernels that contains the relevant contour
Γ.

Assume for ψ1 and Γi1, i = 1, . . . ,m, that

(i)
∫

|Γi1| |ψ1(z)| dz <∞

(ii)
∫

|Γi1| |ψ1(z)| |z|e
−yRez dz <∞ for all y > 0

(iii)
∫

|Γi1| |ψ1(z)| |z|
2e−yRez dz <∞ for all y > 0

(iv)
∫

|Γi1| |
ψ1(z)
z−µk | dz <∞ for k = 1, . . . , r

(v)
∫

|Γi1| |
ψ1(z)
z+νd

| dz <∞ for d = 1, . . . , s

(vi) ψ1(γi1(δi1))γi1(δ
1
i1)
(
κ− σ2

2 γi1(δ
1
i1)
)
e−yγi1(δ

1
i1)

= ψ1(γi1(δ
1
i2))γ1(δ

1
i2)
(
κ− σ2

2 γi1(δ
1
i2)
)
e−yγi1(δ

1
i2)

for all y > 0

and similarly for ψ2 and Γj2 for j = 1, . . . , n:

(i’)
∫

|Γi2| |ψ2(z)| dz <∞

(ii’)
∫

|Γi2| |ψ2(z)|e
−ℓRez dz <∞

(iii’)
∫

|Γi2| |ψ2(z)| |z|e
−yRez dz <∞ for all y ∈ [ℓ; 0[

(iv’)
∫

|Γi2| |ψ2(z)| |z|
2e−yRez dz <∞ for all y ∈ [ℓ; 0[

(v’)
∫

|Γi2| |
ψ2(z)
z−µk | dz <∞ for k = 1, . . . , r

(vi’)
∫

|Γi2| |
ψ2(z)
z−µk |e

−ℓz dz <∞ for k = 1, . . . , r

(vii’)
∫

|Γi2| |
ψ2(z)
z+νd

| dz <∞ for d = 1, . . . , s

(viii’) ψ2(γj2(δ
2
j1))γj2(δ

2
j1)
(
κ+ σ2

2 γj2(δ
2
j1)
)
e−yγj2(δ

2
j1)

= ψ2(γj2(δ
2
j2))γj2(δ

2
j2)
(
κ+ σ2

2 γj2(δ
2
j2)
)
e−yγj2(δ

2
j2)

for all y ∈ [ℓ; 0[ .

With all these definitions we can state and prove the following:
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Theorem 5.3. Assume that the integration contours Γi1, i = 1, . . . ,m and
Γj2, j = 1, . . . , n satisfy the conditions in Notation 5.1. Define f : R → C by

f(y) =

m∑

i=1

cif
1
Γi1

(y) +

m∑

j=1

bjf
2
Γj2

(y) + f0(y) for y ∈ [l;∞[\{0} , (5.15)

then f is bounded and two times differentiable on [l,∞[\{0}. If the constants
c1, . . . , cm, b1, . . . , bn and L solves the following equations

n∑

j=1

bjN
3k
Γj

+ L
1

µk + ζ
= 0 (5.16)

and
(

m∑

i=1

ciM
1k
Γi

)

+

(
n∑

j=1

bjN
1k
Γj

)

= 0 (5.17)

for k = 1, . . . , r, and furthermore

(
n∑

j=1

bjN
2d
Γj

)

−

(
m∑

i=1

ciM
2d
Γj

)

= 0 (5.18)

for d = 1, . . . , s, then f is a partial eigenfunction for the generator A on
[ℓ,∞[\{0}:

(A− θI)f(y) = 0 for all y ∈ [ℓ,∞[\{0} .

Finally f is continuous in 0 with the value f(0) = λ
λ+θ

∫

R
f(u) G(du) if fur-

thermore

m∑

i=1

cif
1
Γi1

(0) =
λ

λ+ θ

(
m∑

i=1

ci

∫ ∞

0
f1Γi1

(y)G(dy)

+

n∑

j=1

bj

∫ 0

l
f2Γj1

(y)G(dy) + Lp

r∑

k=1

αkµk
η + µk

elµk



(5.19)

and

n∑

j=1

bjf
2
Γj2

(0) =
λ

λ+ θ

(
m∑

i=1

ci

∫ ∞

0
f1Γi1

(y)G(dy)

+

n∑

j=1

bj

∫ 0

l
f2Γj1

(y)G(dy) + Lp

r∑

k=1

αkµk
η + µk

elµk



 .(5.20)
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Proof. Under the conditions in Notation 5.1 we have for y > 0

(A− θI)f1Γ1
(y) = κy

∫

Γ1

ψ1(z)(−z)e
−yz dz

+pλ

∫ 0

−y

r∑

k=1

αkµke
µku

∫

Γ1

ψ1(z)e
−(y+u)z dz du

+qλ

∫ ∞

0

s∑

d=1

βdνde
νdu

∫

Γ1

ψ1(z)e
−(y+u)z dz du

−(λ+ θ)

∫

Γ1

ψ1(z)e
−yz dz

+σ2

2 y

∫

Γ1

ψ1(z)z
2e−yz dz . (5.21)

The second term can be rephrased as

= pλ

∫

Γ1

ψ1(z)
r∑

k=1

∫ 0

−y
αkµke

µkue−(y+u)zdu dz

= pλ

∫

Γ1

ψ1(z)
r∑

k=1

∫ 0

−y
αkµke

u(µk−z)du e−yzdz

= pλ

∫

Γ1

ψ1(z)

r∑

k=1

(
αkµk
µk − z

−
αkµk
µk − z

ey(µk−z)
)

e−yzdz

= pλ

∫

Γ1

ψ1(z)

(
r∑

k=1

αkµk
µk − z

)

e−yzdz

+pλ

r∑

k=1

αkµk

(∫

Γ1

ψ1(z)

z − µk
dz

)

e−µky .

If it as in the ℓ ≥ 0 case is assumed that

ψ1(γ1(δ1))γ1(δ
1
1)
(
κ−σ2

2 γ1(δ
1
1)
)
e−yγ1(δ

1
1) = ψ1(γ1(δ

1
2))γ1(δ

1
2)
(
κ−σ2

2 γ1(δ
1
2)
)
e−yγ1(δ

1
2) .

we can obtain the following result

(A− θI)f1Γ1
(y)

= −

∫

Γ1

(

ψ1(z)(κ − σ2z) + ψ′
1(z)z(κ − σ2

2 z)
)

e−yz dz

+ pλ

∫

Γ1

ψ1(z)
( r∑

k=1

αkµk
µk − z

)

e−yz dz + pλ

r∑

k=1

αkµk

(∫

Γ1

ψ1(z)

z − µk
dz

)

e−µky

+ qλ

∫

Γ1

ψ1(z)L+(z)e
−yz dz − (λ+ θ)

∫

Γ1

ψ1(z)e
−yz dz
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5. Partial Eigenfunctions

and since ψ1 solves the differential equation (5.9) we have

(A− θI)f1Γ1
(y) = pλ

r∑

k=1

αkµk

(∫

Γ1

ψ1(z)

z − µk
dz

)

e−µky . (5.22)

For ℓ ≤ y < 0 we have (recall that f1Γ1
(y) f ′1Γ1

(y) and f ′′1Γ1
(y) are 0)

(A− θI)f1Γ1
(y) = qλ

∫ ∞

−y

∫

Γ1

ψ1(z)e
−(y+u)zdz G+(du)

= qλ

∫

Γ1

ψ1(z)

s∑

d=1

∫ ∞

−y
βdνde

−u(νd+z)du e−yz dz

= qλ

∫

Γ1

ψ1(z)

s∑

d=1

[ βdνd
νd + z

e−u(νd+z)
]∞

−y
e−yz dz

= −qλ
s∑

d=1

βdνd

(∫

Γ1

ψ1(z)

νd + z
dz

)

eνdy . (5.23)

Considering f2Γ2
when y ≥ 0 yields

(A− θI)f2Γ2
(y) = pλ

∫ −y

l−y

r∑

k=1

αkµke
µky

∫

Γ2

ψ2(z)e
−(y+u)zdz du

= pλ

∫

Γ2

ψ2(z)
r∑

k=1

∫ −y

ℓ−y
αkµke

µkue−(y+u)zdu dz

= pλ

∫

Γ2

ψ2(z)
r∑

k=1

∫ −y

ℓ−y
αkµke

u(µk−z)du e−yzdz

= pλ

∫

Γ2

ψ2(z)
r∑

k=1

αkµk
µk − z

(

e−y(µk−z) − e(ℓ−y)(µk−z)
)

e−yzdz

= pλ

r∑

k=1

αkµk

(∫

Γ2

ψ2(z)

µk − z
dz

)

e−µky

+pλ

r∑

k=1

αkµk

(∫

Γ2

ψ2(z)

z − µk
e−ℓz dz

)

eµkℓe−µky , (5.24)
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and when ℓ ≤ y < 0 we get

(A− θI)f2Γ2
(y) = κy

∫

Γ2

ψ2(z)(−z)e
−yz dz

+pλ

∫ 0

ℓ−y

r∑

k=1

αkµke
µku

∫

Γ2

ψ2(z)e
−(y+u)z dz du

+qλ

∫ −y

0

∫

Γ2

ψ2(z)e
−(y+u)z dz G+(du)

−(λ+ θ)

∫

Γ2

ψ2(z)e
−yz dz

−σ2

2 y

∫

Γ2

ψ2(z)z
2e−yz dz , (5.25)

where the third term can be rewritten as

= qλ

∫

Γ2

ψ2(z)L+(z)e
−yz dz G+(du)

+qλ

s∑

d=1

βdνd

(∫

Γ2

ψ2(z)

νd + z
dz

)

eνdy .

With an argument similar to the one before we have that

(A− θI)f2Γ2
(y) = pλ

r∑

k=1

αkµk

(∫

Γ2

ψ2(z)

z − µk
e−lz dz

)

e−µk(y−l)

+qλ
s∑

d=1

βdνd

(∫

Γ2

ψ2(z)

νd + z
dz

)

eνdy

if

ψ2(γ2(δ
2
1))γ2(δ

2
1)
(
κ+ σ2

2 γ2(δ
2
1)
)
e−yγ2(δ

2
1)

= ψ2(γ2(δ
2
2))γ2(δ

2
2)
(
κ+ σ2

2 γ2(δ
2
2)
)
e−yγ2(δ

2
2) .

Collecting the results attained so far and using the definitions in Notation 5.1
completes the proof of the partial eigenfunction part.

The two final conditions (5.19) and (5.20) follow immediately if f is adjusted
to have the same limit from left and right in 0.

Remark 5.2. It has been shown that with f defined as in (5.15) the equation
(3.17) is true if the conditions in Notation 5.1 are fulfilled and the constants
c1, . . . , cm, b1, . . . , bn and L satisfy the equations (5.16)-(5.20).

The equations (5.16)-(5.20) form together 2r+s+2 equations in the m+n+
1 unknowns c1, . . . , cm, b1, . . . , bn and L. Hence the total number of integration
contours represented by m + n should satisfy m + n = 2r + s + 2. Since two
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6. Integration contours

functions f1 and f2 are needed when the joint Laplace transform is derived an
additional contour is needed in order to construct two different eigenfunctions.
Hence

m+ n = 2r + s+ 3

is necessary.

Similar to Remark 5.1 it should be discussed what it takes to the contours
to be counted as different. For a contours Γi1 the vectors

MΓi1 = (M11
Γi1
, . . . ,M1r

Γi1
,M21

Γi1
, . . . ,M2s

Γi1
)

needs to be linearly independent. Equivalent for the contours of the form Γj2
the vectors

NΓj2 = (N11
Γj2
, . . . , N1r

Γj2
, N21

Γj2
, . . . , N2s

Γj2
, N31

Γj2
, . . . , N3r

Γj2
)

are supposed to be linearly independent.

6 Integration contours

In Section 4 it was shown that with two partial eigenfunctions satisfying the
conditions in Lemma 3.1 an expression for the joint Laplace transform can be
derived. In Section 5 a template for these functions were made. It was seen
that if an adequate number of integration contours can be found satisfying the
conditions in Notation 5.1 then the two eigenfunctions can be constructed. In
this Section we shall se one way to choose these contours.

Once again we consider the situations ℓ ≥ 0 and ℓ < 0 separately.

Non–negative ℓ

Here we will assume that the upward jumps have the same form as the down-
ward:

G+(du) = g+(u)du =

s∑

d=1

βdνde
−νdu .

Then ψ0 becomes similar two ψ1 in the ℓ < 0 case:

ψ0(z) =
(
σ2

2κz − 1
) θ
κ+

∑r 2pλαk

2κ−µkσ2 +
∑s 2qλβd

2κ+νdσ2
−1
z−

θ
κ−1

×

(
r∏

k=1

(z − µk)
− 2pλαk

2κ−µkσ2
)(

s∏

d=1

(z + νd)
− 2qλβd
2κ+νdσ2

)

(6.1)

and we are looking for m = r+1 integration contours Γ1, . . . ,Γm for ψ0. Note
that

|ψ0(z)| = O
(
|z|−2

)
when |z| → ∞ . (6.2)
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Figure A.1: Left: Shows Γi in case pi is a singularity. Right: Shows Γi in case
pi is a zero.

Also note that each of the points 0, 2κσ2 , µ1, . . . , µr,−ν1, . . . ,−νs are either zeros
or singularities for ψ0 depending on the parameters of the model. As a result
of that we have to consider the cases positive drift (κ > 0) and negative drift
(κ < 0) separately. Whether θ > 0 or θ = 0 might also have influence on the
considerations.

Positive drift, θ ≥ 0:

We are looking for r+1 integration contours contained in C+ that satisfy the
conditions (i) − (v) in Theorem 5.1. The fifth condition demands that the

function z(κ− σ2

2 z)ψ0(z)e
−yz has the same value in both ends of the contours

Γ. In practice this condition will be met by choosing the endpoints as zeros for
the function. Here the exponential factor e−yz will be useful since an endpoint
could be a limit where |z| → ∞.

Since it is assumed that κ > 0 we have that 2κ
σ2
> 0 and that 0 is a singu-

larity for z(κ− σ2

2 z)ψ0(z)e
−yz .

Now let p1, . . . , pr+1 be an ordered version of 2κ
σ2
, µ1, . . . , µr and define Γ1, . . . ,Γr+1

by the following recipe:

• If pi is a zero for z(κ− σ2

2 z)ψ0(z)e
−yz define

Γi = ΓZr(pi) := {pi + (1 + i)t : 0 ≤ t <∞} .

• If pi is a singularity z(κ− σ2

2 z)ψ0(z)e
−yz define

Γi = ΓSr(p) := {p+(−1+ i)t : −∞ < t ≤ 0} ∪ {p+ (1+ i)t : 0 ≤ t <∞}

for a p ∈]pi−1, pi[ (with the convention p0 = 0).
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6. Integration contours
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Figure A.2: Shows the closed curve ΓR

A sketch showing the two types of contours can be seen on Figure A.1. It is
important to notice that the definition of ψ0 depends on the choice of complex
logarithms in each of the power functions. These choices – that might vary
with the contours – should satisfy that all argument functions are continuous
along the contour (that is: ψ0 is holomorphic in an area containing Γ).

These contours are constructed such that the fifth condition is satisfied.
Left is checking (i)− (iv). The boundedness condition (i) is fulfilled since

∫

|Γi|
|ψ0(z)| dz <∞

as a result of (6.2). The integration conditions (ii) and (iii) are satisfied since
ψ0(z) is a power function in z with no singularities along the contours and the
factor e−yz decreases exponentially in the “infinite ends”. That (iv) is fulfilled
follows similarly but here it is important that each of the zeros for ψ0 at most
can be singularities of order > −1 for ψ0(z)

z−µk .

Remark 6.1. Regarding the definition of ΓSr(p) it is important to notice that
the different choices of p ∈]pi−1, pi[ give rise to the same results: If pi−1 <
p < p′ < pi integrating along the closed curve ΓR sketched in Figure A.2 will
give 0. When R→ ∞ the contributions along the horizontal parts vanish and
hence the integrals along ΓSr(p) and ΓSr(p′) equals.

Contrary if p and p′ are separated by a singularity µ the corresponding
integrals (e.g. fΓSr(p)

and fΓSr(p′)
) will be different. If the singularity µ is of

order ρ < 0 with ρ 6= Z the fact that fΓSr(p)
6= fΓSr(p′)

is a result of the use
of different versions of the complex logarithm in the respective domains of the
contours. If on the other hand ρ is an integer (and hence ≤ −1) the argument
is based on Cauchy’s Theorem.

Remark 6.2. It is worth considering if any other useful contours could be
found. In the case where pr+1 is a singularity consider the contour ΓSr(p) for
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a p > pr+1. Since there a no singularities to the right of pi+1 it must hold
that fΓR

≡ 0 where ΓR is the closed curve that combines the cut off version of
ΓSr(p) given by

{p + (−1 + i)t : − 1√
2
R < t ≤ 0} ∪ {p + (1 + i)t : 0 ≤ t < 1√

2
R}

and the circular arc CR with radius R:

CR = {p+Reit : −1
4π ≤ t ≤ 1

4π} .

For any y ≥ 0 we have |fCR
(y)| ≤

∫

|CR| |ψ0(z)|e
−py dz and since the arc

length of CR is O(R) the property (6.2) yields limR→∞ fCR
(y) = 0. Hence

fΓSr(p)
≡ 0. In the exact same way it is seen that the vector of constants

MΓSr(p)
is zero. That is the fΓ–function corresponding to the contour ΓSr(p)

makes no contribution in the construction of the partial eigenfunctions (cf
Remark 5.1).

There is after all one special situation where it is not completely obvious
that an additional contour makes no contribution. Consider the case where
2κ
σ2

is a singularity for ψ0 of order ρ ∈] − 1, 0[. Then 2κ
σ2

is a both a zero of

z(κ− σ2

2 z)ψ0(z)e
−yz and a singularity for ψ0(z). We have already defined the

contour Γ
Zr(

2κ
σ2 )

, but there is no reason why the contour

ΓSr(p) := {2κ
σ2

+ (1 + i)t : 0 ≤ t <∞}

should not satisfy the conditions (i) − (v) for some p < 2κ
σ2
. Also assume

that there is some singularity µ > 2κ
σ2

with corresponding contour ΓSr(p̃) where

p̃ ∈] 2κ
σ2
, µ[. As a result of the comments in Remark 6.1 the two contours

ΓSr(p) and ΓSr(p̃) will cause different integrals but we shall see that together
with Γ

Zr(
2κ
σ2

)
the contour ΓSr(p) will be redundant anyway. Now consider the

factors in ψ0. All factors except the complex power function z 7→ (σ
2

2κz − 1)ρ

can be chosen holomorphic in areas containing both ΓSr(p) and Γ
Sr(

2κ
σ2 )

. For

the contour Γ
Sr(

2κ
σ2

)
this function (denote it φ) can be chosen holomorphic on

C \ {z ∈ R|z ≥ 2κ
σ2
} and for ΓSr(p) it (denote it φ̃) can be chosen holomorphic

on C \ {z ∈ R|z ≤ 2κ
σ2
}. The two versions of the power function can be chosen

such that they are equal on CIm+ := {z ∈ C | Imz > 0}. Consequently it holds
that

φ(z) = αφ̃(z) when z ∈ CIm− := {z ∈ C | Imz < 0}

with α ∈ C so |α| = 1. With ψ0 and ψ̃0 defined using φ and φ̃ respectively we
have ψ0(z) = αψ̃0(z) when z ∈ CIm− and therefore

∫

−Γ
Zr(

2κ
σ2 )

ψ0(z)e
−yz dz = α

∫

−Γ
Zr(

2κ
σ2 )

ψ̃0(z)e
−yz dz .
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6. Integration contours

Here −Γ
Zr(

2κ
σ2

)
is the contour defined by

−Γ
Zr(

2κ
σ2

)
:= {2κ

σ2
+ (1− i)t : 0 ≤ t <∞} .

By letting p̃ ↓ 2κ
σ2

and using Cauchy’s Theorem one can see (remembering
ρ > −1) that for p̃ > 2κ

σ2

fΓSr(p̃)
(y) =

∫

Γ
Zr(

2κ
σ2

)

ψ̃0(z)e
−yz dz −

∫

−Γ
Zr(

2κ
σ2

)

ψ̃0(z)e
−yz dz

=

∫

Γ
Zr(

2κ
σ2

)

ψ0(z)e
−yz dz − α

∫

−Γ
Zr(

2κ
σ2

)

ψ0(z)e
−yz dz

and similar for p < 2κ
σ2

fΓSr(p)
(y) =

∫

Γ
Zr(

2κ
σ2 )

ψ0(z)e
−yz dz −

∫

−Γ
Zr(

2κ
σ2 )

ψ0(z)e
−yz d .z

It is seen from these two equations that integration along ΓSr(p) is linearly
dependent of the integrals achieved by integrating along ΓSr(p̃) and Γ

Zr(
2κ
σ2

)
.

Hence the contour is redundant.

The θ = 0–case:
It should be mentioned that the contours proposed above also applies when
θ = 0. But in this case an additional assumption (see subsection 4) was that
limx→∞ f(x) = 0. This can be seen rather easily: In [18] it is even shown that
functions similar to the fΓ–functions decreases exponentially with this choice
of integration contours.

Negative drift, θ > 0:

When κ < 0 we have 2κ
σ2 > 0 so this point cannot be used as above because of

the requirement that Γi ⊆ C+. Instead 0 is a zero for z(κ− σ2

2 z)ψ0(z)e
−yz and

hence an integration contour of the form ΓZr(0) is useful. With p1, . . . , pr+1

denoting 0, µ1, . . . , µr the definition of Γ1, . . . ,Γr+1 from above can be reused.

Negative drift, θ = 0:

When θ = 0 then 0 is a singularity for ψ0 of order −1 and hence 0 is no longer
a zero for z(κ− σ2

2 z)ψ0(z)e
−yz . Thereby the integration contour corresponding

to 0 will vanish.
Here it makes sense to consider the cases ζ = 0 and ζ > 0 separately. If

ζ = 0 the two probabilities Px(Aj) and Px(Ac) are requested and we have the
equation

LPx(Aj) + f(l)Px(Ac) = f(x) .
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This equation can be solved using only one partial eigenfunction if we use the
fact that Px(τ < ∞) = 1 when κ < 0. If only one partial eigenfunction is
needed the r remaining integration contours are sufficient.

If on the other hand ζ > 0 two partial eigenfunctions are needed. Hence it is
necessary to find a function that substitutes an additional fΓ–function. Define

f∗ =
{

1 y ≥ l
0 y < l

,

From straightforward calculation we have

Af∗(y) = −λp
r∑

k=1

αke
µk(l−y)

which is a sum of the same exponential functions that both Af0(y) and fΓi(y)
consists of. Hence f∗ can be used in the construction of the partial eigenfunc-
tions similar to the fΓ–functions – this corresponds to an additional integration
contour.

Negative ℓ

Here we are looking for integration contours Γi1 and Γj2 for

ψ1(z) =
(
σ2

2κz − 1
) θ
κ+

∑r 2pλαk

2κ−µkσ2 +
∑s 2qλβd

2κ+νdσ2
−1
z−

θ
κ−1

×

(
r∏

k=1

(z − µk)
− 2pλαk

2κ−µkσ2
)(

s∏

d=1

(z + νd)
− 2qλβd
2κ+νdσ2

)

ψ2(z) =
(−σ2

2κ z − 1
) θ
κ+

∑r 2pλαk

2κ+µkσ2
+
∑s 2qλβd

2κ−νdσ2 −1
z−

θ
κ−1

×

(
r∏

k=1

(z − µk)
− 2pλαk

2κ+µkσ2

)(
s∏

d=1

(z + νd)
− 2qλβd
2κ−νdσ2

)

respectively. Note that ψ1 equals ψ0 in (6.1) and that both ψ1 and ψ2 has the
property (as (6.2)): |ψ(z)| = O(|z|−2) when |z| → ∞.

Once again it is convenient to consider different cases of κ and θ separately.

Positive drift, θ ≥ 0:

With the same procedure as in the ℓ ≥ 0 case we can define Γ11, . . . ,Γr+1,1

as integration contours for ψ1 (with the notation p1, . . . , pr+1 for the ordered
version for 2κ

σ2 , µ1, . . . , µr):

• If pi is a zero for z(κ− σ2

2 z)ψ0(z)e
−yz define

Γi = ΓZr(pi) := {pi + (1 + i)t : 0 ≤ t <∞} .
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6. Integration contours

• If pi is a singularity z(κ− σ2

2 z)ψ0(z)e
−yz define

Γi = ΓSr(p) := {p+ (−1+ i)t : −∞ < t ≤ 0}∪ {p+ (1+ i)t : 0 ≤ t <∞}

for a p ∈]pi−1, pi[ (with the convention p0 = 0).

Here the conditions (i) − (vi) in Notation 5.1 have to be satisfied. The con-
ditions (i) − (v) are identical with the ones in Theorem 5.1. The remaining

condition (vi) does not cause any problems since the function ψ1(z)
z+νd

has no
additional singularities along the Γi1 contours compared to ψ1(z).

Hence r + 1 integration contours are found for ψ1. Thereby it remains to
construct r+s+2 contours for ψ2. Since the contours for ψ2 are allowed to be
placed in the entire complex plane all the points−νs, . . . ,−ν1,

2κ
−σ2 , 0, µ1, . . . , µr

that are either zeros or singularities for ψ2 are of interest. Let q1, . . . , qr+s+2

be the ordered version of these points and define Γ12, . . . ,Γr+s+2,2 by the
following:

• If qj is a zero for z(κ− −σ2
2 z)ψ0(z)e

−yz define

Γj,2 = ΓZl(qj) := {qj + (−1 + i)t : 0 ≤ t <∞}

• If qj is a singularity for z(κ− −σ2
2 z)ψ0(z)e

−yz define

Γj,2 = ΓSl(q) :={q + (1 + i)t : −∞ < t ≤ 0}

∪ {q + (−1 + i)t : 0 ≤ t <∞}

for a q ∈]qi, qi+1[ (with the convention qr+s+3 = ∞).

A sketch showing this type of contours can be seen in Figure A.3. Note that
they are heading left (thereby the index l). These contours are supposed to
fulfil the conditions (i′)−(viii′) in Notation 5.1. The arguments are similar to
the ones before. Since both the contours “infinite ends” and y have changed
sign it is still true that e−yz → 0 when z varies along the contour.

Remark 6.3. In Remark 6.2 it was seen that a contour on the form ΓSr(p)

with a p to the right of all singularities makes no contribution. It is similar
(just reversed w.r.t. the real axis) for the Γj2–contours for ψ2: It is not possible
to use a contour on the form ΓSl(p) with p to the left of all singularities for
ψ2.

Contrary the contour Γi0,2 = ΓSl(p) with i0 the largest singularity and
p > i0 does make a contribution. The argument is much alike the one in
Remark 6.2. Let ΓR be the closed curve in C that combines the cut off version
of ΓSl(p)

{q + (−1− i)t : −R < t ≤ 0} ∪ {q + (−1 + i)t : 0 ≤ t < R}
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Figure A.3: The integration contours for ψ2 .

and the circular arc

CR = {p+Reit : −3
4π ≤ t ≤ 3

4π} .

Hence fΓR
(y) = 0 for all y ∈ [ℓ, 0[ and furthermore

fCR
(y) =

∫ 3
4π

−3
4π
iReitψ0(p+Reit)e−y(p+Re

it) dt .

Since y is assumed strictly negative the factor e−y(p+Re
it) is unbounded and

exponentially increasing when R → ∞ if only −π
2 < t < π

2 . Hence the in-
tegrand will not decrease to 0 and there is no reason why the integral should
vanish. Consequently the fΓ

Sl(p)
–function is non–zero as well.

With a similar argument one can see (since ℓ < 0) that the constants N3r
Γj2

are
non–zero. Thereby also the vector

NΓj2 = (N11
Γj2
, . . . , N1r

Γj2
, N21

Γj2
, . . . , N2s

Γj2
, N31

Γj2
, . . . , N3r

Γj2
)

makes an useful contribution.

Negative drift, θ > 0:

Here 2κ
σ2 < 0 and 0 is a zero for z(κ − σ2

2 z)ψ0(z)e
−yz . With p1, . . . , pr+1 and

q1, . . . , qr+s+2 denoting the ordered versions of 0, µ1, . . . , µr and −νs, . . . ,−ν1,
0, 2κ

−σ2 , µ1, . . . , µr the same recipe as above can be used to define the 2r+s+3
integration contours.

Negative drift, θ = 0:

In this case the solution strategy is the exact same as in the similar Section 6
for the positive drift case.
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Asymptotics for the Ruin Time of a

Piecewise Exponential Markov

Process with Jumps

Anders Rønn-Nielsen

Abstract

In this paper a class of Ornstein–Uhlenbeck processes driven by compound
Poisson processes is considered. The jumps arrive with exponential wait-
ing times and are allowed to be two-sided. The jumps are assumed to
form an iid sequence with distribution a mixture (not necessarily convex)
of exponential distributions, independent of everything else. The fact that
downward jumps are allowed makes passage of a given lower level possi-
ble both by continuity and by a jump. The time of this passage and the
possible undershoot (in the jump case) is considered. By finding partial
eigenfunctions for the infinitesimal generator of the process an expression
for the joint Laplace transform of the passage time and the undershoot can
be found.

From the Laplace transform the ruin probability of ever crossing the
level can be derived. When the drift is negative this probability is less than
one and its asymptotic behaviour when the initial state of the process tends
to infinity is determined explicitly.

The situation where the level to cross decreases to minus infinity is
more involved: The level to cross under plays a much more fundamental
role in the expression for the joint Laplace transform than the initial state
of the process. The limit of the ruin probability in the positive drift case
and the limit of the distribution of the undershoot in the negative drift case
is derived.

51



Paper B

1 Introduction

The main aim of this paper is to determine the asymptotic behaviour of the
ruin probability for a certain class of time–homogeneous Markov processes
with jumps. These processes, referred to as X below, can be viewed as
Ornstein–Uhlenbeck processes driven by a compound Poisson process.

The ruin time is defined as the time to passage below ℓ for an initial state
x > ℓ. The passage below ℓ can be a result of a downward jump, and in some
cases a continuous passage through ℓ is is also possible.

The compound Poisson process (that partly is driving the process) has a
special jump structure. Both the downward and upward jumps are assumed
to have a density (not the same) that is a linear – not necessarily convex –
combination of exponential densities

The distribution of the passage time (and by that also the ruin probability)
is determined through the Laplace transform. This is found by exploiting
certain stopped martingales derived from using bounded partial eigenfunctions
for the infinitesimal generator for X. An explicit expression for the Laplace
transform is determined in [9]. Here the partial eigenfunctions are found as
linear combinations of functions given by contour integrals in the complex
plane. Also the Laplace transform ends up being a linear combination of
these integrals. It is the resulting Laplace transform from [9] that we shall
investigate in this paper.

One should distinguish between the two very different scenarios: Whether
the drift κ is positive (hence X is pushed away to ±∞, that is X is transient)
or the drift is negative in which case the process X is recurrent. In the
negative drift case the probability Px(τ(ℓ) <∞) (with τ(ℓ) denoting the time
of passage) of ever crossing below ℓ when starting at x is always 1. On the
other hand when the drift κ is positive we have that Px(τ(ℓ) < ∞) < 1 and
also that the probability decreases when either x→ ∞ or ℓ → −∞.

In the present paper the asymptotics of Px(τ(ℓ) < ∞) < 1 is explored in
both of the situations x → ∞ and ℓ → −∞. This becomes a question about
finding the asymtotics for the complex contour integrals mentioned above. It
turns out that the ℓ → −∞ problem is the far most complicated because
the dependence of ℓ in the construction of the partial eigenfunctions is much
more involved. Nevertheless the need of exploring the asymptotic behaviour
of the integrals is rather similar. When x → ∞ we see that Px(τ(ℓ) < ∞)
decreases exponentially (adjusted by some specified power function) with the
exponential parameter from the leading expontial part of the downward jumps.

The technique of using partial eigenfunctions for the infinitesimal generator
has appeared before. In [12] Paulsen and Gjessing considers a model like the
present, but in the more general (and also different) setup

dXt = (p+ κXt) dt− dUt +
√

σ21 + σ22X
2
t dBt +XtdŨt , (1.1)
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1. Introduction

Here both U and Ũ are compound Poisson processes of the form
∑Nt

n=1 Sn. In
[12] it is shown that a partial eigenfunction for the corresponding infinitesimal
generator for (1.1) will lead to the ruin probability and also the Laplace trans-
form for the ruin time. In [5] Gaier and Grandits show – without σ21 and Ũ in
the model – the existence of this partial eigenfunction under some smoothness
assumptions about the jump distributions in U . This result is extended to
weaker assumptions in [6].

In the case of σ21 = σ22 = 0, without Ũ , and assuming exponential nega-
tive jump (no positive jumps are allowed) an explicit formula for the Laplace
transform is determined in [12]. Furthermore the exponential decrease in
Px(τ(ℓ) < ∞) is derived in the x → ∞ asymptotic situation for some fixed
0 < ℓ < x. For the case of exponential negative jumps also see Asmussen [1],
Chapter VII.

In the present paper the jump distributions are assumed to be light tailed.
The existing literature does not contain very explicit results for the asymptotic
ruin probability with that kind of jump distributions. In [4] and [14] it is
proved in the σ22 = 0 case with κ = sup{a | E[eaU ] <∞} that for any ǫ > 0

lim
x→∞

e(κ−ǫ)xPx(τℓ <∞) = 0 and lim
x→∞

e(κ+ǫ)xPx(τℓ <∞) = ∞ .

In the case of heavy tailed jump distributions there are more explicit results for
the asymptotic behaviour of the ruin probability. In [10] results are obtained
for the asymptotics of the finite horizon ruin probability Px(τ(ℓ) ≤ T ) in a
fairly general model with σ22 = 0 and subexpontial jump distributions. Similar
results are reached in [3] in the infinite horizon case. Here the jumps belong
to a less general class of heavy tailed distributions.

In [7] and [8] the following model class of certain Markov modulated Lévy
processes

Xt = x+

∫ t

0
βJs ds+

∫ t

0
σJs−dBs −

Nt∑

n=1

Un

is studied. The same partial eigenfunction technique is applied, and it is
showed that the partial eigenfunctions (and thereby also the ruin probabilities)
can be expressed as a linear combination of exponential functions (evaluated
in the starting point x). Hence the asymptotic behaviour of the probability
when x → ∞ is simply a question about finding the exponential function
with the slowest decrease. Since the model is additive the level ℓ, that is to
be crossed at the time of ruin, enters into the setup symmetric to x. Hence
the asymptotics when ℓ → −∞ are just as easy to derive. A recent paper
is Novikov et. al [11] where the Laplace transform is determined for a shot–
noise model with exponentially distributed downward jumps (and no positive
jumps allowed) for a process with negative drift. The Laplace transform was
also derived in the case of uniformly distributed downward jumps. In [2]
these results are extended to a more general driving Lévy process instead of a
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compound Poisson process. In both [11] and [2] some asymptotic results for
the distribution of τ(ℓ) are carried out. Here the limit distribution of τ(ℓ) is
expressed when ℓ→ −∞ for some fixed starting point x (recall that this is for
the negative drift case). This is a limit that is not considered in the present
paper.

The paper will be organised in the following way. In Section 2 the setup
is defined and the relevant results from [9] reproduced. The Theorem 2.1 is
also reformulated in a different (and appearently more complicated) version
Theorem 3.1 that turns out to fit the asymptotic considerations better. An
argument for this version of the Theorem can be found in [13] (though the
Theorem in that paper concerns a more complicated setup, the arguments will
with some small adjustments also fit this simple scenario). In the following
Section 2 the choice of some complex integration contours that are applied in
the Theorems 2.1 and 3.1 is discussed. This choice differs from the proposed
contours in [9] in order to suit the further calculations. In Section 4 the
asymptotic behaviour of Px(τ(ℓ) < ∞) is expressed when x → ∞ and in
Section 5 the limit when ℓ → −∞ is found. Finally (also in Section 5) the
limit of the distribution of the undershoot is expressed for the negative drift
case when ℓ→ −∞.

2 The model, some definitions and previous results

Consider a process X with state space R defined by the following stochastic
differential equation:

dXt = κXt dt+ dUt , (2.1)

where (Ut) is a compound Poisson process defined by

Ut =

Nt∑

n=1

Vn. (2.2)

Here (Vn) are iid with distribution G and (Nt) is a Poisson process with pa-
rameter λ. Both the downward and the upward part of the jump distribution
G is assumed to be a linear combination of exponential distributions. We
use the decomposition G = pG− + qG+ where 0 < p ≤ 1, q = 1 − p, G− is
restricted to R− =]−∞; 0[ and G+ is restricted to R+ =]0;∞[. That is

G−(du) = g−(u) du =

r∑

k=1

αkµke
µku for u < 0

G+(du) = g+(u) du =

s∑

d=1

βdνde
−νdu for u > 0 .

The distribution parametres are arranged such that 0 < µ1 < · · · < µr,
0 < ν1 < · · · < νs and αi, βj 6= 0. Since g− and g+ need to be densities
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2. The model, some definitions and previous results

∑
αi = 1 and

∑
βj = 1. Furthermore both α1 > 0 and β1 > 0.

The solution process X is a process that – between jumps – behaves deter-
ministically following an exponential function.

Assume that x > 0 and write Px for the probability space where X0 = x
Px–almost surely. Let Ex be the corresponding expectation. Define for ℓ < x
the stopping time τ by

τ = τ(ℓ) = inf{t > 0|Xt ≤ ℓ} . (2.3)

For ease of notation ℓ is most often suppresed. Furthermore define the under-
shoot Z

Z = ℓ−Xτ , (2.4)

which is well–defined on the set {τ < ∞}. It is important to notice that the
level ℓ can by crossed through continuity as well as a result of a downward
jump. Of interest is the joint distribution of τ and Z and especially the
probability Px(τ <∞). The distribution of τ and Z is expressed through the
joint Laplace transform defined by

Ex[e
−θτ−ζZ ;Aj ] and Ex[e

−θτ ;Ac] , (2.5)

where Aj and Ac is a partition of the set {τ < ∞} into the jump case Aj =
{τ <∞,Xτ < ℓ} and the continuity case Ac = {τ <∞,Xτ = ℓ}.

The expression for the joint Laplace transform in (2.5) can be found from
solving two equations

Ex[e
−θτ−ζZ ;Aj ] + fi(ℓ)Ex[e

−θτ ;Ac] = fi(x) i = 1, 2 , (2.6)

where f1 and f2 have to be partial eigenfunctions for the infinitesimal gener-
ator A for the process: fi : R → C should be bounded and differentiable on
[ℓ;∞[ and satisfy the condition that

Afi(x) = θfi(x) for all x ∈ [ℓ;∞[ ,

where A is defined by

Af(x) = κxf ′(x) + λ

∫

R

(

f(x+ y)− f(x)
)

G(dy) . (2.7)

In addition to this fi should have the following exponential form on the interval
]−∞; ℓ[

fi(x) = e−ζ(ℓ−x) for x < ℓ .

It is important to notice that there exists some situations where only one
partial eigenfunction is needed: If ℓκ > 0 the probability Px(Ac) of crossing ℓ
through continuity is 0 (recall that the process is deterministic and monotone
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between jumps). In this case finding Ex[e
−θτ−ζZ ;Aj ] is even simpler (from

(2.6) with the Ac part equal 0):

Ex[e
−θτ−ζZ ;Aj ] = f(x) , (2.8)

where f is the single partial eigenfunction.

In the negative drift case (κ < 0) it can be shown that Px(Aj) + Px(Ac) =
Px(τ < ∞) = 1. If furthermore θ = ζ = 0 the Laplace transforms in (2.6)
reduces to the probabilities Px(Aj) and Px(Ac). Hence only one partial eigen-
function is needed in order to solve the equation.

In [9] a theorem is given that schetches how to construct such partial
eigenfunctions. In the following this theorem is reformulated in order to fit
the further calculations. First define

f0(y) =

{
0 y ≥ ℓ

Le−ζ(ℓ−y) y < ℓ
(2.9)

and

fΓ(y) =

{ ∫

Γ ψ(z)e
−yz dz y ≥ ℓ

0 y < ℓ
, (2.10)

where ψ is the complex valued kernel defined by

ψ(z) = z−
θ
κ−1

(
r∏

k=1

(z − µk)
−pλαk

κ

)(
s∏

d=1

(z + νd)
− qλβdκ

)

, (2.11)

and Γ is some suitable curve in the complex plane of the form Γ = {γ(t) :
δ1 < t < δ2}. Note that

|ψ(z)| = O
(

|z|−1−(θ+λ)/κ
)

, (2.12)

when |z| → ∞.

Theorem 2.1. Let θ ≥ 0 and ζ ≥ 0 be given and let f0 and fΓi be defined as
in (2.9) and (2.10) for i = 1, . . . ,m such that all Γi are concentrated on the
positive part of the complex plane C+ = {z ∈ C : Rez ≥ 0}. Assume that for
each contours Γi a holomorfic version of ψ exists that contains the contour.
Assume furthermore that for i = 1, . . . ,m it holds that

(i)
∫

|Γi| |ψ(z)|e
−ℓRez dz <∞

(ii)
∫

|Γi| |ψ(z)| |z|e
−ℓRez dz <∞

(iii)
∫

|Γi| |
ψ(z)
z−µk |e

−ℓRez dz <∞

(iv) ψ(γi(δ1))γi(δi1)e
−yγ(δi1) = ψ(γi(δi2))γi(δi2)e

−yγi(δi2) .
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Now define

f(y) =

m∑

i=1

cifΓi(y) + f0(y) . (2.13)

If the constants c1, . . . , cm are chosen such that

m∑

i=1

ciM
k
Γi

+
µk

µk + ζ
= 0 (2.14)

for k = 1, . . . , r where Mik is given by

Mk
Γi

= µk

∫

Γi

ψ(z)

z − µk
e−ℓz dz

for i = 1, . . . ,m and k = 1, . . . , r, then f is a partial eigenfunction for the
generator A.

The theorem shows what it takes to construct a partial eigenfunction: As
many fΓi–functions – and by that sufficiently many integration contours –
such that the equation system (2.14) can be solved. To the construction of
one partial eigenfunctionm = r integration contours are needed (note that the
equation system is homogeneous and has m+ 1 unknowns). If an additional
eigenfunction is requested m = r + 1 different integration contours should be
found.

It is worth considering which difference between the integration contours
is needed. E.g. it should not be possible to repeat the same contour several
times. It is essential that the equation system can be solved with respect to
the unknowns c1, . . . , cm and L. This implies that the vectors

MΓi = (M1
Γi
, . . . ,Mm

Γi
)

for i = 1, . . . , r are linearly independent – otherwise the situation would cor-
respond to one with less unknowns.

Theorem 2.1 can be used for all values of ℓ. However it might in some respect
restrict the choice of integration contours. That makes the following theorem
useful although it look unnecessarily complicated. See [13] for a proof of a sim-
ilar theorem in a more complicated model. This theorem can be considered
as a special case. First define two new versions of the fΓ–functions:

f1Γ1
(y) =

{ ∫

Γ1
ψ(z)e−yz dz y > 0

0 y < 0

f2Γ2
(y) =

{ ∫

Γ2
ψ(z)e−yz dz ℓ ≤ y < 0

0 otherwise
. (2.15)

For convinience we shall use the following definitions
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Definition 3.

M1k
Γi

=

∫

Γi1

ψ(z)

z − µk
dz i = 1, . . . ,m, k = 1, . . . , r

M2d
Γi

=

∫

Γi1

ψ(z)

νd + z
dz i = 1, . . . ,m, d = 1, . . . , s

N1k
Γj

=

∫

Γj2

ψ(z)

µk − z
dz j = 1, . . . , n, k = 1, . . . , r

N2d
Γj

=

∫

Γj2

ψ(z)

νd + z
dz j = 1, . . . , n, d = 1, . . . , s

N3k
Γj

=

∫

Γj2

ψ(z)

z − µk
e−ℓzdz j = 1, . . . , n, k = 1, . . . , r .

Similar to the conditions (i) − (iv) in Theorem 2.1 we will refer to the
conditions in the Notation below.

Notation 3.1. Let θ ≥ 0 and ζ ≥ 0 be given and let f0, f
1
Γi1

and f2Γj2
be

defined as in (2.15) for i = 1, . . . ,m and j = 1, . . . , n such that all Γi1 ⊂ C+

and Γj2 ⊂ C are suitable complex curves (ψ should have holomorfic versions
containing these curves). Assume for ψ and Γi1, i = 1, . . . ,m, that

(i)
∫

|Γi1| |ψ(z)|dz <∞

(ii)
∫

|Γi1| |ψ(z)| |z|e
−yRez dz <∞ for all y > 0

(iii)
∫

|Γi1| |
ψ(z)
z−µk |dz <∞ for k = 1, . . . , r

(iv)
∫

|Γi1| |
ψ(z)
z+νd

|dz <∞ for d = 1, . . . , s

(v) ψ(γi1(δi1))γi1(δ
1
i1)e

−yγi1(δ1i1) = ψ(γi1(δ
1
i2))γi1(δ

1
i2)e

−yγi1(δ1i2) for all y > 0 ,

and similarly for ψ and Γj2 that

(i’)
∫

|Γj2| |ψ(z)|dz <∞

(ii’)
∫

|Γj2| |ψ(z)|e
−ℓRez dz <∞

(iii’)
∫

|Γj2| |ψ(z)| |z|e
−yRez dz <∞ for all y ∈ [ℓ; 0[

(iv’)
∫

|Γj2| |
ψ(z)
z−µk |dz <∞ for k = 1, . . . , r

(v’)
∫

|Γj2| |
ψ(z)
z−µk |e

−ℓz dz <∞ for k = 1, . . . , r

(vi’)
∫

|Γj2| |
ψ(z)
z+νd

|dz <∞ for d = 1, . . . , s
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2. The model, some definitions and previous results

(vii’) ψ(γj2(δ
2
j1))γj2(δ

2
j1)e

−yγ2(δ2j1) = ψ(γj2(δ
2
j2))γj2(δ

2
j2)e

−yγj2(δ2j2)

for all ℓ ≤ y < 0.

for j = 1, . . . , n.

With these definitions we can state

Theorem 3.1. Assume that the integration contours Γi1, i = 1, . . . ,m and
Γj2, j = 1, . . . , n satisfy the conditions in Notation 3.1. Define f : R → C by

f(y) =

m∑

i=1

cif
1
Γi1

(y) +

m∑

j=1

bjf
2
Γj2

(y) + f0(y) for y ∈ [ℓ;∞[ , (3.1)

then f is bounded and differentiable on ℓ → ∞. If the constants c1, . . . , cm,
b1, . . . , bn and L fulfil the equations

n∑

j=1

bjN
3k
Γj

+ L
1

µk + ζ
= 0 (3.2)

and (
m∑

i=1

ciM
1k
Γi

)

+

(
n∑

j=1

bjN
1k
Γj

)

= 0 (3.3)

for k = 1, . . . , r together with

(
n∑

j=1

bjN
2d
Γj

)

−

(
m∑

i=1

ciM
2d
Γj

)

= 0 (3.4)

for d = 1, . . . , s, then f is a partial eigenfunction for A.

The choice of integration contours

In the following a short description of a choice for the integration contours
will be given. As mentioned in [9] there are several possible choices. The one
described here applies to cases with positive drift κ (the situation with σ = 0
and κ < 0 is studied in Section 5) and will differ from the ones defined in [9].

First assume that ℓ is positive. In this case only one partial eigenfunction
is needed and we shall use Theorem 2.1 so the contours Γ1, . . . ,Γr fulfilling
(i) − (iv) are requested. The definition of the contours has its starting point
in the zeros and singularities of the kernel ψ. The real–valued points

−νs, . . . ,−ν1, 0, µ1, . . . , µr

are all such zeros or singularities. In the case where ℓ > 0 the contours
Γ1, . . . ,Γr are chosen as follows
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µi is a zero for ψ.

µi

ΓRh(µi)

Figure B.1: Shows the contour Γi in the two cases: µi is a singularity (left)
for ψ and µi is a zero (right)

• If µi is a zero for ψ define

Γi = ΓZr(µi) := {µi + (1 + i)t : 0 ≤ t <∞} .

• If µi is a singularity for ψ(z) define

Γi = ΓSr(µ) := {µ+(−1+ i)t : −∞ < t ≤ 0}∪{µ+(1+ i)t : 0 ≤ t <∞}

for a µ ∈]µi−1, µi[ (with the convention µ0 = 0).

A schetch of the chosen contours can be seen in Figure B.1. Now consider
the ℓ < 0 case. Here Theorem 3.1 is used. For the contours Γ11, . . . ,Γr1 one
can use Γ1, . . . ,Γr from above. It remains to find n = r + s + 1 contours
Γ12, . . . ,Γr+s+1,2 in order to construct two eigenfunctions. For convenience
let p1, . . . , pr+s+1 denote the points −νs, . . . ,−ν1, 0, µ1, . . . , µr and use the
following recipe:

• If pi is a zero for ψ define

Γi = ΓZl(pi)
def
= {pi + (−1 + i)t : 0 ≤ t <∞}

• If pi is a singularity for ψ(z) define

Γi = ΓSl(p)
def
= {p+(1+ i)t : −∞ < t ≤ 0}∪ {p+(−1+ i)t : 0 ≤ t <∞}

for a p ∈]pi; pi+1[ (with the convention pr+s+2 = ∞).
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4. Asymptotics with increasing x

Remark 3.1. It is important to notice that for the contours of the form
Sr(µ) the specific choice of µ in ]µi−1, µi[ is without influence as a result of
Cauchy’s Theorem. In fact µ can be chosen freely in ]µl, µi[ where µl is the
biggest singularity for ψ less than µi (remember that 0 is a singularity so that
µl ≥ 0).

Another important fact is that it can never happen that fΓi = fΓi+1 in
the case where both µi and µi+1 are singularities. If µi – the singularity that
separates the two contours – is of order ρ < 0 with ρ /∈ Z the fact is secured
from the use of different versions of the complex logarithm in the respective
domains of the contours. If – on the other hand – the singularity µi is an
integer the argument that fΓi 6= fΓi+1 is based on Cauchy’s Theorem.

4 Asymptotics with increasing x

When the drift κ is positive the probability Px(τ < ∞) of ever crossing the
level ℓ is less than 1. Furthermore the probability decreases when the starting
point x increases. We have that (solving the equation system (2.6) w.r.t.
Px(τ <∞) = Px(Ac) + Px(Aj))

Px(τ <∞) = f1(x)
L2 − f2(ℓ)

L2f1(ℓ)− L1f2(ℓ)
+ f2(x)

f1(ℓ)− L1

L2f1(ℓ)− L1f2(ℓ)
(4.1)

if ℓ < 0 (where f1 and f2 are the two partial eigenfunctions constructed in
Theorem 3.1. In the ℓ > 0 case we have

Ex[e
−θτ−ζZ ;Aj ] = f(x) .

It is essential that the construction of the partial eigenfunctions f1 and f2 (or
f in the ℓ > 0 case) does not depend on the starting point x. The behaviour
of the probability Px(τ < ∞) to be studied is therefore only determined by
the behaviour of the two partial eigenfunctions f1 and f2 when x → ∞. We
have the following result:

Theorem 4.1. There exists a constant K such that

lim
x→∞

Px(τ <∞)

e−µ1xx−
pα1λ

κ
−1

= K .

The constant K is expressed explicitly in (4.9) below when ℓ < 0 and in (4.10)
for the ℓ > 0 case.

For the later use of the results it is convenient to formulate part of the proof
of Theorem 4.1 as self–contained lemmas:

Lemma 4.1. Assume that αj < 0, that is µj is a zero for ψ. Hence Γj =
{µj + (1 + 2i)t : 0 ≤ t <∞} and fΓj can be written as

fΓj(x) =

∫

Γ
(z − µj)

ρψ\{µj}(z)e
−xz dz
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with the notation

ψ\{µj}(z) = z−1





r∏

k=1,k 6=j
(z − µk)

− pαkλ

κ









s∏

d=1,

(z + νd)
− qβdλ

κ



 .

and ρ = −pα1λ/κ > 0. Then it holds that

lim
x→∞

fΓj(x)

e−µjxxρ−1
= ψ\{µj}(µj)

∫

Γ0

zρe−z dz , (4.2)

where Γ0 is the integration contour

Γ0 = {(1 + i)t : 0 ≤ t <∞} . (4.3)

Proof. The expression of fΓj(x) can be rewritten in the following way

fΓj(x) (4.4)

=

∫

Γj

(z − µj)
ρψ\{µj}(z)e

−xz dz

=

∫ ∞

0
(1 + i)

(
(1 + i)t

)ρ
ψ\{µj}

(
µj + (1 + i)t

)
e−x(µ0+(1+i)t) dt

= e−µjx
∫ ∞

0
(1 + i)

(
(1 + i)t

)ρ
ψ\{µj}

(
µj + (1 + i)t

)
e−xt(1+i) dt

= e−µjx
∫ ∞

0

1
x(1 + i)

(
(1 + i) sx

)ρ
ψ\{µj}

(
µj + (1 + i) sx

)
e−s(1+i) ds

= x−ρ−1e−µjx
∫ ∞

0
(1 + i)

(
(1 + i)s

)ρ
ψ\{µj}

(
µj + (1 + i) sx

)
e−s(1+i) ds ,

where the substitution s = tx has been used.

Consider the function

t 7→ |ψ\{µj}
(
µj + (1 + i)t

)
| ,

which – apart from being continuous – is strictly positive. Furthermore it is
O(|µj+(1+2i)t|−1−λ/κ−ρ) when t→ ∞. This gives the existence of a constant
C <∞ such that

|ψ\{µj}
(
µj + (1 + i)t

)
| ≤ C for all t ≥ 0 .

Especially this holds when t = s/x for all s ≥ 0 and x > 0. Thus the function

s 7→ C|(1 + i)((1 + 2i)s)ρ|e−s
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4. Asymptotics with increasing x

is an integrable upper bound for the integrand in the last line of (4.4) when
x ≥ x0. By dominated convergence we get that

lim
x→∞

∫ ∞

0
(1 + i)

(
(1 + i)s

)ρ
ψ\{µj}

(
µj + (1 + i) sx

)
e−s(1+i) ds

=

∫ ∞

0
(1 + i) lim

x→∞
(
(1 + i)s

)ρ
ψ\{µj}

(
µj + (1 + i) sx

)
e−s(1+i) ds

=

∫ ∞

0
(1 + i)

(
(1 + i)s

)ρ
ψ\{µj}µj)e

−s(1+i)) ds

= ψ\{µj}(µj)
∫

Γ0

zρe−z dz .

Hence the result is shown.

Lemma 4.2. Assume that αj > 0, that is µj is a singularity for ψ. Hence
the contour Γj is defined as

Γj = Γµ = {µ + (−1 + i)t : −∞ < t ≤ 0} ∪ {µ + (1 + i)t : 0 < t <∞} ,

with some µ ∈]µj−1, µj [ and with the notation from Lemma 4.1 fΓj is written
as

fΓj(x) =

∫

Γµ

(z − µj)
ρψ\{µj}(z)e

−xz dz .

Then

lim
x→∞

fΓ(x)

xρ−1e−µjx
= ψ\{µj}(µj)

∫

Γ−a

zρe−z dz , (4.5)

where

Γ−a = {−a+ (−1 + i)t : −∞ < t ≤ 0} ∪ {−a+ (1 + i)t : 0 < t <∞}

and a > 0 is some positive real number.

Proof. In Remark 3.1 it was argued that

fΓj (x) = fΓµ′
(x)

for all µ′ in ]µl;µj [. Since all µ′ ∈]µl;µj[ will imply the same result one could
choose µ′ = µu −

a
x for some suitable a > 0. Hence

fΓj(x)

= fΓµj−a/x
(x)

=

∫ ∞

0
(1 + i)

(
− a
x + (1 + i)t

)ρ
ψ\{µj}

(
µj −

a
x + (1 + i)t

)
e−xµj+a−x(1+i)t dt

+

∫ 0

−∞
(−1 + i)

(
− a
x + (−1 + i)t

)ρ
ψ\{µj}

(
µj −

a
x + (−1 + i)t

)
e−xµj+a−x(−1+i)t dt .
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Using the substitution s = tx yields that the first integral equals

xρ−1e−µjx
∫ ∞

0
(1+2i)

(
(1+i)s−a

)ρ
ψ\{µj}

(
µj−

a
x+(1+i) sx

)
ea−(1+i)s ds . (4.6)

From dominated convergence similar to Lemma 4.1 it is seen that the limit of
the integral in (4.6) as x→ ∞ is:

ψ\{µj}(µj)
∫ ∞

0

(
(1 + i)s− a

)ρ
e−(1+i)s ds .

Something similar is seen for the second integral. Hence it has been shown
that

lim
x→∞

fΓj(x)

xρ−1e−µjx

= ψ\{µj}(µj)
∫ ∞

0
(1 + i)

(
− a+ (1 + i)s

)ρ
e−(−a+(1+i)s) ds

+ ψ\{µj}(µj)
∫ 0

−∞
(−1 + i)

(
− a+ (−1 + i)s

)ρ
e−(−a+(−1+i)s) ds

= ψ\{µj}(µj)
∫

Γ−a

zρe−z dz . (4.7)

Remark 4.1. A possible lack of consistency in the argument above might be
the following: The starting point of the contour, µ′, was set to move right
towards µj . Another solution could be letting it move left towards µl (the
biggest singularity less than µj) with the definition µ′ = µj−1 + a

x . From
redoing all the arguments the following result would be reached:

lim
x→∞

fΓ(x)

xρ′−1e−µlx
= φ(µl)π(µl)

∫

Γa

zρ
′
e−z dz

what appears to be a slower decrease towards 0. What rescues the consistency
is that only one of the integrals is different from 0:

∫

Γa

z−ρ
′
e−z dz = 0 and

∫

Γ−a

z−ρe−z dz 6= 0 .

Proof of Theorem 4.1. Consider the ℓ < 0 case (the ℓ > 0 will be the same
just more simple). Both f1 and f2 are linear combinations of the fΓ functions.
Since x is assumed to be positive all fΓj2(x) = 0. Then both f1(x) and f2(x)
are linear combinations of

f1Γ11
(x), . . . , f1Γm1

(x) .

So in order to study Px(τ < ∞) it is sufficient to determine the behaviour of
the functions f1Γi1

(x) when x→ ∞.
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5. Asymptotics as ℓ→ −∞

For each each i = 1, . . . , r there are two possible situations to consider: αi < 0
and αi > 0. This is explored in the Lemmas 4.1 and 4.2 respectively and it
was shown that either way

lim
x→∞

fΓi1(x)

xρ−1e−µjx
= K

for some constant Kj .
Since the ruin probability Px(τ < ∞) can be written as a linear combi-

nation of these functions the study of the asymptotics is simply a question
about finding the function with the slowest decrease. The function with the
slowest decrease is then fΓ1 and since µ1 is always a singularity for ψ the exact
asymptotic behaviour of fΓ1 can be found in Lemma 4.1.

Let the two partial eigenfunctions f1 and f2 be the linear combinations

f1(x) =
r∑

i=1

c1i fΓ1i(x) resp. f2(x) =
r∑

i=1

c2i fΓ1i(x) (4.8)

for x > 0. Then

lim
x→∞

Px(τ <∞)

e−µ1xx−
pαlλ

κ
−1

= lim
x→∞

fΓµ1
(x)

e−pµ1xx−
pαlλ

κ
−1

(

c11
L2 − f2(ℓ)

L2f1(ℓ)− L1f2(ℓ)
+ c21

f1(ℓ)− L1

L2f1(ℓ)− L1f2(ℓ)

)

= K ,

where K is given by

K =

(

ψ\{µ1}(µ1)
∫

Γ−a

z
pαlλ

κ e−z dz
)

(

c11
L2 − f2(ℓ)

L2f1(ℓ)− L1f2(ℓ)
+ c21

f1(ℓ)− L1

L2f1(ℓ)− L1f2(ℓ)

)

. (4.9)

Hence the theorem has been proved in the ℓ < 0 case. With exactly the same
arguments when ℓ > 0 we derive

K = c1

(

ψ\{µ1}(µ1)
∫

Γ−a

z
pαlλ

κ e−z dz
)

. (4.10)

2

5 Asymptotics as ℓ → −∞

Asymptotics of the ruin probability, positive drift

When considering the situation where ℓ→ −∞ the setup becomes more com-
plicated: The constants c1, . . . , cm and b1, . . . , bn in the construction of the
partial eigenfunctions change as ℓ decreases.
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In the study of the behaviour of Px(τ(ℓ) < ∞) given by (4.1) both fi(x)
and fi(ℓ) are of interest, i = 1, 2. With x > 0 and ℓ < 0 the expressions are
the following for the first of the two eigenfunctions

f1(ℓ) =
r−1∑

j=−s
bj(ℓ)f

2
Γj,2

(ℓ)

f1(x) =

r∑

i=1

ci(ℓ)f
1
Γi,1

(x) .

This definition excludes the last of the integration contours Γ1,−s, . . . ,Γr,2.
Similarly f2(ℓ) and f2(x) are defined by

f2(ℓ) =

r∑

j=−s+1

b̃j(ℓ)f
2
Γj,2

(ℓ)

f2(x) =
r∑

i=1

c̃i(ℓ)f
1
Γi,1

(x) .

The constants c1(ℓ), . . . , cr(ℓ) and b−s(ℓ), . . . , br−1(ℓ) are found as the solution
in a linear equation:





















0 . . . 0 N31
Γ−s

(ℓ) . . . N31
Γr−1

(ℓ)
...

. . .
...

...
. . .

...
0 . . . 0 N3r

Γ−s
(ℓ) . . . N3r

Γr−1
(ℓ)

M11
Γ1

. . . M11
Γr

N11
Γ−s

. . . N11
Γr−1

...
. . .

...
...

. . .
...

M1r
Γ1

. . . M1r
Γr

N1r
Γ−s

. . . N1r
Γr−1

−M21
Γ1

. . . −M21
Γr

N21
Γ−s

. . . N21
Γr−1

...
. . .

...
...

. . .
...

−M2s
Γ1

. . . −M2s
Γr

N2s
Γ−s

. . . N2s
Γr−1





















︸ ︷︷ ︸

=A(ℓ)













c1(ℓ)
...

cr(ℓ)
b−s(ℓ)

...
br−1(ℓ)













=













1
µ1
...
1
µr

0
...
0













(5.1)
With these definitions a limit of the probability Px(τ(ℓ) <∞) when ℓ→ −∞
can be derived:

Theorem 5.1. The limits ci = limℓ→−∞ ci(ℓ) are well defined and non–zero
for i = 1, . . . , r, and

lim
ℓ→∞

Px(τ(ℓ) <∞) = −
r∑

i=1

cif
1
Γi,1

(x) .

Expressions of the ci constants are found in the Corollary 5.1 below.
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5. Asymptotics as ℓ→ −∞

Proof. It is important to note that in the matrix A(ℓ) only N3k
Γj
(ℓ) (for k =

1, . . . , r and j = −s, . . . , r − 1) depends on ℓ. Exploring this dependence by
applying the same technique as in the x→ ∞ case yields for k = 1, . . . , r and
i = −s, . . . ,−1 that

lim
ℓ→−∞

N3k
Γi
(ℓ)

eℓν−i(−ℓ)
qβ−iλ

κ
−1

= lim
ℓ→−∞

1

eℓν−i(−ℓ)
qβ−iλ

κ
−1

∫

Γi,2

ψ(z)

z − µk
e−ℓz dz

=
ψ\{−ν−i}(−ν−i)

−ν−i − µk

∫

Γ̃
z−

qβ−iλ

κ ez dz (5.2)

if −ν−i is a root for ψ0. Here

Γ̃ = {(−1 + i)t : 0 ≤ t <∞}

and

ψ\{−ν−i} = z−1

(
r∏

k=1

(z − µk)
− pαkλ

κ

)



s∏

d=1,d6=i
(z + νd)

− qβdλ

κ



 .

If instead −ν−i is a singularity the result is

lim
ℓ→−∞

N3k
Γi
(ℓ)

eℓν−i(−ℓ)
qβ−iλ

κ
−1

=
ψ\{−ν−i}(−ν−i)

−ν−i − µk

∫

Γ̃
z−

qβ−iλ

κ ez dz , (5.3)

where

Γ̃a = {a+ (1 + i)t : −∞ < t ≤ 0}+ {a+ (−1 + i)t : 0 ≤ t <∞} .

Furthermore

lim
ℓ→−∞

N3k
Γ0
(ℓ) =

ψ\{0}(0)

−µk

∫

Γ̃a

z−1ez dz . (5.4)

Finally the constants that relate to µ1, . . . , µr satisfy the following if µi is a
root

lim
ℓ→−∞

N3i
Γi

e−ℓµi(−ℓ)−
pαiλ

κ

= ψ\{µi}(µi)
∫

Γ̃
z−

pαiλ

κ
−1ez dz (5.5)

lim
ℓ→−∞

N3k
Γi

e−ℓµi(−ℓ)−
pαiλ

κ − 1
=

ψ\{µi}(µi)

µi − µk

∫

Γ̃
z−

pαiλ

κ ez dz if k 6= i (5.6)

and if it is a singularity

lim
ℓ→−∞

N3i
Γi

e−ℓµi(−ℓ)−
pαiλ

κ

= ψ\{µi}(µi)
∫

Γ̃a

z−
pαiλ

κ
−1ez dz (5.7)

lim
ℓ→−∞

N3k
Γi

e−ℓµi(−ℓ)−
pαiλ

κ − 1
=

ψ\{µi}(µi)

µi − µk

∫

Γ̃a

z−
pαiλ

κ ez dz if k 6= i .(5.8)
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When the determinant of A(ℓ) is considered it is crucial that N3k
Γi
(ℓ) has the

largest rate of growth when k = i. It is also important to note that if µi is a
singularity of an order in ]0; 1[ and k 6= i then the limit integral for N3k

Γi
(ℓ) is

zero while the integral in the limit of N3i
Γi
(ℓ) is not.

Now define the matrices

M =














M11
Γ1

. . . M11
Γr

N11
Γ−s

. . . N11
Γ−1

...
. . .

...
...

. . .
...

M1r
Γ1

. . . M1r
Γr

N1r
Γ−s

. . . N1r
Γ−1

−M21
Γ1

. . . −M21
Γr

N21
Γ−s

. . . N21
Γ−1

...
. . .

...
...

. . .
...

−M2s
Γ1

. . . −M2s
Γr

N2s
Γ−s

. . . N2s
Γ−1














and

N(ℓ) =






N31
Γ0
(ℓ) . . . N31

Γr−1
(ℓ)

...
. . .

...
N3r

Γ0
(ℓ) . . . N3r

Γr−1
(ℓ)




 .

The formulas (5.2) – (5.8) yield that

det(A(ℓ)) ∼
(
det(N(ℓ))(−1)r+s+1 det(M)

)

and by using that N3i
Γi
(ℓ) has the most rapid growth compared to N3k

Γi
(ℓ) when

k 6= i it is seen that

det(N(ℓ)) ∼

(

N3r
Γ0

r−1∏

i=1

N3i
Γi
(ℓ)

)

which means that

det(N(ℓ)) = O

(

eℓ
∑r−1

j=1 µj (−ℓ)
∑r−1

j=1

pαjλ

κ

)

.

By Cramers Rule it is possible to find an expression for the constants c1(ℓ), . . . , cr(ℓ)
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and b−s(ℓ), . . . , br(ℓ) in the equation system (5.1):

c1(ℓ) =
1

det(A(ℓ))
det














































1
µ1

0 . . . 0 N31
Γ−s

(ℓ) . . . N31
Γr−1

(ℓ)
...

...
. . .

...
...

. . .
...

1
µr

0 . . . 0 N3r
Γ−s

(ℓ) . . . N3r
Γr−1

(ℓ)

0 M11
Γ2

. . . M11
Γr

N11
Γ−s

. . . N11
Γr−1

...
...

. . .
...

...
. . .

...
0 M1r

Γ2
. . . M1r

Γr
N1r

Γ−s
. . . N1r

Γr−1

0 −M21
Γ2

. . . −M21
Γr

N21
Γ−s

. . . N21
Γr−1

...
...

. . .
...

...
. . .

...
0 −M2s

Γ2
. . . −M2s

Γr
N2s

Γ−s
. . . N2s

Γr−1





















︸ ︷︷ ︸

=A1(ℓ)


























and similarly for the remaining constants. It is seen that

det(Ai(ℓ)) = O

(

eℓ
∑r−1

j=1 µj (−ℓ)
∑r−1

j=1

pαjλ

κ

)

for i = 1, . . . , r + s and therefore

ci(ℓ) =
det(Ai(ℓ))

det(A(ℓ))
= O(1) i = 1, . . . , r

bj(ℓ) =
det(Ar+s+1+j(ℓ))

det(A(ℓ))
= O(1) j = −s, . . . ,−1 .

Furthermore

det(Ar+s+1(ℓ)) ∼

(

det(M)×
1

µr

r−1∏

i=1

N3i
Γi
(ℓ)

)

det(Ar+s+1+j(ℓ)) ∼



det(M)×
1

µj
N3r

Γ0
(ℓ)

r−1∏

i=1,i 6=j
N3i

Γi
(ℓ)



 j = 1, . . . , r − 1

such that

b0(ℓ) =
det(Ar+s+1(ℓ))

det(A(ℓ))
∼

(

1

µr

1

N3r
Γ0
(ℓ)

)

bj(ℓ) =
det(Ar+s+1+j(ℓ))

det(A(ℓ))
∼

(

1

µj

1

N3j
Γj
(ℓ)

)

= O

(

eℓµj (−ℓ)
pαjλ

κ

)

j = 1, . . . , r − 1 .
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The equivalent constants c̃1(ℓ), . . . , c̃r(ℓ) and b̃−s+1(ℓ), . . . , b̃r(ℓ) that belongs
to the second partial eigenfunction solve an equation system similar to (5.1):





















0 . . . 0 N31
Γ−s+1

(ℓ) . . . N31
Γr
(ℓ)

...
. . .

...
...

. . .
...

0 . . . 0 N3r
Γ−s+1

(ℓ) . . . N3r
Γr
(ℓ)

M11
Γ1

. . . M11
Γr

N11
Γ−s+1

. . . N11
Γr

...
. . .

...
...

. . .
...

M1r
Γ1

. . . M1r
Γr

N1r
Γ−s+1

. . . N1r
Γr

−M21
Γ1

. . . −M21
Γr

N21
Γ−s+1

. . . N21
Γr

...
. . .

...
...

. . .
...

−M2s
Γ1

. . . −M2s
Γr

N2s
Γ−s+1

. . . N2s
Γr





















︸ ︷︷ ︸

=Ã(ℓ)













c̃1(ℓ)
...

c̃r(ℓ)

b̃−s+1(ℓ)
...

b̃r(ℓ)













=













1
µ1
...
1
µr

0
...
0













,

(5.9)
where the integration contour Γ−s is replaced by Γr in order to obtain a new
and independent partial eigenfunction. It can be shown that the constants
have the following asymptotics as functions of ℓ

c̃i(ℓ) = O

(

1

µ1

1

N31
Γ1
(ℓ)

)

= O
(

e−ℓµ1(−ℓ)
pα1λ

κ

)

i = −s, . . . ,−1

b̃j(ℓ) = O

(

1

µ1

1

N31
Γ1

(ℓ)

)

= O
(

e−ℓµ1(−ℓ)
pα1λ

κ

)

j = −s+ 1, . . . , 0

b̃j(ℓ) ∼

(

1

µj

1

N3j
Γj

(ℓ)

)

= O

(

e−ℓµj (−ℓ)
pαjλ

κ

)

j = 1, . . . , r .

The asymptotic behaviour of the f2Γj,2
functions is of interest as well. Similar

to the previous analysis it is seen that

For j = −s, . . . ,−1:

lim
ℓ→−∞

f2Γj,2
(ℓ)

eℓν−j (−ℓ)
qβjλ

κ
−1

= ψ\{−ν−j}(−ν−j)
∫

Γ̃a

z−
qβjλ

κ ez dz , if ν−j is a singularity

lim
ℓ→−∞

f2Γj,2
(ℓ)

eℓν−j (−ℓ)
qβjλ

κ
−1

= ψ\{−ν−j}(−ν−j)
∫

Γ̃
z−

qβjλ

κ ez dz , if ν−j is a root .

For j = 0:

lim
j→−∞

f2Γ0,2
(ℓ) = ψ\{0}(0)

∫

Γ̃a

z−1ez dz .
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5. Asymptotics as ℓ→ −∞

For j = 1, . . . , r:

lim
ℓ→−∞

f2Γj,2
(ℓ)

e−ℓµj (−ℓ)
pαjλ

κ
−1

= ψ\{µj}(µj)
∫

Γ̃a

z−
pαjλ

κ ez dz , if µj is a singularity

lim
ℓ→−∞

f2Γj,2
(ℓ)

e−ℓµj (−ℓ)
pαjλ

κ
−1

= ψ\{µj}(µj)
∫

Γ̃
z−

qαjλ

κ ez dz , if µj is a root .

By comparing these results with the asymptotics for the constants ci(ℓ), c̃i(ℓ),
bj(ℓ) and b̃j(ℓ) it is seen that

• bj(ℓ)f
2
Γj,2

(ℓ) tends to zero exponentially fast as ℓ→ −∞ for j = −s, . . . ,−1

• b̃j(ℓ)f
2
Γj,2

(ℓ) tends to zero exponentially fast as ℓ → −∞ for j = −s +
1, . . . , 0

• bj(ℓ)f
2
Γj,2

(ℓ) = O
(

1
−ℓ

)

for ℓ→ −∞ when j = 1, . . . , r − 1

• b̃j(ℓ)f
2
Γj,2

(ℓ) = O
(

1
−ℓ

)

for ℓ→ −∞ when j = 1, . . . , r .

Left is finding the non–zero limit of b0(ℓ)f
2
Γ0,2

(ℓ) when ℓ→ −∞:

lim
ℓ→−∞

b0(ℓ)f
2
Γ0,2

(ℓ) = lim
ℓ→−∞

1

µr

1

N3r
Γ0
(ℓ)

f2Γ0,2
(ℓ)

=
1

µr

ψ\{0}(0)
∫

Γ̃a
z−1ez dz

ψ\{0}(0)

−µr
∫

Γ̃a
z−1ez dz

= −1 .

Hence it has been shown that

lim
ℓ→−∞

f1(ℓ) = lim
ℓ→−∞

r−1∑

j=−s
bj(ℓ)f

2
Γj,2

(ℓ) = −1

lim
ℓ→−∞

f2(ℓ) = lim
ℓ→−∞

r∑

j=−s+1

b̃j(ℓ)f
2
Γj,2

(ℓ) = 0 .

Furthermore it has been shown that all c̃i(ℓ) decreases to zero so

lim
ℓ→−∞

f2(x) = lim
t→−∞

r∑

i=1

c̃i(ℓ)f
1
Γi,1

(x) = 0
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and since all ci has a non–zero limit the limit limℓ→−∞ f1(x) is well–defined
and non–zero. Then

lim
ℓ→−∞

Px(τ <∞) = lim
ℓ→−∞

f1(x)
1− f2(ℓ)

f1(ℓ)− f2(ℓ)
+ f2(x)

f1(ℓ)− 1

f1(ℓ)− f2(ℓ)

= lim
ℓ→−∞

f1(x)
1− 0

−1− 0
+ 0

−1− 1

−1− 0

= − lim
ℓ→−∞

f1(x) .

The asymptotic expression for ci(ℓ) can be rewritten as

ci(ℓ) ∼

(

|Mi|

|M |

1

µrN3r
Γ0
(ℓ)

)

,

where

Mi =














M11
Γ1

. . . M11
Γi−1

M11
Γi+1

. . . M11
Γr

N11
Γ−s

. . . N11
Γ−1

...
. . .

...
...

. . .
...

...
. . .

...
M1r

Γ1
. . . M1r

Γi−1
M1r

Γi+1
. . . M1r

Γr
N1r

Γ−s
. . . N1r

Γ−1

−M21
Γ1

. . . −M21
Γi−1

−M21
Γi+1

. . . −M21
Γr

N21
Γ−s

. . . N21
Γ−1

...
. . .

...
...

. . .
...

...
. . .

...
−M2s

Γ1
. . . −M2s

Γi−1
−M2s

Γi+1
. . . −M2s

Γr
N2s

Γ−s
. . . N2s

Γ−1














.

Hence we have this result:

Corollary 5.1. For i = 1, . . . , r it holds that

lim
ℓ→−∞

ci(ℓ) =
det(Mi)

det(M)

1

µr

(
ψ\{0}(0)

−µk

∫

Γ̃a

z−1ez dz

)−1

= −
det(Mi)

det(M)

(

ψ\{0}(0)
∫

Γ̃a

z−1ez dz

)−1

.

The undershoot when the drift is negative

Now consider the negative drift case, κ < 0. This situation is particularly
simple because only one partial eigenfunction, f , is needed since crossing ℓ
through continuity is not possible. The Laplace transform of the undershoot
is therefore expressed by the rather simple formula

Ex[e
−ζZ ] = f(x) .

Since ψ satisfies that |ψ(z)| = O(|z|−1−λκ ) the negative κ makes infinite inte-
gration contours impossible. Instead the following finite contours are chosen
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a
−ℓ

Γi

Figure B.2: The choice of contours in the negative drift case .

using that µ1 is always a zero for ψ. For each i = 2, . . . , r there are two pos-
sible definitions:

If µi is a zero define Γi as

{µi + (−1− i)t : 0 ≤ t ≤
µi − µ1

2
}

∪ {µi − i(µi − µ1) + (−1 + i)t :
µi − µ1

2
≤ t ≤ µi − µ1} .

If µi is a singularity define Γi as

{µi +
a
−ℓ + i(µi +

a
−ℓ − µ1) + (1 + i)t : −(µi +

a
−ℓ − µ1) ≤ t ≤ −

µi +
a
−ℓ − µ1

2
}

∪ {µi +
a
−ℓ + (1− i)t : −

µi +
a
−ℓ − µ1

2
≤ t ≤ 0}

∪ {µi +
a
−ℓ + (−1− i)t :

µi +
a
−ℓ − µ1

2
≤ t ≤ 0}

∪ {µi −
a
−ℓ + i(µi +

a
−ℓ − µ1) + (−1 + i)t :

µi +
a
−ℓ − µ1

2
≤ t ≤ µi +

a
−ℓ − µ1} .

A rough sketch of the two contours can be seen on Figure B.2

Remark 5.1. In [9] these contours are suggested to be half–circles and circles
but that choice makes the further calculations too complicated.

The partial eigenfunction f is defined by

f(y) =
r∑

i=2

cifΓi(y) + Uf∗(y) + f0(y) , (5.10)
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where
f∗(y) = 1[ℓ;∞[(y)

and the parameters c2, . . . , cr and U are the solutions of the equation (when
putting L = 1)








− 1
µ1
(ℓ) M1

Γ2
(ℓ) · · · M1

Γr
(ℓ)

− 1
µ2
(ℓ) M2

Γ2
(ℓ) · · · M2

Γr
(ℓ)

...
...

. . .
...

− 1
µr
(ℓ) M r

Γ2
(ℓ) · · · M r

Γr
(ℓ)








︸ ︷︷ ︸

B(ℓ)








U
c2
...
cr







=






− 1
µ1+ζ
...

− 1
µr+ζ




 (5.11)

where – as usual – the constants Mk
Γi
(ℓ) are given as

Mk
Γi
(ℓ) =

∫

Γi

ψ(z)

z − µk
e−ℓz dz

for i = 2, . . . , r and k = 1, . . . , r. In order to explore the asymptotic behaviour
of U, c2, . . . , cr and through that the behaviour of f it is necessary to study
these constants.

From the use of these definitions the following result, which states that
the limit of the undershoot is a simple expontential distribution with the
parameter from the dominating part of the downward jumps, can be reached.

Theorem 5.2. For all ζ ≥ 0 it holds that

lim
ℓ→−∞

Ex[e
−ζZ ] =

µ1
µ1 + ζ

.

Proof. First the behaviour of the constants Mk
Γi
(ℓ) when ℓ→ −∞ is explored.

In the case where µi is a zero (for some i = 2, . . . , r) and i 6= k the corre-
sponding constant can be written as

Mk
Γi
(ℓ) =

∫ µi−µ1
2

0
(−1− i)

ψ(µi + (−1− i)t)

µi + (−1− i)t− µk
e−ℓ(µi+(−1−i)t) dt (5.12)

+

∫ µi−µ1

µi−µ1
2

(−1 + i)
ψ(µi − i(µi − µ1) + (−1 + i)t)

µi − i(µi − µ1) + (−1 + i)t− µk
e−ℓ(µi−i(µi−µ1)+(−1+i)t) dt .

Rewriting the expression and applying the usual substitution s = (−ℓ)t to the
first part in (5.12) yields that it

= e−ℓµi
∫ µi−µ1

2

0
(−1− i)

ψ\{µi}(µi + (−1− i)t)

µi + (−1− i)t− µk
((−1− i)t)−

pλαi
κ e−ℓt(−1−i) dt

s=−ℓt
= e−ℓµi(−ℓ)

pλαi
κ

−1

∫ (−ℓ)µi−µ1
2

0
(−1− i)

ψ\{µi}(µi + (−1− i) s
−ℓ)

µi + (−1− i) s
−ℓ − µk

((−1 − i)s)−
pλαi

κ es(−1−i) ds .
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Hence by dominated convergence it is seen that the integral in the last line
has the limit

ψ\{µi}(µi)

µi − µk

∫ ∞

0
(−1− i)((−1 − i)s)−

pλαi
κ es(−1−i) ds

=
ψ\{µi}(µi)

µi − µk

∫

−Γ
z−

pλαi
κ ez d. z ,

where

−Γ = {(−1 − i)t : 0 ≤ t <∞} .

Now remains to discuss the asymptotics of the second part in (5.12). Here the
substitution s = (−ℓ)(t− (µi−µ1)) is used and by that the expression equals

e−ℓ(
µ1+µi

2
−iµi−µ1

2
)(−ℓ)−1

×
∫ (−ℓ)µi−µ1

2
0 (−1 + i)ψ

(
µ1+µi

2 − iµi−µ12 + (−1 + i) s
−ℓ

)

es(−1+i) ds .

The integral has the following limit for ℓ→ −∞

ψ

(
µ1 + µi

2
− i

µi − µ1
2

)∫

Γ̃
ez dz

when using dominated convergence. The definition Γ̃ = {(−1 + i)t : 0 ≤ t <
∞} has been used. The study of the asymptotics in (5.12) concludes that the
first part grows with a bigger rate than the last part. Therefore

lim
ℓ→−∞

Mk
Γi
(ℓ)

e−ℓµi(−ℓ)−
pλαi

κ
−1

=
ψ\{µi}(µi)

µi − µk

∫

−Γ
z−

pλαi
κ ez dz . (5.13)

A result completely similar is found in the case where i = k:

lim
ℓ→−∞

Mk
Γi
(ℓ)

e−ℓµi(−ℓ)−
pλαi

κ

= ψ\{µi}(µi)
∫

−Γ
z−

pλαi
κ

−1ez dz . (5.14)

The same substitution technique yields results in the cases where µi are sin-
gularities for ψ. That gives

lim
ℓ→−∞

Mk
Γi
(ℓ)

e−ℓµi(−ℓ)−
pλαi
κ

−1
=
ψ\{µi}(µi)

µi − µk

∫

−Γa

z−
pλαi
κ ez dz (5.15)

if i 6= k and

lim
ℓ→−∞

Mk
Γi
(ℓ)

e−ℓµi(−ℓ)−
pλαi
κ

= ψ\{µi}(µi)
∫

−Γa

z−
pλαi
κ

−1ez dz (5.16)
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when i = k. Here

−Γa = {a+ (1− i)t : −∞ < t ≤ 0} ∪ {a+ (−1− i)t : 0 ≤ t <∞} .

With the results (5.13)-(5.16) the behaviour of the solutions U, c2, . . . , cr in
(5.11) can be expressed. The following asymptotic behaviour of the determi-
nant of the matrix B(ℓ) is observed

det(B(ℓ)) ∼

(

−
1

µ1

r∏

i=2

M i
Γi
(ℓ)

)

. (5.17)

And with Bi denoting B where the ith column is replaced by the vector
[− 1

µ1+ζ
, . . . ,− 1

µr+ζ
]T it is seen that

det(B1(ℓ)) ∼

(

−
1

µ1 + ζ

r∏

i=2

M i
Γi
(ℓ)

)

(5.18)

det(Bi(ℓ)) ∼



(
−1

µ1

1

µi + ζ
−

−1

µi

1

µ1 + ζ
)

∏

j∈{2,...,r},j=i
M j

Γj
(ℓ)



 .(5.19)

The solutions of the equation (5.11) are obtained from the use of Cramer’s
rule. In addition the asymptotic behaviour is determined from the results
(5.17)-(5.19). Together that is:

U(ℓ) =
det(B1(ℓ))

det(B(ℓ))
∼

( −1
µ1+ζ
−1
µ1

)

=
µ1

µ1 + ζ

ci(ℓ) =
det(Bi(ℓ))

det(B(ℓ))
∼

( −1
µ1

1
µi+ζ

− −1
µi

1
µ1+ζ

−1
µ1

1

M i
Γi
(ℓ)

)

with i = 2, . . . , r. Since all M i
Γi
(ℓ) are growing exponentially fast the asymp-

totics for f defined in (5.10) are easily determined. So is the limit of the
Laplace transform for the undershoot:

lim
ℓ→−∞

Ex[e
−ζZ ] = lim

ℓ→−∞

(
r∑

i=2

ci(ℓ)fΓi(x) + U(ℓ)f∗(x)

)

= lim
ℓ→−∞

U(ℓ) · 1

=
µ1

µ1 + ζ
.
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Failure Recovery via RESTART:

Wallclock Models

Anders Rønn-Nielsen and Søren Asmussen

Abstract

A task such as the execution of a computer program or the transfer of a
file on a communications link may fail and then needs to be restarted. Let
the ideal task time be a constant ℓ and the actual task time X , a ran-
dom variable. Tail asymptotics for P(X > x) is given under three different
models: 1: a time-dependent failure rate µ(t); 2: Poisson failures and a
time-dependent deterministic work rate r(t); 3: as 2, but r(t) is random and
a function of a finite Markov process. Also results close to being necessary
and sufficient are presented for X to be finite a.s. The results complement
those of Asmussen, Fiorini, Lipsky, Rolski & Sheahan [ Math. Oper. Res.
33, 932–944, 2008] who took r(t) ≡ 1 and assumed the failure rate to be
a function of the time elapsed since the last restart rather than wallclock
time

Keywords change of measure, computer reliability, fluid model, inhomoge-
neous Poisson process, Markov-modulation, Markov renewal theorem, tail
asymptotics, time transformation
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1 Introduction and Statement of Results

Tasks such as the execution of a computer program or the transfer of a file on a
communications link may fail. There is a considerable literature on protocols
for handling such failures. We mention in particular RESUME where the task
is resumed after repair, REPLACE where the task is abandoned and a new
one taken from the pile of waiting tasks, RESTART where the task needs to
be restarted from scratch, and CHECKPOINTING where the task contains
checkpoints such that performed work is saved at checkpoint times and that
upon a failure, the task only needs to be restarted from the last checkpoint.

The protocols RESUME and REPLACE are fairly easy to analyze, see e.g.
Kulkarni et al. [14], [15] and Bobbio & Trivedi [8]. In contrast, RESTART
(Castillo [9], Chimento & Trivedi [10]) resisted analysis for a long time un-
til the recent work of Sheahan et al. [17] and Asmussen et al. [5] (see
also Jelenkovic & Tan [12, 13] for in part parallel work). Recent results for
CHECKPOINTING as well as references to earlier work can be found in As-
mussen & Lipsky [7].

The model of Asmussen et al. [5] assumes that failures occur at a time
after each restart with the same distribution G for each restart (a particular
important case is of course the exponential distribution). However, it is easy
to imagine situations where the model behaviour is determined by the time
of the day (the clock on the wall) rather than the time elapsed since the last
restart. Think, e.g., of a time-varying load in the system which may influence
the failure rate and/or the speed at which the task is performed. For example,
the load could be identified with the number of busy tellers in a call centre or
the number of users in a LAN (local area network) currently using the central
server. The purpose of the present paper is to provide some first insight in
the behaviour of such models.

We denote by X the total task time, including failures (a precise definition
is given below). One of our goals is to describe the asymptotics of the tail
P(X > x) as x→ ∞. For simple restart with constant task time and Poisson
failures, this is easy via a renewal argument. In fact, the details as given in
[5] lead to:

Proposition 1.1. Consider simple RESTART with ideal task time ℓ and
Poisson(µ∗) failures. Let γ0 = γ0(ℓ, µ

∗) > 0 denote the root of

1 =

∫ ℓ

0
µ∗e(γ0−µ

∗)y dy . (1.1)

Then P(X > x) ∼ c0e
−γ0x as x→ ∞ for some 0 < c0 <∞

Here and in the following f(x) ∼ g(x) means f(x)/g(x) → 1. Similarly, we
will write f(x) ≈log g(x) if log f(x) ∼ log g(x). This is the logarithmic asymp-
totics familiar from large deviations theory (though we will not use results
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or tools from that area!). It summarizes the main asymptotical features, but
does not allow to capture constants like c0, prefactors of smaller magnitude
etc.

It should be noted that c0 is explicit given γ, but the value needs not
concern us here.

The emphasis in [5] is on the more difficult case of a random rather than
a constant ideal task time. However as a first attempt, we shall in the present
paper throughout assume a constant ideal task time of length ℓ. We will
consider three models:

Model 1 Failures at time t after the start of the task occur at deterministic
rate µ(t).

Model 2 Failures occur according to a Poisson(µ∗) process with constant rate
µ∗. At time t after the start of the task, the system works on the task at rate
r(t).

Model 3 As Model 2, but the rate function r(t) is given as r(t) = rV (t) where{
V (t)

}

t≥0
is an ergodic Markov process with p < ∞ states and r1, . . . , rp are

constants with ri > 0 for at least one i.

Models 1, 2 are self-explanatory. Model 3 could for example describe a LAN
with p users, where V (t) is the number of users currently using the central
server and r0 = 0, ri = r1/i for i > 1.

Models 1 and 2 exhibit a feature not found in simple RESTART: it is
possible that P(X = ∞) > 0. This would occur in Model 1 if µ(t) → ∞ fast
enough, and in Model 2 if r(t) → 0 fast enough. Our first main result gives
the critical rates:

Theorem 1.1. (1) Consider Model 1. If lim supt→∞ µ(t)/ log t < 1/ℓ, then
X <∞ a.s., whereas P(X = ∞) > 0 if lim inft→∞ µ(t)/ log t > 1/ℓ.
(2) Consider Model 2 and assume that

∫∞
0 r(s) ds = ∞ and R(t) =

∫ t
0 r(s)ds <

∞ for all t ≥ 0. If lim inft→∞ r(R(t)) log t/µ∗ > ℓ, then X < ∞ a.s., whereas
P(X = ∞) > 0 if lim supt→∞ r(R(t)) log t/µ∗ < ℓ.

The result shows that in Model 1 only a very modest rate of increase to
∞ of µ(t) may cause the task never to terminate, and that the same is the
case for Model 2 with only a very modest rate of decrease to 0 of r(t). In view
of this, it seems reasonable to concentrate on decreasing µ(t) in Model 1 and
increasing r(t) in Model 2. The simplest case is of course the power case, and
our second main result gives the asymptotics of P(X > x) in this case:

Theorem 1.2. (1) Consider Model 1 and assume that µ(t) is strictly positive
with µ(t) ∼ at−β with 0 < β < 1. Then

P(X > x) ≈log e−c1x log x = x−c1x ,
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where c1 = (1− β)/ℓ.
(2) Consider Model 2 and assume that r(t) ∼ atη with η > 0. Then

P(X > x) ≈log e−c2x
η+1 log x = x−c2x

η+1
,

where c2 = aη/(η + 1)ℓ.

Note that β = 0 in (1) or η = 0 in (2) corresponds to the standard
RESTART setting, which is why we exclude these cases. Note also that in
both Model 1 and Model 2 the decay rate is faster than any exponential. In
Model 1 this is intuitive by comparing with Proposition 1.1 since γ → ∞ as
µ → 0 with ℓ fixed. This is also the intuitive explanation in Model 2, but to
see this, one needs an intermediate step of time reversal given below.

For Model 3 it is trivial that X < ∞ a.s. because there is an infinity of
sojourn periods in the state with ri > 0 and the probability of task completion
in such a period is > 0. For the asymptotics, we need properties of the fluid
model

F (t) =

∫ t

0
rV (s) ds .

More precisely:

Theorem 1.3. In Model 3, let κ(s) denote the largest real value of the p× p
matrix K[s] with ijth element

∫ ∞

0
µ∗e(s−µ

∗)tPi
(
F (t) < ℓ, V (t) = j

)
dt .

Then κ(s) increases monotonically from κ(0) < 1 to ∞ in the interval s ∈
[0,∞). If γ3 denotes the unique value with κ(γ3) = 1, then Pi(X > x) ∼
die

−γ3x for suitable constants d1, . . . , dp.

Here d1, . . . , dp are again explicit, see Section 4, and as usual, Pi refers to
the case V (0) = i.

The outline of proofs is that first Model 1 is considered (Section 2). The
results for Model 2 then follow by exploiting the time-transformation connec-
tion between homogeneous and inhomogeneous Poisson processes (Section 3).
Theorem 1.3 for Model 3 is an easy consequence of the Markov renewal the-
orem, once it has been recognized how to write up an appropriate Markov
renewal equation.

Finally, Section 3 also contains a numerical example.

Notation For the Poisson process with constant rate µ∗, we write S∗
1 , S

∗
2 , . . .

for the event times and U∗
n = S∗

n − S∗
n−1 for the interevent times (S∗

0 = 0 is
not considered an event time). Similarly, the notation S1, S2, . . . and Un =
Sn − Sn−1 is used for the inhomogeneous Poisson process of failures in Model
1, and S′

1, S
′
2, . . . and U

′
n = S′

n − S′
n−1 for a certain auxiliary inhomogeneous

Poisson process with rate function µ′(s) in Section 2. The corresponding
counting processes are denoted by N∗(t), N(t), N ′(t).
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2 Proofs: Model 1

Let N(t) denote the number of failures before t. Then the counting process
{
N(t)

}

t≥0
given by N(t) = sup {n : Sn < t} is a time-inhomogeneous Poisson

process with rate function
{
µ(t)

}

t≥0
.

Define the stopping time τ = inf{n ∈ N |Un > ℓ}. Then the total task
time is the r.v. X = Sτ−1 + ℓ if τ <∞ and X = ∞ otherwise.

In the proof of Theorem 1.1(1) and in the following, define the integrated
intensity as M(t) =

∫ t
0 µ(s) ds. It is then standard that

{
N(t)

}

t≥0
can be

represented by taking the event times as Sn =M−1
(
S∗
n

)
.

Proof of Theorem 1.1. Let ℓ′ be fixed, let µ′(s) = (log s)+/ℓ′ and define
X ′,M ′, U ′n, S′

n etc. the obvious way (the ideal task time remains ℓ, not ℓ′!).
Then for s > 1,

M ′(s) = s log s/ℓ′ +O(1) ,

M ′(s+ ℓ) = (s+ ℓ)
[
log s+O(1/s)

]
/ℓ′ + O(1) = (s+ ℓ) log s/ℓ′ + O(1) ,

and hence
∫ ∞

1
µ′(s) exp

{
−M ′(s+ ℓ) +M ′(s)

}
ds (2.1)

=

∫ ∞

1
O(1) log s · s−ℓ/ℓ

′
ds
{ <∞ if ℓ′ < ℓ

= ∞ if ℓ′ > ℓ
. (2.2)

For the intuition, note that (2.1) equals E
∑∞

1

{
n : U ′

n > ℓ
}
, the expected

number of interevent intervals that would have completed the task, had the
task not been completed by the start of the interval.

Assume first ℓ′ < ℓ and let A′(s) be event that U ′
n ≤ ℓ for all n with

S′
n−1 ≤ s. Clearly, P

(
A′(s)

)
> 0. Defining K ′(s) as the number of n with

S′
n−1 > s, U ′

n > ℓ and letting F ′(s) = σ
(
N ′(v) : v ≤ s

)
, we have

E
[
K ′(s)

∣
∣F ′(s)

]
≤

∫ ∞

s
µ′(v) exp

{
−M ′(v + ℓ) +M ′(v)

}
dv .

By (2.2), we can choose s so large that this integral is (say) < 1/2 and get
P
(
K ′(s) ≥ 1

∣
∣F ′(s)

)
≤ 1/2 such that

P(X ′ = ∞) = P
(
A′(s) ∩ {K ′(s) = 0}

= E

[

I
(
A′(s)

)
· P
(
K ′(s) = 0

∣
∣F ′(s)

]]

≥ P
(
A′(s)

)
/2 > 0 .

Let next ℓ′ > ℓ. The above estimates for M ′ imply that M ′−1(s) =
sℓ′/ log s

(
1 + o(1)

)
as s→ ∞, and hence that

S′
n−1 =

Sn−1ℓ
′

log Sn−1

(
1 + o(1)

)
=

nℓ′

log n

(
1 + o(1)

)
a.s.
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Thus

∞∑

n=1

P
(
U ′
n > ℓ

∣
∣F ′(S′

n−1)
)

=

∞∑

n=1

exp
{
−M ′(S′

n−1 + ℓ) +M ′(S′
n−1)

}

=

∞∑

n=1

exp
{
−ℓ log S′

n−1/ℓ
′ +O(1)

}
= ∞ a.s.

The conditional Borel-Cantelli lemma therefore implies that U ′
n > ℓ for in-

finitely many n.

Now consider a general µ(s). If lim sups→∞ µ(s)/ log s < 1/ℓ, then for
some s0 and some ℓ′ > ℓ we have µ(s) < µ′(s) for all s > s0. Then, realizing
N on (s0,∞) as the independent sum of N ′ and an inhomogeneous Poisson
process with rate µ′(s)− µ(s), we may assume

{
Sn−1 : Sn−1 > s0

}
⊆
{
S′
n−1 : S

′
n−1 > s0

}
.

Since U ′
n > ℓ for infinitely many n with S′

n−1 > s0, this implies Un > ℓ for in-
finitely many n with Sn−1 > s0 andX <∞. Similarly, if lim infs→∞ µ(s)/ log s >
1/ℓ, then for some s0 and some ℓ′ > ℓ we have µ(s) > µ′(s) for all s > s0, and
Un > ℓ for some n with Sn−1 > s0 implies S′

n > ℓ for some n with S′
n−1 > s0.

Therefore the event that Un > ℓ for some n with Sn−1 > s0 cannot have
probability one, which as above implies P(X = ∞) > 0. 2

We next consider the proof of Theorem 1.2 (1), describing the tail of X
in the most standard case, a Weibull type rate function µ(t) =∼ at−β with
0 < β < 1. Note that β = 0 corresponds to the simple RESTART setting with
Poisson failures with µ∗ = a. β < 0 is excluded because then P(X = ∞) > 0,
and β > 1 is excluded because thenM(∞) <∞, a case that appears somewhat
pathological and that we do not study.

Before turning to the setup of Theorem 1.2 (1) we shall prove some less
clear results for a general µ(t). Assume that µ(t) is decreasing with limit 0.

The probability P(X > x) can be written as P(X > x) = P
(
B(x)

)
where

B(x) =
{
U1 ≤ ℓ, . . . , Uτ(x)−1 ≤ ℓ, x−Sτ(x)−1 ≤ ℓ

}
, τ(x) = inf{n : Sn > x} .

Obviously, we must have B(x) ⊆ C(x− ℓ) where

C(x) = {U1 ≤ ℓ, . . . , Uτ(x) ≤ ℓ} .

But in fact x ≥ Sτ(x−ℓ) ≥ x − ℓ implies Uτ(x−ℓ)+1 ≤ ℓ, . . . , Uτ(x)−1 ≤ ℓ and
x− Sτ(x)−1 ≤ ℓ (see Figure C.1). That is,

B(x) = C(x− ℓ) , (2.3)

so deriving the asymptotics for P
(
C(x− t)

)
will solve the problem.
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-r r r

x− ℓ xSτ(x−ℓ) Sτ(x)−1 Sτ(x)

Figure C.1: It holds that x− Sτ(x)−1 ≤ ℓ when Uτ(x−ℓ) ≤ ℓ.

Choose γ = γ(ℓ) such that

1 =

∫ ℓ

0
eγx dx =

1

γ

[

eγℓ − 1
]

. (2.4)

Let Q be the probability measure where (Un)n∈N are i.i.d. each with density
u→ eγu on (0, ℓ). Note that Q

(
C(x)

)
= 1 since Q(U1 ≤ ℓ) = 1.

Proposition 2.1. For any µ(t) it holds that

P
(
C(x)

)
= EQ

[(
τ(x)
∏

k=1

µ(Sn)
)
exp

(

−M(Sτ(x))− γSτ(x)

)]

.

Proof. Define (Fn)n∈N as the natural filtration for (Un)n∈N:

Fn = σ(U1, . . . , Un) (n ∈ N) .

Note that τ(x) is a stopping time with P(τ(x) < ∞) = 1 (such that C(x) is
well-defined) and that C(x) ∈ Fτ(x).

Given Sn−1 , the conditional distribution of Un is determined by the density

f|Sn−1
(s) = µ(s) exp

(

−M(s) +M(Sn−1))
)

(s > Sn−1)

(on {Sn−1 <∞} in the case of M(∞) <∞). If M(∞) <∞, this distribution
is defective with

P|Sn−1
(Un = ∞) = exp

(

−

∫ ∞

Sn−1

µ(u) du
)

= exp
(

−M(∞) +M(Sn−1))
)

.

Therefore the joint density of (U1, . . . , Un) (w.r.t. the Lebesgue measure on
(0,∞)n) is

gn(u1, . . . , un) =

n∏

k=1

g|sk−1
(uk) =

n∏

k=1

µ(sk) exp
(

−M(sk) +M(sk−1)
)

=
( n∏

k=1

µ(sk)
)

exp{−M(sn)}

for (u1, . . . , un) ∈ (0;∞)n. Here the notation sk = u1+ · · ·+uk has been used.
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Under Q the vector (U1, . . . , Un) has density

hn(u1, . . . , un) = eγsn .

Define

Fn = {U1 ≤ ℓ, . . . , Un ≤ ℓ} .

Then Fn ∈ Fn. If Dn ⊆ Fn and Dn ∈ Fn (that is Dn = {(U1, . . . , Un) ∈ Cn},
where Cn ⊆ [0, ℓ]n is Borel measurable), we have

P(Dn) = EQ

[
gn(U1, . . . , Un)

hn(U1, . . . , Un)
;Dn

]

.

Thus by a standard extension to stopping times (e.g. [4] pp. 131–132)

P
(
C(x)

)
= EQ

[
gτ(x)(U1, . . . , Uτ(x))

hτ(x)(U1, . . . , Uτ(x))

]

,

where we have used that Q
(
C(x)

)
= 1 and P(τ(x) <∞) = Q(τ(x) <∞) = 1.

When the expressions for gn and hn are inserted, this becomes the requested
result.

2

Proposition 2.2. If µ(t) is decreasing with limit 0 then
(i)

P
(
C(x)

)
≤ c3

( [x/ℓ]
∏

k=0

µ(x− kℓ)

)

exp
(
−M(x)− γx

)

when x→ ∞, for some constant c3.
(ii)

P
(
C(x)

)
≥ c4 exp

(1

ℓ
log
(
µ(x+ ℓ)

)
(1 + o(1))(x + ℓ)

)

× exp
(

−M(x+ ℓ)− (1− 1/ℓ)γx
)

when x→ ∞, for some constant c4.

Proof. For (i), recall that x < Sτ(x) ≤ x + ℓ. If either γ > 0 or γ < 0, the
expression for P

(
C(x)

)
in Proposition 2.1 is bounded up by a constant times

EQ

[ τ(x)
∏

k=1

µ(Sn)

]

exp
(
−M(x)− γx

)
(2.5)
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Left is exploring the behaviour of the expectation in (2.5). First rewrite it as

EQ

[ τ(x)
∏

k=1

µ(Sk)

]

= EQ

[( τ(x)−⌊x/ℓ⌋−1
∏

k=1

µ(Sk)
)( τ(x)

∏

k=τ(x)−⌊x/ℓ⌋
µ(Sk)

)]

≤ EQ

[ τ(x)−⌊x/ℓ⌋−1
∏

k=1

µ(Sk)
]( ⌊x/t⌋
∏

k=0

µ(x− kℓ)
)

.

In the inequality we have used that µ is decreasing and the fact that

Sτ(x) > x, Sτ(x)−1 > x− ℓ , Sτ(x)−2 > x− 2ℓ , . . . , Sτ(x)−⌊x/ℓ⌋ > x− ⌊x/ℓ⌋ℓ .

Since limt→∞ µ(t) = 0 the second factor above obviously decreases – very fast
– to 0. We show that the first factor – the expectation – decreases to 0 and
thereby is bounded such that we have the result from the theorem.

We have
τ(x)

x/EQ[U1]

x→∞
−→ 1 Q–a.s.

Since EQ[U1] < ℓ and therefore x/EQ[U1]− ⌊x/ℓ⌊→ ∞, this yields that

τ(x)−
⌊x

ℓ

⌋
x→∞
−→ ∞ Q–a.s.

Together with the fact that Sn → ∞ Q–a.s., this leads to

τ(x)−⌊x/ℓ⌋−1
∏

k=1

µ(Sk)
x→∞
−→ 0 Q–a.s.

because the factors in the product decrease to 0 and τ(x) − ⌊x/ℓ⌋ − 1 → ∞.
Now let a > 0 be a constant such that µ(t) < 1 for t > a and define the
stopping time

σ = inf{n ∈ N |Sn > a} .

Then we have the following upper bound for the integrand in the expectation:

τ(x)−⌊x/ℓ⌋−1
∏

k=1

µ(Sk) =

( (τ(x)−[x/ℓ]−1)∧σ
∏

k=1

µ(Sk)

)( τ(x)−⌊x/ℓ⌋−1
∏

k=(τ(x)−⌊x/ℓ⌋−1)∧σ
µ(Sk)

)

≤

(τ(x)−⌊x/ℓ⌋−1)∧σ
∏

k=1

λ(Sk) ≤

(τ(x)−⌊x/ℓ⌋−1)∧σ
∏

k=1

µ(0) ≤ µ(0)σ .

From Lemma 5.1 in the Appendix we have that this upper bound has finite
expectation. Hence by dominated convergence we can conclude that

EQ

[ τ(x)−⌊x/ℓ⌋−1
∏

k=1

µ(Sk)

]

x→∞
−→ 0 .
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(ii): As in (i) we have

P
(
C(x)

)
= EQ

[( τ(x)∏

k=1

µ(Sn)
)

exp
(
−M(Sτ(x))− γSτ(x)

)
]

and similarly the r.h.s. is bounded below by a constant times

EQ

[ τ(x)
∏

k=1

µ(Sk)

]

exp
(

−M(x+ ℓ)− γx
)

. (2.6)

Recall that Sk ≤ x+ ℓ on {τ(x) ≥ k} so that a lower bound for (2.6) is

EQ

[

(µ(x+ ℓ)τ(x)
]

exp
(
− Λ(x+ ℓ)− γx

)
.

From Proposition 5.1 in the Appendix we have that this is bounded below by

exp
(
− ϕ−1(µ(x+ ℓ))(x+ ℓ)

)
exp

(
−M(x+ ℓ)− γx

)

with

ϕ(z) =
z + γ − 1

eℓ(z+γ−1) − 1
.

Combined with the result from Proposition 5.2 in the Appendix this gives

P
(
C(x)

)
≥ exp

(1

ℓ
log(µ(x+ ℓ))(1 + o(1))(x + ℓ)

)

exp
(
−M(x+ ℓ)− γx

)

when x→ ∞ (remember that µ(x) → 0).

2

As a result of Proposition 2.2 and (2.3), we immediately get

Corollary 2.1. In the setup from above we have that

(i) P
(
A(x)

)
≤ c5





⌊x/ℓ⌋
∏

k=1

µ(x− (k + 1)ℓ)



 exp
(
− M(x − ℓ) − γx

)
when

x→ ∞, for some constant c5.
(ii)

P
(
A(x)

)
≥ c6 exp

(1

ℓ
log
(
µ(x)

)(
1 + o(1)

)
x
)

exp
(
−M(x)− (1− 1/ℓ)γx

)

when x→ ∞, for some constant c6.

In the case where M(∞) <∞ the result becomes simpler:
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Corollary 2.2. If furthermore M(∞) <∞ it holds that

(i) P(X > x) ≤ c7





⌊x/ℓ⌋
∏

k=1

µ(x− (k + 1)ℓ)



 exp
(
− γx

)
when x → ∞, for

some constant c7.
(ii)

P(X > x) ≥ c8 exp
(1

ℓ
log
(
µ(x)

)
(1 + o(1))x

)

exp
(
− (1− 1/ℓ)γx

)

when x→ ∞, for some constant c8.

Proof of Theorem 1.1(i). If the intensity process is strictly positive and satisfies
µ(s) ∼ as−β with 0 < β < 1, then µ, µ exists on the form cs−β with µ ≤

µ(s) ≤ µ(s). With M , M the corresponding integrated intensity processes we
have e.g. M(s) = cs1−β/(1−β). Let furthermoreX, X denote total task times
corresponding to µ, µ respectively. Then P(X > x) ≤ P(X > x) ≤ P(X > x)
and

⌊x/ℓ⌋
∏

k=1

µ(x− kℓ)

=

⌊x/ℓ⌋
∏

k=1

a

(b+ x− kℓ)1−β

=

⌊x/ℓ⌋
∏

k=1

a

ℓ1−β( b+xℓ − k)1−β

≤ C
1

(
b+x
ℓ −

⌊
x
ℓ

⌋)1−β

⌊x/ℓ⌋−1
∏

k=1

1

(
⌊
b+x
ℓ

⌋
− k)1−β

= C
1

(
b+x
ℓ −

⌊
x
ℓ

⌋)1−β

((⌊
b+x
ℓ

⌋
−
⌊
x
ℓ

⌋)
!

(⌊
b+x
ℓ

⌋
− 1
)
!

)1−β

≤ C
1

(
b+x
ℓ −

⌊
x
ℓ

⌋)1−β

( (⌊
b
ℓ

⌋
+ 1
)
!

(⌊
b+x
ℓ

⌋
− 1
)
!

)1−β

∼ C̃
1

(

x
√
(⌊

b+x
ℓ

⌋
− 1
) (⌊

b+x
ℓ

⌋
− 1
)⌊ b+x

ℓ ⌋−1
exp

(
−
(⌊

b+x
ℓ

⌋
− 1
))
)1−β .

From Corollary 2.1 (i) we have that

P(X > x) ≤C

(⌊
b+ x

ℓ

⌋

− 1

)−(1−β)(⌊ b+x
ℓ ⌋−1)

× exp
(

−
a

β
(b+ x)β + (

1− β

ℓ
− γ)x

)

x−
3(1−β)

2
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when x→ ∞ for some constant C. The expression on the r.h.s. above is

≈log

(⌊
b+ x

ℓ

⌋

− 1

)−(1−β)(⌊ b+x
ℓ ⌋−1)

≈log x
1−β
ℓ
x .

From (ii) we get

P(X > x) ≥ C̃ exp
(

−
1

ℓ
(1− β) log

(
b+ x

)
(1 + o(1))x

)

× exp
(

−
a

β
(b+ x)β − (1− 1/ℓ)γx

)

.

Here the first factor decreases faster than the second so that this

≈log exp
(

−
1

ℓ
(1− β) log

(
b+ x

)
(1 + o(1))x

)

≈log exp
(

−
1

ℓ
(1− β) log

(
b+ x

)
x
)

≈log x−
1−β
ℓ
x .

All together we have shown that

P(X > x) ≈log x
1−β
ℓ
x

when x→ ∞. 2

3 Proofs: Model 2

Recall that in Model 2 the failure times (N∗
t )t≥0 form a homogeneous Poisson

process with intensity parameter µ∗, event times (S∗
n)n∈N, and interevent times

(U∗
n)n∈N. Again, ℓ is the ideal task time, and it is assumed that at time t the

system works on the task at rate r(t), where r is a nonnegative measurable
function.

Define the continuous and increasing function R as

R(t) =

∫ t

0
r(s) ds .

It is obvious that P(X = ∞) > 0 if R(∞) < ∞, so assume that R(∞) = ∞ .
Also assume that R(t) <∞ for all t ≥ 0.

A straightforward calculation shows that the inverseR−1 of R is continuous
and increasing function and given by

R−1(y) =

∫ y

0

1

r
(
R(s)

) ds .
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Since R(t) is the amount of work that has been spent on the task up to time
t provided the task has not been completed, the total task time in absence of
failures is given by R(X) = ℓ, i.e. X = R−1(ℓ). More generally, if the task
is not completed at the time S∗

n−1 of the (n − 1)th failure, then the task is
still uncompleted at the time S∗

n of the nth failure if and only if R−1(S∗
n) −

R−1(S∗
n−1) < ℓ [these observations are close to some standard facts in storage

processes, see [3] p. 381].
It follows that the total task time X can be calculated as follows. First

define the time ω as

ω = inf{n ∈ N |

∫ S∗
n

S∗
n−1

r(t) dt > ℓ} ,

and let ℓ∗ satisfy
∫ ℓ∗

S∗
ω−1

r(t) dt = ℓ .

Then the total task time X is

X = S∗
ω−1 + ℓ∗ ,

if ω <∞ and X = ∞ when ω = ∞.

Proof of Theorem 1.1(ii). From the definition of N we can construct another
point process: Let S′

n, n ∈ N be defined by S′
n = R(S∗

n) for all n ≥ 0. Since
S′
n = R−1(S∗

n) it is well–known that (Sn)n∈N are the event times of an inho-
mogeneous Poisson process with rate function µ(t) = µ∗/r

(
R(t)

)
.

It is directly seen that also

ω = inf{n ∈ N |S′
n > ℓ} .

Applying this yields the following definition of the total task time X ′ corre-
sponding to S′

n, n ∈ N

X ′ =
{
S′
ω−1 + ℓ , ω <∞

∞ , ω = ∞

Especially we have {X = ∞} = {X ′ = ∞} and hence the theorem follows
from Theorem 1.1(i). 2

Define

f(x) := axη, F (x) :=

∫ x

0
f(y) dy =

a

η + 1
xη+1 .

Lemma 3.1. If r(x) ∼ f(x) then

R(x) ∼ F (x) =
a

η + 1
xη+1 and r(R(x)) ∼ f(F (x)) = a

(
a

η + 1

)η

xη(η+1) .
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Proof. Given ǫ > 0, there exits a x0 exists such that

(1− ǫ)f(x) ≤ r(x) ≤ (1 + ǫ)f(x) for x > x0 .

Hence

(1− ǫ)

∫ x

x0

f(y) dy ≤

∫ x

x0

r(y) dy ≤ (1 + ǫ)

∫ x

x0

f(y) dy for x > x0

Thereby it is seen - since
∫ x
0 f(x) dx→ ∞ - that choosing x > x0 large enough

gives
∫ x
0 r(y) dy∫ x
0 f(y) dy

=

∫ x0
0 r(y) dy +

∫ x
x0
r(y) dy

∫ x0
0 f(y) dy +

∫ x
x0
f(y) dy

∈ (1− 2ǫ, 1 + 2ǫ) .

For the second result write

r(R(x))

f(F (x))
=
r(R(x))

f(R(x))

f(R(x))

f(F (x))
,

where the first factor obviously has limit 1. For the second factor x0 > 0 can
be found given ǫ such that for x > x0

(1− ǫ)F (x) < R(x) < (1 + ǫ)F (x)

and hence
f((1− ǫ)F (x)) < f(R(x)) < f((1 + ǫ)F (x))

for x > x0. Furthermore

f((1− ǫ)F (x)) < f(F (x)) < f((1 + ǫ)F (x))

so it is obtained

f((1− ǫ)F (x))

f((1 + ǫ)F (x))
<
f(R(x))

f(F (x))
<
f((1 + ǫ)F (x))

f((1− ǫ)F (x))
.

Since
f((1 + ǫ)F (x))

f((1− ǫ)F (x))
=

(
1 + ǫ

1− ǫ

)η

has limit 1 as ǫ→ 0 the proof is complete.

2

Proof of Theorem 1.2(i). Note that P(X = ∞) = 0. With X ′ defined as in
the proof of Theorem 1.1 it holds on {X <∞} that

{X > x} = {R(X) > R(x)}

= {

∫ S′
ω−1+ℓ

∗

0
r(t) dt > R(x)}

= {R(S′
ω−1) + ℓ > R(x)}

= {X ′ > R(x)} . (3.1)
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4. Proofs: Model 3

Recall that X ′ is the total task time for a nonhomogeneous Poisson process
with intensity process (µ(t))t≥0 where µ(t) = µ∗

r(R(t)) . From Lemma 3.1 we
have that

r(R(t)) ∼ f(F (t)) = a

(
a

η + 1

)η

tη(η+1) ,

and hence (µ(t)) has a form that suits the theorem for Model 1. Since also
R(t) ∼ F (t) applying the result for Model 1 to the relation (3.1) yields

P (X > x) = P (X̃ > R(x)) ≈log R(x)
− η(η+1)

ℓ
R(x) ≈log F (x)

− η(η+1)
ℓ

F (x) .

2

4 Proofs: Model 3

The renewal argument in [5] leading to Proposition 1.1 for simple RESTART
uses a geometric sum representation of D = X − ℓ. It is instructive for the
following to give a direct variant. Define Z(x) = P(D > x) and let z(x), Z0(x)
be the contributions to Z(x) from the events U > x that the first failure time
exceeds x, resp. U ≤ x. A failure at time t ≤ x will contribute to Z0(x) if and
only if t ≤ ℓ, which readily leads to

Z0(x) =

∫ x

0
Z(x− t)µe−µtI(t ≤ ℓ) dt .

Similarly but easier, z(x) =
∫∞
x µe−µtI(t ≤ ℓ) dt, and altogether,

Z(x) = z(x) + Z0(x) = z(x) +

∫ x

0
Z(x− t)g(t) dt ,

where g(t) is the defective density µe−µtI(t ≤ ℓ). The rest is then standard
renewal theory (e.g. [3] V.7).

Now consider Model 3 and write again D = X− ℓ. Define Zi(x) = Pi(D > x).
We then get the following Markov renewal equation:

Proposition 4.1.

Zi(x) = zi(x) +

p
∑

j=1

∫ x

0
Fij(dt)Zj(x− t) dt , (4.1)

where Fij has density µe−µtPi
(
F (t) ≤ ℓ, V (t) = j

)
and

zi(x) =

∫ ∞

x
µe−µtP

(
F (t) ≤ ℓ

)
.
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Proof. We condition again on the time U = t of the first failure. Then for
D > 0 it is necessary that F (t) ≤ ℓ, and therefore zi(x) is the contribution
to Zi(x) from the event U > x. Similarly, conditioning in addition on V (t)
shows that the second term in (4.1) is the contribution from the event U ≤ x.

2

The proof of Theorem 1.3 is now a straightforward adaptation of the de-
fective Markov key renewal theorem, [3] pp. 209–210. To give the value of Di

is also straightforward from the formulas there, but the formulas are tedious
and therefore omitted.

For computational purposes, one therefore needs to evaluate P
(
F (t) ≤

ℓ, V (t) = j
)
. The four most common approaches are:

a) to let g(t, f ; ij) = (d/df)P
(
F (t) ≤ f, V (t) = j

)
and derive a set of

PDE’s for the g(t, f ; ij);

b) the transform inversion method of Ahn & Ramaswami [1];

c) the series expansion of Sericola [16];

d) simulation of P
(
F (t) ≤ ℓ, V (t) = j

)
.

Example 4.1. Consider a LAN with N users. Each sends a task of an
exponential(ν) duration to the central unit at rate λ (no more tasks are sent
before completion), the central unit works at rate 1 and uses standard pro-
cessor sharing (works simultaneous on all tasks at the same rate). Thus, it
seems reasonable to take V (t) ∈ {0, . . . , N} as the number of tasks currently
with the server, let

qi(i+1) = (N − i)λ , qi(i−1) = ν

and all other off-diagonal qij equal to zero, and take ri = 1/i for i > 0, r0 = 0.
The model for V (t) is an example of the so–called Palm’s Machine Repair
Problem described in [3] III.3 with only a single repairman.

With πj = limt→∞ Pi
(
V (t) = j

)
, the average service rate is r∗ =

∑p
1 πi/i

where π is the stationary distribution ov V . If failures occur at rate µ and a
user sends a task of length ℓ to the central unit, a reasonable question is then
how the exponential decay rate γ(ℓ) of this total task duration compares to
that γ∗ of simple RESTART with service rate r∗ (that is, ideal task duration
ℓ/r∗). To illustrate this, we took N = 10, λ = 1, ℓ = 1 and considered 3×3
combinations of ν, µ: ν chosen such that EπV (0) = 2 , 5 , 8 (low, moderate
and heavy load) and µ = 1/5 , 1 , 5 (low, moderate and high failure rate). We
used method d) and obtained the following table over γ and γ∗ (the vaules of
γ∗ are in (·)):

94



5. Appendix

EπV (0) 2 5 8
µ

1/5 0.683 (0.744) 0.259 (0.304) 0.079 (0.079)
1 0.134 (0.121) 0.040 (0.021) 0.011 (0.004)
5 0.144 (0.030) 0.212 (0.050) 0.235 (0.094)

2

5 Appendix

Lemma 5.1. Assume that (Un)n∈N are iid variables with Un > 0. Let (Sn)n∈N
be the corresponding random walk, that is Sn =

∑n
k=1 Uk for n ∈ N. Define

τ = inf{n ∈ N |Sn > a}

for some a > 0. Then

E[tτ ] <∞ for all t > 0 .

Proof. The result is obvious for t ≤ 1 so assume t > 1. Since U1 > 0 there
exist a constant b > 0 such that p := P(U1 ≤ b) < 1

t . Choose M ∈ N with
bM ≥ a.

Let τ0 ≡ 0 and define the stopping times (τm)m∈N recursively by

τm = inf{n > τm−1 |Un > b} .

Then it holds that
τM ≥ τ

and (σm)m∈N are iid where

σm = τm − τm−1 .

Note that
σ1 = τ1 = inf{n ∈ N |Sn > b}

and furthermore that

P(σ1 = n) = P(U1 ≤ b, . . . , Un−1 ≤ b, Un > b) = pn−1(1− p) .

Hence

E[tσ1 ] =

∞∑

n=1

tnpn−1(1− p)

=
1

p
(1− p)

∞∑

n=1

(tp)n

< ∞ ,
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where it has been used that p < 1
t . Thereby we obtain

E[tτ ] ≤ E

[

t
∑M

k=1 σk
]

= E

[
M∏

k=1

tσk

]

=

M∏

k=1

E[tσk ] = E[tσ1 ]M <∞ .

Proposition 5.1. Assume that (Un)n∈N are iid variables each with density
t 7→ eγt on [0, t]. Let (Sn)n∈N be the corresponding random walk, that is
Sn =

∑n
k=1 Uk for n ∈ N. Define

τ(x) = inf{n ∈ N |Sn > x} = inf{n ∈ N |Sn − x > 0}

for some x > 0. Then

exp
(
− ϕ−1(z)(x + t)

)
≤ E[zτ(x)] ≤ exp

(
− ϕ−1(z)x

)

for all 0 < z < 1, where

ϕ(θ) =
θ + γ

et(θ+γ) − 1
.

Proof. Because the Uk–variables are bounded we have for all θ > 0 that

h(θ) := E

[

eθU1

]

<∞ .

Consequently

Mn(θ) =
eθSn

(h(θ))n
(n ∈ N)

is a martingale with mean 1. Define

τ(x) = inf{n ∈ N |Sn > x} .

Then by optional stopping we have

1 = E

[

eθSτ(x)

h(θ)τ(x)
; τ(x) ≤ n

]

+ E

[
eθSn

h(θ)n
; τ(x) > n

]

.

Let n → ∞ and note that eθSn ≤ eθx on {τ(x) > n}. From dominated
convergence we have

1 = E

[

eθSτ(x)

h(θ)τ(x)
; τ(x) <∞

]

= E

[

eθSτ(x)

h(θ)τ(x)

]

.

Since x < Sτ(x) ≤ x+ t this yields

E

[
1

h(θ)τ(x)

]

eθx < 1 ≤ E

[
1

h(θ)τ(x)

]

eθ(x+t)
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and thereby

e−θ(x+t) ≤ E

[
1

h(θ)τ(x)

]

< e−θx .

Now consider the function θ 7→ h(θ) = E[exp(θU1)]. It is strictly increas-
ing with h(0) = 1 and limθ→∞ h(θ) = ∞. Hence ϕ(θ) = 1/h(θ) is strictly
decreasing so that the inverse ϕ−1 is well–defined (on ]0, 1]). Furthermore

h(θ) = E

[

eθU1

]

=

∫ t

0
eθyeγy dy

=
1

θ + γ

[

e(θ+γ)t − 1
]

.

This concludes the proof of the proposition.

Proposition 5.2. For the function z 7→ ϕ−1(z) studied in Proposition 5.1 it
holds that

ϕ−1(z) = −
1

t
log(z)(1 + o(1)) ,

when z ↓ 0.

Proof. We have that θ(z) := ϕ−1(z) can be found as the solution w.r.t. θ of
the equation

z =
θ + γ

et(θ+γ) − 1

which can be rewritten as

θ + γ = z
(

et(θ+γ) − 1
)

. (5.1)

Now let δ > 0 and define θδ(z) by

θδ(z) = −
δ

t
log(z)− γ .

With θ = θδ the r.h.s. of (5.1) becomes z1−δ− z and the l.h.s. is of order log z
when z ↓ 0. If δ > 1 the r.h.s. increases faster than the l.h.s. as z ↓ 0. With
z small enough we thereby have

θδ(z) + γ ≤ z
(

et(θδ(z)+γ) − 1
)

.

Note that the r.h.s. in (5.1) is an increasing and convex function of θ while
the l.h.s. is affine. From that we can deduce that θ(z) < θδ(z). Similarly in
the δ ≤ 1 case we can see that θ(z) > θδ(z). Hence

θ(z) = −
1

t
log(z)(1 + o(1))

as wanted.
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[13] P. Jelenković & J. Tan (2007) Characterizing heavy-tailed distributions
induced by retransmissions. Submitted.

[14] V. Kulkarni, V. Nicola, & K. Trivedi (1986) On modeling the perfor-
mance and reliability of multimode systems. The Journal of Systems and
Software 6, 175–183.

[15] V. Kulkarni, V. Nicola, & K. Trivedi (1987) The completion time of a job
on a multimode system. Adv. Appl. Probab. 19, 932–954.

[16] B. Sericola (1998) Transient analysis of stochastic fluid models. Perfor-
mance Evaluation 32, 245–263.

[17] R. Sheahan, L. Lipsky, P. Fiorini & S. Asmussen (2006) On the distri-
bution of task completion times for tasks that must restart from the be-
ginning if failure occurs. SIGMETRICS Performance Evaluation Review
34.

100



P
a
p
e
r

D
Ruin Theory in a Markovian

Environment

Anders Rønn-Nielsen

Abstract

We consider a risk process {R}t≥0 with the property that the rate β of the
Poisson arrival process and the distribution B of the claim sizes depend on
the state of an underlying Harris recurrent Markov process {Xt}t≥0. In this
setup we derive a version of Lundberg’s Inequality. This involves finding
eigenfunctions in the setup of a Markov–modulated random walk. This is
work in progress!
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1 Introduction

The aim of this paper is to determine the asymptotic behaviour of the ruin
probability ψ(u) for a Markov–additive risk process where the governing Markov
process is rather general. The idea is to see how the generalisation of the re-
sults of Chapter VI in [2], where the Markov process is discrete–valued, carries
through.

First recall the classical Cramér–Lundberg model for the capital growth
of an insurance company

Yt = u+ t−
Nt∑

i=1

Ui ,

where u is the initial capital of the company, {Ui}i∈N are iid claim losses,
and {Nt}t≥0 is a Poisson process, independent of {Ui}i∈N, which describes the
occurrence times of the claims. Of interest is the time of ruin τ(u) = inf{t ≥
0 | Yt < 0} and the probability of ruin within finite time ψ(u) = P(τ(u) <∞).
Usually the setup is reformulated into

St =

Nt∑

i=1

Ui − t

leading to τ(u) = inf{t ≥ 0 | St > u}. For this model several more and less
specific results for ψ(u) are well–known and can e.g. be seen in Chapter III
of [2]. A classical result is the Cramér–Lundberg Approximation, stating

ψ(u) ∼ Ce−γu

as u → ∞, where γ is derived as the solution of the so–called Lundberg
equation.

A meaningful generalisation of this model is Markov–modulation. Instead
of having constant claim intensity and identically distributed claims, one could
assume that they depended on some underlying Markov process. An example
is that both claim sizes and the number of claims reasonably depend on the
type of weather (sun, wind, rain, etc).

Such a model is studied in [2] (and originally in [1]). Here it is assumed
that the underlying Markov process is ergodic and has a finite state–space.
One of the main results is a version of the Cramér–Lundberg Approximation.

In [12] a rather similar (but in some aspects more complicated) Markov
additive model given by

St =
Nt∑

i=1

Ui −

∫ t

0
βJs ds−

∫ t

0
σJs−dBs (1.1)

is considered, and in [11] a simpler but similar model is the subject. Above J
is a discrete spaced Markov Chain that also governs the jump times of {Nt}.
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Note that here the premium income is dependent of the Markov process, and
that a diffusion part as well is permitted to contribute to the risk process.
Another difference is that in this model the jump distributions are supposed
to be identical.

In this setup joint Laplace transforms of the time to ruin and the overshoot
at ruin is determined explicitly. This is done from establishing a version of
Itô’s formula for the joint process {X,J} and finding partial eigenfunctions
for the generator of this process. The eigenfunctions are constructed as simple
linear combinations of exponential functions. From these eigenfunctions the
asymptotic exponential behaviour of the ruin probability is easily derived.

Another subject related to the present is formed by the Markov random
walks. This can be considered as a discrete time version of the setup in this
paper. Ruin times for such processes are e.g. studied in the papers [8], [9]
and [10]. Another exposition that contains a rather clear asymptotic result
similar to the Cramér–Lundberg approximation is seen in [4].

The paper is organised such that it follows the exposition of the relevant
parts of Chapter VI in [2] rather closely. First the setup and the basic assump-
tions is introduced. In Section 3 a series of preliminary results are presented
and proved. Section 4 and 5 contain several technical results necessary for the
more concrete results in the final Section 6. In Section 4 – as a result of a yet
unsolved problem – another very important assumption is made.

2 Setup and basic assumptions

Consider a Markov additive process {Yt}t≥0 = {St,Xt}t≥0. That is Y is a
bivariate Markov process and X is a Markov process with state space E (a
complete and separable metric space) that governs the increments of S such
that

E[f(St+s − St)g(Xs+t)|Ft] = EXt[f(Ss)g(Xs)] , (2.1)

where Ft = σ({Ys | 0 ≤ s ≤ t}). Furthermore we have used the notation Ex
for the expectation w.r.t. Px under which X0 = x.
It is assumed that S has the form

St =

Nt∑

i=1

Ui − t .

The arrivals are not homogeneous in time but are determined by the process
X. Given X the sum

∑Nt
i=1 Ui is an inhomogeneous Poisson process: Claims

are independent and at time t

• The arrival intensity is β(Xt)

• A claim arriving has distribution BXt .
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Here {Bx}x∈E is a family of distributions on R. We shall use the notation

B̂x[s] =

∫

R

esyBx(dy)

for the moment generating function of the distribution Bx.

Of interest is the ruin time

τ(u) = inf{t ≥ 0 | St > u}

and (with the definition M := supt≥0 St) the ruin probabilities

ψx(u) := Px(τ(u) <∞) = Px(M > u), ψx(u, T ) := Px(τ(u) ≤ T ) .

We assume that X is time–homogeneous, has paths in D = D([0,∞), E), and
that for any bounded continuous f : E → R and any s it holds that Exf(Xs)
is a continuous function of x.

Let A denote the infinitesimal generator for X. We assume that X is
Harris ergodic. As described in Chapt. VII, section 3 of [3] X then has a
regeneration set R: Letting τ(R) = inf{t ≥ 0 | Xt ∈ R} we have Px(τ(R) <
∞) = 1, and furthermore for some r > 0 a probability measure λ on E exists
such that for some ǫ > 0

Pr(x,B) ≥ ǫλ(B) , x ∈ R ,

for all B ∈ B(E). From this regeneration set a renewal process {Zn} can be
constructed w.r.t. which X is regenerative. Hence X can be divided into one–
dependent identically distributed cycles of the form {Xt}Zn≤t<SZ+1

. In fact
{Xt}Zn+1≤t<Zn+2 only depends of {Xt}Zn≤t<Zn+1 through {Xt}Zn+1−r≤t<Zn+1 .
Let {Yn} denote the interarrival times for {Zn}, that is Zn = Y1 + · · ·+ Yn.

Also assume that
t 7→ Xt

is continuous in probability. Let (Pt)t≥0 denote the transition kernel for X,
and define

(Ptf)(x) = Ex[f(Xt)] =

∫

E
f(y)Pt(x, dy) .

Assume that
x 7→ β(x) and x 7→ B̂x[α] (2.2)

are continuous and bounded functions on E. The ladder for all α in a suitably
large interval containing 0.

From this we obtain (by considering the compound Poisson process with the
maximal intensity and jumps) that for all t ≥ 0 and all n ∈ N

sup
x∈E

sup
||h||≤1

Ex[e
αSt |h(Xt)|] <∞ for all α from (2.2) . (2.3)

sup
x∈E

Ex[|St|
n] <∞ (2.4)
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3 Preliminaries

For each x ∈ E let µ(x) :=
∫∞
0 y Bx(dy) and µ

(2)(x) :=
∫∞
0 y2Bx(dy) denote

the mean and second order moment of Bx. Define

ρ(x) := β(x)µ(x) ,

and let furthermore

ρ∗ :=
∫

E
ρ(x)π(dx), β∗ :=

∫

E
β(x)π(dx), η :=

1− ρ∗

ρ∗
.

Let A ∈ B(E) and let Nt(A) denote the number of claim arrivals up to time
t where X is in A:

Nt(A) =

∫ t

0
1{Xs∈A}N(ds) .

Also define (Λt(A))t≥0 by

Λt(A) :=

∫ t

0
β(Xs)1{Xs∈A} ds .

We have

Proposition 3.1. As t→ ∞,

Nt(A)

t

Px−a.s.−→

∫

A
β(x)π(dx)

for A ∈ B(E). Especially it holds that Nt
t

Px−a.s.−→ β∗.

Proof. Simply write
Nt(A)

t
=
Nt(A)

Λt(A)
·
Λt(A)

t
.

Given (Xt) we have that (Nt(A)) is a inhomogeneous Poisson process with
intensity β(Xt)1{Xt∈A}. Hence (see e.g. Chapt. 4.5 in [15])

Nt(A)

Λt(A)

Px−a.s.−→ 1 .

That the second factor has limit
∫

A β(x)π(dx) follows directly from the Er-
godic Theorem (see e.g. [3] Chapt. VII, prop. 3.7).

Proposition 3.2. As t→ ∞: (a) ExSt/t → ρ∗ − 1; (b) St/t
Px−a.s.−→ ρ∗ − 1.

For the proof of (b) we will need the following lemma:

Lemma 3.1. For f : E → R bounded, positive and measurable we have

1

t

∫ t

0
f(Xs)N(ds)

Px−a.s.−→

∫

E
f(x)β(x)π(dx) .
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Proof. If f = 1A the result equals Proposition 3.1. That the lemma also holds
for simple functions is obvious. Since f is bounded we can choose simple
functions sn, tn for each n ∈ N such that

sn ≤ f ≤ tn and |tn(x)− sn(x)| ≤ 1/n for all x ∈ E .

Then

lim sup
t→∞

|
1

t

∫ t

0
f(Xs)N(ds)−

∫

E
f(x)β(x)π(dx)|

≤ lim sup
n→∞

lim sup
t→∞

|
1

t

∫ t

0
tn(Xs)N(ds)−

∫

E
sn(x)β(x)π(dx)|

+ lim sup
n→∞

lim sup
t→∞

|
1

t

∫ t

0
sn(Xs)N(ds)−

∫

E
tn(x)β(x)π(dx)|

≤ lim sup
n→∞

2

∫

E

1

n
β(x)π(dx)

= 0 .

Proof of Proposition 3.2. For the proof of (a) first notice that

St + t =

∫ t

0
UNs N(ds) (3.1)

Given X the counting process N is a non–homogeneous Poisson process with
intensity (β(Xt))t≥0. Similarly we have that for A ∈ B(R) the number of
claims of a size within A up to time t given X is a Poisson process with
intensity (β(Xt)BXt(A))t≥0. That is

(∫ t

0
1{UNs∈A}N(ds)

)
∣
∣X ∼ po((β(Xt)BXt(A))t≥0) . (3.2)

Hence

E

[ ∫ t

0
1{UNs∈A}N(ds)

∣
∣X
]

=

∫ t

0
β(Xs)BXs(A) ds ,

and by a classical extension argument via simple functions we obtain

E
[ ∫ t

0
UNs N(ds)

∣
∣X
]

=

∫ t

0
β(Xs)µ(Xs) ds .

When dividing by t, the right hand side has limit ρ∗ Px–a.s. because of the Er-

godic Theorem. Since β and µ are bounded functions
(

1/t
∫ t
0 β(Xs)µ(Xs) ds

)

t≥0
must be a bounded sequence. Taking expectations and using Dominated Con-
vergence yields that

lim
t→∞

1

t
Ex

[ ∫ t

0
UNs N(ds)

]

= Ex

[

lim
t→∞

1

t

∫ t

0
β(Xs)µ(Xs) ds

]

= ρ∗ .
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Together with (3.1) this concludes the proof of (a).

Given X and N we have that (Un) are independent where Un has distribution
BXτn

. Then E[Un|X,N ] = µ(Xτn) and we can write

Nt∑

n=1

E[Un|X,N ] =

∫ t

0
µ(Xs)N(ds) .

Now for (b) write

St + t

t
=

1

t

(
Nt∑

n=1

Un −
Nt∑

n=1

E[Un|X,N ]

)

+
1

t

∫ t

0
µ(Xs)N(ds) . (3.3)

Note that x 7→ µ(x) is a bounded measurable function because of (2.2). Then
Lemma 3.1 yields that the second term has the Px−a.s. limit

∫

E µ(x)β(x)π(dx) =
ρ∗ as t→ ∞.

Also because of the assumption in (2.2) we must have that x→ µ(2)(x) is
bounded. Then obviously

∞∑

n=1

1

n2
Var[Un|X,N ] <∞ ,

and from a classical version of the Law of Large Numbers it follows that given
X and N

1

M

(
M∑

n=1

Un −
M∑

n=1

E[Un|X,N ]

)

a.s.
−→ 0 .

This must be true without the conditioning as well. Replace M by Nt and
recall that Nt/t → β∗ Px–a.s.. Then the first term in (3.3) has limit 0, and
the proof of (b) is complete. 2

Corollary 3.1. If η ≤ 0, then ψx(u) = 1 for all x and u. If η > 0, then
ψx(u) < 1 for all x and u.

Proof. The case η < 0 is trivial since the a.s. limit ρ∗ − 1 of St/t is > 0, and
hence M = ∞. The case η > 0 is similarly easy.

Now let η = 0. Because of the existence of a regeneration set, a renewal
process {Yn}n∈N exists such that {XYn}n∈N are equally distributed and the
processes {Xt}Yn+1≤t≤Yn for n ≥ 1 are one–dependent. Define

Z1 = SY1 , Zn = SYn+1 − SYn .

Then {Zn}n∈N are one–dependent, and {Zn}n≥2 are equally distributed (if
X0 has distribution λ also Z1 ∼ Z2) Since X is assumed to be positive recur-
rent (from the ergodicity) it holds that EλS1 < ∞ and furthermore from [3],
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Theorem 3.2, we have

Eλ

[ ∫ Y1

0
β(Xt)µ(Xt) dt

]

=

∫

E β(x)µ(x)π(dx)

EλY1
=

ρ∗

EλY1
. (3.4)

But conditionally upon X the regeneration point Y1 is fixed. Thus by the
same extension argument as in Proposition 3.2

E[SY1 |X] =

∫ Y1

0
β(Xt)µ(Xt) dt− Y1 . (3.5)

Combining (3.4) and (3.5) yields EλSY1 = (ρ∗ − 1)/EλY1 = 0. Now

SYn = Z1 + . . . + Zn ,

where (Zn)n≥2 are one dependent and equally distributed with mean 0. Then
due to the argument below lim supn→∞ SYn = ∞ Px–a.s. and thereby ψx(u) =
1 for all u.

First note that Kolmogorov’s 0–1–law is true for the tail–σ–algebra F∞ of
{Zn}. We obviously have that lim supn→∞

1√
n
SYn is F∞–measurable. Then

a constant c ∈ [−∞,∞] exists such that

lim sup
n→∞

1√
n
SYn = c Px–a.s. .

Now assume that c <∞. Then

Px(
1√
n
SYn > c+ 1) → 0 . (3.6)

But from a one–dependent version of the Central Limit Theorem we have that

1√
n
SYn

∼
→ N (0, V )

for some variance V > 0, which contradicts (3.6). Hence

lim sup 1√
n
SYn = ∞ Px–a.s. .

Another result that will be useful is the following. First define fα by

fα(x) = β(x)[B̂x[α]− 1]− α (3.7)

and note that fα is bounded for α ∈ Θ because of (2.2).

Proposition 3.3. For α, where (2.2) is fulfilled, it holds that

E[eαSt | X] = exp
(
∫ t

0
fα(Xs) ds

)
.
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Proof. We have the equality

eαSt = eα
∫ t
0 UNs N(ds)−αt .

From (3.2) it is obtained

E
[

exp
(

α

∫ t

0
1{UNs∈A}N(ds)

)

|X
]

= exp
((
∫ t

0
β(Xs)BXs(A) ds

)
(eα − 1)

)

= exp
(∫ t

0
β(Xs)

∫
(
eα1A(u) − 1

)
BXs(du) ds

)

.

Note that given X and with A and B disjoint the integrals
∫ t
0 1{UNs∈A}N(ds)

and
∫ t
0 1{UNs∈B}N(ds) are independent and furthermore eαa1A−1+eαb1B−1 =

eα(a1A+b1B). This leads to

E

[

exp
(

α

∫ t

0
f(UNs)N(ds)

)

|X
]

= exp
(∫ t

0
β(Xs)

∫
(
eαf(u)− 1

)
BXs(du) ds

)

for simple functions f . Now the result follows from approximation.

4 Fundamental operator and eigenfunctions

For the rest of the paper we shall consider the situation, where η > 0 and
hence ψx(u) < 1 for all x and u.

For some α, where x 7→ B̂x[α] is bounded, define the operator Pα
t on b(E) by

Pα
t f(x) = Ex[e

αStf(Xt)]

for f ∈ b(E) and α > 0 (note that P0
t ≡ Pt). From the Markov additive

property (2.1) it is seen that (Pα
t )t≥0 forms a semigroup:

Pα
t P

α
s f(x) = Ex

[

eαStEXt

[
eαSsf(Xs)

]]

= Ex

[

eαStE
[
eα(St+s−St)f(Xt+s)|Ft

]]

= Pα
t+sf(x) ,

And as a result of the continuity in probability we have with f ∈ bC(E)

lim
h→0

Ex[f(Xh)] = f(x) (4.1)

and
lim
h→0

Pα
hf(x) = f(x) (4.2)

for all x ∈ E. Hence (Pα
t )t≥0 is a strongly continuous semigroup (see e.g. [7],

Chapt. 1)
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Proposition 4.1. The semigroup (Pα
t ) is generated by the operator Cα that

for g ∈ bC(E) ∩ DomA is given by

(Cαg)(x) = g(x)(−α + β(x)(B̂x[α]− 1)) +Ag(x) . (4.3)

Proof. Let z = α ∈ R and denote Gh = σ({Xs | 0 ≤ s ≤ h}. Then for
f ∈ bC(E) and h ≥ 0 we have the following up to o(h)–terms:

Pα
hf(x) = Ex

[

E
[
eαShf(Xh)|Gh

]]

= Ex

[

E
[
eαSh |Gh

]
f(Xh)

]

= Ex

[

E
[
eαSh |Gh; no claims in [0, t]

]
f(Xh)

]

+ Ex

[( ∫ h

0
E
[
eαSh |Gh; claim at time s

]
β(Xs)e

−
∫ s
0 β(Xu)duds

)

f(Xh)
]

= Ex
[
e−αh

(
1−

∫ h

0
β(Xs)e

−
∫ s
0 β(Xu)duds

)
f(Xh)

]

+ Ex
[
e−αh

(
∫ h

0
B̂Xs [α]β(Xs)e

−
∫ s
0
β(Xu)duds

)
f(Xh)

]

= e−αh(1− hβ(x))Ex[f(Xh)]

+ e−αhhB̂x[α]β(x)Ex[f(Xh)]

= (1− αh)Ex[f(Xh)] + hβ(x)(B̂x[α]− 1)Ex[f(Xh)]

=
[
h(−α+ β(x)(B̂x[α] − 1)) + 1

]
Ex[f(Xh)]

= hf(x)(−α + β(x)(B̂x[α]− 1)) + (Phf)(x) .

In the last equality we have used (4.1). Then for f ∈ DomA

lim
h→0

1

h

(
(Pα

hf)(x)− f(x)
)

= f(x)(−α+ β(x)(B̂x[α]− 1)) + lim
h→0

1

h

(
Phf(x)− f(x)

)

= f(x)(−α+ β(x)(B̂x[α]− 1)) + (Af)(x) ,

which concludes the proof.

For the rest of the paper we shall assume

Assumption 4.1. There exists α0 > 0 such that

lim
t→∞

Ex
[
eα0St

]
= ∞ , (4.4)

and such that for α ∈ Θ := [0, α0] a constant λ(α) > 0 and a function hα ∈
bC(E) exists with 0 < hαmin ≤ hα(x) ≤ hαmax for all x ∈ E and

Pα
1h

α = λ(α)hα . (4.5)
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Furthermore λ(α) is the spectral radius if Pα
1 and a simple eigenvalue. Assume

that both λ(α) and hα are differentiable w.r.t. α. Finally assume that (2.2) is
fulfilled for all α ∈ Θ.

Remark 4.1. In Appendix A a scenario is shown under which Assumption
4.1 is fulfilled without (4.4). There α0 is simply chosen very small.

Consider the function Pα
1/nh

α for α ∈ Θ and n ∈ N. We have

Pα
1P

α
1/nh

α = Pα
1/nP

α
1h

α = λ(α)Pα
1/nh

α .

Since the eigenspace for Pα
1 corresponding to λ(α) is one–dimensional we have

Pα
1/nh

α = chα. Using that (Pα
1/n)

n = Pα
1 yields c = λ(α)1/n and then

Pα
q h

α = λ(α)qhα

for all rational q ≥ 0. Since (Pα
t )t≥0 is a continuous semigroup we have the

result
Pα
t h

α = et log(λ(α))hα = etκ(α)hα ,

where κ(α) := log(λ(α)).

Proposition 4.2. For each α ∈ Θ we have that

κ(α) = lim
n→∞

1

n
logEx[e

αSn ] .

Furthermore α 7→ κ(α) is convex.

Note that apparently the function κ(α) resembles the so–called Gärtner–Ellis
limit known from large deviation theory – see e.g. Chapter 2 in Dembo and
Zeitouni, [6], or the discussion in Section 7 of de Acosta, [5].

Proof. We have constants 0 < c1 < c2 <∞ such that

c1 < hα(x) < c2 for all x ∈ E .

Then
Ex[e

αSnc1] ≤ Ex[e
αSnhα(Xn)] ≤ Ex[e

αSnc2] ,

and since Ex[e
αSnhα(Xn)] = (Pα

nh
α)(x) = λ(α)nhα(x), we have

c1Ex[e
αSn ] ≤ λ(α)nhα(x) ≤ c2Ex[e

αSn ]

and thereby

1

n
log(c1)+

1

n
logEx[e

αSn ] ≤ log λ(α)+
1

n
log(hα(x)) ≤

1

n
log(c2)+

1

n
logEx[e

αSn ] .

Letting n→ ∞ yields

κ(α) = log(λ(α)) = lim
n→∞

1

n
logEx[e

αSn ] . (4.6)
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We will say that a positive function f is superconvex if log f is convex. From
the remark after Corollary 1 in Kingman [14] we have that α 7→ Ex[e

αSn ] is
superconvex for each n ∈ N. Then the Lemma in [14] yields that also

λ(α) = lim sup
n→∞

(
Ex[e

αSn ]
)1/n

is superconvex. Hence κ is a convex function.

Let kα denote the derivative of hα w.r.t. α.

Lemma 4.1.

Ex[St] = tκ′(0) + k0(x)− Ex[k
0(Xt)] .

Proof. From Proposition 5.1 we have Ex[e
αSthα(Xt)] = etκ(α)hα(x). By dif-

ferentiation

Ex[Ste
αSthα(Xt) + eαStkα(Xt)] = etκ(α)

(

kα(Xt) + tκ′(α)hα(x)
)

.

Let α = 0 and recall that h0(x) = 1 for all x and κ(0) = 0.

Proposition 4.3.

lim
t→∞

Ex[St]

t
= κ′(0) .

Proof. Simply divide by t in Lemma 4.1 and let t → ∞.

5 Martingale and exponential change of measure

Let θ ∈ Θ and define the process {Lt}t≥0 by

Lθt =
hθ(Xt)

hθ(x)
eθSt−tκ(θ) .

Then we have the following useful result

Proposition 5.1. (Lθt )t≥0 is a Px-martingale with mean 1. Furthermore
(Lθt )t≥0 is a multiplicative functional.

Proof. First we see that

Ex[e
θSthθ(Xt)] = (Pθ

th
θ)(x) = etκ(θ)hθ(x)

and thereby also

Ex[L
θ
t ] =

e−tκ(θ)

hθ(x)
Ex[e

θSthθ(Xt)] = 1 .
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Then

E[Lθt+h|Ft] = E
[hθ(Xt+h)

hθ(x)
eθSt+h−(t+h)κ(θ)|Ft

]

=
eθSt−(t+h)κ(θ)

hθ(x)
E[eθ(St+h−St)hθ(Xt+h)|Ft]

=
eθSt−(t+h)κ(θ)

hθ(x)
EXt [e

θShhθ(Xh)]

=
eθSt−(t+h)κ(θ)

hθ(x)
ehκ(θ)hθ(Xt)

= Lθt .

That (Lt)t≥0 is a multiplicative functional follows from

Lθs ◦ θt =
Xt+s

Xt
eθ(St+s−St)−sκ(θ) ,

where θt is the shift operator. Then obviously

Lθt+s = Lθt · (L
θ
s ◦ θt) .

Now define the probability measure Pθx by

Pθx(A) = Ex[L
θ
t ;A] for A ∈ Ft .

Let Eθx be the expectation under Pθx.

Definition 5.1. Define the following operators on bC(E) (the first resembles
Pα
t under Pθx) by

(Pθ,α
t f)(x) = Eθx[e

αStf(Xt)]

(∆hθf)(x) = hθ(x)f(x)

(∆−1
hθ
f)(x) =

f(x)

hθ(x)

for f ∈ bC(E). Let furthermore

1
hθ
DomA := { f

hθ
| f ∈ DomA} .

Note that since DomA is dense in b(E) (see e.g. Cor. 1.6, Chapt. 1 in [7])
then so is 1

hθ
DomA.

Now we can state and prove

Theorem 5.1. Under Pθx the process {St,Xt}t≥0 is a MAP. Here the distri-
bution of {S,X} is parametrised as follows:
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(i) X has infinitesimal generator Aθ that on 1
hθ
DomA is given by Aθ =

∆−1
hθ

Cθ∆hθ − κ(θ)I

(ii) The arrival intensity is given by βθ(x) = β(x)B̂x[θ]

(iii) The claims are given by the distributions Bθ
x(du) =

eθu

B̂x[θ]
Bx(du) (equiv-

alently: B̂θ
x[α] = B̂x[α+ θ]/B̂x[θ])

Proof. It is immediately seen from Chapt. II, Theorem 2.5 (Asmussen, 2000)
that {St,Xt} is a time homogeneous Markov process under Pθx (using the fact
that {Lθt }t≥0 is a multiplicative functional).

We will now show from direct calculation that {S,X} fulfil the MAP–
condition (2.1) under the changed measure Pθx. First we see that with A ∈ Ft
it holds that

∫

A
Eθ[f(St+s − St)g(Xt+s)|Ft] dP

θ
x =

∫

A
f(St+s − St)g(Xt+s) dP

θ
x

=

∫

A
f(St+s − St)g(Xt+s)Lt · Ls ◦ θt dPx

=

∫

A
E[f(St+s − St)g(Xt+s)Lt · Ls ◦ θt|Ft] dPx

=

∫

A
E[f(St+s − St)g(Xt+s)Ls ◦ θt|Ft]Lt dPx

=

∫

A
E[f(St+s − St)g(Xt+s)Ls ◦ θt|Ft] dP

θ
x .

So Pθx–a.s. we have

Eθ[f(St+s−St)g(Xt+s)|Ft]

= E[f(St+s − St)g(Xt+s)Ls ◦ θt|Ft]

= E

[

f(St+s − St)g(Xt+s)
hθ(Xt+s)

hθ(Xt)
eθ(St+s−St)−sκ(θ)|Ft

]

=
1

hθ(Xt)
E
[

f(St+s − St)e
θ(St+s−St)−sκ(θ)hθ(Xt+s)g(Xt+s)|Ft

]

=
1

hθ(Xt)
EXt

[

f(Ss)e
θSs−sκ(θ)hθ(Xs)g(Xs)

]

= EθXt
[f(Ss)g(Xs)] ,
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and hence for f ∈ bC(E) we have

(Pθ,α
t f)(x) = Eθx[e

αStf(Xt)]

= Ex[L
θ
t e
αStf(Xt)]

= Ex

[hθ(Xt)

hθ(x)
eθSt−tκ(θ)eαStf(Xt)

]

=
e−tκ(θ)

hθ(x)
Ex[e

(θ+α)Sthθ(Xt)f(Xt)]

= e−tκ(θ)(∆−1
hθ

Pθ+α
t ∆hθf)(x) . (5.1)

Since (Pα
t )t≥0 forms a strongly continuous semigroup it is immediately seen

that so does (Pθ,α
t )t≥0. Recall that for f ∈ DomA

lim
t→0

1
t

(

Pθ+α
t f − f

)

= Cθ+α .

From applying the exact same arguments as in the proof of Proposition 4.1
one would obtain

lim
t→0

1
t

(

e−tκ(θ)Pθ+α
t f − f

)

= Cθ+α − κ(θ)I .

Then with ∆hθf ∈ DomA (⇔ f ∈ 1
hθ
DomA)

lim
t→0

1
t

(

e−tκ(θ)∆−1
hθ

Pθ+α
t ∆hθf − f

)

=∆−1
hθ

lim
t→0

1
t

(

e−tκ(θ)Pθ+α
t ∆hθf −∆hθf

)

= ∆−1
hθ

Cθ+α∆hθ − κ(θ)I .

Hence the semigroup (Pθ,α
t )t≥0 is generated byCθ,α, whereCθ,α = ∆−1

hθ
Cθ+α∆hθ−

κ(θ)I.

Letting α = 0 above yields

lim
t→0

1
t

(

Eθx[f(Xt)]− f(x)
)

= ∆−1
hθ

Cθ∆hθ − κ(θ)I .

It is seen that X is a Markov process with infinitesimal generator Aθ =
∆−1
hθ

Cθ∆hθ − κ(θ)I under Pθ. Here Aθ has domain 1
hθ
DomA.
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We have for f ∈ 1
hθ
DomA that (recall the definition of Cα in (4.3)!)

(Cθ,αf)(x)

= (∆−1
hθ

Cθ+α∆hθf)(x)− κ(θ)f(x)

=
(
− (θ + α) + β(x)(B̂x[θ + α]− 1)

)
f(x) +

(
∆−1
hθ

A∆hθf
)
(x)− κ(θ)f(x)

=
(
− α+ β(x)(B̂x[θ + α]− B̂x[θ])

)
f(x) +

(
− θ + β(x)(B̂x[θ]− 1)

)
f(x)

+
(
∆−1
hθ

A∆hθf
)
(x)− κ(θ)f(x)

=
(

− α+
β(x)

B̂x[θ]
(
B̂x[θ + α]

B̂x[θ]
− 1)

)

f(x) + (∆−1
hθ

Cθ∆hθ − κ(θ)I)f(x)

=
(
− α+ βθ(B̂θ

x[α]− 1)
)
f(x) + (Aθf)(x) ,

where Aθ, βθ and B̂θ
x are as in the theorem. This resembles the expression for

Cα in (4.3) with the parameters stated in the theorem. For fixed t ≥ 0 we have

that the expression (Pθ,α
t f)(x) = Eθx[e

αStf(Xt)] determines the distribution of
{St,Xt} uniquely when α ∈ (−δ, δ) (for some arbitrary δ > 0) and f ∈ bC(E)
varies. Since a strongly continuous semigroup is uniquely determined by it’s
generator (see. Prop. 2.9, Chapt. 1 of [7]) we can conclude that {St,Xt} has
distribution as a MAP with the stated parameters.

Remark 5.1. It is immediately seen that under Pθ for θ < α0 we have prop-
erties similar to (2.2):

x 7→ βθ(x) and x 7→ B̂θ
x[α]

are continuous and bounded functions. The ladder for θ + α ∈ Θ.

From [2], Theorem 2.3, Chapt. II, we have

Proposition 5.2. Let τ be any stopping time and let G ∈ Fτ with G ⊆ {τ <
∞}. Then

Ex(G) = hθ(x)Eθx

[
1

hθ(Xτ )
exp

(
− θSτ + τκ(θ)

)
;G
]

. (5.2)

Recall from (5.1) that under Pθx the process {S,X} is Markov–additive

with fundamental operator Pθ,α
t given by

(Pθ,α
t f)(x) = e−tκ(θ)(∆−1

hθ
Pθ+α
t ∆hθf)(x) .

Since (Pθ+α
t hθ+α)(x) = etκ(θ+α)hθ+α(x) we obviously have that hθ+α/hθ is an

eigenfunction for Pθ,α
t satisfying

(Pθ,α
t hθ+α/hθ)(x) = et(κ(θ+α)−κ(θ))hθ+α(x)/hθ(x) .

Hence with κθ and ρ∗θ being defined under Pθx as κ and ρ∗ are defined under
Px we have

Lemma 5.1. κθ(α) = κ(θ + α)− κ(θ), and ρ∗θ > 1 whenever κ′(θ) > 0

Proof. The ladder comes from recalling that ρ∗θ = κ′θ(0).
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6 Ruin probabilities

From combining (4.4) with Proposition 4.2 and Proposition 3.2 we obtain that
κ is differentiable and convex on Θ with κ(0) = 0, κ′(0) < 0 and κ(α0) > 0.
Hence a solution γ > 0 of the Lundberg equation κ(γ) = 0 exists.

Proposition 6.1. The Markov process X is Harris recurrent under Pγ with
R as regeneration set and λ as the distribution at the regeneration epochs.

Proof. Recall

τ(R) = inf{t > 0 | Xt ∈ R} .

Since X is assumed to be Harris recurrent under Px we have that Px(τ(R) <
∞) = 1 for all x ∈ E. For convenience let τ := τ(R) ∧ τ(u). Since τ ∧ t is
bounded Optional Stopping yields

1 = Ex[L
γ
τ∧t] = Ex

[ 1

hγ(x)
eγSτ∧thγ(Xτ∧t)

]

= Ex

[ 1

hγ(x)
eγSτhγ(Xτ ); τ ≤ t

]

+ Ex

[ 1

hγ(x)
eγSthγ(Xt); τ > t

]

.

Define hγmax = maxx h
γ(x) and hγmin = minx h

γ(x). Note that eγSthγ(Xt) is
bounded by eγuhγ,max on {τ > t} so by Dominated convergence the second
term has limit 0 as t → ∞. Since Lγ is a positive supermartingale it holds
that Ex[L

γ
τ ] ≤ Ex[L

γ
0 ] = 1 and hence from applying Dominated convergence

to the first term we obtain

Ex

[ 1

hγ(x)
eγSτ(R)∧τ(u)hγ(Xτ(R)∧τ(u))

]

= 1 .

From [2], Theorem 2.3, Chapt. II, we have

Pγx[τ(R) ∧ τ(u) <∞] = Ex

[ 1

hγ(x)
eγSτ(R)∧τ(u)hγ(Xτ(R)∧τ(u)); τ(R) ∧ τ(u) <∞

]

= Ex

[ 1

hγ(x)
eγSτ(R)∧τ(u)hγ(Xτ(R)∧τ(u))

]

= 1

using the assumption that Px[τ(R) < ∞] = 1. When u → ∞ we must have
that τ(u) → ∞ (explosions are impossible). Then

{τ(R) ∧ τ(u) <∞} ↓ {τ(R) <∞}

as u→ ∞. Hence

Pγx(τ(R) <∞) = 1 .
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Furthermore we have for f ∈ bC(E)+ that

Eγx[f(Xr)] = Ex

[
1

hγ(x)
eγSrhγ(Xr)f(Xr)

]

≥
hγmin

hγmax
e−γrEx[f(Xr)] ≥

hγmin

hγmax
e−γrǫ

∫

fdλ .

Proposition 6.2. Assume that supx∈E Ex
[
ercατ(R)

]
< ∞ for some r > 1.

Then X is Harris ergodic under Pγ.

Proof. From a standard extension of Proposition 5.2 to stopping times (see
e.g. Thm. XIII.3.2 in [3]) we obtain

Ex[τ(R)] = Eγx

[
hγ(Xτ(R))

hγ(x)
eγSτ(R)τ(R)

]

= Eγx

[
hγ(Xτ(R))

hγ(x)
τ(R)Eγ

[
eγSτ(R) |X

]
]

.

Using (3.3) and furthermore letting 1 = 1
r +

1
p yields

Ex[τ(R)] ≤
hγmax

hγmin

Ex

[

ecατ(R)τ(R)
]

≤
hγmax

hγmin

(

Ex

[

ercατ(R)
])1/r

(Ex[τ(R)
p])1/p .

Hence from the assumption of the proposition we obtain supx∈E E
γ
x[τ(R)] <

∞. Recall that the first regeneration epoch Y of X under Pγλ can be produced
as follows: Let {ξn}n∈N be iid 0–1–variables with probability ǫ′ of being 1 and
let N = inf{n ∈ N | ξn = 1}. Then

Y = τ(R)1 + r + τ(R)2 + r + . . .+ τ(R)N + r

where e.g. τ(R)2 is the waiting time after τ(R)1+r until R is hit the next time.
Note that the τ(R) variables are independent of {ξn}n∈N. Then obviously

E
γ
λ[Y |N ] ≤ N sup

x∈E
Eγx[τ(R)]

and since N is geometrically distributed it has finite expectation. Hence
Eλ[Y ] <∞.

Under the assumption of Proposition 6.2 the results from Section 3 can be
applied to the process under Pγ . Note that κ′(γ) > 0 such that ρ∗γ > 0 and
hence by Corollary 3.1 we have P

γ
x(τ(u) <∞) = 1.

Let ξ(u) := Sτ(u) − u denote the overshoot. Then

Corollary 6.1.

ψx(u, T ) = hγ(x)e−γuEγx

[

e−γξ(u)

hγ(Xτ(u))
; τ(u) ≤ T

]

ψx(u) = hγ(x)e−γuEγx

[

e−γξ(u)

hγ(Xτ(u))

]

.
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Noting that ξ(u) ≥ 0 yields

Corollary 6.2.

ψx(u) ≤
hγ(x)

miny∈E hγ(y)
e−γu .

7 Appendix

We will in this section use the following assumption

Assumption 7.1. Assume that the Markov process (Xt)t≥0 is irreducible
(with respect to a maximal irreducible measure φ), aperiodic and uniformly
ergodic. Let Q be the operator corresponding to the stationary distribution π.
That is

Qf(x) =

∫

E
f(y) .

Assume furthermore that with some ν > 0

||Pt −Q|| = O(e−νt) . (7.1)

Recall that for some bounded operator T : bC(E) → bC(E) the resolvent
ρ(T) is defined as

ρ(T) := {y ∈ C | (T − yI)−1 exists}

and the spectrum σ(T) is the compliment of the resolvent,

σ(T) = C \ ρ(T) .

For y ∈ ρ(T) the operator (T−yI)−1 is called the resolvent at y and is denoted
R(y).

The following decomposition (see Riesz, Chap. XI, [16]) will be very impor-
tant. Assume that σ(T) = σ1 ∪ σ2, where σ1 and σ2 are disjoint and isolated.
Let Ii for i = 1, 2 be a closed rectifiable curve in ρ(T) which is the boundary
of an open bounded region Di such that σi = σ(T) ∩Di. We have the result:

Theorem 7.1. The space bC(E) may be decomposed into the vector sum of
two linearly independent subspaces N1 and N2, where

T(Ni) ⊆ Ni and σ(T|Ni) = σi .

The parallel projection of bC(E) onto Ni is given by

Pσi = −
1

2πi

∫

σi

R(y) dy .

Furthermore Pσ1 = I and Pσ2 = 0 if and only if σ1 coincides with σ(T) and
σ2 is empty.
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Let Q be the operator corresponding to the stationary distribution π:

Qf(x) =

∫

f(y)π(dy) for all x ∈ E .

From (7.1) we have

||Pn −Q|| = sup
||h|≤1

||Pnh−Qh|| ≤ γρn , (7.2)

and because of (7.2) and direct calculation one can see that

R(y) :=
1

y − 1
Q+

∞∑

n=0

1

yn+1
(Pn −Q)

is well–defined and −R(y) is the resolvent for P1 at y when y 6= 1 and |y| > ρ.

With a proof similar to the one of Jensen [13], Lemma 2.2 (see also the ap-
pendices of [8], [9] and [10]) and using the formula (2.4) we have

Lemma 7.1. There exist K > 0 and η > 0 such that for |α| ≤ η, |y − 1| >
(1− ρ)/6 and |y| > ρ+ (1− ρ)/6 it holds that

||Pα1 − P1|| ≤ K|α|

and thereby

Rα(y) :=

∞∑

n=0

R(y)[(Pz
1 −P1)R(y)]n

is well–defined with −Rα(y) the resolvent for Pα
1 .

From this result it is seen that for |α| ≤ η the spectrum of Pα1 lies inside the
two circles C1 = {y : |y− 1| = (1− ρ)/3} and C2 = {y : |y| = ρ+ (1− ρ)/3}.
Hence the spectrum can be decomposed into two disjoint parts. From Theorem
7.1 we have the decomposition bC(E) = N1(α)⊕N2(α) such that

Qα :=
1

2πi

∫

C1

Rα(y)dy, I−Qα :=
1

2πi

∫

C2

Rα(y)dy

are parallel projections of bC(E) onto N1(α) and N2(α) respectively. With a
proof similar to the one of Lemma 2.3 in [13] we have the following Lemma:

Lemma 7.2. There exists 0 ≤ δ ≤ η such that N1(z) is one–dimensional for
|α| ≤ δ. Furthermore sup|α|≤δ ||Q

α −Q|| < 1.

Together with the results from Theorem 7.1 we have some eigenvalue λ(z)
when |z| ≤ δ such that Pα

1 f = λ(α)f for all f ∈ N1(α). Now let z = α ∈ R

with |α| ≤ δ. Define ψ ∈ bC(E) by ψ ≡ 1. Then Qαψ ∈ N1(α) and obviously
Qψ = ψ and QαQαψ = Qαψ. Then from Lemma 7.2 we have that

||Qαψ − ψ|| < 1 . (7.3)
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Hence (Qαψ)(x) 6= 0 for all x ∈ E. Now consider

Qαψ =
1

2πi

∫

C1

Rα(y)ψ dy .

Each term (R(y)[(Pα
1 −P1)R(y)]n)ψ in Rα(y)ψ can be written on the form

∞∑

n,m=0

1

(y − 1)myn
fm,n ,

where all fm,n are real–valued functions, since Pα is a real operator. Hence
also Rα(y)ψ has this form. Since

1

2πi

∫

C1

1

(y − 1)myn
dy ∈ R

for all n,m we conclude that Qαψ is a real–valued function. From (7.3) it is
furthermore seen to have positive values, bounded away from 0. All together
we have that for |α| ≤ δ

Pα
1 (Q

αψ) = λ(α)(Qαψ) ,

where Qαψ is real with positive values bounded away from 0. Hence also λ(α)
is real–valued.

As a result of (2.4) also Lemma 2.5 and 2.6 from Jensen, [13], can be reproved.
Hence for α in a sufficiently small interval of α’s around 0 both α 7→ λ(α) and
α 7→ Qαψ are differentiable.
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