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Abstract

A task such as the execution of a computer program or the transfer of a
file on a communications link may fail and then needs to be restarted. Let
the ideal task time be a constant ` and the actual task time X, a random
variable. Tail asymptotics for P(X > x) is given under three different models:
1: a time-dependent failure rate µ(t) and a constant work rate r(t) ≡ 1; 2:
Poisson failures and a time-dependent deterministic work rate r(t); 3: as 2,
but r(t) is random and a function of a finite Markov process. Also results
close to being necessary and sufficient are presented for X to be finite a.s.
The results complement those of Asmussen, Fiorini, Lipsky, Rolski & Shea-
han [Math. Oper. Res. 33, 932–944, 2008] who took r(t) ≡ 1 and assumed the
failure rate to be a function of the time elapsed since the last restart rather
than wallclock time
Keywords change of measure, computer reliability, fluid model, gaps, inhomo-
geneous Poisson process, Markov-modulation, Markov renewal theorem, tail
asymptotics, time transformation

1 Introduction and Statement of Results
Tasks such as the execution of a computer program or the transfer of a file on
a communications link may fail. There is a considerable literature on protocols
for handling such failures. We mention in particular RESUME where the task is
resumed after repair, REPLACE where the task is abandoned and a new one taken
from the pile of waiting tasks, RESTART where the task needs to be restarted from
scratch, and CHECKPOINTING where the task contains checkpoints such that
performed work is saved at checkpoint times and that upon a failure, the task only
needs to be restarted from the last checkpoint.

The protocols RESUME and REPLACE are fairly easy to analyze, see e.g. Kulka-
rni et al. [15], [16] and Bobbio & Trivedi [8]. In contrast, RESTART (Castillo [9],
Chimento & Trivedi [10]) resisted analysis for a long time until the recent work of
Sheahan et al. [18] and Asmussen et al. [5] (see also Jelenkovic & Tan [13, 14] for

1



in part parallel work). Recent results for CHECKPOINTING as well as references
to earlier work can be found in Asmussen & Lipsky [6].

The model of Asmussen et al. [5] assumes that failures occur at a time after each
restart with the same distribution G for each restart (a particular important case
is of course the exponential distribution). However, it is easy to imagine situations
where the model behaviour is determined by the time of the day (the clock on the
wall) rather than the time elapsed since the last restart. Think, e.g., of a time-
varying load in the system which may influence the failure rate and/or the speed
at which the task is performed. For example, the load could be identified with the
number of busy tellers in a call centre or the number of users in a LAN (local area
network) currently using the central server. The purpose of the present paper is to
provide some first insight in the behaviour of such models.

We denote by X the total task time, including failures (a precise definition is
given below). One of our goals is to describe the asymptotics of the tail P(X > x)
as x → ∞. For simple restart with constant task time and Poisson failures, this is
easy via a renewal argument. In fact, the details as given in [5] lead to:

Proposition 1.1. Consider simple RESTART with ideal task time ` and Poisson(µ∗)
failures. Let γ0 = γ0(`, µ∗) > 0 denote the root of

1 =
∫ `

0
µ∗e(γ0−µ∗)y dy . (1)

Then P(X > x) ∼ c0e−γ0x as x→∞ for some 0 < c0 <∞

Here and in the following f(x) ∼ g(x) means f(x)/g(x) → 1. Similarly, we
will write f(x) ≈log g(x) if log f(x) ∼ log g(x). This is the logarithmic asymptotics
familiar from large deviations theory (though we will not use results or tools from
that area!). It summarizes the main asymptotical features, but does not allow to
capture constants like c0, prefactors of smaller magnitude etc.

It should be noted that c0 is explicit given γ, but the value needs not concern us
here.

The emphasis in [5] is on the more difficult case of a random rather than a con-
stant ideal task time. However as a first attempt, we shall in the present paper
throughout assume a constant ideal task time of length `. We will consider three
models:

Model 1 Failures at time t after the start of the task occur at deterministic rate
µ(t) and the system works with a constant rate r(t) ≡ 1.
Model 2 Failures occur according to a Poisson(µ∗) process with constant rate µ∗.
At time t after the start of the task, the system works on the task at rate r(t).
Model 3 As Model 2, but the rate function r(t) is given as r(t) = rV (t) where
{V (t)}t≥0 is an ergodic Markov process with p < ∞ states and r1, . . . , rp are con-
stants with ri > 0 for at least one i.
Models 1, 2 are self-explanatory. Model 3 could for example describe a LAN with
p users, where V (t) is the number of users currently using the central server and
r0 = 0, ri = r1/i for i > 1.
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Models 1 and 2 exhibit a feature not found in simple RESTART: it is possible
that P(X =∞) > 0. This would occur in Model 1 if µ(t)→∞ fast enough, and in
Model 2 if r(t)→ 0 fast enough. Our first main result gives the critical rates:

Theorem 1.1. (1) Consider Model 1. If lim supt→∞ µ(t)/ log t < 1/`, then X <∞
a.s., whereas P(X =∞) > 0 if lim inft→∞ µ(t)/ log t > 1/`.
(2) Consider Model 2 and assume that

∫∞
0 r(s) ds = ∞ and R(t) =

∫ t
0 r(s)ds < ∞

for all t ≥ 0. If lim inft→∞ r(R(t)) log t/µ∗ > `, then X < ∞ a.s., whereas
P(X =∞) > 0 if lim supt→∞ r(R(t)) log t/µ∗ < `.

The result shows that in Model 1 only a very modest rate of increase to ∞
of µ(t) may cause the task never to terminate, and that the same is the case for
Model 2 with only a very modest rate of decrease to 0 of r(t). In view of this, it
seems reasonable to concentrate on decreasing µ(t) in Model 1 and increasing r(t)
in Model 2. The simplest case is of course the power case, and our second main
result gives the asymptotics of P(X > x) in this case:

Theorem 1.2. (1) Consider Model 1 and assume that µ(t) is strictly positive with
µ(t) ∼ at−β with 0 < β < 1. Then

P(X > x) ≈log e−c1x log x = x−c1x ,

where c1 = (1− β)/`.
(2) Consider Model 2 and assume that r(t) ∼ atη with η > 0. Then

P(X > x) ≈log e−c2xη+1 log x = x−c2xη+1
,

where c2 = aη/(η + 1)`.

Note that β = 0 in (1) or η = 0 in (2) corresponds to the standard RESTART
setting, which is why we exclude these cases. Note also that in both Model 1 and
Model 2 the decay rate is faster than any exponential. In Model 1 this is intuitive
by comparing with Proposition 1.1 since γ →∞ as µ→ 0 with ` fixed. This is also
the intuitive explanation in Model 2, but to see this, one needs an intermediate step
of time reversal given below.

For Model 3 it is trivial that X <∞ a.s. because there is an infinity of sojourn
periods in the state with ri > 0 and the probability of task completion in such a
period is > 0. For the asymptotics, we need properties of the fluid model

F (t) =
∫ t

0
rV (s) ds .

More precisely:

Theorem 1.3. In Model 3, let κ(s) denote the largest real value of the p× p matrix
K[s] with ijth element

∫ ∞

0
µ∗e(s−µ∗)tPi

(
F (t) < `, V (t) = j

)
dt .

Then κ(s) increases monotonically from κ(0) < 1 to ∞ in the interval s ∈ [0,∞).
If γ3 denotes the unique value with κ(γ3) = 1, then Pi(X > x) ∼ die−γ3x for suitable
constants d1, . . . , dp.
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Here d1, . . . , dp are again explicit, see Section 4, and as usual, Pi refers to the
case V (0) = i.

The outline of proofs is that first Model 1 is considered (Section 2). The results
for Model 2 then follow by exploiting the time-transformation connection between
homogeneous and inhomogeneous Poisson processes (Section 3). Theorem 1.3 for
Model 3 is an easy consequence of the Markov renewal theorem, once it has been
recognized how to write up an appropriate Markov renewal equation.

Finally, Section 4 also contains a numerical example.
Notation For the Poisson process with constant rate µ∗, we write S∗1 , S∗2 , . . . for the
event times and U∗n = S∗n − S∗n−1 for the interevent times (S∗0 = 0 is not considered
an event time). Similarly, the notation S1, S2, . . . and Un = Sn − Sn−1 is used
for the inhomogeneous Poisson process of failures in Model 1, and S ′1, S

′
2, . . . and

U ′n = S ′n − S ′n−1 for a certain auxiliary inhomogeneous Poisson process with rate
function µ′(s) in Section 2. The corresponding counting processes are denoted by
N∗(t), N(t), N ′(t).

2 Proofs: Model 1
LetN(t) denote the number of failures before t. Then the counting process {N(t)}t≥0
given by N(t) = sup{n : Sn < t} is a time-inhomogeneous Poisson process with rate
function {µ(t)}t≥0.

Define the stopping time τ = inf{n ∈ N |Un > `}. Then the total task time is
the r.v. X = Sτ−1 + ` if τ < ∞ and X = ∞ otherwise. Note that the problem of
computing the r.v. Sτ−1 may be seen as an inhomogeneous version of the classical
problem of first gaps in homogeneous Poisson processes 378, 468–469

In the proof of Theorem 1.1(1) and in the following, define the integrated inten-
sity as M(t) =

∫ t
0 µ(s) ds. It is then standard that {N(t)}t≥0 can be represented by

taking the event times as Sn = M−1
(
S∗n
)
.

Proof of Theorem 1.1. Let `′ be fixed, let µ′(s) = (log s)+/`′ and defineX ′,M ′, U ′n, S
′
n

etc. the obvious way (the ideal task time remains `, not `′!). Then for s > 1,

M ′(s) = s log s/`′ + O(1) ,
M ′(s+ `) = (s+ `)

[
log s+ O(1/s)

]
/`′ + O(1) = (s+ `) log s/`′ + O(1) ,

and hence
∫ ∞

1
µ′(s) exp{−M ′(s+ `) +M ′(s)} ds (2)

=
∫ ∞

1
O(1) log s · s−`/`′ ds

{
<∞ if `′ < `
=∞ if `′ > `

. (3)

For the intuition, note that (2) equals E∑∞1 {n : U ′n > `}, the expected number of
interevent intervals for the N ′ process that potentially could complete the task.

Assume first `′ < ` and let A′(s) be event that U ′n ≤ ` for all n with S ′n−1 ≤ s.
Clearly, P

(
A′(s)

)
> 0. Defining K ′(s) as the number of n with S ′n−1 > s, U ′n > `
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and letting F ′(s) = σ
(
N ′(v) : v ≤ s

)
, we have

E
[
K ′(s)

∣∣∣F ′(s)
]
≤

∫ ∞

s
µ′(v) exp{−M ′(v + `) +M ′(v)} dv .

By equation (3), we can choose s so large that this integral is (say) < 1/2 and get
P
(
K ′(s) ≥ 1 | F ′(s)

)
≤ 1/2 such that

P(X ′ =∞) = P
(
A′(s) ∩ {K ′(s) = 0}

)

=E
[
I
(
A′(s)

)
· P
(
K ′(s) = 0

) ∣∣∣F ′(s)
]
≥ P

(
A′(s)

)
/2 > 0 .

Let next `′ > `. The above estimates forM ′ imply thatM ′−1(s) = s`′/ log s(1+
o(1)) as s→∞, and hence that

S ′n−1 = S∗n−1`
′

logS∗n−1

(
1 + o(1)

)
= n`′

log n
(
1 + o(1)

)
a.s.

Thus
∞∑

n=1
P
(
U ′n > `

∣∣∣F ′(S ′n−1)
)

=
∞∑

n=1
exp{−M ′(S ′n−1 + `) +M ′(S ′n−1)}

=
∞∑

n=1
exp{−` logS ′n−1/`

′ + O(1)} = ∞ a.s.

The conditional Borel-Cantelli lemma therefore implies that U ′n > ` for infinitely
many n.

Now consider a general µ(s). If lim sups→∞ µ(s)/ log s < 1/`, then for some
s0 and some `′ > ` we have µ(s) < µ′(s) for all s > s0. Then, realizing N ′ on
(s0,∞) as the independent sum of N and an inhomogeneous Poisson process with
rate µ′(s)− µ(s), we may assume

{Sn−1 : Sn−1 > s0} ⊆ {S ′n−1 : S ′n−1 > s0} .

Since U ′n > ` for infinitely many n with S ′n−1 > s0, this implies Un > ` for infinitely
many n with Sn−1 > s0 and X <∞. Similarly, if lim infs→∞ µ(s)/ log s > 1/`, then
for some s0 and some `′ > ` we have µ(s) > µ′(s) for all s > s0, and Un > ` for
some n with Sn−1 > s0 implies S ′n > ` for some n with S ′n−1 > s0. Therefore the
event that Un > ` for some n with Sn−1 > s0 cannot have probability one, which as
above implies P(X =∞) > 0. �

We next consider the proof of Theorem 1.2 (1), describing the tail of X in the
most standard case, a Weibull type rate function µ(t) ∼ at−β with 0 < β < 1. Note
that β = 0 corresponds to the simple RESTART setting with Poisson failures with
µ∗ = a. β < 0 is excluded because then P(X = ∞) > 0, and β > 1 is excluded
because then M(∞) <∞, a case that appears somewhat pathological and that we
do not study.

Before turning to the setup of Theorem 1.2 (1) we shall prove some less clear
results for a general µ(t). Assume that µ(t) is decreasing with limit 0.
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-r r r
x− ` xSτ(x−`) Sτ(x)−1 Sτ(x)

Figure 1: It holds that x− Sτ(x)−1 ≤ ` when Uτ(x−`) ≤ `.

The probability P(X > x) can be written as P(X > x) = P
(
B(x)

)
where

B(x) =
{
U1 ≤ `, . . . , Uτ(x)−1 ≤ `, x− Sτ(x)−1 ≤ `

}
, τ(x) = inf{n : Sn > x} .

Obviously, we must have B(x) ⊆ C(x− `) where

C(x) = {U1 ≤ `, . . . , Uτ(x) ≤ `} .

But in fact x ≥ Sτ(x−`) ≥ x − ` implies that Uτ(x−`)+1 ≤ `, . . . , Uτ(x)−1 ≤ ` and
x− Sτ(x)−1 ≤ ` (see Figure 1). That is,

B(x) = C(x− `) , (4)

so deriving the asymptotics for P
(
C(x− t)

)
will solve the problem.

Choose γ = γ(`) such that

1 =
∫ `

0
eγx dx = 1

γ

[
eγ` − 1

]
. (5)

Let Q be the probability measure where (Un)n∈N are i.i.d. each with density u→ eγu
on (0, `). Note that Q

(
C(x)

)
= 1 since Q(U1 ≤ `) = 1.

Proposition 2.1. For any µ(t) it holds that

P
(
C(x)

)
= EQ

[( τ(x)∏

k=1
µ(Sn)

)
exp

(
−M(Sτ(x))− γSτ(x)

)]
.

Proof. Define (Fn)n∈N as the natural filtration for (Un)n∈N:

Fn = σ(U1, . . . , Un) (n ∈ N) .

Note that τ(x) is a stopping time with P(τ(x) < ∞) = 1 (such that C(x) is well-
defined) and that C(x) ∈ Fτ(x).

Given Sn−1 , the conditional distribution of Un is determined by the density

f|Sn−1(s) = µ(s) exp
(
−M(s) +M(Sn−1))

)
(s > Sn−1)

(on {Sn−1 < ∞} in the case of M(∞) < ∞). If M(∞) < ∞, this distribution is
defective with

P|Sn−1(Un =∞) = exp
(
−
∫ ∞

Sn−1
µ(u) du

)
= exp

(
−M(∞) +M(Sn−1))

)
.
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Therefore the joint density of (U1, . . . , Un) (w.r.t. the Lebesgue measure on (0,∞)n)
is

gn(u1, . . . , un) =
n∏

k=1
g|sk−1(uk) =

n∏

k=1
µ(sk) exp

(
−M(sk) +M(sk−1)

)

=
( n∏

k=1
µ(sk)

)
exp{−M(sn)}

for (u1, . . . , un) ∈ (0;∞)n. Here the notation sk = u1 + · · ·+ uk has been used.
Under Q the vector (U1, . . . , Un) has density

hn(u1, . . . , un) = eγsn .

Define
Fn = {U1 ≤ `, . . . , Un ≤ `} .

Then Fn ∈ Fn. If Dn ⊆ Fn and Dn ∈ Fn (that is Dn = {(U1, . . . , Un) ∈ Cn}, where
Cn ⊆ [0, `]n is Borel measurable), we have

P(Dn) = EQ

[
gn(U1, . . . , Un)
hn(U1, . . . , Un) ;Dn

]
.

Thus by a standard extension to stopping times (e.g. [4] pp. 131–132)

P
(
C(x)

)
= EQ

[
gτ(x)(U1, . . . , Uτ(x))
hτ(x)(U1, . . . , Uτ(x))

]
,

where we have used that Q
(
C(x)

)
= 1 and P(τ(x) < ∞) = Q(τ(x) < ∞) =

1. When the expressions for gn and hn are inserted, this becomes the requested
result.

Proposition 2.2. If µ(t) is decreasing with limit 0 then
(i)

P
(
C(x)

)
≤ c3

([x/`]∏

k=0
µ(x− k`)

)
exp

(
−M(x)− γx

)

as x→∞, for some constant c3.
(ii)

P
(
C(x)

)
≥ c4 exp

(1
`

log
(
µ(x+ `)

)
(1 + o(1))(x+ `)

)

× exp
(
−M(x+ `)− (1− 1/`)γx

)

as x→∞, for some constant c4.

Proof. For (i), recall that x < Sτ(x) ≤ x+ `. If either γ > 0 or γ < 0, the expression
for P

(
C(x)

)
in Proposition 2.1 is bounded up by a constant times

EQ

[τ(x)∏

k=1
µ(Sn)

]
exp

(
−M(x)− γx

)
(6)
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Left is exploring the behaviour of the expectation in (6). First rewrite it as

EQ

[ τ(x)∏

k=1
µ(Sk)

]
= EQ

[( τ(x)−bx/`c−1∏

k=1
µ(Sk)

)( τ(x)∏

k=τ(x)−bx/`c
µ(Sk)

)]

≤ EQ

[ τ(x)−bx/`c−1∏

k=1
µ(Sk)

]( bx/tc∏

k=0
µ(x− k`)

)
.

In the inequality we have used that µ is decreasing and the fact that

Sτ(x) > x, Sτ(x)−1 > x− ` , Sτ(x)−2 > x− 2` , . . . , Sτ(x)−bx/`c > x− bx/`c` .

Since limt→∞ µ(t) = 0 the second factor above obviously decreases – very fast –
to 0. We show that the first factor – the expectation – decreases to 0 and thereby
is bounded such that we have the result from the theorem.

We have
τ(x)

x/EQ[U1]
x→∞−→ 1 Q–a.s.

Since EQ[U1] < ` and therefore x/EQ[U1]− bx/`b→ ∞, this yields that

τ(x)−
⌊
x

`

⌋
x→∞−→ ∞ Q–a.s.

Together with the fact that Sn →∞ Q–a.s., this leads to
τ(x)−bx/`c−1∏

k=1
µ(Sk) x→∞−→ 0 Q–a.s.

because the factors in the product decrease to 0 and τ(x) − bx/`c − 1 → ∞. Now
let a > 0 be a constant such that µ(t) < 1 for t > a and define the stopping time

σ = inf{n ∈ N |Sn > a} .

Then we have the following upper bound for the integrand in the expectation:
τ(x)−bx/`c−1∏

k=1
µ(Sk) =

( (τ(x)−[x/`]−1)∧σ∏

k=1
µ(Sk)

)( τ(x)−bx/`c−1∏

k=(τ(x)−bx/`c−1)∧σ
µ(Sk)

)

≤
(τ(x)−bx/`c−1)∧σ∏

k=1
λ(Sk) ≤

(τ(x)−bx/`c−1)∧σ∏

k=1
µ(0) ≤ µ(0)σ .

From Lemma 5.1 in the Appendix we have that this upper bound has finite expec-
tation. Hence by dominated convergence we can conclude that

EQ

[ τ(x)−bx/`c−1∏

k=1
µ(Sk)

]
x→∞−−−−→ 0 .

(ii): As in (i) we have

P
(
C(x)

)
= EQ

[( τ(x)∏

k=1
µ(Sn)

)
exp

(
−M(Sτ(x))− γSτ(x)

)]
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and similarly the r.h.s. is bounded below by a constant times

EQ

[ τ(x)∏

k=1
µ(Sk)

]
exp

(
−M(x+ `)− γx

)
. (7)

Recall that Sk ≤ x+ ` on {τ(x) ≥ k} so that a lower bound for (7) is

EQ
[
(µ(x+ `)τ(x)

]
exp

(
− Λ(x+ `)− γx

)
.

From Proposition 5.1 in the Appendix we have that this is bounded below by

exp
(
− ϕ−1(µ(x+ `))(x+ `)

)
exp

(
−M(x+ `)− γx

)

with
ϕ(z) = z + γ − 1

e`(z+γ−1) − 1 .

Combined with the result from Proposition 5.2 in the Appendix this gives

P
(
C(x)

)
≥ exp

(1
`

log(µ(x+ `))(1 + o(1))(x+ `)
)

exp
(
−M(x+ `)− γx

)

when x→∞ (remember that µ(x)→ 0).

�
As a result of Proposition 2.2 and (4), we immediately get

Corollary 2.1. In the setup from above we have that

(i) P
(
A(x)

)
≤ c5

(bx/`c∏

k=1
µ(x − (k + 1)`)

)
exp

(
−M(x − `) − γx

)
as x → ∞, for

some constant c5.
(ii)

P
(
A(x)

)
≥ c6 exp

(1
`

log
(
µ(x)

)(
1 + o(1)

)
x
)

exp
(
−M(x)− (1− 1/`)γx

)

as x→∞, for some constant c6.

In the case where M(∞) <∞ the result becomes simpler:

Corollary 2.2. If furthermore M(∞) <∞ it holds that

(i) P(X > x) ≤ c7

(bx/`c∏

k=1
µ(x− (k+ 1)`)

)
exp

(
− γx

)
as x→∞, for some constant

c7.
(ii)

P(X > x) ≥ c8 exp
(1
`

log
(
µ(x)

)
(1 + o(1))x

)
exp

(
− (1− 1/`)γx

)

as x→∞, for some constant c8.
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Proof of Theorem 1.1(i). If the intensity process is strictly positive and satisfies
µ(s) ∼ as−β with 0 < β < 1, then µ, µ exists on the form cs−β with µ ≤ µ(s) ≤ µ(s).
With M , M the corresponding integrated intensity processes we have e.g. M(s) =
cs1−β/(1− β). Let furthermore X, X denote total task times corresponding to µ, µ
respectively. Then P(X > x) ≤ P(X > x) ≤ P(X > x) and

bx/`c∏

k=1
µ(x− k`)

=
bx/`c∏

k=1

a

(b+ x− k`)1−β

=
bx/`c∏

k=1

a

`1−β( b+x
`
− k)1−β

≤ C
1

(
b+x
`
−
⌊
x
`

⌋)1−β

bx/`c−1∏

k=1

1
(
⌊
b+x
`

⌋
− k)1−β

= C
1

(
b+x
`
−
⌊
x
`

⌋)1−β




(⌊
b+x
`

⌋
−
⌊
x
`

⌋)
!

(⌊
b+x
`

⌋
− 1

)
!




1−β

≤ C
1

(
b+x
`
−
⌊
x
`

⌋)1−β




(⌊
b
`

⌋
+ 1

)
!

(⌊
b+x
`

⌋
− 1

)
!




1−β

∼ C̃
1

(
x

√(⌊
b+x
`

⌋
− 1

) (⌊
b+x
`

⌋
− 1

)b b+x` c−1
exp

(
−
(⌊

b+x
`

⌋
− 1

)))1−β .

From Corollary 2.1 (i) we have that

P(X > x) ≤ C

(⌊
b+ x

`

⌋
− 1

)−(1−β)(b b+x` c−1)

× exp
(
− a

β
(b+ x)β + (1− β

`
− γ)x

)
x−

3(1−β)
2

when x→∞ for some constant C. The expression on the r.h.s. above is

≈log

(⌊
b+ x

`

⌋
− 1

)−(1−β)(b b+x` c−1)

≈log x
1−β
`
x .

From (ii) we get

P(X > x) ≥ C̃ exp
(
− 1
`

(1− β) log
(
b+ x

)
(1 + o(1))x

)

× exp
(
− a

β
(b+ x)β − (1− 1/`)γx

)
.

10



Here the first factor decreases faster than the second so that this

≈log exp
(
− 1
`

(1− β) log
(
b+ x

)
(1 + o(1))x

)

≈log exp
(
− 1
`

(1− β) log
(
b+ x

)
x
)

≈log x
− 1−β

`
x .

All together we have shown that

P(X > x) ≈log x
1−β
`
x

when x→∞. �

3 Proofs: Model 2
Recall that in Model 2 the failure times (N∗t )t≥0 form a homogeneous Poisson process
with intensity parameter µ∗, event times (S∗n)n∈N, and interevent times (U∗n)n∈N.
Again, ` is the ideal task time, and it is assumed that at time t the system works
on the task at rate r(t), where r is a nonnegative measurable function.

Define the continuous and increasing function R as

R(t) =
∫ t

0
r(s) ds .

It is obvious that P(X = ∞) > 0 if R(∞) < ∞, so assume that R(∞) = ∞ . Also
assume that R(t) <∞ for all t ≥ 0.

A straightforward calculation shows that the inverse R−1 of R is a continuous
and increasing function and given by

R−1(y) =
∫ y

0

1
r
(
R(s)

) ds .

Since R(t) is the amount of work that has been spent on the task up to time t
provided the task has not been completed, the total task time in absence of failures
is given by R(X) = `, i.e. X = R−1(`). More generally, if the task is not completed
at the time S∗n−1 of the (n − 1)th failure, then the task is still uncompleted at the
time S∗n of the nth failure if and only if R−1(S∗n)−R−1(S∗n−1) < ` [these observations
are close to some standard facts in storage processes, see [3] p. 381].

It follows that the total task time X can be calculated as follows. First define
the time ω as

ω = inf
{
n ∈ N

∣∣∣∣
∫ S∗n

S∗n−1

r(t) dt > `
}
,

and let `∗ satisfy ∫ `∗

S∗ω−1

r(t) dt = ` .

Then the total task time X is

X = S∗ω−1 + `∗ ,

11



if ω <∞ and X =∞ when ω =∞.
Proof of Theorem 1.1(ii). From the definition of N we can construct another point
process: Let S ′n, n ∈ N be defined by S ′n = R(S∗n) for all n ≥ 0. Since S ′n = R−1(S∗n)
it is well–known that (Sn)n∈N are the event times of an inhomogeneous Poisson
process with rate function µ(t) = µ∗/r

(
R(t)

)
.

It is directly seen that also

ω = inf{n ∈ N |S ′n > `} .

Applying this yields the following definition of the total task time X ′ corresponding
to S ′n, n ∈ N

X ′ =
{
S ′ω−1 + ` , ω <∞
∞ , ω =∞

Especially we have {X = ∞} = {X ′ = ∞} and hence the theorem follows from
Theorem 1.1(i). �

Define
f(x) = axη, F (x) =

∫ x

0
f(y) dy = a

η + 1x
η+1 .

Lemma 3.1. If r(x) ∼ f(x) then

R(x) ∼ F (x) = a

η + 1x
η+1 and r(R(x)) ∼ f(F (x)) = a

(
a

η + 1

)η
xη(η+1) .

Proof. Given ε > 0, there exits a x0 exists such that

(1− ε)f(x) ≤ r(x) ≤ (1 + ε)f(x) for x > x0 .

Hence

(1− ε)
∫ x

x0
f(y) dy ≤

∫ x

x0
r(y) dy ≤ (1 + ε)

∫ x

x0
f(y) dy for x > x0

Using
∫ x

0 f(x) dx→∞ it is seen that choosing x > x0 large enough gives
∫ x

0 r(y) dy
∫ x

0 f(y) dy =
∫ x0

0 r(y) dy +
∫ x
x0 r(y) dy

∫ x0
0 f(y) dy +

∫ x
x0 f(y) dy ∈ (1− 2ε, 1 + 2ε) .

For the second result write

r(R(x))
f(F (x)) = r(R(x))

f(R(x))
f(R(x))
f(F (x)) ,

where the first factor obviously has limit 1. For the second factor x0 > 0 can be
found given ε such that for x > x0

(1− ε)F (x) < R(x) < (1 + ε)F (x)

and hence
f((1− ε)F (x)) < f(R(x)) < f((1 + ε)F (x))

12



for x > x0. Furthermore

f((1− ε)F (x)) < f(F (x)) < f((1 + ε)F (x))

so it is obtained that

f((1− ε)F (x))
f((1 + ε)F (x)) <

f(R(x))
f(F (x)) <

f((1 + ε)F (x))
f((1− ε)F (x)) .

Since
f((1 + ε)F (x))
f((1− ε)F (x)) =

(1 + ε

1− ε
)η

has limit 1 as ε→ 0, the proof is complete.

�

Proof of Theorem 1.2(i). Note that P(X =∞) = 0. With X ′ defined as in the proof
of Theorem 1.1 it holds on {X <∞} that

{X > x} = {R(X) > R(x)}

=
{ ∫ S′ω−1+`∗

0
r(t) dt > R(x)

}

= {R(S ′ω−1) + ` > R(x)}
= {X ′ > R(x)} . (8)

Recall that X ′ is the total task time for a nonhomogeneous Poisson process with
intensity process (µ(t))t≥0 where µ(t) = µ∗

r(R(t)) . From Lemma 3.1 we have that

r(R(t)) ∼ f(F (t)) = a

(
a

η + 1

)η
tη(η+1) ,

and hence (µ(t)) has a form that suits the theorem for Model 1. Since also R(t) ∼
F (t) applying the result for Model 1 to the relation (8) yields

P (X > x) = P (X ′ > R(x)) ≈log R(x)−
η(η+1)

`
R(x) ≈log F (x)−

η(η+1)
`

F (x) .

�

4 Proofs: Model 3
The renewal argument in [5] leading to Proposition 1.1 for simple RESTART uses
a geometric sum representation of D = X − `. It is instructive for the following to
give a direct variant in the present setup, where the failure times occur according to
a Poisson process. Define Z(x) = P(D > x) and let z(x), Z0(x) be the contributions
to Z(x) from the events U > x that the first failure time exceeds x, resp. U ≤ x.
A failure at time t ≤ x will contribute to Z0(x) if and only if t ≤ `, which readily
leads to

Z0(x) =
∫ x

0
Z(x− t)µe−µtI(t ≤ `) dt .
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Similarly but easier, z(x) =
∫∞
x µe−µtI(t ≤ `) dt, and altogether,

Z(x) = z(x) + Z0(x) = z(x) +
∫ x

0
Z(x− t)g(t) dt ,

where g(t) is the defective density µe−µtI(t ≤ `). The rest is then standard renewal
theory (e.g. [3] V.7).
Now consider Model 3 and write again D = X − `. Define Zi(x) = Pi(D > x). We
then get the following Markov renewal equation:

Proposition 4.1.

Zi(x) = zi(x) +
p∑

j=1

∫ x

0
Fij(dt)Zj(x− t) dt , (9)

where Fij has density µe−µtPi
(
F (t) ≤ `, V (t) = j

)
and

zi(x) =
∫ ∞

x
µe−µtPi

(
F (t) ≤ `

)
.

Proof. We condition again on the time U = t of the first failure. Then for D > 0
it is necessary that F (t) ≤ `, and therefore zi(x) is the contribution to Zi(x) from
the event U > x. Similarly, conditioning in addition on V (t) shows that the second
term in (9) is the contribution from the event U ≤ x.

The proof of Theorem 1.3 is now a straightforward adaptation of the defec-
tive Markov key renewal theorem, [3] pp. 209–210. To give the value of Di is also
straightforward from the expressions there, but the formulas are tedious and there-
fore omitted.

For computational purposes, one therefore needs to evaluate P(F (t) ≤ `, V (t) = j).
The four most common approaches are:

a) to let g(t, f ; ij) = (d/df)P
(
F (t) ≤ f, V (t) = j

)
and derive a set of PDE’s for

the g(t, f ; ij);

b) the transform inversion method of Ahn & Ramaswami [1];

c) the series expansion of Sericola [17];

d) simulation of Pi
(
F (t) ≤ `, V (t) = j

)
.

Example 4.1. Consider a LAN withN users. Each sends a task of an exponential(ν)
duration to the central unit at rate λ (no more tasks are sent before completion), the
central unit works at rate 1 and uses standard processor sharing (works simultaneous
on all tasks at the same rate). Thus, it seems reasonable to take V (t) ∈ {0, . . . , N}
as the number of tasks currently with the server, let

qi(i+1) = (N − i)λ , qi(i−1) = ν

and all other off-diagonal qij equal to zero, and take ri = 1/i for i > 0, r0 = 0.
The model for V (t) is an example of the so–called Palm’s Machine Repair Problem
(described in [3] III.3), with only a single repairman.
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With πj = limt→∞ Pi
(
V (t) = j

)
, the average service rate is r∗ = ∑p

1 πi/i where π
is the stationary distribution ov V . If failures occur at rate µ and a user sends a task
of length ` to the central unit, a reasonable question is then how the exponential
decay rate γ(`) of this total task duration compares to that γ∗ of simple RESTART
with service rate r∗ (that is, ideal task duration `/r∗). To illustrate this, we took
N = 10, λ = 1, ` = 1 and considered 3×3 combinations of ν, µ: ν chosen such that
EπV (0) = 2 , 5 , 8 (low, moderate and heavy load) and µ = 1/5 , 1 , 5 (low, moderate
and high failure rate). We used method d) and obtained the following table over γ
and γ∗ (the vaules of γ∗ are in (·)):

EπV (0) 2 5 8
µ

1/5 0.683 (0.744) 0.259 (0.304) 0.079 (0.079)
1 0.134 (0.121) 0.040 (0.021) 0.011 (0.004)
5 0.144 (0.030) 0.212 (0.050) 0.235 (0.094)

It is seen that in some cases, not at least when µ is large, there are major differ-
ences between γ and γ∗. Also note that even a rather small difference will have a
substantial influence on the decay of Pi(X > x). �

5 Appendix
The following result is well–known and can e.g. be seen as a immediate consequence
of Lemma 1 p. 144 in [7].

Lemma 5.1. Assume that (Un)n∈N are iid variables with Un > 0. Let (Sn)n∈N be
the corresponding random walk, that is Sn = ∑n

k=1 Uk for n ∈ N. Define

τ = inf{n ∈ N |Sn > a}

for some a > 0. Then
E[tτ ] <∞ for all t > 0 .

Proposition 5.1. Assume that (Un)n∈N are iid variables each with density t 7→ eγt
on [0, t]. Let (Sn)n∈N be the corresponding random walk, that is Sn = ∑n

k=1 Uk for
n ∈ N. Define

τ(x) = inf{n ∈ N |Sn > x} = inf{n ∈ N |Sn − x > 0}

for some x > 0. Then

exp
(
− ϕ−1(z)(x+ t)

)
≤ E[zτ(x)] ≤ exp

(
− ϕ−1(z)x

)

for all 0 < z < 1, where
ϕ(θ) = θ + γ

et(θ+γ) − 1 .
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Proof. Because the Uk–variables are bounded we have for all θ > 0 that

h(θ) = E
[
eθU1

]
<∞ .

Consequently

Mn(θ) = eθSn
h(θ)n (n ∈ N)

is a martingale with mean 1. Define

τ(x) = inf{n ∈ N |Sn > x} .

Then by optional stopping we have

1 = E
[

eθSτ(x)

h(θ)τ(x) ; τ(x) ≤ n

]
+ E

[
eθSn
h(θ)n ; τ(x) > n

]
.

Let n → ∞ and note that eθSn ≤ eθx on {τ(x) > n}. By dominated convergence,
we have

1 = E
[

eθSτ(x)

h(θ)τ(x) ; τ(x) <∞
]

= E
[

eθSτ(x)

h(θ)τ(x)

]
.

Since x < Sτ(x) ≤ x+ t this yields

E
[

1
h(θ)τ(x)

]
eθx < 1 ≤ E

[
1

h(θ)τ(x)

]
eθ(x+t)

and thereby

e−θ(x+t) ≤ E
[

1
h(θ)τ(x)

]
< e−θx .

Now consider the function θ 7→ h(θ) = E[exp(θU1)]. It is strictly increasing with
h(0) = 1 and limθ→∞ h(θ) =∞. Hence ϕ(θ) = 1/h(θ) is strictly decreasing so that
the inverse ϕ−1 is well–defined (on ]0, 1]). Furthermore

h(θ) = E
[
eθU1

]

=
∫ t

0
eθyeγy dy

= 1
θ + γ

[
e(θ+γ)t − 1

]
.

This concludes the proof of the proposition.

Proposition 5.2. For the function z 7→ ϕ−1(z) studied in Proposition 5.1 it holds
that

ϕ−1(z) = −1
t

log(z)(1 + o(1)) ,

as z ↓ 0.
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Proof. We have that θ(z) = ϕ−1(z) can be found as the solution w.r.t. θ of the
equation

z = θ + γ

et(θ+γ) − 1
which can be rewritten as

θ + γ = z
(
et(θ+γ) − 1

)
. (10)

Now let δ > 0 and define θδ(z) by

θδ(z) = −δ
t

log(z)− γ .

With θ = θδ the r.h.s. of (10) becomes z1−δ − z and the l.h.s. is of order log z when
z ↓ 0. If δ > 1 the r.h.s. increases faster than the l.h.s. as z ↓ 0. With z small
enough we thereby have

θδ(z) + γ ≤ z
(
et(θδ(z)+γ) − 1

)
.

Note that the r.h.s. in (10) is an increasing and convex function of θ while the l.h.s.
is affine. From that we can deduce that θ(z) < θδ(z). Similarly in the δ ≤ 1 case we
can see that θ(z) > θδ(z). Hence

θ(z) = −1
t

log(z)(1 + o(1))

as wanted.
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