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TWO-BODY THRESHOLD SPECTRAL ANALYSIS, THE
CRITICAL CASE

ERIK SKIBSTED AND XUE PING WANG

Abstract. We study in dimension d ≥ 2 low-energy spectral and scattering
asymptotics for two-body d-dimensional Schrödinger operators with a radially
symmetric potential falling off like −γr−2, γ > 0. We consider angular momentum
sectors, labelled by l = 0, 1, . . . , for which γ > (l + d/2 − 1)2. In each such
sector the reduced Schrödinger operator has infinitely many negative eigenvalues
accumulating at zero. We show that the resolvent has a non-trivial oscillatory
behaviour as the spectral parameter approaches zero in cones bounded away from
the negative half-axis, and we derive an asymptotic formula for the phase shift.
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1. Introduction

The low-energy spectral and scattering asymptotics for two-body Schrödinger
operators depends heavily on the decay of the potential at infinity. The most well-
studied class is given by potentials decaying faster than r−2 (see for example [JN] and
references there). The expansion of the resolvent is in this case in terms of powers
of dimension-dependent modifications of the spectral parameter and it depends on
possible existence of zero-energy bound states and/or zero-energy resonance states.
Classes of negative potentials decaying slower than r−2 were studied in [FS, Ya].
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In that case the resolvent is more regular at zero energy. It has an expansion in
integer powers of the spectral parameter and there are no zero-energy bound states
nor resonance states. Moreover, the nature of the expansion is “semi-classical”. For
general perturbations of critical decay of the order r−2 and with an assumption
related to the Hardy inequality, the threshold spectral analysis is carried out in
[Wan1, Wan2]. It is shown that for this class of potentials the zero resonance may
appear in any space dimension with arbitrary multiplicity. Recall that for potentials
decaying faster than r−2, the zero resonance is absent if the space dimension d is
bigger than or equal to five and its multiplicity is at most one when d is equal to three
or four. The goal of this paper is to treat a class of radially symmetric potentials
decaying like −γr−2 at infinity, where γ > 0 is big such that the condition used
in [Wan1, Wan2] is not satisfied. In this case, there exist infinitely many negative
eigenvalues (see (1.3) for a precise condition). We will give a resolvent expansion
as well as an asymptotic formula for the phase shift. These expansions are to our
knowledge not semi-classical even though there are common features with the more
slowly decaying case.

Consider for d ≥ 2 the d-dimensional Schrödinger operator

Hv = (−4+W )v = 0,

for a radial potential W = W (|x|) obeying

Condition 1.1. 1) W (r) = W1(r) + W2(r); W1(r) = − γ
r2
χ(r > 1) for some

γ > 0,
2) W2 ∈ C(]0,∞[,R),
3) ∃ ε1, C1 > 0 : |W2(r)| ≤ C1r

−2−ε1 for r > 1,
4) ∃ ε2, C2 > 0 : |W2(r)| ≤ C2r

ε2−2 for r ≤ 1.

Here the function χ(r > 1) is a smooth cutoff function taken to be 1 for r ≥ 2 and
0 for r ≤ 1 (see the end of this introduction for the precise definition). Under Condi-
tion 1.1 H is self-adjoint as defined in terms of the Dirichlet form on H1(Rd). Let Hl,
l = 0, 1, . . . , be the corresponding reduced Hamiltonian on L2(R+) corresponding to
the eigenvalue l(l + d− 2) of the Laplace-Beltrami operator on Sd−1

Hlu = −u′′ + (V∞ + V )u. (1.1)

Here

V∞(r) = ν2−1/4
r2

χ(r > 1); ν2 = (l + d
2
− 1)2 − γ, (1.2a)

V (r) = W2(r) +
(l+

d
2
−1)2−1/4

r2

(
1− χ(r > 1)

)
. (1.2b)

Notice that V is small at infinity compared to V∞. We are interested in spectral
and scattering properties of Hl at zero energy in the case

γ > (l + d
2
− 1)2. (1.3)

This condition is equivalent to having ν in (1.2a) purely imaginary (for convenience
we fix it in this case as ν = −iσ, σ > 0), and it implies the existence of a sequence
of negative eigenvalues of Hl accumulating at zero energy.

Our first main result is on the expansion of the resolvent

Rl(k) := (Hl − k2)−1 for k ∈ Γ±θ ,
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where here (for any θ ∈]0, π/2[)

Γ+
θ = {k 6= 0 | 0 < arg k ≤ θ},

Γ−θ = {k 6= 0 | π − θ ≤ arg k < π}.
We say that a solution u to the equation

−u′′(r) +
(
V∞(r) + V (r)

)
u(r) = 0 (1.5)

is regular if the function r → χ(r < 1)u(r) belongs to D(Hl). For any t ∈ R we
introduce the weighted L2-space Ht := 〈r〉−tL2(R+); 〈r〉 = (1 + r2)1/2.

Theorem 1.2. Suppose Condition 1.1 and (1.3) for some (fixed) l ∈ N ∪ {0}. Let
θ ∈]0, π/2[. There exist (finite) rational functions f± in the variable k2ν for k ∈ Γ±θ
for which

lim
Γ±θ 3k→0

Im f±(k2ν) do not exist, (1.6)

there exist Green’s functions for Hl at zero energy, denoted R±0 , and there exists a
real nonzero regular solution to (1.5), denoted u, such that the following asymptotics
hold. For all s > s′ > 1, s ≤ 1 + ε1/2, s

′ ≤ 3:

lim sup
Γ±θ 3k→0

|k|1−s′
∥∥Rl(k)−R±0 − f±(k2ν)|u〉〈u|

∥∥
B(Hs,H−s) <∞. (1.7)

Due to (1.6) the rank-one operators f±(k2ν)|u〉〈u| in (1.7) are non-trivially os-
cillatory. This phenomenon does not occur for low-energy resolvent expansions for
potentials either decaying faster or slower than r−2 (cf. [JN] and [FS, Ya], respec-
tively), nor for sectors where (1.3) is not fulfilled (cf. [Wan2]). Combining Theo-
rem 1.2 and the results of [Wan2], we can deduce the resolvent asymptotics near
threshold for d-dimensional Schrödinger operators with critically decaying, spheri-
cally symmetric potentials, see Theorem 3.7. An advantage to work with spherically
symmetric potentials is that we can diagonalize the operator in spherical harmonics
and explicitly calculate some subtle quantities. For example, one can easily show
that if zero is a resonance of H, then its multiplicity is equal to

(m+ d− 3)!

(d− 2)!(m− 1)!
+

(m+ d− 2)!

(d− 2)!m!

where m ∈ N∪{0} is such that (m+ d
2
−1)2−γ ∈]0, 1]. This shows that multiplicity

of zero resonance grows like γ
d−2
2 when γ is big and d ≥ 3. To study the resolvent

asymptotics for non-spherically symmetric potential W (x) behaving like q(θ)
r2

at in-
finity (x = rθ with r = |x|), one is led to analyze the interactions between different
oscillations and resonant states. This is not carried out in the present work.

Our second main result is on the asymptotics of the phase shift. Let ul be a
regular solution to the reduced Schrödinger equation

−u′′ + (V∞ + V )u = λu; λ > 0.

Write

lim
r→∞

(
ul(r)− C sin

(√
λr +Dl

))
= 0.

The standard definition of the phase shift (coinciding with the time-depending def-
inition) is

σphy
l (λ) = Dl + d−3+2l

4
π.
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The notation σper = σper(t) signifies below the continuous real-valued 2π-periodic
function determined by

{
σper(0) = 0

eπσe−it − eit = r(t)ei(σper(t)−t); r(t) > 0, t ∈ R.
.

Theorem 1.3. Suppose Condition 1.1 and (1.3) for some l ∈ N ∪ {0}. Let

σ =
√
γ − (l + d

2
− 1)2

(recall ν = −iσ). There exist C1, C2 ∈ R such that

σphy
l (λ) + σ ln

√
λ− σper(σ ln

√
λ+ C1)→ C2 for λ ↓ 0. (1.8)

Whence the leading term in the asymptotics of the phase shift is linear in ln
√
λ

while the next term is oscillatory in the same quantity. The (positive) sign agrees
with the well-known Levinson theorem (cf. [Ne, (12.95) and (12.156)]) valid for
potentials decaying faster than r−2. Also the qualitative behaviour of these terms as
σ → 0 (i.e. finiteness in the limit) is agreeable to the case where (1.3) is not fulfilled
(studied in [Ca] from a different point of view).

The bulk of this paper concerns somewhat more general one-dimensional problems
than discussed above. In particular we consider for (d, l) 6= (2, 0) a model with a
local singularity at r = 0 that is more general than specified by Condition 1.1 4)
and (1.2b). This extension does not contribute by any complication and is therefore
naturally included. It would be possible to extend our methods to certain types of
more general local singularities, however this would add some extra complication
that we will not pursue. Our methods rely heavily on explicit properties of solutions
to the Bessel equation as well as ODE techniques. These properties compensate for
the fact that, at least to our knowledge, semi-classical analysis is not doable in the
present context (for instance the semi-classical formula (6.8) for the asymptotics of
the phase shift for slowly decaying potentials is not correct under Condition 1.1.)
See however [CSST] in the case the potential is positive.

One of our motivations for studying a potential with critical fall off comes from
an N -body problem: Consider a 2-cluster N -body threshold under the assumption
of Coulomb pair interactions, this could be given by two atoms each one being
confined in a bound state. Suppose one atom is charged while the other one is
neutral. The effective intercluster potential will in this case in a typical situation
(given by nonzero moment of charge of the bound state of the neutral atom) have r−2

decay although with some angular dependence (the so-called dipole approximation).
Whence we expect (due to the present work) that the N -body resolvent will have
some oscillatory behaviour near the threshold in question. Proving this (and related
spectral and scattering properties) would, in addition to material from the present
paper, rely on a reduction scheme not to be discussed here. We plan to study this
problem in a separate future publication.

In this paper we consider parameters ±ν, z ∈ C satisfying ν = −iσ where σ > 0
and z ∈ C \ {0} with Im z ≥ 0. Powers of z are throughout the paper defined in
terms of the argument function fixed by the condition arg z ∈ [0, π]. We shall use
the standard notation 〈z〉 := (1 + |z|2)1/2. For any given c > 0 we shall use the
notation χ(r > c) to denote a given real-valued function χ ∈ C∞(R+) with χ(r) = 0
for r ≤ c and χ(r) = 1 for r ≥ 2c. We take it such that there exists a real-valued
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function χ< ∈ C∞(R+), denoted χ< = χ(· < c), such that χ2 + χ2
< = 1. Let for

θ ∈ [0, π/2[ and ε > 0

Γθ,ε = {k 6= 0 | 0 ≤ arg k ≤ θ or π − θ ≤ arg k ≤ π} ∩ {|k| ≤ ε}, (1.9)

Γ±θ,ε = Γθ,ε ∩ {±Re k > 0}. (1.10)

2. Model asymptotics

In this Section, we give the resolvent asymptotics at zero for a model operator
under the condition (1.3). See [Wan1]) when (1.3) is not satisfied. Recall firstly
some basic formulas for Bessel and Hankel functions from [Ta1, pp. 228–230] and
[Ta2, pp. 126–127, 204] (or see [Wat]):

Jν(z) =
(z/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1− t2)ν−1/2eizt dt, (2.1a)

∫ 1

−1

(1− t2)ν−1/2 dt =
Γ(1/2)Γ(ν + 1/2)

Γ(ν + 1)
, (2.1b)

H(1)
ν (z) =

J−ν(z)− e−iνπJν(z)

i sin(νπ)
, (2.1c)

H(1)
ν (z) =

(
2
πz

)1/2 ei(z−νπ/2−π/4)

Γ(ν + 1/2)

∫ ∞

0

e−ttν−1/2(1− t
2iz

)ν−1/2 dt. (2.1d)

The functions Jν and H
(1)
ν solve the Bessel equation

z−1/2
(
− d2

dz2
+ ν2−1/4

z2
− 1
)
z1/2u(z) = 0. (2.2)

We have

Jν(z) = eiνπJν̄(−z̄), (2.3a)

H(1)
ν (z) = e−iνπH

(1)
−ν (z) = −H(1)

−ν̄ (−z̄). (2.3b)

2.1. Model operator and construction of model resolvent. Consider

HD = − d2

dr2
+ ν2−1/4

r2
on HD = L2([1,∞[) (2.4)

with Dirichlet boundary condition at r = 1. Let for any ζ ∈ C, φ = φζ be the
(unique) solution to





−φ′′(r) + ν2−1/4
r2

φ(r) = ζ φ(r)

φ(1) = 0

φ′(1) = 1

. (2.5)

This solution φζ is entire in ζ, and

φ0(r) =
r1/2+ν − r1/2−ν

2ν
. (2.6)

In fact, cf. [Ta1, (3.6.27)],

φk2(r) = π
2 sin(νπ)

r1/2
(
Jν̄(k)Jν(kr)− Jν(k)Jν̄(kr)

)
. (2.7)



6 ERIK SKIBSTED AND XUE PING WANG

Let for k ∈ C \ {0} with Im k ≥ 0 and H
(1)
ν (k) 6= 0

φ+
k (r) = r1/2H

(1)
ν (kr)

H
(1)
ν (k)

. (2.8)

Due to (2.3b) the dependence of ν in φ+
k is through ν2 only, i.e. replacing ν → ν̄

yields the same expression (obviously this is also true for φk2). Notice also that φk2
and φ+

k solve the equation

−φ′′(r) + ν2−1/4
r2

φ(r) = k2 φ(r). (2.9)

The kernel RD
k (r, r′) of (HD− k2)−1 for k with Im k > 0 and H

(1)
ν (k) 6= 0 is given by

RD
k (r, r′) = φk2(r<)φ+

k (r>); (2.10)

here and henceforth r< := min(r, r′) and r> := max(r, r′). (The fact that the right
hand side of (2.10) defines a bounded operator on HD follows from the Schur test

and the bounds (2.15) and (2.21) given below.) The condition H
(1)
ν (k) 6= 0 is fulfilled

for k ∈ {Im k > 0} \ iR+ since otherwise k2 would be a non-real eigenvalue of HD.
The zeros in iR+ correspond to the negative eigenvalues of HD. They constitute a
sequence accumulating at zero.

We have the properties, cf. (2.3b),

RD
k (r, r′) = RD

−k̄(r, r
′) = RD

k (r′, r). (2.11)

In the regime where |k| is very small and stays away from the imaginary axis, more
precisely in Γθ,ε for any θ ∈ [0, π/2[ and ε > 0, we can derive a lower bound of

|H(1)
ν (k)| as follows: From (2.1a) and (2.1b) we obtain that

Jν(z) = (z/2)ν

Γ(ν+1)

(
1 +O(z2)

)
. (2.12)

Whence (recall that ν = −iσ where σ > 0) we obtain with Cν := |Γ(ν + 1) sin(νπ)|
|H(1)

ν (k)| ≥
(
|e−σ arg k − e−σπeσ arg k| −O(|k|2)

)
/Cν

≥ e−σθ
(
1− e−σ(π−2θ)

)
/Cν −O(|k|2) for all k ∈ Γθ,ε. (2.13)

In particular for ε > 0 small enough (depending on θ)

∀k ∈ Γθ,ε : |H(1)
ν (k)| ≥ e−σπ/2

(
1− e−σ(π−2θ)

)
/Cν . (2.14)

Note that the bound (2.14) implies that there is a limiting absorption principle
at all real E = k2 with k ∈ Γθ,ε. In particular HD does not have small positive
eigenvalues.

2.2. Asymptotics of model resolvent. Let us note the following global bound
(cf. (2.1d))

|φ+
k (r)| ≤ C

(
r
〈kr〉
)1/2

e−(Im k)r for all k ∈ Γθ,ε and r ≥ 1. (2.15)

Let
Dν = 2−ν/Γ(ν + 1). (2.16)

Notice that D̄ν = D−ν . By (2.1c) and (2.12) we obtain the following asymptotics of
φ+
k as k → 0 in Γθ,ε:

φ+
k (r) = r1/2 D̄νr

−νk−ν − e−σπDνr
νkν +O

(
(kr)2

)

D̄νk−ν − e−σπDνkν +O
(
k2
) . (2.17)
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Introducing

ζ(k) =
2iσe−σπDνk

2ν

D̄ν −Dνe−σπk2ν
, (2.18)

we can slightly modify (2.17) (in terms of (2.6) and by using (2.15)) as

φ+
k (r) = r1/2−ν + ζ(k)φ0(r) + r1/2O

(
(kr)2

)
+
(

r
〈kr〉
)1/2

e−(Im k)rO
(
k2
)
. (2.19)

There is a “global” bound of the third term (due to (2.15)):

|r1/2O
(
(kr)2

)
| ≤ Cr1/2 |kr|2

〈kr〉2 for all k ∈ Γθ,ε and r ≥ 1. (2.20)

As for φk2 we first note the following global bound (cf. (2.1a), (2.7) and [Ol,
Theorem 4.6.1])

|φk2(r)| ≤ C
(

r
〈kr〉
)1/2

e(Im k)r for all k ∈ Γθ,ε and r ≥ 1. (2.21)

Using (2.21) we obtain similarly

φk2(r) = φ0(r) + r1/2O
(
(kr)2

)
+
(

r
〈kr〉
)1/2

e(Im k)rO
(
k2
)
. (2.22)

There is a global bound of the second term:

|r1/2O
(
(kr)2

)
| ≤ Cr1/2 |kr|2

〈kr〉2 e(Im k)r for all k ∈ Γθ,ε and r ≥ 1. (2.23)

Whence in combination with (2.10) we obtain uniformly in k ∈ Γθ,ε and r, r′ ≥ 1

RD
k (r, r′) = RD

0 (r, r′) + ζ(k)T (r, r′) + r1/2(r′)1/2Ek(r, r
′); (2.24a)

RD
0 (r, r′) = φ0(r<)r

1/2−ν
> , (2.24b)

T (r, r′) = φ0(r)φ0(r′), (2.24c)

|Ek(r, r′)| ≤ C
( |k|r>
〈kr>〉

)2

. (2.24d)

Clearly T = |φ0〉〈φ0| is a rank-one operator and the function ζ has a non-trivial
oscillatory behaviour. The error estimate can be replaced by:

∃C > 0∀δ ∈ [0, 2] : |Ek(r, r′)| ≤ C|kr>|δ for all k ∈ Γθ,ε and r, r′ ≥ 1. (2.25)

In particular introducing weighted spaces

HD
s = 〈r〉−sHD,

we obtain

∀ s > 1 : lim
Γθ,ε3k→0

∥∥RD
k −RD

0 − ζ(k)T
∥∥
B(HDs ,HD−s)

= 0. (2.26)

In fact we deduce from (2.24a)-(2.24d) the following more precise result:

Lemma 2.1. For all s > s′ > 1, s′ ≤ 3, there exists C > 0:
∥∥(HD − i)

(
RD
k −RD

0 − ζ(k)T
)∥∥
B(HDs ,HD−s)

≤ C|k|s′−1 for all k ∈ Γθ,ε. (2.27)
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3. Asymptotics for full Hamiltonian, compactly supported
perturbation

Consider with V∞(r) := ν2−1/4
r2

χ(r > 1)

H = − d2

dr2
+ V∞ + V on H := L2(]0,∞[) (3.1)

with Dirichlet boundary condition at r = 0. As for the potential V we impose in
this section

Condition 3.1. 1) V ∈ C(]0,∞[,R),
2) ∃R > 3 : V (r) = 0 for r ≥ R,
3) ∃C1, C2 > 0 ∃κ > 0 : C1(r−2 + 1) ≥ V (r) ≥ (κ2 − 1/4)r−2 − C2.

Notice that the operator H is defined in terms of the (closed) Dirichlet form on
the Sobolev space H1

0 (R+) (i.e. H is the Friedrichs extension), cf. [Da, Lemma
5.3.1]. For the limiting cases C1 =∞ and/or κ = 0 in 3) it is still possible to define
H as the Friedrichs extension of the action on C∞c (R+) however the form domain
of the extension might be different from H1

0 (R+) and some arguments of this paper
would be more complicated. An example of this type (with κ = 0) is discussed in
Appendix B. If V (r) ≥ 3/4r−2 − C the operator H is essentially self-adjoint on
C∞c (R+), cf. [RS, Theorem X.10].

In terms of the resolvent RD
k considered in Section 2 and cutoffs χ1 = χ1(r < 7)

and χ2 = χ2(r > 7) we introduce for k ∈ Γθ,ε

Gk = χ1

(
H − Re k

|Re k| i
)−1

χ1 + χ2R
D
k χ2. (3.2)

Let
G±0 = χ1

(
H ∓ i

)−1
χ1 + χ2R

D
0 χ2 (3.3)

and
K± = HG±0 − I. (3.4)

Notice that the operators K± are compact on Hs := 〈r〉−sH for s > 1.
Due to Lemma 2.1 we have the following expansions in B(Hs) (with s > s′ > 1

and s′ ≤ 3)

∀k ∈ Γ±θ,ε : (H−k2)Gk = I+K±+ζ(k)|ψ0〉〈χ2φ0|+O
(
|k|s′−1

)
; ψ0 := Hχ2φ0. (3.5)

Lemma 3.2. For all k ∈ Γ±θ,ε the following form inequality holds (on Hs for any
s > 1)

±ImGk ≥ χ1

(
H ± i

)−1(
H ∓ i

)−1
χ1. (3.6)

Proof. This is obvious from the fact that ±ImRD
k ≥ 0. �

Proposition 3.3. For all s > 1 the operators I+K± ∈ B(Hs) have zero null space,
i.e.

Ker
(
I +K±

)
= {0}. (3.7)

Proof. We prove only (3.7) for the superscript “+ case”. The “− case” is similar.
Suppose 0 = HG+

0 f for some f ∈ Hs. We shall show that f = 0. Let u0 = G+
0 f .

Integrating by parts yields

0 = Im 〈u0,−Hu0〉 = lim
r→∞

Im
(
ū0u

′
0

)
(r)

= lim
r→∞

Im
(
(1/2− ν)|u0|2(r)/r

)
= σ|〈χ2φ0, f〉|2. (3.8)
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So
〈χ2φ0, f〉 = 0, (3.9)

and therefore (seen again by using the explicit kernel of RD
0 and by estimating by

the Cauchy-Schwarz inequality)

u0 = O(r3/2−s) and u′0 = O(r1/2−s) for r →∞. (3.10)

From (3.10) we can conclude that

u0 = 0; (3.11)

this can be seen by writing u0 as a linear combination of r1/2+ν and r1/2−ν at infinity,
deduce that u0 vanishes at infinity and then invoke unique continuation. For a more
general result (with detailed proof) see Lemma 4.2.

Using Lemmas 2.1 and 3.2, (3.9) and (3.11) we compute

0 = Im 〈f, u0〉 = lim
Γ+
θ,ε3k→0

Im 〈f,Gkf〉 ≥ ‖(H − i
)−1

χ1f‖2. (3.12)

We conclude that
χ1f = 0. (3.13)

So 0 = G+
0 f = χ2R

D
0 χ2f , and therefore

RD
0 χ2f = 0 on supp(χ2). (3.14)

We apply HD to (3.14) and conclude that

χ2f = 0, (3.15)

so indeed f = 0.
�

3.1. Construction of resolvent. Due to Proposition 3.3 we can write, cf. (3.5),

(H − k2)Gk(I +K±)−1 = I + ζ(k)|ψ0〉〈φ±|+O
(
|k|s′−1

)
, (3.16)

for k ∈ Γ±θ,ε : , where

φ± :=
(
(I +K±)−1

)∗
χ2φ0. (3.17)

We have(
I + ζ(k)|ψ0〉〈φ±|

)−1
= I − ζ(k)

η±(k)
|ψ0〉〈φ±|; η±(k) := 1 + ζ(k)〈φ±, ψ0〉. (3.18)

Of course this is under the condition that

η±(k) 6= 0. (3.19)

Lemma 3.4. For all k ∈ Γ±θ,ε the condition (3.19) is fulfilled.

Proof. Let us prove (3.19) for the superscript “+ case”. The “− case” is similar.
Suppose on the contrary that η+(k) = 0 for some k ∈ Γ+

θ,ε. Then

k2ν =
D̄ν

Dν

eσπ

1− 2iσ〈φ+, ψ0〉
. (3.20)

k2ν be oscillatory, the set of all solutions of (3.20) in Γ+
θ,ε constitutes a sequence

converging to zero. In particular we can pick a sequence Γ+
θ,ε 3 kn → 0 with

0 6= η+(kn) → 0. We apply (3.16) and (3.18) to this sequence {kn}. Substituting
(3.18) into (3.16) and multiplying the equation obtained by η(kn), we get

(H − k2
n)Gkn(I +K+)−1(η+(kn)− ζ(kn)|ψ0〉〈φ+| ) = η+(kn)(1 + +O

(
|kn|s

′−1
)
).
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Taking the limit n→∞, this leads to

−ζ(∞)HG+
∞(I +K+)−1|ψ0〉〈φ+| = 0. (3.21)

Here ζ(∞) := limn→∞ ζ(kn) can be computed by substituting k2ν given by (3.20)
in the expression for ζ(k) (this is the limit and one sees that it is nonzero), and
similarly for G+

∞ := limn→∞Gkn . We learn that

Hu+ = 0; u+ := G+
∞f

+, f+ := (I +K+)−1ψ0. (3.22)

Now, the argument of integration by parts used in (3.8) applied to u+ leads to

0 = σ
(∣∣1− ζ(∞)

2ν

∣∣2 −
∣∣ ζ(∞)

2ν

∣∣2
)
|〈χ2φ0, f

+〉|2. (3.23)

We claim that

〈χ2φ0, f
+〉 = 0. (3.24)

In fact for any k ∈ Γ+
θ,ε obeying (3.20),

∣∣1− ζ(∞)
2ν

∣∣2/
∣∣ ζ(∞)

2ν

∣∣2 = |eσπk−2ν |2 = e2σ(π−2 arg k) > 1, (3.25)

whence indeed (3.24) follows from (3.23).
Using (3.24) we can mimic the rest of the proof of Proposition 3.3 and eventually

conclude that f+ = 0. This is a contradiction since ψ0 6= 0.
�

Combining (3.16)–(3.19) we obtain (possibly by taking ε > 0 smaller)

∀k ∈ Γ±θ,ε : (H − k2)Gk(I +K±)−1
(
I − ζ(k)

η±(k)
|ψ0〉〈φ±|

)(
I +O

(
|k|s′−1

))
= I. (3.26)

In particular we have derived a formula for the resolvent.

3.2. Asymptotics of resolvent. Let u be any nonzero regular solution to the
equation

−u′′(r) +
(
V∞(r) + V (r)

)
u(r) = 0. (3.27)

By regular solution, we means that the function r → χ(r < 1)u(r) belongs to D(H).
It will be shown in Appendix A that the regular solution u is fixed up to a constant
and can be chosen real-valued. See (3.33c) for a formula and for further elaboration.
Let

R(k) := (H − k2)−1 for all k ∈ Γ±θ,ε ∩ {Im k > 0}. (3.28)

Theorem 3.5. There exist (finite) rational functions f± in the variable k2ν for
k ∈ Γ±θ,ε for which

lim
Γ±θ,ε3k→0

Im f±(k2ν) do not exist, (3.29)

there exist Green’s functions for H at zero energy, denoted R±0 , and there exists a real
nonzero regular solution to (3.27), denoted u, such that the following asymptotics
hold. For all s > s′ > 1, s′ ≤ 3, there exists C > 0:

∀ k ∈ Γ±θ,ε ∩ {Im k > 0} :
∥∥(H − i)

(
R(k)−R±0 − f±(k2ν)|u〉〈u|

)∥∥
B(Hs,H−s) ≤ C|k|s′−1. (3.30)

Here

∀s > 1 : (H − i)R±0 = I − iR±0 ∈ B(Hs,H−s) and (H − i)u = −iu ∈ H−s. (3.31)
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Proof. By (3.26)

R(k) = Gk(I +K±)−1
(
I − ζ(k)

η±(k)
|ψ0〉〈φ±|

)(
I +O

(
|k|s′−1

))
(3.32)

for k ∈ Γ±θ,ε. We expand the product yielding up to errors of order O
(
|k|s′−1

)

R(k) ≈ R±0 + ζ(k)
η±(k)
|u±1 〉〈u±2 |; where (3.33a)

R±0 = G±0 (I +K±)−1, (3.33b)

u±1 = −R±0 ψ0 + χ2φ0, (3.33c)

u±2 = φ± =
(
(I +K±)−1

)∗
χ2φ0. (3.33d)

Clearly, u±2 6= 0. According to (3.5), Hu±1 = −ψ0 + H(χ2φ0) = 0. In addition,
u±1 6= 0. In fact for r > 14 (ensuring that χ2(r) = 1) one has

u±1 = −RD
0 f
± + φ0, with f± = χ2(1 +K±)−1ψ0 ∈ Hs, s > 1.

Using then (2.24b) and (2.6) we compute

r−1/2−ν(r d
dr
− (1/2− ν)

)
u±1 (r) = 1−

∫ ∞

r

τ
1
2
−νf±(τ)dτ,

showing that u±1 (r) 6= 0 for all r large enough. By the uniqueness of regular solutions,
there exist constants b± 6= 0 such that u±1 = b±u, where u is a real-valued nonzero
regular solution to (3.27). Combining the duality relation R(k)∗ = R(k) and (3.33a),
we obtain that

u±2 = c±u∓1 = c±b∓u for some constants c± 6= 0. (3.34)

Whence indeed (3.30) holds with

R±0 = G±0 (I +K±)−1 and f±(k2ν) = C± ζ(k)
η±(k)

, (3.35)

where the constants C± = c±b∓b± are nonzero. Whence indeed (3.29) holds. The
properties (3.31) follow from the expressions (3.33b) and (3.33c). �
Corollary 3.6. There is a limiting absorption principle at energies in ]0, ε2]:

∀ k′ ∈ [−ε, ε] \ {0} ∀s > 1 : R(k′) := lim
Γθ,ε∩{Im k>0}3k→k′

R(k) exists in B(Hs,H−s).
(3.36)

In particular
]0, ε2] ∩ σpp(H) = ∅. (3.37)

Moreover the bounds (3.30) extend to Γ±θ,ε.
Introducing the spectral density as an operator in B(Hs,H−s), s > 1,

δ(H − k2) :=
R(k)−R(−k)

2πi
for 0 < k ≤ ε,

we have
lim
k↘0

δ(H − k2) does not exist. (3.38)

Proof. Only (3.38) needs a comment: We represent R(−k) = R(k)∗ and use (3.30)
yielding

δ(H − k2) ≈ (2πi)−1
(
R+

0 −
(
R+

0

)∗)
+ Im f+(k2ν)

π
|u〉〈u|.

The right hand side does not converge, cf. (3.29). �
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3.3. d-dimensional Schrödinger operator. As another application of Theorem 3.5,
we consider a d-dimensional Schrödinger operator with spherically symmetric po-
tential of the form

H = −∆ +W (|x|)
in L2(Rd), d ≥ 2, where W is continuous and W (|x|) = − γ

|x|2 for x outside some

compact set and γ > (d
2
− 1)2. Assume that

γ 6= (l + d
2
− 1)2, l ∈ N. (3.39)

Denote Nγ = {l ∈ N ∪ {0}|(l + d
2
− 1)2 < γ}. Let πl denote the spectral projection

associated to the eigenvalue l(l+d−2), l ∈ N∪{0}, of the Laplace-Beltrami operator
on Sd−1 (and also its natural extension as operator on H = L2(Rd)). Then H can
be decomposed into a direct sum

H =
∞⊕

l=0

H̃lπl,

where

H̃l = − d2

dr2
− d− 1

r

d

dr
+
l(l + d− 2)

r2
+W (r)

on H̃ := L2(R+; rd−1dr). When l ∈ Nγ, we can apply Theorem 3.5 with ν = νl,
ν2
l = (l + d

2
− 1)2 − γ < 0, to expand the resolvent (H̃l − k2)−1 up to O(|k|ε)

(see Section 6 for a relevant reduction of H̃l used here). For l 6∈ Nγ, the resolvent
(H̃l−k2)−1 may have singularities at zero, according to whether zero is an eigenvalue

and/or a resonance of H̃l (defined below).

Denote H̃s = 〈r〉−sH̃ and Hs = 〈x〉−sH, s ∈ R. Under the condition (3.39), we
say that 0 is a resonance of H if there exists u ∈ H−1 \H such that Hu = 0. We call
such function u a resonance function. (If the condition (3.39) is not satisfied, the
definition of zero resonance has to be modified.) The number 0 is called a regular
point of H if it is neither an eigenvalue nor a resonance of H. The same definitions

apply for H̃l on H̃. Clearly Lemma 4.2 stated below shows that for any resonance
function u necessarily πlu = 0 for all l ∈ Nγ. In fact Lemma 4.2 shows that 0 is a

regular point of H̃l, l ∈ Nγ.
If Hu = 0 and u ∈ H−1, then by expanding u in spherical harmonics, one can

show that (cf. Theorem 4.1 of [Wan1])

u(rθ) =
ψ(θ)

r
d−2
2

+µ
+ v, (3.40a)

where v ∈ L2(|x| > 1),

µ =

√
(m+

d

2
− 1)2 − γ, m = minN \ Nγ, (3.40b)

ψ(θ) =

nµ∑

j=1

− 1

2µ
〈(W +

γ

|y|2 )u, |y|− d−2
2

+µϕ(j)
µ 〉ϕ(j)

µ (θ), (3.40c)

Here {ϕ(j)
µ , 1 ≤ j ≤ nµ} is an orthonormal basis of the eigenspace of −∆Sd−1 with

eigenvalue m(m+ d− 2) and nµ its multiplicity (cf. [Ta2]):

nµ =
(m+ d− 3)!

(d− 2)!(m− 1)!
+

(m+ d− 2)!

(d− 2)!m!
. (3.40d)
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The expansion (3.40a) implies that a solution u to Hu = 0 with u ∈ H−1 is
a resonance function of H if and only if µ ∈]0, 1] and ψ 6= 0 and that if zero
is a resonance, its multiplicity (cf. [JN, Wan1] for the definition) is at most nµ.
Conversely, if the equation Hu = 0 has a solution u ∈ H−1 \H, then the equation

H̃mg = 0

has a nonzero regular solution g ∈ H̃−1 decaying like 1/(r
d−2
2

+µ) at infinity. It follows
that uj = g ⊗ ϕ(j)

µ , 1 ≤ j ≤ nµ, are all resonance functions of H. This proves that
if 0 is a resonance of H its multiplicity is equal to nµ.

Now let us come back to the asymptotics of the resolvent R(k) = (H − k2)−1

near 0. If 0 is a regular point of H (this is a generic condition and concerns by the
discussion above only sectors H̃l with l 6∈ Nγ), then it is a regular point for all H̃l

with l 6∈ Nγ. One deduces easily that there exists R
(l)
0 ∈ B(H̃s, H̃−s) for all s > 1,

such that for any such s there exists ε > 0:

(H̃l − k2)−1 = R
(l)
0 +Ol(|k|ε) in B(H̃s, H̃−s) for |k| small and k2 6∈ [0,∞[. (3.41)

The error term can be uniformly estimated in l as in [Wan1], yielding an expansion
for R(k). If 0 is a resonance but not an eigenvalue of H, then 0 is a regular point for
all H̃l with l 6∈ Nγ ∪ {m} and the expansion (3.41) remains valid for such l. When
l = m, (H̃m−k2)−1 contains a singularity at 0 which can be calculated as in [Wan2].
Let

kµ =

{
k2µ, if µ ∈]0, 1[

k2 ln(k2), if µ = 1.
(3.42)

Then there exist g ∈ H̃−1 \ H̃ verifying H̃mg = 0, a rank-one operator-valued

entire function ζ → Fm(ζ) ∈ B(H̃s, H̃−s), s > 1, verifying Fm(0) = 0 and R
(m)
0 ∈

B(H̃s, H̃−s), s > 3, such that for any s > 3

(H̃m− k2)−1 =
eiµπ

kµ
|g〉〈g|+ 1

kµ
Fm

(
k2

kµ

)
+R

(m)
0 +O

( |k|2
|kµ|

)
in B(H̃s, H̃−s). (3.43)

In particular if µ ∈]0, 1
2
] one has

(H̃m − k2)−1 =
eiµπ

kµ
|g〉〈g|+R

(m)
0 +O(|k|) in B(H̃s, H̃−s), s > 3,

while in the “worse case”, µ = 1, the error term in (3.43) is of order O(| ln k|−1).
Summing up we have proved the following

Theorem 3.7. Assume that W (|x|) is continuous and W (|x|) = − γ
|x|2 outside some

compact set with γ > (d
2
− 1)2 satisfying (3.39).

i) Suppose that zero is a regular point of H. Then there exist R±0 ∈ B(Hs,H−s)
and vl ∈ H̃−s \ {0} for all s > 1 and l ∈ Nγ, such that for any s > 1 there
exists ε > 0:

R(k) =
∑

l∈Nγ
f±l (k2νl)( |vl〉〈vl| )⊗ πl

+R±0 +O(|k|ε) in B(Hs,H−s) for k ∈ Γ±θ . (3.44)

Here f±l (k2νl) are the oscillatory functions given in Theorem 3.5 with ν =

νl = −i
√
γ − (l + d

2
− 1)2, l ∈ Nγ.
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ii) Suppose that zero is a resonance of H. Let m and µ be defined by (3.40b).
Then µ ∈]0, 1] and the multiplicity of the zero resonance of H is equal to

(m+ d− 3)!

(d− 2)!(m− 1)!
+

(m+ d− 2)!

(d− 2)!m!
.

Suppose in addition that zero is not an eigenvalue of H. Then there exist

g ∈ H̃−1 \ H̃ with H̃mg = 0, a rank-one operator-valued analytic function

ζ → Fm(ζ) ∈ B(H̃s, H̃−s), s > 1, defined for ζ near 0 verifying Fm(0) = 0,
and R±1 ∈ B(Hs,H−s), s > 3, such that for any s > 3

R(k) =

(
eiµπ

kµ
|g〉〈g|+ 1

kµ
Fm

(
k2

kµ

))
⊗ πm

+
∑

l∈Nγ
f±l (k2νl)( |vl〉〈vl| )⊗ πl

+R±1 +O(| ln k|−1) in B(Hs,H−s) for k ∈ Γ±θ . (3.45)

Here f±l and vl are the same as in i).

The case that 0 is an eigenvalue of H can be studied in a similar way. The zero
eigenfunctions of H may have several angular momenta l > m and the asymptotics
of R(k) up to o(1) as k → 0 contains many terms and we do not give details here.
Note that if (3.39) is not satisfied and γ = (l + d

2
− 1)2 for some l ∈ N ∪ {0},

(H̃l − k2)−1 may contain a term of the order ln k as k → 0.

4. Asymptotics for full Hamiltonian, more general perturbation

We shall “solve” the equation

−u′′(r) +
(
V∞(r) + V (r)

)
u(r) = 0 (4.1)

on the interval I =]0,∞[ for a class of potentials V with faster decay than V∞ at

infinity (recall V∞(r) = ν2−1/4
r2

χ(r > 1)). In particular we shall show absence of zero
eigenvalue for a more general class of perturbations than prescribed by Condition
3.1. Explicitly we keep Conditions 3.1 1) and 3) but modify Condition 3.1 2) as

2)’ V (r) = O(r−2−ε), ε > 0.

This means that we now impose

Condition 4.1. 1) V ∈ C(]0,∞[,R),
2) V (r) = O(r−2−ε), ε > 0,
3) ∃C1, C2 > 0 ∃κ > 0 : C1(r−2 + 1) ≥ V (r) ≥ (κ2 − 1/4)r−2 − C2.

Lemma 4.2. Under Condition 4.1 suppose u is a distributional solution to (4.1)
obeying one of the following two conditions:

1) u ∈ L2
−1 (at infinity).

2) u(r)/
√
r → 0 and u′(r)

√
r → 0 for r →∞.

Then

u = 0. (4.2)
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Proof. Let φ±(r) = r1/2±ν . Then φ± are linear independent solutions to the equation

−u′′(r) + V∞(r)u(r) = 0; r > 2. (4.3)

First we shall show that

u = O(r1/2−ε) and u′ = O(r−1/2−ε). (4.4)

Note that under the condition 1) in fact u′ ∈ L2 (at infinity) due to a standard
ellipticity argument.

We shall apply the method of variation of parameters. Specifically, introduce
“coefficients” a+

2 and a−2 of the ansatz

u = a+φ+ + a−φ−. (4.5)

Using the differential equations for a+ and a− we shall derive estimates of these
quantities.

The equations read(
φ+ φ−

d
dτ
φ+ d

dτ
φ−

)
d

dτ

(
a+

a−

)
= V

(
0 0
φ+ φ−

)(
a+

a−

)
. (4.6)

Note that the Wronskian W (φ−, φ+) = φ− d
dr
φ+ − φ+ d

dr
φ− = 2ν. (4.6) can be

transformed into
d

dr

(a+

a−

)
= N

(a+

a−

)
,

where

N =
V

2ν

(
φ−φ+ (φ−)2

−(φ+)2 −φ−φ+

)
.

Clearly for V obeying Condition 4.1 the quantity N = O(r−1−ε) and whence it
can be integrated to infinity. Whence there exist

a±(∞) = lim
r→∞

a±(r);

in fact
a±(∞)− a±(r) = O(r−ε). (4.7)

We need to show that
a±(∞) = 0. (4.8)

Note that (
φ+ φ−

d
dτ
φ+ d

dτ
φ−

)(
a+

a−

)
=

(
u
u′

)
. (4.9)

We solve for (a+, a−) and multiply the result by r−1/2. Under the condition 1) each
component of the right hand side of the resulting equation is in L2. Whence also
a±(∞)/r1/2 ∈ L2 and (4.8) and therefore (4.4) follow. We argue similarly under the
condition 2).

To show (4.2) note that the considerations preceding (4.8) hold for all solutions
distributional u (not only a solution u obeying 1) or 2)) yielding without 1) nor 2)
the bounds (4.4) with ε = 0. In particular for a solution ũ with W (u, ũ) = 1
(assuming conversely that u 6= 0) we have

∫ r

1

W (u, ũ)(x)x−1 dx = ln r.

The right hand side diverges while the left hand side converges due to (4.4), and
(4.2) follows. �
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Using Lemma 4.2 we can mimic Section 3 and obtain similar results for H =
− d2

dr2
+ V∞ + V with V satisfying (the more general) Condition 4.1. In particu-

lar Theorem 3.5 and Corollary 3.6 hold under Condition 4.1 provided that we in
Theorem 3.5 impose the additional condition

s ≤ 1 + ε/2. (4.10)

This is here needed to guarantee that the operators K± of (3.4) are compact on Hs.
Also Theorem 3.7 has a similar extension. We leave out further elaboration.

5. Regular positive energy solutions and asymptotics of phase shift

Under Condition 3.1, or in fact more generally under Condition 4.1, we can define
the notion of regular positive energy solutions as follows: Let k ∈ R+. A solution u
to the equation

−u′′(r) +
(
V∞(r) + V (r)

)
u(r) = k2u(r) (5.1)

is called regular if the function r → χ(r < 1)u(r) belongs to D(H). Notice that
this definition naturally extends the one applied in Section 3 in the case k = 0.
Again we claim that the regular solution u is fixed up to a constant (and hence in
particular can be taken real-valued): For the uniqueness we may proceed exactly
as in Appendix A (uniqueness at zero energy). For the existence part we use the
zero energy Green’s function R+

0 and the regular zero energy solution u appearing
in Theorem 3.5. Consider the equation

uk2 = u+ k2R+
0 χ(· < 1)uk2 . (5.2)

Notice that a solution to (5.2) indeed is a solution to (5.1) for r < 1 and hence it
can be extended to a global solution ũk2 . Clearly χ(· < 1)ũk2 ∈ D(H) so ũk2 is a
regular solution. It remains to solve (5.2) for some nonzero uk2 . For that we let
K = R+

0 χ(· < 1) and note that K is compact on H−s for any s > 1. Whence we
have

uk2 = (I − k2K)−1u, (5.3)

provided that
Ker(I − k2K) = {0}. (5.4)

We are left with showing (5.4). So suppose u0 = k2Ku0 for some u0 ∈ ∩s>1H−s,
then we need to show that u0 = 0. Notice that (H − k2χ(· < 1))u0 = 0 and that
here the second term can be absorbed into the potential V . The computation (3.8)
shows that also in the present context

0 = lim
r→∞

Im
(
ū0u

′
0

)
(r) = lim

r→∞
Im
(
(1/2− ν)|u0|2(r)/r

)
. (5.5)

From (5.5) we deduce the condition Lemma 4.2 1) with u → u0 and whence from
the conclusion of Lemma 4.2 that indeed u0 = 0.

Now let uk2 denote any nonzero real regular solution. By using the variation of
parameters formula, more specifically by replacing the functions φ± in the proof of
Lemma 4.2 by cos(k·) and sin(k·) and repeating the proof (see Step I of the proof
of Theorem 5.3 stated below for details), we find the asymptotics

lim
r→∞

(
uk2(r)− C sin

(
kr + σsr

))
= 0. (5.6)

Here C = C(k) 6= 0. Assuming (without loss) that C > 0 the (real) constant
σsr = σsr(k) is determined modulo 2π.
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Definition 5.1. The quantity σsr = σsr(k) introduced above is called the phase shift
at energy k2.

Definition 5.2. The notation σper = σper(t) signifies the continuous real-valued
2π-periodic function determined by{

σper(0) = 0

eπσe−it − eit = r(t)ei(σper(t)−t); t ∈ R, r(t) > 0
. (5.7)

Theorem 5.3. Suppose Condition 4.1. The phase shift σsr(k) can be chosen con-
tinuous in k ∈ R+. Any such choice obeys the following asymptotics as k ↓ 0: There
exist C1, C2 ∈ R such that

σsr(k) + σ ln k − σper(σ ln k + C1)→ C2 for k ↓ 0. (5.8)

Proof. Step I We shall show the continuity. From (5.2) and (5.3) we see that for
any r > 0 the functions ]0,∞[3 k → uk2(r) and ]0,∞[3 k → u′k2(r) are continuous.
Similar statements hold upon replacing uk2 → Reuk2 and uk2 → Imuk2 which
are both real-valued regular solutions (solving (5.1) for r < 1). Since uk2 6= 0
one of these functions must be nonzero. Without loss we can assume that uk2
is a real-valued nonzero regular solution obeying that for r = 1/2 the functions
]0,∞[3 k → uk2(r) and ]0,∞[3 k → u′k2(r) are continuous. By a standard regularity
result for linear ODE’s with continuous coefficients these results then hold for any
r > 0 too. Moreover (to used in Step II) we have (again for r > 0 fixed)

uk2(r)− u(r) = O(k2) for k ↓ 0 (5.9a)

u′k2(r)− u′(r) = O(k2) for k ↓ 0. (5.9b)

We introduce
φ+(r) = cos kr and φ−(r) = sin kr. (5.10)

Mimicking the proof of Lemma 4.2 we write

uk2 = a+φ+ + a−φ−. (5.11)

Noting that the Wronskian W (φ−, φ+) = −k we have

d

dr

(a+

a−

)
= N

(a+

a−

)
, (5.12)

where

N = −k−1(V∞ + V )

(
φ−φ+ (φ−)2

−(φ+)2 −φ−φ+

)
. (5.13)

Since N = O(r−2) there exist

a±(∞) = lim
r→∞

a±(r). (5.14)

By the same argument as before either a+(∞) 6= 0 or a−(∞) 6= 0. We write

(a+(∞), a−(∞))/
√
a+(∞)2 + a−(∞)2 = (sinσsr, cosσsr) (5.15)

and conclude the asymptotics (5.6) with some C 6= 0. It remains to see that a±(∞)
are continuous in k (then by (5.15) σsr can be chosen continuous too). For that we
use the “connection formula”

(uk2
u′k2

)
=

(
φ+ φ−

φ+′ φ−′

)(a+

a−

)
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which is “solved” by

(a+

a−

)
= −k−1

(
φ−′ −φ−
−φ+′ φ+

)(uk2
u′k2

)
. (5.16)

We use (5.16) at r = 1/2. By the comments at the beginning of the proof the
right hand side is continuous in k and therefore so is the left hand side. Solving
(5.12) by integrating from r = 1/2 and noting that (5.13) is continuous in k we then
conclude that a±(r) are continuous in k for any r > 1/2. Since the limits (5.14)
are taken locally uniformly in k > 0 we consequently deduce that indeed a±(∞) are
continuous in k.
Step II We shall show (5.8) under Condition 3.1. We shall mimic Step I with (5.10)
replaced by

φ+(r) = r1/2H(1)
ν (kr) and φ−(r) = r1/2H

(1)
−ν (kr). (5.17)

For completeness of presentation note that in terms of another Hankel function, cf.

[Ta1, (3.6.31)], φ−(r) = r1/2H
(2)
ν (kr). We compute the Wronskian W (φ−, φ+) =

4i/π, cf. (2.1c) and [Ta1, (3.6.27)]. Since V (r) = 0 for r ≥ R

a±(r) = a±(∞) for r ≥ R. (5.18)

Moreover (5.16) reads

(a+

a−

)
= π

4i

(
φ−′ −φ−
−φ+′ φ+

)(uk2
u′k2

)
. (5.19)

We will use (5.19) at r = R. Clearly the right hand side is continuous in k > 0 and
therefore so is the left hand side. From the asymptotics

φ+(r)− Cν
(

2
πk

)1/2
eikr → 0 for r →∞, (5.20)

φ−(r)− C−ν
(

2
πk

)1/2
e−ikr → 0 for r →∞; (5.21)

Cν := e−iπ(2ν+1)/4,

we may readily rederive the continuity statement shown more generally in Step I.
The point is that now we can “control” the limit k → 0. To see this we need to
compute the asymptotics of the matrix in (5.19) as k → 0 (with r = R). Using
(2.1c) we compute

φ+(R) =
1

i sin(νπ)

( 2νR
1
2
−ν

Γ(1− ν)
k−ν − e−σπ

2−νR
1
2

+ν

Γ(1 + ν)
kν +O(k2)

)
, (5.22a)

φ−(R) =
1

−i sin(νπ)

( 2νR
1
2
−ν

Γ(1− ν)
k−ν − eσπ

2−νR
1
2

+ν

Γ(1 + ν)
kν +O(k2)

)
, (5.22b)

φ+′(R) =
1

i sin(νπ)

(
(2−1 − ν)

2νR−
1
2
−ν

Γ(1− ν)
k−ν − e−σπ(2−1 + ν)

2−νR−
1
2

+ν

Γ(1 + ν)
kν +O(k2)

)
,

(5.22c)

φ−
′
(R) =

1

−i sin(νπ)

(
(2−1 − ν)

2νR−
1
2
−ν

Γ(1− ν)
k−ν − eσπ(2−1 + ν)

2−νR−
1
2

+ν

Γ(1 + ν)
kν +O(k2)

)
.

(5.22d)
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We combine (5.9a) and (5.9b) for r = R with (5.18)–(5.22d) and obtain

uk2(r) =
(

2
πk

)1/2
(
π
4i

Cν
i sin(νπ)

(
eσπDkν −Dk−ν

)
+O(k2)

)
eikr + h.c.+ o(r0); (5.23)

D :=
2νR

1
2
−ν

Γ(1− ν)

(
2−1−ν
R

u(R)− u′(R)
)
.

Here the term O(k2) depends on R but not on r and the term o(r0) depends on k.
The second term, denoted by h.c., is given as the hermitian (or complex) conjugate
of the first term. Note that D 6= 0.

We write D = |D|eiθ0 yielding

eσπDkν −Dk−ν = |eσπDkν −Dk−ν |ei(σper(σ ln k+θ0)−(σ ln k+θ0)). (5.24)

Next we substitute (5.24) into (5.23), use that Cν = |Cν |e−iπ/4 and conclude (5.8)
with

C1 = θ0 and C2 = π/4− θ0 + 2πp for some p ∈ Z. (5.25)

Step III We shall show (5.8) under Condition 4.1. This is done by modifying Step II
using the proof of Step I too. Explicitly using again the functions φ± of (5.17) “the
coefficients” a± need to be constructed. Since V is not assumed to be compactly
supported these coefficients will now depend on r. We first construct them at any
large R, this is by the formula (5.19) (at r = R). Then the modification of (5.12)

d

dr

(a+

a−

)
= N

(a+

a−

)
, (5.26)

with

N = π
4i
V

(
φ−φ+ (φ−)2

−(φ+)2 −φ−φ+

)
, (5.27)

is invoked. We integrate to infinity using that N = O(r−1−ε) uniformly in k > 0.
This leads to

a±(r) = a±(∞) +O(r−ε), (5.28a)

a±(R) = a±(∞) +O(R−ε), (5.28b)

with the error estimates being uniform in k > 0. In particular for r ≥ R

a±(r) = a±(R) +O(R−ε) +O(r−ε) (5.29)

uniformly in k > 0.
From (5.29) we obtain the following modification of (5.23)

uk2(r) =
(

2
πk

)1/2
(
π
4i

Cν
i sin(νπ)

(
eσπDkν −Dk−ν

)
+O(k2) +O(R−ε)

)
eikr

+ h.c.+ o(r0);

D = D(R) :=
2νR

1
2
−ν

Γ(1− ν)

(
2−1−ν
R

u(R)− u′(R)
)
.

The term O(k2) depends on R, and the term O(R−ε) depends on k but it is estimated
uniformly in k > 0. By Lemma 4.2 the exist δ > 0 and a sequence Rn → ∞ such
that

|D(Rn)| ≥ δ for all n. (5.30)
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Using these values of D in (5.24) we can write

eσπDkν −Dk−ν = |eσπDkν −Dk−ν |ei(σper(σ ln k+θ)−(σ ln k+θ)); (5.31)

D = D(Rn), θ = θn ∈ [0, 2π[.

We can assume that for some θ0 ∈ [0, 2π]

θn → θ0 for n→∞. (5.32)

Using this number θ0 we obtain again (5.8) with C1 and C2 given as in (5.25). �

6. Asymptotics of physical phase shift for a potential like
−γχ(r > 1)r−2

We shall reduce a d-dimensional Schrödinger equation to angular momentum sec-
tors and discuss the asymptotics of the “physical” phase shift for small angular
momenta in the low energy regime.

We consider for d ≥ 2 the stationary d-dimensional Schrödinger equation

Hv = (−4+W )v = λv; λ > 0,

for a radial potential W = W (|x|) obeying

Condition 6.1. 1) W (r) = W1(r) + W2(r); W1(r) = − γ
r2
χ(r > 1) for some

γ > 0,
2) W2 ∈ C(]0,∞[,R),
3) ∃ ε1, C1 > 0 : |W2(r)| ≤ C1r

−2−ε1 for r > 1,
4) ∃ ε2, C2 > 0 : |W2(r)| ≤ C2r

ε2−2 for r ≤ 1.

Under Condition 6.1 H = −4 + W is self-adjoint as defined in terms of the
Dirichlet form on H1(Rd), cf. [DS]. Let Hl, l = 0, 1, . . . , be the corresponding
reduced Hamiltonian corresponding to an eigenvalue l(l + d − 2) of the Laplace-
Beltrami operator on Sd−1

Hlu = −u′′ + (V∞ + V )u. (6.1)

Here

V∞(r) = ν2−1/4
r2

χ(r > 1); ν2 = (l + d
2
− 1)2 − γ, (6.2a)

V (r) = W2(r) +
(l+

d
2
−1)2−1/4

r2

(
1− χ(r > 1)

)
, (6.2b)

and the stationary equation reads

−u′′ + (V∞ + V )u = λu. (6.3)

Notice that for

γ > (l + d
2
− 1)2, (6.4)

and

(d, l) 6= (2, 0), (6.5)

indeed Condition 4.1 is fulfilled and Hl coincides with the Hamiltonian given by the
construction of Section 4. The case (d, l) = (2, 0) needs a separate consideration
which is given in Appendix B.
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Under the conditions (6.4) and (6.5) let ul be a regular solution to the reduced
Schrödinger equation (6.3). Write

lim
r→∞

(
ul(r)− C sin

(√
λr +Dl

))
= 0. (6.6)

The standard definition of the phase shift (coinciding with the time-depending def-
inition) is

σphy
l (λ) = Dl + d−3+2l

4
π. (6.7)

It is known from [Ya, DS] that for a potential W (r) behaving at infinity like −γr−µ
with γ > 0 and µ ∈]1, 2[

∃σ0 ∈ R : σphy
l (λ)−

∫ ∞

R0

(√
λ−

√
λ−W (r)

)
dr → σ0 for λ ↓ 0. (6.8)

Here R0 is any sufficiently big positive number, and the integral does not have a
(finite) limit as λ ↓ 0. In the present case, µ = 2, (6.8) indicates a logarithmic
divergence. This is indeed occurring although (6.8) is incorrect for µ = 2. The
correct behaviour of the phase shift under the conditions (6.4) and (6.5) follows
directly from Section 5:

Theorem 6.2. Suppose Condition 6.1 and (6.4) for some l ∈ N ∪ {0}. Let

σ =
√
γ − (l + d

2
− 1)2. (6.9)

The phase shift σphy
l (λ) can be chosen continuous in λ ∈ R+. Any such choice obeys

the following asymptotics as λ ↓ 0: There exist C1, C2 ∈ R such that

σphy
l (λ) + σ ln

√
λ− σper(σ ln

√
λ+ C1)→ C2 for λ ↓ 0. (6.10)

Note that we have included the case (d, l) = (2, 0) in this result. The necessary
modifications of Section 5 for this case are outlined in Appendix B.

Appendix A. Regular zero energy solutions

We shall elaborate on the notion of regular solutions as used in Sections 3 and 4.
Recall from the discussion around (3.27) that we call a solution u to (3.27) for regular
if r → χ(r < 1)u(r) belongs to D(H) where H is defined in terms of a potential
V satisfying Condition 3.1 (or Condition 4.1). The existence of a (nonzero) regular
solution is shown explicitly by the formula (3.33c). We shall show that the regular
solution is unique up to a constant. Notice that as a consequence of this uniqueness
result a regular solution is real-valued up to constant.

Suppose conversely that all solutions are regular. Due to [RS, Theorem X.6 (a)]
there exists a nonzero solution v to

−v′′(r) +
(
V∞(r) + V (r)

)
v(r) = iv(r) (A.1)

which is in L2 at infinity. By the variation of parameter formula now based on
the basis of regular solutions to (3.27), cf. the proof of [RS, Theorem X.6 (b)], we
conclude that v ∈ D(H) and that (H − i)v = 0. This violates that H is self-adjoint.



22 ERIK SKIBSTED AND XUE PING WANG

Appendix B. Case (d, l) = (2, 0)

For (d, l) = (2, 0) Condition 4.1 fails for the operator Hl of Section 6 (this example
would require κ = 0 in Condition 4.1 3)). The form domain is not H1

0 (R+) is this
case. The form is given as follows:

D(Q) = {f ∈ L2(R+)| g ∈ L2(R+) where g(r) = f ′(r)− 1
2r
f(r)}, (B.1a)

Q(f) =

∫ ∞

0

(
|f ′(r)− 1

2r
f(r)|2 +W (r)|f(r)|2

)
dr; f ∈ D(Q). (B.1b)

This is a closed semi-bounded quadratic form and the domain D(H) of the cor-
responding operator H (cf. [Da, RS]) is characterized as the subset of f ’s in D(Q)
for which

h ∈ L2(R+) where h(r) :=
(
− d2

dr2
− 1

4r2
+W (r)

)
f(r) as a distribution on R+, (B.2)

and for f ∈ D(H) we have

(Hf)(r) =
(
− d2

dr2
− 1

4r2
+W (r)

)
f(r). (B.3)

To see the connection to the two-dimensional Hamiltonian of Section 6 defined
with form domain H1(R2) let us note the alternative description of Q:

D(Q) = {f ∈ L2(R+)| g̃(| · |) ∈ H1(R2) where g̃(r) = r−1/2f(r)}, (B.4a)

Q(f) = (2π)−1

∫

R2

(∣∣∇
(
|x|−1/2f(|x|)

)∣∣2 +W (|x|)
∣∣|x|−1/2f(|x|)

∣∣2
)

dx for f ∈ D(Q).

(B.4b)

Clearly the integral to the right in (B.4b) is the form of the two-dimensional Hamil-
tonian (applied to radially symmetric functions).

We also note that H1
0 (R+) ⊆ D(Q) and that

C∞c (R+) + span
(
f0

)
; f0(r) := r1/2χ(r < 1),

is a core for Q. In fact, although f0 /∈ H1
0 (R+), the set C∞c (R+) is actually a core

for Q. Whence H is the Friedrichs extension of the action (B.3) on C∞c (R+).
Due to (B.1b) and the description in (B.2) of the domain D(H) we can show the

uniqueness of regular solutions exactly as in Appendix A. The existence of (nonzero)
regular solutions follows from the previous scheme too. Indeed the basic operators
K± of (3.4) are again compact on B(Hs). To see this we need to see that various
terms are compact. Let us here consider the contribution from the first term of (3.3)

−
(
χ′′1 + 2χ′1

d
dr

)(
H ∓ i

)−1
χ1 + χ1(±i)

(
H ∓ i

)−1
χ1 =: K±1 +K±2 .

(The contribution from the second term of (3.3) is treated in the same way as
before.) We decompose using any C > 0 such that H0 ≥ C + 1

K±1 = B±K;

B± = −
(
χ′′1(r) + 2χ′1(r) 1

2r
+ 2χ′1(r)

(
d
dr
− 1

2r

))
(H ∓ i

)−1
(H − C

)1/2
,

K = (H − C
)−1/2

χ1.

The operator B± is bounded and the operator K is compact (the latter may be
seen easily by going back to the space L2(R2) and there invoking standard Sobolev
embedding); whence K±1 is compact. Clearly also K±2 is compact.
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