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The M/M/1 queue with inventory, lost sale and
general lead times

Mohammad Saffari∗, Søren Asmussen†, Rasoul Haji‡

Abstract

We consider an M/M/1 queueing system with inventory under the (r,Q)
policy and with lost sales, in which demands occur according to a Poisson pro-
cess and service times are exponentially distributed. All arriving customers
during stockout are lost. We derive the stationary distributions of the joint
queue length (number of customers in the system) and on-hand inventory
when lead times are random variables and can take various distributions. The
derived stationary distributions are used to formulate long-run average per-
formance measures and cost functions in some numerical examples.

Keywords: Queueing, Inventory, Stationary distribution, Lost sale, Regenera-
tive process.

1 Introduction

In classical inventory models, arriving demands are satisfied immediately if there
is enough on-hand inventory. Most of these models consider optimization problems
which chooses the optimal policy or optimal value of decision variables without
computing the stationary distribution of inventory states. Nevertheless there are
some studies that have derived stationary distributions to formulate long-run average
cost functions which are used for optimization. Sahin [6] considered (s, S) inventory
system and general random demand process with fixed lead time and backordering.
He derived time dependent and stationary distribution to derive approximations for
optimal control policy.

Focusing on lost sale problems, let us take a brief look at some of these studies.
Mohebbi and Posner [4] considered a continuous-review inventory system with com-
pound Poisson demand, Erlang as well as hyper-exponentially distributed lead time
and lost sales. They derived the stationary distribution of inventory level for the
purpose of formulating long-run average cost functions with/without a service level
constraint. Mohebbi and Hao [5] considered inventory system with compound Pois-
son demand, Erlang-distributed lead times, random supply interruptions and derived
the stationary distribution of the inventory level under an (r,Q)-type control policy.
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Many recent studies deal with complex integrated production-inventory systems
or service-inventory systems. In these models satisfying each demand needs on
hand-inventory and involves a process or service that takes some time. Production-
inventory or service-inventory systems can be discussed in connection with integrated
supply chain management. In these systems, an important issue is the reaction of
inventory management to queueing of demands. Interaction of production/service
processes with attached inventories can be described by queueing systems with in-
ventories. Queueing systems with inventory in comparison with previous inventory
models are more general and realistic. Also in a supply chain, every segment can be
adequately described by a queueing system with inventory.

An early contribution is [9] where a light traffic heuristic was derived for an
M/G/1 queue with an attached inventory. A few analytical models in this field have
been developed up to now. Berman and Kim [2] considered a service system with an
attached inventory, with Poisson customer arrival process, exponential service times
and Erlang distribution of replenishment. Their formulation was a Markov decision
problem to characterize an optimal inventory policy as a monotonic threshold struc-
ture which minimizes system costs. Berman and Kim [3] presented an extension
where revenue is generated upon the service. They found an optimal policy which
maximizes the profit.

Schwarz and Daduna [7] considered an M/M/1 queue with inventory under
continuous-review with backordering when lead times are exponentially distributed.
They computed performance measures and derived optimality conditions under dif-
ferent order policies. For evaluating performance measures and steady state proba-
bilities they presented an approximation scheme. Also Schwarz et al. [8] considered
a similar model with lost sales of customers that arrive during stockout and different
inventory management policies. They derived stationary distributions of the joint
queue length and inventory processes in explicit product form.

In the last two models mentioned above, lead times are supposed to be exponen-
tially distributed. It is obvious that removing this assumption would provide more
generality. In this paper, we consider an M/M/1 queueing system with inventory
with infinite waiting room and lost sales when lead times can take any probability
distribution or can have fixed values. The aim of our research is to derive joint
stationary distributions of joint queue length and inventory processes. These distri-
butions are used to provide long-run average cost functions which can be used for
optimization problem to find optimal values of the decision variables.

2 Model description

2.1 The M/M/1 queue with inventory and lost sale

In a queueing system with an attached inventory, customers arrive one by one and
require service. In the M/M/1/∞ queue with inventory, customers arrive according
to a Poisson process with arrival rate λ. There is a single server with unlimited
waiting room and an inventory with unlimited capacity of items. Service times are
exponentially distributed with parameter µ.

In our present model, during the period that there are some on-hand inventory,
arriving demands join the queue and if there is no customer in the system the
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arriving demand directly takes service. But customers, who arrive during a period
when the server waits for the replenishment order, are rejected and lost. Each
customer needs exactly one item from the inventory for service, and the on-hand
inventory and number of customers in system decreases by one at the moment of
service completion. When the on-hand inventory reaches zero, customers in the
queue wait for the next replenishment and the server will serve the customer which
is at the head of the line at the instant when the next replenishment arrives at the
inventory. Replenishment lead times are random variables with known probability
distribution (which could be degenerate at one point) and independent of on-hand
inventory and number of customers in system.

2.2 The inventory management policy

We consider a version of continuous review inventory management policy which
is called (r,Q). It corresponds to an M/M/1 queue with inventory and lost sale
where a fixed order quantity (Q) is ordered each time the on hand-inventory reaches
the reorder point (r). Inventory management policy follows first come, first served
(FCFS) regime. We assume that r < Q; this excludes degenerate cycles in which no
demand occurs.

3 Stationary distribution

Our objective in this section is to derive the stationary joint distribution of on-hand
inventory and number of customers in the system.

Let X(t) denote the number of customers present at the system at time t ≥ 0,
either waiting or in process, and let Y (t) denote the on-hand inventory at time
t ≥ 0. Then we can present the joint number of customers and on-hand inventory
by Z = ((X(t), Y (t)), t ≥ 0) and the state space of Z is EZ = {(n, k) : n ∈ N0,
0 ≤ k ≤ Q + r}. Also we write limiting and stationary distribution P (n, k) for
the limiting probabilities of the number n of customers in the system and on-hand
inventory k.

For computing the joint stationary distribution of the number X of customers
in the system and the on-hand inventory Y , we give two theorems which reveal that
in stationarity X and Y are independent random variables.

Definition 1 (Assumption on emergency supplying policy). For the queueing sys-
tem with inventory which is described in Section 2, suppose that it is possible to sup-
ply from a second source with zero lead time. When the on-hand inventory reaches
zero,the management triggers an order of size Q to the second supplier and can-
cels the previous order. We call this system an M/M/1/∞ queueing system with
inventory and emergency supplying policy.
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Theorem 2. In the stationary M/M/1/∞ queueing system with inventory and
emergency supplying policy, the queue length process (number of customers in the
system) is independent of the on-hand inventory process and identical to the queue
length process in a classical M/M/1/∞ system.

Proof. When the on-hand inventory reaches zero, an order is triggered to the second
supplier and because of the assumption of zero lead time, replenishment is received
immediately from the second supplier. Thus the queueing system works without
any interruption just like a standard M/M/1/∞ queue. In particular, the marginal
probability distribution of the queue length is identical to the probability distribution
of the queue length in a classical M/M/1/∞ system. It just remains to prove the
independence. It is easily seen that on-hand inventory at time t (denoted by Y (t))
only depends on lead times and departures of the queueing system prior to t . Lead
times are assumed to be independent of the queue length process, and it is also well
known that in stationarity the departure process of an M/M/1/∞ prior to t is a
Poisson process and independent of number of customers in the system at time t
(denoted by X(t); see Asmussen [1] p.116. Therefore the on-hand inventory will be
independent of number of customers.

Corollary 3. In an M/M/1/∞ queueing system with inventory and emergency sup-
plying policy, the conditional stationary distribution of queue length can be written
as:

P (n | k) = Pn(n) =

(
µ− λ
µ

)(
λ

µ

)n
(1)

Note that this is just the stationary distribution of the queue length in a classical
M/M/1/∞ system.

Theorem 4. In the M/M/1 queueing system with inventory, unlimited waiting
room and lost sale as described in Section 2, the conditional stationary distribution
of the queue length is identical to the stationary distribution of the queue length in
a classical M/M/1/∞ system and can be written as in (1).

Proof. When on-hand inventory reaches zero, the system freezes because no changes
of inventory and number of customers occur. Omitting these freezing periods, it is
obvious that remained working periods form a system identical toM/M/1 queueing
system with inventory and emergency supplying policy. Therefore we just need to
check the stationary distribution of queue length at the moment that on-hand inven-
tory reaches zero. It can be concluded directly from Corollary 3 that this probability
distribution is identical to stationary probability distribution of the queue length in
a classical M/M/1/∞ system and independent of the inventory level at that time
which is zero.

Consider now the M/M/1 queueing system with inventory and lost sale as de-
scribed in Section 2. Based on Theorem 4. the joint stationary distribution of
on-hand inventory and number of customers in the system can be written as fol-
lows:

P (n, k) = Pn(n) · Pk(k) =
(
µ− λ
µ

)(
λ

µ

)n
· Pk(k) (2)
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where Pk is the stationary distribution of on-hand inventory process and Pn is the
stationary distribution of the number of customers in the classical M/M/1/∞ sys-
tem. To derive the stationary joint distribution of on-hand inventory and number
of customers in the system, we will compute stationary distribution of on-hand
inventory in the next section.

3.1 Stationary distribution of on-hand inventory for general
form of lead times

The departure process of the queue system is identical to the output process of in-
ventory. As mentioned in Theorem 2, this process has the same distribution as the
customer arrival process which is Poisson process with intensity λ during the peri-
ods where the inventory is not depleted, and no departure occurs during stockout.
Considering the (r,Q) inventory policy, it can be seen that the inventory process
in this case is a regenerative process and inventory levels of r can be considered as
regeneration point. Thus each cycle starts at the moment that on-hand inventory
reaches r and ends when the next cycle starts (see Asmussen [1] p.168). Denote by
τ the cycle length. As a property of regenerative processes, the following formula
can be applied to compute the stationary distribution of the inventory level:

Pk(k) ≡ lim
t→∞

P {Y (t) = k} = E[tk]

E[τ ]
(3)

Here ti is amount of time during a cycle that on-hand inventory spends in state i .
Conditioning on the lead time we have

E(τ) =

ˆ

L

E(τ | L = `)f(`) d`

Each cycle can be divided into two periods. During the first the inventory level is
equal or less than r (thus the length is the lead time) and the second period starts
when an order is received and ends when inventory drops to r. If the inventory level
is j when the order is received, it is obvious that this second period has an Erlang
distribution with parameters Q+ j − r, λ. Thus its mean is Q+j−r

λ
and so

E(τ | L = `) = `+
r∑

j=0

(
Q+ j − r

λ

)
· P (Xτ− = j | L = `)

where Xτ− is the inventory level just before the order is received. The mean cycle
time can be written as

E(τ) = E(L) +
Q− r
λ

+

ˆ

L

r∑

j=0

(
j

λ

)
· P (Xτ− = j | L = `)f(`) d` , (4)

where

P (Xτ− = j | L = `) =
e−λ`(λ`)r−j

(r − j)! for j > 0

P (Xτ− = 0 | L = `) =
∞∑

j=r

e−λ`(λ`)j

j!
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It just remains to compute E(ti | L = `):

E(ti | L = `) =
1

λ
for r < i ≤ Q,

E(ti | L = `) =

`
ˆ

0

λr−itr−i−1e−λt

(r − i− 1)!
· E[Yλ ∧ (`− t)] dt for 0 < i < r

where

E[Yλ ∧ a] =
∞̂

a

aλe−Y λ dY +

a
ˆ

0

Y λe−Y λdY =
1

λ
(1− e−aλ),

E(ti | L = `) = E[Yλ ∧ `] for i = r

E(ti | L = `) =
r∑

j=i−Q

1

λ
P (Xτ− = j) for Q < i ≤ Q+ r

E(t0 | L = `) =

`
ˆ

0

λrtr−1e−λt

(r − 1)!
(`− t) dt

Easy algebra gives
E(t0 | L = `) = `πr−1(`)−

r

λ
πr(`) (5)

Also the following equation is always true for the expected time until inventory is
depleted :

E(t0) = E(τ)− Q

λ
(6)

E(ti | L = `) =
1

λ
πr−i−1(`)−

(λt)r−ie−λ`

(r − i)! =
1

λ
πr−i(`) for 0 < i < r (7)

E(tr | L = `) =
1

λ
(1− e−λ`) (8)

E(ti | L = `) =
1

λ
for r < i ≤ Q (9)

E(ti | L = `) =
1

λ
[1− πQ+r−i(`)] for Q < i ≤ Q+ r. (10)

Here πk(t) = e−λt(λt)k

k!
and

∑∞
j=k+1

e−λt(λt)j

j!

4 Optimization: numerical examples

We consider the following cost function giving mean costs per time unit in steady
state :

C(r,Q) = H ·
Q+1∑

k=0

k · P (r,Q)
k (k) + A · 1

E(r,Q)(τ)

+ S · λP (r,Q)
k (0) +W · L · P (r,Q)

k (0)
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Here H is the holding cost of each on-hand inventory unit per unit time, A is a
fixed cost of each replenishment order, S is the shortage costs for each lost sale
demand and W is the waiting cost of each customer during the stockout per unit
time. L = λ

µ−λ is the average number of customers in system in the steady state.
The aim is to find the optimal Q? = Q?(r) minimizing C(r,Q) for a fixed r.

For each lead time distribution and each fixed r, the cost function has the following
general form:

C(Q) =
a1Q

2 + b1Q+ c1
b2Q+ c2

Knowing that a1, b1, c1, b2, c2 ≥ 0, the cost function has a local minimum Q∗. If
Q∗ > r ≥ 0, it is also the global minimum point of C(r,Q). Otherwise the minimum
cost occurs at Q∗ = r + 1.

In our numerical examples summarized in Table 1, we assume that λ = 20
and µ = 50. We computed the minimum cost function for r = 100, 75, 50, 25.
We considered 5 well known probability distribution for lead times with the same
mean 2.5, the exponential distribution with ν = 0.4, the Erlang distribution with
m = 5, ν = 2, the hyperexponential distribution with pi = 0.2, ν1 = 2, ν2 = 1,
ν3 = 0.5, ν4 = 0.25, ν5 = 0.2, the uniform(0, 5) distribution and finally a fixed lead
time equal to 2.5. We took H = 1, A = 200, S = 50, W = 25. The stationary
distribution and performance measures of systems with those lead time distributions
are derived using results in Appendix (stationary distributions and optimal batch
orders are computed in Matlab).

Table 1: Optimal reorder point and order size

Exponential Erlang Hyperexponential Uniform fixed

Q∗(r = 25) 235 221 242 229 219
C(25, Q∗) 241.08 222.56 250.52 232.46 219.29

Q∗(r = 50) 195 154 211 171 114
C(50, Q∗) 213.59 163.64 235.26 184.21 117.61

Q∗(r = 75) 163 111 187 119 76
C(75, Q∗) 199.68 138.77 229.69 147.69 116.14

Q∗(r = 100) 140 101 167 101 101
C(100, Q∗) 196.41 145.68 230.56 142.88 140.60

For the same examples, minimum cost functions and their relative minimum
points (r∗, Q∗) (obtained applying an trial and error scheme) are presented in Ta-
ble 2. As was to be expected, increased variation in the lead time increases the
minimum total cost, in fact quite substantially.
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Table 2: Optimization results for various reorder points

Q? & Total cost

Exponential Erlang Hyperexponential Uniform fixed

r∗ 96 80 83 90 60
Q∗ 142 106 180 98 92

Minimum
Total Cost

196.30 138.15 229.36 139.40 103.08

Appendix: Stationary distributions for some
distributions of lead times

Exponentially distributed lead times

Let the lead time be exponentially distributed with rate parameter ν. We first
compute the expected cycle time:

E(τ) = E(L) +
Q− r
λ

+

ˆ

L

r∑

j=1

(
j

λ

)
.P (Xτ− = j | L = `) · νe−ν` d`

E(τ) =
1

ν
+
Q− r
λ

+

j−1∑

j=0

(r − j)νλj−1
(λ+ ν)j+1

∞̂

0

`j(λ+ ν)j+1e−(λ+ν)`

j!
d`

=
1

ν
+
Q− r
λ

+
r−1∑

j=0

(r − j)νλj−1
(λ+ ν)j+1

.

Therefore after some algebra,

E(τ) =
1

λ

(
λ

λ+ ν

)r [
Q

(
λ+ ν

λ

)r
+
λ

ν

]
.

Now we must compute the expected time that system remains in each state in a
cycle:

E(t0) =

∞̂

0

`
ˆ

0

λrtr−1e−λt

(r − 1)!
(`− t)νe−ν` dt d`

=

∞̂

0

[`πr−1(`)−
r

λ
πr(`)] · νe−ν` d`

=
∞∑

j=r

(j + 1)λj

(λ+ ν)j+2
− r

λ

∞∑

j=r+1

λjν

(λ+ ν)j+1

= · · · = 1

ν

(
λ

λ+ ν

)r
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E(ti) =

∞̂

0

1

λ
πr−i(`).νe

−ν` d` = · · · = 1

λ

(
λ

λ+ ν

)r−i+1

for 0 < i < r

E(tr) =

∞̂

0

1

λ
(1− e−λ`)νe−ν` d` = 1

λ

(
λ

λ+ ν

)

E(ti) =
1

λ
for r < i ≤ Q

E(ti) =

∞̂

0

Q+r−i∑

j=0

1

λ
.
e−λl(λ`)j

j!
νe−ν` d` =

Q+r−i∑

j=0

νλj−1

(λ+ ν)j+1

=
1

λ

[
1−

(
λ

λ+ ν

)Q+r−i+1
]

for Q < i ≤ Q+ r.

Lead times with Erlang distribution

Let the lead times be Erlang random variables with parameter ν, m. We first com-
pute the expected cycle time:

E(τ) =
m

ν
+
Q− r
λ

+

ˆ

L

r∑

j=1

(
j

λ

)
· P (Xτ− = j | L = `).

`m−1νme−ν`

(m− 1)!
d`

E(τ) =
m

ν
+
Q− r
λ

+
r−1∑

j=0

[
(r − j)νmλj−1
(λ+ ν)m+j

· (m+ j − 1)!

j!(m− 1)!

∞̂

0

`m+j−1(λ+ ν)m+je−(λ+ν)`

(m+ j − 1)!
d`

]

E(τ) =
m

ν
+
Q− r
λ

+

(
νm

λ(λ+ ν)m(m− 1)!

) r−1∑

j=0

(r − j)
(

λ

λ+ ν

)j
(m+ j − 1)!

j!

Similarly aftersome algebra, the following results for expected time in each state can
be inferred:

E(t0) =
m

ν
− r

λ
+

(
νm

λ(λ+ ν)m(m− 1)!

) r−1∑

j=0

(r − j)
(

λ

λ+ ν

)j
(m+ j − 1)!

j!

E(ti) =
1

λ
−
(

νm

λ(λ+ ν)m(m− 1)!

) r−i∑

j=0

(
λ

λ+ ν

)j
(m+ j − 1)!

j!
for 0 < i < r.

E(tr) =
1

λ

(
1−

(
ν

λ+ ν

)m)

E(ti) =
1

λ
for r < i ≤ Q.
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E(ti) =
1

(m− 1)!

(
ν

λ+ ν

)m Q+r−i∑

j=0

λj−1(m+ j − 1)!

j!(λ+ ν)j
for Q < i ≤ Q+ r.

Fixed lead time

In this section we compute the stationary distribution, supposing that the lead
times take a known fixed value `. It can be directly concluded from (4)-(10) that
the expected cycle time and expected time in each state is:

E(τ) = `+
Q− r
λ

+
r−1∑

j=0

(r − j)λj−1`je−λ`
j!

,

E(t0) = `πr−1(`)−
r

λ
πr(`),

E(ti) =
1

λ
πr−i(`) for 0 < i < r,

E(tr) =
1

λ
(1− e−λ`),

E(ti) =
1

λ
for r < i ≤ Q,

E(ti) =
1

λ
[1− πQ+r−i(`)] for Q < i ≤ Q+ r.

Lead times with uniform distribution

Let the lead time be uniformly distributed over the interval[0, a]. Using results of
Section 3.1 and some algebra, the expected cycle time and the expected time in each
state can be computed as followed:

E(τ) = E(L) +
Q− r
λ

+
r−1∑

j=0

a
ˆ

0

(r − j)λj−1`je−λ`
a · j! d`

=
a

2
+
Q− r
λ

+
1

aλ2

r−1∑

j=0

(r − j)πj(a)

E(t0) =
a

2
− r

λ
+

1

aλ2

r−1∑

j=0

(r − j)πj(a)

E(ti) =
1

λ
− 1

aλ2

r−i∑

j=0

πj(a) =
1

aλ2

∞∑

j=r−i+1

πj(a) for 0 < i < r

E(tr) =
1

λ
(1− 1

aλ
(1− e−λa))

E(ti) =
1

λ
for r < i ≤ Q

E(ti) =

Q+r−i∑

j=0

1

aλ2
(πj(a)) for Q < i ≤ Q+ r.
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Lead times with hyperexponential distribution

Let the lead time L be a random variables with hyperexponential distribution,

fL(`) =
n∑

k=1

fLk(`)pk

where Lk is an exponentially distributed random variable with rate νk, and pk is the
probability that L = Lk.

Using the results of Section 3.1 and the stationary distribution of system with
exponential distribution of lead times, it can be easily shown that the expected cycle
time and expected time in each state is:

E(τ) =
Q

λ
+

n∑

k=1

pk
νk

(
λ

λ+ νk

)r

E(t0) =
n∑

k=1

pk
νk

(
λ

λ+ νk

)r

E(ti) =
n∑

k=1

pk
λ

(
λ

λ+ νk

)r−i+1

for 0 < i < r

E(tr) =
n∑

k=1

pk
λ

(
λ

λ+ νk

)

E(ti) =
1

λ
for r < i ≤ Q

E(ti) =
n∑

k=1

pk
λ

[
1−

(
λ

λ+ νk

)Q+r−i+1
]

for Q < i ≤ Q+ r.
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