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Abstract

The problem of defining subordination of a homogeneous Lévy basis by
a non-negative homogeneous Lévy basis is discussed. An explicit construc-
tion, generalizing the usual one-dimensional case, is given. This construction
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1 Introduction

In recent years the fundamental concept of subordination of a Lévy process by a
subordinator has been generalized in many directions; see e.g. [3, 4, 8|. Related to
this, Barndorff-Nielsen [2] considered the following problem: Given an R%-valued
homogeneous Lévy basis Ax = {Ax(A) : A € By(R*)}, and an independent R,-
valued homogeneous Lévy basis Ay = {Ar(A) : A € By(R*)} how should one define
subordination of Ax by Az?

Let us first consider the case k = 1. There are Lévy processes X = {X; : t > 0}
and T'= {T; : t > 0} associated with Ax and At in the sense that

Xy = AX((07t]) and T; = AT((O7t]) (11)

for t > 0. Thus, we can simply define a subordinated process Y = {Y; : t > 0} in
the usual way as Y; = X7,. However, when k& > 2 there is no immediate analogue.
To see this, note that there are so-called Lévy sheets X = {X; :t € R¥} and T =
{T; : t € Rt} associated with Ay and A7, and these are defined as in (1.1), where
(0,] now is an interval in R¥. But T} is one-dimensional while ¢ is k-dimensional,
thus excluding the possibility of defining Y; as X7, when k£ > 2. Barndorff-Nielsen
argued that one should not construct a subordinated process; rather, the appropriate
concept is a subordinated random measure M = {M(A) : A € By(R¥)} defined
such that conditional on Ay, M(A;),...,M(A,) are independent for all disjoint
Ay, ..., A,, and the distribution of M(A) for A € By(RE) is pt™ where p =
L(Ax((0,€])) and e = (1,...,1) € R is the vector of ones.

In the present paper we give an explicit construction in terms of Ax and Ay of
Barndorff-Nielsen’s subordinated measure M. For notational convenience, instead
of considering M and Ay as Lévy bases on R¥ we look at the restriction to Rﬁ; the
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general case follows trivially from this. Specifically, we argue that a natural definition
of M = {M(A) : A€ By(RE)} is M(A) = Ax(¢7' (A)) where ¢ : R — RF is a
(random) mapping satisfying that Leb(¢7' (A)) = Ar(A) for A € By(R%). We also
use the notation T = ¢ for the inverse image of ¢7. In a sense one can think of T
as a kind of meta-time change, replacing time changes in the case k = 1. We show
that this definition generalizes the case £ = 1 in a natural way and, in particular,
that M is a homogeneous Lévy basis.

This construction gives emphasis to the viewpoint that in the multiparameter
case k > 2 the right concept is a subordinated measure instead of subordinated
process.

In Section 2 we recall the definitions of homogeneous Lévy sheets and bases and
show that these are in one-to-one correspondence. To pave the way for the analysis
of M we state in Section 3 a lemma showing that it is possible to define a mapping
¢r with the above properties. Section 4 is about meta-time changes, meaning that
we consider the measure M for a fixed outcome of T'. Although meta-times exist for
any T they are in full generality somewhat involved to define explicitly. However, in
practice the most important case is when the measure induced by T' is the sum of
a constant times Lebesgue measure and a discrete measure. In this case alternative
useful representations of M are given. In the last section it is shown that M is a
homogeneous Lévy basis.

2 Homogeneous Lévy sheets and Lévy bases

Let d and k denote positive integers. For x = (z!,... 2% and y = (y},...,9%) in

RY let (x,y) denote their inner product and |z| be the corresponding norm. Let
D = {x € R?: |z| < 1}. Throughout the paper all random variables are defined on
a common probability space (2, F, P). Let £(X) denote the law of a random vector
X. For aset S and two families {X; : ¢t € S} and {Y; : t € S} of random vectors with
X; and Y; in R write {X; : t € S} Z {Y; : t € S} if the finite dimensional marginals
are the same. We say that {X; : t € S} is a modification of {Y; : t € S} if X; =Y,
a.s. for all t € S. Let 1i denote the characteristic function of a distribution y on RY,
fi(z) = [ra €@ p(dz) for = € R% Let ID(RY) denote the class of d-dimensional
infinitely divisible distributions. Recall that a distribution g on R? is in ID(R?) if
and only if i is given by 7i(z) = exp [—3252" +i(7,2) + [pa 9(z, 2) v(dz)], z € RY,
where g(z,z) = €®® — 1 —i(z,2)1p(z), T denotes the transpose, and (X, v, ) is
the characteristic triplet of u; that is, ¥ is a d x d non-negative definite matrix,
v is a Lévy measure on R? and v € R? Denote the entries of ¥ by £ and the
coordinates of v by 47 for i,j = 1,...,d. For t > 0 and p € ID(R?), u! denotes the
distribution in ID(RY) with p! = A,

For a = (a',...,a*) € R% and b = (b',...,b") € RE write a < b if o/ <
for all j and a < b if @/ < &’ for all j, and define the half-open interval ]a,b] as
Ja,b] = {t € RE :a <t <b}. Let [a,b] = {t e RE : a <t < b}.

For F = {F, : t € RY} with F;, € R? and a < b define the increment of F
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over |a,b], ALF, as

b —(e14-+e
A = Z Z R Bt (),

€1=0 ex=0

where ¢/(1) = &’ and ¢(0) = @’. For example, if k = 1 we have A°F = F, — F, and
when k = 2 then A’F = Furp2y + Flate2) — Flaipe) — Fr g2y, Let A= {t € le :
ktJ = 0 for some j}. For R = (Ry,..., Ry) where R; is elther < or > write aRb if
a?R;V for all j.

We say that F' = {F}, : t € Ri} is lamp if the following three conditions are
satisfied: (i) for t € ]R’fF the limit F(¢,R) = lim, ;g F, exists for each of the 2F
relations R = (Ry, ..., Ry) where R; is either < or >; here we let F'(t,R) = F,
if there is no w with tRu. (ii) F; = F(t,R) for R = (<,...,<). (iii) £} = 0 for
t € A. Here lamp stands for limits along monotone paths. This is the multiparameter
analogue of being cadlag. See Adler et al. [1] for references to the literature on lamp
trajectories. When F' is lamp and ¢ € ]R’_j \ A define Ay F' = lim,, o AinF where
t, is any sequence with t, — t and ¢, < t. If F' is continuous at the point ¢ then
A F = 0 but the converse is not true, that is, we can have A, F' = 0 without F' being
continuous at .

Definition 2.1. Let X = {X; : ¢ € R} be a family of random vectors in R*.
We say that X has independent increments if X; = 0 for all ¢ € A a.s. and
AP X, ... Al» X are independent whenever n > 2 and ay, b1, ..., ]ax, b,] are dis-
joint; if in addition X is continuous in probability and A,’iiZX 2 AL X for all
a,b,t € ]R{“F with @ < b, then X is called an R%-valued homogeneous Lévy sheet
n law on R’i, and if also almost all sample paths are lamp then X is called an

R?-valued homogeneous Lévy sheet on ]Rﬁ.

A homogeneous Lévy sheet is a special case of the additive processes considered
by Adler et al. [1], p. 5, and of the Lévy sheets considered by Dalang and Walsh
[5] (in the case k = 2). In fact, a process satisfying all the above conditions except
the homogeneity condition AiiZX Ab X would be called a Lévy sheet by Dalang
and Walsh. It follows e.g. from [1], Proposition 4.1, that any homogeneous Lévy
sheet in law has a modification which is a homogeneous Lévy sheet. It is easily seen
that if X = {X, : ¢ € R%} is a homogeneous Lévy sheet in law then X, = AlX
a.s. for all t € R%; moreover L(ALX) € ID(R?) for all a,b € R% with a < b and
there is a u € ID(RY) such that £(A%X) = pbePUab) for all such a and b, where Leb
denotes Lebesgue measure on R¥. We say that X is associated with p or with the
characteristic triplet of p.

Definition 2.2. Let A = {A(A4) : A € B,(RY)}, where B,(RY) is the set of bounded
Borel sets in Rﬁ, denote a family of random vectors in R%. We call A an R¢-
valued homogeneous Lévy basis on ]R'i if the following conditions are satisfied: (i)
A(Ay),...,A(A,) are independent whenever Ay, ..., A, € By(RE) are disjoint. (ii)
A(U°° n) = >0  A(A,) as. whenever Ay, Ay,... € By(RY) are disjoint with

U2, A, € By(RE). Here the series converges almost surely. (iii) For all ¢t € R% and
A € B(RE) we have A(A) = A(t + A).



If A is a homogeneous Lévy basis basis then £(A(A)) € ID(RY) for all A €
By(RE). Moreover, there is a u € ID(R?) such that £(A(A)) = pb®@ for all
Ae Bb(]Rf‘;). We say that the homogeneous Lévy basis is associated with p or its
characteristic triplet. Finally, recall that Rajput and Rosiniski [9] call A = {A(A) :
A € By(RY))} an independently scattered ID random measure if it satisfies (i) and
(ii) of Definition 2.2 and L(A(A)) € ID(R?) for all A € By(R%). For simplicity we
refer to this as a Lévy basis.

The following shows that, not surprisingly, there is a one-to-one correspondence
between homogeneous Lévy sheets (in law) and homogeneous Lévy bases.

Theorem 2.3. Let X = {X,:t € ]Rf‘;} be a homogeneous Lévy sheet associated with
p € ID(RY) with characteristic triplet (X, v,7). Let

J(C)=#{t,AX): t e RE\ A, (t,A,X) € C and A X # 0}

for C € B(RE x RY).
Then we have the following.

(1) J={J(C): C € B(RE x R")} is a Poisson random measure with intensity
measure Leb xv.

(2) Let v*(B) = v(BN D) and v*(B) = v(B N D°) for B € B(RY). Define
X= [ gl (7 - Lebx)(d(s.p))
[0,t] x R4
X2 = 1pe(y) J(d(s,y)).
[ o) )

We then have that X; = X} + X}? + X} + tvy, where {X? : t € RE}, {X} :
t€RE} and {X? :t € RE} are independent, { X} : t € RE} is a homogeneous
Lévy sheet associated with (£,0,0) and {X; : t € RE} is a homogeneous Lévy
sheet associated with (0,v",0) fori=1,2.

(3) There ezists one and up to modification only one homogeneous Lévy basis A =
{A(A) : A € By(RE)} satisfying A([0,t]) = X, a.s. for t € RE. In addition, A

s given by
A = [ ylon) (7 = Lebx)(d(t.) 2.1)
+ /A iy ylpe(y) J(d(t,y)) + /A dX} + yLeb(A) a.s.

for A € By(REY).

Theorem 2.3(1)—(2) are essentially contained in [1], Theorem 4.6. The only
difference is that .J above is a Poisson random measure on R* x R? while Theorem 4.6
of [1] is formulated in terms of Poisson random measures on R?. The proofs are
essentially the same and hence we omit the proof of Theorem 2.3(1)—(2). See also
[5] in the case k = 2.



For A € By(R) define [, dXF = [14(t) dX} where we recall that [ f(t)dX}
(a random vector in R?) is definable by approximation by step functions in the
usual way for all measurable f : R® — R satisfying [(f(¢))*dt < co. Moreover,
we have L([ f(t)dXF) = Ny(0,3(f)), where 9(f) = X% [(f(¢))*dt. The result
in Theorem 2.3(3) is immediate from fundamental properties of integrals with re-
spect to (compensated) Poisson random measures cf. e.g. [6]. In the case k = 2,
Theorem 2.3(3) can also be found in [5], Theorem 2.6.

We call the process X8 = {X} : t € R*} above the Gaussian part of X and the
measure J the jump measure of X. We also denote it by Jx. Finally, we call A
above the homogeneous Lévy basis induced by X, also to be denoted by Ax.

Proposition 2.4. Let A = {A(A) : A € B,(RE)} be a homogeneous Lévy basis.
Let X; = A([0,t]). We then have the following results: For a < b, A®X = A(]a,b])
a.s. In particular X = {X; : t € R%} is a homogeneous Lévy sheet in law. Let

X ={X;:te ]Rﬁ} be a homogeneous Lévy sheet which is a modification of X.
Then for A € By(RY) we have A(A) = Ax(A) a.s., where Ax is the Lévy basis
generated by X.

Proof. 1t is easily seen that Agf( = A(Ja,b]) a.s. The uniqueness part of Theo-
rem 2.3(3) implies A = Ay. O

Remark 2.5. (1) Theorem 2.3(3) shows that a homogeneous Lévy sheet generates
a homogeneous Lévy basis by (2.1) and Proposition 2.4 shows conversely that any
homogeneous Lévy basis is generated in this way. We call (2.1) the Lévy-Ito decom-
position of A and call J in that equation the jump measure of A. We refer to [5] (for
the case k = 2) and [7] for the Lévy-1t6 decomposition of non-homogeneous Lévy
bases.

(2) Let A be an R?valued homogeneous Lévy basis on R associated with the
characteristic triplet (3,r,7). Assume that [p.(1 A |z])v(dz) < oo. Then for
A € By(RY) the representation (2.1) simplifies to

A(A) = /A ]RdyJ(d(t,y)) +/A dX}? 4 v Leb(A4) a.s.

where the first integral is defined pointwise almost surely and where v = v —
J4ylp(y) v(dy). Here pointwise almost surely signifies that, for almost all w, the
integral [, n.yJ(d(t,y))(w) is a usual Lebesgue integral. Thus if in addition
V(RY\RY) = 0, X = 0 and 7 € R% then we can extend A such that A(A) is
defined for all A in B(RY) rather than B,(RX); however, some of the coordinates
of A(A) may be equal to oco. In addition, almost surely all coordinates of A are
non-negative measures.

3 Meta-times

The purpose of this section is to state a result showing that any measure m on ]Ri
which is finite on compacts is the image measure of Leb under some mapping ¢.
This result is essentially well known, at least when m is finite, so in the next lemma
we simply state a version of it which suits our purposes well.
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Lemma 3.1. Let m = {m(A) : A € B(R%)} be a non-negative measure on R%
satisfying m(A) = 0 and m(A) < oo for all A € By(RE). Then there exists a
measurable mapping ¢ : ]R’i — RF such that

m(A) = Leb(¢*(A)) for all A € B(RF) (3.1)
and ¢~ (A) is a bounded set for all A € By(RE).

Remark 3.2. We refer to the inverse image ¢! as a meta-time associated with m and
we often denote it by T. By the above lemma and properties of inverse images we
can regard T as a mapping T : B,(RY) — By(R% ) satistying: (i) T(A) and T(B) are
disjoint whenever A, B € By(R") are disjoint. (ii) T(U2,A4,) = U2, T(A,) when-
ever Ay, Ay, ... are in By(RE) and U2 A, is in By(R%). (iii) m(A) = Leb(T(A))
for all A € By(RE).

Proof. Let u € R* \ R be arbitrary.

(1) First assume that m(R%) < co. Take an interval [a, b] in R¥ with Leb([a, b]) =
m(RE). Then m is the image measure of Lebesgue measure on [a,b] under some
mapping ¢ : [a,b] — RY. That is, m(A) = Leb(¢~*(A)) for all A € B(R%). Indeed,
this is essentially the well known result (cf. e.g. [10]) that any distribution on R¥
can be generated from k independent and uniformly distributed random variables.

Letting
~JU(t) tela,b]
olt) = {u t € RE\ [a,b]

one sees that ¢ has the required properties.

(2) If instead m(R%) = oo we can take a sequence A,, n = 1,2,..., of disjoint
bounded Borel sets in R* covering R% and satisfying that for all ¢ € R* the interval
[0,¢] is contained in the finite union of some of the A,’s. Define, for all n > 1,
m, = m(- N A,). Since the m,’s are finite measures there is a sequence of disjoint
intervals [ay, b1, [as, bo, . .. in R% and measurable mappings ¢, : [a,, b,) = A,, such
that m,(A) = Leb(¢, 1(A)) for all A € B(A,). Since m =3 ., m, we can define

) Ua(t) t € lan,b,] for some n
#i) = {u t e RE\ (U, [an, b))

Clearly, since for any ¢t € RE the interval [0,¢] is contained in the union of a finite
number of A,’s it follows that ¢~*([0,¢]) is contained in the union of a finite number
of intervals [a,,, by]. O

Example 3.3. Let m be as in the lemma above. In many cases of interest, the
mapping ¢ in the lemma has a very simple expression, as the following shows.

(1) Assume m is concentrated on a set T = {t,,}7>, C R% \ A. Take a disjoint
sequence Ry, Ry, ... of bounded Borel sets in R% such that Leb(R,,) = m({t,}) for all
n. Define ¢(t) = ¢, when ¢ € R, for some n and let ¢(¢) = u for t € RE \ (U2, R,,),
where u € RF\ ]R'_i is arbitrary. The sets R,, can be chosen arbitrarily, showing in
particular that ¢ is not at all uniquely determined.

(2) If m = Leb /c for some ¢ > 0 we can use ¢(t) = ct.
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(3) The case when m = my + my where m; = Leb /c and my is concentrated on
{t,}52, CR% \ A can be handled as follows. Let the sets R,, above be subsets of

{s=(s"...,s"NeR:0<s/ <lforallj=1,...,k}.
Let e = (1,...,1) € RE be the vector of ones. By defining ¢ as

tn if t € R,, for some n
H(t) = u ifte{s=(s"....,s") eRr : s € [0,1]}\ (U2, Ry)
ct—e) ifte{s=(s'....s" eR :s7 > 1},

equation (3.1) is easily verified.
(4) Assume k =1 and let Ty = m([0,t]) for all ¢ > 0. Define ¢ : Ry — R as

oy) =inf{t >0:T(t) > y}.
where inf ) = v € R\ Ry. Then
[0,7;] = T([0,¢]) forallt>0 (3.2)

and hence m(A) = Leb(T(A)) for all A € B(R,).

4 Meta-time changes

In the one-dimensional case k = 1 one uses increasing functions to model a time
change as in (4.3) below. The purpose of the present section is to show that in the
case k > 2 certain meta-time changes give similar results. In fact, we show that the
appropriate generalization of the process Y in (4.3) is the random measure M in
(4.1) where in the latter equation T is a meta-time as defined in Section 3.

Let X = {X; : t € Rt} be an R%valued homogeneous Lévy sheet on RY
associated with u € ID(RY). Denote the corresponding homogeneous Lévy basis by
Ax. Let m = {m(A) : A € B(R%)} be a non-negative measure on R’ satisfying
m(A) = 0 and m(A4) < oo for all A € B,(RE). Set T; = m([0,1]) for all t € R%
and let ¢ : ]Rﬁ — R* be given as in Lemma 3.1. Let T = ¢~! be the corresponding
meta-time associated with m.

Define M = {M(A) : A € B,(R%)} as
M(A) = Ax(T(A)) for A € By(RE). (4.1)

Using the properties of T in Remark 3.2 one sees that M is a (non-homogeneous)
Lévy basis. Since in addition Ay is a homogeneous Lévy basis associated with pu it
follows that

L(M(A)) =™ for A € By(R"). (4.2)

In particular, for ¢+ € RY, M((0,t]) has characteristic triplet 73(%,v,~) where
(3, v,7) is the characteristic triplet of pu. We say that M is defined from Ax by
meta-time change with T.



Remark 4.1. Let £ = 1 and let us show that in this case the above definition
generalizes the usual concept of a time change in a natural way. For this purpose,
define a process Y = {Y; : t > 0} by time changing X with 7"

Y, = Xp,. (4.3)

Hence, Y is a cadlag process with independent increments and it is an additive
process (i.e. also continuous in probability) if 7" is continuous. The distribution of
an increment is given as

LY, —Y)=p""T for0<s<t. (4.4)

Let ¢ be given as in Example 3.3(4). Using (3.2) rewrite Y; in terms of the Lévy
basis Ax as

Y, = Ax([0, T3]) = Ax(T([0,1])) for t > 0. (4.5)

This shows that (4.1) provides a natural generalization of (4.3) and (4.5) since we
simply replace [0, t] by an arbitrary bounded Borel set; in return we get a measure
M instead of a process Y. Similarly, (4.4) is generalized by (4.2).

Remark 4.2. There are many alternative representations of M and in the following
we consider some of them. Let {L; : t > 0} denote an R%valued Lévy process with
p = L(Ly). Thus, in the language of [2], {L; : t > 0} is a Lévy seed associated
with p.

(1) If Ay,..., A, are disjoint bounded Borel sets then

LA

(M(Ay),..., M(A,)) Z (L )

m(A1)? "

where {ij :t >0}, for j = 1,...,r, are independent copies of {L; : t > 0}. This
follows since E(Lij(Aj)) = ™49 If instead Ay C Ay C --- C A, then

(M(A1), ..., M(A) Z (Longay)s - - - » Lingar)-

(2) Consider the case where m is given as in Example 3.3(1); that is, m is
concentrated on T = {t,}22; C R \ A. For A € B,(R") we then have

M(A) = Ax(T(ANT®) + Ax(T(ANT)) (4.6)
= Ax(T(ANT)) Z Ax(T({tn}) a.s.

where the series converges almost surely and the first term on the right-hand side
of (4.6) vanishes since Leb(T(A N T¢)) = 0 by (3. 1) Since, by the same equa-
tion, Leb(T({t,})) = m({t,}) we have Ax(T({ts})) = Lm,.})- Taking a sequence
{L} :t>0}, n=1,2,..., of independent copies of {L; : t > 0} we thus have for all
r>1and Aj,..., A, € By(R%) that

(M(Ay), ..., NZCY Ly Y. Liey (4.7)

nitn €A1 nitn €A
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If o = Ny(v,I) (where I is the d x d identity matrix) this simplifies as follows.
Let €1, €9, ... denote a sequence of independent and identically distributed random
vectors with law N4(0, ). Then (4.7) is equivalent to

(M(Ay),...,M(A,))
20 ymtad) + )] e Y am{tad) + [n({t )] en).

nitn €A1 nitn €A

(3) Finally consider the case m = my 4+ msy as in Example 3.3(3) where m; =
Leb /¢ and my is concentrated on 7. Then M = M; + M, where M; = {M;(A) :
A € B,(RE)} for i = 1,2 are independent and given by

Mi(A) = Ax(T(ANT®)) and My(A) = Ax(T(ANT)) for A€ By(R").

The measure M, is a homogeneous Lévy basis associated with p!/¢ and M can be
represented as M in (2).

Remark 4.3. From the Lévy-It6 decomposition (2.1) of Ax we have, a.s. for
A€ Bb(Rﬁ_%

M(A) = / ylo(y) (Jx — Leb xv)(d(t,y)) + / yloe(y) Tx(d(t, )
T(A)xR? T(A)xRd

+ / dXE +~Leb(T(A)).
T(A)

Applying the transformation rule on the first two integrals we get the following
Lévy-1to type representation of M:

M) = [ o) Ux =mx )@t + [ i) Txl@e.p)

+ / dXE +ym(A) a.s. for A€ By(RE),
T(A)

where Jy = {Jx(C): C € B(RE x RY)} is the Poisson random measure given by
Jx(A x B) = Jx(T(A) x B) for all A € B,(RE) and B € By(R?).

5 Extended subordination

Let X = {X; :t € RY}, Ax = {Ax(A4) : A € By(R%)}, p and (Z,v,7) be given
as in the previous section. That is, X is an R%valued homogeneous Lévy sheet
on ]R’i associated with p, which has characteristic triplet (X, v,~), and Ay is the
homogeneous Lévy basis induced by X. Let T' = {T; : t € RE} be an R-valued
homogeneous Lévy sheet associated with a distribution A € ID(IR). Let A have Lévy
measure p and drift § € R4 ; that is, p(R_) =0, fR+(1 A x)p(dr) < oo and

-~

Au) = explifu + /]R (e — 1) p(dx)] for u € R.
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Let Ar = {Ar(A) : A € B(RY)} be the non-negative homogeneous Lévy basis
induced by T'={T} : t € ]Rﬁ} By removing a null set if necessary it follows from
Remark 2.5(2) that Ay has the pointwise representation

Ar(A)(w) = / yJr{d(t9)) (@) + FLeby (4

=> Ar({t})(w) + BLeby(A) forw e Qand A€ B(RY), (5.1)

teA

where Leb; denotes Lebesgue measure on R, and the series converges for all A €
By(R:) and w € Q. Let F©' = o(Ar(A) : A € By(R%)) be the sigma-field generated
by AT-

Pointwise the measure A — A7p(A)(w) is the sum of a discrete measure and a
constant times Lebesgue measure. By the construction in Example 3.3(3) there is an
(FT'xB(RE), B(R"))-measurable mapping ¢ : 2xR* — R such that for allw € Q
and A € By(R%) the set T(A)(w), given by T(A)(w) = {z € RE : ¢p(w,z) € A}, is
bounded, and

Ar(A)(w) = Leb(T(A)(w)). (5:2)

That is, for each w, T(:)(w) is a meta-time associated with Ar(-)(w).
Define M = {M(A) : A € B,(RE)} as

M(A) = Ax(T(A)) for A€ By(RE) (5.3)

where as usual we suppress w on both sides. We say that M appears by extended
subordination of Ax by Ar or of X by T'; and we write M = Ax AAror M = X AT.

In practice the meta-time T can be hard to work with directly. Therefore it is
important to note that if we condition on 7" then, by (5.1), the useful representations
of M in Remark 4.2 apply. For example, if A above is a Poisson or negative binomial
distribution then almost surely A is concentrated on a finite number of points on
compacts. If \ is a gamma or an inverse Gaussian distribution then almost surely
A7 is concentrated on a dense subset of ]Rﬁ. In this case we can approximate Ap
pointwise in w by a random measure which is concentrated on a finite number of
points, for instance by removing all jumps of magnitude less than e for some small
¢; this also gives a pointwise approximation to the meta-time T.

The following corresponds to the theorem in Section 3.1 of [2].

Theorem 5.1. Assume M = Ay A Ar as above. Then M = {M(A) : A € B,(R%)}
is a homogeneous Lévy basis associated with the measure pu* € ID(R®) with charac-
teristic triplet (X%, v# ~%), where

o = B3,

V#(B) = Bu(B) + / T (B)p(ds), B e BRI {0)),
= By / N /| ) ()

Proof. Conditional on 7, and hence also unconditionally, M satisfies the o-addi-
tivity condition in Definition 2.2(ii).
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Letn > 1,and 4y, ..., A, € By(R) be disjoint. Conditional on F* we are in the
setting of the previous section. That is, M(A,),..., M(A,) are independent condi-
tional on FT and L(M(A;)|FT) = pr4). Therefore, for arbitrary 21,...,2, € R?

we have .
| = TTae)
j=1

J
Since Ar(A;),...,Ar(A,) are independent it thus follows that

€i<Zj,M

—.

Il
N

|

n

61<zj,M(Aj)>] _ HE[ﬂ(Zj)AT(Aj)L

—.

2l

<
Il
—_

<
Il
—_

showing that M(A,),..., M(A,) are independent. Since moreover L(Ar(A)) =
L(Ar(t+A)) for allt € RE and A € B,(RE) it follows that L(M(A)) = L(M(t+A)).
Thus, M is a homogeneous Lévy basis.

Choose an arbitrary set A € B,(R%) with Leb(A) = 1. Then u# = L(M(A))
and by the above we have for z € R that

1#(2) = E[fi(z) ™).

Let {L; : t > 0} be a Lévy process with £(L;) = p and {H; : t > 0} be a
subordinator independent of L with £(H;) = \. It is easily seen that

Ele=Im)] = Blfi(2)™] = p# ().

In other words £(Lg,) = p*, which means that u# appears as the law of a subordi-
nated process in the usual sense. It is therefore well known, e.g. from [11], Theorem
30.1, that the characteristic triplet of u# is as indicated. O]

Remark 5.2. Above we assumed that Ap is a non-negative homogeneous Lévy basis;
however, it is possible to define M = Ax A Ay in a much more general context.
For example, assume that AT = {Ar(A) : A € By(R)} is stationary in the sense
that {Ar(A) : A € Bb(Rk)} = {Ar(t+ A) : A € By(R%)} for all t € R% and that
for all w A — Ag(A)(w) is a non-negative measure on RE. Assume Ar and Ay
are independent and note that we do no longer assume that Ar is a Lévy basis.
Using Lemma 3.1 define ¢ : 2 x R¥ — R such that we have (5.2) and let M =
{M(A) : A € B,(R%)} be given as in (5.3). Then M = {M(A) : A€ B,(RY)}isa
homogeneous random measure in the sense that for any disjoint sequence Aq, A, ...
with A = U2, A, € By(RE) we have M(A) = > M(A,) a.s. Moreover, by a
slight modification of the above proof it follows that M is stationary. In general M
is no longer a Lévy basis. But conditionally on 7' it is.
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