

Meta-Times and Extended Subordination

Ole E. Barndorff-Nielsen and Jan Pedersen

Meta-Times and Extended Subordination

Ole E. Barndorff-Nielsen and Jan Pedersen

Department of Mathematical Sciences, University of Aarhus, Denmark. E-mails: oebn@imf.au.dk, jan@imf.au.dk.

Abstract

The problem of defining subordination of a homogeneous Lévy basis by a non-negative homogeneous Lévy basis is discussed. An explicit construction, generalizing the usual one-dimensional case, is given. This construction involves certain random meta-time changes.

Keywords: Subordination; Lévy bases and sheets; meta-time change. AMS Subject Classification: 60G51; 60G57.

1 Introduction

In recent years the fundamental concept of subordination of a Lévy process by a subordinator has been generalized in many directions; see e.g. [3, 4, 8]. Related to this, Barndorff-Nielsen [2] considered the following problem: Given an \mathbb{R}^d -valued homogeneous Lévy basis $\Lambda_X = \{\Lambda_X(A) : A \in \mathcal{B}_b(\mathbb{R}^k)\}$, and an independent \mathbb{R}_+ -valued homogeneous Lévy basis $\Lambda_T = \{\Lambda_T(A) : A \in \mathcal{B}_b(\mathbb{R}^k)\}$ how should one define subordination of Λ_X by Λ_T ?

Let us first consider the case k = 1. There are Lévy processes $X = \{X_t : t \ge 0\}$ and $T = \{T_t : t \ge 0\}$ associated with Λ_X and Λ_T in the sense that

$$X_t = \Lambda_X((0,t])$$
 and $T_t = \Lambda_T((0,t])$ (1.1)

for $t \geq 0$. Thus, we can simply define a subordinated process $Y = \{Y_t : t \geq 0\}$ in the usual way as $Y_t = X_{T_t}$. However, when $k \geq 2$ there is no immediate analogue. To see this, note that there are so-called Lévy sheets $X = \{X_t : t \in \mathbb{R}_+^k\}$ and $T = \{T_t : t \in \mathbb{R}_+^k\}$ associated with Λ_X and Λ_T , and these are defined as in (1.1), where (0,t] now is an interval in \mathbb{R}^k . But T_t is one-dimensional while t is k-dimensional, thus excluding the possibility of defining Y_t as X_{T_t} when $k \geq 2$. Barndorff-Nielsen argued that one should not construct a subordinated process; rather, the appropriate concept is a subordinated random measure $M = \{M(A) : A \in \mathcal{B}_b(\mathbb{R}^k)\}$ defined such that conditional on Λ_T , $M(A_1), \ldots, M(A_n)$ are independent for all disjoint A_1, \ldots, A_n , and the distribution of M(A) for $A \in \mathcal{B}_b(\mathbb{R}_+^k)$ is $\mu^{\Lambda_T(A)}$ where $\mu = \mathcal{L}(\Lambda_X((0,e]))$ and $e = (1,\ldots,1) \in \mathbb{R}_+^k$ is the vector of ones.

In the present paper we give an explicit construction in terms of Λ_X and Λ_T of Barndorff-Nielsen's subordinated measure M. For notational convenience, instead of considering M and Λ_X as Lévy bases on \mathbb{R}^k we look at the restriction to \mathbb{R}^k_+ ; the

general case follows trivially from this. Specifically, we argue that a natural definition of $M = \{M(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ is $M(A) = \Lambda_X(\phi_T^{-1}(A))$ where $\phi_T : \mathbb{R}^k_+ \to \mathbb{R}^k$ is a (random) mapping satisfying that $\text{Leb}(\phi_T^{-1}(A)) = \Lambda_T(A)$ for $A \in \mathcal{B}_b(\mathbb{R}^k_+)$. We also use the notation $\mathbf{T} = \phi_T^{-1}$ for the inverse image of ϕ_T . In a sense one can think of \mathbf{T} as a kind of meta-time change, replacing time changes in the case k = 1. We show that this definition generalizes the case k = 1 in a natural way and, in particular, that M is a homogeneous Lévy basis.

This construction gives emphasis to the viewpoint that in the multiparameter case $k \geq 2$ the right concept is a subordinated measure instead of subordinated process.

In Section 2 we recall the definitions of homogeneous Lévy sheets and bases and show that these are in one-to-one correspondence. To pave the way for the analysis of M we state in Section 3 a lemma showing that it is possible to define a mapping ϕ_T with the above properties. Section 4 is about meta-time changes, meaning that we consider the measure M for a fixed outcome of T. Although meta-times exist for any T they are in full generality somewhat involved to define explicitly. However, in practice the most important case is when the measure induced by T is the sum of a constant times Lebesgue measure and a discrete measure. In this case alternative useful representations of M are given. In the last section it is shown that M is a homogeneous Lévy basis.

2 Homogeneous Lévy sheets and Lévy bases

Let d and k denote positive integers. For $x=(x^1,\ldots,x^d)$ and $y=(y^1,\ldots,y^d)$ in \mathbb{R}^d let $\langle x,y\rangle$ denote their inner product and |x| be the corresponding norm. Let $D=\{x\in\mathbb{R}^d:|x|\leq 1\}$. Throughout the paper all random variables are defined on a common probability space (Ω,\mathcal{F},P) . Let $\mathcal{L}(X)$ denote the law of a random vector X. For a set S and two families $\{X_t:t\in S\}$ and $\{Y_t:t\in S\}$ of random vectors with X_t and Y_t in \mathbb{R}^d write $\{X_t:t\in S\}$ if the finite dimensional marginals are the same. We say that $\{X_t:t\in S\}$ is a modification of $\{Y_t:t\in S\}$ if $X_t=Y_t$ a.s. for all $t\in S$. Let $\widehat{\mu}$ denote the characteristic function of a distribution μ on \mathbb{R}^d , $\widehat{\mu}(z)=\int_{\mathbb{R}^d}e^{\mathrm{i}\langle z,x\rangle}\mu(\mathrm{d}x)$ for $z\in\mathbb{R}^d$. Let $\mathrm{ID}(\mathbb{R}^d)$ denote the class of d-dimensional infinitely divisible distributions. Recall that a distribution μ on \mathbb{R}^d is in $\mathrm{ID}(\mathbb{R}^d)$ if and only if $\widehat{\mu}$ is given by $\widehat{\mu}(z)=\exp\left[-\frac{1}{2}z\Sigma z^\top+\mathrm{i}\langle\gamma,z\rangle+\int_{\mathbb{R}^d}g(z,x)\,\nu(\mathrm{d}x)\right],\,z\in\mathbb{R}^d$, where $g(z,x)=e^{\mathrm{i}\langle z,x\rangle}-1-\mathrm{i}\langle z,x\rangle 1_D(x),\, \top$ denotes the transpose, and (Σ,ν,γ) is the characteristic triplet of μ ; that is, Σ is a $d\times d$ non-negative definite matrix, ν is a Lévy measure on \mathbb{R}^d and $\gamma\in\mathbb{R}^d$. Denote the entries of Σ by Σ^{ij} and the coordinates of γ by γ^j for $i,j=1,\ldots,d$. For $t\geq 0$ and $\mu\in\mathrm{ID}(\mathbb{R}^d),\,\mu^t$ denotes the distribution in $\mathrm{ID}(\mathbb{R}^d)$ with $\widehat{\mu^t}=\widehat{\mu^t}$.

For $a = (a^1, \ldots, a^k) \in \mathbb{R}_+^k$ and $b = (b^1, \ldots, b^k) \in \mathbb{R}_+^k$ write $a \leq b$ if $a^j \leq b^j$ for all j and a < b if $a^j < b^j$ for all j, and define the half-open interval]a, b] as $]a, b] = \{t \in \mathbb{R}_+^k : a < t \leq b\}$. Let $[a, b] = \{t \in \mathbb{R}_+^k : a \leq t \leq b\}$.

For $F = \{F_t : t \in \mathbb{R}_+^k\}$ with $F_t \in \mathbb{R}^d$ and $a \leq b$ define the increment of F

over [a,b], $\Delta_a^b F$, as

$$\Delta_a^b F = \sum_{\epsilon_1=0}^1 \cdots \sum_{\epsilon_k=0}^1 (-1)^{k-(\epsilon_1+\cdots+\epsilon_k)} F_{(c^1(\epsilon_1),\dots,c^k(\epsilon_k))},$$

where $c^{j}(1) = b^{j}$ and $c^{j}(0) = a^{j}$. For example, if k = 1 we have $\Delta_{a}^{b}F = F_{b} - F_{a}$ and when k = 2 then $\Delta_{a}^{b}F = F_{(b^{1},b^{2})} + F_{(a^{1},a^{2})} - F_{(a^{1},b^{2})} - F_{(b^{1},a^{2})}$. Let $\mathcal{A} = \{t \in \mathbb{R}_{+}^{k} : kt^{j} = 0 \text{ for some } j\}$. For $\mathcal{R} = (R_{1}, \ldots, R_{k})$ where R_{j} is either \leq or > write $a\mathcal{R}b$ if $a^{j}R_{j}b^{j}$ for all j.

We say that $F = \{F_t : t \in \mathbb{R}_+^k\}$ is lamp if the following three conditions are satisfied: (i) for $t \in \mathbb{R}_+^k$ the limit $F(t, \mathcal{R}) = \lim_{u \to t, t \mathcal{R} u} F_u$ exists for each of the 2^k relations $\mathcal{R} = (R_1, \ldots, R_k)$ where R_j is either \leq or >; here we let $F(t, \mathcal{R}) = F_t$ if there is no u with $t\mathcal{R}u$. (ii) $F_t = F(t, \mathcal{R})$ for $\mathcal{R} = (\leq, \ldots, \leq)$. (iii) $F_t = 0$ for $t \in \mathcal{A}$. Here lamp stands for limits along monotone paths. This is the multiparameter analogue of being càdlàg. See Adler et al. [1] for references to the literature on lamp trajectories. When F is lamp and $t \in \mathbb{R}_+^k \setminus \mathcal{A}$ define $\Delta_t F = \lim_{n \to \infty} \Delta_{t_n}^t F$ where t_n is any sequence with $t_n \to t$ and $t_n < t$. If F is continuous at the point t then $\Delta_t F = 0$ but the converse is not true, that is, we can have $\Delta_t F = 0$ without F being continuous at t.

Definition 2.1. Let $X = \{X_t : t \in \mathbb{R}_+^k\}$ be a family of random vectors in \mathbb{R}^d . We say that X has independent increments if $X_t = 0$ for all $t \in \mathcal{A}$ a.s. and $\Delta_{a_1}^{b_1} X, \ldots, \Delta_{a_n}^{b_n} X$ are independent whenever $n \geq 2$ and $]a_1, b_1], \ldots,]a_n, b_n]$ are disjoint; if in addition X is continuous in probability and $\Delta_{t+a}^{t+b} X \stackrel{\mathscr{D}}{=} \Delta_a^b X$ for all $a, b, t \in \mathbb{R}_+^k$ with $a \leq b$, then X is called an \mathbb{R}^d -valued homogeneous Lévy sheet in law on \mathbb{R}_+^k , and if also almost all sample paths are lamp then X is called an \mathbb{R}^d -valued homogeneous Lévy sheet on \mathbb{R}_+^k .

A homogeneous Lévy sheet is a special case of the additive processes considered by Adler et al. [1], p. 5, and of the Lévy sheets considered by Dalang and Walsh [5] (in the case k=2). In fact, a process satisfying all the above conditions except the homogeneity condition $\Delta_{t+a}^{t+b}X \stackrel{\mathscr{D}}{=} \Delta_a^b X$ would be called a Lévy sheet by Dalang and Walsh. It follows e.g. from [1], Proposition 4.1, that any homogeneous Lévy sheet in law has a modification which is a homogeneous Lévy sheet. It is easily seen that if $X = \{X_t : t \in \mathbb{R}_+^k\}$ is a homogeneous Lévy sheet in law then $X_t = \Delta_0^t X$ a.s. for all $t \in \mathbb{R}_+^k$; moreover $\mathcal{L}(\Delta_a^b X) \in \mathrm{ID}(\mathbb{R}^d)$ for all $a, b \in \mathbb{R}_+^k$ with $a \leq b$ and there is a $\mu \in \mathrm{ID}(\mathbb{R}^d)$ such that $\mathcal{L}(\Delta_a^b X) = \mu^{\mathrm{Leb}([a,b])}$ for all such a and b, where Leb denotes Lebesgue measure on \mathbb{R}^k . We say that X is associated with μ or with the characteristic triplet of μ .

Definition 2.2. Let $\Lambda = \{\Lambda(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$, where $\mathcal{B}_b(\mathbb{R}^k_+)$ is the set of bounded Borel sets in \mathbb{R}^k_+ , denote a family of random vectors in \mathbb{R}^d . We call Λ an \mathbb{R}^d -valued homogeneous Lévy basis on \mathbb{R}^k_+ if the following conditions are satisfied: (i) $\Lambda(A_1), \ldots, \Lambda(A_n)$ are independent whenever $A_1, \ldots, A_n \in \mathcal{B}_b(\mathbb{R}^k_+)$ are disjoint. (ii) $\Lambda(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Lambda(A_n)$ a.s. whenever $A_1, A_2, \ldots \in \mathcal{B}_b(\mathbb{R}^k_+)$ are disjoint with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}_b(\mathbb{R}^k_+)$. Here the series converges almost surely. (iii) For all $t \in \mathbb{R}^k_+$ and $A \in \mathcal{B}(\mathbb{R}^k_+)$ we have $\Lambda(A) \stackrel{\mathscr{D}}{=} \Lambda(t+A)$.

If Λ is a homogeneous Lévy basis basis then $\mathcal{L}(\Lambda(A)) \in \mathrm{ID}(\mathbb{R}^d)$ for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$. Moreover, there is a $\mu \in \mathrm{ID}(\mathbb{R}^d)$ such that $\mathcal{L}(\Lambda(A)) = \mu^{\mathrm{Leb}(A)}$ for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$. We say that the homogeneous Lévy basis is associated with μ or its characteristic triplet. Finally, recall that Rajput and Rosiński [9] call $\Lambda = \{\Lambda(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ an independently scattered ID random measure if it satisfies (i) and (ii) of Definition 2.2 and $\mathcal{L}(\Lambda(A)) \in \mathrm{ID}(\mathbb{R}^d)$ for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$. For simplicity we refer to this as a Lévy basis.

The following shows that, not surprisingly, there is a one-to-one correspondence between homogeneous Lévy sheets (in law) and homogeneous Lévy bases.

Theorem 2.3. Let $X = \{X_t : t \in \mathbb{R}_+^k\}$ be a homogeneous Lévy sheet associated with $\mu \in ID(\mathbb{R}^d)$ with characteristic triplet (Σ, ν, γ) . Let

$$J(C) = \#\{(t, \Delta_t X) : t \in \mathbb{R}^k_+ \setminus \mathcal{A}, (t, \Delta_t X) \in C \text{ and } \Delta_t X \neq 0\}$$

for $C \in \mathcal{B}(\mathbb{R}^k_+ \times \mathbb{R}^d)$.

Then we have the following.

- (1) $J = \{J(C) : C \in \mathcal{B}(\mathbb{R}^k_+ \times \mathbb{R}^d)\}$ is a Poisson random measure with intensity measure Leb $\times \nu$.
- (2) Let $\nu^1(B) = \nu(B \cap D)$ and $\nu^2(B) = \nu(B \cap D^c)$ for $B \in \mathcal{B}(\mathbb{R}^d)$. Define

$$X_t^1 = \int_{[0,t]\times\mathbb{R}^d} y 1_D(y) \left(J - \text{Leb} \times \nu \right) (\mathbf{d}(s,y)),$$
$$X_t^2 = \int_{[0,t]\times\mathbb{R}^d} y 1_{D^c}(y) J(\mathbf{d}(s,y)).$$

We then have that $X_t = X_t^1 + X_t^2 + X_t^g + t\gamma$, where $\{X_t^g : t \in \mathbb{R}_+^k\}$, $\{X_t^1 : t \in \mathbb{R}_+^k\}$ and $\{X_t^2 : t \in \mathbb{R}_+^k\}$ are independent, $\{X_t^g : t \in \mathbb{R}_+^k\}$ is a homogeneous Lévy sheet associated with $(\Sigma, 0, 0)$ and $\{X_t^i : t \in \mathbb{R}_+^k\}$ is a homogeneous Lévy sheet associated with $(0, \nu^i, 0)$ for i = 1, 2.

(3) There exists one and up to modification only one homogeneous Lévy basis $\Lambda = \{\Lambda(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ satisfying $\Lambda([0,t]) = X_t$ a.s. for $t \in \mathbb{R}^k_+$. In addition, Λ is given by

$$\Lambda(A) = \int_{A \times \mathbb{R}^d} y 1_D(y) \left(J - \text{Leb} \times \nu \right) (d(t, y))
+ \int_{A \times \mathbb{R}^d} y 1_{D^c}(y) J(d(t, y)) + \int_A dX_t^g + \gamma \text{Leb}(A) \quad a.s.$$
(2.1)

for $A \in \mathcal{B}_b(\mathbb{R}^k_+)$.

Theorem 2.3(1)–(2) are essentially contained in [1], Theorem 4.6. The only difference is that J above is a Poisson random measure on $\mathbb{R}^k_+ \times \mathbb{R}^d$ while Theorem 4.6 of [1] is formulated in terms of Poisson random measures on \mathbb{R}^d . The proofs are essentially the same and hence we omit the proof of Theorem 2.3(1)–(2). See also [5] in the case k=2.

For $A \in \mathcal{B}_b(\mathbb{R}^k_+)$ define $\int_A dX_t^g = \int 1_A(t) dX_t^g$ where we recall that $\int f(t) dX_t^g$ (a random vector in \mathbb{R}^d) is definable by approximation by step functions in the usual way for all measurable $f : \mathbb{R}^k_+ \to \mathbb{R}$ satisfying $\int (f(t))^2 dt < \infty$. Moreover, we have $\mathcal{L}(\int f(t) dX_t^g) = N_d(0, \Sigma(f))$, where $\Sigma^{ij}(f) = \Sigma^{ij} \int (f(t))^2 dt$. The result in Theorem 2.3(3) is immediate from fundamental properties of integrals with respect to (compensated) Poisson random measures cf. e.g. [6]. In the case k = 2, Theorem 2.3(3) can also be found in [5], Theorem 2.6.

We call the process $X^g = \{X_t^g : t \in \mathbb{R}_+^k\}$ above the Gaussian part of X and the measure J the jump measure of X. We also denote it by J_X . Finally, we call Λ above the homogeneous Lévy basis induced by X, also to be denoted by Λ_X .

Proposition 2.4. Let $\Lambda = \{\Lambda(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ be a homogeneous Lévy basis. Let $\widetilde{X}_t = \Lambda([0,t])$. We then have the following results: For $a \leq b$, $\Delta_a^b \widetilde{X} = \Lambda([a,b])$ a.s. In particular $\widetilde{X} = \{\widetilde{X}_t : t \in \mathbb{R}^k_+\}$ is a homogeneous Lévy sheet in law. Let $X = \{X_t : t \in \mathbb{R}^k_+\}$ be a homogeneous Lévy sheet which is a modification of \widetilde{X} . Then for $A \in \mathcal{B}_b(\mathbb{R}^k_+)$ we have $\Lambda(A) = \Lambda_X(A)$ a.s., where Λ_X is the Lévy basis generated by X.

Proof. It is easily seen that $\Delta_a^b \widetilde{X} = \Lambda(]a,b]$ a.s. The uniqueness part of Theorem 2.3(3) implies $\Lambda = \Lambda_X$.

Remark 2.5. (1) Theorem 2.3(3) shows that a homogeneous Lévy sheet generates a homogeneous Lévy basis by (2.1) and Proposition 2.4 shows conversely that any homogeneous Lévy basis is generated in this way. We call (2.1) the Lévy-Itô decomposition of Λ and call J in that equation the jump measure of Λ . We refer to [5] (for the case k=2) and [7] for the Lévy-Itô decomposition of non-homogeneous Lévy bases.

(2) Let Λ be an \mathbb{R}^d -valued homogeneous Lévy basis on \mathbb{R}^k_+ associated with the characteristic triplet (Σ, ν, γ) . Assume that $\int_{\mathbb{R}^d} (1 \wedge |x|) \nu(\mathrm{d}x) < \infty$. Then for $A \in \mathcal{B}_b(\mathbb{R}^k_+)$ the representation (2.1) simplifies to

$$\Lambda(A) = \int_{A \times \mathbb{R}^d} y J(d(t, y)) + \int_A dX_t^{g} + \gamma_0 \operatorname{Leb}(A) \quad a.s.$$

where the first integral is defined pointwise almost surely and where $\gamma_0 = \gamma - \int_A y 1_D(y) \nu(\mathrm{d}y)$. Here pointwise almost surely signifies that, for almost all ω , the integral $\int_{A\times\mathbb{R}^d} y J(\mathrm{d}(t,y))(\omega)$ is a usual Lebesgue integral. Thus if in addition $\nu(\mathbb{R}^d \setminus \mathbb{R}^d_+) = 0$, $\Sigma = 0$ and $\gamma_0 \in \mathbb{R}^d_+$ then we can extend Λ such that $\Lambda(A)$ is defined for all A in $\mathcal{B}(\mathbb{R}^k_+)$ rather than $\mathcal{B}_b(\mathbb{R}^k_+)$; however, some of the coordinates of $\Lambda(A)$ may be equal to ∞ . In addition, almost surely all coordinates of Λ are non-negative measures.

3 Meta-times

The purpose of this section is to state a result showing that any measure m on \mathbb{R}^k_+ which is finite on compacts is the image measure of Leb under some mapping ϕ . This result is essentially well known, at least when m is finite, so in the next lemma we simply state a version of it which suits our purposes well.

Lemma 3.1. Let $m = \{m(A) : A \in \mathcal{B}(\mathbb{R}^k_+)\}$ be a non-negative measure on \mathbb{R}^k_+ satisfying m(A) = 0 and $m(A) < \infty$ for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$. Then there exists a measurable mapping $\phi : \mathbb{R}^k_+ \to \mathbb{R}^k$ such that

$$m(A) = \text{Leb}(\phi^{-1}(A)) \quad \text{for all } A \in \mathcal{B}(\mathbb{R}^k_+)$$
 (3.1)

and $\phi^{-1}(A)$ is a bounded set for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$.

Remark 3.2. We refer to the inverse image ϕ^{-1} as a meta-time associated with m and we often denote it by \mathbf{T} . By the above lemma and properties of inverse images we can regard \mathbf{T} as a mapping $\mathbf{T}: \mathcal{B}_b(\mathbb{R}^k_+) \to \mathcal{B}_b(\mathbb{R}^k_+)$ satisfying: (i) $\mathbf{T}(A)$ and $\mathbf{T}(B)$ are disjoint whenever $A, B \in \mathcal{B}_b(\mathbb{R}^k_+)$ are disjoint. (ii) $\mathbf{T}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} \mathbf{T}(A_n)$ whenever A_1, A_2, \ldots are in $\mathcal{B}_b(\mathbb{R}^k_+)$ and $\bigcup_{n=1}^{\infty} A_n$ is in $\mathcal{B}_b(\mathbb{R}^k_+)$. (iii) $m(A) = \text{Leb}(\mathbf{T}(A))$ for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$.

Proof. Let $u \in \mathbb{R}^k \setminus \mathbb{R}^k_+$ be arbitrary.

(1) First assume that $m(\mathbb{R}^k_+) < \infty$. Take an interval [a, b] in \mathbb{R}^k_+ with Leb $([a, b]) = m(\mathbb{R}^k_+)$. Then m is the image measure of Lebesgue measure on [a, b] under some mapping $\psi : [a, b] \to \mathbb{R}^k_+$. That is, $m(A) = \text{Leb}(\psi^{-1}(A))$ for all $A \in \mathcal{B}(\mathbb{R}^k_+)$. Indeed, this is essentially the well known result (cf. e.g. [10]) that any distribution on \mathbb{R}^k_+ can be generated from k independent and uniformly distributed random variables. Letting

$$\phi(t) = \begin{cases} \psi(t) & t \in [a, b] \\ u & t \in \mathbb{R}^k_+ \setminus [a, b] \end{cases}$$

one sees that ϕ has the required properties.

(2) If instead $m(\mathbb{R}_+^k) = \infty$ we can take a sequence A_n , n = 1, 2, ..., of disjoint bounded Borel sets in \mathbb{R}_+^k covering \mathbb{R}_+^k and satisfying that for all $t \in \mathbb{R}_+^k$ the interval [0,t] is contained in the finite union of some of the A_n 's. Define, for all $n \geq 1$, $m_n = m(\cdot \cap A_n)$. Since the m_n 's are finite measures there is a sequence of disjoint intervals $[a_1,b_1], [a_2,b_2], \ldots$ in \mathbb{R}_+^k and measurable mappings $\psi_n : [a_n,b_n] \to A_n$ such that $m_n(A) = \text{Leb}(\psi_n^{-1}(A))$ for all $A \in \mathcal{B}(A_n)$. Since $m = \sum_{n \geq 1} m_n$ we can define

$$\phi(t) = \begin{cases} \psi_n(t) & t \in [a_n, b_n] \text{ for some } n \\ u & t \in \mathbb{R}_+^k \setminus (\bigcup_{n=1}^\infty [a_n, b_n]). \end{cases}$$

Clearly, since for any $t \in \mathbb{R}^k_+$ the interval [0,t] is contained in the union of a finite number of A_n 's it follows that $\phi^{-1}([0,t])$ is contained in the union of a finite number of intervals $[a_n,b_n]$.

Example 3.3. Let m be as in the lemma above. In many cases of interest, the mapping ϕ in the lemma has a very simple expression, as the following shows.

- (1) Assume m is concentrated on a set $\mathcal{T} = \{t_n\}_{n=1}^{\infty} \subseteq \mathbb{R}_+^k \setminus \mathcal{A}$. Take a disjoint sequence R_1, R_2, \ldots of bounded Borel sets in \mathbb{R}_+^k such that $\text{Leb}(R_n) = m(\{t_n\})$ for all n. Define $\phi(t) = t_n$ when $t \in R_n$ for some n and let $\phi(t) = u$ for $t \in \mathbb{R}_+^k \setminus (\bigcup_{n=1}^{\infty} R_n)$, where $u \in \mathbb{R}^k \setminus \mathbb{R}_+^k$ is arbitrary. The sets R_n can be chosen arbitrarily, showing in particular that ϕ is not at all uniquely determined.
 - (2) If m = Leb /c for some c > 0 we can use $\phi(t) = ct$.

(3) The case when $m = m_1 + m_2$ where $m_1 = \text{Leb}/c$ and m_2 is concentrated on $\{t_n\}_{n=1}^{\infty} \subseteq \mathbb{R}_+^k \setminus \mathcal{A}$ can be handled as follows. Let the sets R_n above be subsets of

$$\{s = (s^1, \dots, s^k) \in \mathbb{R}_+^k : 0 \le s^j \le 1 \text{ for all } j = 1, \dots, k\}.$$

Let $e = (1, ..., 1) \in \mathbb{R}_+^k$ be the vector of ones. By defining ϕ as

$$\phi(t) = \begin{cases} t_n & \text{if } t \in R_n \text{ for some } n \\ u & \text{if } t \in \{s = (s^1, \dots, s^k) \in \mathbb{R}_+^k : s^j \in [0, 1]\} \setminus (\bigcup_{n=1}^\infty R_n) \\ c(t - e) & \text{if } t \in \{s = (s^1, \dots, s^k) \in \mathbb{R}_+^k : s^j > 1\}, \end{cases}$$

equation (3.1) is easily verified.

(4) Assume k=1 and let $T_t=m([0,t])$ for all $t\geq 0$. Define $\phi:\mathbb{R}_+\to\mathbb{R}$ as

$$\phi(y) = \inf\{t \ge 0 : T(t) \ge y\}.$$

where $\inf \emptyset = u \in \mathbb{R} \setminus \mathbb{R}_+$. Then

$$[0, T_t] = \mathbf{T}([0, t]) \quad \text{for all } t \ge 0 \tag{3.2}$$

and hence $m(A) = \text{Leb}(\mathbf{T}(A))$ for all $A \in \mathcal{B}(\mathbb{R}_+)$.

4 Meta-time changes

In the one-dimensional case k=1 one uses increasing functions to model a *time change* as in (4.3) below. The purpose of the present section is to show that in the case $k \geq 2$ certain *meta-time changes* give similar results. In fact, we show that the appropriate generalization of the process Y in (4.3) is the random measure M in (4.1) where in the latter equation \mathbf{T} is a meta-time as defined in Section 3.

Let $X = \{X_t : t \in \mathbb{R}_+^k\}$ be an \mathbb{R}^d -valued homogeneous Lévy sheet on \mathbb{R}_+^k associated with $\mu \in ID(\mathbb{R}^d)$. Denote the corresponding homogeneous Lévy basis by Λ_X . Let $m = \{m(A) : A \in \mathcal{B}(\mathbb{R}_+^k)\}$ be a non-negative measure on \mathbb{R}_+^k satisfying m(A) = 0 and $m(A) < \infty$ for all $A \in \mathcal{B}_b(\mathbb{R}_+^k)$. Set $T_t = m([0, t])$ for all $t \in \mathbb{R}_+^k$ and let $\phi : \mathbb{R}_+^k \to \mathbb{R}^k$ be given as in Lemma 3.1. Let $\mathbf{T} = \phi^{-1}$ be the corresponding meta-time associated with m.

Define $M = \{M(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ as

$$M(A) = \Lambda_X(\mathbf{T}(A)) \text{ for } A \in \mathcal{B}_b(\mathbb{R}^k_+).$$
 (4.1)

Using the properties of **T** in Remark 3.2 one sees that M is a (non-homogeneous) Lévy basis. Since in addition Λ_X is a homogeneous Lévy basis associated with μ it follows that

$$\mathcal{L}(M(A)) = \mu^{m(A)} \quad \text{for } A \in \mathcal{B}_b(\mathbb{R}^k_+).$$
 (4.2)

In particular, for $t \in \mathbb{R}^k_+$, M((0,t]) has characteristic triplet $T_t(\Sigma,\nu,\gamma)$ where (Σ,ν,γ) is the characteristic triplet of μ . We say that M is defined from Λ_X by meta-time change with \mathbf{T} .

Remark 4.1. Let k=1 and let us show that in this case the above definition generalizes the usual concept of a time change in a natural way. For this purpose, define a process $Y = \{Y_t : t \ge 0\}$ by time changing X with T:

$$Y_t = X_{T_t}. (4.3)$$

Hence, Y is a càdlàg process with independent increments and it is an additive process (i.e. also continuous in probability) if T is continuous. The distribution of an increment is given as

$$\mathcal{L}(Y_t - Y_s) = \mu^{T_t - T_s} \quad \text{for } 0 \le s < t. \tag{4.4}$$

Let ϕ be given as in Example 3.3(4). Using (3.2) rewrite Y_t in terms of the Lévy basis Λ_X as

$$Y_t = \Lambda_X([0, T_t]) = \Lambda_X(\mathbf{T}([0, t])) \text{ for } t \ge 0.$$
 (4.5)

This shows that (4.1) provides a natural generalization of (4.3) and (4.5) since we simply replace [0, t] by an arbitrary bounded Borel set; in return we get a measure M instead of a process Y. Similarly, (4.4) is generalized by (4.2).

Remark 4.2. There are many alternative representations of M and in the following we consider some of them. Let $\{L_t : t \geq 0\}$ denote an \mathbb{R}^d -valued Lévy process with $\mu = \mathcal{L}(L_1)$. Thus, in the language of [2], $\{L_t : t \geq 0\}$ is a Lévy seed associated with μ .

(1) If A_1, \ldots, A_r are disjoint bounded Borel sets then

$$(M(A_1), \dots, M(A_r)) \stackrel{\mathscr{D}}{=} (L_{m(A_1)}^{A_1}, \dots, L_{m(A_r)}^{A_r}),$$

where $\{L_t^{A_j}: t \geq 0\}$, for j = 1, ..., r, are independent copies of $\{L_t: t \geq 0\}$. This follows since $\mathcal{L}(L_{m(A_j)}^{A_j}) = \mu^{m(A_j)}$. If instead $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r$ then

$$(M(A_1),\ldots,M(A_r)) \stackrel{\mathscr{D}}{=} (L_{m(A_1)},\ldots,L_{m(A_r)}).$$

(2) Consider the case where m is given as in Example 3.3(1); that is, m is concentrated on $\mathcal{T} = \{t_n\}_{n=1}^{\infty} \subseteq \mathbb{R}_+^k \setminus \mathcal{A}$. For $A \in \mathcal{B}_b(\mathbb{R}_+^k)$ we then have

$$M(A) = \Lambda_X(\mathbf{T}(A \cap \mathcal{T}^c)) + \Lambda_X(\mathbf{T}(A \cap \mathcal{T}))$$

$$= \Lambda_X(\mathbf{T}(A \cap \mathcal{T})) = \sum_{n:t_n \in A} \Lambda_X(\mathbf{T}(\{t_n\})) \quad a.s.$$
(4.6)

where the series converges almost surely and the first term on the right-hand side of (4.6) vanishes since $\text{Leb}(\mathbf{T}(A \cap \mathcal{T}^c)) = 0$ by (3.1). Since, by the same equation, $\text{Leb}(\mathbf{T}(\{t_n\})) = m(\{t_n\})$ we have $\Lambda_X(\mathbf{T}(\{t_n\})) \stackrel{\mathscr{D}}{=} L_{m(\{t_n\})}$. Taking a sequence $\{L_t^n : t \geq 0\}$, $n = 1, 2, \ldots$, of independent copies of $\{L_t : t \geq 0\}$ we thus have for all $r \geq 1$ and $A_1, \ldots, A_r \in \mathcal{B}_b(\mathbb{R}^k_+)$ that

$$(M(A_1), \dots, M(A_r)) \stackrel{\mathscr{D}}{=} (\sum_{n:t_n \in A_1} L^n_{m(\{t_n\})}, \dots, \sum_{n:t_n \in A_r} L^n_{m(\{t_n\})}).$$
(4.7)

If $\mu = N_d(\gamma, I)$ (where I is the $d \times d$ identity matrix) this simplifies as follows. Let $\epsilon_1, \epsilon_2, \ldots$ denote a sequence of independent and identically distributed random vectors with law $N_d(0, I)$. Then (4.7) is equivalent to

$$(M(A_1), \dots, M(A_r)) = (\sum_{n:t_n \in A_1} \gamma m(\{t_n\}) + [m(\{t_n\})]^{1/2} \epsilon_n, \dots, \sum_{n:t_n \in A_r} \gamma m(\{t_n\}) + [m(\{t_n\})]^{1/2} \epsilon_n).$$

(3) Finally consider the case $m = m_1 + m_2$ as in Example 3.3(3) where $m_1 = \text{Leb }/c$ and m_2 is concentrated on \mathcal{T} . Then $M = M_1 + M_2$ where $M_i = \{M_i(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ for i = 1, 2 are independent and given by

$$M_1(A) = \Lambda_X(\mathbf{T}(A \cap \mathcal{T}^c))$$
 and $M_2(A) = \Lambda_X(\mathbf{T}(A \cap \mathcal{T}))$ for $A \in \mathcal{B}_b(\mathbb{R}^k_+)$.

The measure M_1 is a homogeneous Lévy basis associated with $\mu^{1/c}$ and M_2 can be represented as M in (2).

Remark 4.3. From the Lévy-Itô decomposition (2.1) of Λ_X we have, a.s. for $A \in \mathcal{B}_b(\mathbb{R}^k_+)$,

$$M(A) = \int_{\mathbf{T}(A)\times\mathbb{R}^d} y 1_D(y) \left(J_X - \operatorname{Leb} \times \nu\right) (\operatorname{d}(t,y)) + \int_{\mathbf{T}(A)\times\mathbb{R}^d} y 1_{D^c}(y) J_X(\operatorname{d}(t,y)) + \int_{\mathbf{T}(A)} \operatorname{d}X_t^{\operatorname{g}} + \gamma \operatorname{Leb}(\mathbf{T}(A)).$$

Applying the transformation rule on the first two integrals we get the following Lévy-Itô type representation of M:

$$M(A) = \int_{A \times \mathbb{R}^d} y 1_D(y) \left(\widetilde{J}_X - m \times \nu \right) (d(t, y)) + \int_{A \times \mathbb{R}^d} y 1_{D^c}(y) \, \widetilde{J}_X(d(t, y)) + \int_{\mathbf{T}(A)} dX_t^{\mathbf{g}} + \gamma m(A) \quad a.s. \quad \text{for } A \in \mathcal{B}_b(\mathbb{R}^k_+),$$

where $\widetilde{J}_X = \{\widetilde{J}_X(C) : C \in \mathcal{B}(\mathbb{R}^k_+ \times \mathbb{R}^d)\}$ is the Poisson random measure given by $\widetilde{J}_X(A \times B) = J_X(\mathbf{T}(A) \times B)$ for all $A \in \mathcal{B}_b(\mathbb{R}^k_+)$ and $B \in \mathcal{B}_b(\mathbb{R}^d)$.

5 Extended subordination

Let $X = \{X_t : t \in \mathbb{R}_+^k\}$, $\Lambda_X = \{\Lambda_X(A) : A \in \mathcal{B}_b(\mathbb{R}_+^k)\}$, μ and (Σ, ν, γ) be given as in the previous section. That is, X is an \mathbb{R}^d -valued homogeneous Lévy sheet on \mathbb{R}_+^k associated with μ , which has characteristic triplet (Σ, ν, γ) , and Λ_X is the homogeneous Lévy basis induced by X. Let $T = \{T_t : t \in \mathbb{R}_+^k\}$ be an \mathbb{R}_+ -valued homogeneous Lévy sheet associated with a distribution $\lambda \in \mathrm{ID}(\mathbb{R})$. Let λ have Lévy measure ρ and drift $\beta \in \mathbb{R}_+$; that is, $\rho(\mathbb{R}_-) = 0$, $\int_{\mathbb{R}_+} (1 \wedge x) \, \rho(\mathrm{d}x) < \infty$ and

$$\widehat{\lambda}(u) = \exp[i\beta u + \int_{\mathbb{R}_+} (e^{iux} - 1)\rho(dx)] \text{ for } u \in \mathbb{R}.$$

Let $\Lambda_T = \{\Lambda_T(A) : A \in \mathcal{B}(\mathbb{R}_+^k)\}$ be the non-negative homogeneous Lévy basis induced by $T = \{T_t : t \in \mathbb{R}_+^k\}$. By removing a null set if necessary it follows from Remark 2.5(2) that Λ_T has the pointwise representation

$$\Lambda_T(A)(\omega) = \int_{A \times \mathbb{R}_+} y J_T(d(t, y))(\omega) + \beta \operatorname{Leb}_1(A)$$

$$= \sum_{t \in A} \Lambda_T(\{t\})(\omega) + \beta \operatorname{Leb}_1(A) \quad \text{for } \omega \in \Omega \text{ and } A \in \mathcal{B}(\mathbb{R}_+^k), \quad (5.1)$$

where Leb₁ denotes Lebesgue measure on \mathbb{R}_+ and the series converges for all $A \in \mathcal{B}_b(\mathbb{R}_+^k)$ and $\omega \in \Omega$. Let $\mathcal{F}^T = \sigma(\Lambda_T(A) : A \in \mathcal{B}_b(\mathbb{R}_+^k))$ be the sigma-field generated by Λ_T .

Pointwise the measure $A \to \Lambda_T(A)(\omega)$ is the sum of a discrete measure and a constant times Lebesgue measure. By the construction in Example 3.3(3) there is an $(\mathcal{F}^T \times \mathcal{B}(\mathbb{R}^k_+), \mathcal{B}(\mathbb{R}^k))$ -measurable mapping $\phi_T : \Omega \times \mathbb{R}^k_+ \to \mathbb{R}^k$ such that for all $\omega \in \Omega$ and $A \in \mathcal{B}_b(\mathbb{R}^k_+)$ the set $\mathbf{T}(A)(\omega)$, given by $\mathbf{T}(A)(\omega) = \{x \in \mathbb{R}^k_+ : \phi_T(\omega, x) \in A\}$, is bounded, and

$$\Lambda_T(A)(\omega) = \text{Leb}(\mathbf{T}(A)(\omega)). \tag{5.2}$$

That is, for each ω , $\mathbf{T}(\cdot)(\omega)$ is a meta-time associated with $\Lambda_T(\cdot)(\omega)$.

Define $M = \{M(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ as

$$M(A) = \Lambda_X(\mathbf{T}(A)) \quad \text{for } A \in \mathcal{B}_b(\mathbb{R}^k_+)$$
 (5.3)

where as usual we suppress ω on both sides. We say that M appears by extended subordination of Λ_X by Λ_T or of X by T; and we write $M = \Lambda_X \wedge \Lambda_T$ or $M = X \wedge T$.

In practice the meta-time \mathbf{T} can be hard to work with directly. Therefore it is important to note that if we condition on T then, by (5.1), the useful representations of M in Remark 4.2 apply. For example, if λ above is a Poisson or negative binomial distribution then almost surely Λ_T is concentrated on a finite number of points on compacts. If λ is a gamma or an inverse Gaussian distribution then almost surely Λ_T is concentrated on a dense subset of \mathbb{R}^k_+ . In this case we can approximate Λ_T pointwise in ω by a random measure which is concentrated on a finite number of points, for instance by removing all jumps of magnitude less than ϵ for some small ϵ ; this also gives a pointwise approximation to the meta-time \mathbf{T} .

The following corresponds to the theorem in Section 3.1 of [2].

Theorem 5.1. Assume $M = \Lambda_X \wedge \Lambda_T$ as above. Then $M = \{M(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ is a homogeneous Lévy basis associated with the measure $\mu^\# \in \mathrm{ID}(\mathbb{R}^d)$ with characteristic triplet $(\Sigma^\#, \nu^\#, \gamma^\#)$, where

$$\Sigma^{\#} = \beta \Sigma,$$

$$\nu^{\#}(B) = \beta \nu(B) + \int_{0}^{\infty} \mu^{s}(B) \, \rho(\mathrm{d}s), \quad B \in \mathcal{B}(\mathbb{R}^{d} \setminus \{0\}),$$

$$\gamma^{\#} = \beta \gamma + \int_{0}^{\infty} \int_{|x| \le 1} x \, \mu^{s}(\mathrm{d}x) \, \rho(\mathrm{d}s).$$

Proof. Conditional on \mathcal{F}^T , and hence also unconditionally, M satisfies the σ -additivity condition in Definition 2.2(ii).

Let $n \geq 1$, and $A_1, \ldots, A_n \in \mathcal{B}_b(\mathbb{R}^k_+)$ be disjoint. Conditional on \mathcal{F}^T we are in the setting of the previous section. That is, $M(A_1), \ldots, M(A_n)$ are independent conditional on \mathcal{F}^T and $\mathcal{L}(M(A_j)|\mathcal{F}^T) = \mu^{\Lambda_T(A_j)}$. Therefore, for arbitrary $z_1, \ldots, z_n \in \mathbb{R}^d$ we have

$$E\left[\prod_{j=1}^{n} e^{i\langle z_j, M(A_j)\rangle} \middle| \mathcal{F}^T\right] = \prod_{j=1}^{n} \widehat{\mu}(z_j)^{\Lambda_T(A_j)}.$$

Since $\Lambda_T(A_1), \ldots, \Lambda_T(A_n)$ are independent it thus follows that

$$E\Big[\prod_{j=1}^{n} e^{\mathrm{i}\langle z_j, M(A_j)\rangle}\Big] = \prod_{j=1}^{n} E\Big[\widehat{\mu}(z_j)^{\Lambda_T(A_j)}\Big],$$

showing that $M(A_1), \ldots, M(A_n)$ are independent. Since moreover $\mathcal{L}(\Lambda_T(A)) = \mathcal{L}(\Lambda_T(t+A))$ for all $t \in \mathbb{R}_+^k$ and $A \in \mathcal{B}_b(\mathbb{R}_+^k)$ it follows that $\mathcal{L}(M(A)) = \mathcal{L}(M(t+A))$. Thus, M is a homogeneous Lévy basis.

Choose an arbitrary set $A \in \mathcal{B}_b(\mathbb{R}^k_+)$ with Leb(A) = 1. Then $\mu^\# = \mathcal{L}(M(A))$ and by the above we have for $z \in \mathbb{R}^d$ that

$$\widehat{\mu^{\#}}(z) = E[\widehat{\mu}(z)^{\Lambda_T(A)}].$$

Let $\{L_t : t \geq 0\}$ be a Lévy process with $\mathcal{L}(L_1) = \mu$ and $\{H_t : t \geq 0\}$ be a subordinator independent of L with $\mathcal{L}(H_1) = \lambda$. It is easily seen that

$$E[e^{\mathrm{i}\langle z, L_{H_1}\rangle}] = E[\widehat{\mu}(z)^{H_1}] = \widehat{\mu^{\#}}(z).$$

In other words $\mathcal{L}(L_{H_1}) = \mu^{\#}$, which means that $\mu^{\#}$ appears as the law of a subordinated process in the usual sense. It is therefore well known, e.g. from [11], Theorem 30.1, that the characteristic triplet of $\mu^{\#}$ is as indicated.

Remark 5.2. Above we assumed that Λ_T is a non-negative homogeneous Lévy basis; however, it is possible to define $M = \Lambda_X \wedge \Lambda_T$ in a much more general context. For example, assume that $\Lambda_T = \{\Lambda_T(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ is stationary in the sense that $\{\Lambda_T(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\} = \{\Lambda_T(t+A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ for all $t \in \mathbb{R}^k_+$ and that for all $\omega A \mapsto \Lambda_T(A)(\omega)$ is a non-negative measure on \mathbb{R}^k_+ . Assume Λ_T and Λ_X are independent and note that we do no longer assume that Λ_T is a Lévy basis. Using Lemma 3.1 define $\phi_T : \Omega \times \mathbb{R}^k_+ \to \mathbb{R}^k$ such that we have (5.2) and let $M = \{M(A) : A \in \mathcal{B}_b(\mathbb{R}^k_+)\}$ be given as in (5.3). Then $M = \{M(A) : A \in \mathcal{B}_n(\mathbb{R}^k_+)\}$ is a homogeneous random measure in the sense that for any disjoint sequence A_1, A_2, \ldots with $A = \bigcup_{n=1}^{\infty} A_n \in \mathcal{B}_b(\mathbb{R}^k_+)$ we have $M(A) = \sum_{n=1}^{\infty} M(A_n)$ a.s. Moreover, by a slight modification of the above proof it follows that M is stationary. In general M is no longer a Lévy basis. But conditionally on T it is.

References

[1] Adler, R. J., D. Monrad, R. H. Scissors, and R. Wilson (1983). Representations, decompositions and sample function continuity of random fields with independent increments. *Stochastic Process. Appl.* 15(1), 3–30.

- [2] Barndorff-Nielsen, O. E. (2010). Lévy bases and extended subordination. Thiele Research Report 2010-12.
- [3] Barndorff-Nielsen, O. E., J. Pedersen, and K. Sato (2001). Multivariate subordination, self-decomposability and stability. *Adv. in Appl. Probab.* 33(1), 160–187.
- [4] Barndorff-Nielsen, O. E. and A. Shiryaev (2010). Change of Time and Change of Measure. Singapore: World Scientific.
- [5] Dalang, R. C. and J. B. Walsh (1992). The sharp Markov property of Lévy sheets. *Ann. Probab.* 20(2), 591–626.
- [6] Jacod, J. and A. N. Shiryaev (2003). Limit Theorems for Stochastic Processes (Second ed.), Volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag.
- [7] Pedersen, J. (2003). The Lévy-Ito decomposition of an independently scattered random measure. MaPhySto Research Report 2003-2.
- [8] Pedersen, J. and K. Sato (2004). Relations between cone-parameter Lévy processes and convolution semigroups. J. Math. Soc. Japan 56(2), 541–559.
- [9] Rajput, B. S. and J. Rosiński (1989). Spectral representations of infinitely divisible processes. *Probab. Theory Related Fields* 82(3), 451–487.
- [10] Rosenblatt, M. (1952). Remarks on a multivariate transformation. *Ann. Math. Statistics* 23, 470–472.
- [11] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions, Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press. Translated from the 1990 Japanese original, Revised by the author.