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Abstract

We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is
subexponential and X,Y are positive random variables that may be depen-
dent. We give criteria under which the subtraction of Y does not change the
tail behavior of X. It is also studied under which conditions the comonotonic
copula represents the worst-case scenario for the asymptotic behavior in the
sense of minimizing the tail of X − Y and an explicit construction of the
worst-case copula is provided in the other cases.

1 Introduction

In recent years, there has been quite some progress in understanding the asymptotic
effect of dependence on the tail of sums of positive subexponential random variables,
see for instance Albrecher et al. [1], Mitra & Resnick [19], Ko & Tang [16], Kortschak
& Albrecher [17] and Foss & Richards [13]. In this paper we are interested in the
tail asymptotics of differences of positive random variables, i.e. in

P(X − Y > u)

for u→∞, where X is subexponential and Y may have different forms of the tail.
If X, Y are independent, this is easy (cf. [6, Lemma 3.2, p. 306]):

P(X − Y > u) ∼ P(X > u) (1.1)

without further conditions. Thus, the problem is dependence.
There are various areas in which the asymptotics of dependent differences of

positive random variables are of interest, for instance random recurrence equations,
queueing models and insurance risk models, each in the presence of dependence. In
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particular, in an insurance context, such a dependent difference can have a natural
interpretation as the difference between a claim X and its preceding interarrival
time Y , where the random walk structure of the surplus level in the portfolio after
a claim occurrence is still preserved (see Albrecher & Teugels [3], Boudreault et
al. [9], Asimit & Badescu [4], Li et al. [18] and also Albrecher & Boxma [2] for
such and similar dependence structures). In queueing applications there are similar
interpretations possible.

Asmussen & Biard [7] needed (1.1) for the case where Y is light-tailed. They
showed (1.1) essentially when the tail of Y is of smaller magnitude than e−x

1/2 and
gave a counterexample that (1.1) may not hold with lighter, still subexponential tails.
The aim of this paper is to provide more general criteria on the dependence between
X and Y for the insensitivity to hold and to consider more general distributions of Y .
In Section 2 we give a general criterion under which the insensitivity (1.1) holds.
Section 3 discusses the role of the mean excess function in this analysis. In Section 4
we discuss the case of light-tailed Y in more detail and provide a substantially
simpler construction of a counterexample that e−x

1/2 is in fact the critical decay
rate of the tail of X, if no dependence structure is specified. This rate is critical
in many other contexts and is known as square-root insensitivity (e.g. Jelenković
et al. [15]). In Section 5 we show (under some regularity conditions) that if there
exists a counterexample for the insensitivity (1.1), then the comonotonic copula
also provides a counter-example. Yet, the comonotonic copula may not represent the
dependence structure that produces the most extreme behavior of P(X−Y > u). We
provide criteria under which the comonotone dependence is indeed the worst case
in the sense of minimizing the tail of X − Y and provide an explicit construction of
the worst-case copula otherwise. Finally, Section 6 deals with the case of regularly
varying X and relates the present discussion to local limit laws.

2 An insensitivity result

From e.g. Foss et al. [12], if a distribution F is long-tailed, this implies that there
exists a non-decreasing function δ with δ(u)→∞ as u→∞, such that

FX

(
u± δ(u)

)
∼ FX(u) as u→∞ . (2.1)

In the following, we will be interested in choosing δ(u) as large as possible.

Proposition 2.1. Let X ≥ 0 be a r.v. with a long-tailed distribution FX and Y ≥ 0
a (not necessarily independent) r.v.. Then

P(X − Y > u) ∼ P(X > u) (2.2)

provided δ(·) in (2.1) can be chosen with

P(Y > δ(u), X > u+ δ(u)) = o
(
FX(u)

)
. (2.3)

Proof. Write

P(X − Y > u) = P
(
X − Y > u, Y ≤ δ(u)

)
+ P

(
X − Y > u, Y > δ(u)

)
.
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Note that by (2.3)

P
(
X − Y > u, Y > δ(u)

)
≤ P

(
X > u+ δ(u), Y > δ(u)

)
= o

(
FX(u)

)
. (2.4)

Moreover,

P
(
X − Y > u, Y ≤ δ(u)

)
≤ P(X > u) = FX(u) ,

P
(
X − Y > u, Y ≤ δ(u)

)
≥ P

(
X − δ(u) > u, Y ≤ δ(u)

)

= P
(
X − δ(u) > u

)
− P

(
X − δ(u) > u, Y > δ(u)

)

∼ FX(u)− o
(
FX(u)

)
.

Putting these estimates together completes the proof.

Example 2.2. If X and Y are dependent according to a copula C that is negative
quadrant dependent (i.e. C(u, v) ≤ uv for 0 ≤ u, v ≤ 1) and X is long-tailed, then
the assumptions of Proposition 2.1 are fulfilled, in particular

P(Y > δ(u), X > u+ δ(u)) ≤ P(Y > δ(u))P(X > u+ δ(u)) = o
(
FX(u)

)
.

Hence (2.2) holds. Note that this criterion does not involve any assumption on the
distribution of Y . In terms of the survival copula, a sufficient criterion is Ĉ(u, v) ≤
uh(v) with h(v) → 0. In terms of distribution functions, this means that for all
x, y ≥ 0

P(X > x, Y > y) ≤ P(X > x)h(P(Y > y))

holds.

Example 2.3. More generally, one can formulate a criterion in terms of stochastic
ordering: whenever the pair (X1, Y 1) fulfills the condition (2.3), then every pair
(X2, Y 2) with the same marginal distributions that is dominated in concordance
order (i.e. P(X1 > x, Y 1 > y) ≥ P(X2 > x, Y 2 > y) for all x > x0, y > y0) also
fulfills (2.3).

3 The role of the mean excess function

Assume that X is regularly varying or in the maximum domain of attraction of
the Gumbel distribution with mean excess function e(u) (cf. Embrechts et al. [11]).
Then δ(u) in (2.1) can be any function with δ(u)→∞ and

lim
u→∞

δ(u)

e(u)
= 0. (3.1)

In a more general setting assume that there exists a function e(u) with

lim inf
u→∞

P(X − εe(u) > u)

P(X > u)
< 1

for some ε > 0 and
lim
ε→0

lim inf
u→∞

P(X − εe(u) > u)

P(X > u)
= 1.
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Then if
lim
ε→0

lim sup
u→∞

P(Y > εe(u))

P(X > u)
= 0

we get by Proposition 2.1 that P(X − Y > u) ∼ P(X > u).
As we have seen above, for regularly varying distributions or distributions in

the maximum domain of attraction of the Gumbel distribution one can choose e(u)
as the mean excess function (the reciprocal of the hazard rate r(u)). The following
result provides another criterion on the distribution of X such that we can still use
the mean excess function in (3.1).

Lemma 3.1. Assume that X is long-tailed with

FX(x) = c(x) e−
∫ x
0 r∗(t)dt,

where limu→∞ c(x) = c, 0 < c < ∞ and limu→∞ r∗(u) = 0. Assume further that
there exists an ε0 > 0 such that, uniformly in 0 < t < ε0,

lim inf
u→∞

r∗
(
u+ t

r∗(u)

)

r∗(u)
= cl > 0, lim inf

u→∞

r∗
(
u+ t

r∗(u)

)

r∗(u)
= cu <∞.

Then

lim inf
u→∞

P
(
X − ε 1

r∗(u) > u
)

P(X > u)
< 1, lim

ε→0
lim inf
u→∞

P
(
X − ε 1

r∗(u) > u
)

P(X > u)
= 1.

Remark 3.2. Note that for an X that fulfills the conditions of Lemma 3.1, the
mean excess function e(u) satisfies

lim
u→∞

r∗(u)e(u) = 1.

Proof. We have that

P
(
X − ε 1

r∗(u) > u
)

P(X > u)
∼ exp

(
−
∫ u+ ε

r∗(u)

u

r∗(t)dt

)
= exp

(
−
∫ ε

0

r∗
(
u+ t

r∗(u)

)

r∗(u)
dt

)

. exp

(
−cl

∫ ε

0

dt

)
= e−cuε < 1.

Furthermore,

P
(
X − ε 1

r(u)
> u

)

P(X > u)
∼ exp

(
−
∫ ε

0

r∗
(
u+ t

r∗(u)

)

r∗(u)
dt

)

& exp

(
−cu

∫ ε

0

dt

)
= e−cuε,

from which the result follows.

Remark 3.3. An example for which the conditions of Lemma 3.1 are not fulfilled
is

FX(x) =
1

log(x)
.
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4 Light-tailed Y

It may be instructive to replace (2.3) by the stronger condition

P(Y > δ(u)) = o
(
FX(u)

)
, (4.1)

which is now a criterion on the marginal distribution of Y . Clearly, if the dependence
structure is not specified, there is a trade-off between how heavy the tail of X needs
to be to set off a not too light tail behavior of Y . In particular, this gives rise to
the following question: If Y is a light-tailed r.v. (i.e. P (Y > u) = o(e−gu) for some
g > 0), for which long-tailed r.v. X does (2.2) hold across all dependence structures?
In this case, condition (4.1) turns into

e−gδ(u) = o
(
FX(u)

)
,

which holds for FX regularly varying (take δ(x) = c log x with c sufficiently large),
the lognormal distribution (δ(x) = x/ log2 x) and the heavy-tailed Weibull with
FX(x) = e−x

β with β < 1/2 (δ(x) = x1−β
∗ with β < β∗ < 1). Thus, the condition

covers most standard heavy-tailed distributions except the ones closest to the light-
tailed case. Since with independentX, Y andX subexponential,X andX−Y always
have the same tail (as discussed in Section 1), one could believe that the condition
is just technical. However, Asmussen & Biard [7] provided a counterexample that
this is not the case. In the following we give a substantially simpler counterexample
than the one in [7]:

Example 4.1. Assume P(X > u) ∼ e−u
β with 0 < β < 1 and let Y = Xβ. Then

clearly Y is exponential. Thus

P(X − Y > u) = P(X > u+Xβ) ≤ P(X > u+ uβ) ∼ exp{−(u+ uβ)β}
= exp{−uβ(1 + uβ−1)β} ∼ exp{−uβ − βu2β−1} ,

and here exp{−βu2β−1} = o(1) if and only if β > 1/2.

This counterexample (as well as the one in Asmussen & Biard [7]) is based on
a comonotonic copula. It is natural to ask whether the comonotonic copula always
minimizes the tail of X − Y . This is the topic of the next section.

5 The worst-case copula

We will now show under some regularity conditions that if there exists a counterex-
ample for the insensitivity (1.1) to hold, then also the comonotonic copula provides
a counterexample:

Lemma 5.1. Let X and Y be two positive random variables with distribution func-
tion FX(x) and FY (x), respectively. Define

γ(u) = sup{x|FY (x− u) < FX(x), x ≥ u} − u and
γ(u) = inf{x|FY (x− u) ≥ FX(x), x ≥ u} − u.
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If for some α > 0, c > 0 and all k > 1, limu→∞ F Y (ku)/F Y (u) ≤ ck−α,

lim
u→∞

P(X > u+ γ(u))

P(X > u)
= 1 and lim sup

u→∞

P(Y > γ(u))

P(X > u)
<∞,

then
lim
u→∞

P(X − Y > u)

P(X > u)
= 1.

If

lim inf
u→∞

P(X > u+ γ(u))

P(X > u)
< 1,

and X and Y are comonotonic, then

lim inf
u→∞

P(X − Y > u)

P(X > u)
< 1.

Proof. At first note that

P(X − Y > u) ≤ P(X > u).

We have

P(X − Y > u) =

∫ ∞

u

P(Y ≤ x− u|X = x)dFX(x)

=

∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)<FX(x)}dFX(x)

+

∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)≥FX(x)}dFX(x).

To prove the first statement of the Lemma note that
∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)<FX(x)}dFX(x)

≤
∫ ∞

u

I{FY (x−u)<FX(x)}dFX(x)

≤
∫ u+γ(u)

u

dFX(x) = P(X > u)− P(X > u+ γ(u)) = o(P(X > u)).

For the second integral we have
∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)≥FX(x)}dFX(x)

≥
∫ ∞

u+kγ(u)

P(Y ≤ x− u|X = x)dFX(x)

≥
∫ ∞

u+kγ(u)

P(Y ≤ kγ(u)|X = x)dFX(x)

= P(X > u+ kγ(u))− P(X > u+ kγ(u), Y > kγ(u))

≥ P(X > u+ kγ(u))− P(Y > kγ(u)).
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Hence there exists a c1 > 0 that does not depend on k, with

P(Y > kγ(u))

P(X > u)
=

P(Y > kγ(u))

P(Y > γ(u))

P(Y > γ(u))

P(X > u)
≤ c1k

−α.

Since for x0 with FY (x0−u) < FX(x0) it follows for every ε > 0 that FXY

(
(x0+ε)−

(u+ ε)
)
< FX(x0 + ε), we get that γ(u) is monotonically increasing. Hence the first

statement follows. For the second statement note that for comonotonic X and Y
one has

P(X − Y > u) =

∫ ∞

u

P(Y ≤ X − u|X = x)dFX(x)

≤
∫ ∞

u

I{FY (x−u)≥FX(x)}dFX(x)

≤
∫ ∞

u+γ(u)

dFX(x) = P(X > u+ γ(u)).

Although Lemma 5.1 shows that comonotonic copulas are natural candidates
for counterexamples, this does not tell whether the comonotonic copula represents
the worst case. To answer that question, let us first consider the case of regularly
varying X. In Proposition 6.1 below it will be shown that if F Y (u)/FX(u) → 0,
then all copulas provide the same asymptotic properties. On the other hand, if
FX(x) ≥ FY (x) for X, Y comonotonic, then P(X − Y > u) = 0. Hence assume that
there exists a ĉ > 0 with

lim
u→∞

F Y (u)

FX(u)
= ĉ

or, equivalently, that there exists a c such that

lim
u→∞

F Y (cu)

FX(u)
= 1.

We will study the asymptotic behavior of X−Y under the additional condition that

P(X > xu, Y > ycu)

P(X > u)
→ H(x, y),

where H(x, y) is not degenerate. Then by extreme value theory it follows that

P(X − Y > u)

P(X > u)
→ H({(x, y)|x− cy > 1}).

To understand which H minimizes H({(x, y)|x − cy > 1}), the index of regular
variation α of FX plays a role. From Resnick [21] it follows that when turning to
polar coordinates, H can be written as a product of the measure on the radial and
angular part. As norm we choose the sum of the components, then we get that the
radial measure has density αr−α−1 and the angular measure µ satisfies

∫ 1

0

θαdµ(θ) =

∫ 1

0

(1− θ)αdµ(θ) = 1.
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Further note that

H({(x, y)|x− cy > 1}) =

∫ 1

c
1+c

(θ − c(1− θ))α dµ(θ). (5.1)

Now we can ask which µ∗ minimizes equation (5.1). Consider discrete measures with
µ(θ = θi) = pi for i = 1, . . . , d. Then there exists a θi > 1/2 (pi > 0) if and only if
there exists a θj < 1/2 (pj > 0).

Lemma 5.2. If the measure µ∗ that minimizes (5.1) assigns positive mass pi to a
θi ≤ c

c+1
, then

θi =
c

1 + c
.

Proof. Assume that the result does not hold. Then w.l.o.g. we can assume that
θ1 > 1/2 and θ2 < c/(c + 1). Define a new measure µ∗∗ with θ̂i = θi for i 6= 2 and
p̂i = pi for i > 2, together with θ̂2 = c/(1 + c). To ensure that µ is a measure we
need

p1θ
α
1 + p2θ

α
2 = p̂1θ

α
1 + p̂2

(
c

1 + c

)α
,

p1(1− θ1)α + p2(1− θ2)α = p̂1(1− θ1)α + p̂2

(
1

1 + c

)α
.

It follows that

p̂1 = p1 + p2

(
θ2

1+c
c

)α − ((1− θ2)(1 + c))α(
θ1

1+c
c

)α − ((1− θ1)(1 + c))α
< p1,

where w.l.o.g. we assumed that p2 is small enough such that p̂1 ≥ 0. It follows that
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ)

= (p1 − p̂1) (θ1 − c(1− θ1))α > 0,

which is a contradiction to µ∗ minimizing (5.1) .

Theorem 5.3. Assume that α < 1. Then µ∗ is concentrated on θ1 = 1 and θ2 = c
1+c

,
with p1 = 1− cα and p2 = (1 + c)α.

Proof. Assume that µ∗ assigns positive measure p1 > 0 to c/(1 + c) < θ1 < 1. Then
we can define a new measure µ∗∗ which is equivalent to µ∗ except that we replace
θ1 by 1 and the corresponding probability p1 by p̂1. Further we add the mass p̂0 to
c/(1 + c), so that

p̂1 = p1 (θα1 − cα(1− θ1)α) > 0

p̂0 = p1(1− θ1)α(1 + c)α.
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Furthermore,
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ)

= p1 (θ1 − c(1− θ1))α − p̂1
= p1 ((θ1 − c(1− θ1))α − (θα1 − cα(1− θ1)α)) > 0,

from which the result follows.

Theorem 5.4. Assume that α > 1. Then µ∗ is concentrateed on θ1 = 1/2.

Proof. Assume that µ∗ assigns positive measure p1 > 0 to θ1 > 1/2 and p2 > 0 to
θ2 < 1/2, where we assume w.l.o.g. that

p1θ
α
1 + p2θ

α
2 = p1(1− θ1)α + p2(1− θ2)α.

Define the measure µ∗∗ with θ1 and θ2 replaced by 1/2 with probability mass p̂1 =
2α(p1θ

α
1 + p2θ

α
2 ). We have to distinguish two cases:

a) θ2 > c/(1 + c): In this case we have to show that

∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ) ≥ 0.

The left hand side equals

p1 (θ1 − c(1− θ1))α + p2 (θ2 − c(1− θ2))α

− (1− c)α(p1θ
α
1 + p2θ

α
2 )

= p1 (θ1 − c(1− θ1))α + p1
θα1 − (1− θ1)α
(1− θ2)α − θα2

(θ2 − c(1− θ2))α

− p1(1− c)α
(
θα1 + θα2

θα1 − (1− θ1)α
(1− θ2)α − θα2

)
,

so that we need to show that
(

1− c
(

1
θ1
− 1
))α
− (1− c)α

1−
(

1
θ1
− 1
)α ≥

(
1− c

(
1
θ2
− 1
))α
− (1− c)α

1−
(

1
θ2
− 1
)α . (5.2)

Since the function
(1− cx)α − (1− c)α

1− xα
is decreasing for x < 1 and increasing for x > 1, we get that we only have to check
(5.2) for θ1 = θ2 = 1/2, which holds since

lim
x→1

(1− cx)α − (1− c)α
1− xα = (1− c)α−1.
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b) θ2 = c/(1 + c): In this case we have to show that
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ)

= p1 (θ1 − c(1− θ1))α − (1− c)α
(
p1θ

α
1 + p2

(
c

1 + c

)α)

= p1 (θ1 − c(1− θ1))α − p1(1− c)α
(
θα1 + cα

θα1 − (1− θ1)α
1− cα

)
≥ 0.

This is equivalent to showing that
(

1− c
(

1
θ1
− 1
))α
− (1− c)α

1−
(

1
θ1
− 1
)α ≥ (1− c)αcα

1− cα .

Again the left side is minimized for θ1 = 1/2 and we have to show that

(1− c)α−1 ≥ (1− c)αcα
1− cα ,

which is true for 0 < c < 1 and α > 1.

Lemma 5.5. Let X be in the maximum domain of attraction of the Gumbel distri-
bution with mean excess function e(x). Further assume that there exists a 0 < c < 1
with

lim
u→∞

P(Y > cu)

P(X > u)
= 1

and that the copula of X and Y is in the maximum domain of attraction of an
extreme value copula. Then the copula that asymptotically minimizes P(X − Y > u)
is the comonotonic copula.

Proof. From e.g. [21] we have

P(X > u+ xe(u), Y > cu+ yce(u))

P(X > u)
→ H(x, y).

Here, H(x, y) = H∗(ex, ey), where under H∗, R = x + y and θ = x/(x + y) are
independent, R has density r−2 and the measure µ of θ satisfies

∫ 1

0

θdµ(θ) =

∫ 1

0

1− θdµ(θ) = 1.

We get that

P(X − Y > (1− c)u+ e(u), X > u−Me(u))

P(X > u)
→ H({(x, y)|x− cy > 1, x > −M})

with

H({(x, y)|x− cy > 1, x > −M})

=

∫ 1

0

min

(
e−

1
1−c (1− θ)

(
θ

1− θ

) 1
1−c

, eM

)
dµ(θ).
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If µ(1) > 0 and N > 0, then as u→∞

P(X − Y > (1− c)u+ e(u), X > u−Me(u))

P(X > u)

& P(X > u−Ne(u))− P(X > u−Ne(u)), Y > cu− (N + 2)e(u))

P(X > u)

∼ eN −
∫ 1

0

min(θeN , (1− θ)ec−1(N+2)))dµ(θ)

≥ eNµ(1)→∞,

as N →∞. Hence with M →∞

lim
u→∞

P(X − Y > (1− c)u+ e(u))

P(X > u)

≥ e−
1

1−c

∫ 1

0

e−
1

1−c (1− θ)
(

θ

1− θ

) 1
1−c

dµ(θ). (5.3)

Note that for X, Y comonotone we can replace ≥ by =. Finally we have to find the
µ that minimizes (5.3). Again, we only consider µ discrete. W.l.o.g we assume that
θ1 > 1/2 and θ2 < 1/2 with

p1θ1 + p2θ2 = p1(1− θ1) + p2(1− θ2) =
p1 + p2

2

and we replace θ1 and θ2 with θ = 1/2 and p = p1 + p2. We have to show that

p1(1− θ1)
(

θ1
1− θ1

) 1
1−c

+ p2(1− θ2)
(

θ2
1− θ2

) 1
1−c
≥ p1(1− θ1) + p2(1− θ2).

Since
p2 = p1

2θ1 − 1

1− 2θ2
,

we need to establish that

1− θ1
2θ1 − 1

((
1 +

2θ1 − 1

1− θ1

) 1
1−c
)
≥ 1− θ2

2θ2 − 1

((
1 +

2θ2 − 1

1− θ2

) 1
1−c
)

or for xi = 2θi−1
1−θi

(1 + x1)
1

1−c − 1

x1
≥ (1 + x2)

1
1−c − 1

x2
,

which holds due to 1
1−c > 1 and −1 < x2 < 0 < x1.

Theorem 5.3 shows that when X ∈ R−α with index α < 1, then comonotonicity
does not minimize P(X − Y > u). On the other hand, Theorem 5.4 suggests that
for α > 1 comonotonicity does minimize P(X−Y > u). However, we now show that
this is not the case.
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Let PC denote the probability measure associated with a copula C and let
M(u, v) = min(u, v) be the comonotonic copula. Then an equivalent formulation
for a comonotonic copula minimizing that probability is that for every copula C

lim inf
u→∞

PC(X − Y > u)

PM(X − Y > u)
≥ 1. (5.4)

In view of Proposition 6.1 shown in the next section, one can assume that for regu-
larly varying X there exists a counterexample for (5.4) if FX(x) ≈ cF Y (x) for some
0 < c < 1. Therefore we will choose FY (x) = FX(2x), i.e. 2Y

d
= X. Further, let X

be in the maximum domain of attraction of an extreme value distribution. We will
use the following dependence structure.

Definition 5.6. For a random variable X with distribution function FX and mean
excess function e(u), define un = un−1 + 2e(2un−1) for a u1 > 0 with F (u1) > 0,
together with a corresponding partition (Ji)n≥1 of the interval [0, 1] (n ≥ 1)

J1 = [0, F (2u1))

J2n = [F (2un), F (2(un + e(2un))))

J2n+1 = [F (2(un + e(2un))), F (2un+1)) .

Moreover, define a series (Cn)n≥1 of copulas with

C2n(u, v) = uv and C2n+1(u, v) = min(u, v).

Finally, define the copula C as the ordinal sum (cf. [20, 3.2.2]) of the copulas (Cn)n≥1
with respect to the partition (Ji)n≥1.

Remark 5.7. If 2Y
d
= X and X, Y are dependent according to the copula in Defi-

nition 5.6, then for 0 ≤ Y < u1 and un + e(2u) ≤ Y < un+1, we have that 2Y = X.
Furthermore, for n ≥ 1

P(X ≤ x|un ≤ Y < un + e(2un)) = P(X ≤ x|2un ≤ X < 2un + 2e(2un)).

Proposition 5.8. Let X be in the maximum domain of attraction of an extreme
value distribution and let its density fX satisfy

lim
u→∞

fX(u+ xe(u))

fX(u)
= g(x) =

{
(1 + x)−α FX(x) ∈ R−α, α > 0

e−x X ∈ MDA(Λ)
.

Further assume that 2Y
d
= X and that X and Y are dependent according to the

copula of Definition 5.6. Then

lim inf
u→∞

PC(X − Y > u)

PM(X − Y > u)
< 1.

Proof. W.l.o.g we assume that e(x) is monotone. For every n we have

P(X − Y > un) = P(X − Y > un, Y ≤ un)

+ P(X − Y > un, un < Y ≤ un + e(2un))

+ P(X − Y > un, un + e(2un) < Y ).

12



Now one can easily check that

P(X − Y > un, Y ≤ un) = 0

and
P(X − Y > un, un + e(2un) < Y ) ≤ P(Y > un + e(2un)).

On the other hand,

P(X − Y > un, un < Y ≤ un + e(2un))

=

∫ un+e(2un)

un

P (X > un + y|2un < X ≤ 2(un + e(2un))) fY (y)dy

= e(2(un))

∫ 1

0

P
(
X > 2un + ye(2un)|2un < X ≤ 2(un + e(2un))

)

fY (un + ye(2un))dy.

Note that

P (X > 2un + ye(2un)|2un < X ≤ 2(un + e(2un)))

=
P(X > 2un + ye(2un))− P(X > 2un + e(2un))

P(X > 2un)− P(X > 2un + e(2un))

→ g(y)− g(1)

g(0)− g(1)
< 1, y > 0

for n→∞. It follows from

fY (un + ye(2un))

fY (un)
=
fX(2un + 2ye(2un))

fX(2un)
→ g(2y)

that
lim
n→∞

P(X − Y > un, un < Y ≤ un + e(2un))

P(un < Y ≤ un + e(2un))
< 1

and hence
lim
n→∞

P(X − Y > un)

P(Y > un)
< 1.

Example 5.9. As an illustration, consider P(X > x) = P(2Y > x) = 1/x with
e(x) = x and un = 5n. Figure 1 depicts the plot of

PC
(
X − Y > 1

2
10x
) /

PM
(
X − Y > 1

2
10x
)
.

Having seen now that the worst case is not always given by the comonotonic
copula, we are now interested in identifying the worst case (given a specific u). For
that purpose, we will use (straight) shuffles of M (cf. Nelsen [20, Th.3.2.3]).

Definition 5.10 (Shuffles). Let J = {J1, . . . , Jn} be a partition of [0, 1] into n
closed subintervals and π a permutation of {1, . . . , n}. Then the copula Ms(J , π) is
a shuffle, if the stripes Ji × [0, 1] of M are reordered according to π.
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Figure 1: Plot of PC
(
X − Y > 1

210x
)
/PM

(
X − Y > 1

210x
)

From the discussion after Th.3.2.3 in [20] it follows that every copula can be
approximated arbitrary closely by a shuffle. Hence we want to find the shuffle that
minimizes P(X − Y > u). For a given FX , FY and u, define

gu(x) =

{
inf{t : F−1Y (t) ≥ F−1X (x)− u} if F−1X (x) > u,

0 otherwise.
(5.5)

For uniformly distributed (U1, U2) with the same copula C as (X, Y ) it is valid that

P(U2 < gu(U1)) = P(X − Y > u).

Lemma 5.11. Let g(x) be a monotone increasing function, such that for all c ∈
[−1, 1] the number of times g(x)− x− c changes sign is finite. Then the shuffle M∗

s

that minimizes
PMs(U2 < g(U1))

is of the form J = {[0, x0], [x0, 1]} and π = (2, 1) for some 0 < x0 < 1.

Proof. Let Ms be a shuffle with finite partition J and permutation π. For J ∈ J
and x ∈ J , denote by Jπ and xπ the interval J (point to which x, respectively) is
mapped by the permutation. W.l.o.g we assume that for every J ∈ J

P(U1 ∈ {xπ : x ∈ J & x < g(xπ)}) ∈ {0, 1}.

Denote with x0 = PMs(U2 < g(U1)). W.l.o.g we can assume that for every J ∈ J ,
(J ∩ [0, x0]) ∈ {∅, J}. Further we can split the intervals in the partition J , such that
to every interval J ∈ J with P(U1 ∈ {xπ : x ∈ J & x < g(xπ)}) = 1 we can assign a
unique interval Ĵ with Ĵ ∩ [0, x0] = Ĵ and |J | = |Ĵ |. If we change the position of J
and Ĵ in the permutation then P(U2 < g(U1)) is the same for both shuffles. Hence
we can assume that if P(U1 ∈ {xπ : x ∈ J & x < g(xπ)}) = 1, then J ⊂ [0, x0]. Since
g(x) is monotone increasing we can reorder the partitions such that we get the form
of M∗

s from which the Lemma follows.

The worst copula is not unique, as can be seen by the following straight-forward
result.
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Lemma 5.12. Let g(x) be a monotone increasing function. Let x1 = inf{x : x ≥
g(x)}. If x1 < 1 − x0 for some x0, then the shuffles Ms({[0, x0], [x0, 1]}, (2, 1)) and
M̂s({[0, x1], [x1, x1 + x0], [x1 + x0, 1]}, (1, 3, 2)) fulfill

PMs(U2 < g(U1)) ≥ PM̂s
(U2 < g(U1)).

If x1 ≥ 1− x0, then

PMs(U2 < g(U1)) ≥ PM(U2 < g(U1)).

Figure 2: A worst-case copula

Figure 3: Another worst-case copula

Example 5.13. Let FX(x) = 1 − 1/x, FY (x) = 1 − 1/(2x) and u = 1. For this
case, Figure 2 shows the support of the copula in Lemma 5.11 (bold line), where
x0 ≈ 0.086. In Figure 3, the bold line depicts the support of the copula in Lemma
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5.12, where x0 ≈ 0.086 and x1 = 0.5. In both plots the dashed line corresponds to
the function gu(x). Here

x0 = x∗0 = sup
0≤x≤1

gu(x)− x. (5.6)

In fact, the choice of x0 = x∗0 in (5.6) is optimal in general, as can be verified
by the following arguments: If x0 > x∗0, then the line x + x0 corresponding to the
interval [x0, 1] lies above the line gu(x). Hence we can decrease x0 to x∗0 until it
touches the line gu(x); certainly PMs(U2 < gu(U1)) then does not increase. If on the
other hand x0 < x∗0 and x∗ is a point with x∗0 = gu(x

∗)−x∗, then the monotonicity of
gu(x) implies that the line segment of x+x0 from x∗ to gu(x∗)−x0 lies below gu(x).
Since this line segment has length gu(x∗)− x0 − x∗ = x∗0 − x0 we see that by using
x∗0 instead of x0 we do not increase the probability of PMs(U2 < gu(U1)). Further if
x∗ > 1/2 then the line corresponding to the interval [0, x0] lies below gu(x). Thus
we have proved the following:

Proposition 5.14. Assume that the conditions of Lemma 5.11 hold and that u is
large enough such that x∗ with

gu(x
∗)− x∗ = sup

0≤x≤1
gu(x)− x

fulfills x∗ > 1/2. Then

inf
C

PC(X − Y > u) = sup
0≤x≤1

gu(x)− x.

Let us compare this result to the comonotonic copula. To that end, assume that
there exists a unique point γu such that gu(x)− x ≤ 0 for x < γu and gu(x)− x > 0
for x > γu, then PM(X − Y > u) = 1− γu and

inf
C

PC(X − Y > u) = PM(X − Y > u) sup
0≤x≤1

gu (γu + x(1− γu))− γu − x(1− γu)
1− γu

= sup
0≤x≤1

(gu (γu + x(1− γ(u)))− γu − x(1− γu)) .

If the function
hu(x) =

gu (γu + x(1− γu))− γu − x(1− γu)
1− γu

converges for u → ∞ to a function h∞(x) with sup0<x<1 h∞(x) = 1 (i.e. h∞(x) =
1 − x), then for every copula C (5.4) holds. On the other hand if there exists a
sequence un with limn→∞ un =∞ and lim supn→∞ sup0<x<1 hun(x) < 1 then we can
analougously to Proposition 5.8 construct a copula where (5.4) does not hold. The
following example shows such a situation where X is Weibull and Y is light tailed.

Example 5.15. Let FX(x) = 1−e−x
β (1/2 < β < 1) and FZ(x) = 1−e−

(1+ε)β2

2β−1
x2−1/β

.
Define u0 = 0, un = 2n and

FY (x) = 1− e−un +
FZ(x)− FZ(un)

FZ(un+1)− FZ(un)

(
e−un − e−un+1

)
, un ≤ x < un+1.
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Since for x > 2
F Y (x)

e−x/2
≤ F y(un)

e−un+1/2
= 1

we get that Y is light tailed. Further for u = u
1/β
n − un we get that γu = (1− e−un)

and since FY (x) ≤ 1 − e−x there are no roots of FY (F−1X (x) − u) = x to the left
of γu. We get that

hu(x) = 1− x− F Y ((un − log(1− x))1/β − u1/β + un)

e−un

since for n→∞

(un− log(1−x))1/β−u1/β +un = un+(1+o(1))
(− log(1− x))

β
u1/β−1n ≤ 2un = un+1.

We get that

F Y ((un − log(1− x))1/β − u1/β + un)

e−un

= 1−
FZ

(
un + (1 + o(1)) (− log(1−x))

β
u
1/β−1
n

)
− FZ(un)

FZ(un+1)− FZ(un)

(
1− e−un

)

∼
FZ

(
un + (− log(1−x))

β
u
1/β−1
n

)

FZ(un)

∼ (1− x)1+ε

Hence as n→∞
hun(x)→ (1− x)(1− (1− x)ε).

6 Regularly varying X

Proposition 6.1. If X ∈ R−α and P(Y > u) = o(P(X > u)), then (2.2) holds.

Proof. For every n there exists an ûn such that for all u > ûn

P(Y > u)

P(X > nu)
≤ 1

n
.

Define u0 = 0 and un = max(nûn, un−1) + 1 for n > 0. Then for all u > un

P(Y > u/n)

P(X > u)
≤ 1

n
.

Define

ε(u) =

{
1, u < u1,
1
n
, un < u < un+1.
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Then for δ(u) = ε(u)u we have

lim
u→∞

P(Y > δ(u))

P(X > u)
= 0.

The result then follows from

P(X > u+ δ(u))

P(X > u)
=

P(X > u+ ε(u)u)

P(X > u)
∼ (1 + ε(u))−α → 1.

Remark 6.2. Note that Proposition 6.1 is still valid if X is of consistent variation
(cf. Robert and Segers [22] and Cline [10]), i.e.

lim
ε→0

lim inf
u→∞

P(X > (1 + ε)u)

P(X > u)
= 1.

6.1 Approach with local limit laws

Let us now use local limit laws as in Heffernan and Resnick [14] to find the asymptotic
behavior of P(X − Y > u). For that purpose, let either E = [−∞,∞] × (−∞,∞])
(e(u)/u→ 0) or E = [−∞,∞]× (−1,∞]) (e(u) = u). Further we assume that there
exists a measure µ (not equal to zero) for which for every fixed y in E

• µ([−∞, x], (y,∞]) is a non-degenerate distribution function in x,

• µ([−∞, x], (y,∞]) <∞, and

•
lim
u→∞

P(Y ≤ β(u) + xα(u), X > u+ ye(u))

P(X > u)
= µ([−∞, x], (y,∞])

at continuity points (x, y) of the limit.

Assume that α(u)/e(u)→ c for some constant c, then we have that

lim
u→∞

P(X − Y > u− β(u))

P(X > u)
= lim

u→∞

P
(
X−u
e(u)
− α(u)

e(u)
· Y−β(u)

α(u)
> 0, X−u

e(u)
> 0
)

P(X > u)

= µ ({(y, x)|x− cy > 0, x > 0}) ≤ 1

at least if µ is sufficiently continuous. The area we have to measure is depicted in
Figure 4.

It follows that

P(X − Y > u)

P(X > u)
∼ P(X > u)

P(X > u− β(u))
µ ({(y, x)|x− cy > 0, x > 0}) .
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Figure 4: Area to be measured (shaded)

If (1.1) is valid, then we have to assume that β(u)/e(u) → 0 and c = 0 (i.e.
α(u)/e(u)→ 0). However note that for every ε > 0

lim
u→∞

P(Y ≤ εe(u), X > u)

P(X > u)

= lim
u→∞

P
(
Y ≤ β(u) + εe(u)−β(u)

α(u)
α(u), X > u

)

P(X > u)

≥ lim
u→∞

P (Y ≤ β(u) +Mα(u), X > u)

P(X > u)

= µ([−∞,M)× µ(0,∞])→ 1

as M →∞. Hence the conditions of Proposition 2.1 are fulfilled, so that we do not
need to use local limit law for establishing (1.1).
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