
A A R H U S U N I V E R S I T Y
D E P A R T M E N T O F M A T H E M A T I C S

ISSN: 1397–4076

SCATTERING THEORY

FOR RIEMANNIAN LAPLACIANS

by K. Ito and E. Skibsted

Preprint Series No. 5 September 2011
Publication date: 2011/09/09



Published by

Department of Mathematics
Aarhus University
Ny Munkegade 118, Bldg. 1530
DK-8000 Aarhus C
Denmark

institut@imf.au.dk
http:// imf.au.dk

For more preprints, please visit
http://imf.au.dk/en/research/publications/



SCATTERING THEORY FOR RIEMANNIAN LAPLACIANS

K. ITO AND E. SKIBSTED

Abstract. In this paper we introduce a notion of scattering theory for the
Laplace-Beltrami operator on non-compact, connected and complete Riemann-
ian manifolds. A principal condition is given by a certain positive lower bound of
the second fundamental form of angular submanifolds at infinity. Another condi-
tion is certain bounds of derivatives up to order one of the trace of this quantity.
These conditions are shown to be optimal for existence and completeness of a
wave operator. Our theory does not involve prescribed asymptotic behaviour of
the metric at infinity (like asymptotic Euclidean or hyperbolic metrics studied
previously in the literature). A consequence of the theory is spectral theory for
the Laplace-Beltrami operator including identification of the continuous spectrum
and absence of singular continuous spectrum.
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1. Introduction and results

In this paper we introduce a notion of scattering theory for the Laplace-Beltrami
operator on a rather general type of non-compact manifold. In particular we do not
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as well as from JSPS Wakate (B) 21740090 (2009–2012). E.S. thanks H.D. Cornean and I. Herbst
for many preliminary discussions of scattering theory on manifolds [CHS2]. We thank H. Kumura
for bringing our attention on his work [Ku2].
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2 K. ITO AND E. SKIBSTED

impose asymptotics of the metric at infinity. Immediate consequences include iden-
tification of the continuous spectrum and absence of singular continuous spectrum.
We also show that our wave operator implements a certain family of commuting
asymptotic observables. To our knowledge most previous works on spectral and
scattering theory for the Laplace-Beltrami operator on manifolds require asymp-
totics of the metric at infinity (or at least asymptotics of the large ball volume), see
for example [Bo, Do, FH, IN, Ku1, Ku2, Me, MZ]. Among these works probably
[Do] is the closest to our setup. In fact Donnelly’s assumptions include the exis-
tence of a certain exhaustion function b resembling the function r appearing in our
assumptions, see Conditions 1.2 and 1.3 below. However he needs asymptotics of
the Hessian of b2 while our Condition 1.2 is a lower bound only of the Hessian of the
analogous function r2. Moreover the main issue of our paper is scattering theory
while [Do] only deals with spectral theory. In a companion paper [IS] we prove
absence of embedded eigenvalues under weaker conditions than considered in the
present paper. All of our results generalize to Schrödinger operators on manifolds
(with short-range potentials). We state and prove our results in this more general
context.

The comparison dynamics used to define our wave operator is constructed from a
certain family of geodesics for the (full) metric in the spirit of primarily [HS, CHS1].
In this sense it is non-perturbatively constructed. Nevertheless it provides a simple
explicit description of the large time behaviour of continuous spectrum wave packets
which is a fundamental goal of scattering theory [DG1].

Let (M, g) be a connected complete d-dimensional Riemannian manifold, d ≥ 2.
In the present paper we discuss the scattering theory for the Schrödinger operator

H = −1
2
4+ V = H0 + V (1.1)

on the Hilbert space H = L2(M) = L2(M, (det g)1/2dx). Here 4 is the Laplace-
Beltrami operator: In any local coordinates x, if g = gijdx

i ⊗ dxj, then

−4 = p∗i g
ijpj =

1

(det g)1/2
pi(det g)1/2gijpj, pi = −i∂i.

Note that indeed p∗i = (det g)−1/2pi(det g)1/2 is the adjoint of pi. Since our conditions
will include that the potential V = V (x) is bounded (Condition 1.4 given below
states that it is bounded and short-range) H = H0 + V is essentially self-adjoint on
C∞c (M). Concerning geometric notions appearing below we refer to [Ch] (see also
[Jo] or [Mi]).

We first impose, cf. [Ku1],

Condition 1.1. There exists a relatively compact open set O b M such that the
boundary ∂O is smooth and the exponential map restricted to outward normal
vectors: exp: N+∂O → E := M \O is diffeomorphic.

Then we call a component of E an end and such M a manifold with ends.
The distance function r(x) = dist(x, ∂O), x ∈ E, belongs to C∞(E). In a

neighbourhood of ∂O, say O, we have an extension of r, say r̃, with the property
r̃ ∈ C∞(O). In fact we can choose this extension as the “signed distance function”.
We can then construct an extension r̃ ∈ C∞(M) for which we may assume (although
these requirements are not essential) −1 ≤ r̃ < 0 and |∇r̃| ≤ 1 on O (this is by
considering a certain composition of functions). In the following we use the notation
r for this extended function. We point out that our main results will be independent



SCATTERING THEORY FOR RIEMANNIAN LAPLACIANS 3

of the extension procedure, however we prefer in proofs to work entirely with objects
defined on the whole of M (rather than with some defined on E only).

We denote the Levi-Civita connection on TM by ∇ : Γ(TM) → Γ(TM ⊗ T ∗M).
In general, the connection ∇ extends naturally to

∇ : Γ((TM)⊗p ⊗ (T ∗M)⊗q)→ Γ((TM)⊗p ⊗ (T ∗M)⊗(q+1))

in the following way (cf. [Ch, p. 31]): For any

t = (t
i1...ip
j1...jq

) ∈ Γ((TM)⊗p ⊗ (T ∗M)⊗q)

∇t ∈ Γ((TM)⊗p ⊗ (T ∗M)⊗(q+1)) is given by

(∇t)i1···ipj0j1···jq = ∂j0t
i1···ip
j1···jq +

p∑

s=1

Γisj0kt
i1···is−1kis+1···ip
j1···jq −

q∑

s=1

Γkj0jst
i1···ip
j1···js−1kjs+1···jq ,

where Γkij = 2−1gkl(∂iglj + ∂jgli − ∂lgij) are the Christoffel symbols. For example,

it follows that ∇r2 = dr2 ∈ Γ(T ∗M) and ∇2r2 = ∇∇r2 ∈ Γ(T ∗M ⊗ T ∗M). The
operator ∇2 gives the geometric Hessian, and in local coordinates

(∇2r2)ij = ∂i∂jr
2 − Γkij∂kr

2. (1.2)

We note that (∇2r2)ij are the coefficients of the principal part of a Mourre type
commutator, cf. Corollary 4.2 and Lemma 4.12 (for the analogous statement in
Classical Mechanics see the end of Subsection 2.3).

Condition 1.2 (Mourre type condition). There exist δ ∈ (0, 1] and r0 ≥ 0 such
that

∇2r2 ≥ (1 + δ)g for r ≥ r0. (1.3)

Note that (1.3) is an inequality of quadratic forms on fibers of TM . The condition
(1.3) can also be formulated in terms of the second fundamental form of the angular
manifolds Sr = {x ∈ E; r(x) = r} ∼= ∂O. We let ιr : Sr ↪→ M be the inclusion
and D = ι∗r ◦∇ (cf. [Ch, Proposition 2.3]). Then (1.3) is equivalent to the following
inequality in the sense of quadratic forms on TSr:

D∇r ≥ (1 + δ)

2r
ι∗rg for r > r0. (1.4)

In fact, a computation in the geodesic spherical coordinates shows that

∇2r2 = 2dr ⊗ dr ⊕ 2rD∇r, g = dr ⊗ dr ⊕ ι∗rg. (1.5)

Here the direct sum decompositions correspond to the orthogonal splitting TMx
∼=

(NSr)x ⊕ (TSr)x at any point x ∈ Sr.
As we can see from (1.2) the inequality (1.3) is a condition on derivatives of the

metric tensor g up to first order (as well as on derivatives of the function r2 of
course). The condition (1.6a) below is on derivatives up to second order.

Condition 1.3 (Quantum Mechanics bound). There exists κ ∈ (0, 1/2) such that

|d4r2| ≤ C〈r〉−1/2−κ. (1.6a)

We used the standard notation 〈r〉 = (1 + r2)1/2. Due to (1.11) given below we
have ∂i4r2 = gjk(∇3r2)ijk. We notice that it is a consequence of Condition 1.3 that

4r = O(r−1/2−κ) and |d4r| = O(r−3/2−κ), (1.6b)
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in fact (1.6a) and (1.6b) are equivalent for any κ ∈ (0, 1/2). Whence yet another
equivalent condition (given in terms of the mean curvature) is

tr (D∇r) = O(r−1/2−κ) and |d tr (D∇r)| = O(r−3/2−κ). (1.6c)

The first bound of (1.6c) implies an upper bound of the ball volume growth of the
form exp

(
Cr1/2−κ), C > 0, and in general no better. Similarly Condition 1.2 implies

the power type lower bound of the ball volume growth crσ with σ = (δ+1)(d−1)/2+1
and c > 0.

In the analysis of the Classical Mechanics in Section 2.3 we do not need Condi-
tion 1.3.

Finally we impose a short-range condition on V :

Condition 1.4. The potential V ∈ L∞(M ;R) satisfies for some η ∈ (0, 1]

|V (x)| ≤ C〈r〉−1−η. (1.7)

Under the above setting we prove the existence and the completeness of the wave
operator. Define the free propagator U(t), t > 0, by

U(t) = eiK(t,·)e−i ln t
2
A; (1.8a)

K(t, x) = r(x)2

2t
, (1.8b)

A = i[H0, r
2] = 1

2
{(∂ir2)gijpj + p∗i g

ij(∂jr
2)}. (1.8c)

Here e−i ln t
2
A is called a dilation with respect to r. If we define a flow ω = ω(t, x),

(t, x) ∈ (0,∞)×M , by

∂tω
i = − 1

2t
gij(ω)(∂jr

2)(ω), ω(1, x) = x, (1.9)

then for u ∈ H

e−i ln t
2
Au(x) = J(ω(t, x))1/2

(det g(ω(t, x))

det g(x)

)1/4

u(ω(t, x)), (1.10)

where J is the relevant Jacobian. In fact, using (1.9) and the relation

4u = tr (∇2u) = gij(∇2u)ij, (1.11)

we can show

J(ω(t, x))1/2
(det g(ω(t, x))

det g(x)

)1/4

= exp
(∫ t

1

1
4s

(−4r2)(ω(s, x)) ds
)
.

The right hand side of this identity is a geometric invariant, and indeed it shows
in combination with the group property ω(t, ω(s, x)) = ω(ts, x) the formula (1.10).
Note, as a consequence of (1.10), that C∞c (M) is left invariant under dilations (in
particular the generator A is essentially self-adjoint on C∞c (M)). We also note that
ω fixes ∂O and, moreover,

ω(t, x) = exp |N+∂O

[
1
t
(exp |N+∂O)−1(x)

]
for (t, x) ∈ (0,∞)× E. (1.12)

Hence e−i ln t
2
A is unitary on Haux := L2(E) ⊂ H and (Haux)⊥ = L2(O) ⊂ H, respec-

tively. By (1.12) e−i ln t
2
A|Haux is the “geodesic dilation” on E (since the composition

part is given in geodesic spherical coordinates by r → r/t), while e−i ln t
2
A|(Haux)⊥ does

not have a similar geometric meaning. Moreover, due to the eikonal equation

| grad r|2g = gij(∂ir)(∂jr) = 1 on E (1.13)
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it follows that K is a solution to the Hamilton-Jacobi equation

∂tK = −1
2
gij(∂iK)(∂jK) on E. (1.14)

Theorem 1.5. Let (M, g) be a connected complete Riemannian manifold satisfy-
ing Conditions 1.1–1.3, and V a potential satisfying Condition 1.4. Then, for the
Schrödinger propagator e−itH for (1.1) and the free propagator (1.8a) there exists
the wave operator

Ω+ = s-lim
t→+∞

eitHU(t)Paux,

where Paux is the projection onto Haux. Moreover there exists the limit

Ω̃+ = s-lim
t→+∞

U(t)∗e−itHPc,

where Pc is the projection onto the continuous subspace Hc(H) = χ(0,∞)(H)H for H.
Finally Ω+ is complete, i.e.

Ω̃+ = Ω∗+, Ω∗+Ω+ = Paux and Ω+Ω∗+ = Pc. (1.15)

Here we used the notation χO to denote the characteristic function of a subset
O ⊆ R. Note that U(t)Paux and Ω+ are independent of the extension of r to O.
The fact that H does not have positive eigenvalues is proved under weaker condi-
tions in [IS] and will not be discussed in this paper. It follows by a standard local
compactness argument that the negative spectrum of H (if not empty) consists of
finite multiplicity eigenvalues accumulating at most at zero.

Note that t · r(ω(t, x)) = r(x) for (t, x) ∈ (0,∞) × E. By this formula it follows
readily that

Ω∗+HΩ+ = MfPaux; f = 2−1r(·)2. (1.16)

Here Mf means the operator given by multiplication by f (defined maximally onH).
Consequently we immediately deduce

Corollary 1.6 (Spectrum). The continuous spectrum σc(H) = σ(Hc) = [0,∞) and
the singular continuous spectrum of H is absent (i.e. σsc(H) = ∅).

Note that under Conditions 1.1 and 1.3 the essential spectrum σess(H0) = [0,∞),
see [Ku1, Theorem 1.2]. On the other hand the second part of the corollary on the
singular continuous spectrum of H is new.

As another corollary, the existence of “the asymptotic speed” follows (see for
example [DG1] for notation).

Corollary 1.7 (Asymptotic observables). In the space Hc(H) there exists the ∗-
representation

ω+
∞ = s− Cc(M)− lim

t→+∞
eitHω(t, ·)e−itH .

In particular the asymptotic speed

r(ω+
∞) = s− Cc(R)− lim

t→+∞
eitH r(·)

t
e−itH

exists as a self-adjoint operator on Hc(H). This operator is positive with zero kernel.
Moreover, for all φ ∈ Cc(M)

φ(ω+
∞) = Ω+MφΩ∗+ and Hc = 2−1r(ω+

∞)2. (1.17)
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Remarks 1.8.
1) A principal virtue of the formula (1.8a) is its intrinsic “position space” nature. In

Euclidean scattering such formula appeared first in [Ya]; for later developments
see [DG2, HS, CHS1]. It was conceived in [CHS2] for a general geometric setting.
Another virtue of (1.8a) is that time reversal invariance applies yielding existence
and completeness of a similar wave operator Ω− (constructed by taking t→ −∞).
Whence Theorem 1.5 defines a scattering theory that includes a unitary scattering
operator, however we shall not elaborate here.

2) We note that Conditions 1.2–1.4 in some sense are optimal, see Subsection 2.2
for counter examples to Theorem 1.5 under the slight relaxation of conditions
given by allowing either δ = 0 in (1.3), κ = 0 in (1.6a) or η = 0 in (1.7).

3) If we denote the time-dependent generator of U(t) by G(t) then in the geodesic
spherical coordinates

G(t) = 1
2
p∗rpr − 1

2

(
pr −

r

t

)∗(
pr −

r

t

)
on E; pr := (∂kr)g

klpl.

By arguments motivated by classical mechanics the second term is short-range.
In fact we also have that G(t) = H0 −W (t)− α(t) where

W (t) := 1
2
(pi − ∂iK)∗gij(pj − ∂jK) and α(t) := (∂tK) + 1

2
gij(∂iK)(∂jK),

and we prove in this paper, more generally, that W (t) is short-range. This is in
fact the heart of the proof of Theorem 1.5. Whence the generator of U(t) differs
from the one-dimensional radial Laplacian by a short-range term, see [IN] for a
similar relationship.

4) The subset O is not uniquely determined in Condition 1.1, but the wave operator
is nevertheless (at least partially) in some sense unique. We will discuss this
issue in Subsection 1.1. We show that there is an explicit dependence on the
one-parameter family of sets Oa ⊇ O induced by the outward geodesic flow
(∂Oa = {r = a}; a ≥ 0). This idea is exploited in Subsection 1.2 where we
introduce a stronger condition than Condition 1.1 (regularity of the geodesic
flow from a point rather than from a submanifold). Our main results are easily
implemented in this setting, although it is also possible (as an alternative way of
showing results in this setting) to mimic the procedure in the bulk of the paper.

1.1. Uniqueness of the wave operator. Let us assume Conditions 1.1–1.4. We
set for a ≥ 0

Oa = {x ∈ E; r(x) < a} ∪O, ra(x) = r(x)− a,

and decorate various quantities defined previously with respect to Oa and ra by the
subscript a. In particular we discuss the strong limits

Va = V 0
a = s-lim

t→+∞
U(t)∗Ua(t)P

(a)
aux,

V a = V a
0 = s-lim

t→+∞
Ua(t)

∗U(t)Paux.

For u ∈ H

Ua(t)u(x) = eira(x)2/2t
(

det
∂ωa(t, x)

∂x

)1/2(det g(ωa(t, x))

det g(x)

)1/4

u(ωa(t, x))
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and since ω(t, ·)−1(x) = ω(1/t, x)

Ua(t)
∗u(x) = e−itra(x)2/2

(
det

∂ωa(1/t, x)

∂x

)1/2(det g(ωa(1/t, x))

det g(x)

)1/4

u(ωa(1/t, x)).

We note that the flow ωa satisfies

ra(ωa(t, x)) = ra(x)/t for x ∈ Ea. (1.18)

Let u ∈ H. Then for x ∈ Oa/t

U(t)∗Ua(t)P
(a)
auxu(x) = 0,

and for x ∈ Ea/t

U(t)∗Ua(t)P
(a)
auxu(x)

= eira(ω(1/t,x))2/2t−itr(x)2/2
(

det
∂ωa(t, ·)
∂x

(ω(1/t, x))
)1/2(

det
∂ω(1/t, x)

∂x

)1/2

(det g(ωa(t, ω(1/t, x)))

det g(ω(1/t, x))

)1/4(det g(ω(1/t, x))

det g(x)

)1/4

u(ωa(t, ω(1/t, x)))

= e−iar(x)+ia2/2t
(

det
∂τa(1−1/t)(x)

∂x

)1/2(det g(τa(1−1/t)(x))

det g(x)

)1/4

u(τa(1−1/t)(x)),

where for the first factor we have used by (1.18)

ra(ω(1/t, x)) = r(ω(1/t, x))− a = tr(x)− a,

and for the others we have set

ωa(t, ω(1/t, x)) = τa(1−1/t)(x).

In fact τb is radial translation given in spherical coordinates by τbx(r, σ) = x(r+b, σ)
for r > max(0,−b). Note r(ω(1/t, x)) = tr, so that

ra(ωa(t, ω(1/t, x))) = (tr − a)/t = ra + a(1− 1/t).

Hence the limit Va exists, RanVa ⊆ Haux and for x ∈ E

Vau(x) = e−iar(x)
(

det
∂τa(x)

∂x

)1/2(det g(τa(x))

det g(x)

)1/4

u(τa(x)). (1.19)

Using (1.19) we see that in fact Va is a unitary map H(a)
aux → Haux. From this

unitarity property it follows that also the limit V a exists, that V a is a unitary map

Haux → H(a)
aux and that V a = V ∗a .

Thus we have the following relationship between the wave operators Ωa and Ωb:

Ωa = ΩbV
b
a ; V b

a := V bVa. (1.20)

In fact, more generally, the existence of Ωb implies the existence of Ωa and (1.20) is
then valid (here we use that the limits V b and Va exist and the intertwining rule for
wave operators).
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1.2. Manifold with a pole. Let us consider an “extreme case” of the previous
setting. We assume, instead of Condition 1.1:

Condition 1.9. The manifold M has a pole o, that is, there exists a point o ∈ M
such that the exponential map: expo : TMo →M is diffeomorphic.

Note Condition 1.9 is indeed stronger than Condition 1.1, because under Condi-
tion 1.9 we can choose any geodesic ball for O.

We consider the distance function r(x) = dist(x, o). It is not smooth at o, but
r2 is. Hence Condition 1.2 makes sense with r0 = 0 for the function r2. Throughout
this subsection, when we refer to Condition 1.2 we mean Condition 1.2 with r0 = 0.

Define the free propagator U(t), t > 0, by

U(t) = eiK(t,·)e−i ln t
2
A

with K and A given by (1.8b) and (1.8c), respectively, in terms of the above r2.

Then e−i ln t
2
A is the geodesic dilation with respect to o, and we have the formula

U(t)u(x) = eir(x)2/2t exp
(∫ t

1

1
4s

(−4r2)(ω(s, x)) ds
)
u(ω(t, x)),

where

ω(t, x) = expo
[

1
t
(expo)

−1(x)
]

for (t, x) ∈ (0,∞)×M.

Theorem 1.10. Suppose Conditions 1.9 and 1.2–1.4. Then there exist the strong
limits

Ω+ = s-lim
t→+∞

eitHU(t), and Ω̃+ = s-lim
t→+∞

U(t)∗e−itHPc,

where Pc is the projection onto Hc(H) = χ(0,∞)(H)H, and the wave operator Ω+ is
complete, i.e.

Ω̃+ = Ω∗+, Ω∗+Ω+ = I and Ω+Ω∗+ = Pc.

The result follows by combining Theorem 1.5 and Subsection 1.1. In fact the ar-
guments in Subsection 1.1 extend and are valid including the “degenerate” situation
O = {o} (even though this set is not open).

Finally we write down the corresponding corollaries: Noting

Ω∗+HΩ+ = Mf ; f = 2−1r(·)2,

we have

Corollary 1.11 (Spectrum). The singular continuous spectrum of H is absent, i.e.
σsc(H) = ∅, and the continuous spectrum σc(H) = σ(Hc) = [0,∞).

Corollary 1.12 (Asymptotic observables). In the space Hc(H) there exists the ∗-
representation

ω+
∞ = s− Cc(M)− lim

t→+∞
eitHω(t, ·)e−itH .

In particular the asymptotic speed

r(ω+
∞) = s− Cc(R)− lim

t→+∞
eitH r(·)

t
e−itH

exists as a self-adjoint operator on Hc(H). This operator is positive with zero kernel.
Moreover, for all φ ∈ Cc(M)

φ(ω+
∞) = Ω+MφΩ∗+ and Hc = 2−1r(ω+

∞)2.
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Remark 1.13. Under Condition 1.9 a sufficient condition for Condition 1.2 is the
following: Suppose there exists δ ∈ (0, 1) such that the radial curvature R =
R(ẋ, ·, ẋ, ·) satisfies the upper bound

R ≤ 1−δ2
4r2

g. (1.21)

This is along any unit-speed geodesic x(·) emanating from the pole o of Condition 1.9
and with r = r(x). (Alternatively Rij = (∇r)k(∇r)lRk

ilj in terms of the curvature
tensor as defined in [Jo, Mi].)

Then by a standard comparison argument, see for example [GLLT, proof of The-
orem 4.1.1], indeed (1.4) holds true with this δ. In particular if M has non-positive
sectional curvatures (1.4) is valid for δ = 1. For these considerations Condition 1.3
is irrelevant. Note that (1.21) involves second order derivatives of the metric. In
some principal examples, see Subsubsection 2.1.3, we shall use a different criterion
involving derivatives of the metric up to first order only.

2. Geometric setting considerations

We shall explore the generality and limitations of our conditions in terms of various
examples. The fact that these conditions are invariant under change of variables will
facilitate the construction of examples. Secondly we shall explore the consequences
of our conditions in Classical Mechanics.

2.1. Examples. We give various examples. For convenience we assume Condi-
tion 1.9 instead of Condition 1.1, and take henceforth r0 = 0 in Condition 1.2 and
V = 0 in Condition 1.4.

2.1.1. Warped product manifold. Under Condition 1.9 we can write

g = dr ⊗ dr + gαβ(r, σ)dσα ⊗ dσβ; grr = 1, grα = gαr = 0,

where σα are local coordinates on the geodesic unit sphere S1 and the Greek indices
run on 2, . . . , d. A warped product manifold is a connected complete Riemannian
manifold fulfilling Condition 1.9 with a Riemannian metric of the form

g = dr ⊗ dr + f(r)hαβ(σ)dσα ⊗ dσβ

in the geodesic spherical coordinates. Note that this in particular means (due to
a regularity consideration at the pole o) that h is the standard Euclidean metric
density of the unit sphere and that limr→0 r

−2f(r) = 1. In the framework of Condi-
tion 1.1 such restriction on h is not needed.

Let us assume (Md, g) is a warped product manifold. Then, if we set f = e2ϕ,
(1.3) is equivalent to

2rϕ′ ≥ 1 + δ, (2.1)

and (1.6a) to

|(rϕ′)′| ≤ C〈r〉−1/2−κ. (2.2)

In fact, by direct computations,

(∇2r2)rr = 2, (∇2r2)rα = (∇2r2)αr = 0, (∇2r2)αβ = rf ′hαβ. (2.3)

Clearly the lower bound (2.1) results from (2.3). Similarly the bound (2.2) results
by taking the trace of (2.3), cf. (1.11), to obtain that 4r2 = 2 + 2(d − 1)rϕ′, and
then noting that this quantity is radially symmetric.
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We see that the inequalities (2.1) and (2.2) allow, for example,

f1,µ(r) = r2〈r〉2µ, µ ≥ (δ − 1)/2, f2,ν(r) = r2e−2 exp (2〈r〉ν), 0 ≤ ν ≤ 1/2− κ.
The Euclidean space corresponds to f1,0(r) = f2,0(r) = r2.

2.1.2. Ultra-long-range perturbation of Euclidean space. Though we have formulated
our conditions in a coordinate invariant way, our first motivation was the example
M = Rd with a Riemannian metric g satisfying Conditions 1.9, 1.2 and

Condition 2.1. There exists c > 0 such that for the standard coordinates x

g ≥ cδijdx
i ⊗ dxj

and that for r = distg(x, 0)

|∂αx gij| ≤ Cα〈x〉−|α| for |α| ≤ 2,

|∂αx (∇2r2)ij| ≤ Cα〈x〉−|α| for |α| ≤ 1.

The Condition 2.1 is stronger than Condition 1.3. Note also that Condition 2.1 is
manifestly not coordinate invariant requiring g to be comparable with the Euclidean
metric.

An example of a model satisfying Conditions 1.9, 1.2 and 2.1 is given as follows:
Let m be a real symmetric d×d–matrix-valued function on Rd. Suppose in addition
that all entries mij ∈ C∞(Rd) and obey

|∂αxmij| ≤ Cα〈x〉−|α| for |α| ≤ 3. (2.4)

Then for any ε ∈ R with |ε| being sufficiently small the metric g given as a matrix
by gij = δij + εmij fulfills Conditions 1.9, 1.2 and 2.1. We refer to [CS] for details.

In fact there is a more general example from [CS]: Take any “unperturbed” metric
g on Rd obeying

g ≥ cδijdx
i ⊗ dxj, |∂αx gij| ≤ Cα〈x〉−|α| for |α| ≤ 3 (2.5)

and identified in terms of the Euclidean metric on Rd as a matrix of the form (for
x 6= 0)

G(x) = P + P⊥G(x)P⊥, (2.6)

where P denotes, in the Dirac notation, the orthogonal projection P = P (x̂) = |x̂〉〈x̂|
parallel to x̂ = x/|x| and P⊥ = P⊥(x̂) = I−P the orthogonal projection onto {x̂}⊥.
Suppose in addition that

P⊥
(
(1− δ)G(x) + x · ∇G(x)

)
P⊥ ≥ 0. (2.7)

Then a computation shows that the conditions of [CS, Theorem 1.4 ii)] as well as
Condition 1.2 (with this δ in Condition 1.2 and with c̄ := (1 + δ)/2 in [CS, (1.13)])
are fulfilled. In fact using (2.6) we compute

∇2r2(x)(y, y) = 2yG(x)y + yP⊥∇G(x) · xP⊥y,
showing the equivalence of Condition 1.2 and (2.7) for a metric of the form (2.6).
(Note at this point the consistency with (2.1).)

If we again let m be given by (2.4) and similarly define (gε)ij = gij + εmij then a
computation using [CS, Theorems 1.4 ii) and 1.6] shows that indeed gε for any suffi-
ciently small |ε| fulfills Conditions 1.9, 1.2 and 2.1. For some examples constructed
in this way we refer to Subsubsection 2.1.3. As the reader will see the geometric
invariance is exploited explicitly.
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2.1.3. Conformally flat manifold. The Laplace-Beltrami operator, the comparison
dynamics (1.8a) and Conditions 1.1–1.3 (as well as Condition 1.4) are cleanly geo-
metrically invariant, while Condition 2.1 is not that appealing. One way to circum-
vent this for given (M, gM), M being connected, complete and d-dimensional, is by
postulating the existence of a diffeomorphism Ψ : M → Rd with the property that

g := (Ψ∗)−1gM obeys Condition 2.1. (2.8)

Clearly Conditions 1.9, 1.2 and (2.8) constitutes an invariant theory.
We will in this subsubsection give an example of the how to use (2.8) concretely.

Our discussion is based on [CS, Section 7]. Consider a radial function V = V (z) =
V (|z|) of class C∞ on Rd, d ≥ 2, for which there are constants µ ∈ (−∞, 2),
a,A, σ > 0 and δ ∈ (0, 1] such that

−A〈z〉−µ ≤ V (z) ≤ −a〈z〉−µ, (2.9a)

z · ∇V (z) + 2V (z) ≤ σV (z), (2.9b)

∂αV (z) = O
(
〈z〉−(µ+|α|)) for |α| ≤ 3, (2.9c)

(1 + δ) ≤ inf
r>0

h(r); h(r) :=

(
2 + −rV ′(r)

−V (r)

) ∫ r
0

√
−V (s)ds

√
−V (r)r

. (2.9d)

Note that for any µ ∈ [0, 1) obviously the function V (z) = −〈z〉−µ is an example
in this class. A more careful (but elementary) consideration shows that this is the
case for any µ ∈ (−∞, 4/3). It could be true for any µ ∈ (−∞, 2) (note that
h(0) = h(∞) = 2). If W = W (z) is of class C∞ on Rd, possibly non-radial, we
are interested in studying the metric (conformally) generated by Vε = V + εW for
|ε| ≥ 0 sufficiently small, that is the metric

−2Vε dz2. (2.10)

We shall impose a condition on W similar to (2.9c),

∂αW (z) = O
(
〈z〉−(µ+|α|)) for |α| ≤ 3. (2.11)

Under the conditions (2.9a)–(2.9c) and (2.11) a diffeomorphism Ψ as in (2.8) is
constructed in [CS, Subsections 7.1–2] so that in the new coordinates in fact Con-
ditions 1.9 and 2.1 (and therefore Conditions 1.9 and 1.3) are fulfilled. The new
condition (2.9d) is introduced, as we will show below, to verify the remaining Con-
dition 1.2 (in our discussion the potential in (1.1) is for simplicity taken absent).
Following [CS] we define Ψ by specifying its inverse,

Ψ−1(x) = exp0

(
x/(−2V (0)

)
, (2.12)

where the exponential mapping is defined in terms of the unperturbed metric, i.e.
by (2.10) with ε = 0. Concretely

x = Ψ(z) = ρ(|z|) z
|z| where ρ(r) =

∫ r

0

√
−2V (s)ds. (2.13)

Letting r = r(ρ) denote the inverse of this function ρ we define

f(ρ) =

√
−2V (r(ρ))r(ρ)

ρ
, (2.14)

and we have
gε := (Ψ∗)−1

(
− 2Vε d2z

)
= P + f 2P⊥ +O(ε), (2.15)
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where P and P⊥ are given as in (2.6). It remains (for Condition 1.2) to show that in-
deed (2.7) holds for the unperturbed part, G := P+f 2P⊥, given the condition (2.9d):
We compute

ρ d
dρ
f 2 + (1− δ)f 2 = f 2

((
2 +
−rV ′(r)
−V (r)

)
/f − 1− δ

)
= f 2

(
h(r)− 1− δ

)
;

whence indeed by (2.9d)

P⊥
(
(1− δ)G(x) + x · ∇G(x)

)
P⊥ ≥ 0,

and therefore Condition 1.2 holds for the metrics gε and −2Vε dz2 for any slightly
smaller δ > 0 provided |ε| ≥ 0 is taken small enough. In particular our results apply
to the metric −2Vε dz2 although this example from the outset does not conform with
Condition 2.1 (unless µ = 0).

We refer the reader to [CS, Subsection 7.3] for an example with µ = 0 in the
previous scheme for which the geodesics of the perturbed metric emanating from
0 ∈ Rd are attracted to logarithmic spirals.

2.2. Counter examples, borderlines of conditions. We construct warped prod-
uct manifolds to illustrate the optimality of the conditions of Theorem 1.5.

Proposition 2.2. Suppose Condition 1.9. Suppose that exactly one of the conditions
δ > 0, κ > 0 and η > 0 in Conditions 1.2–1.4 is replaced by either δ = 0, κ = 0
or η = 0, respectively. Then the exists a warped product manifold fulfilling this
slightly more general set of conditions for which not all of the analogous conclusions
of Theorem 1.5 are true.

In the case of δ = 0 we can choose the density factor f(r) = r2〈r〉−1 in Subsubsec-
tion 2.1.1. In the case of κ = 0 we can choose the density factor f(r) = r2e−2e2

√
〈r〉.

While for η = 0 we can choose the density factor f(r) = r2 (Euclidean model) and
V = c〈r〉−1, c 6= 0.

To see this we need some preparation. We introduce the Hilbert space H̃ =
L2(R+,G, dr) where G = L2(S1, dσ) where S1 is the unit sphere in Rd and dσ the
induced Euclidean measure. For any warped product model f = e2φ we introduce a
unitary operator M : H → H̃ by

ũ =Mu = f(r)
d−1
4 u = f(1)

d−1
4 e

∫ r
1 4r dr/2u.

We have the formula in spherical coordinates (r, σ)

Ũ(t)ũ :=MU(t)M−1ũ = ei
r2

2t t−1/2ũ( r
t
, σ).

Note also the formula

H̃ũ :=MHM−1ũ =
(

1
2
p2
r + Ṽ − 1

2
f−141

)
ũ,

where

pr = −i d
dr
, Ṽ = V + 1

8
(4r)2 + 1

4
∂4r,

and 41 denotes the Laplace-Beltrami operator on G.
The generator of Ũ(t) is given by

G̃(t) = 1
2
p2
r − 1

2

(
pr −

r

t

)2
,
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cf. Remark 1.8 3). Whence we have for all ũ ∈ C∞c (R+ × S1)

(
H̃ − G̃(t)

)
Ũ(t)ũ = t−1/2ei

r2

2t
(
− 1

2
p2
r + Ṽ − 1

2
f−141

)
ũ( r

t
, σ).

Given the Conditions 1.2–1.4 for the model, and therefore (1.6b), (2.1) and (2.2),
the Cook method and this computation yields the existence of the limit

Ω̃ũ = lim
t→∞

eiH̃tŨ(t)ũ; ũ ∈ H̃. (2.16)

Moreover this argument does not work if δ = 0 in Condition 1.2 (since then f−1

might not decay fast enough), or if κ = 0 in Condition 1.3 (since then (4r)2 might
not decay fast enough) nor if η = 0 in Condition 1.4 (since then V might not decay
fast enough). This provides some intuition about Proposition 2.2.

To come closer to a proof of Proposition 2.2 let us note that these borderline cases
can be “repaired” by modified evolutions in the spirit of the Dollard evolution for
Schrödinger operators. Thus, for the example f(r) = r2〈r〉−1 the factor f−1 ≈ r−1,
and if we take ũ = v(r)Yl(σ) for a spherical harmonic Yl we have

−1
2
f−141ũ( r

t
, ·) ≈ cr−1ũ( r

t
, ·); c = c(l) = −1

2
(l + d/2− 1).

This motivates us to introduce

Ũl(t)ũ := e
i
(
r2

2t
−c t
〈r〉 ln〈r〉

)
t−1/2ũ( r

t
, σ),

whose generator is

G̃l(t) = 1
2
p2
r − 1

2

(
pr −

r

t

)2
+ c ln〈r〉

〈r〉3 + c r2

〈r〉3 .

Note that c r2

〈r〉3 ≈ cr−1. Whence, by the arguments above for this example, we obtain

the existence of the limit

Ω̃lũ = lim
t→∞

eiH̃tŨl(t)ũ; ũ ∈ H̃l := L2(R+)⊗ Yl. (2.17)

We note the property

Ω̃∗l H̃Ω̃l = Mλ,

where Mλ denotes multiplication by the function r → r2/2, v(r)⊗Yl → r2

2
v(r)⊗Yl.

(The reader may at this point consult the end of Subsection 3.1.) In particular
RanM−1Ω̃l ⊆ Hc(H).

Proof of Proposition 2.2. First we continue our discussion of the example f(r) =
r2〈r〉−1 for which δ = 0. Suppose on the contrary that the conclusions of Theorem 1.5
are all true for this example. Let Ω+ be given accordingly and Ω̃l be given by (2.17).
We derive a contradiction by taking an arbitrary nonzero ṽ ∈ L2(R+), define ũ =
ṽ ⊗ Yl with any l for which c = c(l) 6= 0 and compute

Ω∗+M−1Ω̃lũ = Ω∗+PcM−1Ω̃lũ = lim
t→∞

U(t)∗M−1Ũl(t)ũ

=M−1 lim
t→∞

(
e−i

c
r

ln tw̃
)
⊗ Yl; w̃(r) = e−i

c
r

ln rṽ(r).

Since w̃ 6= 0 and c 6= 0 the factor e−i
c
r

ln t does not have a limit when applied to w̃,
cf. the Riemann-Lebesgue lemma [RS]). This is a contradiction.

For the example f(r) = r2e−2e2
√
〈r〉, for which κ = 0, we proceed similarly. The

term 1
8
(4r)2 ≈ cr−1, so we can repeat the above arguments.
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Finally the potential V = c〈r〉−1, for which η = 0, provides (with f = r2) a
counter example. The arguments are the same. �

2.3. Classical Mechanics under Conditions 1.9 and 1.2. We outline proofs of
analogues of Theorem 1.10 and Corollary 1.12 in Classical Mechanics. As we pointed
out before the Classical Mechanics considerations only require Conditions 1.1 and 1.2.
But, for convenience, we consider Conditions 1.9 and 1.2 with r0 = 0, instead. If we
adopt Conditions 1.1 and 1.2 not necessarily with r0 = 0, then all the geodesics ap-
pearing below need to be non-trapped. Our proofs of Theorem 1.5 and Corollary 1.7
are strongly motivated by these considerations.

2.3.1. Regularity of classical dilation. First we prove an estimate for the geodesic
dilation ω(t, x). Recall

ω(t, x) = expo
[

1
t

exp−1
o (x)

]
, (t, x) ∈ (0,∞)×M.

In any local coordinates ω satisfies, cf. (1.9),

∂tω
i = − r

t2
(grad r)(ω) = − 1

2t
gij(ω)(∂jr

2)(ω), ω(1, x) = x. (2.18)

Lemma 2.3. For all (t, x) ∈ (0,∞)×M and independently of choice of coordinates

gij(x)gkl(ω(t, x))[∂iω
k(t, x)][∂jω

l(t, x)] ≤ dt−(1+δ). (2.19)

Proof. The left hand side of (2.19) is indeed independent of coordinates. Fix x ∈M
and choose coordinates such that gij(x) = δij. Consider the vector fields along
{ω(t, x)}t∈R given by ∂iω

•(t, x) and ∂jω
•(t, x). Since the Levi-Civita connection ∇

is compatible with the metric,

∂
∂t
gkl(ω)(∂iω

k)(∂jω
l) = ∂

∂t
〈∂iω•, ∂jω•〉 = 〈∇∂tω∂iω

•, ∂jω
•〉+ 〈∂iω•,∇∂tω∂jω

•〉.
(The definition of ∇∂tω is given below.) From (2.18) it follows that

∇∂tω∂iω
• = ∂t∂iω

• + (∂tω
k)Γ•kl∂iω

l

= − 1
2t

(∂iω
k)∂k(g

•l∂lr
2)− 1

2t
(gkm∂mr

2)Γ•kl∂iω
l

= − 1
2t
∇∂iω(g•l∂lr

2)

= − 1
2t
g•l(∂iω

k)(∇2r2)kl.

Thus, taking summation in i, j, we obtain

∂
∂t
gij(x)gkl(ω)(∂iω

k)(∂jω
l) ≤ −1+δ

t
gij(x)gkl(ω)(∂iω

k)(∂jω
l).

Noting gij(x)gkl(ω)(∂iω
k)(∂jω

l)
∣∣
t=1

= d, we have (2.19). �

2.3.2. Propagation estimates. Set

K(t, x) = r2

2t
, h0(x, ξ) = 1

2
gijξiξj, w(t, x, ξ) = 1

2
gij(ξi − ∂iK)(ξj − ∂jK)

for t > 0, x ∈M and (x, ξ) ∈ T ∗M .

Lemma 2.4. For any Hamiltonian trajectory (x(t), ξ(t)) there exists C > 0 such
that

w(t, x(t), ξ(t)) ≤ Ct−(1+δ). (2.20)



SCATTERING THEORY FOR RIEMANNIAN LAPLACIANS 15

Proof. We compute

d
dt
w = ∂

∂t
w + {h0, w − h0} = ∂

∂t
w + ∂h

∂ξ
∂
∂x

(w − h0)− ∂h
∂x

∂
∂ξ

(w − h0).

By (1.14)

∂
∂t
w = 1

2
gij(∂ig

kl(∂kK)(∂lK))(ξj − ∂jK).

Noting that by the compatibility condition (∇g)ijk = 0, we have

0 = ∂kg
ij + Γiklg

lj + Γjklg
il, (2.21)

so that

∂ig
kl(∂kK)(∂lK) = 2(∇2K)ikg

kl(∂lK). (2.22)

Thus

∂
∂t
w = (∂lK)glk(∇2K)kig

ij(ξj − ∂jK).

On the other hand, by (2.21) and (2.22) again we have

{h0, w − h0}
= gijξj

[
−(∂ig

kl)ξk(∂lK)− gklξk(∂i∂lK) + (∇2K)ikg
kl(∂lK)

]

+ 1
2
(∂kg

ij)ξiξjg
kl(∂lK)

= gijξj(Γ
k
img

ml + Γlimg
km)ξk(∂lK)− gijξjgklξk(∂i∂lK) + gijξj(∇2K)ikg

kl(∂lK)

− 1
2
(Γikmg

mj + Γjkmg
im)ξiξjg

kl(∂lK)

= gijξjΓ
l
img

kmξk(∂lK)− gijξjgklξk(∂i∂lK) + gijξj(∇2K)ikg
kl(∂lK)

= − ξjgji(∇2K)ikg
kl(ξl − ∂lK).

Hence, summing up and using Condition 1.2, we obtain

d
dt
w = −(ξl − ∂lK)glk(∇2K)kig

ij(ξj − ∂jK) ≤ −1+δ
t
w. �

Proposition 2.5. For any geodesic x(t) there exists the limit

ω∞ = lim
t→∞

ω(t, x(t)). (2.23)

Proof. Due to the flow equation (2.18) we have the group property ω(t, ω(s, x)) =
ω(ts, x). Differentiate

ω(t, ω(s, x)) = ω(s, ω(t, x))

in t, and use then (2.18) to obtain

∂tω
i(t, ω(s, x)) = −(∂kω

i)(t, ω(s, x))gkl(ω(s, x))(∂lK)(t, ω(s, x)).

Putting s = 1, we obtain

∂tω
i(t, x) = −gkl(x)(∂kω

i)(t, x)(∂lK)(t, x). (2.24)

By applying first (2.24), and then (2.19) and (2.20), we obtain

gijω̇
iω̇j = gij[∂tω

i + (∂ξh0)(∂xω
i)][∂tω

j + (∂ξh0)(∂xω
j)]

= gijg
kl(∂kω

i)(ξl − ∂lK)gmn(∂mω
j)(ξn − ∂nK)

≤ Ct−2(1+δ),

and the assertion follows. �
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2.3.3. Mourre estimate. We also note that the classical Mourre estimate holds. Since
the geodesics equation is given by ẍi + Γijkẋ

jẋk = 0, the following result is true.

Lemma 2.6. For any geodesic x(t) the following inequality holds:

d2

dt2
r2 ≥ 2(1 + δ)h0.

3. Reduction of the proof of Theorem 1.5

3.1. Reduction to existence of localization operators. Since we do not have
enough regularities for the derivatives of g and ∇2r2, the Cook-Kuroda method does
not apply even for the existence part of Theorem 1.5. We shall prove Theorem 1.5 in
a symmetric manner for the existence and the completeness parts. In this subsection
we reduce the proof to the construction of Qf(t) and Qp(t) which are time-dependent
localization operators for the free and the perturbed dynamics, respectively.

We denote the time-dependent generator of U(t) by G(t), i.e.,
d
dt
U(t) = −iG(t)U(t).

It will not be important to known the domain of the generator but rather a con-
venient subspace. For that we observe that U(t) and U(t)−1 preserve the subspace
C∞c (M) ⊆ H, and hence C∞c (M) ⊆ D(G(t)), and that the propagator acting on this
subspace is explicitly given as follows (recall H0 = −1

2
4):

G(t) = −∂tK + eiK 1
2t
Ae−iK = H0 −W (t)− α(t); (3.1a)

W (t) = 1
2
(pi − ∂iK)∗gij(pj − ∂jK) = eiKH0e−iK , (3.1b)

α(t) = ∂tK + 1
2
gij(∂iK)(∂jK) (3.1c)

Note by (1.14) that α(t) ≡ 0 on E, and thus

∀n ∈ N : |α| = O(t−2〈r〉−n) on M. (3.2)

For all practical purposes (in particular for stating Lemma 3.1 below) we can
consider (3.1a) as a definition of a symmetric operator G(t) on the domain D(H0)∩
D
(
H0e−iK

)
= D(H0) ∩ D

(
W (t)

)
.

As shown at the end of the subsection Theorem 1.5 is a consequence of the fol-
lowing two lemmas:

Lemma 3.1. Let 0 < µ < M < ∞. Then there exists a weakly differentiable
Qf : [1,∞)→ Bsa(H) such that ‖Qf(t)‖B(H) ≤ 1 and for some δ′ > 0

i)

s-lim
t→∞

(I −Qf(t))U(t)χ[µ,M ](r
2)Paux = 0,

where χ[µ,M ] is the characteristic function for [µ,M ] and χ[µ,M ](r
2) denotes the

multiplier,
ii) The operators G(t)Qf(t) and Qf(t)G(t) are bounded, and the Heisenberg deriv-

ative of Qf(t) with respect to G(t) is non-negative modulo OB(H)(t
−1−δ′):

∃R(t) = OB(H)(t
−1−δ′) s.t. DG(t)Qf(t) = d

dt
Qf(t) + i[G(t), Qf(t)] ≥ R(t),

iii) The operators (W (t)+α(t)+V )Qf(t) and Qf(t)(W (t)+α(t)+V ) are OB(H)(t
−1−δ′).

Lemma 3.2. Let E ∈ (0,∞). If e > 0 is sufficiently small, then there exists a
weakly differentiable Qp : [1,∞) → Bsa(H) such that ‖Qp(t)‖B(H) ≤ 1 and for some
δ′ > 0
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i)

s-lim
t→∞

(I −Qp(t))e−itHχ[E−e,E+e](H) = 0,

ii) The operators HQp(t) and Qp(t)H are bounded, and

∃R(t) = OB(H)(t
−1−δ′) s.t. DHQp(t) = d

dt
Qp(t) + i[H,Qp(t)] ≥ R(t),

iii) The operators (W (t)+α(t)+V )Qp(t) and Qp(t)(W (t)+α(t)+V ) are OB(H)(t
−1−δ′).

Now we deduce Theorem 1.5 from Lemmas 3.1 and 3.2. The existence and the
completeness parts are completely the same and we discuss only the existence part.
From Lemma 3.1 ii) and iii) the following statement follows, which combined with
Lemma 3.1 i) and a density argument implies the existence of the wave operator.

Lemma 3.3. Let µ,M,Qf , δ
′ be as in Lemma 3.1, and u ∈ χ[µ,M ](r

2)Haux∩C∞(M).
Then for any ε > 0 there exists t0 > 0 such that for any t, t′ ≥ t0 and v ∈ C∞c (M)

|〈v, eitHQf(t)U(t)u〉 − 〈v, eit′HQf(t
′)U(t′)u〉| ≤ ε‖v‖.

In particular, eitHQf(t)U(t)u is a Cauchy sequence as t→∞.

Proof. Let ε > 0. For any t ≥ t′ ≥ 1 and v ∈ C∞c (M) we compute, using Lemma 3.1
ii) and iii) and the Schwarz inequality,

|〈v, eitHQf(t)U(t)u〉 − 〈v, eit′HQf(t
′)U(t′)u〉|

=
∣∣∣
∫ t

t′
{〈v, eisHDG(s)Qf(s)U(s)u〉+ i〈v, eisH(W (s) + α(s) + V )Qf(s)U(s)u〉} ds

∣∣∣

≤
(∫ t

t′
〈v, eisH(DG(s)Qf(s)−R(s))e−isHv〉 ds

)1/2

×
(∫ t

t′
〈u, U(s)∗(DG(s)Qf(s)−R(s))U(s)u〉 ds

)1/2

+ C‖v‖‖u‖
∫ t

t′
s−1−δ′ ds.

By Lemma 3.1 iii)

〈v, eisH(DG(s)Qf(s)−R(s))e−isHv〉 = d
ds
〈v, eisHQf(s)e

−isHv〉+O(s−1−δ′)‖v‖2,

so that
(∫ t

t′
〈v, eisH(DG(s)Qf(s)−R(s))e−isHv〉 ds

)1/2

≤ C‖v‖.

Similarly, we have
(∫ t

t′
〈u, U(s)∗(DG(s)Qf(s)−R(s))U(s)u〉 ds

)1/2

≤ C‖u‖,

which in particular implies that (〈u, U(s)∗(DG(s)Qf(s) − R(s))U(s)u〉 ≥ 0 is inte-
grable. Hence we obtain

|〈v, eitHQf(t)U(t)u〉 − 〈v, eit′HQf(t
′)U(t′)u〉|

≤ C‖v‖
(∫ t

t′
〈u, U(s)∗(DG(s)Qf(s)−R(s))U(s)u〉 ds

)1/2

+ C‖v‖‖u‖
∫ t

t′
s−1−δ′ ds.

Since the integrands in the right-hand side both are integrable, if we let t0 > 0 be
large enough, we have for t, t′ ≥ t0

|〈v, eitHQf(t)U(t)u〉 − 〈v, eit′HQf(t
′)U(t′)u〉| ≤ ε‖v‖.

Thus the lemma follows. �
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For the existence of the limit Ω̃+ the following lemma is sufficient. We omit the
proof of the lemma.

Lemma 3.4. Let E, e,Qp, δ
′ be as in Lemma 3.2 and u ∈ χ[E−e,E+e](H)C∞c (M).

Then for any ε > 0 there exists t0 > 0 such that for any t, t′ ≥ t0 and v ∈ C∞c (M)

|〈v, U(t)∗Qp(t)e−itHu〉 − 〈v, U(t′)∗Qp(t′)e−it′Hu〉| ≤ ε‖v‖.
In particular, U(t)∗Qp(t)e−itHu is a Cauchy sequence as t→∞.

Proof of (1.15), (1.16) and Corollary 1.6. It suffices to show the identity

HΩ+ = Ω+Mf ; f(x) := 2−1r(x)2. (3.3)

Note that the operator Mf has purely continuous spectrum, given by [0,∞), so
indeed it is a consequence of (3.3) that Ran Ω+ ⊆ Hc(H). Note that we also have

Ran Ω̃+ ⊆ Haux. In fact, cf. the RAGE theorem [RS], for any u ∈ Hc(H)

lim
t→+∞

1
T

∫ T

1

‖(Paux)⊥e−itHu‖2 dt = 0,

so that in particular for some sequence tn

tn →∞ and (Paux)⊥e−itnHu→ 0

as n → ∞. Then, since U(t) is unitary on (Haux)⊥ and s-limt→+∞ U(t)∗e−itHPc

exists, we can conclude

s-lim
t→∞

(Paux)⊥U(t)∗e−itHPc = 0.

This implies the claim. Therefore (1.15) follows. Note also that given (3.3) the
statements (1.16) and Corollary 1.6 are immediate consequences of Theorem 1.5.

For (3.3) we compute for all s ∈ R

Ω+u = lim
t→∞

ei(t+s)HeiK(t+s,·)e−i
ln(t+s)

2
APauxu

= eisH lim
t→∞

eitHeiK(t,·)e
i
r2

2t2

(
t2

t+s
−t
)
e−i ln t

2
APauxu

= eisH lim
t→∞

eitHeiK(t,·)e−i ln t
2
Ae

if(·)
(
t2

t+s
−t
)
Pauxu

= eisH lim
t→∞

eitHU(t)Pauxe−isf(·)u

= eisHΩ+e−isf(·)u.

Whence, cf. Stone’s theorem [RS], HΩ+ ⊇ Ω+Mf , and therefore also (3.3) holds.
�

We end this subsection by also proving Corollary 1.7.

Proof of Corollary 1.7. We note Ran Ω+ ⊆ Hc(H). Then we compute for all φ ∈
Cc(M) and v ∈ Hc(H)

lim
t→∞

eitHφ(ω(t, ·))e−itHv = lim
t→∞

eitHU(t)φ(Mx)U(t)∗e−itHv = Ω+φ(Mx)Ω
∗
+v,

showing the existence of φ(ω+
∞) = s − limt→∞ eitHφ(ω(t, ·))e−itHPc and the first

identity of (1.17).
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The existence of the operator R := r(ω+
∞) follows from the fact that the mapping

Cc(R) 3 ψ → φ(ω+
∞) ∈ B(Hc(H)), φ := ψ ◦ r, is a non-degenerate ∗-representation

and spectral theory [RS]. Clearly R ≥ 0.

We take (using here notation from the next subsection) ψN(s) = s2

2
χ−,0,N(s),

N ∈ N, and take the N -limit in the identity ψN(R)Ω+ = Ω+MψN◦r. This leads to
R2

2
Ω+ ⊇ Ω+Mr2/2, and whence in combination with (1.16), the second identity of

(1.17). In particular the kernel of R is zero. �
3.2. Localization operators in explicit form. The rest of the paper concerns
the proofs of Lemmas 3.1 and 3.2. Since the proofs are fairly long, here we first
give the explicit forms of Qf and Qp. We also collect here some other (related)
constructions.

We denote by χa,b,c,d ∈ C∞(R), −∞ < a < b < c < d < ∞, a smooth cutoff
function such that

0 ≤ χa,b,c,d ≤ 1, χa,b,c,d = 1 in a nbh. of [b, c], χa,b,c,d = 0 in a nbh. of R \ (a, d),

and that

χ′a,b,c,d ≥ 0 on [a, b], χ′a,b,c,d ≤ 0 on [c, d], χ
1/2
a,b,c,d, |χ′a,b,c,d|1/2 ∈ C∞(R).

We also assume that the family of these cutoff functions satisfies

χa,b,c,d + χc,d,e,f = χa,b,e,f , ‖χ(n)
a,b,c,d‖L∞(R) ≤ ‖χ(n)

0,1,2,3‖L∞(R)(min{b− a, d− c})−n.
We let χ−,−,c,d and χa,b,+,+ be functions with similar properties as above formally
given by taking a = b = −∞ and c = d = +∞, respectively. We abbreviate
χ−,c,d = χ−,−,c,d and χa,b,+ = χa,b,+,+. Note that all the above functions may be
constructed from χ0,1,+ and χ−,0,1 by a simple translation and scaling procedure as
well as multiplication.

Then the localization operators Qf and Qp are realized as the products

Qf(t) = (Q2(t)Q1(t))∗Q2(t)Q1(t), (3.4)

Qp(t) = (Q6(t)Q5(t)Q4(t))∗Q6(t)Q5(t)Q4(t), (3.5)

where we use quantities from the list

Q1(t) = χµ1,µ,M,M1

(
r2/t2

)
,

Q2(t) =
(
I + t1+δ1W (t)

)−1/2
,

Q3 = χE−2e,E−e,E+e,E+2e(H),

Q4(t) = χ−,2E1,2E2

(
r2/t2

)
,

Q5(t) = χ(1+δ3)2E/2,(1+δ2)2E/2,+

(
r2/t2

)
,

Q6(t) = Q2(t) =
(
I + t1+δ1W (t)

)−1/2
.

The parameters appearing above are chosen as follows: For given 0 < µ < M <∞,
if we let µ1,M1, δ1 be any constants such that

0 < µ1 < µ < M < M1 <∞, 0 < δ1 < min(δ, 2κ),

then Qf satisfies Lemma 3.1. For given E ∈ (0,∞) let E∗, δ∗ be any constants such
that

E < E1 < E2, 0 < δ3 < δ2 < δ1 < min(δ, 2κ),

and e > 0 small enough accordingly, then Qp satisfies Lemma 3.2.
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We shall consider the following modification of r2 and corresponding quantities.
Pick a real-valued f ∈ C∞(R+) with f(s) = 1 for s < 1/2, f(s) = s for s > 2 and
f ′′ ≥ 0. Define for any ε ∈ (0, 1) and all t ≥ 1

r̃2 = t2−2εf(t2ε−2r2),

K̃ = r̃2

2t
,

Ã = i[H0, r̃
2] = 1

2
{(f ′(·)∂ir2)gijpj + p∗i g

ij(f ′(·)∂jr2)},
G̃ = 1

2
p∗i g

ijpj − 1
2
(pi − ∂iK̃)∗gij(pj − ∂jK̃).

The latter constructions will be used in Subsection 4.4 to prove the following
localization for e > 0 chosen sufficiently small

s-lim
t→∞

(I −Q3Q4Q
2
5Q4Q3)e−itHχ[E−e,E+e](H) = 0, (3.6a)

For all u ∈ χ[E−e,E+e](H)H:

−
∫ ∞

1

〈e−itHu, (χ2
−,2E1,2E2

)′
(
r2/t2

)
e−itHu〉t−1dt <∞, (3.6b)

For all u ∈ χ[E−e,E+e](H)H:
∫ ∞

1

〈e−itHu, (χ2
(1+δ3)2E/2,(1+δ2)2E/2,+)′

(
r2/t2

)
e−itHu〉t−1dt <∞. (3.6c)

As the reader will see, given (3.6a)–(3.6c), the proofs of Lemmas 3.1 and 3.2 are
very similar.

Let T be a self-adjoint operator on a complex Hilbert space H and χ ∈ C∞c (R).
We can choose an almost analytic extension χ̃ ∈ C∞c (C), i.e.

χ̃(x) = χ(x) for x ∈ R, |∂̄χ̃(z)| ≤ Ck| Im z|k; k ∈ N.

Then the Helffer-Sjöstrand representation formula reads

χ(T ) =

∫

C
(T − z)−1 dµ(z); dµ(z) = − 1

2πi
∂̄χ̃(z)dzdz̄. (3.7)

If S is another operator on H we are thus lead to the formula

[S, χ(T )] =

∫

C
(T − z)−1[T, S](T − z)−1 dµ(z). (3.8)

Another well-known representation formula for T strictly positive reads:

T−1/2 = π−1

∫ ∞

0

s−1/2(T + s)−1ds. (3.9)

4. Verification of properties of localization operators

4.1. Commutator computations. We compute several commutators needed later.
We recall that two tensors are denoted by the same symbol if they are related by
the identification TM ∼= T ∗M through the metric tensor, and distinguish them by
superscripts and subscripts, for example,

((∇2r2)ij) = (gikgjl(∇2r2)kl) ∈ Γ(TM ⊗ TM).

We recall from [Do, Lemma 2.5] (this formula can be proved by a straightforward,
although somewhat tedious, computation using the compatibility condition (2.21)).
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Lemma 4.1. Let φ ∈ C∞(M) be given, and define

Aφ = i[H0, φ] = 1
2
{(∂iφ)gijpj + p∗i g

ij(∂jφ)}.
Then, as an operator on C∞c (M),

i[H0, Aφ] = p∗i (∇2φ)ijpj − 1
4
42φ.

Let A be the self-adjoint operator defined by (1.8c), i.e. we take φ = r2 above.
From Lemma 4.1 we thus obtain

Corollary 4.2. As a quadratic form on C∞c (M),

i[H,A] = p∗i (∇2r2)ijpj + γig
ij∂j + ∂∗i g

ijγj + γ0; (4.1a)

γi = (∂ir
2)V + 1

4
(∂i4r2), (4.1b)

γ0 = (4r2)V. (4.1c)

In particular, for any ε > 0 there exists γε = γε(x) = O(r−min{2η,1+2κ}) such that

i[H,A] ≥ p∗i {(∇2r2)ij − εgij}pj + γε

≥ 2(1 + δ − ε)H0 − CHr1 + γε,
(4.2)

where Hr1 = 1
2
p∗iχ−,r0,r1(r)g

ijpj, r1 > r0.

Proof. The equations (4.1a)–(4.1c) follow from Lemma 4.1 and

i[V,A] = V (∂jr
2)gij∂i + ∂∗i g

ij(∂jr
2)V + (4r2)V.

If we use (1.13) and

γig
ij∂j + ∂∗i g

ijγj + γ0 ≥ −ε∂∗i gij∂j + γε; γε := −ε−1gijγiγj + γ0,

then the latter assertion of the corollary follows. Note that indeed since |∂r4r2| ≤
C〈r〉−1/2−κ we obtain by integrating in r that 4r2 = O(r1/2−κ). �
Corollary 4.3. As a quadratic form on C∞c (M),

DH0W = − 1
2t

(pi − ∂iK)∗(∇2r2)ij(pj − ∂jK) + γ̃∗i g
ij(pj − ∂jK) + (pi − ∂iK)∗gij γ̃j;

γ̃i = i
8t

(∂i4r2)− 1
2
(∂iα).

Proof. We have

DH0W = d
dt
W + i[H0,W ]. (4.3)

For the first term substitute

W = H0 − 1
2
(∂iK)gijpj − 1

2
p∗i g

ij(∂jK) + 1
2
gij(∂iK)(∂jK),

and then we obtain
d
dt
W = 1

4
(∂ig

kl(∂kK)(∂lK))gijpj + 1
4
p∗i g

ij(∂jg
kl(∂kK)(∂lK))

− 1
2
gij(∂iK)(∂jg

kl(∂kK)(∂lK))− 1
2
(∂iα)gijpj − 1

2
p∗i g

ij(∂jα) + gij(∂iK)(∂jα).
(4.4)

For the second term of (4.3) we substitute

W = H0 − 1
2t
A+ 1

2
gij(∂iK)(∂jK),

and then by Lemma 4.1

i[H0,W ] = − 1
2t
p∗i (∇2r2)ijpj − i

8t
(∂i4r2)gijpj + i

8t
p∗i g

ij(∂j4r2)

+ 1
4
(∂ig

kl(∂kK)(∂lK))gijpj + 1
4
p∗i g

ij(∂jg
kl(∂kK)(∂lK)).

(4.5)
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Noting the equation, cf. (2.22),

(∂jg
kl(∂kK)(∂lK)) = 2gkl(∇K)2

jk(∂lK), (4.6)

we obtain the assertion from (4.3)–(4.5). �
Introduce the “radial momentum” (the name of this operator is justified by its

action on functions supported in E)

pr = (∂kr)g
klpl. (4.7)

Lemma 4.4. For any real-valued χ ∈ C∞(R) with χ′ ∈ C∞c (R+) define pχ = χ(r)pr.

Then as quadratic forms on D
(
H

1/2
0

)

p∗χ = pχ − i(χ(r)4r + χ′(r)), (4.8a)

pχp
∗
χ = p∗χpχ + χ̃; χ̃ = χ̃(x) := −χ

(
∂r(χ(r)4r + χ′(r))

)
, (4.8b)

p∗χpχ ≤ 2 supχ2H0, (4.8c)

pχp
∗
χ ≤ 2 supχ2H0 + sup χ̃. (4.8d)

Proof. Compute p∗χ = pχ+i
(
∂∗i g

ij(∂jr)χ(r)
)

= pχ−i(χ(r)4r+χ′(r)) yielding (4.8a).
We obtain (4.8b) from (4.8a) by inserting and commuting through. The estimate
(4.8c) follows from the Cauchy Schwarz inequality and the fact that |∇r| ≤ 1. The
estimate (4.8d) follows from (4.8b) and (4.8c). �

In the proof of Lemma 4.15 we need the following technical result which involves
the construction G̃ of Subsection 3.2 given in terms of any ε ∈ (0, 1).

Lemma 4.5. There exists ε′ = ε′(ε, κ, η) > 0 such that as a quadratic form on
C∞c (M)

DHG̃ ≥ 1
2t

(pi − ∂iK)∗f ′(·)(∇2r2)ij(pj − ∂jK)− Ct−ε′−1H +O(t−ε
′−1).

Proof. We proceed by computing, mimicking the proof of Corollaries 4.2 and 4.3,

DHG̃ = d
dt
G̃+ i

2t
[H, Ã]− i

2
[H0, g

ij(∂iK̃)(∂jK̃)].

By (4.6) and (∂iK̃) = f ′(·)(∂iK)

(∂t∂iK̃) = −f ′(·)gkl(∇2K)ik(∂lK) + f ′(·)(∂iα) + (2ε− 2)t2ε−3r2f ′′(·)(∂iK),

so that we obtain
d
dt
G̃ = − 1

2
(∂iK)f ′(·)(∇2K)ij(pj − ∂jK̃)

+ 1
2

{
f ′(·)(∂iα) + (2ε− 2)t2ε−3r2f ′′(·)(∂iK)

}
gij(pj − ∂jK̃) + h.c.

= − 1
2
(∂iK)f ′(·)(∇2K)ij(pj − ∂jK)

− 1
2
f ′(·)(∂iα)gijpj +O(t−ε−1)pr +O(t−2ε−1) + h.c.

Upon replacing r2 by K̃ in Corollary 4.2, we have
i

2t
[H, Ã] = p∗i (∇2K̃)ijpj − 2 Im

{(
(∂iK̃)V + 1

4
(∂i4K̃)

)
gijpj

}
+ (4K̃)V

≥ p∗i f
′(·)(∇2K)ijpj + Im

{
O(tmax{−(1−ε)η−1,ε−2,−(1/2+κ)(1−ε)−1})pr

}

− 1
2

Im
{
f ′(·)(∂i4K)gijpj

}
+O(t−(1−ε)(1/2+κ+η)−1),

where in the last step we used the inequality for matrices:

(∇2r̃2)ij = f ′(·)(∇2r2)ij + t2ε−2f ′′(·)(∂ir2)(∂jr
2) ≥ f ′(·)(∇2r2)ij.
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By (4.6) and (∂iK̃) = f ′(·)(∂iK) again

− i
2
[H0, g

ij(∂iK̃)(∂jK̃)] = −1
4
(∂if

′(·)2gkl(∂kK)(∂lK))gijpj + h.c.

= −1
2
(∂iK)f ′(·)2(∇2K)ijpj +O(t−ε−1)pr + h.c.

= −1
2
(∂iK)f ′(·)(∇2K)ijpj +O(t−ε−1)pr + h.c.,

where we used that for all large t the function f ′(·) is supported in E and whence

(∂iK)f ′(·)2(∇2K)ijpj = r
t2
f ′(·)2pr = (∂iK)(f ′(·)∇2K)ijpj +O(t−ε−1)pr.

We sum and obtain the assertion. �
4.2. Further commutator computations. In this subsection we collect some
further preliminary commutator bounds.

Lemma 4.6. Let ε > 0 and 0 < c < d < a < b be given. Then uniformly in t, N ≥ 1

‖Bχ−,c,d(r/t)
(
I + t2−2εN−1H0

)−1
χa,b,+(r/t)‖ ≤ Cn

(
tεN1/2

)−n
, (4.9)

where either B = B1 = I or B = B2 = t1−εN−1/2pr (with pr given by (4.7)) and
n ∈ N ∪ {0}.
Proof. Let T = I + t2−2εN−1H0. For n = 0 we note that

[B2, χ−,c,d(·)] = −it−εN−1/2χ′−,c,d(·)
which obviously is bounded uniformly in t ≥ 1. Moreover

‖χ−,c,d(·)B2T
−1‖ ≤ ‖B2T

−1‖ ≤
√

2(sup |∇r|)t1−εN−1/2‖H1/2
0 T−1‖ ≤ 1/

√
2. (4.10)

This proves (4.9) for n = 0.
For n ≥ 1 we proceed by induction (using the freedom of using new localization

functions) first computing

Bχ−,c,d(·)T−1χa,b,+(·) = − i
2
t1−2εN−1BT−1

(
p∗rχ

′
−,c,d(·) + χ′−,c,d(·)pr

)
T−1χa,b,+(·).

Now we can freely introduce a factor χ−,e,f (·) with d < e < f < a in front of the
last factor T−1 to the right. By induction we have

‖Bχ−,e,f (·)T−1χa,b,+‖ ≤ C
(
tεN1/2

)−(n−1)
uniformly in t, N ≥ 1. (4.11)

Whence we are left with bounding

‖t1−2εN−1BT−1p∗rχ
′
−,c,d(·)‖ ≤ Ct−εN−1/2 uniformly in t, N ≥ 1. (4.12a)

‖t−εN−1/2BT−1χ′−,c,d(·)‖ ≤ Ct−εN−1/2 uniformly in t, N ≥ 1. (4.12b)

Clearly (4.12a) and (4.12b) in turn follow from the following bound:

‖BiT
−1B∗j ‖ ≤ 2 i, j ∈ {1, 2}. (4.13)

But as in (4.10)
‖B1T

−1B∗j ‖ = ‖T−1B∗j ‖ = ‖BjT
−1‖ ≤ 1,

while
‖B2T

−1B∗j ‖ ≤ ‖B2T
−1/2‖ × ‖T−1/2B∗j ‖ ≤ 2.

So indeed (4.13) is shown, and the proof of the lemma is complete. �
Corollary 4.7. For ε > 0, χ ∈ C∞(R) with χ′ ∈ C∞c (R+) and for B given as in
Lemma 4.6 we have uniformly in t, N ≥ 1

‖B[χ(r/t),
(
I + t2−2εN−1H0

)−1
]‖ ≤ Ct−ε. (4.14)
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Lemma 4.8. For any real-valued χ ∈ C∞(R) with χ′ ∈ C∞c (R+) we have uniformly
in t ≥ 1

‖〈H〉1/2[Q3, χ(r/t)]〈H〉1/2‖ ≤ C sup |χ′| t−1, (4.15a)

|〈H〉1/2[Q3,
(
χ′(r/t)pr + h.c.

)
]〈H〉1/2‖ ≤ Cχ′ t

−1/2−κ. (4.15b)

Proof. We calculate
i[H,χ(r/t)] = 1

2t
χ′(r/t)pr + h.c. (4.16)

Hence in combination with (3.8) and (4.8c)

‖〈H〉1/2[Q3, χ(r/t)]〈H〉1/2‖ ≤ C1t
−1

∫

C
‖χ′(r/t)pr〈H〉−1/2‖ 〈z〉2

| Im z|2 |dµ(z)|

≤ C2 sup |χ′| t−1

∫

C

〈z〉2
| Im z|2 |dµ(z)|

= C3 sup |χ′| t−1,

showing (4.15a).
As for (4.15b) we rewrite

2 Re pχ′ = t{(∂iχ(r/t))gijpj + p∗i g
ij(∂jχ(r/t))},

and apply Corollary 4.2 with the expression r2 replaced by 2tχ(r/t). Now we note,
cf. (1.6b), that

t∇2χ(·/t) = t−1χ′′(·/t)dr ⊗ dr + χ′(·/t)∇2r,

0 ≤ ∇2r ≤ (4r)g ≤ C1〈r〉−1/2−κg, r ≥ r0,

leading to the estimates

−C2t
−1/2−κg ≤ 2t∇2χ(·/t) ≤ C2t

−1/2−κg, t ≥ 1.

Using again (3.8) this leads to (4.15b). �
In the proof of Lemma 4.16 we need the following technical result.

Lemma 4.9. For all real-valued χ, χ̂ ∈ C∞(R) vanishing for large enough argument
and with χ′, χ̂′ ∈ C∞c (R+)

Re
(
T ∗(Re pχ̂′(r/t) − r/tχ̂′(r/t))

)
= T ∗χ̂′(r/t)(pr − r/t) +O(t−1/2−κ), (4.17)

where T = t−1Aχ(r/t)Q3.

Proof. Introducing γ = T ∗(Re pχ̂′(r/t)−r/tχ̂′(r/t)) and noting that ‖T‖ is uniformly
bounded we obtain from (1.6b) and (4.8a) that γ has the form of the right hand
side of (4.17). It remains to show that

γ∗ = γ +O(t−1/2−κ). (4.18)

For that we write
γ∗ = (Re pχ̂′)

A
t
χQ3 − (r/tχ̂′)A

t
χQ3,

and commute the four factors for each of the two terms on the right hand side.
Rearranging we then get γ plus contributions from commutators. The latter are
treated using repeatedly Corollary 4.2 and (4.16). The most difficult parts arise
from commuting the operators Re pχ̂′ or A

t
through the factors of Q3. Here we shall

only explain how to treat the first term above (the most difficult one). We have

(Re pχ̂′)
A
t
χQ3 = (Re pχ̂′)Q3

A
t
χ+ (Re pχ̂′)[

A
t
χ,Q3], (4.19)
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we represent (introducing here for convenience a suitable function χ̃ with χ̃χ = χ)

(Re pχ̂′)[
A
t
χ,Q3] =

∫

C
(Re pχ̂′)(H − z)−1

(
χ̃[H, A

t
]χ+ A

t
[H,χ]

)
(H − z)−1 dµ(z),

and then we use Corollary 4.2 and estimate inside the integral. Note the estimates,
cf. Conditions 1.2 and 1.3,

0 ≤ ∇2r2 ≤ (4r2)g ≤ C〈r〉1/2−κg, r ≥ r0. (4.20)

Since we have the factors χ̃ and χ to the left and to the right of [H, A
t
], respectively,

the Cauchy Schwarz inequality and these bounds lead to the bound O(t−1/2−κ) of
the second term to the right in (4.19).

Similarly for the first term in (4.19) we write

(Re pχ̂′)Q3
A
t
χ = Q3(Re pχ̂′)

A
t
χ+ [Re pχ̂′ , Q3]A

t
χ. (4.21)

The second term of (4.21) is O(t−1/2−κ) due to (4.15b).
Finally for the first term in (4.21) we have

Q3(Re pχ̂′)
A
t
χ = Q3χ

A
t

Re pχ̂′ +Q3χ[Re pχ̂′ ,
A
t
] +O(t−1/2−κ).

Only the middle term needs examination. We show that it is also O(t−1/2−κ) by
introducing χ̃(s) := χ̂′(s)− sχ̂′′(s) and computing the adjoint

− [Re pχ̂′ ,
A
t
]χQ3 =

(
− 2

t
[pχ̂′ , rpr] +O(t−3/2−κ)

)
χQ3

=
(

2i
t
pχ̃(r/t) +O(t−3/2−κ)

)
χQ3.

Due to (4.8c) the norm of this expression is in fact bounded by Ct−1.
�

4.3. Proof of Lemma 3.1. In this section we let 0 < µ < M < ∞, and choose
µ1,M1, δ1, Q1, Q2 as in Section 3.2.

Since e−iK(t,·)U(t) is the dilation, the following statement is obvious.

Lemma 4.10. For all u ∈ χ[µ,M ](r
2)Haux

(1−Q1)Uu = 0.

This lemma can be proved also by the (somewhat formal) equation

DGQ1Paux = 0. (4.22)

The equation (4.22) is obtained by a direct computation.

Lemma 4.11. For all u ∈ χ[µ,M ](r
2)Haux

lim
t→∞
〈Uu, (I −Q2

2)Uu〉 = 0. (4.23)

Proof. Fix δ̄ ∈ (δ1, δ) with δ̄ < 2κ, and fix u ∈ χ[µ,M ](r
2)Haux ∩ C∞(M) (by density

(4.23) for any such state suffices). Set for N ≥ 1

TN = TN(t) = I + t1+δ̄N−1W (t),

and note that
e−iKTNeiK = I + t1+δ̄N−1H0. (4.24)

We need to show that with N(t) := tδ̄−δ1

lim
t→∞
〈Uu,

(
I − T−1

N(t)

)
Uu〉 = 0.



26 K. ITO AND E. SKIBSTED

It suffices to show that there exists R(t) ∈ B(H) such that
∫ ∞

t0

|〈U(t)u,R(t)U(t)u〉| dt = o(t00) uniformly in N ≥ 1, (4.25a)

d
dt
〈U(t)u, (I − T−1

N (t))U(t)u〉 ≤ 〈U(t)u,R(t)U(t)u〉. (4.25b)

In fact from (4.25a) and (4.25b) it follows that for any ε > 0 there exists t0 ≥ 1
such that for all t ≥ t0 and N ≥ 1

〈U(t)u, (I − T−1
N (t))U(t)u〉 ≤ 〈U(t0)u, (I − T−1

N (t0))U(t0)u〉+ ε.

Then for all N ≥ 1 large enough we have for all t ≥ t0

0 ≤ 〈U(t)u, (I − T−1
N )U(t)u〉 ≤ 2ε.

In particular we can take N = tδ̄−δ1 , and indeed we obtain that

0 ≤ 〈U(t)u, (I − T−1
N(t))U(t)u〉 ≤ 2ε for all sufficiently large t.

Hence we only need to prove (4.25a) and (4.25b). We have

d
dt
U∗(1− T−1

N )U = U∗(−DGT
−1
N )U = U∗T−1

N (DH0TN − i[α, TN ])T−1
N U. (4.26)

By Corollary 4.3 (in combination with an approximation argument), (1.3) and the
Cauchy Schwarz inequality it follows for r1 > r0

DH0TN ≤ Ctδ̄N−1(pi − ∂iK)∗χ−,r0,r1(r)g
ij(pj − ∂jK) + 2

δ−δ̄ t
2+δ̄N−1|γ̃|2

Since suppχ−,r0,r1 ⊂ (−∞, r1], we obtain by using (4.24) and Lemma 4.6

tδ̄N−1‖Q∗1T−1
N (pi − ∂iK)∗χ−,r0,r1(r)g

ij(pj − ∂jK)T−1
N Q1‖

≤ Ct−2 uniformly in N ≥ 1.
(4.27)

We claim

t2+δ̄N−1‖Q∗1T−1
N |γ̃|2T−1

N Q1‖ ≤ Ct−1+δ̄−2κ uniformly in N ≥ 1. (4.28)

Choose 0 < µ3 < µ2 < µ1 (with µ1 as given). Due to (1.6a) obviously

t2+δ̄N−1‖χµ3,µ2,+(r2/t2)|γ̃|2‖ ≤ Ct−1+δ̄−2κ uniformly in N ≥ 1, (4.29a)

which is agreeable with (4.28). On the other hand due to (1.6a), (4.24) and Lemma 4.6
(used with 2ε = 1− δ̄ there) we can estimate

t2+δ̄N−1‖Q∗1T−1
N χ−,µ3,µ2(r

2/t2)|γ̃|2T−1
N Q1‖ ≤ Ct−2 uniformly in N ≥ 1, (4.29b)

which also agrees with (4.28). Using the bound |dα| ≤ Ct−2, cf. (3.2), we obtain
for the second term in (4.26)

‖T−1
N i[α, TN ])T−1

N ‖ ≤ Ct−3/2+δ̄/2 uniformly in N ≥ 1. (4.30)

The combination of the bounds (4.29a) and (4.29b) implies (4.28) and therefore,
together with (4.27) and (4.30), also (4.25a) and (4.25b). �

Proof of Lemma 3.1. Consider the operator Qf given by (3.4). The property i) of
Lemma 3.1 for this operator follows from Lemmas 4.10 and 4.11. By mimicking the
proof of Lemma 4.11 we obtain the property ii) for any δ′ ≤ 2κ − δ1. Finally the
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property (W (t) + V + α(t))Qf(t) ∈ OB(H)(t
−1−δ′) of iii), here possibly δ′ > 0 taken

smaller, is proved by first computing

(W + V + α)Qf

= t−1−δ1Q1(t1+δ1WQ2)Q2Q1 + [W,Q1]Q2
2Q1 + t−1−η(t1+ηV Q1)Q2

2Q1 + αQf .

The first, third and fourth terms agree with iii). As for the second term we compute

[W,Q1] = −iχ′µ1,µ,M,M1

(
r2/t2

)
r
t2

(∂ir)g
ij(pj − ∂jK)− h.c.

Whence we can write

[W,Q1]Q2 = eiK
(
(−it−1χ(r/t)pr − h.c.)(I + t1+δ1H0)−1/2

)
e−iK

with χ(s) = sχ′µ1,µ,M,M1
(s2). By using this identity, Lemma 4.4 and (1.6b) we obtain

‖[W,Q1]Q2‖2 ≤ C
(
t−3−δ1 + t−3−2κ

)
. �

4.4. Preliminary localization for perturbed dynamics. In this subsection we
first study various preliminary localization properties of the perturbed dynamics.
We prove maximal and minimal velocity bounds and in particular the properties
(3.6a)–(3.6c). Similar properties were also used in the proof of Lemma 3.1, cf.
Lemma 4.10. However the proofs for the perturbed dynamics are somewhat techni-
cal. Since all we need from this subsection for the proof of Lemma 3.2 is in fact the
properties (3.6a)–(3.6c) the reader might prefer to read the next subsection (pre-
senting a proof of Lemma 3.2 along the lines of the proof of Lemma 3.1) before
coming back to the present one. The subsection depends on [Gr, SS] although the
presentation is self-contained.

Let E ∈ (0,∞) and we fix Q∗ and the parameters E∗, δ∗ as in Section 3.2. The
small parameter e > 0 will be determined in this section. Possibly we will retake it
smaller each time it appears. The following type of result is called a Mourre estimate
in the literature since the appearance of such estimate in the seminal work [Mo].
The reader should keep in mind though that the commutator in Corollary 4.2 does
not conform with the conditions of [Mo] since under our conditions it might not be
bounded relative to H (not even in the form sense). At this point we remark that
Donnelly [Do] indeed uses Mourre theory under his geometric conditions. In fact our
conditions do not conform neither with more recent refinement of Mourre theory as
a method to provide the limiting absorption principle [MS, GGM, FMS]. However
as the reader will see we are not going to use this theory, or more generally limiting
absorption bounds, only the following reminiscence.

Lemma 4.12. For e > 0 sufficiently small and as a form estimate on C∞c (M)

i[H,A] ≥ 2(1 + δ1)E − C(I −Q3)(Hr1 + 1)(I −Q3). (4.31)

Proof. Fix ε > 0 such that δ1 < δ − 3ε. By (1.3) and (4.2)

i[H,A] ≥ 2(1 + δ − ε)H0 − CHr1 + γε = 2(1 + δ − ε)H − CHr1 + o(〈r〉0)

≥ 2(1 + δ − 2ε)Q3HQ3 − C1(ε)(I −Q3)(Hr1 + 1)(I −Q3) +K;

K = Q3{−CHr1 + o(〈r〉0)}Q3.
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Since K is compact and E 6∈ σpp(H), we can make ‖K‖B(H) arbitrary small by
letting e > 0 small. Hence if e > 0 is sufficiently small we obtain

i[H,A] ≥ 2(1 + δ − 3ε)(E − 2e)− C2(ε)(I −Q3)(Hr1 + 1)(I −Q3)

≥ 2(1 + δ1)E − C2(ε)(I −Q3)(Hr1 + 1)(I −Q3). �
The following type of result is called a maximal velocity bound in the literature.

We shall present a somewhat different proof than seen in for example [CHS1, Gr].
It is more in the spirit of the proof of Lemma 4.11.

Lemma 4.13. If e > 0 is sufficiently small, then for any u ∈ χ[E−e,E+e](H)H
lim
t→∞
〈e−itHu, (I −Q4)e−itHu〉 = 0.

Proof. Step 1. Set χ = χ−,N,2N . We first prove

lim
N→∞

lim sup
t≥1

〈e−itHu,
(
I − χ

(
r2/t2

))
e−itHu〉 = 0. (4.32)

For that it suffices to show that there exist δ′ > 0 and R ∈ B(H) such that

‖R‖ ≤ Ct−1−δ′ uniformly in N ≥ 1, (4.33a)
d
dt
〈e−itHu,

(
I − χ

(
r2/t2

))
e−itHu〉 ≤ 〈u,Ru〉. (4.33b)

We calculate, cf. (1.13) and (4.16),

DHχ(r2/t2) =

{
r
t2
χ′(r2/t2)(pr − r/t) + h.c.

r
t2
χ′(r2/t2)(∇r)igij(p−∇K)j + h.c.

. (4.34)

We will now use the first identity in (4.34). (For the second identity we use implicitly

that t is large.) Clearly there is here the positive term −2 r
2

t3
χ′(r2/t2) which for t

large is equal to 2 r
t2
χ̃2(r/t) where χ̃(s) =

√
−|s|χ′(s2). The remaining term is

symmetrized as
r
t2
χ′(r2/t2)pr + h.c. = −t−1χ̃(r/t)(pr + p∗r)χ̃(r/t). (4.35)

Next we use (4.8c) with χ = 1

‖prQ3‖, ‖Q3p
∗
r‖ ≤ C =

√
2‖Q3H0Q3‖,

yielding the lower bound

r
t2
χ′(r2/t2)(pr − r/t) + h.c. ≥2(

√
N − C)t−1χ̃2(r/t)

− t−1χ̃(r/t)
(
pr(I −Q3) + (I −Q3)p∗r

)
χ̃(r/t).

Due to Lemma 4.8 the second term to the right contributes to (4.33b) by a term
whose norm is bounded by CN−1t−2. Whence for N ≥ C2 indeed we obtain (4.33a)
and (4.33b) with δ′ = 1.

Due to Step 1 it suffices to show that for any fixed N

lim
t→∞
〈e−itHu, ψ

(
r2/t2

)
e−itHu〉 = 0, (4.36)

where ψ = χ2E1,2E2,N,2N . For that we need two more steps.

Step 2. We prove that∫ ∞

1

〈e−itHu, ψ
(
r2/t2

)
e−itHu〉 t−1dt <∞. (4.37)
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Put

χ(s) =

∫ s

−∞
ψ(β2) dβ,

and compute, cf. (4.16), (4.34) and (4.35),
d
dt

eitHχ(r/t)e−itH

= 1
2t

eitHψ
(
r2/t2

)1/2(
(pr − r/t) + h.c.

)
ψ
(
r2/t2

)1/2
e−itH

≤ 1
t
eitHψ

(
r2/t2

)1/2(
Re pr −

√
2E1

)
ψ
(
r2/t2

)1/2
e−itH .

Next to treat the contribution from Re pr we proceed again as in Step 1 inserting
factors of Q3, and using (in the first estimation) that by (4.8c)

Re pr ≤ ε/2 + ε−1H0 for all ε > 0,

1
t
eitHψ

(
r2/t2

)1/2
Re prψ

(
r2/t2

)1/2
e−itH

= 1
t
eitHψ

(
r2/t2

)1/2
Q3 Re prQ3ψ

(
r2/t2

)1/2
e−itH + remainder

≤ 1
t
eitHψ

(
r2/t2

)1/2
Q3

(
ε/2 + ε−1(H − V )

)
Q3ψ

(
r2/t2

)1/2
e−itH + remainder

≤ 1
t
eitHψ

(
r2/t2

)1/2
Q3

(
ε/2 + ε−1(E + 2e− V )

)
Q3ψ

(
r2/t2

)1/2
e−itH + remainder

≤ 1
t

(
ε/2 + ε−1(E + 2e)

)
eitHψ

(
r2/t2

)
e−itH + remainder.

The remainders are treated by Lemma 4.8 and Condition 1.4. They have norms
bounded by Ct−2. Taking ε =

√
2(E + e) we thus obtain

d
dt
χ[E−e,E+e](H)eitHχ(r/t)e−itHχ[E−e,E+e](H)

≤ − c
t
χ[E−e,E+e](H)eitHψ

(
r2/t2

)
e−itHχ[E−e,E+e](H) +O(t−2);

c =
√

2E1 −
√

2(E + 2e).

For e > 0 small enough the constant c > 0. Then (4.37) follows by integration and
by using that χ is bounded.

Step 3. We prove (4.36). By (4.37) there exists a sequence tn →∞ such that

〈e−itnHu, ψ
(
r2/t2n

)
e−itnHu〉 → 0.

Thus it suffices to show that∫ ∞

1

∣∣ d
dt
〈e−itHu, ψ

(
r2/t2

)
e−itHu〉

∣∣ dt <∞. (4.38)

But by calculations and estimations like in Step 2 we obtain that∣∣ d
dt
〈e−itHu, ψ

(
r2/t2

)
e−itHu〉

∣∣ ≤ C
t
〈e−itHu, |ψ′

(
r2/t2

)
|e−itHu〉+ C

t2
‖u‖2. (4.39)

We fix a non-negative function ψ̃ ∈ C∞c ((E + E1,∞)) with ψ̃ψ′ = ψ′. By using

Step 2 to this function (instead of ψ) we obtain (4.37) with ψ replaced ψ̃ (possibly
by taking e > 0 smaller). Combining this bound with (4.39) we obtain (4.38), and
hence the lemma follows. �
Corollary 4.14. For all u ∈ χ[E−e,E+e](H)H with e > 0 taken sufficiently small the
bound (3.6b) holds.

Next we shall show a version of the key phase space propagation estimate of
[Gr, SS] using here the quantities enlisted before (3.6a)–(3.6c).
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Lemma 4.15. For all u ∈ χ[E−e,E+e](H)H and χ ∈ C∞c (R+):

∫ ∞

1

〈χ(r/t)e−itHu,W 1/2χ(r/t)e−itHu〉t−1dt <∞. (4.40)

Proof. Let u ∈ χe(H)H. Here and henceforth we abbreviate χe(H) = χ[E−e,E+e](H).
Let χ ∈ C∞c (R+) and choose χ̂ ∈ C∞c (R+) with χ̂ = 1 on the support of χ. Possibly
by enlarging E1 < E2 we can assume that χ̂(r/t) = χ̂(r/t)Q4. We are going to use
the conclusion of Corollary 4.14 for this Q4. Note here that such “enlargement” is
doable uniformly in the small parameter e > 0.
Step 1. We show that for any ε ∈ (0, 1)

∫ ∞

1

|〈(pi − ∂iK)Q4e−itHu, f ′(t2ε−2r2)(∇2r2)ij(pj − ∂jK)Q4e−itHu〉|t−1dt <∞.
(4.41)

We shall use the family of observables χe(H)Q4G̃Q4χe(H). Clearly this family is
bounded. We calculate the Heisenberg derivative. For the leading term coming from
the derivative of G̃ we invoke Lemmas 4.5 and 4.8 yielding

χe(H)Q4(DHG̃)Q4χe(H)

≥ 1
2t
χe(H)Q4(pi − ∂iK)∗f ′(·)(∇2r2)ij(pj − ∂jK)Q4χe(H) +O(t−ε

′−1).

Combining this estimate with

∫ ∞

1

|Re〈(DHQ4)e−itHu, G̃Q4e−itHu〉|dt <∞, (4.42)

we obtain (4.41) by integration. In turn (4.42) follows using first that

χe(H)(DHQ4)G̃Q4χe(H) + h.c.

= χe(H) Re
(
(DHQ

2
4)G̃
)
χe(H) +O(t−2),

and then invoking (4.34) and Lemma 4.8 to rewrite the first term as

χe(H) Re
(
(DHQ

2
4)G̃
)
χe(H) = t−1χe(H) Re

(
χ̃′(r/t)B

)
χe(H) +O(t−3/2−κ)

with χ̃(s) = χ2
−,2E1,2E2

(s2) and B = B(t) being uniformly bounded. Using (4.15a)
again we also conclude that

−Re
(
χ̃′(·)B

)
=
√
|χ̃′|(·) Re(B)

√
|χ̃′|(·) +O(t−1). (4.43)

Whence the contribution from the first term in (4.43) can be treated by using (3.6b)
while the contribution from the second term as well as previous error terms clearly
are integrable.
Step 2. We show (4.40). From (4.41) we can deduce the estimate

∫ ∞

1

〈χ(r/t)e−itHu,Wχ(r/t)e−itHu〉t−1dt <∞. (4.44)
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This estimate also holds with χ→ χ̂. The proof goes as follows: First we estimate
(using commutation)

‖
√
Wχ(r/t)e−itHu‖2

= ‖
√
Wχ(r/t)Q4e−itHu‖2

≤ 〈(pi − ∂iK)Q4e−itHu, χ(r/t)2gij(pj − ∂jK)Q4e−itHu〉+ Ct−1‖u‖2

≤
(

sup |χ|2
)
‖f ′(t2ε−2r2)1/2(p−∇K)Q4e−itHu‖2 + t−1C‖u‖2.

Due to Condition 1.2 and (4.41) we have for a large t0 ≥ 1
∫ ∞

1

‖f ′(t2ε−2r2)1/2(p−∇K)Q4e−itHu‖2t−1 dt

≤
∫ t0

1

‖f ′(t2ε−2r2)1/2(p−∇K)Q4e−itHu‖2t−1 dt

+ (1 + δ)−1

∫ ∞

t0

〈
(pi − ∂iK)Q4e−itHu,

f ′(t2ε−2r2)(∇2r2)ij(pj − ∂jK)Q4e−itHu
〉
t−1dt

<∞,
showing then (4.44).

Consider now the uniformly bounded observables (cf. (4.50) given below)

B∗
√
W + t−σB; B := χ(r/t)χe(H) and σ ∈ (0, 2).

We use (3.9) to write

√
W + t−σ = π−1

∫ ∞

0

s−1/2(W + t−σ + s)−1(W + t−σ)ds, (4.45)

and then in turn calculate

DH0

√
W + t−σ = π−1

∫ ∞

0

s1/2(W + t−σ +s)−1
(
(DH0W )−σt−σ−1

)
(W + t−σ +s)−1ds.

Next we apply Corollary 4.3 and use the Cauchy Schwarz inequality as in the proof
of Lemma 4.11. This leads to the following bound for any r1 > r0 and suitable
constants c, C > 0:

B∗
(

DH0

√
W + t−σ

)
B

≤ − c
t
B∗W 1/2B + C

t

∫ ∞

0

s1/2B∗(W + t−σ + s)−1

[
(pi − ∂iK)∗χ−,r0,r1(r)g

ij(pj − ∂jK) + t2|γ̃|2
]
(W + t−σ + s)−1B ds.

(4.46)

Next we note that (minus) the integral of the first term is the quantity that en-
ters in (4.40), so it suffices to show that the contribution from the second term is
integrable as well as to show the bounds

∫ ∞

1

‖B∗V
√
W + t−σB‖ dt <∞, (4.47a)

∫ ∞

1

|〈(DH0χ(r/t))e−itHu,
√
W + t−σχ(r/t)e−itHu〉| dt <∞. (4.47b)



32 K. ITO AND E. SKIBSTED

As for the contribution from the second term in the square bracket in (4.46) we
estimate using Lemma 4.6 with d > c > 0 chosen to the left of the support of χ,
ε > 0 such that 2− 2ε = σ and N = N(s, t) ≥ 1 such that Nt−σ = t−σ + s

∫ ∞

0

s1/2‖B∗(W + t−σ + s)−1t2|γ̃|2χ−,c,d(r/t)(W + t−σ + s)−1B‖ ds

≤ Cnt
−εn
∫ ∞

0

s1/2(t−σ + s)−2 ds

= C̃nt
σ/2−εn,

(4.48)

Choosing n ∈ N large enough gives integrability in t of this contribution. Similarly∫ ∞

0

s1/2‖B∗(W + t−σ + s)−1t2|γ̃|2χc,d,+(r/t)(W + t−σ + s)−1B‖ ds

≤ Ct−1−2κ

∫ ∞

0

s1/2(t−σ + s)−2 ds

= C̃tσ/2−1−2κ,

yielding integrability in t of this contribution. As for the contribution from the first
term in the square bracket in (4.46) we decompose

(pi − ∂iK)∗χ−,r0,r1(r)g
ij(pj − ∂jK) = 2Wχ−,r0,r1(r) + i(pi − ∂iK)∗gij(∂jr)χ

′
−,r0,r1(r).

In combination with the factor (W+t−σ+s)−1 to the left we thus obtain the uniform
bound

(W + t−σ + s)−1(pi − ∂iK)∗χ−,r0,r1(r)g
ij(pj − ∂jK)

= OB(H)(1)χ−,r0,r1(r) +OB(H)

(
(t−σ + s)−1/2

)
χ′−,r0,r1(r).

Next we note that it suffices to consider integrability in t ∈ [t0,∞) for any sufficiently
large t0 ≥ 1 (rather than in t ∈ [1,∞)). We pick t0 such that we can freely insert
the above factor χ−,c,d(r/t) to the right (for example t0 = max(r1/c, 1)). Once this
factor is inserted we invoke again Lemma 4.6 with ε and N chosen as above. We
thus obtain for any n ≥ 0

‖χ−,c,d(r/t)(W + t−σ + s)−1B‖ ≤ Cnt
−n(t−σ + s)−n/2−1,

and to conclude we need to estimate (for some n)
∫ ∞

t0

dt

∫ ∞

0

s1/2t−n−1+σ/2(t−σ + s)−n/2−1 ds <∞. (4.49)

Indeed (4.49) is true for any n > 1.
So we are left with proving (4.47a) and (4.47b). As for (4.47a) we note that

‖B∗V ‖ = O(t−1−η), hence integrable, and that

‖
√
W + t−σB‖2 ≤ ‖B∗WB‖+ C1 ≤ ‖B∗

(
2H0 + |∇K|2

)
B‖+ C1

≤ 2‖B∗HB‖+ C2 ≤ C3,
(4.50)

where we in the last step used Lemma 4.8.
As for (4.47b) we write

DH0χ(r/t) = t−1 Re γ; γ := χ′(r/t)(pr − r/t).
We have, cf. (1.6b) and (4.8a),

Re γ = γ +O(t−1/2−κ).
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Whence using the Cauchy Schwarz inequality we can estimate

|〈(DH0χ(r/t))e−itHu,
√
W + t−σχ(r/t)e−itHu〉|

≤ t−1
(
‖γe−itHu‖+ Ct−1/2−κ‖u‖

)
‖
√
W + t−σBe−itHu‖

≤ C1t
−1
(
‖
√
Wχ̂(r/t)e−itHu‖+ t−1/2−κ

)
‖
√
W + t−σBe−itHu‖

≤ C1t
−1‖
√
Wχ̂(r/t)e−itHu‖ × ‖

√
W + t−σBe−itHu‖+ C2t

−3/2−κ

≤ C1

2t

(
‖
√
Wχ̂(r/t)e−itHu‖2 + ‖

√
WBe−itHu‖2

)
+ C3t

−1−σ + C2t
−3/2−κ.

It remains to apply the bound (4.44) with χ as well as with χ→ χ̂. �
The following type of result is called a minimal velocity bound in the literature.

Lemma 4.16. For all u ∈ χ[E−e,E+e](H)H with e > 0 taken sufficiently small the
bound (3.6c) holds.

Proof. Let χ ∈ C∞(R) be given such that χ′ ∈ C∞c (R+) and such that the number√
(1 + δ2)2E/2 is to the right of the support of χ. Then we shall show that

∫ ∞

1

‖χ(r/t)e−itHu‖2t−1dt <∞, (4.51)

showing in particular (3.6c).
Consider the following uniformly bounded observables

t−1B∗AB; B := χ(r/t)χe(H) and A is given by (1.8c).

Due to Lemmas 4.8 and 4.12, for all sufficiently small e > 0

t−1B∗(DHA)B ≥ 2(1 + δ1)Et−1B∗B +O(t−3).

Next, using this bound, Lemma 4.8 again and an estimation of the momentum in
terms of the energy as in the proof of Lemma 4.13, we deduce

B∗(DH
A
t
)B = t−1B∗(DHA)B − t−2B∗AB ≥ ct−1B∗B +O(t−2);

c = 2
(

(1 + δ1)− (1 + δ2)
√

1 + 2e/E
)
E.

Here c > 0 for e > 0 small enough.
To complete the proof of the lemma it suffices to bound∫ ∞

1

|Re〈(DH0χ(r/t))e−itHu,Aχ(r/t)e−itHu〉| t−1dt <∞. (4.52)

For that we also introduce T := t−1Aχ(r/t)Q3 and use (4.16), Lemma 4.8 and
notation of Lemma 4.4 to write, with χ̂ ∈ C∞c (R+) chosen such that χ̂ = 1 on the
support of χ,

〈(DH0χ(r/t))e−itHu,Aχ(r/t)e−itHu〉
= 〈(Re pχ′(r/t) − r/tχ′(r/t))χ̂(r/t)e−itHu, T χ̂(r/t)e−itHu〉+O(t−1/2−κ).

Although it is here legitimate to replace Re pχ′ by pχ′ and A by (∂ir
2)gijpj it is

preferable to keep the symmetrized form. First we note that the energy localization
(implemented by the appearance of the factor Q3) makes ‖T‖ uniformly bounded.
We claim that for any σ ∈ (0, 1 + 2κ] also the operators

S := (W + t−σ)−1/4 Re
(
T ∗(Re pχ′ − r/tχ′)

)
(W + t−σ)−1/4



34 K. ITO AND E. SKIBSTED

have uniformly bounded norm. Given this property we can bound the integral (4.52)
by ∫ ∞

1

|〈(W + t−σ)1/4χ̂(r/t)e−itHu, S(W + t−σ)1/4χ̂(r/t)e−itHu〉| t−1dt+ C,

and we conclude by invoking Lemma 4.15. To bound S we note that interpolation
yields

‖S‖ ≤ ‖Re
(
T ∗(Re pχ′ − r/tχ′)

)
(W + t−σ)−1/2‖,

and due to Lemma 4.9 we can write

Re
(
T ∗(Re pχ′ − r/tχ′)

)
= T ∗χ′(r/t)(pr − r/t) +O(t−1/2−κ).

Whence, using here also (4.8c), it follows that

‖S‖ ≤ ‖T ∗‖ × ‖χ′(r/t)(pr − r/t)(W + t−σ)−1/2‖+ C1t
σ/2−1/2−κ ≤ C2. �

Corollary 4.17. For all u ∈ χ[E−e,E+e](H)H with e > 0 taken sufficiently small
(3.6a) holds.

Proof. We use Lemma 4.13, Corollary 4.14, (4.51) and the subsequence argument
in Step 3 in the proof of Lemma 4.13. Indeed there exists a sequence tn →∞ such
that

lim
n→∞

q(tn) = 0; q(t) := 〈e−itHu, (I −Q3Q4Q
2
5Q4Q3)e−itHu〉,

and the time-derivative of q is integrable due to Corollary 4.14 and (4.51). �
4.5. Proof of Lemma 3.2. We prove Lemma 3.2 alone the line of the proof of
Lemma 3.1 using the properties (3.6a)–(3.6c). So let Qp be the operator defined
by (3.5), and let e > 0 be small enough. Then the property i) follows by mimicking
the proof of Lemma 4.11 using (3.6a)–(3.6c). This amounts to showing for u ∈
χ[E−e,E+e](H)H and for the same quantity TN = TN(t) as before the existence of
R = R(t) ∈ B(H) such that∫ ∞

t0

|〈e−itHu,Re−itHu〉| dt = o(t00) uniformly in N ≥ 1, (4.53a)

d
dt
〈e−itHu,Q4Q5(I − T−1

N )Q5Q4e−itHu〉 ≤ 〈e−itHu,Re−itHu〉. (4.53b)

We compute the derivative in (4.53b). The contribution from DHT
−1
N = DH0T

−1
N +

i[V, T−1
N ] is treated as before (note the trivial bound Q5i[V, T−1

N ]Q5 = O(t−1−η)). It
remains to consider the contribution

2 Re〈eitHu,
(
DHQ4Q5

)
(I − T−1

N (t))Q5Q4e−itHu〉.
For that we compute DHQ4Q5 = (DHQ4)Q5 + Q4DHQ5, invoke (4.34) and Lem-
mas 4.4 and 4.8, and use (3.6b) and (3.6c) to treat the contributions from DHQ4

and DHQ5, respectively. Note that here the implementation of (3.6b) and (3.6c)
requires symmetrization. For that part we use also Corollary 4.7.

As for the property ii) we use again use the proof of Lemma 4.11. The contri-
bution from DHT

−1
N(t) = DH0T

−1
N(t) + i[V, T−1

N(t)] does not need elaboration. As for the

contribution from DHQ4Q5 we compute as above using (4.34). We claim that this
contribution indeed is O(t−1−δ′) for δ′ ≤ (1 + δ1)/2, as may be seen by using the
localization provided by the factor Q2

6. Indeed due to Lemma 4.4 we can bound for
any χ ∈ C∞c (R+)

‖
(
χ(r/t)(pr − r/t) + h.c.

)
Q2

6‖ ≤ Ct−1/2−δ1/2.
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The property iii) is proved by commuting as in the proof of Lemma 3.1 iii). Thus
the lemma is proved.
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