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Abstract

This paper presents a new local volume estimator, the spatial rotator, which is
based on measurements on a virtual 3D probe. The basic design of the probe
builds upon the rotator principle which requires only a few manual intersection
markings and thus the spatial rotator is fast to use. Since a 3D probe is involved
it is expected that the spatial rotator is more efficient than the traditional local
volume estimators, the nucleator and the planar rotator, which are based on
measurements in a single plane. An extensive simulation study shows that
the spatial rotator may be a factor 10 more efficient than the traditional local
volume estimators. Furthermore, the spatial rotator can be seen as a derivative
of the Cavalieri estimator which does not require randomization of sectioning
or viewing direction. The tissue may thus be sectioned in any arbtrary direction
where it is easy to identify the specific tissue region under study. In order to
use the spatial rotator in practice, however, it is necessary to be able to identify
intersection points between cell boundaries and test rays in a series of parallel
focal planes, also at the peripheral parts of the cell boundaries. Under- and
over-projection phenomena should therefore be negligible or corrected for if
the spatial rotator is to be applied.

Keywords: Cavalieri, local stereology, particle volume, rotator, virtual probe

1 Introduction

It was a major breakthrough in stereology when the local volume estimators: the
nucleator (Gundersen, 1988) and the planar rotator (Jensen and Gundersen, 1993),
were invented. Dozens of bioscience studies have subsequently been published, using
these methods. A few examples are Andersen et al. (2003), Hundahl et al. (2006)
and Hosseini-Sharifabad and Nyengaard (2007).

Corresponding author: A. Rasmusson, alrasQcs.au.dk



The local volume estimators are typically used in light microscopy of transparent
biological tissue where it is possible to place the focal plane at different depths within
thick tissue sections (> 20m). The first step is to use the optical disector (Sterio,
1984; Gundersen, 1986) for number-weighted sampling of particles. The second step
is to estimate the volume of each sampled particle, using measurements on a local
probe that passes through a unique point of the particle. The vast majority of
currently developed probes have been designed such that they are contained in the
focal plane passing through the unique point of the sampled particle.

This is also true for the recent pivotal estimators based on the invariator princi-
ple, see Cruz-Orive (2008) and the accompanying papers Cruz-Orive (2009) and Cruz-
Orive et al. (2010). Unfortunately this ignores the 3D information about the par-
ticles, available in thick tissue sections. This observation was the background for
the development of the optical rotator in Tandrup et al. (1997). Here, the available
3D information was utilized in a probe, consisting of test lines in several planes at
different optical depths in relation to the sampled particle. Unfortunately, the extra
manual workload of marking intersection points with more test lines made it too
time consuming and it has thus rarely been used in practice. However, it did show
that it is beneficial to use extra information from the entire particle.

The main challenge for the practical implementation of the local volume estima-
tors is that they require generation of isotropic random test lines which can be done
either via vertical sections (Baddeley et al., 1986) or isotropic sections (Mattfeldt
et al., 1985; Nyengaard and Gundersen, 1992). The use of vertical and isotropic sec-
tions in brain tissue, other complex tissues and archival tissue may not be possible
or practical due to the loss of orientation and identification of specific tissue regions.

There is therefore a need for developing a local volume estimator which does not
require vertical or isotropic sections. The spatial rotator, developed in the present
paper, is based upon the idea of avoiding vertical or isotropic sections and to utilize
the extra 3D information available in the thick sections.

The composition of the paper is as follows. In Section 2, the estimation principle
of the spatial rotator is described and the statistical properties of the spatial rotator
are discussed. Section 3 contains a thorough simulation study while various aspects of
the practical implementation of the spatial rotator are studied in Section 4. Section 5
contains a discussion. The derivation of the estimation principle of the spatial rotator
is deferred to an Appendix.

2 The spatial rotator

2.1 Estimation principle

The spatial rotator is a design-based method to estimate the volume of a particle
from measurements on systematic test rays. These test rays are perpendicular to an
axis chosen in advance, the so-called local arbitrary vertical axis (LAVA). In this sub-
section, we introduce the theoretical sampling principle; possible implementations
are described later.

e First, a LAVA through or close to the particle is chosen, and the endpoints



of the projection of the particle onto the LAVA are determined. One of the
endpoints serves as reference point for the test rays later. Let Ly..; be the
projection length.

e Next, n test rays, perpendicular to the LAVA, are systematic uniform randomly
sampled (SURS) by sampling their starting points SURS on the LAVA and
their directions SURS on [0, 27], see Figure 1. The starting point of the ith ray
is given by its distance p; to the reference endpoint of the LAVA. The position
p1 of the first ray is drawn uniform randomly in the interval [0,d], where
d = Lyyoj/n. For the remaining test rays, p; = p1 + (¢ — 1)d. Since the test rays
are perpendicular to the (vertical) LAVA, their directions are determined by
planar angles to some given horizontal reference axis. The angle «; specifying
the direction of the first test ray is drawn uniform randomly in [0,9] where
¥ = 2m/n. The direction of the ith test ray is given by o; = oy + (i — 1)9.

e Finally, on each test ray, the distances from the LAVA to the intersection
points with the particle are measured. Let /;; denote the k-th intersection
distance on the i-th ray, starting with the longest (i.e., £;; > £;5...). Calculate
the so-called squared ray distance

G= G (-1 (2.1)
k

and obtain the volume estimator by adding the results for all test rays and
scaling with m and the distance d between test rays:

V=dr) £ (2.2)
=1

Note that the squared ray distance in Gundersen (1988) or Jensen and
Gundersen (1993) has a different form since there the £;’s were numbered
starting with the smallest distance.

2.2 Relation to the Cavalieri estimator

The spatial rotator can be seen as a derivative of the Cavalieri estimator, cf. Baddeley
and Jensen (2005, pp. 155-158) and references therein. The Cavalieri estimator
uses profile areas measured on an exhaustive stack of n serial parallel sections with
uniform random position. Let A; denote the area of the particle profile on the i-th
section, and let d be the distance between sections, then

VCaval =d Z Az (23)

=1

is an unbiased estimator for the particle volume. This still holds true if the area
A; is replaced by an unbiased estimator A; of A;. Often, the area is estimated by
counting points on a test grid or measuring intersections with parallel lines (Bad-
deley and Jensen, 2005, pp. 158-162). The spatial rotator can be considered as a
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Figure 1: Particle with spatial rotator probe, consisting of n = 4 systematic test rays
perpendicular to the local arbitrary vertical axis (LAVA). In this example, the third ray
(counted from below) intersects the particle three times while the other rays only intersect
once.

Cavalieri estimator using another method to estimate planar areas, the two dimen-
sional nucleator, see Gundersen (1988) and Jensen (1998, pp. 95-96). This is a local
stereological estimator based on measuring intersection distances of test rays that
emanate from a fixed point. It has the form

~

where (2 is calculated following (2.1). Systematic sampling of section planes for
Cavalieri volume estimation and of the test ray positions for the spatial rotator cor-
respond to each other, since every ray is contained in a unique plane perpendicular
to the LAVA, as illustrated in Figure 2. Thus, the spatial rotator can be interpreted
as a Cavalieri estimator, where the individual estimators 1211, 1212, ... of the intersec-
tion areas are not independent, but linked to each other by the systematic sampling
of the test ray directions.

2.3 Statistical properties

Unbiasedness of the spatial rotator follows directly from the interpretation as a
derivative of the Cavalieri estimator and from the unbiasedness of the two dimen-



Figure 2: Particle intersected with n = 4 parallel planes perpendicular to the LAVA
depicted in Figure 1. Section profiles are drawn together with the test rays of the corre-
sponding spatial rotator.

sional nucleator. We have

~B(43°A) = E Vi

where A; is the area of the particle profile on a section perpendicular to the LAVA,
with distance p; = p; + (i — 1)d to the reference point on the LAVA.

The estimation variance depends on the particle shape, the position and direction
of the LAVA, and on the number n of test lines. Consider a given particle and a
given LAVA and fix n. Then the estimate 1 depends on the starting point p; and
on the starting angle a4, and the variance can be decomposed as follows:

VarV = Var(E(V | p1)) + E Var(V | p1)
= Var(Veaval) + E Var(V | py). (2.5)

We vyill call the first term, Var(VCaval), the Cawvalieri variance in the following.
Var(Veava) depends on the shape of the particle and has been the subject of many
thorough studies, cf. Baddeley and Jensen (2005, Chapter 13) and references therein.
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Figure 3: A rotus can be generated by rotating a circle with radius b > 0 around a fixed
axis a distance f-b from this axis where f > —1. For f > 1, an ordinary torus is obtained.

The second term is the variance due to the randomization of ;. Writing Aio; =
> A; for the total area of section profiles of the particle with the stack of serial
Cavalieri sections, we may interpret Var(V |p1)/d? as the variance of estimating
Ator with an estimator related to the two dimensional nucleator, using a system of
n test rays. We will therefore refer to E Var(V |p;) as the nucleator variance. The
nucleator variance depends on the shape of the profiles and on the position of the
starting point of the test rays on the Cavalieri sections, i.e. the trace of the LAVA,
with respect to the profiles. The variance is minimized if this point lies centrally
in the profiles, as illustrated in Gundersen (1988, Figure 5). In practice this will
hardly be fulfilled, in particular not for non-convex particles as the example shown
in Figure 1.

3 Simulation study

In this section we study by simulation how the efficiency of the spatial rotator is
affected by the choice of the position and orientation of the LAVA relative to the par-
ticle as well as the choice of angular spacings of the rays emanating perpendicularly
from the LAVA. We also investigate the gain in efficiency by using the spatial rotator
compared to its planar analogue, the planar rotator (Jensen and Gundersen, 1993).

3.1 Particles

A rotus can be generated in the same manner as a torus by rotating a circle with
radius b > 0 around a fixed axis a distance f - b from this axis, see Figure 3. In the
torus case f > 1, but the rotus allows f > —1 such that the rotating circles may
overlap. For f < 0, the generated rotus will be convex, for f = 0 the rotus is a
perfect sphere. A great shape variability is thereby possible within the class of rotus
shaped particles.

In the simulations to be presented below, particles of five different rotus shapes
were used, see Figure 4. The size parameter b was chosen such that all rotus particles
had volume 1.

3.2 Probes

The specification of the spatial rotator needs, besides the choice of number of test
rays, a choice of orientation and position of the LAVA and a scheme for choosing
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Figure 4: Silhouttes of the five rotus particles used in the simulation study, The size
parameter b was chosen such that all rotus particles had volume 1. The leftmost particle
has shape parameter f = —0.85, the particle in the middle is a perfect sphere and the
rightmost has f = 0.85.

the angular spacing between the test rays.

3.2.1 Choice of LAVA

Originally, it was believed that the optimal choice of LAVA was the one that gave
the longest particle intercept. For the rotus particles used in the simulation study
with f < 0 this choice corresponds to the axis of symmetry while for rotus particles
with f > 0 this choice corresponds to an axis perpendular to the symmetry axis, i.e.
an axis of asymmetry. In the simulation study, the efficiency of the spatial rotator
obtained, using these two choices of LAVA, was compared with that obtained for
an isotropically oriented LAVA where no information about particle shape is used.
LAVAs with an angular offset of § and {% radians, respectively, from either the axis
of symmetry or the axis of asymmetry were also considered in the simulation study.

The LAVAs were chosen to pass through a uniform random point inside a cen-
trally placed subregion of the rotus particle, obtained by rescaling. By varying the
scale factor it was easy to vary the subregion for any complex shape of the rotus
particle. The impact due to position was investigated using the exact centre of the
rotus particle and uniform random points inside subregions with a 25 %, 50 % and
99 % scale factor.

A total of 28 different choices of LAVA were thus studied:

e 12 choices with LAVA passing through a uniform random point in a subregion
with scale factor 0% (exact centre), 25 %, 50 % and 99 %, respectively, and
with angle 0, £ and {% radians, respectively, to the axis of symmetry

e 12 choices obtained as above, but with the symmetry axis replaced by the
asymmetry axis

e 4 choices with LAVA passing through a uniform random point in a subregion
with scale factor 0%, 25%, 50 % and 99 %, respectively, and with isotropic
direction

Each choice of LAVA was simulated with n = 1,2, 3,4,5,6,8,9,10, 12, 15, 18, 20 test
rays, respectively.



3.2.2 Angular Spacing

A simple way of choosing the angular spacing is to take one full revolution divided
by the number of test rays. This is the approach described in Section 2. The angle
of the first test ray «; is uniform random in [0, 9] where ¥ = 27 /n. The angle of the
ith test ray is given by a; = a1 + (i — 1)¢. It might, however, be an advantage to
use a scheme where more than one revolution is involved, thereby possibly obtaining
a more complete sampling of the particle under study. In the simulation study, we
therefore also used a two-revolution scheme with

9= 4 /n, n odd,
"~ \4n/(n—1), n even.

For comparison, we in addition considered independent and uniform random angles
a; in [0, 27].

3.3 Main results from the simulation study

For a given particle shape, determined by the rotus shape parameter f, the precision
of the spatial rotator was found to depend both on the orientation of the LAVA
and the point that determines the position of the LAVA. For the rotus particles
considered in this study, the variance was minimized if the LAVA coincided with the
axis of symmetry. Note that this axis is not always the longest axis passing through
the particle under study. The squared coefficient of error (CE? = variance divided by
squared mean) obtainable under these ideal conditions is depicted in the left part of
Figure 5, as a function of the number n of test rays used in the estimator. The CE?
increases as soon as the “nucleus” through which the LAVA passes is not situated in
the centre of the particle. In that case, the simulations showed that deviation of the
LAVA orientation from the ideal symmetry axis direction is of very little influence on
the efficiency of the spatial rotator. The middle part of Figure 5 shows the spatial
rotator CE? for a LAVA positioned in a uniform random point chosen within a
50 % subregion and with isotropic random direction. For comparison, the CE? of the
isotropic planar rotator with corresponding placement of the axis reference point is
shown in the right part of the figure. Note the quite strong difference to the variance
prediction for the planar rotator in the paper of Jensen and Gundersen (1993), which
is due to the fact that the present simulation study also took the randomization of
the section plane into account. Note also that the isotropic spatial rotator is more
efficient than the isotropic planar rotator if at least 4 or 5 test rays are used. For
n = 10 test rays, the variance of the isotropic spatial rotator is approximately 10
times smaller than that of the planar rotator.

Table 1 gives an impression of how the precision of the spatial rotator depends
on the position of the LAVA. Tt lists the CE (the square root of CE?) of the spatial
rotator with isotropic LAVA for the rotus shapes included in this study and n = 6
test rays. Note that a CE less than 0.1 is obtainable with 6 test rays if the particle
is not too elongated and the point through which the spatial rotator passes is not
too far from the centre of the particle.

In order to find out whether the two-revolution angular spacing scheme is ad-
vantageous compared to the one-revolution scheme and i.i.d. sampling (independent
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Figure 5: CE? of spatial rotator and isotropic planar rotator as a function of the number
n of test rays. Left panel: ideal case, LAVA identical to the axis of symmetry. Middle
panel: isotropic LAVA, positioned uniform randomly within a central 50 % subregion of
the particle, as explained in Section 3.2.1. Right panel: CE? of the isotropic planar rotator,
with nucleus in a central 50 % region. Colours reflect the different rotus particles and
correspond to Figure 4.

Table 1: Coefficient of error of a spatial rotator with n = 6 test rays. Isotropic LAVA
positioned within central regions of various extent. For further details, see the text.

Particle 0% 25 % 50 % 99 %
Strongly elong. 0.250 0.277 0.337 0.517
Slightly elong. 0.056 0.064 0.077 0.136
Spherical 0.012 0.019 0.033 0.074
Slightly flat 0.042 0.048 0.063 0.115
Strongly flat 0.099 0.107 0.139 0.210
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Figure 6: Relative efficiency of the spatial rotator based on the two-revolution scheme
of choosing the angular spacings vs the spatial rotator based on i.i.d. angular spacings
(left part) and the one-revolution scheme (right part), respectively. The LAVA is isotropic
and passes through a uniform random point in a subregion of the rotus particle with scale
factor 25 %. Colours reflect different rotus particles and correspond to Figure 4.

and identically distributed uniform random ray angles), the variance Vargy, of the
spatial rotator based on the two-revolution angular scheme was compared to the
variance Varg,, obtained, using the simple one-revolution scheme, and the variance
Var;q obtained, using i.i.d. angular spacings. Figure 6 shows the relative efficiencies
Varjq/Varyy, and Varg,/Varg,, for the spatial rotator with isotropic LAVA passing
through a uniform random point in a subregion of the rotus particle with scale fac-
tor 25 %. The depicted example is typical for other choices of the LAVA. Note that
the one- and two-revolution schemes coincide for n = 3 test rays. For numbers of
test rays important in practice, n > 3, say, the two-revolution scheme turned out
to be superior to both alternative schemes of choosing the angular spacings — for
moderate numbers of test rays around n = 10, the two-revolution scheme is about
ten times as efficient as the one-revolution scheme, and for the practical important
number n = 5, it still halves the variance. The advantage over independent sampling
starts to decrease for numbers of test rays n larger than 10.

As mentioned in Section 2.3, the variance of the spatial rotator can be decom-
posed into the Cawvalieri variance related to the randomization of the test ray end
points on the LAVA and the nucleator variance related to the randomization of the
angles of the test rays emanating perpendicularly from the LAVA. Figure 7 shows
the two variance components as a function of the number of test rays for the cases
of a LAVA parallel to the symmetry axis (left) and for an isotropic LAVA (right).

While there is a clear difference between the Cavalieri variances for the different
rotus particles if the axis is parallel to the symmetry axis, these differences vanish
if the axis is isotropic. Similar results have been obtained for other LAVAs that are
not parallel to the symmetry axis of the particle. This behaviour can be explained
by the fact that a fixed anisotropic particle “looks” isotropic to an isotropic axis. A
converse effect can be observed for the nucleator variance component. Note also that
the plots in Figure 7 indicate that there is an asymptotic saturation behaviour in the
nucleator variance with increasing number of test rays. This can be explained by the
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Figure 7: Cavalieri variance (hollow dots, dashed lines) and nucleator variance (solid dots,
solid lines) for a LAVA parallel to the symmetry axis (left) and an isotropic LAVA (right).
In both cases, the LAVA passes through a uniform random point, chosen in a subregion
with scale factor 25 %. The two-revolution angular spacing scheme was used. Colours reflect
the different rotus particles and correspond to Figure 4.

fact that the systematic sampling scheme of the spatial rotator is concentrated on a
one-dimensional subset of the two-dimensional set of (position, angle) determining
the test rays. Note also that the dominating component of variance for the spatial
rotator is the nucleator variance.

4 On the practical implementation of the spatial
rotator

4.1 Arbitrary LAVA

In cases where the option of randomizing the LAVA is not available, for instance
because randomization will cause loss of possibility of identifying the specific tissue
region under study, the traditional local volume estimators, the nucleator and the
planar rotator, cannot be used. In this situation, the spatial rotator offers a valid
alternative since its LAVA can be chosen arbitrarily.

If local sectional areas are available, the Cavalieri estimator might be preferred
to the spatial rotator because of lower variance, see Figure 7. Whether the Cav-
alieri estimator is to be preferred depends on (1) the practical problems involved
in determining the sectional areas compared to the intersection points and (2) the
size of the variance reduction compared to the variance in the true particle volume
distribution.

The spatial rotator involves the determination of intersection points between
test rays and particle boundaries. Usually, a test ray can only be indirectly observed
via its intersections with each of a series of parallel focal planes. If the test ray is
not parallel to the common direction of the focal planes, the intersection between
the test ray and a focal plane is a single point. The only way to determine when
such a test ray intersects the particle boundary is to observe how this intersection
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Figure 8: Determination of intersection points between test rays and particle boundary.
(a) 2D illustration of a spatial rotator with LAVA L with arbitrary orientation relative to
the series of focal planes Fy, F» and F3. A particular test ray is denoted T'. (b) On F, F
and F3, intersection points between the focal planes and the test ray is indicated by x.
In F5, the intersection point lies at the particle boundary. The intersection points between
the focal planes and the LAVA L are shown as e.

point moves when moving the focal plane up and down. When the intersection point
moves from one side of the particle boundary to the other, the intersection point
has reached the particle boundary, see Figure 8.

This procedure may be very time consuming and, accordingly, have a huge impact
on how quickly an operator can mark the intersection points between all the test
rays and the particle boundary. For this reason, it is advisable to choose the LAVA
perpendicular to the focal plane. Then, a test ray will be fully contained in one focal
plane and the marking will be as simple as for other well-known probes, see Figure 9.

When using the spatial rotator it is important to be able to determine the top
and bottom of a particle accurately in order to place test rays inside this interval and
subsequently to determine the intersection points between the particle boundaries
and the test rays accurately. It is in particular important when the LAVA is chosen
arbitrarily since in this case no other local estimator of volume is available (they
require randomization of the LAVA) and a possible bias introduced by over- and
under-projection cannot be corrected for by comparison with other unbiased local
volume estimators.

There is another version of the spatial rotator that does not require exact knowl-
edge of the top and bottom of the particle. Here, the distance d between endpoints
of neighbour test rays may be chosen without precise knowledge of the projection
of the particle on the LAVA. The spatial rotator estimator is still of the form (2.2)
but since the projection length of the particle need no longer be an integer multiple
of d, the number n of test rays hitting the particle may vary from one realization
of the spatial rotator to the other. This version of the spatial rotator avoids the
problem that the top and bottom of the particle should be known but it is still
needed to determine intersection points between test rays and particle boundaries
at peripheral parts of the particle where its boundary may be fuzzy due to under-
or over-projection.

12
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Figure 9: Determination of intersection points between test rays and particle boundary.
(a) 2D illustration of a spatial rotator with LAVA L perpendicular to the series of focal
planes Fj, F and F3. A particular test ray is denoted T'. (b) The test ray T is fully
contained in F5 and here it is easy to identify the intersection point x between T and the
particle boundary. The intersection points between the focal planes and the LAVA L are
shown as e.

4.2 Randomized LAVA

If it is possible to randomize the LAVA (placing it either vertical random or isotropic
random) and still identify the structure under study, both the planar and the spatial
rotator can in principle be used as local volume estimators. The importance of a
possible bias of the spatial rotator, introduced by under- and over-projection at the
peripheral parts of the particles, can then be assessed by a comparison with the
planar rotator. This local volume estimator will be virtually unbiased since it only
uses information from the centre of the particle where under- and over-projection
are not important. Below we give a typical example of this situation.

4.2.1 Materials

The study complied with the Danish regulations for care and use of experimental ani-
mals and was approved by the Danish Animal Experiments Inspectorate. One Wistar
rat from the animal facility at Aarhus University Hospital Risskov was transcardially
perfusion-fixed in deep pentobarbital anesthesia (Mebumal SAD, 50 mg/mL). Ice-
cold isotonic saline perfusion was followed by perfusion of 4 % phosphate- buffered
paraformaldehyde. The right or left randomly chosen hippocampus was cut into
2mm slabs, embedded in the isector (Nyengaard and Gundersen, 1992) in agar
and next in glycolmethacrylate (Technovit 7100 kit, Kulzer Histo-Technik, Heraeus
Kulzer, Wehrheim, Germany). An isotropic, uniform random 40 pm thick section was
cut from the centre of each hippocampus block using a Ralph glass knife mounted
on a calibrated microtome (Supercut, Reichert-Jung) and stained with a modified
Giemsa stain. An Olympus BX51 microscope equipped with a 60x Olympus oil lens
(S-Plan, NA 1.40), a MT12 microcator (Heidenhain, Germany), a motorized speci-
men stage (Merzhauser, Germany), and an Olympus DP70 digital camera connected
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to a Dell PC (Intel Core 2 Duo, 2500 MHz) with 4 GB memory and a GForce 8800
GPU with 512MB RAM were used.

4.2.2 Sampling z-stacks of digital images

Systematic uniform random sampling of fields of view of the hippocampal subre-
gion subiculum was performed, and two-dimensional unbiased counting frames were
superimposed onto the images. The disector height was set to 30 pm and neurons
were sampled when the nucleoli came into focus in the optical plane (z-axis) and
were sampled by the 2D counting frame. 238 neurons in subiculum were sampled
by the optical disector (Gundersen, 1986). For each sampled field of view, a z-stack
of digital images of sections with thickness 1pm through the whole thick section
was obtained. Image recording, disector-sampling of neurons and estimation of their
volume using the planar rotator was done using the newCAST software (ver. 3.4,
Visiopharm, Denmark). The implementation of the spatial rotator was performed
using C+-+ programming language (gcc V.4.4.4 for the linux platform and MSVC
2005/2008 for Win 7). For practical application of the probe on the recorded z-stacks
both probe and focal planes were rendered using OpenGL v.1.3. The boost random
library (v. 1.42) was used for isotropic and structural uniform random sampling for
both the application of the probe and the simulations.

4.2.3 Results

In this example, it was very difficult to determine the top and bottom of the cells.
Various methods were tried out, see the Discussion. The method that worked best
was based on determination of the largest radius r from the nucleolus to the cell
boundary, measured in the focal plane through the nucleolus, cf. Figure 10a. The top
and bottom of the cell were placed r above and below the nucleolus. This procedure
will work well if the cells are fairly spherical. A possible bias of the spatial rotator
may be introduced by this procedure, but its magnitude can be checked by comparing
with the planar rotator. Marking of intersection points between cell boundary and
test rays is shown in Figure 10b—f.

The spatial rotator and the planar rotator were determined, using the above-
mentioned software tools, for 238 neurons in the subiculum. In Figure 11, the spatial
rotator volume estimates are plotted against the planar rotator volume estimates.
For comparison, the identity line is also shown in Figure 11. A small bias (10 %)
can be detected. More precisely, the regression line through the origin obtained by
least squares fitting has slope 1.08. The coefficient of error was of the same size
for planar and spatial rotator volume estimates, being in the order of magnitude of
CE? =~ 0.25. The size of the squared coefficient of error is probably mainly due to
biological variation. In this situation, the planar rotator is to be preferred.
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(a) (b) (©)

(d (e) ®
Figure 10: Illustration of the practical implementation of the spatial rotator. (a) The
largest radius r from the nucleolus to the cell boundary in the focal plane through the
nucleolus is indicated. The top and bottom of the cell were placed r above and below the

nucleolus. (b)—(f) Marking of intersection points between cell boundary and 5 test rays
from bottom to top.
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Figure 11: Spatial vs. planar rotator volume estimates using 5 test lines. For comparison,
the identity line is also shown.
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Figure 12: Particle with discrete vertical rotator probe. The profile of the particle on a
vertical section is probed with n = 4 systematic test lines perpendicular to the vertical
axis.

5 Discussion

In the present paper, we have developed a new local volume estimator, the spatial
rotator, based on a virtual 3D probe. In the extensive simulation study presented
in Section 3, the spatial rotator was found to have lower variance than the planar
rotator if at least 4 or 5 test rays were used. Furthermore, the spatial rotator can
be used without physically rotating the tissue under study. It requires, however,
that intersection points between test rays and cell boundaries can be determined
accurately, also at the peripheral parts of the cell boundaries.

In Section 2, it has been shown that the spatial rotator can be regarded as a
derivative of the Cavalieri estimator. The spatial rotator can also be regarded as
a derivative of the discretized vertical rotator which was introduced in Jensen and
Gundersen (1993) as an unbiased method of estimating particle volume from one
vertical section. The discretized vertical estimator is based on measuring intersec-
tion lengths with a grid of parallel test lines perpendicular to the vertical axis as
illustrated in Figure 12. The position of the test lines are systematically sampled
in the same way as for the spatial rotator, but intersection distances are measured
on two half lines each. Using a formula equivalent to (2.1) and averaging over the
two half lines, these measurements yield the squared ray distance ¢? for the i-th
pair of half lines. The estimator for the particle volume then takes the form (2.2).
The spatial rotator can be interpreted as an average over n vertical rotators using
vertical sections with systematically sampled direction. On each section, only one
half line is evaluated, and the positions of the half lines given by their intersection
with the vertical axis form a systematic sample, see Figure 13.
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Figure 13: Interpretation of the spatial rotator as a vertical rotator probe. Two of the
test rays from Figure 1 are shown here together with the corresponding vertical sections.

In the practical study, it was difficult to identify the top and bottom of the
sampled cells. The largest radius r from the nucleolus to the cell boundary, measured
in the focal plane through the nucleolus, was used to estimate the top and bottom
of the cell. The top and bottom were placed r above and below the nucleolus. This
procedure worked well in the practical study. In an adhoc manner, it was also tried
to place the top and bottom at distance f - r where f = 0.5, 0.75, 1.5 and 2.0.
In these cases, the spatial rotator estimates were found to be biased by a factor
proportional to f. These empirical findings emphasize the importance of being able
to identify intersection points between test rays and cell boundaries accurately, also
at the peripheral parts of the cells, if the spatial rotator is to be applied.

When evaluating the efficiency of a local volume estimator, it is important to
take into account the workload involved in determining the estimator. The spatial
rotator is inherently a fast probe as it requires minimum of manual workload. The
number of intersection markings for each test ray besides marking of an interval on
the LAVA is comparable to that of the planar rotator and nucleator. Since multiple
focal planes are used, the time for the microscopic workstation to move between focal
planes must however also be added to the total workload. This can be avoided by
first recording focal planes and later perform the marking on an offline workstation.

Choosing between the spatial rotator and other Cavalieri estimators, in particular
the point counting Cavalieri estimator, we recommend to use the spatial rotator
when the particle profile areas on the various multiple intersection planes must be
estimated manually. However, it is still unknown whether the spatial rotator is more
efficient than other Cavalieri estimators when dealing with very complex particles.
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A Mathematical background for spatial rotator

In this section, we give a short derivation of the estimation principle of the spatial
rotator. Let Y be a particle (bounded subset of R?). The volume of ¥ can be
expressed by the intersection with a half plane L3 («) rotated by an angle a around

a fixed line Ly (), the LAVA. Letting d(y, Li(0)) denote the distance from y to Ly,
we thus have

27
V(Y)Z/ / d(y, L)) dyda
0 YNLY (a)
27 [e’e) o]
:/ / / d((y1, Y2, @), Lio)) 1y (Y1, 42, @) dyr d o d
0 —o00 JO

where (y1,y2, @) stands for the point with Cartesian coordinates y,y, on the half
plane L3 (a). Now we use that the squared ray distance £*(p,a;Y) for a test ray
in L3 (o), perpendicular to Ly and starting at (0, p, &) € Ly, fulfills

KQ(p,a;Y) - / Qd((y17p7 a)le(O)) ]-Y((ylapa a>>dy17
0

which gives us

2m [e'¢) do
v = [ [ ety apG

27 dOé
= l? p,a;Y)—dp,
/LAVA/O ( )27T

where “LAVA” means the minimal interval [LAVAy, LAVA,] on L) spanning the
projection of Y onto L. The spatial rotator consists in estimating this integral
by discretizing the test ray start points p and their angles a simultaneously

V(Y) =dnr Z (pi, a3 Y).
i=1
Here, p; = p1 + (i — 1)d where p; is uniform in [0,d] and d = (LAVA; — LAVAy) /n.

Likewise, a; = ay + (i — 1)1 where «; is uniform in [0, ¥]. Different choices of ¥ have
been discussed in the main text of the paper.
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