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Abstract

In this article, a class of multiparameter processes with second-order sta-
tionary increments is studied. The content is as follows. (1) The spectral
representation is derived; in particular, necessary and sufficient conditions for
a measure to be a spectral measure is given. The relations to a commonly
used class of processes, studied e.g. by Yaglom, is discussed. (2) Some classes
of deterministic integrands, here referred to as predomains, are studied in de-
tail. These predomains consist of functions or, more generally, distributions.
Necessary and sufficient conditions for completeness of the predomains are
given. (3) In a framework covering the classical Walsh-Dalang theory of a
temporal-spatial process which is white in time and colored in space, a class
of predictable integrands is considered. Necessary and sufficient conditions for
completeness of the class are given, and this property is linked to a certain
martingale representation property.
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1 Introduction
Let d ≥ 1 be an integer which is fixed throughout. In this article we consider a class
of real valued processes X = {Xu : u ∈ Rd} indexed by Rd with so-called zero-mean
second-order stationary increments. We refer to Section 2 for the precise definition
so for now it suffices to say that this class is large and contains e.g. the d-parameter
fractional Brownian sheet. The main purpose is to study different kinds of integrals
with respect to such processes, focusing in particular on completeness of various sets
of integrands.

In Section 3 we discuss classes of deterministic integrands, referred to as pre-
domains. Predomains are not necessarily sets of functions but the corresponding
integral takes values in the set of square-integrable random variables. On predo-
mains we use the metric induced by the L2-distance between corresponding inte-
grals. If completeness is present, a predomain is referred to as a domain. In the
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one-dimensional case d = 1 several predomains have been studied for processes with
stationary increments. A key reference in the case of fractional Brownian motion
is Pipiras and Taqqu [5] where various (pre)domains consisting of functions is ana-
lyzed. These authors show that many natural predomains studied in the literature
are in fact not complete and hence not domains. To remedy this, Jolis [4] introduced
a larger predomain consisting of distributions in the case of a continuous processes
with stationary increments. In particular she showed that this will often lead to a
domain. In Section 3 we follow [4] and study predomains containing functions as well
as distributions. Generalizing results of [4, 5], necessary and sufficient conditions on
the spectral measure for a predomain to be a domain are given. Moreover, we show
that the integral of an integrand ϕ belonging to any of the predomains considered
is given by ∫

Rd

ϕ(u)X(du) =

∫

Rd

Fϕ(z)Z(dz), (1.1)

where F denotes the Fourier transform and Z the random spectral measure of X.
As is obvious from (1.1) the integral is closely linked to the spectral representation

of X. Therefore we study the spectral representation of X in detail in Section 2.
Moreover, a comparison to the class of processes studied e.g. by Yaglom [10] is given.

Finally, in Section 4 we add a temporal component and thus consider Gaussian
processes X = {Xu : u = (t, x) ∈ R1+d} where t ∈ R is time and x ∈ Rd a spatial
component. We assume that X is white in time and colored in space. A martingale
integral with respect to X is constructed akin to the classical papers by Walsh [9]
and Dalang [1] although it should be noticed that in the present situation, unlike
these papers, X does in general not induce a martingale measure. For example,
when d = 1, X could be fractional in space with Hurst exponent H in (0, 1) in
which case X only induces a martingale measure when H ≥ 1/2. We show that the
integral of a predictable integrand ϕt(x) with respect to X is

∫ ∞

0

∫

Rd

ϕt(x)X(d(t, x)) =

∫ ∞

0

∫

Rd

Fϕt(z) dZt(x),

where F denotes the Fourier transform in the space variable, and for fixed t, Zt(·)
is the random spectral measure of X((0, t] × ·) in the space variable. Necessary
and sufficient conditions for completeness for a class of integrands are given and
in particular this property is linked to a martingale representation property with
respect to X.

Definitions and notation. For any measure µ, L2
C

(µ) denotes the set of complex-
valued µ-square integrable functions and L2

R
(µ) the subset hereof taking values in R.

Likewise, for any A ⊆ L2
C

(µ), sp
C
A is the closed complex linear span and sp

R
A the

corresponding closed real linear span of A. Observe that sp
R
A coincides with the

real-valued elements in sp
C
A if all elements in A are real-valued. According to

usual notation the space of tempered distributions, that is the dual of the Schwartz
space SC(Rd) consisting of complex-valued C∞–functions on Rd of rapid decrease,
is denoted S ′

C
(Rd). The subspace of SC(Rd) consisting of real-valued functions is

denoted SR(Rd), and likewise S ′
R

(Rd) is the set of elements Ψ in S ′
C

(Rd) such that
Ψ(φ) ∈ R for all ϕ ∈ SR(Rd). Similarly, DC(Rd) denotes the set of complex-valued
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C∞-functions on Rd of compact support. For the general theory of distributions
and especially tempered distributions we refer to Schwartz [7].

The Fourier transform of a distribution or a measurable function is, whenever
it is well-defined, denoted by F . That is, if e.g. f ∈ L1

C
(λd), where λd denotes

Lebesgue measure on Rd, then

Ff(z) =

∫

Rd

ei〈z,·〉f(·) dλd =

∫

Rd

ei〈z,u〉f(u) du, for z ∈ Rd.

Here, 〈·, ·〉 is the canonical inner product on Rd with corresponding norm ‖·‖. The
notation differs from the one used e.g. in [7] where, for f ∈ L1

C
(λd), Ff(−2π·) is

used as the Fourier transform of f . But apart from a constant (2π)d appearing in
Parseval’s identity and the explicit form of the inverse F−1, all results from the
general theory of distributions remain valid with the definition given above.

All random variables are defined on a probability space (Ω,F ,P) which is fixed
throughout. Equality in distribution is denoted D

=. Finally, Bb(Rd) is the class of
bounded Borel sets in Rd.

2 Spectral representation

In Definition 2.3 the class of processes with zero-mean second-order stationary in-
crements is defined and the spectral representation is given in Theorem 2.5. This
representation is stated in terms of the following class of random measures.

Definition 2.1. Let F be a symmetric Borel measure on Rd finite on compacts. A
set function Z : Bb(Rd) → L2

C
(P) is said to be a zero-mean L2

C
(P)-valued random

measure with control measure F if

(1) Z(A ∪B) = Z(A) + Z(B) P-a.s. whenever A,B ∈ Bb(Rd) are disjoint;

(2) Z(A) = Z(−A) P-a.s. for A ∈ Bb(Rd);

(3) E[Z(A)Z(B)] = F (A ∩B) for A,B ∈ Bb(Rd);

(4) E[Z(A)] = 0 for A ∈ Bb(Rd).

Remark 2.2. Let Z be a random measure as above. From (1) and (3) it follows
that Z(∪∞n=1An) =

∑∞
n=1 Z(An) in L2

C
(P) for any disjoint sequence (An)n≥1 in Bb(Rd)

satisfying ∪∞n=1An ∈ Bb(Rd).
Decompose Z as Z(A) = Z1(A) + iZ2(A) for A ∈ Bb(Rd); that is, Z1 is the real

part of Z, Z2 the imaginary part, and Z1(A), Z2(A) ∈ L2
R

(P) for A ∈ Bb(Rd). These
parts are orthogonal in L2

R
(P) in the sense that

E[Z1(A)Z2(B)] = 0, for A,B ∈ Bb(Rd). (2.1)

Indeed, by Definition 2.1(3),

E[Z1(A)Z2(B)] = E[Z2(A)Z1(B)], for A,B ∈ Bb(Rd) (2.2)
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and similarly, with B replaced by −B,

E[Z1(A)Z2(−B)] = E[Z2(A)Z1(−B)], for A,B ∈ Bb(Rd). (2.3)

Adding (2.2) and (2.3) and using Definition 2.1(2) it follows that

2E[Z1(A)Z2(B)] = 0, for A,B ∈ Bb(Rd),

proving (2.1).

Let Z be a zero-mean L2
C

(P)-valued random measure with control measure F .
As usual, integration with respect to Z can be defined starting with simple functions
and extending to L2

C
(F ) using the isometry condition Definition 2.1(3). Thus, the

integral ϕ 7→
∫
ϕdZ maps L2

C
(F ) linearly isometrically onto a closed subset of

L2
C

(P) consisting of zero-mean random variables, and satisfies, for A ∈ Bb(Rd) and
ϕ, ψ ∈ L2

C
(F ),
∫

1A dZ = Z(A), and E
[ ∫

ϕdZ

∫
ψ dZ

]
=

∫
ϕψ dF.

Denoting by RC(Z) the set of integrals
∫
ϕdZ, ϕ ∈ L2

C
(F ), RR(Z) refers to the

real-valued elements in RC(Z). With L̃2
C

(F ) denoting the set of functions in L2
C

(F )
satisfying ϕ(x) = ϕ(−x) for all x ∈ Rd we have

RR(Z) =
{∫

ϕdZ : ϕ ∈ L̃2
C

(F )
}
.

Indeed, the inclusion ”⊇” follows from Definition 2.1(2) and ”⊆” from the fact that
for all ϕ ∈ L2

C
(F ), 1

2
(ϕ + ϕ(−·)) is in L̃2

C
(F ) with integral equal to the real part of∫

ϕdZ.
If uk = (uk1, . . . , ukd) ∈ Rd for k = 1, 2, write u1 ≤ u2 if u1j ≤ u2j for all j, and

u1 < u2 if u1j < u2j for all j. Let (u1, u2] = {v ∈ Rd : u1 < v ≤ u2}. Consider a
family H = {Hu : u ∈ Rd} with Hu ∈ C. Define the increment of H over (u1, u2],
H((u1, u2]), as

H((u1, u2]) =
∑

ε=(ε1,...,εd)∈{0,1}d
(−1)ε.H(c1(ε1),...,cd(εd)),

where ε. = ε1 + · · · εd, cj(0) = u2j and cj(1) = u1j. That is, H((u1, u2]) = Hu2 −Hu1

if d = 1 and

H((u1, u2]) = H(u21,u22) +H(u11,u12) −H(u11,u22) −H(u21,u12) if d = 2.

Notice that H((u, v]) = 0 if u ≤ v and u 6< v. Later we shall occasionally write
4hH(u) for H((u, u+ h]) for u ∈ Rd and any h ∈ Rd

+.

Definition 2.3. A real-valued process X = {Xu : u ∈ Rd} is said to have zero-mean
second-order stationary increments if X((u, v]) ∈ L2

R
(P) with E[X((u, v])] = 0 for

all u, v ∈ Rd, and

E
[
X
(
(u1 + h, v1 + h]

)
X
(
(u2 + h, v2 + h]

)]
(2.4)

= E
[
X
(
(u1, v1]

)
X
(
(u2, v2]

)]
, for all h ∈ Rd

+ and u1 ≤ v1, u2 ≤ v2 in Rd.
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Remark 2.4. In the multiparameter case d ≥ 2 there is an alternative definition
of stationary increments studied e.g. by Yaglom [10]. Let us discuss the relations
between the two definitions. A real-valued second-order process X = {Xu : u ∈ Rd}
for which E[Xv − Xu] = 0 for u, v ∈ Rd is said to have second-order stationary
increments in the strong sense if

E[(Xv1+h −Xu1+h)(Xv2+h −Xu2+h)]

= E[(Xv1 −Xu1)(Xv2 −Xu2)], for all h ∈ Rd
+ and u1 ≤ v1, u2 ≤ v2 in Rd.

It is easily seen that this implies that X has zero-mean second-order stationary
increments in the sense of (2.4). But conversely there are many processes with zero-
mean second-order stationary increments that do not have stationary increments
in the strong sense. One such example is the Brownian sheet, where increments
over disjoint intervals are independent and X((u, v])

D
= N(0, λd((u, v])) for u ≤ v,

in the case d ≥ 2. An even more restrictive definition of stationary increments is
given in Samorodnitsky and Taqqu [6, Section 8.1]. However, when d = 1 the three
definitions coincide.

In the following assume thatX has zero-mean stationary increments in the strong
sense. Yaglom [10], Remark 3, p. 295, shows that, up to addition of a random
variable not depending on u, Xu is given by

Xu =

∫

Rd

(ei〈z,u〉 − 1) Z̃(dz) + 〈a, u〉, for u ∈ Rd, (2.5)

where Z̃ = {Z̃(A) : A ∈ Bb(Rd)} is a zero-mean L2
C

(P)-valued random measure with
control measure F̃ satisfying

∫

Rd

(‖z‖2 ∧ 1) F̃ (dz) <∞

and a ∈ Rd is a random vector. After a few calculations it follows that when d ≥ 2,

X((u, v]) =

∫

Rd

F1(u,v](z)Z(dz), for u < v, (2.6)

where Z(dz) = idz1 · · · zdZ̃(dz). That is, the control measure F of Z is F (dz) =∏d
j=1 z

2
j F̃ (dz) which satisfies

∫

Rd

1 ∧ ‖z‖2

∏d
j=1 z

2
j

F (dz) <∞.

In the next result we give the corresponding spectral representation of processes
with zero-mean second-stationary increments. In this case it is natural to seek for
a representation as in (2.6) rather than (2.5). Recall that for u, v ∈ Rd with u < v,

F1(u,v](z) =
d∏

j=1

(
eivjzj − eiujzj

izj
), for z = (z1, . . . , zd) ∈ Rd, (2.7)

where the right hand side should be understood by continuity if zj = 0 for some j,
i.e. the j’th factor equals vj − uj for zj = 0.
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Theorem 2.5. Assume that X = {Xu : u ∈ Rd} is a real-valued square-integrable
process with zero-mean second-order stationary increments satisfying that u 7→ Xu

is continuous in L2
R

(P). Then there is a symmetric measure F on Rd satisfying
∫

Rd

1

1 +
∏d

j=1 z
2
j

F (dz) <∞, (where z = (z1, . . . , zd)), (2.8)

and a zero-mean L2
C

(P)-valued random measure Z with control measure F such that

X((u, v]) =

∫
F1(u,v] dZ, for u < v. (2.9)

In particular, for u1 < v1 and u2 < v2,

E[X((u1, v1])X((u2, v2])] =

∫
F1(u1,v1]F1(u2,v2] dF. (2.10)

The measures F and Z are uniquely determined by X. In addition, RC(Z) =
sp
C
{X((u, v]) : u ≤ v} and RR(Z) = sp

R
{X((u, v]) : u ≤ v}.

The measure F above is called the spectral measure of X and Z is the random
spectral measure of X. The last statement in Theorem 2.5 shows that Z is Gaussian
if X is Gaussian.

Proof. In the case d = 1 the result can be found e.g. in Itô [3], Theorem 6.1. In the
general case we follow Itô’s approach closely. Define {X(ϕ) : ϕ ∈ DC(Rd)} as

X(ϕ) =

∫

Rd

Xuϕ(u) du, for ϕ ∈ DC(Rd),

where the integral is constructed in the L2
C

(P)-sense using that u 7→ Xuϕ(u) is
L2
C

(P)–continuous with compact support. Clearly, {X(ϕ) : ϕ ∈ DC(Rd)} constitutes
a random distribution in the sense of Itô [3] or Yaglom [10].

Denote by D the differential operator ∂d/∂u1 · · · ∂ud and define {X(1)(ϕ) : ϕ ∈
DC(Rd)} according to

X(1)(ϕ) = (−1)d
∫

Rd

XuDϕ(u) du, for ϕ ∈ DC(Rd).

Since, with e = (1, . . . , 1) ∈ Rd denoting the vector of ones,

Dϕ(u) = lim
ε→0

ϕ((u, u+ εe])/εd, for u ∈ Rd and ϕ ∈ DC(Rd),

we get, using the assumptions and linear change of variables, that for ϕ ∈ DC(Rd)
∫

Rd

XuDϕ(u) du = lim
ε→0

ε−d
∫

Rd

X((u, u+ εe])ϕ(u) du, in L2
C

(P). (2.11)

A key point is that X(1) is stationary in the sense that

E[(τhX
(1)(ϕ))(τhX

(1)(ψ))] = E[(X(1)(ϕ))(X(1)(ψ))], for h ∈ Rd, ϕ, ψ ∈ DC(Rd),
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where
τhX

(1)(ϕ) = X(1)(ϕ(· − h)), for h ∈ Rd, ϕ ∈ DC(Rd).

To see this, fix h ∈ Rd and ϕ, ψ ∈ DC(Rd). Using (2.11) it follows that

E[(τhX
(1)(ϕ))(τhX

(1)(ψ))]

= lim
ε→0

ε−2dE[

∫

Rd

X((u, u+ εe])ϕ(u− h) du

∫

Rd

X((v, v + εe])ψ(v − h) dv]

= lim
ε→0

ε−2dE[

∫

Rd

X((u+ h, u+ h+ εe])ϕ(u) du

∫

Rd

X((v + h, v + h+ εe])ψ(v) dv]

= lim
ε→0

ε−2d

∫

R2d

E[X((u+ h, u+ h+ εe])X((v + h, v + h+ εe])]ϕ(u)ψ(v) dudv

= lim
ε→0

ε−2d

∫

R2d

E[X((u, u+ ε])X((v, v + εe])]ϕ(u)ψ(v) dudv

= E[(X(1)(ϕ))(X(1)(ψ))].

Applying [10], Theorem 3, there exists an L2
C

(P)-valued random measure Z with
symmetric control measure F satisfying

∫

Rd

1

(1 + |z|2)p
F (dz) <∞, for some p ≥ 1,

such that
X(1)(ϕ) =

∫

Rd

Fϕ(z)Z(dz), for ϕ ∈ DC(Rd).

To obtain (2.8), it suffices to show that
∫

C

1∏d
j=1 z

2
j

F (dz) <∞, (2.12)

where C = {z = (z1, . . . , zd) : |zj| ≥ 1 for all j}. Following Itô [3], set

X1(ϕ) =

∫

Rd

Gϕ(z)Z(dz), for ϕ ∈ DC(Rd), (2.13)

where

Gϕ(z) =

∫

Rd

d∏

j=1

eiujzj − 1Cc(z)

izj
ϕ(u) du.

Since Gϕ is bounded and

Gϕ(z) = Fϕ(z) (
d∏

j=1

izj)
−1, for z ∈ C,

Gϕ belongs to L2
C

(F ), thus making (2.13) well-defined and {X1(ϕ) : ϕ ∈ DC(Rd)} a
random distribution. Maintaining the definition of the differential operator D from
above and using integration by parts we get G(Dϕ) = (−1)dFϕ for ϕ ∈ DC(Rd),
implying that X(Dϕ) = (−1)dX(1)(ϕ) = X1(Dϕ) for ϕ ∈ DC(Rd), or equivalently,
X1(ϕ) = X(ϕ) for all ϕ ∈ D0(Rd) := {ϕ ∈ DC(Rd) :

∫
Rd ϕ(t) dt = 0}. Observe that
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4hϕ ∈ D0(Rd) for every ϕ ∈ DC(Rd) and h ∈ Rd
+. Thus, for every ϕ ∈ DC(Rd)

and h ∈ Rd
+ we have

X(4hϕ) =

∫

Rd

G(4hϕ)(z)Z(dz)

implying, since

G(4hϕ)(z) = Fϕ(z)
d∏

j=1

1− e−ihjzj
izj

,

that

X(4hϕ) = (−1)d
∫

Rd

Fϕ(z)
d∏

j=1

e−ihjzj − 1

izj
Z(dz).

Thus, for ϕ ∈ DC(Rd) and h ∈ Rd
+,

‖X(4hϕ)‖2
L2
C

(P) =

∫

Rd

|Fϕ(z)|2
d∏

j=1

|1− e
−ihjzj

izj
|2 F (dz)

≥
∫

C

d∏

j=1

|1− e−ihjzj |2 |Fϕ(z)|2 F (dz)∏d
j=1 z

2
j

.

In particular this holds for every ϕn ∈ DC(Rd), n ≥ 1, of the form ϕn(z) =∏d
j=1 gn(zj) for z ∈ Rd, where gn ∈ DR(R)+ satisfies

gn(x) = 0, for |x| ≥ 1/n, and
∫

R

gn(x) dx = 1.

Using the same string of inequalities as [3], p. 221, we see that there exists a universal
constant A such that for all n and h ∈ Rd

+,

‖X(4hϕn)‖2
L2
R

(P) ≥ A

∫

C

d∏

j=1

(|1− e−ihjzj |2 1{|zj |≤n})
F (dz)∏d
j=1 z

2
j

.

Following [3] integrate both sides with respect to dh over the cube [0, 1]d. Using the
product structure the integral of the right-hand side equals

A

∫

C

d∏

j=1

∫ 1

0

|1− e−ihjzj |2 dhj1{1≤|zj |≤n}
F (dz)∏d
j=1 z

2
j

which, again following [3], is

≥ A (

∫ 1

0

|1− e−iu|2 du)d
∫

C

1{1≤|zj |≤n, j=1,...,d}
F (dz)∏d
j=1 z

2
j

.

Applying monotone convergence (2.12) follows if supn≥1, h∈[0,1]d ‖X(4hϕn)‖2
L2
R

(P)
is

finite. But using linear substitution and Jensen’s inequality we have with obvious
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notation, for all n ≥ 1 and h ∈ [0, 1]d,

‖X(4hϕn)‖2
L2
R

(P) = E
[( ∫

Rd

Xu4hϕn(t) dt
)2]

= E
[( ∫

Rd

4hXu−hϕn(u) dt
)2]

≤
∫

Rd

E[(4hXu−h)
2]ϕn(u) du ≤ sup

u∈Rd, h∈[0,1]d
E[(4hXu−h)

2]

which is finite due to the L2
R

(P)-continuity and the stationary increments.
To prove the representation (2.9) let u < v be given. Setting h = v − u we have

from above that

X(4hϕ) = (−1)d
∫

Rd

Fϕ(z)
d∏

j=1

1− e−ihjzj
izj

Z(dz), for ϕ ∈ DC(Rd),

that is, using linear substitution,

∫

Rd

4hXx−hϕ(x) dx = (−1)d
∫

Rd

Fϕ(z)
d∏

j=1

1− e−ihjzj
izj

Z(dz), for ϕ ∈ DC(Rd).

In particular

∫

Rd

4hXx−hϕn(x) dx = (−1)d
∫

Rd

Fϕn(z)
d∏

j=1

1− e−ihjzj
zj

Z(dz), for n ≥ 1,

(2.14)
where (ϕn)n≥1 ⊆ DR(Rd)+ is such that

∫

Rd

ϕn(x) dx = 1 for n ≥ 1 and ϕn(x) dx→ δv weakly.

As n tends to infinity both sides of (2.14) converge in L2
R

(P ) due to the continuity
assumption on X and the integrability property (2.8) of F , giving the identity

X((u, v]) = 4v−uXu = (−1)d
∫

Rd

ei〈z,v〉
d∏

j=1

1− e−i(vj−uj)zj

izj
Z(dz)

=

∫

Rd

d∏

j=1

eivjzj − eisjzj
izj

Z(dz) =

∫

Rd

F1(u,v](z)Z(dz)

which is (2.9).
To prove the last part notice that X and X(1) are in one-to-one correspondence,

that sp
C
{X((u, v]) : u ≤ v} = sp

C
{X(1)(ϕ) : ϕ ∈ DC(Rd)}, and that there is a

similar result with subscript C replaced by R. By construction (see [10] p. 281), Z
is uniquely determined; moreover we have RC(Z) = sp

C
{X(1)(ϕ) : ϕ ∈ DC(Rd)}

as well as the corresponding result with subscript C replaced by R. This concludes
the proof.
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Remark 2.6. Let X be a zero-mean second-order process for which the mapping
u 7→ X((0, u]) is continuous from R

d
+ to L2

R
(P). Then one can construct an L2

R
(P)-

continuous process X̃ = {X̃u : u ∈ Rd} with zero-mean second-order stationary
increments X̃ = {X̃u : u ∈ Rd} satisfying that X((u, v]) = X̃((u, v]) for all 0 ≤ u <
v. Thus, the conclusions in Theorem 2.5 remain valid if X is a real-valued process
with zero-mean second-order stationary increments satisfying that u 7→ X((0, u]) is
continuous from R

d
+ to L2

R
(P).

Remark 2.7. Let F denote a symmetric measure on Rd satisfying (2.8). As a
converse to Theorem 2.5 there is a process X = {Xu : u ∈ Rd} with zero-mean
second-order stationary increments process for which u 7→ X((0, u]) is continuous in
L2
R

(P) and the spectral measure of X is F . Indeed, let Z denote a zero-mean L2
C

(P)-
valued random measure measure with control measure F , define the increments in
X by (2.9) and notice that we have (2.10) as well. From (2.7) and (2.10) it follows
that u 7→ X((0, u]) is continuous in L2

R
(P). In addition, since, for arbitrary u ∈ Rd

and v1, v2 ∈ Rd
+,

F1(u,u+v1]F1(u,u+v2] = F1(0,v1]F1(0,v2],

it follows from (2.10) that (2.4) holds.

3 Deterministic integrands
Let X = {Xu : u ∈ Rd} be a real-valued process with zero-mean second-order sta-
tionary increments having spectral measure F satisfying (2.8) and random spectral
measure Z. Assume furthermore that F is absolutely continuous with respect to λd
with density f . In the following we study classes of deterministic integrands with
respect to X.

Let E be the set of simple functions on Rd of the form

ϕ =
n∑

j=1

αj1(uj ,vj ] (3.1)

where {αj} ⊆ R and {uj}, {vj} ⊆ Rd satisfy uj ≤ vj for all j. For ϕ ∈ E represented
as in (3.1) define the simple integral as

∫
ϕdX :=

n∑

j=1

αjX((uj, vj]), (3.2)

and equip E with the norm ‖ϕ‖E := ‖
∫
ϕdX‖L2

R
(P). By Theorem 2.5,

∫

Rd

ϕ(u) dXu =

∫

Rd

Fϕ(z) dZu and ‖ϕ‖2
E =

∫

Rd

|Fϕ|2 dF for ϕ ∈ E . (3.3)

Definition 3.1. A pseudo normed linear space (Λ, ‖ · ‖Λ) containing E as a dense
subspace and satisfying ‖ϕ‖E = ‖ϕ‖Λ for ϕ ∈ E is called a predomain for X. A
domain is a complete predomain. Given a predomain Λ, there is a unique contin-
uous linear mapping

∫
· dX : Λ → L2

R
(P), extending the simple integral (3.2). This

mapping is called the integral with respect to X.
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Notice that Λ is not assumed to be a function space. By definition, a domain is
a completion of E and thus uniquely determined up to an isometric isomorphism.
Below we give concrete examples of predomains and domains.

Remark 3.2. Using the completeness of L2
R

(P) we see that a predomain Λ is a
domain if and only if

{∫
ϕdX : ϕ ∈ Λ

}
= sp

R

{
X((u, v]) : u, v ∈ Rd, u ≤ v

}
. (3.4)

This emphasizes why domains are more attractable than predomains since for the
latter we only have ”⊆” in (3.4).

For ease of reading we formulate two lemmas. For the second see [7], Chapter VII,
Théorème VII.

Lemma 3.3. Let ϕ ∈ S ′
C

(Rd) be given such that Fϕ is a function. Then ϕ ∈
S ′
R

(Rd) if and only if Fϕ(−x) = Fϕ(x) for λd-a.a. x.

Lemma 3.4. Let µ be a signed Borel measure on Rd. Then µ is a tempered measure,
that is µ ∈ S ′

C
(Rd) if ∫

Rd

(1 + ‖u‖2)−k |µ|(du) <∞

for some positive integer k ≥ 1. This condition is also necessary if µ is a positive
measure. In particular, a real-valued Borel function h is a tempered distribution if,
and in case h is non-negative only if,

∫

Rd

|h(u)|
(1 + ‖u‖2)k

du <∞.

for some positive integer k ≥ 1.

In view of (3.3) it is natural to look for predomains consisting of objects for
which a Fourier transform can be defined, that is spaces of distributions. The
absolute continuity of F allows us to introduce the following spaces

Λdist =
{
ϕ ∈ S ′

R
(Rd) : Fϕ is a function such that

∫

Rd

|Fϕ(z)|2 F (dz) <∞
}
,

Λfunc =
{
ϕ ∈ L2

R
(Rd) :

∫

Rd

|Fϕ(z)|2 F (dz) <∞
}
,

equipped with the pseudo norms ‖·‖Λfunc
and ‖·‖Λdist

given by

‖ϕ‖2
Λfunc

=

∫

Rd

|Fϕ(z)|2 F (dz), ‖ϕ‖2
Λdist

=

∫

Rd

|Fϕ(z)|2 F (dz).

Notice that SR(Rd) ⊆ Λfunc ⊆ Λdist.

Theorem 3.5. (1) Λdist is a predomain for X and the integral on Λdist is given by
∫
ϕdX =

∫
FϕdZ, ϕ ∈ Λdist. (3.5)

11



(2) Λdist is a domain for X if and only if

∀g ∈ L2
R

(F ) ∃k ∈ N :

∫

{f>0}

|g(u)|
(1 + ‖u‖2)k

du <∞. (3.6)

In particular, Λdist is a domain for X if there exists k ∈ N such that
∫

{f>0}

1

f(u)(1 + ‖u‖2)k
du <∞. (3.7)

(3) Λfunc is a predomain, and it is a domain if and only if

L2
R

(F ) ⊆ L2
R

(1{f(u)>0} du). (3.8)

By Lemma 3.6 we further have that Λdist is complete if and only if F(Λdist) =
L̃2
C

(F ).

Proof. (1): Lemma 3.6 below implies that E is dense in Λdist showing together with
(3.3) that Λdist is a predomain for X. The continuous linear mapping ϕ 7→

∫
ϕdX

from Λdist to L2
C

(P) defined by (3.5) extends the simple integral by (3.3) and is hence
the corresponding integral since L2

R
(P) is a closed subspace of L2

C
(P).

(2): Assume that for all g ∈ L2
R

(F ), (3.6) holds for some k and let us show that
Λdist is a domain for X. Let {ϕn} be a Cauchy sequence in Λdist. By completeness
of L2

C
(F ) there exists g ∈ L2

C
(F ) with g = g(−·) such that Fϕn → g in L2

C
(F ).

Since we may assume that g = 0 on {f = 0}, (3.6) and Lemma 3.4 shows that
g ∈ S ′

C
(Rd). Hence, using Lemma 3.3, ϕ := F−1g is in Λdist and ϕn → ϕ in Λdist

which shows that Λdist is complete.
Conversely, assume that Λdist is complete. For contradiction consider an h ∈

L2
R

(F ) which does not satisfy (3.6) with g replaced by h. Without loss of generality
we may assume that h ≥ 0 and h = 0 on {f = 0}. By Lemma 3.4, h 6∈ S ′

R
(Rd).

Let h1 = 1
2
(h + h(−·)) and h2 = 1

2
(h − h(−·)) be the even and odd parts of h and

set g = h1 + ih2. By linearity, g ∈ L2
C

(F ) and if g ∈ S ′
C

(Rd) then h1, h2 ∈ S ′
R

(Rd)
which implies that h = h1 + h2 ∈ S ′

R
(Rd). Thus g ∈ L2

C
(F ) \ S ′

C
(Rd) and by

construction g = g(−·). Since F is a tempered measure, SR(Rd) is dense in L2
R

(F )
and therefore there exist sequences {ge,n} and {go,n} in SR(Rd) consisting of even
and odd functions approximating h1 and h2 in L2

R
(F ). Setting gn = ge,n + igo,n for

n ≥ 1 we have {gn} ⊆ SC(Rd) ⊆ S ′
C

(Rd) satisfying gn = gn(−·) and gn → g in
L2
C

(F ). Thus ϕn := F−1gn is a Cauchy sequence in Λdist which does not converge.
The last statement in (2) follows since for any measurable function g : Rd → R,

we have by the Cauchy-Schwarz inequality that
∫

{f>0}

|g(u)|
(1 + ‖u‖2)k

du ≤
(∫

{f>0}
|g(u)|2f(u) du

)1/2(∫

{f>0}

1

f(u)

1

(1 + ‖u‖2)2k
du
)1/2

.

(3): Assume (3.8) and let {ϕn} be Cauchy in Λfunc. As in the proof of (2) there
is a g ∈ L2

C
(F ) with g = g(−·) and satisfying g = 0 on {f = 0} such that Fϕn → g

in L2
C

(F ). Since g ∈ L2
C

(Rd) we have by Lemma 3.3 that ϕ := F−1g is in Λfunc and
ϕn → ϕ in Λfunc, showing that the latter space is complete.
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Conversely assume that Λfunc is complete. As in the proof of (2), if (3.8) is not
satisfied there is a function g : Rd → C satisfying g = 0 on {f = 0} and g = g(−·)
such that g ∈ L2

C
(F )\L2

C
(1{f(u)>0}du). Again as in (2) we can construct a sequence

{gn} in L2
C

(Rd) ∩ L2
C

(F ) satisfying gn = gn(−·) such that gn → g in L2
C

(F ). Then
ϕn := F−1gn is a non-converging Cauchy sequence in Λfunc.

Lemma 3.6. F(E ) is a dense subspace of L̃2
C

(F ).

Proof. Let G be the real linear span of functions g of the form g(u) =
∏d

j=1 gj(uj)

where {gj} ⊆ DR(R). Notice that (Fg)(z) =
∏d

j=1(Fgj)(zj). By arguments as in
Itô [3], Theorem 4.1, it follows that F(G) is dense in L̃2

C
(F ). To show that F(E ) is

dense in L̃2
C

(F ) it is hence enough to show that for all g ∈ G there exists a sequence
{gn} ⊆ E such that Fgn → Fg in L2

C
(F ). It suffices to consider g ∈ G of the form

g(u) =
∏d

j=1 gj(uj) where for simplicity we assume that supp(gj) ⊆ [0, 1] for all j.
Set for all n ∈ N, gn(u) =

∏d
j=1 gn,j(uj) where gn,j =

∑n
k=1 gj(

k−1
n

)1( k−1
n
, k
n

]. For all
n and j,

(Fgn,j)(t) =

∫

R

eistgn,j(s) ds =
n∑

k=1

gj(
k−1
n

)
(ei(k/n)t − ei((k−1)/n)t

it

)

=
1

it

(
gj(1)eit − gj(0)−

n−1∑

k=1

(gj(
k
n
)− gj(k−1

n
))ei(k/n)t

)
.

Hence, denoting by TV(gj; [0, 1]) the total variation of gj on [0, 1],

|(Fgn,j)(t)| ≤
1

|t|
(
|gj(1)|+ |gj(0)|+ TV(gj; [0, 1])

)
≤ Cgj/|t|

for some constant Cgj depending only on gj. Furthermore, for all j,

‖Fgn,j −Fgj‖∞ ≤ ‖gn,j − gj‖L1(R) → 0 as n→∞ (3.9)

implying that C = supn∈N‖Fgn,j‖∞ < ∞. Combining this we see that Fgn(z) =∏d
j=1Fgn,j(zj)→ Fg(z) pointwise by (3.9), and

|(Fgn)(z)| ≤ C

1 +
∏d

j=1|zj|
,

which by dominated convergence implies that Fgn → Fg in L2
C

(F ).

Remark 3.7. Theorem 3.5(2)–(3) underlines that it is easier for Λdist than for Λfunc

to be a domain. As an illustration, consider the fractional Brownian sheet, which
corresponds to X being Gaussian and f(u) = cH

∏d
j=1|uj|1−2Hj , where H1, . . . , Hd ∈

(0, 1), see e.g. Terdik and Woyczyński [8]. Since f satisfies (3.7), Theorem 3.5 shows
that Λdist is complete. Moreover, by Theorem 3.5 it follows that Λfunc is complete if
and only if H1 = · · · = Hd = 1

2
, that is, X is a Brownian sheet. In the case d = 1,

where X is a fractional Brownian motion, a quite long proof of the non-completeness
of Λfunc can be founded in Pipiras and Taqqu [5], Theorem 3.1, and the completeness
of Λdist is shown by Jolis [4], Proposition 4.1.

Remark 3.8. Λdist is not always a domain. For instance, if d = 1 and f(u) = e−u
2

then g(u) = eu belongs to L2(F ) but
∫
R
|g(u)|(1 + u2)−k du = ∞ for all k ∈ N.

Hence, by Theorem 3.5(2) Λdist is not a domain.
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4 Stochastic integrands for processes white in time
and colored in space

In the following we add a temporal component; that is, we consider processes indexed
by R1+d rather than Rd. A generic element u ∈ R1+d will be decomposed as
u = (t, x) where t ∈ R is time and x = (x1, . . . , xd) ∈ Rd a space variable. Intervals
in R1+d will be written either as (u, v] or (s, t]× (x, y] where (s, t] is an interval in R
and (x, y] is an interval in Rd. Functions on R1+d will often be denoted by ϕt(x) for
t ∈ R and x ∈ Rd, and Fϕt(z) denotes the Fourier transform in the space variable
for fixed t.

Let F denote a symmetric measure on Rd with density f with respect to λd
satisfying f(x) = f(−x) for all x ∈ Rd. Assume throughout that F satisfies condi-
tion (2.8). The measure λ1 × F on R1+d then satisfies (2.8) as well. Consider an
L2
R

(P)-continuous Gaussian process X = {Xu : u ∈ R1+d} with zero-mean second-
order stationary increments and spectral measure λ1 × F . By Parseval’s identity
and (2.10) we have, for si < ti (in R) and xi < yi (in Rd), i = 1, 2,

E[X((s1, t1]× (x1, y1])X((s2, t2]× (x2, y2])]

= 2π

∫

R

1(s1,t1]1(s2,t2] dλ1

∫

Rd

F1(x1,y1]F1(x2,y2] dF.

Thus, there is independent increments in time but correlation in space determined
by F . That is, X is white in time and colored in space.

From now on we consider only time points in R+. Notice that in general
X((0, t]× ·) does not extend to an L2

R
(P)-valued measure defined on Bb(Rd). As an

example, if d = 1 and X is fractional in space we have f(x) = |x|1−2H for x ∈ R
(where H ∈ (0, 1)). In this case X extends to a measure in space if and only if
H ≥ 1/2.

Define the filtration G = (Gt)t≥0 as

Gt := σ{X((0, s]× (u, v]) : s ≤ t, u ≤ v} ∨ N , t ≥ 0,

whereN denotes the set of P-null sets. A standard argument based on the stationary
independent increments in X shows that G is right-continuous. For fixed u and v
the process {X((0, t]× (u, v]) : t ≥ 0} is a G-Wiener process.

We are now in a setting similar to [1] expect that X generally does not induce
a martingale measure in the sense of [9] since X((0, t] × ·) does not extend to a
measure. We shall see that one can nevertheless define a martingale integral with
respect to X; moreover, we show that the set of integrands forms a complete space
if and only if Λdist is complete.

For t ≥ 0 let Zt = {Zt(A) : A ∈ Bb(Rd)} denote the random spectral measure of
X((0, t]×·). The process Z = {Zt(A) : t ≥ 0, A ∈ Bb(Rd)}, being as earlier remarked
also Gaussian, is then an orthogonal (and hence worthy) martingale measure in the
sense that of [9]. (In fact, the only difference compared to [9] is that we use complex
martingales rather than real ones.) That is, Z satisfies the following:

(a) For fixed A ∈ Bb(Rd) the process {Zt(A) : t ≥ 0} is a complex-valued Gaussian
martingale with Z0(A) = 0.
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(b) For fixed t ≥ 0 the mapping A 7→ Zt(A) is σ-additive from Bb(Rd) to L2
C

(P).

(c) For all A,B ∈ Bb(Rd), 〈Z·(A), Z·(B)〉 = tF (A ∩B).

Here, for two complex square-integrable martingales M and N which are 0 at 0,
〈M,N〉 is the continuous complex process of bounded variation characterized by
being 0 at 0 and MN − 〈M,N〉 being a martingale.

To see that (a) is true, notice that for s ≤ t, {Zt(A) − Zs(A) : A ∈ Bb(Rd)} is
the random spectral measure of X((s, t]×·). Since the latter process is independent
of Gs, this is by the last statement in Theorem 2.5 also true for the former imply-
ing the martingale property. Property (b) is simply the σ-additivity of the random
spectral measure mentioned in Remark 2.2. Finally, (c) follows from the indepen-
dent increments in Z and Definition 2.1(3). Using once more the last property in
Theorem 2.5 it follows that

Gt = σ{Zs(A) : s ≤ t, A ∈ Bb(Rd)} ∨ N .
Denote by P the predictable σ-field on R+ × Ω. Set P̃ := P × B(Rd) and

L2
C

(Z) :=
{
ϕ : ϕ is a P̃-measurable mapping from R+ × Ω×Rd to C

satisfying E
[ ∫

R1+d

|ϕt(x)|2 dt F (dx)
]
<∞

}
.

This is clearly a complete space when equipped with the norm

E
[ ∫

R1+d

|ϕt(x)|2 dt F (dx)
]1

2
, ϕ ∈ L2

C
(Z).

Thus, also L̃2
C

(Z), the set of ϕ’s in L2
C

(Z) satisfying ϕt(x) = ϕt(−x) for all (t, x)
P-a.s., is complete.

Standard martingale integration theory allows us to define stochastic integration
with respect to Z, that is to construct the unique continuous linear mapping

(ϕ ∈ L2
C

(Z)) 7→
∫
ϕ dZ ∈ L2

C
(P)

determined by ∫
ϕdZ = c(Zs2((u, v])− Zs1((u, v]))1G

if
ϕt(ω, x) = c1F (ω)1(s1,s2](t)1(u,v](x) (4.1)

for some c ∈ R, s1 < s2 (in R), G ∈ Gs1 and u ≤ v (in Rd), and
∥∥∥
∫
ϕdZ

∥∥∥
2

L2
C

(P)
= E

[ ∫ ∞

0

∫

Rd

|ϕt(x)|2 dtF (dx)
]

for ϕ ∈ L2
C

(Z).

The real-valued integral processes correspond to integrands in L̃2
C

(Z). For ϕ ∈
L2
C

(Z) the process Mϕ
t :=

∫ t
0

∫
Rd ϕdZ, t ≥ 0, is by construction a complex square-

integrable martingale up to infinity which is 0 at 0; moreover,

〈Mϕ,Mψ〉t =

∫ t

0

∫

Rd

ϕs(y)ψs(x) dsF (dy), for ϕ, ψ ∈ L2
C

(Z).
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To define an integral with respect to X introduce the set

ΛX =
{
ϕ : R+ × Ω→ S ′

R
(Rd) : ϕ is predictable, Fϕt(ω) is a function

for all (ω, t), and E
[ ∫

R1+d

|Fϕt(x)|2 dt F (dx)
]
<∞

}
.

On S ′
R

(Rd) we use the cylindrical σ-algebra σ(Ψ 7→ Ψ(ψ) : ψ ∈ SR(Rd)), that is,
ϕ : R+ × Ω→ S ′

R
(Rd) is predictable if and only if

R+ × Ω 3 (t, ω) 7→ ϕt(ω)(ψ) ∈ R

is predictable for all ψ ∈ SR(Rd). Furthermore, the following lemma shows that
Fϕt(x) can be chosen bimeasurable making ΛX well-defined.

Lemma 4.1. Let ϕ : R+×Ω→ S ′
C

(Rd) be predictable such that Fϕt(ω) is a function
for all (ω, t). Then there exists a P̃-measurable mapping Φ: R+ × Ω × Rd → C

such that for all (t, ω), Φ(t, ω, ·) = Fϕt(ω)(·) λd-a.e.
Proof. Since F maps S ′

C
(Rd) continuously into S ′

C
(Rd)

Φψ : R+ × Ω→ C, (t, ω) 7→
∫

Rd

(Fϕt(ω))(x)ψ(x) dx

is predictable, that is P-measurable for all ψ ∈ SC(Rd). Hence by a Monotone
Class Lemma argument, Φψ is predictable for all bounded measurable functions
ψ : Rd → C with compact support. In particular, for all compact sets K ⊆ Rd, the
mapping R+ × Ω → L1

C
(K) : (t, ω) 7→ Fϕt(ω)|K is weakly measurable and hence

(strongly) measurable by Pettis’ theorem since L1
C

(K) is a separable Banach space.
By applying [2], Exc. 1.75, there exists a P̃-measurable mapping ΦK : R+×Ω×Rd →
C such that for all (t, ω), Φ(t, ω, ·) = Fϕt(ω)(·) λd|K-a.e., which shows the existence
of Φ since K was arbitrary and Rd is a countable union of compact sets.

Notice that ΛX is Dalang’s space P considered in [1], page 9, with a few modi-
fications: We consider the time interval [0,∞) rather than [0, T ] and as mentioned
above our X does in general not induce a martingale measure. For ϕ ∈ ΛX define

∫ ∞

0

∫

Rd

ϕdX :=

∫ ∞

0

∫

Rd

(Fϕt)(x) dZ.

By the above lemma, the integral is well-defined and maps ΛX into L2
R

(P). On ΛX

define the norm ‖·‖ΛX
as

‖ϕ‖2
ΛX

:=
∥∥∥
∫ ∞

0

∫

Rd

ϕdX
∥∥∥

2

L2
R

(P)
= E

[ ∫ ∞

0

∫

Rd

|(Fϕt)(x)|2 dt F (dx)
]
.

The integral with respect to X just defined extends the simple integral since if ϕ is
given by (4.1) then, by definition,

∫ ∞

0

∫

Rd

ϕdX = c1G

(∫

Rd

F1(u,v](x)Zs2(dx)−
∫

Rd

F1(u,v](x)Zs1(dx)
)

= c1F
(
X((0, s2]× (u, v])−X((0, s1]× (u, v])

)
= c1FX((s1, s2]× (u, v]),
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where the second equality is due to (2.9). Moreover, if ψ : R→ S ′
R

(Rd) is measur-
able, then the integral

∫∞
0

∫
Rd ψ dX exists if and only if ψ ∈ ΛX , that is, Fψt is a

function satisfying
∫
R1+d |Fψt(x)|2dtF (dx) <∞. Thus, in view of the the first part

of Theorem 4.2 below, this improves Theorem 3 in [1].

Theorem 4.2. The real linear span of processes given by (4.1) is dense in ΛX .
Moreover, the following three statements are equivalent:

(a) f satisfies (3.6),

(b) ΛX equipped with the norm ‖·‖ΛX
is complete,

(c) to every G∞-measurable random variable V ∈ L2
R

(P) there is a ϕ ∈ ΛX such
that

V = E[V ] +

∫ ∞

0

∫

Rd

ϕdX. (4.2)

Proof. The first part: Using Lemma 3.3 and Lemma 4.1 it suffices to show that when-
ever ϕ ∈ L2

C
(Z) is of the form ϕt(ω, x) = 1F (ω)1(s1,s2](t)ψ(x), where ψ ∈ L̃2

C
(F ) then

there is a sequence (ϕn)n≥1 in L2
C

(Z) of the form ϕn,t(ω, x) = 1F (ω)1(s1,s2](t)Fψn(x)
where ψn ∈ E (see (3.1)) approximating ϕ in ΛX . However, this follows since by
Lemma 3.6 the ψn’s can be chosen such that Fψn approximate ψ in L2

C
(F ).

(b) implies (a): Assume that ΛX is complete. The set of ϕ given by ϕt(ω) =
1(0,1](t)ψ, where ψ ∈ S ′

R
(Rd)is such that Fψ is a function, forms a closed and

hence complete subset of ΛX that can be identified with Λdist. Hence, the latter is
complete, showing by Theorem 3.5 that we have (3.6).

(a) implies (c): Assume (3.6). Every ψ ∈ L̃2
C

(Z) is given by ψt(ω, x) = Fρt(ω, x)
for some ρ ∈ ΛX . Indeed, by disregarding a null set if necessary we may and do
assume that ψt(ω) ∈ L̃2

C
(F ) for all (t, ω). By Theorem 3.5, F(Λdist) = L̃2

C
(F ) so we

can use ρt(ω) := F−1ψt(ω). Hence, it suffices to show that V can be written as

V = E[V ] +

∫ ∞

0

∫

Rd

ψ dZ for some ψ ∈ L̃2
C

(Z).

In the following fix n ≥ 1 and A1, . . . , An ∈ Bb(Rd) satisfying Aj ∩ (−Aj) = ∅ for all
j and (A1 ∪ (−A1)) ∩ . . . ∩ (An ∪ (−An)) = ∅. Define M j and N j as

M j
t = Zt(Aj) and N j

t = Zt(−Aj).
Decompose M j

t in the real and imaginary parts as M j
t = M1,j

t + iM2,j
t . The two

processes M1,j and M2,j are independent Brownian motions by Remark 2.2. Thus,
if V j is any real-valued square integrable random variable measurable with respect
to the σ-algebra generated by (M1,j,M2,j) there are two (Gt)-predictable processes
α1,j, α2,j : R× Ω→ R satisfying

V j = E[V j] +

∫ ∞

0

α1,j
t dM1,j

t +

∫ ∞

0

α2,j
t dM2,j

t P-a.s.

(These two processes are even predictable in the filtration generated by (M1,j,M2,j).)
Using that, by Definition 2.1(2), N j

t = M j
t , it is readily seen that the right-hand

side equals

E[V j] +

∫ ∞

0

βjt dM
j
t +

∫ ∞

0

βjt dN
j
t ,
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where βjt = (α1,j
t − iα2,j

t )/2. Thus,

V j = E[V j] +

∫ ∞

0

∫

Rd

ϕjdZ,

where ϕjt(x) = 1Aj
(x)βjt + 1−Aj

(x)βjt . By the assumptions on the Ajs, the martin-
gales M1,j,M2,j, j = 1, . . . , n, are orthogonal, so Itô’s formula implies

n∏

j=1

V j =
n∏

j=1

E[V j] +
n∑

j=1

∫ ∞

0

∫

Rd

(
∏

k:k 6=j
Mϕk

s )ϕjs(y)Z(ds, dy).

This gives (4.2) when V =
∏n

j=1 V
j from which the general case follows using the

Monotone Class Lemma.
(c) implies (b): Follows from completeness of L2

R
(P).
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