
CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

RESEARCH REPORT
www.csgb.dk

2011
Yongtao Guan, Abdollah Jalilian and Rasmus Waagepetersen

Optimal Estimation of the Intensity Function
of a Spatial Point Process

No. 07, November 2011



Optimal Estimation of the Intensity Function of a
Spatial Point Process

Yongtao Guan1, Abdollah Jalilian2 and Rasmus Waagepetersen3

1Department of Management Science, University of Miami„ Coral Gables, Florida
33124-6544, USA

2Department of Statistics, Razi University, , Bagh-e-Abrisham, Kermanshah,
67149-67346, Iran

3Department of Mathematical Sciences, Aalborg University„ Fredrik Bajersvej 7G,
DK-9220 Aalborg, Denmark

Abstract

Although optimal from a theoretical point of view, maximum likelihood es-
timation for Cox and cluster point processes can be cumbersome in practice
due to the complicated nature of the likelihood function and the associated
score function. It is therefore of interest to consider alternative more easily
computable estimating functions. We derive the optimal estimating function
in a class of first-order estimating functions. The optimal estimating function
depends on the solution of a certain Fredholm integral equation and reduces
to the likelihood score in case of a Poisson process. We discuss the numerical
solution of the Fredholm integral equation and note that a special case of the
approximated solution is equivalent to a quasi-likelihood for binary spatial
data. The practical performance of the optimal estimating function is evalu-
ated in a simulation study and a data example.

Keywords: Estimating function, Fredholm integral equation, Godambe infor-
mation, Intensity function, Quasi-likelihood, Spatial point process.

1 Introduction

Maximum likelihood estimation for spatial point processes such as Cox and cluster
point processes is in general not easy from a computational point of view (see e.g.
Møller and Waagepetersen, 2004). The intensity function on the other hand often has
a simple explicit form and this enables the construction of simple estimating func-
tions. For example, composite likelihood arguments (e.g. Møller and Waagepetersen,
2007) lead to an estimating function that is equivalent to the score of the Poisson
maximum likelihood function. This provides a computationally tractable estimating
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function for estimation of parameters in the intensity function. Theoretical prop-
erties of the resulting estimator are well understood, see e.g. Schoenberg (2005),
Waagepetersen (2007) and Guan and Loh (2007).

A drawback of the Poisson score function approach is the loss of efficiency since
possible dependence between points is ignored. In the context of intensity estima-
tion, it appears that only Mrkvička and Molchanov (2005) and Guan and Shen
(2010) have tried to incorporate second-order properties (e.g. the pair correlation
function which is often available in explicit forms for processes such as Cox and
cluster point processes) in the estimation so as to improve efficiency. Mrkvička and
Molchanov (2005) show that their proposed estimator is optimal among a class of
linear, unbiased intensity estimators, where the word ‘optimal’ refers to minimum
variance. However, their approach is restricted to a special type of spatial point pro-
cesses whose intensity function is given up to an unknown scaling factor. In contrast,
Guan and Shen (2010) propose a weighted estimating equation approach that is ap-
plicable to intensity functions in more general forms. However, a similar optimality
result cannot be established for their approach. We show in Section 3.2 that the
optimality result in Mrkvička and Molchanov (2005) is a special case of our more
general result, and that the estimation method in Guan and Shen (2010) is only a
crude approximation of our new approach.

For many types of correlated data other than spatial point patterns, estimating
function based procedures have been widely used for model fitting when maximum
likelihood estimation is computationally challenging. Examples of such data include
longitudinal data (Liang and Zeger, 1986), time series data (Zeger, 1988), clustered
failure time data (Gray, 2003) and spatial binary or count data (Gotway and Stroup,
1997; Lin and Clayton, 2005). For most of these methods, the inverse of a covariance
matrix is used in their formulations as a way to account for the correlation in data,
and optimality can be established when the so-called quasi-score estimating func-
tions are used (Heyde, 1997). For spatial point processes, a similar covariance matrix
cannot be constructed because the data are defined over a continuous spatial domain
and hence are of infinite dimension. Heyde (1997) discusses generalizations of the
quasi-score estimating functions to processes that are defined over continuous time
and possess a special semimartingale representation. However, such a representation
is generally not possible for spatial point processes.

In this paper we develop an optimal estimating function for intensity estimation
that takes into account possible spatial correlation. The optimal estimating function
depends on the solution of a certain Fredholm integral equation and reduces to the
likelihood score in case of a Poisson process. We derive asymptotic properties of
the resulting parameter estimator, and discuss the practical implementation of our
proposed method based on a numerical solution of the Fredholm integral equation.
We further show that a discretized version of our method is closely related to the
quasi-likelihood for spatial data (Gotway and Stroup, 1997; Lin and Clayton, 2005).
Our work hence not only lays the theoretical foundation for optimal intensity esti-
mation, but also fills in a critical gap between existing literature on spatial point
processes and other types of (discrete) stochastic processes. We illustrate the supe-
rior performance of our proposed approach over existing ones through a simulation
study, and we apply it to some real data examples.
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2 Background

2.1 Intensity and Pair Correlation Function

Let X be a point process on R2 and let N(B) denote the number of points in X ∩B
for any bounded set B ⊆ R2. The first- and second-order moments of the counts
N(B) are determined by the intensity function ρ(·) and the pair correlation function
g(·, ·), respectively, see Møller and Waagepetersen (2004). More precisely,

EN(B) =

∫

B

ρ(u)du (2.1)

and

Cov[N(A), N(B)] =

∫

A∩B
ρ(u)du +

∫

A

∫

B

ρ(u)ρ(v)[g(u,v)− 1]dudv (2.2)

for bounded sets A,B ⊆ R2. For convenience of exposition we assume that g(u,v)
only depends on the difference u−v since this is the common assumption in practice.
In the following we thus let g(r) denote the pair correlation function for two points
u and v with u − v = r. However, our proposed optimal estimating function is
applicable also in the case of a non-translation invariant pair correlation function.

2.2 Composite Likelihood

Assume that the intensity function is given in terms of a parametric model ρ(u) =
ρ(u;β), where β = (β1, . . . , βp) ∈ Rp is a vector of regression parameters. Popular
choices of the parametric model include linear and log linear models, ρ(u;β) =
z(u)βT and log ρ(u;β) = z(u)βT, where z(u) = (z1(u), . . . , zp(u)) is a covariate
vector for each u ∈ R2. A first-order log composite likelihood function (Schoenberg,
2005; Waagepetersen, 2007) for estimation of β is given by

∑

u∈X∩W
log ρ(u;β)−

∫

W

ρ(u;β)du, (2.3)

where W ⊂ R2 is the observation window. This can be viewed as a limit of log
composite likelihood functions for binary variables Yi = 1[N(Bi) > 0], i = 1, . . . ,m,
where the cells Bi form a disjoint partitioning of W and 1[·] is an indicator function
(e.g. Møller and Waagepetersen, 2007). The limit is obtained when the number of
cells tends to infinity and the areas of the cells tend to zero. In case of a Poisson
process, the composite likelihood coincides with the likelihood function.

The composite likelihood is computationally simple and enjoys considerable pop-
ularity in particular in studies of tropical rain forest ecology where spatial point
process models are fitted to huge spatial point pattern data sets of rain forest tree
locations (see e.g. Shen et al., 2009; Lin et al., 2011). However, it is not statistically
efficient for non-Poisson data since possible correlations between counts of points
are ignored.
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3 An optimal first-order estimating equation

A first-order estimating function is an estimating function of the form

ef (β) =
∑

u∈X∩W
f(u)−

∫

W

f(u)ρ(u;β)du, (3.1)

where f(u) is a 1× p real function that possibly depends on β. Let Σf = Varef (β),
Jf = −def (β)/dβT and Sf = EJf . Note that E, Var, Σf , Jf and Sf all depend on β
but we suppress this dependence in this section for ease of presentation. The matrix
Sf is called the sensitivity and SfΣ

−1
f Sf is the Godambe information. Our aim is to

find a function φ so that eφ is optimal in the sense that

SφΣ−1φ Sφ − SfΣ
−1
f Sf (3.2)

is non-negative definite for all f : W → Rp, i.e., eφ has maximal Godambe infor-
mation. Let êφ(β) = ef (β)Σ−1f Σfφ be the optimal linear predictor of eφ(β) given
ef (β) where Σfφ = Cov[ef (β), eφ(β)]. Then

Var[êφ(β)− eφ(β)] = Σφ −ΣφfΣ
−1
f Σfφ

is non-negative definite whereby

SφΣ−1φ Sφ − SφΣ−1φ ΣφfΣ
−1
f ΣfφΣ−1φ Sφ

is non-negative definite too. Hence, (3.2) is non-negative definite provided

SφΣ−1φ Σφf = Sf

which holds if Σφf = Sf for all f (in particular, this implies Σφ = Σφφ = Sφ). By
the Campbell formulae (e.g. Møller and Waagepetersen, 2004, Chapter 4),

Σφf =

∫

W

fT(u)φ(u)ρ(u;β)du +

∫

W 2

fT(u)φ(v)ρ(u;β)ρ(v;β)[g(u− v)− 1]dudv,

Sf =

∫

W

fT(u)ρ′(u;β)du,

where ρ′(u;β) = dρ(u;β)/dβ. Hence, Sf = Σφf is equivalent to
∫

W

fT
β (u)

{
ρ′(u;β)−φ(u)ρ(u;β)−ρ(u;β)

∫

W

φ(v)ρ(v;β)[g(u−v)−1]dv
}

du = 0.

Assuming ρ > 0 we should thus choose φ as a solution of the Fredholm integral
equation (e.g. Hackbusch, 1995, Chapter 3)

φ =
ρ′

ρ
−Tφ, (3.3)

where T is the operator given by

(Tf)(u) =

∫

W

t(u,v)f(v)dv with t(u,v) = ρ(v;β)[g(u− v)− 1]. (3.4)
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Assume that ρ and g are continuous so that T is compact in the space of con-
tinuous functions on W (Hackbusch, 1995, Theorem 3.2.5) and moreover that −1 is
not an eigenvalue (we return to this condition in the next section). It then follows
by Theorem 3.2.1 in Hackbusch (1995) that (3.3) has a unique solution

φ = (I + T)−1
ρ′

ρ
,

where I is the identity operator (or, depending on context, the identity matrix) and
(I + T)−1 is the bounded linear inverse of I + T. We define

e(β) = eφ(β) =
∑

u∈X∩W
φ(u)−

∫

W

φ(u)ρ(u;β)du, (3.5)

Σ = Vare(β), J = −de(β)/dβT, S = EJ

where by the above derivations,

S = Σ =

∫

W

φT(u)ρ′(u;β)du. (3.6)

In the Poisson process case where g(·) = 1, (3.5) reduces to

∑

u∈X∩W

ρ′(u;β)

ρ(u;β)
−
∫

W

ρ′(u;β)du

which is precisely the score of the Poisson log likelihood (2.3).

3.1 Condition for non-negative eigenvalues of T

In general it is difficult to assess the eigenvalues of T given by (3.4). However,
suppose that g − 1 is non-negative definite so that Ts is a positive operator (i.e.,∫
W

fT(u)(Tsf)(u)du ≥ 0) where Ts is given by the symmetric kernel

ts(u,v) = ρ(u;β)1/2ρ(v;β)1/2
[
g(u− v)− 1

]
.

Then all eigenvalues of Ts are non-negative (Lax, 2002, Corollary 1, p. 320). In
particular, −1 is not an eigenvalue. The same holds for T since it is easy to see that
the eigenvalues of T coincide with those of Ts.

The assumption of a non-negative definite g(·)−1 is valid for the wide class of Cox
point processes which in turn includes the class of cluster processes with Poisson
clusters. For a Cox process driven by a random intensity function Λ, g(u, v) =
1 + Cov[Λ(u),Λ(v)]/[ρ(u)ρ(v)] so that g(·)− 1 is non-negative definite.

3.2 Relation to Existing Methods

Suppose we approximate the operator T by

(Tf)(u) =

∫

W

f(v)ρ(v;β)[g(u−v)−1)]dv ≈ ρ(u;β)f(u)

∫

W

[g(u−v)−1]dv. (3.7)
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This is justified if f(v)ρ(v;β) is close to f(u)ρ(u;β) for the v where g(u − v) − 1
differs substantially from zero. Then the Fredholm integral equation (3.3) can be
approximated by

φ =
ρ′

ρ
− ρAφ,

where
A(u) =

∫

W

[
g(u− v)− 1

]
dv.

We hence obtain an approximate solution φ = wρ′/ρ with w(u) = [1+ρ(u;β)A(u)]−1.
Using this approximation in (3.5) we obtain the estimating function

∑

u∈X∩W
w(u)

ρ′(u;β)

ρ(u;β)
−
∫

W

w(u)ρ′(u;β)du,

which is precisely the weighted Poisson score suggested in Guan and Shen (2010).
Mrkvička and Molchanov (2005) derived optimal intensity estimators in the sit-

uation of ρ(u;λ) = λγ(u) for some known function γ(u) and unknown parameter
λ > 0. Since λ is the only unknown parameter, a direct application of (3.3) yields

λφ(u) + λ2
∫

W

φ(v)γ(v)
[
g(u− v)− 1

]
dv = 1,

which is essentially the same as the result in Theorem 2.1 of Mrkvička and Molchanov
(2005).

3.3 Solution Using Neumann Series Expansion

Suppose that ‖T‖op = sup{‖Tf‖∞/‖f‖∞ : ‖f‖∞ 6= 0} < 1 where ‖f‖∞ denotes the
supremum norm of a continuous function f on W . Then we can obtain the solution
φ of (3.3) using a Neumann series expansion which may provide additional insight
on the properties of φ. More specifically,

φ =
∞∑

k=0

(−T)k
ρ′

ρ
. (3.8)

If the infinite sum in (3.8) is truncated to the first term (k = 0) then (3.5) becomes
the Poisson score. Note that

‖T‖∞ ≤ sup
u∈W

∫

W

|t(u,v)|dv.

Hence, a sufficient condition for the validity of the Neumann series expansion is

sup
u∈W

ρ(u;β)

∫

R2

∣∣g(r)− 1
∣∣dr < 1. (3.9)

Condition (3.9) roughly requires that g(r) − 1 does not decrease too slowly to
zero and/or that ρ is moderate. For example, suppose that g is the pair correla-
tion function of a Thomas cluster process (e.g. Møller and Waagepetersen, 2004,
Chapter 5),

g(r)− 1 = exp
[
− ‖r‖2/(4ω2)

]
/(4πω2κ), for some κ, ω > 0, (3.10)
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where κ is the intensity of the parent process and ω is the normal dispersal param-
eter. Then, ∫

R2

∣∣g(r)− 1
∣∣dr =

1

4πκω2

∫

R2

exp(−‖r‖
2

4ω2
)dr = 1/κ

and (3.9) is equivalent to supu∈W ρ(u;β) < κ. In this case, Condition (3.9) can be
quite restrictive. However, the Neumann series expansion is not essential for our
approach and we use it only for checking the conditions for asymptotic results; see
Appendix A.

4 Asymptotic theory

Let Wn ⊂ R2 be an increasing sequence of observation windows in R2. We assume
that the true pair correlation function is given by a parametric model g(r) = g(r;ψ)
for some unknown parameter vector ψ ∈ Rq. Let θ = (β,ψ) ∈ Rp+q. We denote the
true value of θ by θ∗ = (β∗,ψ∗). In what follows, E and Var denote expectation
and variance under the distribution corresponding to θ∗.

Introducing the dependence on n and θ in the notation from Section 3, we have

φn,θ(u,β) =
[
(I + Tn,θ)

−1ρ
′(·;β)

ρ(·;β)

]
(u), (Tn,θf)(u) =

∫

Wn

tθ(u,v)f(v)dv

and
tθ(u,v) = ρ(v;β)

[
g(u− v;ψ)− 1

]
.

Following Section 5.3 we replace θ in the kernel tθ by a preliminary estimate
θ̃n = (β̃n, ψ̃n). The estimating function (3.5) then becomes en,θ̃n(β) where

en,θ(β) =
∑

u∈X∩Wn

φn,θ(u,β)−
∫

Wn

φn,θ(u,β)ρ(u;β)du.

Let β̂n denote the estimator obtained by solving en,θ̃n(β) = 0. Further, define

Σ̄n = |Wn|−1Varen,θ∗(β∗), Jn,θ(β) = − d

dβT en,θ(β)

and S̄n,θ(β) = |Wn|−1EJn,θ(β).

Note that Σ̄n and S̄n,θ(β) are ‘averaged’ versions of Σn = Varen,θ∗(β∗) and Sn,θ(β) =
EJn,θ(β).

In Appendix B we verify the existence of a |Wn|1/2 consistent sequence of so-
lutions β̂n, i.e., |Wn|1/2(β̂n − β∗) is bounded in probability. We further show in
Appendix C that |Wn|−1/2en,θ̃n(β∗)Σ̄−1/2n is asymptotically standard normal. The
conditions needed for these results are listed in Appendix A. It then follows by a
Taylor series expansion,

|Wn|−1/2en,θ̃n(β∗)Σ̄−1/2n = |Wn|1/2(β̂n − β∗)
Jn,θ̃n(bn)

|Wn|
Σ̄−1/2n
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for some bn ∈ Rp satisfying ‖bn−β∗‖ ≤ ‖β̂n−β∗‖, and R2 and R3 in Appendix B
that

|Wn|1/2(β̂n − β∗)S̄n,θ∗(β∗)Σ̄−1/2n → Np(0, I).

Hence, for a fixed n and since Σ̄n = S̄n,θ∗(β∗) by (3.6), β̂n is approximately normal
with mean β∗ and covariance matrix estimated by |Wn|−1S̄−1n,(ψ̃n,β̂n)

(β̂n).

5 Implementation

In this section we discuss practical issues concerning the implementation of our
proposed optimal estimating function.

5.1 Numerical Approximation

To estimate φ, consider the numerical approximation

(Tφ)(u) =

∫

W

t(u,v)φ(v)dv ≈
m∑

i=1

t(u,ui)φ(ui)wi, (5.1)

where ui, i = 1, . . . ,m, are quadrature points with associated weights wi. An esti-
mate φ̂(ui) of φ(ui) is obtained by solving the linear equations,

φ(ui) +
m∑

j=1

t(ui,uj)φ(uj)wj =
ρ′(ui;β)

ρ(ui;β)
, i = 1, . . . ,m.

The Nyström approximate solution of (3.3) is simply

φ̂(u) =
ρ′(u;β)

ρ(u;β)
−

m∑

i=1

t(u,ui)φ̂(ui)wi. (5.2)

Provided the quadrature scheme is convergent, it follows by Lemma 4.7.4, Lemma 4.7.6
and Theorem 4.7.7 in Hackbusch (1995) that ‖φ−φ̂‖∞ converges to zero asm→∞.
This justifies the use of the Nyström method to obtain an approximate solution of
the Fredholm integral equation.

Replacing φ in (3.5) by φ̂, we obtain the estimating function

∑

u∈X∩W
φ̂(u)−

∫

W

φ̂(u)ρ(u;β)du. (5.3)

In many cases, the integral in (5.3) has to be numerically approximated. Although
a more general quadrature rule could be used, we for simplicity adopt the same rule
used to approximate (Tφ)(u). Then, (3.5) is approximated by

ê(β) =
∑

u∈X∩W
φ̂(u)−

m∑

i=1

φ̂(ui)ρ(ui;β)wi. (5.4)
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To estimate β, we solve ê(β) = 0 iteratively using Fisher scoring. Suppose that the
current estimate is β(l). Then β(l+1) is obtained by the Fisher scoring update

β(l+1) = β(l) + ê(β(l))Ŝ−1, (5.5)

where

Ŝ =
m∑

i=1

φ̂(ui)
Tρ′(ui;β)wi.

is the numerical approximation of the sensitivity matrix S =
∫
W
φT(u)ρ′(u;β)du.

The simplest quadrature scheme is Riemann quadrature in which case (5.4) and
(5.5) takes the form of quasi-likelihood and iterative generalized least squares, re-
spectively, see Section 5.2.

5.2 Implementation as quasi-likelihood

Suppose that we are using the simple Riemann quadrature in (5.1). Then the wi’s
correspond to areas of some sets Bi that partition W and for each i, ui ∈ Bi.
Let Yi denote the number of events in Bi and define µi = ρ(ui;β)wi. If the Bi’s are
sufficiently small so that the Yi’s are binary then (5.4) is approximately equal to

m∑

i=1

φ̂(ui)(Yi − µi). (5.6)

Further, by (2.1) and (2.2), EYi ≈ µi and

Cov(Yi, Yj) = 1(i = j)

∫

Bi

ρ(u;β)du +

∫

Bi×Bj

ρ(u;β)ρ(v;β)
[
g(u− v)− 1

]
dudv

≈ Vij = µi1(i = j) + µiµj
[
g(ui,uj)− 1

]
.

Define Y = (Yi)i, µ = (µi)i and V = [Vij]ij. Then EY ≈ µ and CovY ≈ V.
Moreover, from (5.2), [φ̂(ui)]i = V−1D where D = dµT/dβ is the m× p matrix of
partial derivatives dµi/dβj. Hence, (5.6) becomes

(Y − µ)V−1D, (5.7)

which is formally a quasi-likelihood score for spatial data Y with mean µ and
covariance matrix V (Gotway and Stroup, 1997).

Similarly, Ŝ = DTV−1D and substituting ê in (5.5) by (5.7), we obtain the
iterative generalized least squares equation

(β(l+1) − β(l))D(β(l))TV(β(l))−1D(β(l)) = [Y − µ(β(l))]V(β(l))−1D(β(l)), (5.8)

where we have used the notation D(β), V(β) and µ(β) to emphasize the dependence
of D, V, and µ on β.
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5.3 Preliminary Estimation of Intensity and Pair
Correlation

Using the notation from Section 5.2, V = V
1/2
µ (I + G)V

1/2
µ where Vµ = Diag(µi)

and
Gij =

√
µiµj

[
g(ui,uj)− 1

]

so that G = [Gij]ij is the matrix analogue of the symmetric operator Ts from Sec-
tion 3.1. In general g is unknown and must be replaced by an estimate. Moreover it
is advantageous if G is fixed in order to avoid the computational burden of repeated
matrix inversion in the generalized least squares iterations (5.8).

As in Section 4, we assume that g(r) = g(r;ψ) where g(·;ψ) is a translation
invariant parametric pair correlation function model. We replace ψ and β inside G
by preliminary estimates β̃ and ψ̃ which are fixed during the iterations (5.8). The
estimates β̃ and ψ̃ can be obtained using the two-step approach in Waagepetersen
and Guan (2009) where β̃ is obtained from the composite likelihood function and ψ̃
is a minimum contrast estimate based on the K-function. If translation invariance
can not be assumed, ψ may instead be estimated by using a second-order composite
likelihood as in Jalilian et al. (2011).

5.4 Tapering

The matrix V can be of very high dimension. However, many entries in V are
very close to zero and we can therefore approximate V by a sparse matrix Vtaper

obtained by tapering (e.g. Furrer et al., 2006). More precisely, we replace G in V by
a matrix Gtaper obtained by assigning zero to entries Gij below a suitable threshold.
We then compute a sparse matrix Cholesky decomposition, I + Gtaper = LLT. Then
(Y−µ)V

−1/2
µ (I+Gtaper)

−1 can be easily computed by solving the equation xLLT =

(Y − µ)V
−1/2
µ in terms of x using forward and back substitution for the sparse

Cholesky factors L and LT, respectively.
In practice, it is often assumed that g(r) = g0(‖r‖) for some function g0. If

g0 is a decreasing function of ‖r‖ then we may define the entries in Gtaper as
Gij1[‖ui − uj‖ ≤ dtaper], where dtaper solves [g0(d) − 1]/[g0(0) − 1] = ε for some
small ε. That is, we replace entries Gij by zero if g0(‖ui − uj‖) − 1 is below some
small percentage of the maximal value g0(0)− 1.

When V in (5.8) is replaced by Vtaper we obtain the following estimate of the
covariance matrix of β̂:

S−1taperD
TV−1taperV V−1taperDS−1taper (5.9)

where Staper = DTV−1taperD. Note that it is not required to invert the non-sparse
covariance matrix V in order to compute (5.9).

6 Simulation study and data example

To examine the performance of our optimal intensity estimator, we carry out a
simulation study under the Guan and Shen (2010) setting. We moreover apply our
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estimator to three tropical rain forest data sets. We use the quasi-likelihood imple-
mentation of our estimator as described in Sections 5.2-5.4 and hence for convenience
we use in the following the term quasi-likelihood for our approach.

6.1 Simulation Study

In the simulation study, following Guan and Shen (2010), realizations of Cox pro-
cesses are generated on a square window W . Each simulation involves first the gen-
eration of a zero-mean Gaussian random field Z = {Z(u)}u∈W with exponential
covariance function c(u) = exp(−‖u‖/0.1) and then the generation of an inhomoge-
neous Thomas process given Z with intensity function ρ(u;β) = exp

[
β0 + β1Z(u)

]

and clustering parameter ψ = (κ, ω), cf. (3.10). For each simulation β = (β0, β1) is
estimated using composite likelihood (CL), weighted composite likelihood (WCL),
and quasi-likelihood (QL). The clustering parameter ψ is estimated using mini-
mum contrast estimation based on the K-function (e.g. Section 10.1 in Møller and
Waagepetersen, 2004).

The simulation window is either W = [0, 1]2 or W = [0, 2]2. The mean square
error (MSE) of the CL, WCL and QL estimates is computed using 1000 simulations
for each combination of different clustering levels (i.e., different expected numbers of
clusters κ∗ = 100 or 200 and different cluster radii ω∗ = 0.02 or 0.04), inhomogeneity
levels (β∗1 = 0.5 or 1), and expected number of points (400 in the case of W = [0, 1]2

and 1600 in the case of W = [0, 2]2). The integral terms in the CL, WCL and QL
estimating equations are approximated using a 50 × 50 grid for W = [0, 1]2 and
a 100 × 100 grid for W = [0, 2]2. Tapering for QL is carried out as described in
Section 5.4 using dtaper obtained with ε = 0.01 for each estimated pair correlation
function g(·; ψ̂). For WCL we use A(u) ≈ K(dtaper; ψ̂)− πd2taper where

K(t;ψ) =

∫

‖r‖≤t
g(r;ψ)dr.

Table 1 shows the reduction in MSE for the WCL and QL estimators relative
to the CL estimator. The reductions show that one can obtain more efficient esti-
mates of the intensity function by taking into account the correlation structure of
the process. As expected from the theoretical results, the QL estimator has supe-
rior performance compared with both the CL and the WCL estimators in all cases.
The improvement over the CL estimator is especially substantial in the more clus-
tered (corresponding to small κ∗ and ω∗) and more inhomogeneous (corresponding
to β∗1 = 1) cases where the largest reduction is 68.5%. As we alluded in Section 3.2,
the performance of the WCL estimator may rely on the validity of the approxima-
tion (3.7). In case of a longer dependence range, the approximation is expected to be
less accurate and this explains the large drop in the efficiency of the WCL estimator
relative to the CL estimator when ω∗ increases from 0.02 to 0.04. In particular, the
WCL estimator does not appear to perform any better than the CL estimator when
ψ∗ = (200, 0.04). In contrast, the QL estimator still gives significant reductions in
MSE of size 10% to 26% depending on the value of β∗1 and W .
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Table 1: Reduction (%) in MSE (summed for β0 and β1) for WCL and QL relative to CL.

W = [0, 1]2 W = [0, 2]2

ψ∗ = (κ∗, ω∗)
β∗1 = 0.5 β∗1 = 1.0 β∗1 = 0.5 β∗1 = 1.0

WCL QL WCL QL WCL QL WCL QL

(100, 0.02) 15.6 35.9 41.4 59.3 17.2 39.7 52.2 68.5
(100, 0.04) 1.5 34.4 14.2 42.2 11.9 38.9 13.6 55.1
(200, 0.02) 4.9 15.4 20.2 34.0 8.6 19.9 26.3 40.0
(200, 0.04) −3.5 16.5 3.0 26.2 2.0 10.3 −7.5 18.0

6.2 Data Example

Figure 1 shows the spatial locations of three tree species, Acalypha diversifolia (528
trees), Lonchocarpus heptaphyllus (836 trees) and Capparis frondosa (3299 trees),
in a 1000m× 500m observation window on Barro Colorado Island (Condit et al.,
1996; Condit, 1998; Hubbell and Foster, 1983). We moreover consider ten covariates:
pH, elevation (dem), slope gradient (grad), multiresolution index of valley bottom
flatness (mrvbf), incoming mean solar radiation (solar), topographic wetness index
(twi) as well as soil contents of copper (Cu), potassium (K), mineralized nitrogen
(Nmin) and phosphorus (P).

We fit a Cox process model with a log-linear intensity function including all
ten covariates to each of the three tree species using CL, WCL and QL. For each
species we fit the following pair correlation functions of normal variance mixture
type (Jalilian et al., 2011):

g(r;ψ) = 1 + c(r;ψ), r ∈ R2,

where the covariance function c(r;ψ) is either Gaussian

c(r; (σ2, α)) = σ2 exp
[
− (‖r‖/α)2

]
,

Matérn (Kν is the modified Bessel function of the second kind)

c(r; (σ2, α, ν)) = σ2 (‖r‖/α)νKν(‖r‖/α)

2ν−1Γ(ν)
,

or Cauchy
c(r; (σ2, α)) = σ2

[
1 + (‖r‖/α)2

]−3/2
.

These covariance function represent very different tail-behaviour ranging from light
(Gaussian), exponential (Matérn), to heavy tails (Cauchy). The pair correlation
function obtained with the Gaussian covariance function is just a reparametrization
of the Thomas process pair correlation function (3.10). For the Matérn covariance
we consider three different values of the shape parameter ν = 0.25, 0.5 and 1.
With ν = 0.5 the exponential model c[r; (σ2, α, 0.5)] = σ2 exp(−‖r‖/α) is obtained
while ν = 0.25 and 1 yields respectively a log convex and a log concave covariance
function. The WCL and QL estimations were implemented as in the simulation
study but using a 200× 100 grid for the numerical quadrature.
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Figure 1: Locations of Acalypha, Lonchocarpus, and Capparis trees and image of inter-
polated potassium content in the surface soil (from top to bottom).

Figure 2 shows c(·; ψ̂) = g(·; ψ̂) − 1 for the best fitting (in terms of the mini-
mum contrast criterion for the corresponding K-function) pair correlation functions:
Cauchy for Acalypha, Matérn (ν = 0.5) for Loncocharpus and Matérn (ν = 0.25)
for Capparis. The so-called integral ranges for these fitted functions, which are ob-
tained by integrating c(·; ψ̂)/c(0; ψ̂) on R2 (e.g. Chilès and Delfiner, 1999), are 2037,
2759, and 3320 for Acalypha, Loncocharpus and Capparis, respectively. Moreover,
the tapering distances are 21, 52 and 110 for the three species, respectively. The in-
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Figure 2: Best fitting covariance functions c(·; ψ̂) = g(·; ψ̂)− 1 for Acalypha (left), Lon-
cocharpus (middle), and Capparis (right).

tegral ranges and tapering distances show that the dependence range is the largest
for Capparis and smallest for Acalypha. The difference in the dependence ranges is
likely caused by the distinct seed dispersal modes of the three species (Wright et al.,
2007). Specifically, the seeds are dispersed by exploding capsules for Acalypha, by
the wind for Lonchocarpus and by birds and mammals for Capparis. Seidler and
Plotkin (2006) hypothesized that the modes of seed dispersal are reflected in the
spatial patterns of tree locations with tight clusters for exploding capsules, loose
clusters for bird and mammal dispersal and tightness of clustering somewhere in
between for species with wind dispersal.

Table 2 shows the CL, WCL and QL estimates, where the latter two estimates
were obtained by using the best fitting pair correlation models. Backward model
selection was carried out for all methods and the models shown in Table 2 only con-
tain covariates that were retained for at least one of the backward model selections.
In terms of WCL and QL, the resulting regression parameter estimates are nearly
identical for Acalypha, are in slightly less agreement for Lonchocarpus, but are very
different for Capparis. In particular, the QL estimate in case of slope gradient is
more than twice larger than the WCL estimate. The distinct levels of agreement
between the estimates from these two methods might be due to the difference in
the dependence ranges of these three species, as is also suggested by our simulation
study. Our main findings in terms of significance of the covariates also vary among
the three different methods. For Acalypha, elevation is found to be significant by
CL at the 5% level but not so by either WCL or QL. For Lonchocarpus, the QL
approach suggests that phosphorus is significant but topographic wetness index is
not, whereas CL and WCL suggest the opposite. For Capparis, slope gradient is
found to be significant by QL but not so by either CL or WCL. In all cases, the
smallest estimated standard errors are obtained with QL which is consistent with
our developed theory of optimality.

14



Table 2: Estimates of regression parameters and their estimated standard errors (in paran-
theses) using CL, WCL and QL. ∗ indicates significance at the 5% level.

Species/Covariance β̂

Acalypha

CL −6.91 + 0.021dem + 0.0047K
(77.34∗, 9.77∗, 1.153∗)× 10−3

WCL −6.90 + 0.017dem + 0.0046K
(77.23∗, 9.57, 1.137∗)× 10−3

Cauchy QL −6.90 + 0.016dem + 0.0047K
ψ̂ = (15.28, 4.61) (77.09∗, 9.54, 1.133∗)× 10−3

Lonchocarpus

CL −6.49− 0.021Nmin− 0.11P− 0.59pH− 0.11twi
(81.06∗, 7.45∗, 58.78, 282.89∗, 53.19∗)× 10−3

WCL −6.49− 0.023Nmin− 0.098P− 0.58pH− 0.12twi
(80.75∗, 7.04∗, 56.67, 272.24∗, 51.49∗)× 10−3

Matérn QL −6.49− 0.023Nmin− 0.12P− 0.55pH− 0.084twi
ψ̂ = (3.11, 11.62, 0.5) (80.15∗, 6.95∗, 55.23∗, 266.10∗, 45.47)× 10−3

Capparis

CL −5.07 + 0.028dem− 1.10grad + 0.0043K
(79.54∗, 9.98∗, 1200.36, 1.16∗)× 10−3

WCL −5.07 + 0.028dem− 0.91grad + 0.0042K
(79.43∗, 9.61∗, 1141.97, 1.14∗)× 10−3

Matérn QL −5.10 + 0.019dem− 2.50grad + 0.0039K
ψ̂ = (1.16, 21.37, 0.25) (77.77∗, 8.86∗, 935.02∗, 1.02∗)× 10−3

7 Discussion

We develop theory and methods for optimal estimation of the intensity function
of a spatial point process. Our proposed optimal intensity estimation method only
requires the specification of the intensity function and a pair correlation function.
Moreover, the estimation of the regression parameters can be expected to be quite
robust towards misspefication of the pair correlation function since the resulting
estimating equation is unbiased for any choice of pair correlation function. In the
data example we considered pair correlation functions obtained from covariance
functions of normal variance mixture type. Alternatively one might consider pair
correlation functions of the log Gaussian Cox process type (Møller et al., 1998), i.e.,
g(r) = exp

[
c(r)

]
, where c(·) is an arbitrary covariance function.

If a log Gaussian Cox process is deemed appropriate, a computationally feasi-
ble alternative to our approach is to use the method of integrated nested Laplace
approximation (INLA Rue et al., 2009) to implement Bayesian inference. However,
in order to apply INLA it is required that the Gaussian field can be approximated
well by a Gaussian Markov random field and this can limit the choice of covariance
function. For example, the accurate Gaussian Markov random field approximations
in Lindgren et al. (2011) of Gaussian fields with Matérn covariance functions are
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restricted to integer ν in the planar case. In contrast, our approach is not subject
to such limitations and can also be applied to non-log Gaussian Cox processes.

We finally note that for the Nyström approximate solution of the Fredholm
equation we used the simplest possible quadrature scheme using a Riemann sum for
a fine grid. This entails a minimum of assumptions regarding the integrand but at the
expense of a typically high-dimensional covariance matrix V. There may hence be
scope for further development considering more sophisticated numerical quadrature
schemes.
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Appendix A. Conditions and lemmas

To verify the existence of a |Wn|1/2 consistent sequence of solutions β̂n, we assume
that the following conditions are satisfied:

C1: ρ(u;β) = ρ(z(u)βT) where ρ(·) > 0 is twice continuously differentiable and
supu∈R2 ‖z(u)‖ < K1 for some K1 <∞.

C2: for some 0 < K2 <∞,
∫
R2

∣∣g(r;ψ∗)− 1
∣∣dr ≤ K2.

C3: φn,θ(u,β) is differentiable with respect to θ and β, and for |φn,θ(u,β)|,
|dφn,θ(u,β)/dβ| and |dφn,θ(u,β)/dθ|, the supremum over u ∈ R2, β ∈
b(β∗, K3), θ ∈ b(θ∗, K3) is bounded for some K3 > 0, where b(x, r) denotes
the ball centered at x with radius r > 0.

C4: |Wn|1/2(θ̃n − θ∗) is bounded in probability.

C5: lim infn ln > 0, where for each n, ln denotes the minimal eigenvalue of

S̄n,θ∗(β∗) = |Wn|−1EJn,θ∗(β∗) = |Wn|−1
∫

Wn

φn,θ∗(u)Tρ′(u;β∗)du.

Condition C1 and C2 imply L1 and L2 below.

L1: for ρ(u;β), ρ′(u;β) and ρ′′(u;β), the supremum over u ∈ R2, β ∈ b(β∗, K3),
θ ∈ b(θ∗, K3) is bounded.
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L2: for a function h : R2 → R,

Var
∑

u∈X∩Wn

h(u) ≤ |Wn|
[
1 + sup

u∈Wn

ρ(u;β∗)K2

]
sup
u∈Wn

h(u)2 sup
u∈Wn

ρ(u;β∗).

In particular, |Wn|−1Var
∑

u∈X∩Wn
h(u) is bounded when h is bounded.

The condition C3 is not so easy to verify in general due to the abstract nature
of the function φn,θ. However, it can be verified e.g. assuming that φn,θ can be
expressed using the Neumann series. Condition C4 holds under conditions specified
in Waagepetersen and Guan (2009) (including e.g. C1 and C2). Condition C5 is not
unreasonable since

S̄n,θ∗(β∗) = |Wn|−1
∫

Wn

[ ρ′(u;β∗)

ρ(u;β∗)1/2

]T[
(I + Ts

n,θ∗)−1
ρ′(·;β∗)
ρ(·;β∗)1/2

]
(u)du

and (I + Ts
n,θ∗)−1 is a positive operator (see Section 3.1). Since Σ̄n = S̄n,θ∗(β∗), C5

also implies

L3: lim infn ln > 0 where for each n, ln denotes the minimal eigenvalue of Σ̄n.

To prove the asymptotic normality of |Wn|−1/2en,θ̃n(β∗)Σ̄−1/2n , we assume that
the following additional conditions are satisfied:

N1: Wn = nA where A ⊂ (0, 1]× (0, 1] is the interior of a simple closed curve with
nonempty interior.

N2: supp
α(p;k)
p

= O(k−ε) for some ε > 2, where α(p; k) is the strong mixing coeffi-
cient (Rosenblatt, 1956). For each p and k, the mixing condition measures the
dependence between X ∩E1 and X ∩E2 where E1 and E2 are arbitrary Borel
subsets of R2 each of volume less than p and at distance k apart.

N3: for some K4 <∞ and k = 3, 4,

sup
u1∈R2

∫

R2

· · ·
∫

R2

∣∣Qk(u1, · · · ,uk)
∣∣du2 · · · duk < K4,

where Qk is the k-th order cumulant density function of X (e.g. Guan and
Loh, 2007).

Conditions N1–N3 correspond to conditions (2), (3) and (6), respectively, in Guan
and Loh (2007). See this paper for a discussion of the conditions.

Appendix B. Existence of a |Wn|1/2 consistent β̂n
We use Theorem 2 and Remark 1 in Waagepetersen and Guan (2009) to show the
existence of a |Wn|1/2 consistent sequence of solutions β̂n. Let ‖A‖M = supij |aij| for
a matrix A = [aij]ij. With Vn = |Wn|1/2Σ̄1/2

n we need to verify the following results:

R1: ‖V−1n ‖M → 0.
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R2: For any d > 0,

sup
β:‖(β−β∗)Vn‖≤d

‖V−1n
[
Jn,θ̃n(β)− Jn,θ̃n(β∗)

]
V−1n ‖M

converges to zero in probability.

R3: ‖Jn,θ̃n(β∗)/|Wn| − S̄n,θ∗(β∗)‖M converges to zero in probability.

R4: en,θ̃n(β∗)V−1n is bounded in probability.

R5: lim infn ln > 0 where

ln = inf
‖x‖=1

xΣ̄−1/2n S̄n,θ∗(β∗)Σ̄−1/2n xT.

We now demonstrate that R1–R5 hold under the conditions C1–C5 listed in Ap-
pendix A. For each of the results below the required conditions or previous results
are indicated in square brackets.

R1 [C3, L1–L3]: By C3, L1 and L2 the entries in Σ̄n are bounded from below and
above. Moreover, by L3 the determinant of Σ̄n is bounded below by lp > 0.

R2 [R1, C3, L1, L2, C4]: We show that

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

‖|Wn|−1
[
Jn,θ(β)− Jn,θ∗(β∗)

]
‖M

converges to zero in probability. Note

|Wn|−1Jn,θ(β) = Ln,θ(β) + Mn,θ(β)

where
Ln,θ(β) = −

∑

u∈X
f1,n,θ(u,β) and Mn,θ(β) =

∫

R2

f2,n,θ(u,β)

with
f1,n,θ(u,β) =

1[u ∈ Wn]

|Wn|
d

dβTφn,θ(u,β)

and

f2,n,θ(u,β) =
1[u ∈ Wn]

|Wn|
[
ρ(u;β)

d

dβTφn,θ(u,β) + ρ′(u;β)Tφn,θ(u,β)
]
.

Define

hi,n(u) = sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

|fi,n,θ(u,β)− fi,n,θ∗(u,β∗)|, i = 1, 2

and note that hi,n(u) converge to zero as n→∞. Then

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

|Mn,θ(β)−Mn,θ∗(β∗)| ≤
∫

R2

h1,n(u)du
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where the right hand side converges to zero by dominated convergence. Moreover,

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

∣∣Ln,θ(β)− Ln,θ∗(β∗)
∣∣ ≤

∑

u∈X
h2,n(u) ≤

∣∣∣
∑

u∈X
h2,n(u)− E

∑

u∈X
h2,n(u)

∣∣∣+
∣∣∣E
∑

u∈X
h2,n(u)

∣∣∣.

The first term on the right hand side converges to zero in probability by Chebyshev’s
inequality and the second term converges to zero by dominated convergence.

R3 [R1, L1, L2, C4]:

|Wn|−1Jn,θ̃n(β∗)− S̄n(β∗) =

|Wn|−1
[
Jn,θ̃n(β∗)− Jn,θ∗(β∗)

]
+
[
|Wn|−1Jn,θ∗(β∗)− S̄n(β∗)

]

It follows from the proof of R2 that the first term on the right hand side converges
to zero in probability. The last term converges to zero in probability by Chebyshev’s
inequality.

R4 [C3, L1, L2, C4]: Since Varen,θ∗(β∗)V−1n is the identity matrix, en,θ∗(β∗)V−1n
is bounded in probability by Chebyshev’s inequality. The result then follows by
showing that |Wn|−1/2

[
en,θ̃n(β∗)− en,θ∗(β∗)

]
converges to zero in probability. Let

fn(θ) = |Wn|−1
d

dθT en,θ(β
∗) =

|Wn|−1
[ ∑

u∈X∩Wn

d

dθTφn,θ(u,β
∗)−

∫

Wn

ρ(u;β∗)
d

dθTφn,θ(u,β
∗)du

]
.

Then
|Wn|−1/2

[
en,θ̃n(β∗)− en,θ∗(β∗)

]
= |Wn|1/2(θ̃n − θ∗)fn(tn)

where ‖tn−θ∗‖ ≤ ‖θ̃n−θ∗‖ and the factor |Wn|1/2(θ̃n−θ∗) is bounded in probability.
Further,

fn(tn) = fn(tn)− fn(θ∗) + fn(θ∗)

where fn(θ∗) converges to zero in probability by Chebyshev’s inequality and fn(tn)−
fn(θ∗) converges to zero in probability along the lines of the proof of R2.

R5 [C5, L3]: Follows directly from C5 and L3.

Appendix C. Asymptotic normality of
|Wn|−1/2en,θ̃n(β

∗)Σ−1/2
n

By the proof of R4 it suffices to show that |Wn|−1/2en,θ∗(β∗)Σ̄−1/2n is asymptotically
normal. To do so we use the blocking technique used in Guan and Loh (2007).
Specifically, Condition N1 implies that there is a sequence of windowsWB

n = ∪kni=1W
i
n

given for each n by a union of mn × mn subsquares W i
n, i = 1, · · · , kn, such that
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|WB
n |/|Wn| → 1, mn = O(nα) and the inter-distance between any two neighbouring

subsquares is of order nη for some 4/(2 + ε) < η < α < 1. Let

eBn,θ∗(β) =
∑

u∈X∩WB
n

φn,θ∗(u;β)−
∫

WB
n

φn,θ∗(u;β)ρ(u;β)du ≡
kn∑

i=1

eB,in,θ∗(β),

where
eB,in,θ∗(β) =

∑

u∈X∩W i
n

φn,θ∗(u;β)−
∫

W i
n

φn,θ∗(u;β)ρ(u;β)du.

Define

ẽBn,θ∗(β) =
kn∑

i=1

ẽB,in,θ∗(β),

where the ẽB,in,θ∗(β)’s are independent and for each i and n, ẽB,in,θ∗(β) is distributed as
eB,in,θ∗(β). Let Σ̄B

n = |WB
n |−1VareBn,θ∗(β∗) and Σ̃B

n = |WB
n |−1VarẽBn,θ∗(β∗). We need

to verify the following results:

S1: ||Σ̃B
n − Σ̄B

n ||M → 0 and ||Σ̄B
n − Σ̄n||M → 0 as n→∞,

S2: |WB
n |−1/2ẽBn,θ∗(β∗)

(
Σ̃B
n

)−1/2 is asymptotically standard normal,

S3: |WB
n |−1/2eBn,θ∗(β∗)

(
Σ̃B
n

)−1/2 has the same asymptotic distribution as
|WB

n |−1/2ẽBn,θ∗(β∗)
(
Σ̄B
n

)−1/2,
S4: ‖|WB

n |−1/2eBn,θ∗(β∗)− |Wn|−1/2en,θ∗(β∗)‖ converges to zero in probability.

S1 [C2, C3, N1]: This follows from the proof of Theorem 2 in Guan and Loh
(2007).

S2 [C2, C3, N3]: Conditions C2, C3 and N3 imply E[ẽin,θ∗(β)4] is bounded (see
the proof of Lemma 1 in Guan and Loh, 2007). Thus, S2 follows from an application
of Lyapunov’s central limit theorem.

S3 [N2]: this follows by bounding the difference between the characteristic func-
tions of |WB

n |−1/2eBn,θ∗(β∗) and |WB
n |−1/2ẽBn,θ∗(β∗) using techniques in Ibramigov and

Linnik (1971) and secondly applying the mixing condition N2, see also Guan et al.
(2004).

S4 [C1–C3, C5, N1]: Recall that |WB
n |/|Wn| → 1 due to N1. By C5 we only need

to show Var
[
en,θ∗(β∗)− eBn,θ∗(β∗)

]
/|Wn| → 0. This is implied by conditions C1–C3

and |WB
n |/|Wn| → 1.
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