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Abstract

We derive a new rotational Crofton formula for Minkowski tensors. In special
cases, this formula gives (1) the rotational average of Minkowski tensors defined
on linear subspaces and (2) the functional defined on linear subspaces with
rotational average equal to a Minkowski tensor. Earlier results obtained for
intrinsic volumes appear now as special cases.
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1 Introduction

Minkowski tensors are an important morphometric tool in the analysis of shape
and orientation of spatial structures. They have been used with success, mainly in
material science [1–3] but there are also examples from the biosciences [4]. In the
imaging literature, Minkowski tensors are called moments; cf. [5].

These application examples have in common that the structure of interest can be
studied directly. However, in some cases the structure is only available via sections or
projections. In [6, 7], formulae of Crofton type are derived for Minkowski tensors. It is
shown that integrals of Minkowski tensors on k-flats (k-dimensional affine subspaces)
in Rd with respect to the motion invariant measure on such flats can be expressed
as linear combinations of Minkowski tensors evaluated on the original set. These
results build on the work of Alesker [8, 9] and its extension in [10].

In the present paper, we derive a rotational Crofton formula for Minkowski
tensors. This formula concerns integrals of Minkowski tensors on k-subspaces (k-
dimensional linear subspaces) in Rd with respect to the rotation invariant measure
on such subspaces.

The motivation for deriving rotational formulae comes from local stereology [11],
where the aim is estimating quantitative properties of spatial structures from sec-
tions passing through fixed points. Local stereology is widely used in the biosciences.
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The rotational Crofton formula for Minkowski tensors can be used to derive local
stereological estimators of Minkowski tensors. Furthermore, the new identities gen-
eralize results in [12–14] obtained for Minkowski tensors of rank zero, i.e. intrinsic
volumes.

The paper is organized as follows. In Section 2 we review the definition of
Minkowski tensors. Integrated versions of Minkowski tensors are introduced in Sec-
tion 3. In Section 4, it is shown that a genuine rotational Crofton formula holds for
these integrated Minkowski tensors. This formula is an important tool in the deriva-
tion of the new geometric identities, also presented in Section 4. In Section 5, explicit
formulae for the integrated Minkowski tensors are derived. Section 6 describes the
use of the new geometric identities in local stereology while Section 7 summarizes
the results for tensors of rank two in R3. The paper concludes with a discussion of
the results and open problems.

2 Minkowski tensors

Let X ⊆ Rd be a convex and compact subset of Rd. Let r be a non-negative integer.
The volume tensor of rank r is then defined by

Φd,r,0(X) =
1

r!

∫

X

xrλd(dx), (2.1)

where λd is the Lebesgue measure in Rd. The notation xr is short for the tensor
x ⊗ · · · ⊗ x with r factors. Note that Φd,r,0(X) ∝ E(Y r) where Y is a uniform
random point in X.

For k = 0, . . . , d− 1 and non-negative integers r and s, let

Φk,r,s(X) =
ωd−k

r! s!ωd−k+s

∫

Rd×Sd−1

xrusΛk(X, d(x, u)), (2.2)

where ωd = 2πd/2/Γ(d/2) is the surface area of the (d− 1)-dimensional unit sphere,
Sd−1, xrus is the symmetric tensor product of xr and us, and Λk(X, ·) is the kth
support measure or generalized curvature measure of X, k = 0, . . . , d − 1; see [15,
p. 253]. Note that for s = 0

Φk,r,0(X) =
1

r!

∫

X

xrΦk(X, dx),

where Φk(X, ·) is the kth curvature measure of X, k = 0, . . . , d. For r = s = 0,
we have Φk,0,0 = Vk, where Vk denotes the kth intrinsic volume, k = 0, . . . , d. For
further details; see [16].

The measures Λk(X, ·), k = 0, . . . , d− 1, are concentrated on the normal bundle
NorX of X which consists of all pairs (x, u) where x ∈ ∂X and u is an outer
unit normal vector of X at x. For this reason, the tensors defined in (2.2) are called
surface tensors. In fact, Λk(X, ·) has the following integral representation for a Borel
set A ⊆ Rd × Sd−1

Λk(X,A) =
1

ωd−k

∫

A∩NorX

∑

|I|=d−1−k

∏
i∈I κi(x, u)

∏d−1
i=1

√
1 + κ2i (x, u)

Hd−1(d(x, u)),
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where the sum runs over all subsets I ⊂ {1, . . . , d − 1} with d − 1 − k elements,
κi(x, u), i = 1, . . . , d − 1, are the generalized curvatures at (x, u) and Hd−1 is the
(d− 1)-dimensional Hausdorff measure.

If ∂X is a regular hypersurface of class C2, then (2.2) reduces to

Φk,r,s(X) =
ωd−k

r! s!ωd−k+s

∫

∂X

xru(x)sΦk(X, dx),

where u(x) is the unique outer unit normal vector of X at x. For such smooth X

Φk(X,A) =
1

ωd−k

∫

A∩∂X

∑

|I|=d−1−k

∏

i∈I
κi(x)Hd−1(dx), (2.3)

where A ⊆ Rd is a Borel set and κi(x), i = 1, . . . , d− 1, are the principal curvatures
of X at x. For k = d− 1, (2.3) reduces to

Φd−1(X,A) = 1
2
Hd−1(A ∩ ∂X). (2.4)

Furthermore, Φd−1,r,0(X) ∝ E(Y r) where Y is a uniform random point on ∂X and
Φd−1,0,s(X) ∝ E(U s) where U is the unique outer unit normal vector at a uniform
random point on ∂X. The surface tensor Φd−1,0,s has been studied in a stereological
context in [17].

The tensors defined at (2.1) and (2.2) constitute the Minkowski tensors. They
are tensor-valued valuations, continuous with respect to the Hausdorff metric and
isometry covariant. For the definition of isometry covariance and further results on
Minkowski tensors; see [6, 7] and references therein.

3 Integrated Minkowski tensors

In this section, we will introduce integrated Minkowski tensors for which a genuine
rotational Crofton formula holds. These tensors are weighted averages of tensors
defined on j-flats. Integrated Minkowski tensors appear to be the natural tool in the
development of rotational integral geometry for Minkowski tensors. Also, there are
some interesting new tensors in the class of integrated Minkowski tensors, which are
not isometry covariant.

Any j-flat (j-dimensional affine subspace) Fj in Rd can be written as Fj =
x + Lj where Lj is a j-subspace, i.e. a j-dimensional linear subspace, and x ∈
L⊥j . By d(Fj, O) we denote the distance of Fj to the origin. We have d(Fj, O) =
d(x + Lj, O) = |x|, where | · | is the Euclidean norm. The element of the motion
invariant measure on the space Fdj of j-flats in Rd can be decomposed as dF d

j =
λd−j(dx)dLdj where dLdj is the element of the rotation invariant measure on Ldj , the
set of j-subspaces in Rd, and, for given Lj ∈ Ldj , λd−j(dx) is the element of the
Lebesgue measure in L⊥j . The total mass of dLdj is chosen to be

∫

Ldj
dLdj = cd,j,

where
cd,j =

ωdωd−1 . . . ωd−j+1

ωjωj−1 . . . ω1

.
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Definition 3.1. For 0 ≤ k < j < d, t > j − d or 0 ≤ k < j = d, t ≥ 0 and
non-negative integers r and s, the integrated Minkowski tensors are

Φj,t
k,r,s(X) :=

∫

Fd
j

Φ
(Fj)
k,r,s(X ∩ Fj)d(Fj, O)tdF d

j ,

and
Φj,t
j,r,0(X) :=

∫

Fd
j

Φ
(Fj)
j,r,0(X ∩ Fj)d(Fj, O)tdF d

j ,

where the integrands Φ
(Fj)
k,r,s(X ∩ Fj) and Φ

(Fj)
j,r,0(X ∩ Fj) are calculated relative to Fj;

cf. [7, Sections 2 and 3].

The condition t > j−d ensures that Φj,t
k,r,s(X) is well-defined. In fact, if t > j−d

then ∫

Fd
j

1{X ∩ Fj 6= ∅}d(Fj, O)tdF d
j <∞

and Φk,r,s(X ∩ Fj) is uniformly bounded as a function of Fj.
Note that the classical Minkowski tensors are integrated Minkowski tensors with

t = 0 and j = d. More generally, for t = 0 these integrated Minkowski tensors
are simply averages of classical Minkowski tensors defined on j-flats. Such averages
have been studied in depth in [7] where it is shown that for t = 0 the integrated
Minkowski tensors are linear combinations of the classical Minkowski tensors. In
particular, it follows for t = 0 and 0 ≤ k < j ≤ d − 1 that, cf. [7, Theorem 2.4
and 2.5],

Φj,0
k,r,s(X) = ad,j,k,sΦd+k−j,r,s(X), s ∈ {0, 1}, (3.1)

Φj,0
j,r,0(X) = cd,jΦd,r,0(X). (3.2)

The constant of proportionality ad,j,k,s is for 0 ≤ k < j ≤ d− 1 and s ∈ {0, 1} given
by

ad,j,k,s = cd−1,j−1
(j − 1)!(d+ k − j)!

k!(d− 1)!

ωd+k−j+s+2

ωk+s+2

.

Note also that (3.1) with s = 0 and (3.2) are direct consequences of the Crofton
formula for curvature measures; see [15, Theorem 5.3.3].

The integrated Minkowski tensors fulfil

Φj,t
k,r,s(RX) = RΦj,t

k,r,s(X), for all R ∈ Od,

where Od is the orthogonal group in Rd, and the right hand side involves the natural
operation of Od on the space of symmetric tensors of rank r + s. However, they are
not isometry covariant in general. For instance, for r = s = 0,

Φj,t
k,0,0(X) =

∫

Fd
j

Vk(X ∩ Fj)d(Fj, O)tdF d
j

depends for t 6= 0 on the choice of the origin and is therefore not translation invariant.
Note also that

Φj,t
k,r,s(αX) = αk+r+t+d−jΦj,t

k,r,s(X),

so Φj,t
k,r,s is homogeneous of degree k + r + t+ d− j.
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4 A rotational Crofton formula

We will now show a genuine rotational Crofton formula for the integrated Minkowski
tensors.

Proposition 4.1. For 0 ≤ k < j < p ≤ d, t > j − d and non-negative integers r
and s, we have

Φj,t
k,r,s(X) =

1

cd−j−1,p−j−1

∫

Ldp
Φj,d−p+t
k,r,s (X ∩ Lp)dLdp. (4.1)

For j = k, (4.1) holds for s = 0.

Proof. We use the following decomposition

dF d
j =

d(Fj, O)d−p

cd−j−1,p−j−1
dF p

j dLdp, (4.2)

0 < j < p ≤ d; see [15, p. 285]. We find

Φj,t
k,r,s(X) =

∫

Fd
j

Φ
(Fj)
k,r,s(X ∩ Fj)d(Fj, O)tdF d

j

=
1

cd−j−1,p−j−1

∫

Ldp

∫

Fp
j

Φ
(Fj)
k,r,s(X ∩ Fj)d(Fj, O)d−p+tdF p

j dLdp

=
1

cd−j−1,p−j−1

∫

Ldp
Φj,d−p+t
k,r,s (X ∩ Lp)dLdp.

The second statement is proved in exactly the same manner.

Proposition 4.1 does not directly provide rotational formulae for the classical
Minkowski tensors since the maximal possible value of j in Proposition 4.1 is d− 1.
However, by combining Proposition 4.1 with equations (3.1) and (3.2), we can derive
rotational Crofton formulae for all classical Minkowski tensors Φk,r,s with s ∈ {0, 1}.
In this sense, the situation is not more complicated than in [7], where affine averages
of classical Minkowski tensors are considered. Here, these affine averages are again
classical Minkowski tensors only for s ∈ {0, 1}.

First, we derive a result for a rotational average of a classical Minkowski tensor.

Corollary 4.2. For s ∈ {0, 1} and t = p − d, the result in Proposition 4.1 reduces
to ∫

Ldp
Φ(Lp)
m,r,s(X ∩ Lp) dLdp =

cd−(p−q)−1,q−1
ap,p−q,m−q,s

Φp−q,p−d
m−q,r,s (X), (4.3)

for 0 < q ≤ m < p ≤ d.
If m = p and s = 0, we get for 0 < q < p ≤ d

∫

Ldp
Φ

(Lp)
p,r,0(X ∩ Lp) dLdp =

cd−(p−q)−1,q−1
cp,p−q

Φp−q,p−d
p−q,r,0 (X). (4.4)
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Proof. Combining Proposition 4.1 with equation (3.1), we find
∫

Ldp
Φ(Lp)
m,r,s(X ∩ Lp) dLdp =

1

ap,p−q,m−q,s

∫

Ldp
Φp−q,0
m−q,r,s(X ∩ Lp) dLdp

=
cd−(p−q)−1,q−1
ap,p−q,m−q,s

Φp−q,p−d
m−q,r,s (X).

The second statement is proved in exactly the same manner.

Example 4.3. For d = 3 and p = 2, we obtain
∫

L32
Φ

(L2)
2,r,0(X ∩ L2)dL

3
2 =

1

π
Φ1,−1

1,r,0(X), (4.5)

and ∫

L32
Φ

(L2)
1,r,s(X ∩ L2)dL

3
2 =

1√
π

Γ((s+ 3)/2)

Γ((s+ 2)/2)
Φ1,−1

0,r,s (X), (4.6)

for s ∈ {0, 1}. Explicit forms of the integrated Minkowski tensors appearing on the
right-hand sides of (4.5) and (4.6) are given below in Example 5.2 and Example 5.4
for s = 0.

Note that for r = s = 0, the left-hand side of (4.3) takes the form of a rotational
average of an intrinsic volume

∫

Ldp
Vm(X ∩ Lp)dLdp, m = 1, . . . , p− 1.

These rotational integrals have been studied in detail in [12, 14]. The main result in
[12] is that under mild regularity conditions

∫

Ldp
Vm(X ∩ Lp) dLdp =

1

ωp−m

∫

NorX

|x|−(d−p)
∑

|I|=p−1−m
Qp(x, u,AI)

×
∏

i∈I κi(x, u)
∏d−1

i=1

√
1 + κ2i (x, u)

Hd−1(d(x, u)), (4.7)

where the sum in (4.7) is over all subsets of {1, . . . , d− 1} with p− 1−m elements
and AI is the subspace spanned by the principal directions ai(x, u) with i /∈ I. The
function Qp is defined via an integral over all p-subspaces containing the line through
the origin spanned by x. Later, in [14], it was shown that Qp is a linear combination
of hypergeometric functions. In Section 5 below, we extend the result (4.7) to the
case of tensors with an arbitrary non-negative integer r and s = 0.

From an applied point of view, it is in fact more interesting to find the func-
tional defined on the subspace Lp whose rotational average equals a given classical
Minkowski tensor. This problem can again be solved for s ∈ {0, 1} by combining
Proposition 4.1 with equations (3.1) and (3.2).
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Corollary 4.4. For s ∈ {0, 1} and t = 0, the result in Proposition 4.1 reduces to

Φd+m−p,r,s(X) =
1

ad,p−q,m−q,s cd−(p−q)−1,q−1

∫

Ldp
Φp−q,d−p
m−q,r,s (X ∩ Lp)dLdp, (4.8)

for 0 < q ≤ m < p ≤ d.
If m = p and s = 0, we get for 0 < q < p ≤ d

Φd,r,0(X) =
1

cd,p−q cd−(p−q)−1,q−1

∫

Ldp
Φp−q,d−p
p−q,r,0 (X ∩ Lp)dLdp. (4.9)

Proof. Combining Proposition 4.1 with equation (3.1), we find
∫

Ldp
Φp−q,d−p
m−q,r,s (X ∩ Lp)dLdp = cd−(p−q)−1,q−1Φ

p−q,0
m−q,r,s(X)

= ad,p−q,m−q,scd−(p−q)−1,q−1 Φd+m−p,r,s(X).

The second statement is proved in exactly the same manner.

Example 4.5. For d = 3 and p = 2, we obtain

Φ3,r,0(X) =
1

2π

∫

L32
Φ1,1

1,r,0(X ∩ L2)dL
3
2, (4.10)

and
Φ2,r,s(X) =

1

2π
(s+ 2)

∫

L32
Φ1,1

0,r,s(X ∩ L2)dL
3
2, (4.11)

for s ∈ {0, 1}. Explicit forms of the integrated Minkowski tensors appearing on the
right-hand sides of (4.10) and (4.11) are given below in Example 5.2 and Example
5.6 for s = 0.

If we let r = s = 0 in Corollary 4.4, then (4.8) reduces to

Vd+m−p(X) =
1

ad,p−q,m−q,0 cd−(p−q)−1,q−1

∫

Ldp
Φp−q,d−p
m−q,0,0 (X ∩ Lp)dLdp.

In particular, for q = 1 we get for m > 1

Vd+m−p(X) =
1

ad,p−1,m−1,0

∫

Ldp
Φp−1,d−p
m−1,0,0 (X ∩ Lp)dLdp,

where
Φp−1,d−p
m−1,0,0 (X ∩ Lp) =

∫

Fp
p−1

Vm−1(X ∩ Fp−1)d(Fp−1, O)d−pdF p
p−1.

This is the main result in [13] where explicit expressions for Φp−1,d−p
m−1,0,0 are given for

m = p, p−1. In Section 5 below, we extend these results to Φp−1,d−p
m−1,r,0 for an arbitrary

non-negative integer r.
One of the advantages of using the integrated Minkowski tensors and the rota-

tional Crofton formula that holds for these tensors is that, the problem of finding
rotational averages of Minkowski tensors (Corollary 4.2) and the problem of finding
functionals with rotational average equal to Minkowski tensors (Corollary 4.4) can
be given a common formulation.
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5 Explicit expressions for integrated Minkowski
tensors

5.1 Volume tensors

In this subsection, we will indicate what kind of geometric information the integrated
volume tensors carry about the original set X.

Proposition 5.1. For 0 ≤ j ≤ d, t > j − d and r a non-negative integer,

Φj,t
j,r,0(X) =

cd,j
r!

Γ( t+d−j
2

)Γ(d
2
)

Γ( t+d
2

)Γ(d−j
2

)

∫

X

xr|x|tλd(dx).

Proof. Applying [11, Proposition 3.9] componentwise, we find

Φj,t
j,r,0(X) =

∫

Fd
j

Φ
(Fj)
j,r,0(X ∩ Fj)d(Fj, O)tdF d

j

=
1

r!

∫

Fd
j

∫

X∩Fj

xrd(Fj, O)tλj(dx)dF d
j

=
1

r!

∫

Ldj

∫

L⊥j

∫

X∩(y+Lj)

xr|y|tλj(dx)λd−j(dy)dLdj

=
1

r!

∫

Ldj

∫

X

xr|p(x|L⊥j )|tλd(dx)dLdj

=
1

r!

∫

X

xr|x|t
[∫

Ldj

|p(x|L⊥j )|t
|x|t dLdj

]
λd(dx)

=
cd,j
r!

Γ( t+d−j
2

)Γ(d
2
)

Γ( t+d
2

)Γ(d−j
2

)

∫

X

xr|x|tλd(dx).

Example 5.2. For d = 3, j = 1, and t = −1, Proposition 5.1 gives an explicit
expression for the integrated Minkowski tensor Φ1,−1

1,r,0(X) appearing in (4.5). We find

Φ1,−1
1,r,0(X) =

π2

r!

∫

X

xr

|x| λ3(dx).

For d = 2, j = t = 1, Proposition 5.1 gives an explicit expression for the integrated
Minkowski tensor Φ1,1

1,r,0(X ∩ L2) appearing in (4.10). We find

Φ1,1
1,r,0(X ∩ L2) =

2

r!

∫

X∩L2

xr|x|λ2(dx).

5.2 Surface tensors

In the proposition below, we give an explicit expression for the integrated Minkowski
tensors

Φp−q,p−d
m−q,r,s (X) (5.1)
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appearing in Corollary 4.2 in the case m < p. These tensors depend on a parameter
q that can be chosen freely within the range 0 < q ≤ m. In the proposition below,
we take q = 1. The result in Proposition 5.3 holds for s = 0 and is a generalization
of the main result in [12].

Proposition 5.3. Suppose that O 6∈ ∂X and that for almost all Lp ∈ Ldp,

(x, u) ∈ NorX, x ∈ Lp ⇒ u 6⊥ Lp.

Then for 1 ≤ m < p ≤ d, we have
∫

Ldp
Φ

(Lp)
m,r,0(X ∩ Lp) dLdp =

1

ap,p−1,m−1,0
Φp−1,p−d
m−1,r,0 (X)

=
1

r!ωp−m

∫

NorX

xr

|x|d−p
∑

|I|=p−1−m
Qp(x, u,AI)

×
∏

i∈I κi(x, u)
∏d−1

i=1

√
1 + κ2i (x, u)

Hd−1(d(x, u)),

where the sum runs over all subsets I of {1, . . . , d− 1} with p− 1−m elements and
Qp is explicitly given in [14].

Proof. Under the stated regularity conditions, we can apply a local version of the
main result in [12, p. 558]. We have for any integrable function h

ωp−m

∫

Ldp

∫

Lp

h(x) Φ(Lp)
m (X ∩ Lp, dx) dLdp

=

∫

NorX

h(x)

|x|d−p
∑

|I|=p−1−m
Qp(x, u,AI)

∏
i∈I κi(x, u)

∏d−1
i=1

√
1 + κ2i (x, u)

Hd−1(d(x, u)).

Since ∫

Ldp
Φ

(Lp)
m,r,0(X ∩ Lp) dLdp =

1

r!

∫

Ldp

∫

Lp

xrΦ(Lp)
m (X ∩ Lp, dx) dLdp,

the result of the proposition follows by choosing each element of xr restricted to X
as h(x).

Example 5.4. Using Proposition 5.3 with d = 3, p = 2 and m = 1, we obtain for
s = 0 an explicit expression for the integrated Minkowski tensor Φ1,−1

0,r,s (X) appearing
in (4.6). We have I = ∅, AI = u⊥ and

Qp(x, u,AI) = πF (−1
2
, 1
2
; 1; sin2∠(x, u)) = 2E(| sin∠(x, u)|, π

2
),

where ∠(x, u) ∈ [0, π] is the angle between x and u, F (a, b; c; z) is the hypergeometric
function defined at [18, eq. 15.2.1], and E(ϕ, k) is Legendre’s incomplete elliptic
integral of second kind; see [18, eq. 19.2.5]. See also [12, p. 541]. It follows from
Proposition 5.3 that, when X is smooth,

Φ1,−1
0,r,0(X) =

2

r!

∫

∂X

xr

|x|E(| sin∠(x, u)|, π
2
)H2(dx).
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In Corollary 4.4, we are interested in an explicit expression for

Φp−q,d−q
m−q,r,s (X ∩ Lp), (5.2)

where again q is an integer that can be chosen freely in the range 0 < q ≤ m.
The difference between (5.1) and (5.2) is that the t-parameter is non-positive in the
former, whereas it is positive in the latter. The case m = p in equation (5.2) has
been treated in the previous subsection, so we focus here on the case m < p. It
suffices to find an explicit expression for Φd−1,t

m−1,r,s(X), where t is a positive integer.
In the proposition below, we give the solution for m = d− 1 and s = 0.

Proposition 5.5. For a non-negative integer r and a positive integer t

Φd−1,t
d−2,r,0(X) =

ωd−1
2r!

Γ( t+1
2

)Γ(d
2
)

Γ( t+1+d
2

)

×
∫

Rd×Sd−1

xr|x|tF
(
− t

2
,−1

2
; d−1

2
; sin2∠(x, u)

)
Λd−1(X, d(x, u)). (5.3)

Proof. Suppose first that X is a regular hypersurface of class C2. Using [11, Propo-
sition 2.10] componentwise, we find

Φd−1,t
d−2,r,0(X) =

∫

Fd
d−1

Φ
(Fd−1)
d−2,r,0(X ∩ Fd−1)d(Fd−1, O)tdF d

d−1

=
1

2r!

∫

Fd
d−1

∫

∂X∩Fd−1

xrd(Fd−1, O)tHd−2(dx)dF d
d−1

=
1

r!

∫

Ldd−1

∫

L⊥d−1

∫

∂X∩(Ld−1+y)

xr|y|tHd−2(dx)λ1(dy)dLdd−1

=
1

r!

∫

Ldd−1

∫

L⊥d−1

∫

∂X∩(Ld−1+y)

xr|p(x|L⊥d−1)|tHd−2(dx)λ1(dy)dLdd−1

=
1

2r!

∫

Ldd−1

∫

∂X

xr|p(x|L⊥d−1)|t|p(u(x)|Ld−1)|Hd−1(dx)dLdd−1

=
1

2r!

∫

∂X

xr
[∫

Ldd−1

|p(x|L⊥d−1)|t|p(u(x)|Ld−1)|dLdd−1
]
Hd−1(dx).

Using [13, Proposition 4] on the inner integral, we find

Φd−1,t
d−2,r,0(X)

=
ωd−1
4r!

Γ( t+1
2

)Γ(d
2
)

Γ( t+1+d
2

)

∫

∂X

xr|x|tF
(
− t

2
,−1

2
; d−1

2
; sin2∠(x, u(x))

)
Hd−1(dx).

By (2.4) this yields the claim for smooth X. The quantities appearing on both
sides of equation (5.3) are continuous with respect to the Hausdorff metric; see [15,
Theorem 14.2.2]. Any convex compact set X can be approximated by smooth convex
compact sets, hence the result follows.
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Using Proposition 5.5, we find for smooth X, that

Φp−1,d−p
p−2,0,0 (X ∩ Lp) =

ωp−1
4

Γ(d−p+1
2

)Γ(p
2
)

Γ(d+1
2

)

×
∫

∂(X∩Lp)

|x|d−pF
(
−d−p

2
,−1

2
; p−1

2
; sin2∠(x, u(x))

)
Hp−1(dx).

This is one of the main results in [13, p. 6].

Example 5.6. Using Proposition 5.5 for d = 2 and t = 1, we obtain for s = 0 an
explicit expression for the integrated Minkowski tensor Φ1,1

0,r,s(X ∩ L2) appearing in
(4.11). We find

Φ1,1
0,r,0(X ∩ L2) =

1

r!

∫

R2×S1
xr|x|F (−1

2
,−1

2
; 1
2
; sin2∠(x, u))Λ1(X ∩ L2, d(x, u)).

Here,
F (−1

2
,−1

2
; 1
2
; sin2 γ) = cos γ + γ sin γ;

cf. [11, Example 5.10].

6 Applications to stereological particle analysis

In this section, we will briefly discuss how the new geometric identities can be applied
in the stereological analysis of particle populations. The geometric identities are all
of the form ∫

Ldp
α(X ∩ Lp)dLdp = β(X), (6.1)

where either α or β may be a Minkowski tensor; see Corollaries 4.2 and 4.4. In the
case where β is a Minkowski tensor, the geometric identity gives the measurement
α to be determined in the section X ∩Lp in order to estimate the Minkowski tensor
specified by β.

These results can be used to estimate the distribution of a Minkowski tensor
in a particle population from sectional data, thereby providing information about
the orientation and shape of the particles. Let us assume that the particles are a
realization of a marked point process Ψ = {[xi; Ξi]} where the xis are the points
in Rd and the marks Ξi are convex and compact subsets of Rd. For simplicity, we
assume that the marks are independent and identically distributed according to
some probability distribution Pm on the space, Kd, of convex, compact subsets of
Rd. The ith particle of the process is represented by Xi = xi + Ξi. Let Ξ0 have
distribution Pm.

Our aim is to estimate the distribution of β(Ξ0) from sectional data. Available
for observation is a sample of particles {xi + Ξi : xi ∈ W} collected in a sampling
window. It is possible to perform measurements on any virtual section Ξi∩Lp. If Lp
is an isotropic section, then

E(α(Ξi ∩ Lp)|Ξi) =

∫

Lp
α(Ξi ∩ Lp)

dLdp
cd,p

=
1

cd,p
β(Ξi).

11



The distribution of β(Ξ0) can now be estimated by the empirical distribution of
{β̂(Ξi) : xi ∈ W}, where

β̂(Ξi) =
cd,p
N

N∑

j=1

α(Ξi ∩ Lp,j)

and Lp,j, j = 1, . . . , N , are replicated virtual isotropic sections. It is worth noting
that it may not be informative to estimate the mean tensor of a particle population.
For instance, for any isotropic distribution Pm the tensor Eβ(Ξ0) will be a multiple
of Q, which does not contain information about the shape of Ξ0.

7 Rank two tensors in R3

Let us summarize the results obtained for tensors of rank two in R3. It is known
that a basis of all continuous, isometry covariant tensor valuations of rank two in
R3 is

QVj, j = 0, 1, 2, 3,

Φj,2,0, j = 0, 1, 2, 3,

Φj,0,2, j = 1, 2,

(7.1)

where Q is the metric tensor; see e.g. [7, p. 485]. For d = 3 and p = 2, Corollary 4.4
provides identities of the form (6.1) for the following elements of the basis: QV2, QV3,
Φ2,2,0 and Φ3,2,0. The explicit formulae for these identities are given in the first four
rows of Table 1. The remaining tensors in the basis (7.1) depend on local curvatures
except for Φ2,0,2. They do not appear to be accessible on sections passing through
the origin; see also Section 8 below. However, as we shall see now, it turns out to be
possible to derive an identity of the form (6.1) for Φ2,0,2.

By Alesker’s theorem [9, Theorem 2.2] and homogeneity considerations we find
that ∫

F3
1

Φ
(F1)
0,0,2(X ∩ F1)dF

3
1 = β1QV2(X) + β2Φ0,2,0(X) + β3Φ2,0,2(X)

for some coefficients βi ∈ R, i = 1, 2, 3. The coefficients turn out to be β1 = 1/16,
β2 = 0, and β3 = π/4. We derived them solving the system of linear equations
resulting from Examples 7.1 and 7.2 below. In principle, the coefficients are also
given in [7], but we found it instructive to determine them through explicit examples.
By (4.2) we have

∫

F3
1

Φ
(F1)
0,0,2(X ∩ F1)dF

3
1 =

∫

L32

∫

F2
1

Φ
(F1)
0,0,2(X ∩ F1)d(F1, O)dF 2

1 dL3
2,

and hence the formula in the last row of Table 1 follows using the first line of Table 1.

Example 7.1. If X = B3 is the unit ball in R3, then V2(X) = 2π, Φ0,2,0(X) =
Φ2,0,2(X) = (1/6)Q, and

∫

F3
1

Φ
(F1)
0,0,2(X ∩ F1)dF

3
1 =

π

6
Q.
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Table 1: Rotational integral expressions for Minkowski tensors of rank two in R3. Here,
β(X) =

∫
L32
α(X ∩ L2)dL

3
2.

β(X) α(X ∩ L2)

QV2(X)
1

π

∫

F2
1

QV0(X ∩ F1)d(F1, O)dF 2
1

QV3(X)
1

2π

∫

F2
1

QV1(X ∩ F1)d(F1, O)dF 2
1

Φ2,2,0(X)
1

π

∫

F2
1

Φ
(F1)
0,2,0(X ∩ F1)d(F1, O)dF 2

1

Φ3,2,0(X)
1

2π

∫

F2
1

Φ
(F1)
1,2,0(X ∩ F1)d(F1, O)dF 2

1

Φ2,0,2(X)

∫

F2
1

( 4

π
Φ

(F1)
0,0,2(X ∩ F1)−

1

4π2
QV0(X ∩ F1)

)
d(F1, O)dF 2

1

Example 7.2. Let X = L0 ∩ B3, where L0 is the plane spanned by the first two
standard basis vectors e1, e2 of R3. So X is a 2-dimensional unit disk in R3 with
normal e3. We obtain V2(X) = π, Φ0,2,0(X) = (1/4)(Q − e23), Φ2,0,2(X) = (1/4)e23,
and ∫

F3
1

Φ
(F1)
0,0,2(X ∩ F1)dF

3
1 =

π

16
(Q+ e23).

8 Discussion

In the present paper, we have derived new rotational Crofton formulae for Minkowski
tensors. The dimension of the rotating subspace appearing in these formulae is 2 or
higher, see Section 4. In the case of volume tensors, it is also possible to derive a
rotational Crofton formula, involving rotating lines. Using polar decomposition in
Rd, we have ∫

Ld1
α(X ∩ L1)dL

d
1 = β(X), (8.1)

with
β(X) = Φd,r,0(X)

and
α(X ∩ L1) =

1

r!

∫

X∩L1

xr|x|d−1λ1(dx).

As explained in Section 6, the measurement α can be used to estimate the functional
β. A natural question to ask is whether α is unique. This is indeed the case in (8.1) if
α is rotation invariant; cf. [19]. Whether this holds for the general geometric identity
(6.1) with p > 1 is the object of future research.
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In Section 7, we have studied rank two tensors in R3 and found that QV2, QV3,
Φ2,2,0, Φ3,2,0 and Φ2,0,2 can be expressed as rotational averages with respect to planes.
The remaining rank two tensors in the basis (7.1) are QV0, QV1, Φ0,2,0, Φ1,2,0, and
Φ1,0,2. For convex bodies, which is the set class considered in the present paper, QV0
is identically equal to the metric tensor Q and therefore not of interest in relation
to describing a convex body. The other rank two tensors depend on local curvatures
and do not appear to be accessible on sections passing through the origin. Modified
functionals may, however, be accessible. Let X ⊂ R3 be convex and compact with
smooth boundary. If we consider more general functionals of the form

Ṽ1(X) =
1

π

∫

∂X

2∑

i=1

wi(x)κi(x)H2(dx),

instead of
V1(X) =

1

π

∫

∂X

1
2
[κ1(x) + κ2(x)]H2(dx),

where wi(x), i = 1, 2, are weight functions, summing to 1, then the weight functions
may be chosen such that Ṽ1 is accessible on sections through the origin, cf. [12, p.
547–548]. Note that

Ṽ1(X) = V1(X) +
1

π

∫

∂X

(
w1(x)− 1

2

)
∆κ(x)H2(dx),

where ∆κ(x) = κ1(x) − κ2(x) is the deviatoric curvature at x ∈ ∂X; see also [20].
It would be interesting to investigate whether a similar route could be pursued for
the Minkowski tensors mentioned above.

A second type of integrals that are of vital interest in integral geometry besides
Crofton integrals are kinematic integrals. In rotational integral geometry the analo-
gous notion to kinematic integrals are principle rotational integrals. To the best of
our knowledge, a principal rotational formula is still not available in the literature.
Focusing on intrinsic volumes, such a formula involves integrals of the form

∫

SOd

Vk(X ∩ ρY )ν(dρ), (8.2)

k = 0, . . . , d, where SOd is the special orthogonal group in Rd, X and Y are convex
and compact subsets of Rd, and ν is the unique rotation invariant probability mea-
sure on SOd. From an applied point of view such a formula is interesting. Here, X
is the unknown spatial structure of interest while Y is a known test set constructed
by the observer. The aim is to get information about X from observation of the
intersection of X with a randomly rotated version of Y . For k = d, (8.2) is, up to a
known constant, equal to

∫ ∞

0

r−(d−1)Hd−1(X ∩ rSd−1)Hd−1(Y ∩ rSd−1) dr.

A result of a similar form involving two terms can be obtained for k = d− 1.
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