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Abstract

In this paper, we derive an exact formula for the covariance of two innovations
computed from a spatial Gibbs point process and suggest a fast method for
estimating this covariance. We show how this methodology can be used to
estimate the asymptotic covariance matrix of the maximum pseudo-likelihood
estimate of the parameters of a spatial Gibbs point process model. This allows
us to construct asymptotic confidence intervals for the parameters. We illus-
trate the efficiency of our procedure in a simulation study for several classical
parametric models. The procedure is implemented in the statistical software
R and it is included in spatstat, which is an R package for analyzing spatial
point patterns.

Keywords: innovation process, maximum pseudo-likelihood, confidence inter-
vals, exponential family models, Georgii-Nguyen-Zessin formula.

1 Introduction

Spatial point patterns are datasets containing the random locations of some event
of interest. Such datasets appear in many scientific fields such as biology, epidemi-
ology, geography, astrophysics, physics, and economics. The stochastic mechanism
generating such a dataset is modeled as a spatial point process and general refer-
ences covering as well theoretical as practical aspects of this topic are e.g. Møller and
Waagepetersen (2004); Stoyan et al. (1995); Illian et al. (2008). The basic spatial
point process model is the Poisson process, which models complete spatial random-
ness in the sense that points appear independently of each other. In many appli-
cations there is dependence (or interaction) between the points, and the Poisson
point process model cannot be applied. In this case Gibbs (or Markov) point pro-
cesses constitute one of the main alternatives to the Poisson process, and they allow
for both repulsive and attractive interaction between points. Gibbs point processes
are typically defined through the so-called Papangelou conditional intensity, and a
parametric class of Gibbs point process models is obtained by defining a parametric
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class of Papangelou conditional intensities. For the sake of simplicity, this paper
deals with exponential family models meaning that the Papangelou conditional in-
tensity is log-linear in terms of the parameters. However, extensions to nonlinear
models may be undertaken on the basis of this paper.

In the literature several methods for estimating parameters of Gibbs point pro-
cess models have been suggested, and we refer to Møller and Waagepetersen (2007)
for a recent overview of this problem. One of the most widely used methods is to
use the maximum pseudo-likelihood estimate (MPLE) originally suggested by Besag
(1975). Theoretical aspects of the MPLE for stationary Gibbs point processes have
been considered in e.g. Jensen and Møller (1991); Jensen and Künsch (1994); Billiot
et al. (2008) while practical aspects were tackled in Baddeley and Turner (2000).
The popularity of this procedure is mainly due to its computational simplicity com-
pared to the classical maximum likelihood method, and it is the default method for
estimating parameters of spatial Gibbs point processes in the R package spatstat
(Baddeley and Turner, 2005).

Typically the uncertainty of the MPLE is assessed by parametric bootstrap meth-
ods. This is computationally expensive since it requires both Monte-Carlo simula-
tions of the fitted model and computation of the MPLE for each realization. As an
alternative Billiot et al. (2008) proved the asymptotic normality of the MPLE and
derived a formula for the asymptotic covariance matrix as well as an estimator of this
matrix. However, this estimator is also computationally expensive due to numeri-
cal approximation of several integrals. In this paper, we express the entries of the
covariance matrix as covariances between certain spatial point process innovations
as defined by Baddeley et al. (2005). We prove an exact formula for the covariance
between two innovations and derive a consistent estimate of this covariance. The
proposed estimate does not involve any integration making it very fast compared to
the alternative methods.

The rest of the paper is organized as follows. Section 2 introduces relevant no-
tation and background material on spatial point processes including some known
asymptotic results for the MPLE. Section 3 contains the main results of the pa-
per. Here we studythe covariance between two innovations and suggest an estimator
of the asymptotic covariance matrix for the MPLE. Section 4 illustrates the per-
formance and efficiency of the developed methodology through a simulation study
and applies the method to a real dataset. Finally, auxiliary results and proofs are
deferred to Appendix A.

2 Gibbs point processes and pseudo-likelihood

2.1 Definition of (Gibbs) point processes

A point process X in Rd is a locally finite random subset of Rd meaning that the
restriction of X to any bounded Borel set is finite. The elements of X are referred to
as points and we think of them as locations of some objects or events of interest. In
applications this may be locations of trees, mineral deposits, disease cases, galaxies,
etc.
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In this paper we keep measure theoretical details to a minimum and we will
only introduce some necessary notation and terminology. The point process X takes
values in the set Ω consisting of all locally finite subsets of Rd. Thus the distribution
of X is a probability measure P on an appropriate σ-algebra consisting of subsets
of Ω. If the distribution of X is translation invariant we say that X is stationary.

Often the points of a point process have extra information attached to them such
as e.g. the size of the tree or the type of the disease. Such information is called a mark
taking values in a mark space M. It is a random variable on M with distribution λm.
In this case X is called a marked point process with state space S = Rd ×M, and
a typical element of S is denoted uµ := (u, µ). The mark space M may be quite
general, but the reader will miss no fundamental concepts by letting M be Rm or
a countable set. The state space S is equipped with the product measure λd ⊗ λm,
where λd is the Lebesgue measure on Rd, and with a slight abuse of notation we let
duµ := λd ⊗ λm(u, µ) = λd(u)λm(µ). We call a marked point process stationary if
the point process on Rd induced by discarding the marks is stationary. For marked
point processes, we let Ω denote the set of locally finite subsets of S.

Throughout the paper Λ is exclusively used to denote bounded Borel sets of Rd

and | · | denotes the volume of such a set. For x ∈ Ω, we let xΛ := x ∩ (Λ×M)
and n(x) denotes the number of points in x. For brevity, we say that “X is observed
in Λ” for some Λ when the locations of X are in Λ and the marks are in M.

In this paper we work with stationary (marked) Gibbs point processes models,
which may be defined through a parametric family of Papangelou conditional inten-
sities λθ : S×Ω→ R+, θ ∈ Θ, where θ is the parameter vector and Θ is the parameter
space. Heuristically, the Papangelou conditional intensity has the interpretation that
λθ(u

µ, X)duµ is the conditional probability of observing a marked point in a ball of
volume duµ around uµ given the rest of the point process is X (see e.g. Møller and
Waagepetersen (2004)). We will not discuss how to consistently specify the Papan-
gelou conditional intensity to ensure the existence of a Gibbs point process on S,
but rather we simply assume we are given a well-defined Gibbs point process. The
reader interested in a deeper presentation of Gibbs point processes and the exis-
tence problem is referred to Ruelle (1969); Preston (1976) or Dereudre et al. (2011).
In Section 2.2 we give several examples of Gibbs point processes.

Throughout the paper we will often use the following two concepts for a function
f : S× Ω→ R,

(i) f has finite interaction range R ≥ 0, i.e.

f(uµ, x) = f(uµ, xB(u,R)) (2.1)

where B(u,R) is the euclidean ball centered at u with radius R.

(ii) f is translation invariant, i.e.

f(uµ, x) = f(0µ, τux) (2.2)

where τux is the translation of the locations of x by the vector −u.

In the remainder of the paper we will assume the following general model assumption:
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[Model] For any uµ ∈ S and x ∈ Ω, let v(uµ, x) = (v1(uµ, x), . . . , vp(u
µ, x))T , where

vi : S × Ω → R for i = 1, . . . , p. For θ ∈ Θ ⊆ Rp, let λθ : S × Ω → R be a function
of the form

λθ(u
µ, x) = exp(θTv(uµ, x)) (2.3)

satisfying (2.1) and (2.2). Let Pθ denote the distribution of a (well-defined) station-
ary hereditary marked Gibbs point process with Papangelou conditional intensity
λθ, and let X ∼ Pθ? .

Under this assumption, the Papangelou conditional intensity completely charac-
terizes the Gibbs point process in terms of the Georgii-Nguyen-Zessin (GNZ) For-
mula (see Papangelou (2009) and Zessin (2009) for historical comments and Georgii
(1976) or Nguyen and Zessin (1979a) for a general presentation).

Lemma 2.1 (Georgii-Nguyen-Zessin Formula). For any measurable function h :
S× Ω→ R such that the following quantities are defined and finite, then

E
(∑

uµ∈X
h(uµ, X \ uµ)

)
= E

(∫

Rd×M
h(uµ, X)λθ?(u

µ, X)duµ
)

(2.4)

where E denotes the expectation with respect to Pθ?.

Based on this formula, Baddeley et al. (2005) defined the concept of h-innovations
of a spatial point process (for a function h : S×Ω→ R). The h-innovations computed
in a bounded domain Λ is the centered random variable defined by

IΛ(X, h) :=
∑

uµ∈XΛ

h(uµ, X \ uµ)−
∫

Λ×M
h(uµ, X)λθ?(u

µ, X)duµ. (2.5)

Baddeley et al. (2005) proposed to replace θ? in (2.5) by a consistent estimate
to obtain residuals for spatial point processes. Such residuals can be used as a
diagnostic tool of goodness-of-fit and they have also been considered by Coeurjolly
and Lavancier (2012) and Baddeley et al. (2011) both from a theoretical and practical
point of view.

2.2 Examples of Gibbs point processes

In this section we present some classical examples of parametric point process models
(see e.g. Møller and Waagepetersen (2004) for more details). In particular, these
examples will be used in the simulation study in Section 4 to assess the methodology
proposed in this paper. Let uµ ∈ S and x ∈ Ω. Most of the examples presented
hereafter are not marked, and in these cases we omit the mark notation.

(i) Poisson point process. Basic example for which the log-Papangelou conditional
intensity is a constant, i.e. log λθ(u, x) = θ. The assumption [Model] is satis-
fied for any value of θ.

(ii) Strauss point process. Defined by

log λθ(u, x) = θ1 + θ2n[0,R](u, x)

where n[0,R](u, x) =
∑

v∈x 1(‖v−u‖ ≤ R) is the number of R-close neighbours
of u in x. This process has range of interaction R, and assumption [Model] is
satisfied if R <∞ and θ2 ≤ 0.
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(iii) Piecewise Strauss point process. Generalization of the Strauss point process
obtained by substituting the indicator function with a step function. It is
defined by

log λθ(u, x) = θ1 +

p∑

j=1

θjn(Rj−1,Rj ](u, x)

where n(Rj−1,Rj ](u, x) =
∑

v∈x 1(Rj−1 < ‖v − u‖ ≤ Rj) for R0 = 0 < R1 <
· · · < Rp. This process has range of interaction Rp, and assumption [Model]
is satisfied if Rp <∞ and θ2, . . . , θp ≤ 0.

(iv) Geyer saturation point process (with saturation threshold 1). Defined by

log λθ(u, x) = θ1 + θ2

( ∑

v∈x∪u
1(d(v, x ∪ u \ v) ≤ R)−

∑

v∈x
1(d(v, x \ v) ≤ R)

)

where d(u, x) = minw∈x ‖w − u‖ is the distance from u to the nearest point
of x. This process has range of interaction 2R, and assumption [Model] is
satisfied if R <∞.

(v) Multi-type Strauss point process. This is a marked point process withm discrete
marks (M = {1, . . . ,m}). It is defined by

log λθ(u
j, x) = θj +

m∑

k=1

θjkn[0,Rjk)(u
j, xk), j = 1, . . . ,m

where θjk = θkj and Rjk = Rkj. Here n[0,Rjk)(u
j, xk) denotes the number of

points in x of type k which are Rjk-close neighbours to the point uj of type j.
The process has range of interaction R = maxRjk, and assumption [Model]
is satisfied when R <∞ and θjk ≤ 0, for all j, k ∈ {1, . . . ,m}.

2.3 Maximum pseudo-likelihood estimate

Assume we observe XΛ+ , where Λ+ ⊂ Rd is bounded, and let Λ = Λ+ 	 R be the
erosion of Λ+ by R, i.e.

Λ = Λ+ 	R = {u ∈ Λ+|B(u,R) ⊆ Λ+}. (2.6)

The maximum pseudo-likelihood estimate (MPLE) is the value θ = θ̂ which maxi-
mizes the pseudo-likelihood

PLΛ(X; θ) =
∏

uµ∈XΛ

λθ(u
µ, X \ uµ) exp

(
−
∫

Λ×M
λθ(u

µ, X)duµ
)
.

This maximum is attained at the root of the score function with jth component

∂

∂θj
logPLΛ(X; θ) =

∑

uµ∈XΛ

vj(u
µ, X \ uµ)−

∫

Λ×M
vj(u

µ, X)λθ(u
µ, X)duµ

for j = 1, . . . , p.
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To detail the asymptotic properties of the MPLE, we now let Λ = Λn depend on
an index n. For each n we assume Λn is a cube with volume |Λn| → ∞ for n→∞.
Furthermore, we need the following technical assumption:

[MPLE] The parameter space Θ ⊂ Rp is compact, θ? ∈ Θ̊ and for any θ 6= θ?, the
following identifiability condition holds

Pθ?
(
(θ − θ?)Tv(0M , X) 6= 0

)
> 0.

Furthermore, for all uµ ∈ S and x ∈ Ω there exists a constant κ ≥ 0 such that one
of the following two assumptions is satisfied:

θi ≤ 0 and − κ ≤ vi(0
µ, x) ≤ κn(xB(0,R)) (2.7)

or
−κ ≤ vi(0

µ, x) ≤ κ (2.8)

where R is the range of interaction defined in (2.1).

Billiot et al. (2008) extended the results in Jensen and Møller (1991) and Jensen
and Künsch (1994) and obtained consistency and asymptotic normality of the MPLE
for a large class of models including the examples presented in Section 2.2. We now
state the central limit theorem for the MPLE.

Proposition 2.2 (Billiot et al. (2008)). Assume that the distribution of X is ergodic
and that [MPLE] is satisfied. Then, for n → ∞, the MPLE is strongly consistent
and satisfies the following central limit theorem

|Λn|1/2(θ̂n − θ?) d−→ N (0, U−1ΣU−1),

where U and Σ are (p, p) matrices with entries

Ujk = E[vj(0
M , X)vk(0

M , X)λθ?(0
M , X)] (2.9)

Σjk = lim
n→∞

|Λn|−1 Cov

(
∂

∂θj
logPLΛ(X; θ?),

∂

∂θk
logPLΛ(X; θ?)

)
(2.10)

where M is a random variable with distribution λm.

To propose a computationally efficient way of estimating the asymptotic covari-
ance matrix for the MPLE, the key point is to note that

∂

∂θj
logPLΛ(X; θ?) = IΛ(X, vj). (2.11)

Thus, from (2.10) we need to be able to estimate the covariance between innovations,
which we detail in the following section.
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3 Covariance of innovations

Several properties of the innovations are established in Baddeley et al. (2005) and
Baddeley et al. (2008). In particular, Proposition 4 in Baddeley et al. (2005) presents
a formula for the variance of IΛ(X, h). Our Lemma A.1 in Appendix A.1 extends this
result by providing a formula for the covariance between two innovations IΛ(X, g)
and IΛ(X, h). In this Section, we use Lemma A.1 to study the asymptotic covariance
between innovations. In particular, we propose a consistent estimate of this covari-
ance which requires no numerical integration. Finally, we use the results to estimate
the asymptotic covariance matrix of the MPLE, which allows us to quantify the
uncertainty of the MPLE much faster than previously possible.

To obtain the asymptotic results in this section, we need the second order Pa-
pangelou conditional intensity

λθ({uµ, vν}, X) = λθ(u
µ, X ∪ vν)λθ(vν , X) = λθ(v

ν , X ∪ uµ)λθ(u
µ, X), uµ, vν ∈ S.

(3.1)
Also, for any vν ∈ S, we define the difference operator ∆vν applied to a function
h : S× Ω→ R as

∆vνh(uµ, X) := h(uµ, X ∪ vν)− h(uµ, X). (3.2)

Furthermore, certain conditions on the functions g and h are needed, as detailed in
the following assumption:

[H(g,h)] The functions g, h : S × Ω → R satisfy (2.1) and (2.2). Furthermore,
there exists an open neighbourhood V of θ? such that for any θ ∈ V , the random
variables I1, I2, I3 given by

I1(g, h) :=
∣∣g(0M , X)h(0M , X)λθ?(0

M , X)
∣∣ (3.3)

I2(g, h) :=

∫

B(0,R)×M

∣∣∣∣g(0M , X)h(vν , X)λθ?({0M , vν}, X)

×
(
λθ(0

M , X)λθ(v
ν , X)

λθ({0M , vν}, X)
− 1

) ∣∣∣∣dvν (3.4)

I3(g, h) :=

∫

B(0,R)×M

∣∣∆vνg(0M , X)∆0Mh(vν , X)λθ?({0M , vν}, X)
∣∣ dvν (3.5)

have finite expectation.

Note that [Model] implies that λθ({uµ, vν}, X) is almost surely positive for any
uµ, vν ∈ S and any θ ∈ Θ. In particular the ratio in (3.4) is therefore well-defined.
Now we study the normalized covariance of innovations

CΛn(g, h) := |Λn|−1 Cov (IΛn(X, g), IΛn(X, h)) ,

for cubes Λn with |Λn| → ∞ as n→∞. For the result below, the neighbourhood V
appearing in [H(g,h)] could be replaced by {θ?}.
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Proposition 3.1. Assume [H(g,h)] and let M be a random variable with distri-
bution λm. Then, as n→∞,

CΛn(g, h)→ C(g, h) = A1(g, h) + A2(g, h) + A3(g, h)

where

A1(g, h) = E
[
g(0M , X)h(0M , X)λθ?(0

M , X)
]

A2(g, h) =

∫

B(0,R)×M
E
[
g(0M , X)h(vν , X)

(
λθ?(0

M , X)λθ?(v
ν , X)

− λθ?({0M , vν}, X)
)]
dvν

A3(g, h) =

∫

B(0,R)×M
E
[
∆vνg(0M , X)∆0Mh(vν , X)λθ?({0M , vν}, X)

]
dvν .

The following main result of this paper establishes a strongly consistent and
computationally fast estimate of C(g, h). The idea behind our result is to combine
a consistent estimate of θ? with estimates of the matrices Ai(g, h), i = 1, 2, 3 of
Proposition 3.1.

Theorem 3.2. Let gθ, hθ : S × Ω → R be parametric families of functions, which
are (almost surely) continuous in θ. Assume there exists an open neighbourhood V
of θ? such that for all θ ∈ V the assumption [H(gθ,hθ)] holds, and let θ̂ = θ̂n(X) be
a strongly consistent estimate of θ?. Then, as n→∞, we have the following almost
sure convergence

Ĉ(gθ̂, hθ̂) := Â1(gθ̂, hθ̂) + Â2(gθ̂, hθ̂) + Â3(gθ̂, hθ̂)→ C(gθ? , hθ?)

where

Â1(gθ̂, hθ̂) =
1

|Λn|
∑

uµ∈XΛn

gθ̂(u
µ, X \ uµ)hθ̂(u

µ, X \ uµ)

Â2(gθ̂, hθ̂) =
1

|Λn|
∑

uµ,vν∈XΛn
u6=v,‖u−v‖≤R

gθ̂(u
µ, X \ {uµ, vν})hθ̂(vν , X \ {uµ, vν})

×
(
λθ̂(u

µ, X \ {uµ, vν})λθ̂(vν , X \ {uµ, vν})
λθ̂({uµ, vν}, X \ {uµ, vν})

− 1

)

Â3(gθ̂, hθ̂) =
1

|Λn|
∑

uµ,vν∈XΛn
u6=v,‖u−v‖≤R

∆vνgθ̂(u
µ, X \ {uµ, vν})∆uµhθ̂(v

ν , X \ {uµ, vν}).

From Proposition 3.1 and (2.9)-(2.11) we have Ujk = A1(vj, vk) and Σjk =
C(vj, vk). Then the corollary below follows by combining Proposition 2.2 with The-
orem 3.2.

Corollary 3.3. Let the matrices Âi(vj, vk), i = 1, 2, 3, be as in Theorem 3.2 with θ̂
given by the MPLE. Under the assumption [MPLE], the (p, p) matrices Û and Σ̂
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with entries Ûjk = Â1(vj, vk) and Σ̂jk = Ĉ(vj, vk) = Â1(vj, vk)+Â2(vj, vk)+Â3(vj, vk)
are strongly consistent estimates of U and Σ. Moreover, if Σ is positive definite, we
have the following convergence in distribution as n→∞

|Λn|1/2Σ̂−1/2Û(θ̂n − θ?) d−−→ N (0, Ip). (3.6)

We point out that (3.6) does not require the ergodicity of Pθ? and it therefore
applies even if a phase transition occurs (see Jensen and Künsch (1994) for a proof
of this). Furthermore, we refer to Billiot et al. (2008) for a proof of the positive
definiteness of the matrix Σ for a large class of models (including the ones presented
in this paper).

4 Applications

In this section we describe how the theory of Sections 2-3 is applied in practice (for
d = 2). In Section 4.1 we detail the methodology for a Strauss point process. Sec-
tion 4.2 describes a simulation study involving the models presented in Section 2.2.
In Section 4.3 we exemplify the methodology using a dataset of marked points.

We assume we are given a realization x+ of XΛ+ , and we let x = x+
Λ denote

the realization of XΛ, where Λ is given by (2.6). Let θ̂ denote the MPLE based
on XΛ+ . From Corollary 3.3 we use the approximation θ̂ ∼ N (θ?, Σ̂MPLE), where
Σ̂MPLE = |Λ|−1Û−1Σ̂Û−1. If ŝ2

i denotes the ith diagonal element of Σ̂MPLE, then the
approximate 95% confidence interval for θ?i is [θ̂i − 1.96ŝi, θ̂i + 1.96ŝi], i = 1, . . . , p.
The approximate 95% confidence region for θ? is {θ : (θ̂−θ)T Σ̂−1

MPLE(θ̂−θ) ≤ q95 %},
where q95 % is the 95% quantile of a χ2

p distribution.

4.1 Strauss point process

When X is a Strauss point process the formulas for Â1, Â2 and Â3 defining Σ̂MPLE

simplify considerably and we detail these in the following to underline the computa-
tional simplicity of Σ̂MPLE. Let n = n(x) be the number of points in x = (x1, . . . , xn).
We denote by T (resp. T+) the vector of length n with ith component given by the
number of R-close neighbours of xi in x\xi (resp. R-close neighbours of xi in x+\xi).
Then

Â1 = |Λ|−1

(
n

∑
i T

+
i∑

i T
+
i

∑
i T

+
i

2

)

Â2 = |Λ|−1(e−θ̂2 − 1)

( ∑
i Ti

∑
i Ti(T

+
i − 1)∑

i Ti(T
+
i − 1)

∑
IR

(T+
i − 1)(T+

j − 1)

)

Â3 = |Λ|−1

(
0 0
0

∑
i Ti

)

where IR = {i, j = 1, . . . , n : ‖xi − xj‖ ≤ R, xi 6= xj}.
As an example consider a realization in the unit square of a Strauss point process

with interaction range R = 0.05 and parameters θ?1 = log(β) = log(200) ≈ 5.3 and
θ?2 = log(γ) = log(0.5) ≈ −0.69. Such a realization is generated via a perfect
simulation algorithm in spatstat as follows:
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Figure 1: (a) Realization of a Strauss point process. (b) Approximate 95 % confidence
region for the MPLE.

> X <- rStrauss(beta=200, gamma=0.5, R=0.05)

In this case the point pattern with 204 points, shown in Figure 1(a), was generated.
Then the MPLE of the parameters of a Strauss point process model with interaction
range R = 0.05 is calculated via:

> fit <- ppm(X, interaction=Strauss(0.05))

The result fit contains relevant information about the fitted model and the MPLE,
which was (θ̂1, θ̂2) = (5.64,−0.47) in this case. The approximate covariance matrix
of the MPLE is estimated using the formulas above via:

> sigmaMPLE <- vcov(fit)

The result is simply the estimated covariance matrix of the MPLE. From this we
can calculate the approximate 95% confidence region, shown in Figure 1(b), and the
individual confidence intervals, which in this case were [5.33, 5.95] and [−0.74,−0.20]
for θ?1 and θ?2 respectively.

Note that the procedure vcov is not specific to the Strauss model, but works for
any point process model implemented in spatstat satisfying [Model].

4.2 Simulation study

In this section we present a simulation study using the following models:

• Strauss point processes with R = 0.05 and θ?1 = log(200), where models S1,
S2 and S3 respectively have θ?2 = log(0.8), θ?2 = log(0.5), and θ?2 = log(0.2).

• Piecewise Strauss point processes with R1 = 0.05, R2 = 0.1, and θ?1 = log(200),
where models P1 and P2 respectively have (θ?2, θ

?
3) = (log(0.8), log(0.2)), and

(θ?2, θ
?
3) = (log(0.2), log(0.8)).
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Table 1: Results for different simulated Gibbs point process models based on 500 replica-
tions with Λ = [0, `]2, ` = 1, 2. Left column: empirical coverage rates (i.e. the fraction of
confidence ellipsoids covering the true parameter value). Right: minimum and maximum
of empirical 1-dimensional coverage rates (i.e. the fraction of confidence intervals covering
the true parameter value for each parameter).

Coverage (%) 1-dim. coverage (%)

`=1 `=2 `=1 `=2

S1 95.0 93.8 [95.2,96.0] [94.2,94.6]
S2 94.4 95.2 [95.4,96.6] [95.2,97.0]
S3 95.0 97.0 [96.2,96.8] [97.0,97.2]
P1 88.0 94.2 [93.4,97.6] [93.0,95.8]
P2 92.2 94.2 [94.8,95.0] [95.2,95.8]
G1 96.4 95.4 [96.4,97.4] [95.6,95.8]
G2 95.6 94.2 [96.4,96.4] [94.2,94.6]
M1 94.6 94.8 [94.0,95.8] [95.2,96.2]
M2 92.2 96.0 [93.6,95.8] [92.3,95.2]

• Geyer point processes with R = 0.05 and θ?1 = log(100), where models G1 and
G2 respectively have θ?2 = log(1.2) and θ?2 = log(0.8).

• Multi-type Strauss point processes with two types, R11 = R22 = R12 = 0.05
and θ?1 = θ?2 = log(200), where models M1 and M2 respectively have θ?11 =
θ?22 = θ?12 = log(0.5), and θ?11 = θ?22 = log(0.8), θ?12 = log(0.2).

For each model 500 realizations were generated using the Metropolis-Hastings
algorithm with birth, death and shift proposals as detailed in Geyer and Møller
(1994) (except for the Strauss point processes which were generated using the per-
fect simulation algorithm of Berthelsen and Møller (2002); Berthelsen and Møller
(2003)). For all the models Λ+ = [−R, ` + R]2, ` = 1, 2, where R is the interaction
range of each model. Based on these simulations we calculated the approximate 95%
confidence region (respectively confidence intervals for each parameter) and checked
whether it covered θ? (respectively θ?j ). The results given in Table 1 show that the
coverage rates are close to the expected 95% for all the models.

4.3 Illustration on the dataset amacrine

In this section we use a real dataset to illustrate how the methodology developed in
this paper is applied. We consider the dataset amacrine available in the spatstat
package. This dataset is a spatial marked point pattern of displaced amacrine cells
in the retina of a rabbit. The marks have two discrete values off and on classifying
the type of the cell, and the locations of 142 off cells and 152 on cells are given in a
1060 µm by 662 µm sampling frame. This dataset was first analyzed by Diggle (1986)
and later revisited by Baddeley (2010, Chapter 21, p. 400) to illustrate the use of the
approximate maximum likelihood estimate (AMLE) suggested by Huang and Ogata
(1999). The data was modeled as a multi-type Strauss point process with interaction
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radii R11 = R12 = R12 = 60 µm. The parameter estimates and their standard errors
(obtained using parametric Bootstrap techniques) presented in Baddeley (2010) are
recalled in Table 2. This table also contains the corresponding maximum pseudo-
likelihood estimates (MPLE) and their standard errors calculated by the method
developed in this paper. The MPLE and standard errors were obtained in a few
seconds. In contrast, calculation of the AMLE and its standard errors may take
a few hours depending on the number of replications used in the Huang-Ogata
approximation and on the number of replications of the fitted model used to estimate
the standard error. We have parametrized the Multi-type Strauss point process as
in Section 2.2 with the mark 1 (respectively 2) representing off (respectively on)
cells.

We observe that using AMLE or MPLE yields qualitatively similar results. In
particular, we note that the estimates of θ11 and θ22 are large, suggesting a strong
repulsion between cells of the same type, whereas the small estimate of θ12 suggests a
weaker repulsion between cells of different types. As it was done in Baddeley (2010),
we can propose an asymptotic hypothesis testing procedure to test the hypothesis
H0 : θ12 = 0 against H1 : θ12 6= 0. If θ̂12 is the MPLE of θ12 and σ̂12 denotes
the standard error, then our asymptotic result implies that θ̂12/σ̂12 approximately
follows a standard Gaussian distribution under the null hypothesis. Based on this we
cannot reject the null hypothesis (p ' 46 %), so a model with independence between
the two types of cells might be appropriate.

Table 2: Parameter estimates and standard errors for the Huang-Ogata approximate max-
imum likelihood estimate (amle) and the maximum pseudo-likelihood estimate (mple) for
the amacrine dataset. The index 1 (resp. 2) corresponds to the cell type off (resp. on).
The cross × indicates that this standard error was not computed in Baddeley (2010).

Method Parameter θ1 θ2 θ2 − θ1 θ11 θ12 θ22

amle estimate −6.045 −5.798 0.247 −1.346 −0.100 −1.335
se 0.325 × 0.323 0.160 0.085 0.170

mple estimate −4.424 −4.541 −0.116 −2.140 −0.164 −1.978
se 0.732 0.794 0.669 0.190 0.224 0.259
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A Appendix

A.1 Auxiliary Lemma

The following result provides an exact formula for the covariance of two spatial point
process innovations.

Lemma A.1. Assume g, h : S × Ω → R are such that the following quantities are
defined and finite, then

Cov
(
IΛ(X, g), IΛ(X, h)

)
= Ã1,Λ(g, h) + Ã2,Λ(g, h) + Ã3,Λ(g, h)

with

Ã1,Λ(g, h) = E

[∫

Λ×M
g(uµ, X)h(uµ, X)λθ?(u

µ, X)duµ
]

Ã2,Λ(g, h) = E
[∫

(Λ×M)2

g(uµ, X)h(vν , X)
(
λθ?(u

µ, X)λθ?(v
ν , X)

− λθ?({uµ, vν}, X)
)
duµdvν

]

Ã3,Λ(g, h) = E

[∫

(Λ×M)2

∆vνg(uµ, X)∆uµh(vν , X)λθ?({uµ, vν}, X)duµdvν
]
.

Proof. From the GNZ Formula (2.4), E[IΛ(X, g)] = E[IΛ(X, h)] = 0. Now, we de-
compose the covariance into four terms

E[IΛ(X, g)IΛ(X, h)] = T1 + T2 + T3 + T4.

These different terms are defined and simplified using again the GNZ formula as
follows

T1 = E
[∫

(Λ×M)2

g(uµ, X)λθ?(u
µ, X)h(vν , X)λθ?(v

ν , X)duµdvν
]

(A.1)

T2 = −E
[∫

Λ×M
g(uµ, X)λθ?(u

µ, X)duµ
∑

vν∈XΛ

h(vν , X \ vν)
]

= −E
[∑

vνXΛ

(
h(vν , X \ vν)

∫

Λ×M
g(uµ, X)λθ?(u

µ, X)duµ
)]

= −E
[∫

(Λ×M)2

h(vν , X)g(uµ, X ∪ vν)λθ?(uµ, X ∪ vν)λθ?(vν , X)duµdvν
]

(A.2)

T3 = −E
[∫

Λ×M
h(vν , X)λθ?(v

ν , X)dvν
∑

uµ∈XΛ

g(uµ, X \ uµ)
]

= −E
[∫

(Λ×M)2

g(uµ, X)h(vν , X ∪ uµ)λθ?({uµ, vν}, X)duµdvν
]

(A.3)
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and

T4 = E
[ ∑

uµ,vν∈XΛ

g(uµ, X \ uµ)h(vν , X \ vν)
]

= E
[ ∑

uµ,vν∈XΛ
uµ 6=vν

g(uµ, X \ uµ)h(vν , X \ vν)
]

+ E
[ ∑

uµ∈XΛ

g(uµ, X \ uµ)h(uµ, X \ uµ)
]

= E
[∫

(Λ×M)2

g(uµ, X ∪ vν)h(vν , X ∪ uµ)λθ?({uµ, vν}, X)duµdvν
]

+ E
[∫

Λ×M
g(uµ, X)h(uµ, X)λθ?(u

µ, X)duµ
]
. (A.4)

Rearranging (A.1)–(A.4) leads to the result.

A.2 Proof of Proposition 3.1

Proof. From Lemma A.1, we just have to prove that |Λn|−1Ãi,Λn(g, h) → Ai(g, h),
for i = 1, 2, 3. The stationarity of the point process is sufficient for i = 1 since
|Λn|−1Ã1,Λn = A1(g, h). For the other terms, let uµ, vν ∈ S such that ‖u − v‖ ≥ R.
Then for any function f : S×Ω→ R satisfying (2.1), we have f(uµ, x∪vν) = f(uµ, x),
which implies

λθ?({uµ, vν}, X) = λθ?(u
µ, X ∪ vν)λθ?(vν , X) = λθ?(u

µ, X)λθ?(v
ν , X)

and
∆vνg(uµ, X) = g(uµ, X ∪ vν)− g(uµ, X) = 0.

Then we focus on the convergence of the second term (the third one follows similar
arguments). Let us decompose Ã2,Λn(g, h) = Ã1

2,Λn
(g, h) + Ã2

2,Λn
(g, h) where

Ã1
2,Λn(g, h) := E

[ ∫

(Λn	R)×M

∫

(B(u,R)∩Λn)×M
f(uµ, vν , X)dvνduµ

]

Ã2
2,Λn(g, h) := E

[ ∫

(Λn\(Λn	R))×M

∫

(B(u,R)∩Λn)×M
f(uµ, vν , X)dvνduµ

]
,

and f(uµ, vν , X) := g(uµ, X)h(vν , X) (λθ?(u
µ, X)λθ?(v

ν , X)− λθ?({uµ, vν}, X)). From
the stationarity of X and since f satisfies (2.2), we get

|Λn|−1 Ã1
2,Λn(g, h) = |Λn|−1E

[ ∫

(Λn	R)×M

∫

B(u,R)×M
f(uµ, vν , X)dvνduµ

]

=
|Λn 	R|
|Λn|

A2(g, h)

→ A2(g, h)

14



and

|Λn|−1 |Ã2
2,Λn(g, h)| ≤ |Λn|−1E

[ ∫

(Λn\(Λn	R))×M

∫

B(u,R)×M
|f(uµ, vν , X)|dvνduµ

]

=
|Λn \ (Λn 	R)|

|Λn|
E
[ ∫

B(0,R)×M
|f(0M , vν , X)|dvν

]

→ 0

as n→∞.

A.3 Proof of Theorem 3.2

Assumption [Model] asserts the existence of at least one stationary Gibbs measure.
If this measure is unique, it is ergodic. Otherwise, it can be represented as a mixture
of ergodic measures (see Georgii (1988), Theorem 14.10). Therefore, we can assume,
for this proof, that Pθ? is ergodic.

Proof. For j = 1, 2, 3, let us denote by Âj(θ) the quantity Âj(g, h) where θ̂ is replaced
by θ, for θ ∈ V . In the following, the general ergodic theorem for spatial point
processes obtained by Nguyen and Zessin (1979b) (see also Lemma 2 in Coeurjolly
et al. (2012)) combined with the GNZ Formula (2.4) will be widely used (as n→∞).
These uses are justified by the assumptions [Model] and [H(gθ,hθ)]. Using the
arguments above, we immediately obtain the following almost sure convergence.

Â1(θ)→ A1(θ) := E
[
gθ(0

M , X)hθ(0
M , X)λθ?(0

M , X)
]
. (A.5)

As in the proof of Proposition 3.1, we focus on the convergence of the second term
Â2(θ) (the third one follows similar arguments). Let us decompose Â2(θ) = Â1

2(θ) +

Â2
2(θ) where

Â1
2(θ) =

1

|Λn|
∑

uµ∈XΛn	R

∑

vν∈XB(u,R)\uµ
gθ(u

µ, X \ {uµ, vν})hθ(vν , X \ {uµ, vν})

×
(
λθ(u

µ, X \ {uµ, vν})λθ(vν , X \ {uµ, vν})
λθ({uµ, vν}, X \ {uµ, vν})

− 1

)

Â2
2(θ) =

1

|Λn|
∑

uµ∈XΛn\Λn	R

∑

vν∈XΛn∩B(u,R)\uµ
gθ(u

µ, X \ {uµ, vν})hθ(vν , X \ {uµ, vν})

×
(
λθ(u

µ, X \ {uµ, vν})λθ(vν , X \ {uµ, vν})
λθ({uµ, vν}, X \ {uµ, vν})

− 1

)
.
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Since |Λn 	R|/|Λn| ∼ 1 as n→∞, we get the following almost sure convergence

Â1
2(θ)→ E

[ ∑

vν∈XB(0,R)

gθ(0
M , X \ vν)hθ(vν , X \ vν)×

×
(
λθ(0

M , X \ vν)λθ(vν , X \ vν)
λθ({0M , vν}, X \ vν)

− 1

)
λθ?(0

M , X)
]

= E
[∫

B(0,R)×M
gθ(0

M , X)hθ(v
ν , X)

×
(
λθ(0

M , X)λθ(v
ν , X)

λθ({0M , vν}, X)
− 1

)
λθ?(0

M , X ∪ vν)λθ?(vν , X)︸ ︷︷ ︸
=λθ? ({0M ,vν},X)

dvν
]

=: A2(θ).

Now, there exists n0 ∈ N such that for all n ≥ n0 the following holds almost surely

|Â2
2(θ)| ≤ 1

|Λn|
∑

uµ∈XΛn\(Λn	R)

∑

vν∈XB(u,R)\uµ

∣∣∣gθ(uµ, X \ {uµ, vν})hθ(vν , X \ {uµ, vν})

×
(
λθ(u

µ, X \ {uµ, vν})λθ(vν , X \ {uµ, vν})
λθ({uµ, vν}, X \ {uµ, vν})

− 1

)∣∣∣

≤ 2
|Λn \ (Λn 	R)|

|Λn|
I2(gθ, hθ)

→ 0.

In the previous equations I2(gθ, hθ) given by (3.4). With similar arguments, we may
prove that Â3(θ)→ A3(θ) where

A3(θ) := E
[∫

B(0,R)×M
∆vνgθ(0

M , X)∆0Mhθ(v
ν , X)λθ?({0M , vν}, X)dvν

]
.

For any θ ∈ V , Ĉ(θ) :=
∑3

j=1 Âj(θ) converges Pθ?-almost surely towards C(θ) :=∑3
j=1Aj(θ) as n→∞. Under the assumption [H(gθ,hθ)], Ĉ(θ) and C(θ) are contin-

uous functions in θ which implies Ĉ(gθ̂, hθ̂)→ C(θ?). The proof is therefore finished
since C(θ?) = C(gθ? , hθ?).

A.4 Proof of Corollary 3.3

Proof. Since the MPLE is a strongly consistent estimate of θ? (Proposition 2.2),
the only thing to prove is that for all j, k = 1, . . . , p the assumption [H(vj, vk)]
is fulfilled. In particular we have to verify that the variables Ii(vj, vk), i = 1, 2, 3
defined by (3.3)-(3.5) have finite expectation. We note that [MPLE] implies the
local stability property, i.e. there exists λ̃ <∞, such that for any uµ, vν ∈ S, x ∈ Ω
and θ ∈ Θ we have λθ(uµ, x) ≤ λ̃ and λθ({uµ, vν}, X) = λθ(u

µ, x)λθ(v
ν , x∪uµ) ≤ λ̃2.

For ease of presentation we assume in the following that vi(uµ, x) satisfies (2.7) for
i = 1, . . . , p. Similar arguments can be used when some of vi(uµ, x), i = 1, . . . , p
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satisfy (2.8). Then for any uµ, vν ∈ S such that ‖u− v‖ ≤ R we have 1/λθ(u
µ, x) ≤

exp(κ̃n(xB(u,R))), where κ̃ = supθ(−κ
∑p

i=1 θi) > 0 and

1

λθ(uµ, vν , x)
≤ eκ̃(n(xB(u,R))+n(xB(v,R))) ≤ eκ̃ n(xB(u,2R)).

Then we derive

I1(vj, vk) ≤ λ̃κ2 n(XB(0,R))
2,

I2(vj, vk) ≤ 2λ̃3κ2eκ̃ n(xB(0,2R))

∫

B(0,R)

n(XB(0,R))n(XB(v,R))dvν

≤ 2λ̃3κ2|B(0, R)|n(XB(0,R))n(XB(0,2R))e
κ̃ n(xB(0,2R))

I3(vj, vk) ≤ 4λ̃2κ2|B(0, R)| (1 + 2n(XB(0,R))) (1 + 2n(XB(0,2R))).

The result is therefore proved since we recall that for any spatial Gibbs point process
satisfying a local stability property, we have in particular E[n(XA)kec n(XA)] < ∞
for any integer k, constant c and bounded Borel set A (see e.g. Bertin et al., 2008,
Proposition 11).
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