
On the Determinantal
Complexity of the
2-hook-immanant

Uffe Heide-Jørgsensen - 20040417
Advisor: Niels T. H. Lauritzen

July 2012

Department of Mathematical Sciences
Faculty of Science, Aarhus University





He had bought a large map representing the sea,
Without the least vestige of land:

And the crew were much pleased when they found it to be
A map they could all understand.

- Lewis Carroll, The Hunting of the Snark
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Introduction

The determinant is a well-studied object and should be known to any student who
has taken a course in basic linear algebra. The first encounter one has with the
determinant is likely to be via the Laplace expansion formula,

detn(A) =
n∑
j=1

a1j(−1)j+1 detn−1(A1j),

where A1j is obtained from A by removing the first row and the j’th column.
This might not strike many a freshman as an object of particular beauty, nor

might the somewhat simpler formula

detn =
∑
σ∈Sn

sgnσ
n∏
i=1

Xiσi.

(Especially because not all freshmen would know what the symmetric group, Sn is.)
Nevertheless, the determinant is an object with quite a few extraordinary prop-

erties, which makes it interesting not only to mathematicians, who deal mainly with
theory and abstraction, but also to e.g. theoretical computer scientists who (in
theory) would like to do actual computations.

The permanent which appears strikingly similar to the determinant

pern =
∑
σ∈Sn

n∏
i=1

Xiσi

is another polynomial which one should know from combinatorics if one has studied
such subjects.

However, the permanent unlike the determinant seems very hard to compute
because generally pern(AB) 6= pern(A) pern(B), and so when computing the per-
manent we cannot use Gaussian elimination which is possible when computing the
determinant.
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iv INTRODUCTION

Polya, [27], noted that

per2 = det2

(
X11 X12

−X21 X22

)
and asked the question,

Given n ≥ 3, is it possible to express the permanent, pern({Xij}), as
detn({aijXij})?, where aij ∈ {1,−1}?

Szegö, [32], found the answer to be no, it is never possible when n ≥ 3. Later Marcus
and Minc, [24], found that for n ≥ 3 there are no endomorphism of Matn(C), L, such
that pern = detn ◦L.

In 1979 Leslie Valiant, [33], however, found that given any polynomial, f , (over
any field) it is possible to find an affine map, L, such that f = detm ◦L for some
suitable m ∈ N. Now, if we take f = pern we can ask

What is the smallest integer, m, such that pern = detm ◦L, for some
affine map, L?

The problem is still not solved. Several lower bounds have been found over the years.
Marcus and Minc’s result of course gives us m ≥ n+1, this was improved by von zur
Gathen, [16], to m ≥

√
8/7n, and again by Cai, [9], to m ≥

√
2n. The best known

lower bound was found Mignon and Ressayre, [25], and is quadratic, m ≥ n2/2. The
smallest such m is called the determinantal complexity of the permanent, and it is
conjectured that it grows faster than any polynomial in n.

Summary

Chapter 1

The first chapter is primarily a discussion of the subject of dual varieties. These are
often useful when one wishes to give a lower bound of the determinantal complexity
of a polynomial, as the dimension of the dual variety of the determinant is relatively
low. (This is one of the intriguing features of this fascinating polynomial.)

An explicit computation of the dimension of the dual of the variety defined by the
determinant is presented, along with a sketch of how one computes the dimension of
the dual of the variety defined by the permanent.

Finally Katz’ dimension formula for hypersurfaces is presented together with
a discussion on how this can be helpful in finding lower bounds of determinantal
complexities of general polynomials.
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Chapter 2

In the second chapter several issues from theoretical computer science are discussed.
In particular the complexity classes P and NP are presented, and their algebraic
analogues VP and VNP are also defined.

A proof of Valiant’s theorem which states that any polynomial is expressible as a
determinant or a permanent of a matrix with entries that are constants or variables,
is given, and several notions of determinantal complexities are defined.

Finally the polynomials known as immanants, of which the determinant and
permanent are special cases, are presented along with a discussion on why these might
be interesting in the research of the determinantal complexity of the permanent.

Chapter 3

In the third, and final chapter the main result, a quadratic lower bound of one
particular immanant, is given, along with different ways of computing said immanant.

Appendix A

In the appendix there are some lines of code which can be used in Macaulay2 to
compute the rank of the Hessian of the immanant which is the subject of chapter 3.

Acknowledgements

I would like to thank my advisor Niels Lauritzen not only for his help and support
during my time as a Ph.D.-student, but also for the lectures he has given when I
was just a lowly student. Thank you also for suggesting the subject of geometric
complexity theory for my project, it has been quite interesting.

I would also like to express my gratitude to Nicolas Ressayre who was my host for
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Dansk Resumé

For cirka 100 år siden fandt Polya ud af, at 2×2-permanenten kunne konstrueres ud
fra determinanten af samme størrelse ved et simpelt fortegnsskift. Han spurgte om
dette kunne lade sig gøre for mere generelle n × n-permanenter. Szegö fandt ud af
at svaret er nej; det er umuligt for alle n ≥ 3.

Ikke desto mindre er det muligt at konstruere n × n-permanenten som deter-
minanten af en matrix med indgange, der enten er konstanter eller variable. Den
determinantale kompleksitet af (n × n-)permanenten er det mindste tal for hvilket
der findes en matrix med affine indgange, s̊aledes at determinanten af denne ma-
trix er permanenten. Den determinantale kompleksitet af permanenten formodes at
vokse hurtigere end noget polynomium i n. Den hidtil bedste nedre grænse for den
determinantale kompleksitet af permanenten vokser kvadratisk.

I denne afhandling gennemg̊aes forskellige aspekter af determinanten og perma-
nenten samt det mere generelle begrebe immananten. Specielt vises en kvadratisk
nedre grænse af den immanant, der i en vis forstand ligger tættest p̊a determinanten.
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Chapter 1

Dual Varieties

In this chapter we shall give a brief introduction to the topic from algebraic geometry
known as dual varieties. Given a hypersurface X = V (f) ⊆ Pn(C) the dimension of
the dual variety, X∗, can be essential in giving a lower bound for the determinantal
complexity of the polynomial f . (We shall define what is meant by determinantal
complexity in chapter 2.) Thus, we will present Katz’ dimension formula, which
links the dimension of dual varieties to the rank of Hessian matrices. Furthermore,
we shall investigate the dimension of the dual variety of the variety defined by the
determinant.

We start at a very basic level by defining what we consider to be an algebraic
variety - we follow the book [20].

The results of remaining parts of this chapter are taken from chapter 1 in the
book [17] unless anything else is stated.

1.1 Basic Definitions and the Biduality Theorem

Algebraic Varieties

Let X be a topological space, and K an algebraically closed field. We shall primarily
consider the field of complex numbers but in these opening definitions we will allow
more arbitrary fields.

We define a space with functions in the following way:

Definition 1.1.1. A space with functions is a topological space, X, such that for
each open subspace, U ⊆ X, we have a K-algebra of regular functions from U to
K which we denote K[U ]. These regular functions must satisfy the following two
conditions

1
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1. f ∈ K[U ] if and only if f |Ua ∈ K[Ua] for all a ∈ J , where
⋃
a∈J Ua = U is an

open cover of U .

2. The set D(f) = {x ∈ U |f(x) 6= 0} is open in U and 1/f is regular on D(f)
whenever f is regular on U

Example 1.1.2. One such space with functions could be any topological space X
with K[U ] the continuous functions from U ⊆ X to K (where in the topology on K
points are closed, and the inversion function i : K∗ → K is continuous).

Another example could be a closed, affine, algebraic set, i.e.,

X = V (I) = {x ∈ An|f(x) = 0 for all f ∈ I},

where I ⊆ R = K[T1, . . . , Tn] is a radical ideal, here K[U ] is the set of rational
functions, i.e., if f : U → K is rational then f(x) = P (x)/Q(x) for some polynomials
P,Q ∈ R. In particular K[X] = R/I.

In order to define what is meant by algebraic varieties we need to first define
what affine varieties are, this requires the notion of morphisms:

Definition 1.1.3. A morphism between two spaces with functions, ϕ : Y → X, is
a continuous map that respect regularity, i.e., if U is an open subset of X, we get
a K-algebra-homomorphism, ϕ∗ : K[U ]→ K[ϕ−1(U)], defined by ϕ∗(f) = f ◦ ϕ. If
a morphism is a bijection and the inverse is also an morphism then it is called an
isomorphism.

This definition makes us consider the map

∗Y,X : Mor(Y,X)→ HomK(K[X], K[Y ]),

which we use to define affine varieties:

Definition 1.1.4. If X is a space with functions such that K[X] is finitely generated
as a K-algebra, and for all Y the map ∗Y,X is a bijection, then we call X an affine
variety.

The definition above is reasonable in the light of this proposition, though we shall
omit the proof.

Proposition 1.1.5. Any affine variety is isomorphic to X = V (I) for some radical
ideal I ⊆ K[T1, . . . , Tn].

We are now ready to define the more general notion of algebraic varieties.
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Definition 1.1.6. An algebraic variety is a space with functions, X, such that there
is some finite open covering, X =

⋃r
i=1 Ui, where each Ui is an affine variety.

If I ⊆ K[X0, . . . , Xn] is a homogeneous ideal, i.e., if I is generated by homoge-
neous polynomials, then we get a closed, projective set,

V (I) = {[a] = [a0, . . . , an] ∈ Pn|f(a) = 0 for all f ∈ I} ⊆ Pn.

One can show that the set Ui = V (I) ∩ {[a] ∈ Pn|[a] = [a0, . . . , ai−1, 1, ai+1, . . . , an]}
is an affine variety, and as U0 ∪ · · · ∪ Un is an open covering of V (I) we have

Proposition 1.1.7. Closed, projective sets are algebraic varieties.

We now turn our attention towards dual varieties over the complex numbers.

Dual Varieties

If we consider a line l = C · v ⊆ Cn+1 we have that the orthogonal complement,
l⊥ = ker v∗ ⊆ Cn+1, is a hyperplane of which we can take the projectivisation. This
we also call a (projective) hyperplane.

Conversely given some projective hyperplane, H ⊆ Pn, we shall consider H as a
point in the projectivisation of (Cn+1)

∗
, namely as [v∗] ∈ Pn∗, where C · v ⊆ Cn+1 is

the line orthogonal to the linear version of H. Thus, the set of projective hyperplanes
form a projective space which it is natural to think of as Pn∗.

Now, given some variety, X = V (I), we may consider some point in the smooth
locus, x ∈ Xsm, then we say that a hyperplane, H, containing x is tangent to X at
x if TxX ⊆ TxH.

We denote by W0 the set

W0 = {(x,H) ∈ Pn × Pn∗|x ∈ Xsm, and H is tangent to X at x} ,

and we may now define what the dual variety of X is.

Definition 1.1.8. Let W = W0. The dual variety of X, denoted X∗, is the image
of W under the second projection, Pn × Pn∗ 3 (x,H)

π27→ H ∈ Pn∗, i.e.,

X∗ = π2(W ).

Note that if X = V (f) is a hypersurface we have a well-defined map

δ : Xsm → X∗

[y] 7→ [∇f(y)],
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and X∗ is the closure of δ(X). We call δ the dual map.
The term dual variety is justified by the following theorem which we shall not

prove. The proof is based on a clever use of Lagrangian subvarieties and can be
found in its entirety in [17].

Theorem 1.1.9 (Biduality Theorem). (X∗)∗ = X for any variety X ⊆ Pn

Whereas the proof is beyond our scope we shall spend a few words on the theo-
rem’s implications on varieties that are not hypersurfaces.

If there is an open subset of an irreducible projective variety, U ⊆ X ⊆ Pn,
such that U is the union of projective subspaces of dimension r, i.e., spaces that are
projectivisations of (r + 1)-dimensional linear subspaces, W ⊆ Cn+1, then we say
that X is ruled in projective spaces of dimension r.

Let us consider an irreducible variety, X ⊆ Pn, of codimension r + 1 for some
r ≥ 0, and take a smooth point x ∈ Xsm, furthermore, consider the set of projective
hyperplanes tangent to X at x. Each such hyperplane, H, satisfy TxX ⊆ TxH ⊆ V
for some vector space V of dimension n.

Conversely, any hyperplane, W ⊆ V , containing TxX corresponds to a projective
hyperplane tangent to X at x. Thus, if we consider the space Lx = P ((V/TxX)∗)
this will be a subset of X∗. The dimension of Lx is

dimLx = dimV − dimTxX − 1 = n− (n− codimX)− 1 = r,

and because the sets in {Lx|x ∈ Xsm} cover an open subset of X∗ this dual vari-
ety is ruled in projective spaces of dimension r. By the biduality theorem we can
interchange the roles of X and X∗, and conclude

Corollary 1.1.10. An irreducible variety, X, is ruled in projective spaces of dimen-
sion r if codimX∗ = r + 1.

The corollary tells us that the dual variety of a typical irreducible variety will be
a hypersurface, since most varieties are not ruled in projective spaces of dimension
r, for r > 0.

It is also a fact, which we shall not prove, that if X is irreducible, then X∗ is
irreducible as well (see [17, proposition 1.3]).

Now, if we have a variety which is not irreducible, X =
⋃
iXi, where each Xi is

irreducible, and Xi * Xj for i 6= j, we get (
⋃
iXi)

∗ =
⋃
iX
∗
i , and since we in general

expect each X∗i to be a hypersurface we should also expect this of X∗. Hence, generic
reduced varieties have duals that are hypersurfaces.

Trivial counterexamples to this observation could be varieties V (F ) ⊆ Pn for
some F ∈ C[X0, . . . , Xk] ⊆ C[X0, . . . , Xn] where k < n. Indeed if a = [a0, . . . , an] is
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a zero of F then a′ = [a0, . . . , ak, bk+1, . . . , bn] is a zero of F too, and so we have that
each point (with ai 6= 0 for some 0 ≤ i ≤ k) lie in a (n − k)-dimensional projective
subspace of Pn which is also a subset of V (F ).

Projective transformations of such polynomials, i.e., V (F ◦ A−1) for some A ∈
GLn+1(C), and F as above, are naturally also ruled in projective spaces of positive
dimension. This of course includes projective hyperplanes, as these are transforma-
tions of V (X0).

More generally projective subspaces of dimension k are obviously ruled in pro-
jective spaces of dimension k.

A non-trivial counterexample is the variety defined by the determinant, V (detn) ⊆
Pn2−1, which we shall investigate shortly.

It makes sense to define the dual of a variety in positive characteristics as well
as in characteristic 0, however, the biduality theorem is not valid as seen in this
example:

Example 1.1.11. Consider the polynomial F = Xp−1
0 X2−Xp

1 ∈ Fp[X0, X1, X2], and
the variety Γ = V (F ) ⊆ P (K3), i.e., the graph of the Frobenius map, K 3 x 7→ xp ∈
K, of some field K ⊇ Fp. The hyperplanes (i.e. the lines) tangent to Γ can be found
geometrically using the dual map, i.e., the gradient, ∇F =

(
−X2X

p−2
0 , 0, Xp−1

0

)
, and

we see that the dual variety, Γ∗, is the line V (X∗1 ).

This gives that (Γ∗)∗ is a point and, hence, not equal to Γ, showing that the
biduality theorem is not true in this case.

Thus, as always one has to be careful when making a transition from the complex
numbers to some field of positive characteristic.

1.2 The Determinant and Katz’ Dimension

Formula

We now turn to the determinant-variety as promised earlier. We shall not explicitly
distinguish between matrices as points in Matn(C) and as points in Pn2−1, hopefully

it will be clear from the context what is meant. Also, we shall identify
(
Pn2−1

)∗
with Pn2−1 by sending a basis of Matn(C)∗ to the dual basis in Matn(C).

Proposition 1.2.1. Let D = V (detn) ⊆ Pn2−1 then D∗ is isomorphic to the Segre
product Pn−1 × Pn−1, thus, D∗ is of dimension 2n− 2.
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Proof. We shall as in example 1.1.11 use the dual map, and, thus, the gradient of the
determinant. The gradient can be found by taking (n − 1)-minors and multiplying
with (−1)i+j, when the minor is the determinant of the matrix obtained by removing
the i’th row and the j’th column.

Note that if A ∈ D, then A is smooth if and only if ∇ detn(A) 6= 0 which is
equivalent to rankA = n − 1. Recall from basic linear algebra that if we write
∇ detn(A) as a square matrix in the natural way, then ∇ detn(A) is the transpose of
the adjoint matrix of A, adj(A). We have the identities

adj(AB) = adj(B) adj(A), and adj(A)A = A adj(A) = detn(A)In

for general matrices A ∈ Matn(C). Notice in particular that if detn(A) = 1 then
adj(A) = A−1, and if detn(A) = 0 then A adj(A) = 0.

Thus, returning to the case where A ∈ Dsm we have that δ(A) = adj(A)t is a
matrix of rank 1, since A adj(A) regarded as a linear transformation is the zero-map,
hence, the (non-zero) image of adj(A) is contained in the 1-dimensional kernel of A.

On the other hand we have that any matrix of rank one is the adjoint of a matrix
of rank n− 1.

Indeed, consider a matrix, N , of rank 1, then we can find invertible matrices
G1, G2 ∈ SLn(C), and 0 6= a ∈ C (actually we may choose G1 and G2 to get a = 1
but this is unimportant) such that

G1NG2 =


a 0 . . . 0

0 0
. . .

...
...

. . . . . . 0
0 . . . 0 0

 =: N ′.

Now N ′ is the adjoint of the diagonal matrix, ∆, with diagonal (0, a, 1, . . . , 1), and
so we get that

N = G−1
1 N ′G−1

2 = adj(G1) adj(∆) adj(G2) = adj(G2∆G1).

Clearly A = G2∆G1 is of corank one, thus, A ∈ Dsm.
Thus, we conclude that D∗ contains the projectivisation of the set of matrices of

rank 1, which we may identify as

δ(Dsm) = V ({XiiXjj −XijXji|1 ≤ i < j ≤ n}) .

This shows that the dense subset δ(Dsm) of D∗ is also closed, hence, it is equal to
D∗.
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Any matrix of rank 1 can be constructed as the product vwt, for non-zero column-
vectors v, w ∈ Cn. The vectors v and w are not unique, though; take some non-
zero scalar, λ, then we may replace v by λv if we at the same time replace w by
λ−1w. Moving to projective space solves this problem, and if we consider the Segre-
embedding

sk,m : Pk−1 × Pm−1 ↪→ Pkm−1

([a1, . . . , ak], [b1, . . . , bm]) 7→

a1b1 . . . a1bm
...

. . .
...

akb1 . . . akbm

 ,
with k = m = n we get that the image of sn,n is exactly D∗. This concludes the
proof.

Proposition 1.2.1 shows that the hypersurface defined by the determinant is ruled
in projective spaces of high dimension and in this way distinguishes the determinant
geometrically from a generic polynomial.

The dual variety of a generic hypersurface might not be as easy to determine
as the one of the determinant-variety. However, we may find the dimension of the
dual variety using Katz’ dimension formula. We shall only present a version of the
formula which gives the dimension of dual varieties of hypersurfaces, though it can
be generalised to varieties of any dimension.

Theorem 1.2.2 (Katz’ Dimension Formula for Hypersurfaces). Let X = V (f) ⊆ Pn
be irreducible, and let r be the rank of the Hessian matrix

Hes f =

(
∂2f

∂Xi∂Xj

)
0≤i,j≤n

evaluated at generic x ∈ X. The dimension of X∗ is equal to r − 2.

Proof. We will consider the affine variety Y = V (f) ⊆ An+1 rather than the projec-
tive version. By Y ∗ we shall denote the affine cone over X∗.

As in the projective case we have a dual map, which we once again may use

Ysm 3 y
δ7→ ∇f(y) ∈ Y ∗. We recognise the Hessian of f as the Jacobian matrix of δ,

dyδ, which is a map of tangent spaces

dyδ : TyY → Tδ(y)Y
∗.

Because this map is surjective for y in a dense subset of Ysm (see, e.g, [18, Proposition
14.4]) we have dimY ∗ = dim dyδ(TyY ) for generic y. As TyY is a hypersurface, i.e., it
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has codimension 1, dimY ∗ = dim dyδ(TyY ) = rank dyδ− 1, and so for the projective
version we get

dimX∗ = dimY ∗ − 1 = r − 2,

showing the formula is true.

In [25] Thierry Mignon and Nicolas Ressayre found a point En ∈ Matn(C) such
that the permanent

pern =
∑
σ∈Sn

n∏
i=1

Xiσi,

vanishes at En, and the Hessian of the permanent evaluated at En is an invertible
matrix. Hence, the variety defined by the permanent has a dual variety which is a
hypersurface.

The point they considered is

En =


1− n 1 . . . 1

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ∈ V (pern).

Indeed, an easy computation gives that

Hes pern(En) =


0 An An . . . An
An 0 Bn . . . Bn

An Bn
. . . . . .

...
...

...
. . . 0 Bn

An Bn . . . Bn 0

 ,

where An = (n− 2)!(Jn− In) (here Jn is the matrix with all entries equal to 1), and

Bn = (n− 3)!


0 n− 2 n− 2 . . . n− 2

n− 2 0 −2 . . . −2

n− 2 −2
. . . . . .

...
...

...
. . . 0 −2

n− 2 −2 . . . −2 0

 .
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If we combine this with the fact ([25, Lemma 3.7]) that (block-)matrices of the form
0 C C . . . C
C 0 D . . . D

C D
. . . . . .

...
...

...
. . . 0 D

C D . . . D 0


are invertible whenever C and D are invertible matrices (or non-zero complex num-
bers), we get that Hes pern(En) is invertible. Hence, in the light of Katz’ dimension
formula Mignon and Ressayre proved the following

Proposition 1.2.3. dimV (pern)∗ = n2 − 2, i.e., the dual of the permanent-variety

is a hypersurface in
(
Pn2−1

)∗
.

We shall just present one last result concerning dual varieties before turning our
attention elsewhere.

Let us consider an affine map, L1,

L1 : An1 → Am

x 7→ Ax+ b

with n1 < m, and a homogeneous polynomial, d ∈ C[X1, . . . , Xm], and use these to
construct a new polynomial, p1 ∈ C[X1, . . . , Xn1 ], by composing the maps d and L1;

p1 = d ◦ L1.

Denote by p the homogenization of p1, i.e.,

p(X0, X1, . . . , Xn) = X−e0 d
(
A(X1, . . . , Xn1)

t + bX0

)
where e = deg d − deg p1 (if p1 itself is already homogeneous we also put p = p1).
Hence, we have p = d ◦ L for some affine, possibly linear, map, L : An → Am for
n = n1 + 1 ≤ m. We now get

Proposition 1.2.4. With notation as above, consider the projective varieties X =
V (p) ⊆ Pn−1 and Y = V (d) ⊆ Pm−1. We have

dimX∗ ≤ dimY ∗.
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Proof. Let us define the following sets analogous to definition 1.1.8

WX
0 = {(x,∇p(x))|x ∈ Xsm} and W Y

0 = {(y,∇d(y))|y ∈ Ysm} ,

thus, (for Z = X, Y ) Z∗ is the second projection of the closure of WZ
0 .

Consider the map

ψ : WX
0 → W Y

0

(x,∇p(x)) 7→ (Lx,∇d(Lx)),

which is a well-defined morphism as 0 = p(x) = d(Lx), and the chain rule gives

∇p(x) = ∇d(Lx)A,

hence, Lx is a smooth point in Y when x is a smooth point in X.
Now, assume that L is injective so that we may find a map Λ : Am → An such

that Λ restricted to L(An), is the inverse of L. This gives us a new morphism

ϕ : ψ(WX
0 )→ WX

0

(y,∇d(y)) 7→ (Λy,∇p(Λy)).

Clearly ψ and ϕ are the inverses of the others, thus, WX = WX
0 is (isomorphic to)

a subvariety of W Y = W Y
0 , using the second projection gives dimX∗ ≤ dimY ∗.

If the affine map L is not injective but of rank k < n we may find a matrix,
C ∈ GLn(C), such that B = AC is a matrix in which the first k columns are non-
zero and the last n− k columns are zero, i.e., B = ( B′ 0 ) for some m× k-matrix B′

of rank k. Now consider the injective map

L′ : Ak → Am

x 7→ B′x+ b,

and the polynomial p′ = d ◦ L′: If we embed Ak into An then we see that p′ is the
restriction of p ◦ C to Ak, hence, p′ is homogeneous and we get in the same fashion
as above that dimV (p′)∗ ≤ dimY ∗.

Furthermore, X and V (p ◦ C) are isomorphic, thus, the same is true for X∗ and
V (p ◦ C)∗. Note that p ◦ C ∈ C[X1, . . . , Xk] ⊆ C[X1, . . . , Xn], and so V (p ◦ C) is
ruled in projective spaces of dimension n − k, meaning that when we consider the
dual of V (p ◦ C) we might as well consider the dual of V (p′) - the only difference
between the two dual varieties is that one lies in a (n − 1)-dimensional projective
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space whereas the other lies in a space of dimension k − 1. In particular we have
dimV (p ◦ C)∗ = dimV (p′)∗, which gives

dimX∗ = dimV (p ◦ C)∗ = dimV (p′)∗ ≤ dimY ∗

which concludes the proof.

Remark 1.2.5. The proposition in particular tells us that if we construct a homo-
geneous polynomial using the determinant and some affine map, L : An → Am2

, in
the following way,

p = detm ◦L,

then dimV (p)∗ ≤ dimV (detm)∗ = 2m− 2, and so the size of the determinant, m, is

required to be at least dimV (p)∗+2
2

.
We shall see later, that any polynomial can be constructed in this way, and so for

generic polynomials, i.e., polynomials which define hypersurfaces whose dual varieties
are hypersurfaces themselves, we then have that m is at least half of the number of
variables used.





Chapter 2

The Determinant and the
Permanent

In this chapter we shall, as the title indicates, investigate the two (families of) poly-
nomials called the determinant and the permanent. To a mathematician the former
is well-known and -studied, whereas, the latter is less likely to be known at all un-
less one has studied combinatorics, graph theory or complexity theory. This fact is
the motivation to begin the chapter with an introduction to basic complexity the-
ory by a presentation of some complexity classes which are important in theoretical
computer science. In particular we will focus on the famous P versus NP-problem.
Furthermore, we shall investigate Valiant’s algebraic analogues VP and VNP which
links complexity theory to polynomials. We shall also present Valiant’s result about
universality of the determinant and permanent; any polynomial can be realised as a
determinant or permanent of a certain matrix.

[12], [33], [34], and in particular [8] are major references in these opening sections.

Once said basic notions are unravelled we will turn our attention to the deter-
minantal complexity of polynomials. As the determinant is easily evaluated using
Gaussian elimination, and any polynomial, p, can be realised as a determinant of
some matrix, it might be feasible to use this determinant-construction to evaluate p
if the matrix is not too large.

We shall also take a glance at Molmuley and Sohoni’s notion of bounded deter-
minantal complexity.

Finally we will investigate families of polynomials called immanants, which is a
generalization of the determinant- and permanent-families.

13



14 CHAPTER 2. THE DETERMINANT AND THE PERMANENT

2.1 Complexity Theory

P and NP

In complexity theory it is essential to have some notion of the size of a problem.
E.g., if a problem is concerned with a graph, the number of vertices and edges could
be one measure of the size of the graph. If a problem has something to do with
matrices then size of the problem is likely to be related to the dimension of our space
of matrices.

The P versus NP-problem asks the question if the two complexity classes P and
NP are in fact equal. A very loose description (a precise one will follow briefly) of
the class P could be that P is the set of problems that can be answered yes or no,
and where an answer can be computed using a number of calculations that grows at
most polynomially with the size of the problem.

NP on the other hand is the set of problems that can be answered yes or no,
and if one has found a positive answer (a ’yes’) to the problem, then it is possible to
verify this answer in polynomial time.

It might not be obvious from these descriptions that P is a subset of NP, however,
once we have seen the rigorous definitions this should be quite clear.

In order to define P and NP we first need to define what we mean by an alphabet,
and by a deterministic Turing machine. The following definitions of Turing machines,
P and NP etc. are taken from [12].

Definition 2.1.1. A finite alphabet is a finite non-empty set, Σ, we shall require
that it contains at least two elements. By Σ∗ we denote the set of strings over Σ, an
element of Σ∗ is called a word, and by a language, L over Σ we mean a set of words,
i.e., a subset of Σ∗.

A deterministic Turing machine is a tuple, (Q,Γ,Σ, δ), where Q, Γ, and Σ are
finite sets; the states, the symbols, and the input alphabet respectively. They must
satisfy

1. Γ contains a blank element, denoted b.

2. Σ ⊆ Γ \ {b}.

3. Q must contain three special states; the initial state, q0, the reject state, qr,
and the accept state, qa. The latter two are called terminating states.

Finally
δ : Q \ {qr, qa} × Γ→ Q× Γ× {−1, 1}

is a function known as the transition function.



2.1. COMPLEXITY THEORY 15

A Turing machine can be thought of as a formal version of an algorithm. The
intuition in the definition of a Turing machine is to think of it as an infinite strip
of squares each containing a symbol from Γ, furthermore, the strip is in some state
from Q. The machine has a head which reads the symbols on one of the squares in
the strip. Now, assume that the head is at a square containing the symbol s and the
strip is in the state q 6= qr, qa, our transition function now determines what to do,
let’s say δ(q, s) = (q′, s′, n), then the head overwrites the s in the square changing it
to s′, and moves one to the left if n = −1 and one to the right if n = 1, the state of
the strip is changed to q′.

Initially the strip has a word from Σ∗ written on adjacent squares and the head is
placed at the leftmost symbol in the word. All other squares have the blank symbol
written on them, and the state of the strip is set to q0.

The machine terminates if the strip gets into one of the terminating states. This
might not happen in which case we say that the machine does not terminate.

The term deterministic is used because once the word is written on our strip,
the actions of the head, and the changes of states are completely determined by the
transition function.

One also has a notion of non-deterministic Turing machines, which resembles the
deterministic version, but there is no transition function rather there is a transition
relation

δ ⊆ (Q \ {qr, qa} × Γ)× (Q× Γ× {−1, 1}).

We shall not trouble ourselves further with these non-deterministic Turing machines,
though they can be used to define NP.

Example 2.1.2. Let us construct a Turing machine Mw0 which determines if a word
contains a fixed substring, w0, i.e., if we have the words w = t1 . . . tk, w0 = u1 . . . ul ∈
{s1, . . . , sn}∗ the machine shall determine if w = uw0v where u, v ∈ {s1, . . . , sn}∗.

We need to specify the tuple (Q,Γ,Σ, δ); let

• Q = {q0, qr, qa, q1, . . . , ql−1},

• Σ = {s1, . . . , sn},

• Γ = Σ ∪ {b}, and
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• the transition function is defined by

δ(qj, s) =



(q0, s, 1) if s 6= uj+1 and s 6= u1

(q1, s, 1) if s 6= uj+1 and s = u1

(qj+1, s, 1) if s = uj+1 and j 6= l − 1

(qa, s, 1) if s = uj+1 and j = l − 1

(qr, s, 1) if s = b.

What the machine does is very simple. It reads from the left to the right in the word
w, and once it finds the first symbol of w0 it remembers by changing the state to
q1. Once it has read the first 1 ≤ k < l − 1 symbols of w0 as consecutive symbols
in w, it reaches the state qk. If the next symbol the machine reads is uk+1 the state
is changed to qk+1, if the symbol is some other symbol from Σ the state is changed
to q0 (or q1 if s = u1), as we may start over from this new position. If the symbol is
blank the machine has reached the end of w before without finding w0 as a substring,
and the machine terminates at the rejecting state. If the head at state ql−1 reads ul,
w0 is a substring of w, and the machine terminates at the accepting state.

Since we always shift to the right, the transition function could just as well have
changed the letters, s, it reads on the strip to b, or any other symbol from Γ, it
doesn’t matter because we never return to the same square twice it.

In order to compare different Turing machines we will define the worst case run-
time (or just time for short) of a Turing machine.

In order to do so we set Σ∗n := {w ∈ Σ∗|w = t1 . . . tn}, for some alphabet Σ =
{s1, . . . , sr}.

Definition 2.1.3. If M is a Turing machine with input alphabet Σ we let tM(w) ∈
N ∪ {∞} be the number of times the transition function is called when the Turing
machine is applied during the evaluation of the word w. We define the (worst case
run)time of M to be

TM(n) = max{tM(w)|w ∈ Σ∗n}.

We say that M runs in polynomial time if there are constants k1, k2, k3 ∈ N such
that TM(n) ≤ k1n

k2 for all n ≥ k3. If this is the case we write TM(n) = O(nk2)

In example 2.1.2 the time of the Turing machine constructed is TMw0
(k) = k + 1

when our input is w = t1 . . . tk, and the machine runs in this time whenever it rejects
a word. k+1 ≤ 2k for all k ≥ 1 hence the machine runs in O(k) which is polynomial
time.
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Let M denote some general Turing machine, we may define the accepted language,
L(M), as the set of words the machine accepts, i.e.,

L(M) = {w ∈ Σ∗|M terminates at state qa when the input is w}.

In our example above we get L(Mw0) = {uw0v|u, v ∈ Σ∗}.
We may now define the class P.

Definition 2.1.4. The complexity class P is the set of languages, L, such that
L = L(M) for some Turing machine M which runs in polynomial time.

The definition of NP is a bit more cumbersome. Let Σ and Ω be two finite
alphabets, then we call R a checking relation if R ⊆ Σ∗×Ω∗. Uniting the alphabets
and adding a new symbol, s, we get a third alphabet Σ ∪ Ω ∪ {s}. We define the
language LR as

LR = {wsv|(w, v) ∈ R},

and say R is polynomial-time if LR is in P.

Definition 2.1.5. The complexity class NP is the set of languages, L, over an
alphabet, Σ, such that there is an alphabet, Ω, and a polynomial-time checking
relation, R ⊆ Σ∗ × Ω∗, along with an integer, k, satisfying that for all w ∈ Σ∗

w ∈ L ⇐⇒ ∃v ∈ Ω∗ : |v| ≤ |w|k and (w, v) ∈ R.

At this point it should be obvious that P is a subset of NP. Indeed, given some
L ∈ P over the alphabet Σ, we may now take the checking relation R = {(x, λ)|x ∈
L} ⊆ Σ∗ × Σ∗ where λ is the empty word. It should be clear that R is polynomial-
time as any machine, M , such that L = L(M) can be modified to Ms if we let s play
the same role as the blank symbol, now, LR = L(Ms) ∈ P.

One of the Millennium Prize Problems stated by Clay Mathematics Institute in
2000 is to prove (or disprove) Cook’s conjecture, P 6= NP.

Example 2.1.6. Here are some examples of problems from P and NP

1. To determine if a m × n-matrix has rank (at least) k is in P; using Gaussian
elimination the rank can be computed in O(m2n) time.

2. Determining if a bipartite graph has a perfect matching is in P; a maximal
flow algorithm can determine a maximal matching in time polynomial in the
number of vertices and edges.
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3. The subset sum problem is in NP, i.e., given a finite set of integers, S, deter-
mining the existence of a non-empty subset that adds to 0 is in NP; if one has
a positive solution it can be verified using O(|S|) additions.

Some problems can be used in order to solve others, i.e., there may exist a map,
ρ : Σ∗ → Ω∗, computable in polynomial time, and languages, L1 ∈ Σ∗ and L2 ∈ Ω∗,
such that L1 = ρ−1(L2). Clearly, if L2 is in NP then we may verify a solution of any
instance (word) in the problem (language) L1 in polynomial time, hence, we say that
L1 can be reduced, or reduces to L2.

Definition 2.1.7. A language, L, is said to be hard for the complexity class C if
every language L′ ∈ C reduces to L.

A language, L, is C-complete if it is hard for C and lies in C.

It is a fact that there exist NP-complete problems. One such is the subset sum
problem from example 2.1.6, however, it is far beyond our scope to prove this.

When we have a decision problem it sometimes makes sense to consider a related
counting problem; instead of asking for existence of a subset that adds to zero in
the subset sum problem, one might ask for the number of subsets which add to
zero. It’s not always a decision problem gives rise to a counting problem, e.g., the
problem concerning the rank of a matrix in example 2.1.6 has no natural way to
induce a counting problem. However, when one may lift a decision problem to a
counting problem it should be clear that the counting problem is harder than the
decision problem. Indeed, any solution to the counting problem gives the answer to
the decision problem - if we count to 0 the decision problem should be answered no,
else it should be answered yes.

#P is loosely defined to be the set of counting problems that are related to
decision problems from NP. A more formal definition is

Definition 2.1.8. #P is the set of functions ϕ : L→ N, such that

ϕ(x) = |{y|(x, y) ∈ R}|

for some language L ⊆ Σ∗, and some polynomial-time checking relation R ⊆ Σ∗×Ω∗.
A reduction from ϕ1 to ϕ2 in #P is a pair of functions, ψ : Σ∗1 → Σ∗2 and f :

N→ N, computable in polynomial time, such that

ϕ1 = f ◦ ϕ2 ◦ ψ,

and we say that ϕ is #P-complete if any other function in #P reduces to ϕ.
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Once again we have as a fact that there exist #P-complete problems (or functions)
but it is beyond our scope to prove this. One example of such a problem is the
counting problem related to the subset sum problem.

This is probably not very surprising (if we accept that there are #P-complete
problems) seeing that the subset sum problem is NP-complete. What is surprising,
however, is the following theorem given by Leslie Valiant in [34].

Theorem 2.1.9. Computing the permanent of (0,1)-matrices, A ∈ Matn({0, 1}), is
# P-complete.

The #P-completeness of the permanent is surprising because the related decision
problem lies in P and is therefore perceived to be easy; the problem is the one
of determining the existence of perfect matchings in bipartite graphs. It would
be natural to expect that #P-complete problems should arise from NP-complete
problems, or at least problems that aren’t known to lie in P, because a problem
which is #P-complete it is NP-hard.

Here is the way we count perfect matchings using the permanent: If we have a
bipartite graph with vertex-set X ∪ Y , such that all edges go between X and Y ,
we will use the vertices of X to index the rows of the adjacency matrix, A, and the
vertices of Y to index the columns. (Usually the rows and columns of an adjacency
matrix will be index by the entire vertex-set, this, however, is unnecessary when the
graph is bipartite.) The entry aij is 1 if there is an edge between xi ∈ X and yj ∈ Y
and 0 else. An obvious requirement for a perfect matching to exist is that |X| = |Y |,
in which case a perfect matching can be thought of as a bijection from X to Y , or
a permutation of [n] := {1, . . . , n} where n = |X|. If there is a perfect matching
this must then correspond to some σ ∈ Sn such that a1σ1 · · · anσn = 1, and the total
number of perfect matchings must then be

∑
σ∈Sn

n∏
i=1

aiσi

which we recognise as the permanent of the adjacency matrix.
At present time the best methods to compute the permanent of a matrix are

based on Ryser’s formula,

pern(X) =
∑
S⊆[n]

(−1)n−|S|
n∏
i=1

∑
j∈S

Xij, (2.1)

which involves O(2nn2) additions and multiplications.
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One proof of Ryser’s formula is based on a version of the inclusion-exclusion
formula;

n+1⋃
i=1

Bi =
n+1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n+1

Bi1 ∩ · · · ∩Bik ,

where on the right-hand side we have a ’sum of sets’, i.e., a formal Z-combination of
the elements in the sets. A Z-combination of elements is considered to be a regular
set if all of the coefficients are 0 or 1, and vice versa. (E.g., if we add or subtract the
sets A = {a, b} and B = {a, c} we get A+B = 2a+b+c and A−B = 0a+b−c = b−c,
whereas the union is of course A∪B = {a, b, c} which we will think of as a+ b+ c.)

For i = 1, . . . , n we define Bi := {f : [n]→ [n]|f−1({i}) = ∅}, let Bn+1 = Sn and
note that

• B :=
⋃n+1
i=1 Bi = {f : [n]→ [n]},

•
⋂n
i=1Bi = ∅, and

• Bn+1 ∩Bi = ∅ for all i < n+ 1.

We now rearrange the sum to get

Sn = Bn+1 = B +
n−1∑
k=1

(−1)k
∑

1≤i1<···<ik≤n

Bi1 ∩ · · · ∩Bik

=
n−1∑
k=0

(−1)k
∑

1≤i1<···<ik≤n

B ∩Bi1 ∩ · · · ∩Bik ,

where we interpret the case when the index k is 0 to be just B. Counting like this
we see that the permanent can be expressed as follows

pern =
n−1∑
k=0

(−1)k
∑

1≤i1<···<ik≤n

∑
f∈B∩Bi1∩···∩Bik

Xf ,

where Xf =
∏n

i=1Xif(i). However, the sum of monomials, Xf , for which i1, . . . , ik /∈
f([n]), can also be expressed

∑
1≤i1<···<ik≤n

n∏
i=1

∑
j 6=i1,...,ik

Xij,
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and so

pern =
n−1∑
k=0

(−1)k
∑

1≤i1<···<ik≤n

n∏
i=1

∑
j 6=i1,...,ik

Xij.

(This is the compact version of how Ryser’s formula is originally stated in [28, corol-
lary 4.2].) If we instead focus on sets, S, and monomials, Xf , such that f([n]) = S,
we see that the first summation can be interpreted as summing over sets of size n−k,
the second summation specifies the elements of S, and the last summation is then
to be substituted by

∑
j∈S Xij, i.e., we get Ryser’s formula as stated in (2.1).

That the computation of the permanent is #P-complete leads us to the next
subject where we use polynomials to investigate complexity theory.

VP and VNP

We now turn to Valiant’s algebraic analogue of P and NP, VP and VNP. Most
definitions and results are taken from [8].

We choose to work over the complex numbers even though our ground-field isn’t
important, at least as long as the characteristic is not 2.

A family of polynomials, (fn)n≥1, is a sequence of polynomials, and by v(fn) we
denote the number of variables needed to write down a formula for fn. When it is
convenient we will assume that f ∈ C[X1, . . . , Xv(f)], at other times we will rather
consider multi-index variables, e.g., Xij.

Definition 2.1.10. A p-family is a family of polynomials, (fn) = (fn)n≥1, such that
deg fn and v(fn) are both polynomially bounded, i.e., there are constants, cd and cv,
such that deg fn = O(ncd) and v(fn) = O(ncv).

A family of polynomials, (fn), is p-computable if fn(A) can be evaluated in
polynomial (in n) time at any point A ∈ Cv(fn).

Examples of p-families could be (fn) with fn = X1 · · ·Xn, and (gn) with gn =
X1 + · · ·+Xn, the determinant, det = (detn), and the permanent, per = (pern). The
first 3 are also p-computable (with regards to the determinant we may use Gaussian
elimination), the permanent is not known to be p-computable as this would indicate
P=NP.

Xkn , where k ∈ N is a constant greater than 1, is not a p-family as the degree is
not polynomially bounded, but it is p-computable by use of repeated squaring.

The polynomial

hn =
∏

∅6=T⊆[n]

∑
i∈T

Xi
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which is related to the subset sum decision problem is of degree 2n− 1, hence (hn) is
not a p-family. It is not known to be p-computable either, if it was we would again
have P=NP.

Definition 2.1.11. Let F = (fn) be a p-family.

1. F lies in VP if and only if F is p-computable.

2. F lies in VNP if and only if there exists a family G = (gn) in VP which satisfies
t(n) := v(gn)− v(fn) ≥ 0, and if t(n) = 0 then gn = fn, if t(n) > 0 then

fn(X1, . . . , Xv(fn)) =
∑

e∈{0,1}t(n)
gn(X1, . . . , Xv(fn), e),

for all n > 0.

We call families from VNP p-definable. The permanent is an example of a family
which lies in VNP (and is not known to lie in VP), which we shall see. If F ∈ VP
we may take G = F , to see that F ∈ VNP, hence, VP ⊆ VNP. It is not known if
VP ( VNP, but it is Valiant’s conjecture that there is strict inclusion, which seems
plausible as equality would imply P=NP.

Recall that we have reductions in the P and NP set up, sometimes we are also
be able to reduce the task of computing one polynomial to computing another, these
reductions are called projections.

Definition 2.1.12. Let f and g be polynomials in C[X1, . . . , Xn] and C[X1, . . . , Xm]
respectively. We say that f is a projection of g or g projects to f , if there are constants
and variables a1, . . . , am ∈ C ∪ {X1, . . . , Xn} such that f = g(a1, . . . , am).

Let F = (fn), and G = (gn) be p-families. We say that F is a p-projection of G
if fn is a projection of gt(n) for some t : N→ N which is polynomially bounded. We
write F ≤ G, or F ≤t G.

Clearly if G ∈ VP and F is a p-projections of G then F is a p-family, and F
is also p-computable; if we want to compute fn(A) we may do this by computing
gt(n)(A

′) for suitable A′ and a polynomially bounded function t. As gm is evaluated
in polynomial time this also holds for fn(A). We conclude that F ∈ VP

Now, let F ∈ VNP, and assume H ≤s F , i.e., hn = fs(n)(a1, . . . , av(fs(n))). It
follows that H ∈ VNP. Indeed, assume G ∈ VP is a family of polynomials such that
the conditions of definition 2.1.11.2 are satisfied, i.e. t(n) = v(gn) − v(fn) ≥ 0, and
when there is inequality we have

fn =
∑

e∈{0,1}t(n)
gn(X1, . . . , Xv(fn), e).
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Define Q = (qn) by

qn = gs(n)(a1, . . . , av(fs(n)), Xv(fs(n))+1, . . . , Xv(gs(n))),

and u(n) = v(qn)− v(hn). We now have that Q ≤s G, hence, Q ∈ VP. Furthermore,
notice how the variables used in qn are X1, . . . , Xv(hn), and Xv(fs(n))+1, . . . , Xv(gs(n)),
hence,

u(n) = v(hn) + v(gs(n))− v(fs(n))− v(hn) = t(s(n)) ≥ 0.

If u(n) > 0 then

hn = fs(n)(a1, . . . , av(fs(n))) =
∑

e∈{0,1}t(s(n))
gs(n)(a1, . . . , av(fs(n)), e)

=
∑

e∈{0,1}u(n)
qn(X1, . . . , Xv(hn), e).

If u(n) = 0 then gs(n) = fs(n), implying qn = fs(n)(a1, . . . , av(fs(n))) = hn.
We have

Proposition 2.1.13. VP and VNP are closed under p-projections.

In view of this proposition it makes sense to define VNP-completeness:

Definition 2.1.14. A family of polynomials, F ∈ VNP, is called VNP-complete if
G ≤ F for any other family G ∈ VNP.

One such VNP-complete family is the permanent.

Theorem 2.1.15. The permanent per = (pern) lies in VNP, and is VNP-complete.

Proof. We shall only prove the first part and skip the part about completeness. A
complete proof can be found in [8, Chapter 21].

Let us consider the polynomials in C[Xij, Yij]1≤i,j≤n given by

αn =
∏

1≤i,j,k,l≤n
i=k iff j 6=l

(1− YijYkl)

βn =
n∏
i=1

n∑
j=1

Yij

πn =
n∏
i=1

n∑
j=1

XijYij

gn = αnβnπn.
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In order to get per ∈ VNP, we will show

pern(X) =
∑

e∈{0,1}n2
gn(X, e).

We think of e ∈ {0, 1}n2
as square-matrices, and see that

1. αn(e) = 0 when e has more than one non-zero entry in a row or column,

2. βn(e) = 0 when there is a row without ones.

This implies that gn(X, e) = 0 unless e is a permutation matrix, eσ, in which case

πn(X, eσ) =
n∏
i=1

n∑
j=1

Xijeij =
n∏
i=1

Xiσieiσi =
n∏
i=1

Xiσi,

and we conclude ∑
e∈{0,1}n2

gn(X, e) =
∑
σ∈Sn

n∏
i=1

Xiσi = pern(X).

It remains to show G = (gn) ∈ VP. However, αn is a product of less than n4 factors,
each of which is computable in constant time, βn is a product of n factors each
consisting of n terms, hence, we can compute βn in O(n2) time, and the same is true
for πn. These observations also show that deg gn is polynomially bounded, and as
v(gn) = 2n2 G is a p-computable p-family, hence, G ∈ VP.

An essential part of the proof of completeness of the permanent is that it, like
the determinant, is universal in the sense that any polynomial can be expressed as
the permanent of some quadratic matrix. We shall present a method from [33] to
construct one such matrix which works for both the permanent and the determi-
nant, however, it can be done in other ways and the construction used to prove the
VNP-completeness of the permanent in [8] differs significantly, though there are also
obvious similarities.

2.2 Universality

Let f ∈ C[X1, . . . , Xn] be the polynomial we want to express as a determinant. The
matrix constructed depends on our formula defining f , e.g., if f = X2 + 2X + 1 we



2.2. UNIVERSALITY 25

will get the matrix

A =


1 X X

1 X
1 1

1 2
1 1

 ,

which satisfy per5A = det5A = f . However, we also have that f = (X + 1)2 and
based on this formula we would construct the matrix

B =

 X + 1
1 X + 1

1

 ,

which clearly also satisfy f = det3B = per3B. It is worth noting that this construc-
tion only proves the universality of the determinant and the permanent, whereas the
example shows it is likely that we will not find the smallest matrix which works. In
this particular case we could let C =

(
X+1

X+1

)
to get per2C = det2C = f .

In order to explain the construction let us formally define what is meant by a
formula.

Definition 2.2.1. A formula of size 0 is a constant or a variable. If ϕ1 and ϕ2 are
formulae of size s1 and s2 respectively then ϕ1�ϕ2 is a formula of size s1 + s2 + 1
whenever � ∈ {+, ·}. By a formula we mean a formula of size k, for some k ∈ N.

If f is a polynomial then the expressions size of f is the smallest k, such that
f can be represented by a formula of size k. In other words, the expression size of
a polynomial is the smallest number of additions and multiplications one needs in
order to write down the polynomial.

Now, let ϕ be a formula of size k representing our polynomial f . From ϕ we
shall construct a weighted, directed graph, Gϕ, such that the adjacency matrix,
AGϕ , satisfies detAGϕ = perAGϕ = f , and the entries of AGϕ are polynomials in
C[X1, . . . , Xn] of degree at most 1. (One can easily get the extra restriction that
AGϕ has entries which are constants or variables, and even though this is not very
important to us we will discuss this case later.)

In order to construct Gϕ we first construct a (weighted, directed) graph with one
sink and one source, Gr

ϕ, r ∈ {0, 1}.
Gr
ϕ is constructed recursively; suppose first ϕ = ϕ1�ϕ2 for two smaller formulae

ϕ1, and ϕ2, and � ∈ {+, ·}, then we have two graphs Gr1
ϕ1

and Gr2
ϕ2

.
If � = + and r1 = r2, then set r = r1, and identify the sources and the sinks of

the two graphs to get Gr
ϕ.
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If � = + and r1 6= r2, then assume without loss of generality that r2 = 0. Add
an extra node to the graph Gr2

ϕ2
, and make an edge of weight 1 from the old sink to

the new node, set r2 = 1 and proceed as the case � = + and r1 = r2.
If � = ·, then set r = r1 + r2 mod 2, and identify the source of Gr2

ϕ2
with the

sink of Gr1
ϕ1

.
Now, in order to start our construction, suppose that ϕ = Ξ ∈ C∪ {X1, . . . , Xn}

is a formula of size 0, then our graph is G1
ϕ with just two nodes, the source and the

sink, where the edge between these is given the weight Ξ.
Notice that

1. Gr
ϕ is acyclic.

2. If r = 0 then all paths from source to sink will have even length (the length of
a path is the number of edges), and if r = 1 then all paths from source to sink
will be of odd length.

3. Every term in the polynomial, f , represented by ϕ can be found as the weight
of some path (the weight of a path is the product of the weights of occurring
edges) from source to sink, and the weight of each such path is a term in f .

In the graph Gr
ϕ the nodes which are not the source or the sink are called internal

nodes. In order to get from Gr
ϕ to Gϕ we add loops, i.e., edges from a node to itself,

with weight 1 to all internal nodes, and if r = 1 we identify the source and the sink
of Gr

ϕ, if r = 0 we add an edge from the sink to the source with weight 1.
In a graph a cycle-cover is a union of vertex-disjoint cycles such that each vertex

lies in one of the cycles. The weight of a cycle-cover is the product of weights of
edges used.

Notice that a cycle cover of Gϕ, which unlike Gr
ϕ is not acyclic, consists of a

unique cycle of odd length containing the node(s) which used to be the source and
sink (which might coincide) and some loops, hence, the weights of the cycle-covers
correspond to terms in f , and the sum of these weights of cycle-covers will equal f .
We have now almost proven

Theorem 2.2.2. Assume that f is of expression-size s, and ϕ is a formula of min-
imal size s defining f . There is a square matrix, A, of size t ≤ s + 2 with entries
that are polynomials of degree at most 1 such that f = dettA = pertA.

Proof. With the notation above the theorem the matrix is defined to be A = AGϕ ,
the adjacency matrix of Gϕ.

We have already discussed that f is the sum of weights of cycle-covers of Gϕ,
however, if we number the vertices in Gϕ, a cycle-cover can be considered to be a
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permutation of [m], where m is the number of vertices in Gϕ. These permutations,
σ, are all cycles of odd length, and so sgnσ = 1.

Now, if we take some arbitrary permutation, τ ∈ Sm, and consider Aτ :=
∏m

i=1 aiτi
then Aτ is non-zero if and only if there is an edge between vertices i and τi in Gϕ

for all i ∈ [m], in other words if and only if {(i, τ i)|i ∈ [m]} is a cycle-cover of Gϕ.
Hence, we get

f =
∑

C cycle-cover

weight of C =
∑
σ∈Sm

Aσ,

which we recognise as the permanent of A, furthermore, it can be identified as the
determinant of A because Aσ 6= 0 only if sgnσ = 1.

It remains to show that the size of A is at most s + 2. But notice how, in the
construction of Gr

ϕ, we get an internal node only if we fuse two graphs by making
an addition or a multiplication of two formulae, hence, the number of internal nodes
are at most s. Bearing in mind the source and sink we get the result.

If one insists on making f as a projection of the permanent and determinant in
the sense of definition 2.1.12, i.e., where the entries of our matrix are constants or
variables, then one must consider what happens when we add two formulae of size
0. If we want to construct ϕ = X + 1 the method above would suggest we make the
graph G1

ϕ as in figure 2.1, which is then turned into the graph Gϕ shown in the same
figure. The resulting adjacency matrix would be (X + 1) /∈ Mat1(C ∪ {X}).

S T

X

1 S

1

X

Figure 2.1: The graphs G1
ϕ and Gϕ, where ϕ = X + 1

Thus, to make a proper projection we should ’add’ the graphs of size 0-formulae
by considering the formula Ξ1 + (1 · Ξ2) rather than Ξ1 + Ξ2, where Ξ1,Ξ2 ∈ C ∪
{X1, . . . , Xn}. I.e., we make one of our size 0-formulae into a size 1-formula by
multiplying with 1 before adding. If we do this with Ξ1 = X and Ξ2 = 1 we get the
graphs in figure 2.2.

Notice how we manage to keep the size of the graph to 3, which keeps us within
the bound s + 2. This would not be true if we had allowed r = 0 when fusing two
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S T

i1 i2

X

1

1

1

S

i1 i2

X

1

1

1

1 1

Figure 2.2: The graphs G1
ϕ and Gϕ, where ϕ = X + (1 · 1)

graphs with r1 6= r2 by an addition, i.e., if we had made the the graph G0
X+(1·1)

(where paths from source to sink would be of even length) rather than G1
X+(1·1). Had

we done this then our graph would have size 4, as the sink (which would be the
vertex in the lower right corner of the graph to the left in figure 2.2) would not be
merged with the source to become one node in the final graph.

All in all we have proven

Corollary 2.2.3. If f ∈ C[X1, . . . , Xn] is a polynomial of expression size s we can
find a square matrix, A ∈ Matt (C ∪ {X1, . . . , Xn}), for some t ≤ s + 2, such that
f = dettA = pertA.

The universality of the determinant leads us to the next question, if p is a poly-
nomial, how large an integer, m, is needed to have p as a projection of detm.

2.3 Determinantal Complexity

Standard Determinantal Complexity

In the light of the universality of the determinant, and because the determinant is
easily computed using Gaussian elimination one might get tempted to try and com-
pute polynomials via the determinant. I.e., if we consider some f ∈ C[X1, . . . , Xn],
which is tiresome to compute, and we find an m, which is not too large, such that f is
a projection of detm, or if f = detmA for some A, with entries that are polynomials
in C[X1, . . . , Xn] of degree at most one, then it might be a short cut to compute this
determinant rather than f directly.
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In particular if we have a p-family, F = (fn), which we would like to be able to
compute efficiently, it would be good to know if F ≤ det, or, if we are less strict,
if fn = dett(n) ◦Ln for some polynomially growing map, t : N→ N, and an affine

map, Ln : Av(fn) → At(n)2 . If either of these cases hold then F can be computed in
polynomial time.

We define the determinantal complexity of polynomials in the following way.

Definition 2.3.1. Let f be a polynomial.

1. The determinantal complexity of f is the smallest natural number, m, such that
f = detmA for some A with entries that are affine. We denote this integer by
dc(f).

2. We furthermore define the projectional determinantal complexity, dcp(f), to
be the smallest integer, m, such that f is a projection of detm in the sense of
definition 2.1.12.

Clearly dc(f) ≤ dcp(f) and we might have strict inequality. Indeed, consider f =
per2 = X11X22 + X12X21 then f = det2

(
X11 X12
−X21 X22

)
, hence, dc(per2) = 2 (naturally

the determinantal complexity is forced to be at least the degree of the polynomial).
However, this is not a p-projection, and clearly no projection of det2 to per2 exists,
instead we get

per2 = det3

 X11 X12

X22 −1
X21 −1

 ,

i.e., dcp(per2) = 3.

The determinantal complexity of polynomials in at most 3 variables or of degree
at most 2 is known. The following theorem corresponds to [25, proposition 2.2, and
theorem 1.4].

Theorem 2.3.2. Assume q is a quadratic form of rank r, and that f is a polynomial
such that either f ∈ C[X, Y, Z] is homogeneous, or f ∈ C[X1, . . . , Xn] is of degree 1,
then

• dc(q) =

{
2 if r ≤ 4⌈
r+1

2

⌉
else,

• dc(f) = deg f
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The proof is omitted in its entirety, I just note that in the case where f ∈ C[X, Y ]
is homogeneous, one may first consider g = f(X, 1) ∈ C[X] and factorise this using
the roots β1, . . . βk; g = α

∏k
i=1(X−βi). Now, let d = deg f , and s = deg f −k, then

f = Y dg(X/Y ) = αY s
∏k

i=1(X − βiY ), and so

f = α detd


Y Is

(X − β1Y )
. . .

(X − βkY )

 .

Here we of course use that C is algebraically closed which actually is unnecessary.
In fact in [25] they construct a square matrix of size d with determinant f , and

with entries which are zero or linear polynomials in the variables X and Y , with
coefficients taken from the set {a0, . . . , ad, 0,−1, 1}, where f =

∑d
i=1 aiX

iY d−i.
However, when we involve more than 3 variables or increase the degree of our

(homogeneous) polynomial the question of determinantal complexity gets more cum-
bersome. The following problem was presented to me by Nicolas Ressayre:

Problem 2.3.3. We have that

Z3 +XT 2 +X2Y = det5


1 Y
X T Z

1 T
Z X
−1 Z

 ,

and so the determinantal complexity (standard as well as projectional) of Z3+XT 2+
X2Y is at most 5. It is also known from [3, proposition 4.3] that dc(Z3 + XT 2 +
X2Y ) > 3, and that Z3 + XT 2 + X2Y is essentially the only polynomial defining
a cubic surface in P3 which has determinantal complexity greater than 3. Now, is
dc(Z3 +XT 2 +X2Y ) equal to 4 or 5?

Even though this might not look very scary it certainly is not an easy task either,
and I have not found a way to determine the accurate determinantal complexity of
the polynomial. It goes to show that determining the determinantal complexity of a
given polynomial is not something which is just done overnight.

It is an open question if the determinant is VNP-complete. (It is not even known
if the determinant is VP-complete, though, it is known to be complete in the class
VQP ⊇ VP with respect to what is called quasi-polynomial projections. We shall
not go into details about this here but refer to [7]).
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If we take Valiant’s conjecture, VP ( VNP, to be true then the determinant is
not VNP-complete.

If Valiant’s conjecture is false, i.e, if VP = VNP then Cook’s conjecture, P ( NP,
is false as well, hence, Cook’s conjecture also suggest that the determinant is not
VNP-complete.

In order to prove or disprove VNP-completeness of the determinant it is enough to
show per ≤ det or per � det respectively. This can be translated into the question of
how fast dcp(pern) grows with n. If this growth is polynomial, then per ≤ det, which
means that given F ∈ VNP we have F ≤ det, because F ≤ per by completeness of
the permanent, and using transitivity of ≤ we get F ≤ det.

On the other hand if dcp(pern) grows faster than any polynomial in n, then the
permanent is not a p-projection of the determinant, i.e., the determinant is not
VNP-complete. Note that non-VNP-completeness of the determinant is not enough
to prove Valiant’s conjecture, unless one also proves that the determinant is complete
in VP, i.e., F ≤ det for all F ∈ VP.

Rather than study dcp(pern) it might be clever to study the determinantal com-
plexity dc(pern). There are several reasons for this.

First and foremost, dc(pern) ≤ dcp(pern) as we have noticed, hence, showing
lower bounds of the growth of the determinantal complexity implies the same lower
bounds of the p-projectional determinantal complexity.

Furthermore, we get the added flexibility of allowing affine projections so that one
does not have to worry about, e.g., removing signs (or, more generally, constants)
from variables as in the example above with per2 = det2

(
X11 X12
−X21 X22

)
.

Finally if one should find that dc(pern) = O
(
nk
)

for some k ∈ N, then this is
enough to show that the permanent is computable in polynomial time, since each
coordinate of the affine projection, Ln : An2 → Adc(pern)2 , is computable in O (n2)
time. This of course would disprove Valiant’s as well as Cook’s conjectures.

One disadvantage of investigating the determinantal complexity rather than the
projectional determinantal complexity of the permanent is that, if dc(pern) ∈ O(nk)
for some k ∈ N then this in it self will not enough to prove VNP-completeness of
the determinant. However, if Valiant’s conjecture is true then this disadvantage will
have no consequences, and so it is a reasonable price to pay.

The following is the main result in [25], and it is the best known lower bound of
the determinantal complexity of the permanent.

Theorem 2.3.4. The determinantal complexity of the permanent per = (pern) grows
at least quadratically with n. Indeed, we have the lower bound

dc(pern) ≥ n2

2
.
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Proof. By proposition 1.2.3 we have that dimV (pern)∗ = n2−2 and by remark 1.2.5
we have that

dc(pern) ≥ dimV (pern)∗ + 2

2
=
n2

2
.

Bounded Determinantal Complexity

This section is primarily a elaboration of the article [21], in particular lemma 2.3.9
along with theorem 2.3.10 and corollary 2.3.11 are results which are taken from said
article, namely lemma 2.4.1, and theorems 1.0.3 and 1.0.1 respectively.

In order to allow ourselves the added flexibility of affine projections compared
to projections in the sense of definition 2.1.12, we have already skipped from the
question ’what is the projectional determinantal complexity of a given family of
polynomials?’ to the question ’what is its the determinantal complexity?’. Now we
want to give ourselves even more elbowroom.

Consider an n-dimensional vector space, V , over the complex numbers, then for
f ∈ C[X1, . . . , Xn] ∼= C[V ] and M ∈ End(V ) we define (M.f)(x) := (f ◦M)(x).

Now, assume f is homogeneous of degree d, i.e., f ∈ Sd(V ∗) ⊆ C[X1, . . . , Xn], as
in [21] we define the function ε = εV,d : Sd(V ∗)→ N on f to be the smallest natural
number, m, such that Y m−df ∈ End(Matm(C)). detm. (Here Y is a new variable
such that C[X1 . . . , Xn, Y ] ∼= C[V ⊕ C].)

It should be clear that it is always possible to find such an m using the universality
of the determinant:

If dc(f)2 ≥ n+1 we may simply linearise the map the affine map L(X) = AX+b,
where f = detm ◦L, i.e., define L′(X, Y ) = AX+bY then Y m−df = detm ◦L′. Notice
that L′ induces an endomorphism M ∈ End(Matm(C)) as we can embed V ⊕C into
Matm(C) whenever m2 ≥ dc(f)2 ≥ n+ 1.

If dc(f)2 < n + 1 we may certainly also find an m such that m2 ≥ n + 1 and an
affine map L : An → Am2

such that f = detm ◦L, and in this case we may proceed
as above.

Proposition 2.3.5. If f ∈ C[X1, . . . , Xn] is a degree d polynomial of determinantal
complexity at least

√
n+ 1 then ε(f) = dc(f).

Proof. We have already seen that dc(f) ≥ ε(f) as we, given an affine map, L, such
that f = detm ◦L, may construct an endomorphism, M , of Matm(C) such that
Y m−df = M. detm.
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The other inequality is also easy. If Y m−df = M. detm then we first embed Cn
into the ’first’ natural n-dimensional subspace of Matm(C) by a linear map, ϕ, then
we define L : An → Matm(C) ∼= Am2

by

L(X) = M(ϕ(X), 1, . . . , 1).

This gives

f(X) = 1m−df(X) = detm(M(ϕ(X), 1, . . . , 1)) = (detm ◦L)(X),

hence, dc(f) ≤ ε(f).

Remark 2.3.6. Note that if f is a linear polynomial in n > 1 variables then dc(f) =
1 but we cannot construct an endomorphism, M ∈ End(Mat1(C)) ∼= C, such that
f =

∑n
i=1 aiXi = M. det1 = M.X1. Indeed, it is necessary that our determinantal

complexity is large enough for us to be able to embed Cn+1 into Matdc(f)(C) in order
for ε and dc to coincide.

However, as our interest in determinantal complexity is mostly concerned with
families of polynomials, F = (fn), and as deg fn is usually going to grow at least as√
v(fn), we have that dc(fn) ≥ deg(fn) ≥

√
v(fn) where it is most likely that the

first inequality is strict. Thus, it is not important for us to distinguish between the
functions ε and dc in this case.

We now define a new kind of determinantal complexity called bounded determi-
nantal complexity. Recall that GL(V ) acts on C[V ] by g.f = f ◦g−1, for g ∈ GL(V ),
and f ∈ C[V ].

Definition 2.3.7. For a homogeneous polynomial f of degree d the bounded de-
terminantal complexity of f , denoted dc(f), is the smallest integer m such that
[Y m−df ] ∈ GL(Matm(C)).[detm] ⊆ P(Sm(Matm(C)∗))

This notion of bounded determinantal complexity gives us, as promised earlier,
even more elbowroom than the regular determinantal complexity as any polynomial
of the form M. detm can be approximated by a series of polynomials gt. detm, where
M ∈ End(Matm(C)) and gt ∈ GL(Matm(C)), i.e., we have

P(End(Matm(C)). detm) ⊆ GL(Matm(C)).[detm]

and when considering dc rather than dc we precisely allow ourselves to take limits.
Hence, dc(f) ≤ ε(f) = dc(f) for f ∈ Sn(V ∗) that are of sufficiently high determi-
nantal complexity compared to v(f).
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For the rest of this section we shall assume that ε(f) = dc(f).
In order to give a lower bound on the bounded determinantal complexity of a

polynomial we again make use of Katz’ dimension formula (theorem 1.2.2).
Let V = Cm, and take an irreducible polynomial, f ∈ Sd(V ∗). Recall that Katz’

dimension formula gives the dimension of V (f)∗ as rank Hes f(x) − 2 for generic
points x ∈ V (f). Assume that dimV (f)∗ = k, then for any (k + 3)-dimensional
subspace of V , and for any point x ∈ V (f) the determinant of Hes f(x) restricted
to this subspace will vanish. Hence, if F ⊆ V is a subspace of dimension k + 3 then
det(Hes f |F ) is a homogeneous polynomial of degree (d− 2)(k+ 3) which vanishes at
V (f).

Using the assumption that f is irreducible we have that V (f) ⊆ V (det(Hes f |F ))
implies f divides det(Hes f |F ).

We conclude

Lemma 2.3.8. Let f ∈ Sd(V ∗) be irreducible. Then dimV (f)∗ ≤ k if and only if f
divides det(Hes f |F ) for any subspace F ⊆ V of dimension k + 3.

Now we want to introduce a certain variety. Consider the set

Dual0k,d,n ⊆ P(Sd(V ∗)),

defined by the conditions [f ] ∈ Dual0k,d,n if and only if f ∈ Sd(V ∗) is irreducible and
the dimension of V (f)∗ ⊆ P(V ∗) is at most k. We define our variety to be

Dualk,d,n = Dual0k,d,n.

As we have already seen in proposition 1.2.1 dimV (detn)∗ = 2n− 2, hence, [detn] ∈
Dual2n−2,n,n2 .

In [21] they show that [detn] is a smooth point, and that GL(Matn(C)).[detn] is
an irreducible component of Dual2n−2,n,n2 , along with the following lemma:

Lemma 2.3.9. Let n < N , and set V = Cn and W = CN . Consider an irreducible
polynomial f ∈ Sd(V ∗) along with a linear inclusion V ∗ ⊕ C · Y ⊆ W ∗ and let g =
Y m−df ∈ Sm(W ∗). If [f ] ∈ Dualk,d,n \Dualk−1,d,n then [g] ∈ Dualk,m,N \Dualk−1,m,N .

The proof of the lemma will follow shortly.
We may combine these observations in the following way: If f ∈ Sd(V ∗) is a

homogeneous, irreducible polynomial defining a variety with dual of dimension k,
and dc(f) = m then by the lemma [g] = [Y m−df ] ∈ Dualk,m,N \Dualk−1,m,N for
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some suitable N , e.g., N = m2. But at the same time [g] ∈ GL(Matm(C)).[detm] ⊆
Dual2m−2,m,m2 . Now, as we have the natural filtration

Dualκ,δ,ν ⊆ Dualκ+ρ,δ,ν ,

for any ρ ∈ N, we may conclude that k ≤ 2m− 2, i.e., we have:

Theorem 2.3.10. Let f ∈ Sd(V ∗) be a homogeneous, irreducible polynomial, then

dc(f) ≥ dimV (f)∗ + 2

2
.

In particular this shows

Corollary 2.3.11.

dc(pern) ≥ n2

2

We now turn to proving the lemma.

Proof of lemma 2.3.9. That f is irreducible and lies in Dualk,d,n \Dualk−1,d,n means
that dimV (f)∗ = k, and since V (g)∗ ∼= V (f)∗∪V (Y )∗ or V (g)∗ ∼= V (f)∗ (depending
on what m−d is), we also have dimV (g)∗ = k as the dual of a projective hyperspace
is just a point. However, g is certainly not irreducible, hence, a bit more ingenuity
is needed to get [g] ∈ Dualk,m,N \Dualk−1,m,N .

First, denote the set of reducible polynomials in Sr(V ∗) by M , and notice that
M is closed. Indeed, if h = h1h2 ∈ Sr(V ∗) where 0 < d1 := deg h1 < r, then h is in
the image of the morphism

ϕr,d1 : Sd1(V ∗)× Sr−d1(V ∗)→ Sr(V ∗)

(p, q) 7→ p · q.

Now we get that

M =

b r2c⋃
i=1

ϕr,i
(
Si(V ∗)× Sr−i(V ∗)

)
,

hence, M is closed. (For additional details see [14, corollary 14.3].) We will use that
irreducibility is an open condition in the space of homogeneous polynomials of degree
m.

Recall Katz’ dimension formula in the version stated in lemma 2.3.8. We see that
it is enough to investigate if g divides the polynomials det(Hes g|F ) for all spaces
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F = Ck+3 ⊆ CN , as this condition defines an open subset of Dualk,m,N \Dualk−1,m,N .
(We should also check the existence of a space, H ⊆ W , of dimension k + 2 such
that g does not divide det(Hes g|H), however, this space exists as we may find such
a space, H ⊆ V , which satisfies that f does not divide det(Hes f |H).)

Now, pick an ordered basis 〈v1, . . . , vn, u, wn+2, . . . , wN〉 such that V is spanned
by {v1, . . . , vn}, and kerY = span{v1, . . . , vn, wn+2, . . . , wN}.

In this basis we find Hes g to be to following block diagonal-matrix with block
structure (n, 1, N − n− 1)Y m−d Hes f

(m− d)(m− d− 1)Y m−d−2f
0

 .

Because dimV (f)∗ = k then for arbitrary F = span{e1, . . . , ek+3}, where ei ∈ V , we
have f divides detk+3(Hes f |F ) and so f along with g also divides detk+3(Hes g|F ) for
such F , because this determinant is Y D detk+3(Hes f |F ) for D = (m− d)(k + 3).

If we consider Hes g|F for some F that has non-trivial intersection with W/(V ⊕
C · u), then our determinant vanishes (and so it most certainly is divisible by g).

Finally, if one of our spanning vectors of F is u and the remaining vectors come
from V , then detk+3(Hes g|F ) is certainly also divisible by g, as we get

detk+3(Hes g|F ) = Y m−d−2f detk+2

(
Y m−d Hes f |F ′

)
where F ′ = F/C · u.

We see that g satisfy a condition that defines an open set of our space, and so
[g] ∈ Dualk,m,N \Dualk−1,m,N

One final result from the article which I think is worth mentioning is an example
of a family of polynomials Λn such that dc(Λn) < dc(Λn).

Let X be a (2n + 1) × (2n + 1)-matrix of indeterminates. Then XA = X − X t

is the anti-symmetric part of X (up to a factor 1/2), and we denote by Pfi(XA) the
Pfaffian of the matrix one gets when deleting the i’th row and column from XA, then
Λn is defined as follows:

Λn =
∑
i,j

(Xij +Xji) Pfi(XA) Pfj(XA).

We omit all details as to why this polynomial satisfies dc(Λn) < dc(Λn), and in-
stead turn our attention towards a certain type of polynomials which generalises the
determinant and the permanent.
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2.4 General Immanants

Recall that a (finite dimensional) representation of a group, G, is a homomorphism
of groups, ρ, and a (finite dimensional) vector space, V , such that ρ : G→ GL(V ).
We say that ρ is irreducible if there is no subspace V ′ ( V of positive dimension
such that ρ(G)(V ′) ⊆ V ′. When we have a representation, ρ, we define the character
χρ : G→ C by χρ(g) = Tr(ρ(g)). This is well defined as Tr(AB) = Tr(BA), hence,
a change of basis in V will not affect this function. We call χρ irreducible if the
representation ρ is irreducible. Furthermore a character is a class function, i.e., if g
and g′ are conjugate in G via h then χρ(g) = χρ(g

′), as we have

Tr (ρ(g)) = Tr
(
ρ(h)ρ(g′h−1)

)
= Tr

(
ρ(g′h−1)ρ(h)

)
= Tr

(
ρ(g′h−1h)

)
= Tr (ρ(g′)) .

Obviously the set of class functions is a vector space, furthermore, it is equipped with
an inner product if G is finite (which we shall assume from this point on) defined by

〈f1, f2〉 :=
1

|G|
∑
g∈G

f1(g)f2(g),

for class functions f1, f2 : G→ C. The set of irreducible characters of G is an
orthonormal basis with respect to this inner product. Furthermore, the character of
any representation of a group is a N-linear combination of the irreducible characters
of the group. One may read the book [19] for more representation theory of finite
groups

The representation theory of the symmetric group is very well-developed, and it
is a commonly known fact that there is a one to one correspondence between the
set of irreducible representations of Sn and partitions of n, λ ` n, i.e., sequences of
integers, λ = (λ1 . . . λk), such that λ1 ≥ λ2 ≥ · · · ≥ λk > 0, and n =

∑
i λi.

E.g., the sign-representation sgn : Sn → GL(C) corresponds to the constant par-
tition λ = (1 . . . 1), whereas the trivial representation 1Sn : Sn → GL(C) corre-
sponds to the partition λ = (n).

Partitions λ = (λ1 . . . λk) are sometimes visualised by Young diagrams, which
are rows of boxes where the number of boxes in the i’th row equals λi. E.g., if we
consider the partition λ = (3 2 2 2) we get a Young diagram that looks like

.
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We can fill the boxes with the integers 1, . . . , n to get a Young tableau

1 5 6
3 7
2 9
4 8

.

A partition of the type
λ = (k 1 . . . 1︸ ︷︷ ︸

r times

) =: (k 1r)

is called a hook-partition, or a k-hook-partition, as the corresponding Young diagram
resembles a hook

(here k = 5, r = 6, and n = k + r = 11).
Young tableaux are helpful if you want to compute the irreducible character of

some representation of Sn arising from a partition, λ. In order to find the character
you consider a certain couple of subgroups of Sn called the row-stabiliser and the
column-stabiliser. These are defined via an arbitrary Young tableau, T , of shape
λ. The row-stabiliser, denoted R(T ), is the set of permutations σ ∈ Sn such that
σ(j) and j are in the same row of T for all j = 1, . . . , n. The column-stabiliser,
C(T ), is defined similarly except of course σ ∈ C(T ) if and only if σ(j) and j are in
the same column. We now consider the sign-representation of C(T ), and the trivial
representation of R(T ) and induce their characters to the characters ψC(T ) and ψR(T )

of Sn. This is done by the Frobenius formula:

ψH(σ) =
∑

τ∈Sn/H

χ̂H
(
τστ−1

)
,

where H is one of the groups R(T ) or C(T ), χ̂R(T )(σ) := 1R(T )(σ) and χ̂C(T )(σ) is
sgn(σ) for σ ∈ C(T ) and 0 else. It turns out that〈

ψC(T ), ψR(T )

〉
= 1,

thus, there is a unique irreducible character that occurs in both of the induced
characters, this is the character corresponding to λ and we denote it χλ.
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Example 2.4.1. If we consider the partition µ = (1n) we have that C(Tµ) = Sn
and R(Tµ) = {id}, hence, when we induce the characters sgnC(Tµ) and 1R(Tµ) to Sn
we get ψC(Tµ) = sgn, and ψR(Tµ) is the regular character, i.e., the one that takes the
value |Sn| at the identity and 0 elsewhere. As sgn is itself an irreducible character
we get χ(1n) = sgn - as was mentioned already

Similarly if we take the partition ν = (n) we get ψC(Tν) to be the regular character
and ψR(Tν) = 1Sn , thus, χ(n) = 1Sn .

Finally if we consider the 2-hook-partition, λ = (2 1n−2), an easy computation
yields ψC(Tλ)(σ) = sgn σ fixn σ, where fixn : Sn → N is the function that counts fixed
points of the permutation σ, i.e., fixn σ = |{i ∈ [n] | σ(i) = i}|, and ψR(Tλ) takes the
value n!/2 on the identity, (n − 2)! on transpositions, and zero else. Now, using
the inner product one gets that sgn fixn− sgn is an irreducible character and that it
occurs in both ψC(Tλ) and ψR(Tλ), thus, χλ(σ) = sgnσ(fixn σ − 1).

The last partition in example 2.4.1 corresponds to the representation where

V =

{
n∑
i=1

aiei

∣∣∣ n∑
i=1

ai = 0

}
⊆

n⊕
i=1

Cei = Cn.

The action of Sn via ρ on V is

σ.fi = ρ(σ)(ei − en) = sgnσ(eσ(i) − eσ(n)) = sgn σ(fσ(i) − fσ(n)),

where fi := ei − en for i = 1, . . . , n − 1 is a basis of V and fn := 0. Note that, if
we ignore the sgnσ-part of the representation for a moment, then the trace of ρ(σ)
will get a positive contribution (+1) for every i such that σ(i) = i and exactly one
negative negative contribution (−1 - from the row σ(n) in ρ(σ)), all in all this adds
up to the number of points fixed by σ minus 1. Thus, brining the sgn-part of the
representation back into consideration we get that the character of this representation
is the one mentioned in the example.

If we have a function, f : Sn → C, we may consider the polynomial

imf =
∑
σ∈Sn

f(σ)
n∏
i=1

Xiσi.

In the particular case where f is an irreducible character, χλ, of some representation
of Sn we get what is called an immanant (a term that dates back to the paper [23]
from 1934 by Littlewood and Richardson):

imχλ = imλ :=
∑
σ∈Sn

χλ(σ)
n∏
i=1

Xiσi.
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Note that characters of representations of Sn are integer-valued, hence, we can also
consider the immanant-polynomials over fields of positive characteristic if we should
have any desire to do so.

Immanants are interesting to us, because one might hope that they can help
bridge the gap between the determinant and the permanent which are the immanants
corresponding to the ’extreme’ partitions (1n) and (n). To be specific; rather than
make a projection from the determinant directly to the permanent it could be more
feasible to take several steps by finding a series of intermediate immanants, det =
imλ0 , imλ1 , . . . , imλr = per, and projections π1, . . . , πr such that imλk = imλk−1

(πk),
for k = 1, . . . , r. Now if the number of projections is reasonably small, e.g., bounded
by a constant, and each projection is polynomial in size we get that the determinantal
complexity of the permanent is polynomially bounded.

Indeed, Bürgisser proves in [6] that immanants corresponding to hook-partitions
(k 1r) ` n, and rectangular partitions (kr) ` n are VNP-complete if k grows at least
as fast as cnδ for some c, δ > 0.

The result was generalised by Brylinski & Brylinski in [4]. If we consider the
partition λ = (λ1 . . . λr), and define the separation of λ to be

s = max {λi − λi+1|i = 1, . . . , r} ,
where λr+1 := 0, then the corresponding immanant, imλ, projects to pers. Thus,
because the separation of a k-hook-partition is λ1 − λ2 = k − 1, and that of the
rectangular partition (kr) is λr − λr+1 = k, we get that if k grows sufficiently fast
with n we get VNP-complete families of immanants as the permanent can be found
using these projections.

In order to present the theorem from [4], where they also specify what the pro-
jections are, we need to introduce the terms vertical and horizontal strips in a Young
diagram. By a horizontal strip we mean a set of boxes such that they are all the
bottommost in their column, and if a box lies in the strip then all boxes to its right
in the same row will also be in the strip. A vertical strip is defined similarly; boxes
in a vertical strip must be the rightmost in their respective rows, and if a box lies
in the strip then all boxes below in the same column is in the strip as well. Below
we see an example of a set of boxes which is neither a vertical strip (as there are
several boxes in the first row), nor is it a horizontal strip (as not all boxes are the
bottommost in their columns)

• • •
•

•
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Here’s an examples of two horizontal and one vertical strips of size 5 in a Young
diagram of shape (6 3 3 2 1):

• • •

•

•

• • •

•
•

•
•
•

•
•

.

Note that 5 is the maximal size of a vertical strip in the diagram of this shape, as
there are 5 rows, furthermore, a strip of maximal size is unique. However, we could
increase the size of the horizontal strip by 1, as the number of columns (the width) of
the diagram is 6. It should be clear that if we remove a strip (vertical or horizontal)
from a Young diagram then we get a new Young diagram, the three examples above
will look like

.

Now we write µ ≤` λ and µ ≤′` λ respectively when the partition µ corresponds to
some diagram one get when removing a horizontal or vertical strip of size ` from a
diagram of shape λ. The result by the Brylinskis can then be stated as:

Theorem 2.4.2. Let λ = (λ1 . . . λr) ` n, and fix some `1 ≤ λ1, `2 ≤ r. The
immanant imλ projects to `1!

∑
µ≤`1λ

imµ and `2!
∑

µ≤′`2λ
imµ.

For Ai ∈ Mat(n−`i)(C) the projections are

1. `1!
∑

µ≤`1λ
imµ(A1) = imλ

(
A1 0
0 J

)
, where J ∈ Mat`1(C) is the square matrix

with all entries equal to 1, and

2. `2!
∑

µ≤′`2λ
imµ(A2) = imλ

(
A2 0
0 E

)
, where E ∈ Mat`2(C) is given by

E =


1 1 0 . . . 0

−1 1 2
. . .

...

1 −1
. . . . . . 0

...
. . . . . . 1 `2 − 1

(−1)`2−1 . . . 1 −1 1

 .
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For a detailed proof of the theorem I recommend reading the original paper by
the Brylinskis. It consists of a few steps, that I shall summarise:

The fundamental part of the proof is based on the following formula that dictates
how to compute immanants of block diagonal matrices (with the diagonal blocks
A ∈ Matk(C), and B ∈ Matr(C), and λ ` n = k + r):

imλ

(
A 0
0 B

)
=

∑
µ`k,ν`r

cλµ,ν imµ(A) imν(B),

here cλµ,ν are the Littlewood-Richardson coefficients.
Using the orthogonality relations on the following identities

imν1(J) = `1!〈χν1 , 1Sn−`1 〉, and imν2(E) = `2!〈χν2 , sgn〉 (for νi ` n− `i, i = 1, 2),

one gets that

imλ

(
A1 0
0 J

)
= `1!

∑
µ`n−`1

cλµ,(`1) imµ(A1)

imλ

(
A2 0
0 E

)
= `2!

∑
µ`n−`2

cλµ,(1`2 ) imµ(A2).

The proof is completed by showing that cλµ,(`1) = cλ
µ,(1`2 )

= 1 if µ is obtained by

removing a horizontal and vertical strip respectively from λ, and cλµ,(`1) = cλ
µ,(1`2 )

= 0

else.
A Young diagram, T , contains a unique horizontal and vertical strip of maximal

size, the maximal horizontal strip consists of all the boxes that are the bottommost
in their respective columns, whereas, the vertical strip consist of the rightmost boxes
in each row. Thus, if T is of type λ = (λ1 . . . λr0) and the separation is found to
be s = λi − λi+1, and i < r0 we apply the maximal ’vertical strip-projection’ from
theorem 2.4.2, i.e., the one where `2 = r0, on imλ, hence, we get

r0! imλ(1)

(
X(1)

)
= imλ

(
X(1) 0

0 E(0)

)
, where λ(1) ≤′r0 λ.

Let λ(1) = (λ1,1 . . . λ1,r1) then the separations of λ and λ(1) are the same. We
continue to do maximal ’vertical strip-projections’ on imλ(1) , . . . , imλ(k−1)

until we get

r0! · · · rk−1! imλ(k)

(
X(k)

)
= imλ


X(k)

E(k−1)

. . .

E(0)
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with λ(k) = (λk,1 . . . λk,rk) such that s = λk,rk . Now we do rk−1 successive maximal
’horizontal strip-projections’ which gives us a partition µ = (s), i.e., we have made
a projection from imλ to the s-permanent.

This proofs the following corollary.

Corollary 2.4.3. Let (imλ(n)) be a p-family of immanants such that the separation of
λ(n) is greater than cnδ for some c, δ > 0 and n� 0, then (imλ(n)) is VNP-complete.

This might lead to optimism amongst those who think there is a suitable projec-
tion from the determinant to the permanent, however, the next chapter might be a
cure for that optimism.





Chapter 3

Main Result

In this chapter we shall focus on the immanant corresponding to the partition
(2 1n−2), which is defined for n ≥ 2. In particular we will show a quadratic lower
bound of the determinantal complexity of im(2 1n−2), furthermore we shall present an
algorithm due to Barvinok, see [1], that computes this immanant in polynomial time.
When we consider the restriction of the 2-hook-immanant to the group of invertible
matrices there is a significant improvement due to Bürgisser, see [5], which we shall
briefly discuss. Finally we shall present a third method to compute im(2 1n−2)(A)
which in general does not run in polynomial time but works well if the number of
non-zero diagonal entries of A is low, say O(log n).

We shall primarily work over the complex numbers, but we will also take a peak
at the determinantal complexity of im(2 1n−2) in positive characteristics.

3.1 On the determinantal complexity of the

2-hook-immanant

Recall that the 2-hook-immanant is the polynomial

imn := im(2 1n−2) =
∑
σ∈Sn

sgnσ (fixn σ − 1)
n∏
i=1

Xiσi,

where fixn : Sn → N is defined by fixn σ = |{i ∈ [n]|σi = i}|.
Seeing that the 2-hook-partition is the one that deviates the least from (1n) we

could expect that the polynomial imn should be close or somehow related to the
determinant detm = im(1m).

45



46 CHAPTER 3. MAIN RESULT

And indeed, we do have that we can project from imn to detn−2 as

2 detn−2(A) = imn

A 1 1
1 1


which is just a special case of the projections from theorem 2.4.2. An interesting
question is now if we can project the other way, i.e., what is the determinantal
complexity of the 2-hook-immanant?

The main result is the following.

Theorem 3.1.1. Both the determinantal complexity, dc(imn), and the bounded de-
terminantal complexity, dc(imn), of the 2-hook-immanant are bounded below by n2−n+2

2
.

The theorem is a direct consequence of remark 1.2.5 and theorem 2.3.10 when
Katz’ dimension formula is applied to this lemma:

Lemma 3.1.2. Let n > 1. Consider the matrix

An =

n−3
n−1

1

1 1
In−2

 ∈ Matn(C).

For n 6= 3 we have rank Hes imn(An) = n2 − n+ 2.

Proof. The entries of Hes imn are of the form

∂2 imn

∂Xij∂Xkl

.

Obviously we have
∂2 imn

∂Xij∂Xil

=
∂2 imn

∂Xij∂Xkj

= 0,

since each monomial in imn contains exactly one variable with first index equal to r
and exactly one variable with second index equal to s for 1 ≤ r, s ≤ n.

If we evaluate at An then

∂2 imn

∂Xij∂Xkl

(An) =
∑
σ∈Sn

σi=j,σk=l

sgnσ(fixσ − 1)
∏
r 6=i,k

arσr.
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If i, k > 2 we get

∂2 imn

∂Xii∂Xkk

(An) = sgn id(fixn id−1)
∏
r 6=i,k

arr + sgn(1 2)(fixn(1 2)− 1)
∏
r 6=i,k

ar(1 2)(r)

= (n− 1)
n− 3

n− 1
− (n− 3) = 0,

as all permutations different from id and (1 2) that fix i and k will have a non-fixed
point r > 2 and arσr = 0.

If we take i, j > 2 to be two distinct numbers we see that
∏

r 6=i,k arσr = 0 unless
k = j and σ(k) = i, as a permutation of length at least 3, (i j m . . . ), will pick
out the entry ajm = 0 in A. The same is true for permutations which are not just a
transposition, e.g., (i j)(m q . . . ) will pick out amq = 0. However, if k = j and i = l
then

∂2 imn

∂Xij∂Xji

(An) = sgn(i j)(fixn(i j)− 1)
∏
r 6=i,j

ar(i j)(r)

+ sgn((1 2)(i j))(fixn((1 2)(i j))− 1)
∏
r 6=i,j

ar(1 2)(i j)(r)

=− (n− 3)
n− 3

n− 1
+ n− 5

=
−4

n− 1
.

Now suppose 2 = i = l < j = k, then
∏

r 6=2,j arσr = 0 for any σ 6= (2 j), which can be
seen by the same argument with permutations containing multiple cycles as before.
We get

∂2 imn

∂X2j∂Xj2

(An) = sgn(2 j)(fixn(2 j)− 1)
∏
r 6=2,j

ar(2 j)(r)

=− (n− 3)
n− 3

n− 1
=

(n− 3)2

1− n
.

If i = j = 2 ≤ k = l then the only interesting permutation is the identity and

∂2 imn

∂X22∂Xkk

(An) = (n− 1)
n− 3

n− 1
= n− 3.

If i = l = 1 < j = k then we are only concerned about the permutation (1 j); we get

∂2 imn

∂X1j∂Xj1

(An) = sgn(1 j)(n− 3) = 3− n.
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If {i, j} = {1, 2} and k = l then

∂2 imn

∂X12∂Xkk

(An) = sgn(1 2)(n− 3) = 3− n.

Finally if i = j = 1 < k = l, we get

∂2 imn

∂X11∂Xkk

(An) = n− 1.

Using that An is symmetric and that the immanant is invariant under transposition
we have

∂2 imn

∂Xkl∂Xij

(An) =
∂2 imn

∂Xij∂Xkl

(An) =
∂2 imn

∂Xji∂Xlk

(An).

With all this in mind the following is sufficient to describe the Hessian matrix of imn

evaluated at An:

∂2 imn

∂Xij∂Xkl

(An) =



n− 1 if i = j = 1 < k = l

3− n if {i, j} = {1, 2}, and k = l > 2

or if i = l = 1 < j = k

n− 3 if i = j = 2 < k = l
(n−3)2

1−n if i = l = 2 < j = k
−4
n−1

if 2 < i = l < j = k

0 else.

(3.1)

Thus, in the row of the Hessian indexed by ij 6= 12, 21, rr for any r = 1, . . . , n the

only non-zero value is found in column ji and this value is either 3 − n, (n−3)2

n−1
, or

−4
n−1

. By symmetry we see that the only non-zero value in column ji is in row ij.
Let M [C,C ′] denote the matrix obtained from a matrix M by only including

entries mrs if and only if (r, s) ∈ C×C ′ for some sets of indices C and C ′. It remains
to describe the last n+ 2 rows (and columns) indexed by

S := {11, 12, 21, 22, 33, . . . , nn} ⊆ {ij|1 ≤ i, j ≤ n}
in our Hessian matrix. By the list (3.1) above we get

Hes imn(An)[S, S] =



0 0 0 n− 1 n− 1 . . . n− 1
0 0 3− n 0 3− n . . . 3− n
0 3− n 0 0 3− n . . . 3− n

n− 1 0 0 0 n− 3 . . . n− 3
n− 1 3− n 3− n n− 3 0 . . . 0

...
...

...
...

...
. . .

...
n− 1 3− n 3− n n− 3 0 . . . 0


.
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This is a matrix of rank 4, as the first four rows 11,12,21, and 22 are linearly indepen-
dent, and n−3

n−1
times row 11 plus rows 12, 21, and 22 equals row rr for any 3 ≤ r ≤ n.

Notice that Hes imn(An)[S, Sc] = Hes imn(An)[Sc, S]t = 0.
Combining these observations we get

rank Hes imn(An) = rank Hes imn(An)[S, S] + rank Hes imn(An)[Sc, Sc]

= 4 + n2 − (n+ 2) = n2 − n+ 2

which proves the lemma.

Proof of Theorem 3.1.1. First, if n 6= 3, notice that An ∈ V (imn), and that An is a
smooth point as

∂ imn

∂X11

(An) = n− 1.

Apply Katz’ dimension formula, theorem 1.2.2, to obtain dimV (imn)∗ ≥ n2 − n.
Using remark 1.2.5 in the standard way we obtain the promised quadratic lower
bound of the determinantal complexity

dc(imn) ≥ n2 − n+ 2

2
.

Likewise, from theorem 2.3.10 we get the same bound on the bounded determinantal
complexity:

dc(imn) ≥ dimV (imn)∗ + 2

2
≥ n2 − n+ 2

2
.

For completeness we consider the case n = 3: Take the point1 1 1
1 1 1
1 1 1

 ∈ V (im3),

the rank of the Hessian at this (smooth) point is 9, again we may apply Katz’
dimension formula, to get dimV (im3)∗ = 7 thus

dc(im3), dc(im3) ≥ 9

2
>

32 − 3 + 2

2
.

Though I have not found a series of points, Bn ∈ Matn(C), that improves the
lower bound of the rank of the Hessian compared to that in lemma 3.1.2, I see no
reason the bound cannot be improved, probably even to n2. At least for small n it
is possible to find better points:
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Example 3.1.3. Consider the matrices

B4 =


1 2 −2 0
0 −1 2 1
1 0 1 0
0 5 0 1

 , B5 =


1 2 0 0 2
−1 0 1 0 0
1 4 −1 −2 0
1 2 2 3 0
1 1 2 2 1



B6 =


1 0 −1 2 3 1
0 −2 3 1 2 −1
0 −2 1 2 0 1
−1 −1 2 3 0 −2
1 1 1 −2 3 0
0 −7 14 7 7 10

 , B7 =



1 2 1 3 1 0 95
2 3 1 2 1 2 0
1 2 1 1 2 3 95
2 3 1 2 3 1 190
3 2 2 0 2 0 285
1 0 1 2 0 1 0
1 3 2 1 2 3 −227


We have rank Hes imn(Bn) = n2 for n = 4, 5, 6, 7. In the appendix there are some
lines of code for Macaulay2 which can be used to do the actual calculations.

As mentioned I see no reason why it should not be possible to find points like
these giving full rank to the Hessian for general n. However, the problem is of course
to find points that are sufficiently easy to analyse when one computes the Hessian.
For a geometer it might be interesting to further investigate the maximal rank of
Hessian matrices simply to find out if V (imn)∗ is a hypersurface or not, because if
this is not a hypersurface then V (imn) is somewhat peculiar as it will be ruled in
projective spaces of positive dimension.

It should be mentioned that the four points, B4, B5, B6, and B7, found in example
3.1.3 are not related to each other but rather picked at random from the zero-set of
the immanants. Again, I refer to the appendix for a way to find points at which the
immanant vanishes.

The determinantal complexity of the 2-hook-immanant in
positive characteristics

Even though some of the representation theory for the symmetric group breaks down
when we move from the complex numbers to positive characteristics it still makes
sense to consider the immanants as polynomials over fields K ⊇ Fp, because char-
acters of the symmetric group are integer-valued. E.g., im3 ∈ F2[Xij] is the third
Hamilton-polynomial,

im3 = 2X11X22X33 − (X12X23X31 +X13X21X32) = X12X23X31 +X13X21X32,
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which we may write as a 3× 3-determinant:

im3 = det3

 0 X12 X13

X21 0 X23

X31 X32 0

 .

Now, as the immanants also exist over more general fields than the complex numbers
we may examine their determinantal complexities over these fields also.

One should note that in the construction of Valiant’s projections in theorem 2.2.2
and corollary 2.2.3 we do not use any special properties of the complex numbers which
other commutative rings might not have. I.e., the notion of determinantal complexity
can be carried over when working with much more general rings, and in particular
when working over polynomial rings over fields of positive characteristics.

Once again the Hessian matrix plays an important role in order to prove lower
bounds.

If we use the chain rule twice on the polynomial f defined by

An L //

f=detm ◦L
22Am2 detm // K ,

where L(X) = AX +B is some affine map, we get

Hes f = At Hes detmA,

thus, rank Hes f ≤ rank Hes detm. If x ∈ V (f) then L(x) ∈ V (detm) and then
rank Hes detm(L(x)) ≤ 2m, and so the determinantal complexity of f is at least
1
2

rank Hes f(x).

Remark 3.1.4. When the characteristic of our field is at least 3 we get the same
lower bound of the determinantal complexity of the 2-hook-immanant as in the com-
plex case.

Indeed, let p > 2 be a prime number, if p - (n− 1)(n− 3) then

dc(imn) ≥ n2 − n+ 2

2
.

In order to show this it suffices to find a point An ∈ V (imn) such that rank Hes(An) =
n2 − n+ 2, but as in lemma 3.1.2 we may take

An =

n−3
n−1

1

1 1
In−2

 ∈ Matn(Fp)
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which makes sense as n − 1 6= 0 in Fp, and the computations from the proof of the
lemma carries over. Furthermore, as p > 2 and n− 3 6= 0 in Fp the non-zero entries
in the characteristic zero case are also non-zero in our positive characteristic case.

In characteristic 2 the permanent and determinant-problem does not exist, as the
two polynomials are the same, thus, I have not prioritised to study the determinantal
complexity of the immanant over such fields very thoroughly. There is, however, a
quadratic lower bound also in this case.

Proposition 3.1.5. Let n = 2m+ 1 be odd, let J = ( 1 1
0 1 ) ∈ Mat2(F2), and consider

the block diagonal-matrix

En =


J

. . .

J
1

 ∈ Matn(F2).

En ∈ V (imn), and the rank of Hes imn(En) is in Ω(n2), thus, dc(imn) = Ω(n2).

Proof. First of all note that a monomial X1σ1 · · ·Xnσn occur in imn (with coefficient
1) if and only if fixn σ is even, thus, imn(En) = 0 as the only permutation for which
E1σ1 · · ·Enσn 6= 0 is σ = id which has n = 2m + 1 fixed points. Now it suffices to
find Ω(n2) rows in Hes imn(En) with exactly on non-zero entry. In order to do so,
take K = 2k and L = 2l for 1 ≤ k < l ≤ m and consider

h(i, j) :=
∂2 imn

∂XKL∂Xij

(En).

We want to find all i, j, σ such that 1 ≤ i, j ≤ n and σ ∈ Sn satisfy σi = j, σK = L,
fixn σ is even, and

∏
r 6=K,iErσr = 1.

If we focus on the last part,
∏

r 6=K,iErσr = 1, we get that i must be equal to L as
there is no possibilities for σ such that ELσL = 1 when σL 6= L (bear in mind that
σK = L and K 6= L).

Let us analyse our possible choices of j. If we take j = K our only choice of permu-
tation such that

∏
r 6=K,LErσr = 1 is σ = (K L), but fixn(K L) = n − 2 is odd and,

thus, the monomial X11 · · ·XK−1K−1XKLXK+1K+1 · · ·XL−1L−1XLKXL+1L+1 · · ·Xnn

does not occur in imn.
We see that we must take j 6= K in order to get something non-zero, furthermore,

as σj 6= j we must have that j is odd and σj = j + 1 (otherwise Ejσj 6= 1). Now,
j + 1 is even, and unless j + 1 = K we get σ(j + 1) = j + 1 = σj, if we require
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Ej+1σ(j+1) 6= 0. This is absurd, thus, j + 1 = K and σ must equal the 3-cycle
(K L K − 1).

Because
∏

r 6=K,LErσr = 1, and
∏n

r=1 Xrσr occurs in imn with coefficient 1, we get
that h(i, j) = 1 if and only if i = L and j = K− 1. This means that in rows indexed
by KL we have exactly one non-zero entry. The number of such rows is equal to the
number of pairs 1 ≤ k < l ≤ m = n−1

2
which is

(
m
2

)
= n2−4n+3

8
= Ω(n2).

I think it is worth noting that the projection from the 2-hook-immanant to the
determinant we have in characteristic 0 does not exist in characteristic 2 because

imn

A 1 1
1 1

 = 2 detn−2(A) = 0.

Likewise I suspect that if one did come up with a clever series of projections that
went from the determinant via some intermediate immanants to the permanent in
characteristic 0, then in characteristic p it would probably break down somewhere as
n grows larger than p. For instance if we apply the second projection from theorem
2.4.2 on a k + 1-hook-immanant to obtain the k-permanent we also get

im(k+1 1r)



A
1 1 0 . . . 0

−1 1 2
. . .

...

1 −1
. . . . . . 0

...
. . . . . . 1 r

(−1)r . . . 1 −1 1


= (r + 1)! perk(A) = 0

when working over fields of characteristic p ≤ r + 1. Thus, asymptotically the
permanent cannot be computed via these projections of hook-immanants, assuming
that r is growing along with k. More generally, if we in characteristic 0 make a
projection where we remove a vertical strip of size at least p then the copy of this
projection will be the zero-projection in characteristic p.

3.2 Ways of computing the 2-hook-immanant

An Exponential Time Algorithm

One approach to computing imn(A) is based on the multilinearity of (general) im-
manants, along with a property that is special for the 2-hook-immanant.
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The idea is developed from the observation that imn(A) = − detn(A) if A = (aij)
satisfy a11 = · · · = ann = 0.

If we define Aσ :=
∏n

i=1 aiσi for σ ∈ Sn, and A = (aij) ∈ Matn(C) (the character-
istic of the field really isn’t important, but let’s stick to the complex numbers) we
get that the defining formula of the immanant is

imn(A) =
∑
σ∈Sn

sgnσ(fixn σ − 1)Aσ =
n∑
r=0

(r − 1)
∑
σ∈F (r)

sgnσAσ,

where F (r) := fix−1
n ({r}) ⊆ Sn is the set of permutations of [n] with exactly r fixed

points.
Note that if Aσ = 0 for any σ ∈ F (r) for all but one value of r, say r0, then

imn(A) = (r0 − 1)
∑

σ∈F (r0)

sgnσAσ = (r0 − 1)
∑
σ∈Sn

sgnσAσ = (r0 − 1) detnA.

Matrices, M , which have a special structure, namely

M = P

(
T B
B′ M0

)
P−1, (3.2)

where T is a (lower or upper) triangular r0 × r0-matrix, B or B′ is the 0-matrix,
M0 ∈ Matn−r0(C) has a diagonal with all entries equal to zero, and P is a permutation
matrix, all satisfy Mσ = 0 for σ /∈ F (r0).

If we combine this observation with the multilinearity of the immanant we get
for A = (a1, . . . , an) = (aij), with ai ∈ Cn, and aij ∈ C that

imλ(A) =

imλ



...
... ai1

...
...

... . . .
...

...
... . . .

...
...

... aii−1

...
...

a1 . . . ai−1 0 ai+1 . . . an

...
... aii+1

...
...

... . . .
...

...
... . . .

...
...

... ain
...

...


+ imλ



...
... 0

...
...

... . . .
...

...
... . . .

...
...

... 0
...

...
a1 . . . ai−1 aii ai+1 . . . an

...
... 0

...
...

... . . .
...

...
... . . .

...
...

... 0
...

...


,

hence, if we take λ = (2 1n−2), computing imn(A) can be reduced to computing two
immanants of matrices that are simpler, as they are closer to the nice structure as
in (3.2).
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Now, if we walk along the diagonal of A splitting the immanant into two im-
manants every time we reach a non-zero entry we will end up with 2k immanants,
where k is the number of non-zero diagonal entries. Each of these immanants cor-
responds to imn(M) for some M with structure as in (3.2), hence, each of these are
easily computed using the determinant.

Example 3.2.1. Let us consider the 4× 4-matrix

A =

a11 . . . a14
...

. . .
...

a41 . . . a44

 .

We first split it into two matrices by considering the first column as the sum (a11, 0, 0, 0)t+
(0, a21, a31, a41)t:

A A(0) =


0 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , A(1) =


a11 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

 .

We now proceed with the second columns

A(0)  A(0,0) =


0 a12 a13 a14

a21 0 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , A(0,1) =


0 0 a13 a14

a21 a22 a23 a24

a31 0 a33 a34

a41 0 a43 a44

 ,

A(1)  A(1,0) =


a11 a12 a13 a14

0 0 a23 a24

0 a32 a33 a34

0 a42 a43 a44

 , A(1,1) =


a11 0 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 a43 a44

 .

We continue until we get 16 matrices:

A(0,0,0,0) =


0 a12 a13 a14

a21 0 a23 a24

a31 a32 0 a34

a41 a42 a43 0

 , A(0,0,0,1) =


0 a12 a13 0
a21 0 a23 0
a31 a32 0 0
a41 a42 a43 a44

 ,
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A(0,0,1,0) =


0 a12 0 a14

a21 0 0 a24

a31 a32 a33 a34

a41 a42 0 0

 , A(0,0,1,1) =


0 a12 0 0
a21 0 0 0
a31 a32 a33 0
a41 a42 0 a44

 ,

A(0,1,0,0) =


0 0 a13 a14

a21 a22 a23 a24

a31 0 0 a34

a41 0 a43 0

 , A(0,1,0,1) =


0 0 a13 0
a21 a22 a23 0
a31 0 0 0
a41 0 a43 a44

 ,

A(0,1,1,0) =


0 0 0 a14

a21 a22 0 a24

a31 0 a33 a34

a41 0 0 0

 , A(0,1,1,1) =


0 0 0 0
a21 a22 0 0
a31 0 a33 0
a41 0 0 a44

 ,

A(1,0,0,0) =


a11 a12 a13 a14

0 0 a23 a24

0 a32 0 a34

0 a42 a43 0

 , A(1,0,0,1) =


a11 a12 a13 0
0 0 a23 0
0 a32 0 0
0 a42 a43 a44

 ,

A(1,0,1,0) =


a11 a12 0 a14

0 0 0 a24

0 a32 a33 a34

0 a42 0 0

 , A(1,0,1,1) =


a11 a12 0 0
0 0 0 0
0 a32 a33 0
0 a42 0 a44

 ,

A(1,1,0,0) =


a11 0 a13 a14

0 a22 a23 a24

0 0 0 a34

0 0 a43 0

 , A(1,1,0,1) =


a11 0 a13 0
0 a22 a23 0
0 0 0 0
0 0 a43 a44

 ,

A(1,1,1,0) =


a11 0 0 a14

0 a22 0 a24

0 0 a33 a34

0 0 0 0

 , A(1,1,1,1) =


a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44

 .

If we define ` : {0, 1}4 → N by `(e1, . . . , e4) =
∑

i ei we get

im4(A) =
∑

e∈{0,1}4
im4(Ae) =

∑
e∈{0,1}4

(`(e)− 1) det4(Ae).
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Using this method to compute the general 2-hook-immanant is of course a rather
tedious job if k (the number of non-zero diagonal entries) is large, but if k ≤ c log n,
for some constant c, then the method will run using O(n3+c) arithmetic operations,
as we only need to compute at most 2k ≤ 2c logn = nc determinants all of which can
be computed in O(n3) time. If, e.g., a11 = 0 in example 3.2.1 then the last eight
immanants would not appear.

A Polynomial Time Algorithm

To my knowledge, the (asymptotically) best algorithm to compute imn(A) for some
general A ∈ Matn(C) was made by Barvinok in [1]. Actually he made an algorithm
to compute general immanants but we shall focus only on the 2-hook-immanant.

Theorem 3.2.2 (Barvinok’s Algorithm). Given A ∈ Matn(C) the 2-hook-immanant
can be evaluated at A using O(n10) calculations.

We shall only present how the algorithm works, and leave the details from [1] to
the reader.

Some notation: Set V := Cn with basis {ei}, i = 1, . . . , n, and let GL(V ) act on
V ⊗n by

G.(v1 ⊗ · · · ⊗ vn) = (Gv1)⊗ · · · ⊗ (Gvn).

Define f ∈ V ⊗n to be the element

f =
∑
σ∈Sn

sgnσ(fixn σ − 1)eσ(1) ⊗ · · · ⊗ eσ(n)

Consider the vector space L spanned by the set {G.f |G ∈ GL(V )}, and let {ft} be
a basis of L. The dimension of L is O(n4). Let at ∈ C be the coordinates of f in the
basis {ft}, i.e.,

f =
∑
t

atft.

Let eij, 1 ≤ i, j ≤ n, be the standard basis of the vector space End(V ), i.e., eij is the
rank one operator that sends ej to ei, and denote by Eij(α) ∈ End(V ) the following
operators

Eij(α) =

{
I + αeij if i 6= j

I + (α− 1)eii else,

where α ∈ C, and I ∈ End(V ) is the identity operator.
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Finally define γt = 〈e1 ⊗ · · · ⊗ en, ft〉, and, given A ∈ Matn(C), let G ∈ End(V )
be the operator with matrix representation A (in the basis {ei}). Note that

imn(A) = 〈e1 ⊗ · · · ⊗ en, G∗f〉 .

The algorithm goes as follows: Factor G∗ into elementary operators of the type Eij(α)
using no more than O(n2) factors. I.e., G∗ =

∏m
k=1Eikjk(αk), for some m = O(n2).

Basically this goes like Gaussian elimination. Now compute G∗f =
∑
βtft by using

the factorisation of G∗ just found on
∑
atft. Finish by computing

∑
βtγt as we have

imn(A) =
〈
e1 ⊗ · · · ⊗ en,

∑
βtft

〉
=
∑

βtγt.

The time required to carry out the algorithm is determined by the second step in
which we compute G∗f =

∑
βtft, which should not be hard to verify as the other

steps are (essentially) Gaussian elimination and taking an inner product. This second
step consists of O(n2) linear operations on vectors in a vector space of dimension
O(n4), i.e., each will need O(n8) additions and multiplications, hence, we are required
to do O(n10) calculations in total.

One note on the factorisation of G∗. In [1] Barvinok allows n3 factors, however
this is not necessary. If we for a moment do not distinguish between operators in
End(V ) and matrices from Matn(C), then we see that a matrix A ∈ Matn(C) of rank
r can be factored as

A = R−1

n∏
k=r+1

Ekk(0)C−1,

where R is a series of row-operations that brings A to reduced row-echelon form,
i.e., RA = H with H on reduced row-echelon form. We may now apply a series of
column-operations, C, on H to get at diagonal matrix, D, with ones in the first r
diagonal-entries and zeroes in the last n − r. The length of both sequences R and
C can be bounded by O(n2) as interchanging rows/columns i and j can be done by
the series of operations

Ejj(−1)Eij(1)Eji(−1)Eij(1),

thus, we need only use O(1) operations to change each entry of A (and H) to get to
H (and D) by R (and C respectively).

An Improved Polynomial Time Algorithm for Invertible
Matrices

Bürgisser has in [5] found a way to evaluate the 2-hook-immanant at A ∈ GLn(C)
using O(n5 log n) calculations.
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In order to do so he considers an irreducible polynomial representation of GLn(C),

Dλ : GLn(C)→ GL(V ) ∼= GLdλ(C)

where λ is a general but non-constant partition into n parts, i.e., λ = (λ1 . . . λn) 6=
(k . . . k). It should be noted that λ ∈ Nn, thus, we now consider sequences λ1 ≥
· · · ≥ λn with λi ≥ 0 rather than λi > 0. In particular the 2-hook-immanant which
is our main concern will arise from the partition (2 1n−2 0). Now, consider the chain
of subgroups

GLn ⊃ GLn−1×C∗ ⊃ · · · ⊃ GLn−k×(C∗)k ⊃ · · · ⊃ (C∗)n,

and consider restrictions of Dλ to these subgroups successively. Each time we make
a restriction we may split V into subspaces, terminating with dλ one-dimensional
spaces, that are spanned by weight vectors, i.e., vectors, v, that satisfy

Dλ


t1

t2
. . .

tn

 v = tw1
1 · · · twnn v,

for some w ∈ Nn. Such a basis of weight vectors is called a Gelfand-Tsetlin basis
and is unique up to ordering and scaling.

One may visualise the splitting behaviour of V by a layered graph, in which each
node in layer k is a pair (µ,w) ∈ Nk ×Nn−k, where µ is a partition into k parts and
w satisfies |w|+ |µ| = |λ|. In the top (n’th) layer we have a node (λ,−) representing
V . In the next layer we have nodes representing each of the vector spaces we get in
the decomposition of V by restricting Dλ to GLn−1×C∗, and so on until we reach
the bottom (first) layer where we have nodes for the spaces of dimension one.

We make an edge between a node in layers k and k − 1 if the space, Vk−1, rep-
resented by the lower node is a part of the decomposition of the space, Vk, after
restricting Dλ from GLn−k×Ck to GLn−k−1×Ck+1. The number of paths from a
node in layer i to some node in layer j < i, tells us what the multiplicity of corre-
sponding jth layer space is in the ith layer space after restriction from GLi×Cn−i
to GLj ×Cn−j. We define mult(λ) by looking at all pairs of nodes two layers apart
and take the maximum number of paths between such pairs.

Furthermore we may find the weights of the elements of the Gelfand-Tsetlin basis
by successive use of the betweenness condition, which states that the nodes (µk, wk)
and (µk+1, wk+1) are connected if and only if µk+1

j ≥ µkj ≥ µk+1
j+1 , and wk = (e, wk+1),

for k < n and e = |µk+1| − |µk|.
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Now, the weight of an element in our Gelfand-Tsetlin basis, which is represented
by (µ1, w1) = ((µ1), (w2, . . . , wn)) ∈ N × Nn−1 = Nn is simply w = (w1 . . . , wn) :=
(µ1, w2 . . . , wn). (A sketch of such a layered graph can be found in figure 3.1 at the
end of the chapter.)

When we have a Gelfand-Tsetlin basis it is a fact that

imλ(A) =
∑

w(v)=(1,...,1)

Dλ(A)v,v

where w(v) is the weight of the (Gelfand-Tsetlin basis) vector v. Hence, if we can
compute the entries of Dλ(A) with respect to the Gelfand-Tsetlin basis we may
find the immanant by just adding the diagonal entries indexed by vectors of weight
(1, . . . , 1).

This is the basic idea of Bürgisser’s algorithm, and in order to do so he needs a few
auxiliary algorithms, one of them we saw in a slightly different version in Barvinok’s
algorithm, namely, we need to factor an invertible matrix A into a product of O(n2)
matrices Eij(α), with j = i± 1, times some diagonal matrix ∆:

A = Ei1j1(α1) · · ·Eikjk(αk)∆ for some k = O(n2).

Another algorithm is used to compute etJu for a nilpotent Jordan-matrix J ∈
Matr(C), t ∈ C, and u ∈ Cr in O(r log r) operations, using that etJ is a Toeplitz
matrix, i.e., a matrix A = (aij) such that aii+k is constant for fixed 1−n ≤ k ≤ n−1,
when we vary i. This algorithm is a building stone in showing that if M ∈ Matn(C)
is a block matrix with r2 blocks, Mij ∈ Matni×nj(C), such that Mij = 0 except if
j = i− 1, then

• M is conjugate to a direct sum of nilpotent Jordan blocks of size at most r via
PS for some block diagonal matrix S and a permutation matrix P .

• etMu can be computed in O (
∑r

i=1 n
2
i + n log r) operations when t ∈ C and

u ∈ Cn.

Finally we need to consider the one-parameter subgroups (i 6= j)

Fij : C→ GLdλ , t 7→ Dλ(Eij(t)).

Note that this is indeed a one-parameter subgroup because Eij(t+ s) = Eij(t)Eij(s).
It is not hard to prove that Fij(t) = etF

′(0), that F ′ij(0) is nilpotent, and that F ′ij(0)
maps a weight vector of weight w ∈ Zn to one of weight w + ei − ej.

Bürgisser now proves
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Theorem 3.2.3. If λ = (λ1 . . . λn) is a non-constant partition into n parts, and

Dλ : GLn(C)→ GL(V )
∗∼= GLdλ(C) (where we have chosen the Gelfand-Tsetlin basis

to make ∗) is a polynomial representation then

GLm×Cdλ → Cdλ (A, v) 7→ Dλ(A)v

can be computed using O(n2(mult(λ) + log |λ|)dλ) arithmetic operations.

We shall omit the proof. However, from this theorem we easily get the corollary
giving the promised bound on the computational complexity of the 2-hook-immanant
at invertible matrices:

Corollary 3.2.4. The 2-hook-immanant can be evaluated at A ∈ Matn(C) using
O(n5 log n) arithmetic operations.

Proof. In order to compute the immanant it is enough to compute the diagonal en-
tries of Dλ(A) that are indexed by Gelfand-Tsetlin basis vectors of weight (1, . . . , 1).
There are n− 1 such vectors because the betweenness condition tells us that we can
pass from the top node ((2 1n−2 0),−) to ((1), (1, . . . , 1)) in our layered graph in
n− 1 different ways:

At the top level we have node ((2 1n−2 0),−) and at the next we have the nodes
((2 1n−2), (0)), ((2 1n−3 0), (1)), ((1n−1), (1)), and ((1n−2 0), (2)), hence, we can
either pass to the second or third of these if we want to end up at ((1), (1, . . . , 1)).
At the node with the constant partition the betweenness condition dictates that all
descending nodes must contain the constant partition, and so we no longer have a
choice in where to go.

Now, from ((2 1n−3 0), (1)) we may move on to ((2 1n−4 0), (1, 1)), ((1n−2), (1, 1))
or two other nodes which will give non-constant weights. As we have already dis-
cussed constant partitions we need only consider what happens if we pass on to
(2 1n−4 0).

Repeating the argument gives us that apart from nodes with constant partitions a
path from the top node to ((1), (1, . . . , 1)) can pass through nodes ((2 1n−i 0), (1, . . . , 1))
until we get to ((2 0), (1, . . . , 1)) at which point we are forced to move to ((1), (1, . . . , 1)).
Thus, there is a path from the top level to the node ((1), (1, . . . , 1)) at the bottom
level for each point at which we may choose to depart from a node ((2 1k 0), (1, . . . , 1))
to a node ((1k+1), (1, . . . , 1)). This we can do each time we move down one layer,
hence, we get n− 1 paths as there are n layers.

Now, for the 2-hook-partition mult(λ) = 2, which vanishes in the O-notation,
furthermore dλ = n2−1, as this is the number of semi-standard tableaux of shape λ,
thus, we need to make n−1 multiplications like the one in theorem 3.2.3 each can be
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computed in O(n4 log n) operations, hence, the combined time required (as adding
the proper diagonal entries will not dominate the multiplications) is O(n5 log n).

We shall finish the chapter with a sketch of the layered graph representing the
splitting behaviour when we consider the partition λ = (2 1n−2 0).

((2 1n−2 0),−)

((2 1n−3 0), (1))((2 1n−2), (0)) ((1n−1), (1)) ((1n−2 0), (2))

descendants((1n−1), (2, 0))((2 1n−3), (1, 0)) ((1n−3 0), (1, 2))((1n−2), (0, 2))

Figure 3.1: A sketch of the layered graph arising from the partition (2 1n−2 0)

The (only) child of the node x = ((1n−1), (1)) is ((1n−2), (1, 1)) which is also a
child of y = ((2 1n−3 0), (1)), hence the edges from nodes x and y point to the same
descendants.

The dashed edges off course represent that the graph continues with more layers.
The nodes in these layers (and the nodes in the block ’descendants’) are in principle
similar to nodes which have been specified, except that we start with a smaller n
and non-empty weights.

The graph will perhaps also convince the reader that mult(λ) = 2 which was
claimed in the proof of corollary 3.2.4.
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Computing the rank of Hessian
matrices using Macaulay2

Recall that we in example 3.1.3 considered the matrices

B4 =


1 2 −2 0
0 −1 2 1
1 0 1 0
0 5 0 1

 , B5 =


1 2 0 0 2
−1 0 1 0 0
1 4 −1 −2 0
1 2 2 3 0
1 1 2 2 1



B6 =


1 0 −1 2 3 1
0 −2 3 1 2 −1
0 −2 1 2 0 1
−1 −1 2 3 0 −2
1 1 1 −2 3 0
0 −7 14 7 7 10

 , B7 =



1 2 1 3 1 0 95
2 3 1 2 1 2 0
1 2 1 1 2 3 95
2 3 1 2 3 1 190
3 2 2 0 2 0 285
1 0 1 2 0 1 0
1 3 2 1 2 3 −227


,

and that we have rank Hes imn(Bn) = n2 for n = 4, 5, 6, 7. This can be verified using
the following commands in Macaulay2:

01: n= insert number n = 4, 5, 6 or 7
02: k=n^2

03: Per=permutations(n)

04: p=#Per

05: L= for i from 0 to n-1 list i

06: Per1=Per -( i=1; while i<p+1 list L do i=i+1)

63
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07: fix = l-> (for x in l when 1==1 list (if x=!=0 then continue; x))

08: FIX= l-> #fix(l)-1

09: sgn0 = l -> for i from 0 to n-2 when 1==1 list (L=for j from i+1

to n-1 when 1==1 list (if l i<l j then continue; i,j);#L)

10: sgn=l->(-1)^(sum(sgn0(l)))

11: character= (for i from 0 to #Per-1 when 1==1 list

sgn(Per i)*FIX(Per1 i))

12: R=QQ[x 1..x k]

13: M=genericMatrix(R,n,n)

14: monoR = l-> for i from 0 to n-1 when 1==1 list

(transpose(M^{i}))^{l i}
15: 07: MonoR= l-> product monoR(l)

16: LR= (i=0; while i<#Per list MonoR(Per i)*character i do i=i+1)

17: im=sum(LR)

18: A=matrix{ insert matrix Bn }
19: evA=map(QQ,R,A)

20: evA(im)

21: rank evA jacobian transpose jacobian im

Here the first four lines establish a few constants and a list of permutations that
will make it out for the symmetric group.
Line 5 gives a list {0, 1, . . . , n− 1} to be used in
line 6 which provides a list of lists, Per1, in which zeroes correspond to fixed points
of permutations.
Line 7 discards the non-fixed points from line 6, and line 8 counts the remaining
fixed points and subtracts 1, giving one part of the character function.
Line 9 makes lists of inversions of our permutations, and line 10 gives us the sgn-part
of the character.
Line 11 computes the value of the character at each of the permutations.
Lines 12 and 13 construct a polynomial ring with n2 variables and a matrix of inde-
terminates.
Lines 14, 15, and 16 construct monomials equivalent to (fixσ − 1)

∏n
i=1Xiσi.

Line 17 sums the monomials and constructs our immanant imn.
Line 18 and 19 constructs the points specified (note that the matrix in line 18 must
be written as a 1×n2-array), and makes a map to evaluate functions from our poly-
nomial ring to the rational numbers at the point specified.
Line 20 and 21 finally evaluates the immanant (showing it vanishes at the point),
and returns the rank of the Hessian of the immanant.
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In order to find points at which the immanant vanishes it can be helpful to use

22: evB=map(R,R,B)

23: evB(im)

where B is some 1 × n2-array with n2 − 1 random (integer/rational) entries and
the last entry an indeterminate, e.g. xk. This is likely to return a polynomial axk− b
(you may be unfortunate to just get a constant, i.e., it may happen that a = 0).
Now make the array A similar to B but with the indeterminate entry replaced by
b/a, A will now be a vanishing point of imn, and we may, thus, find the Hessian at
A and compute its rank.

I have written a package for Macaulay2 which is available via dropbox:

https://www.dropbox.com/s/vm9btp07etd3w4q/Immanant.m2

The code of the package is as follows (I have chosen to clean these lines of all
comments which can be found in the file, furthermore due to the margin not being
extremely wide some lines have been broken into 2 or 3 shorter lines these lines are
in the methods ’monomialVariables’, and ’involution’):

newPackage(

"Immanant",

Reload => true

)

export (immanant)

export {immanantV2}

export {genericHessian}

export {genericHessianV2}

export {genericRank}

export {genericRankV2}

export {genericZero}

immanant = method()
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symGroup = method()

symGroup ZZ := n-> permutations(n)

monomialVariables = method()

monomialVariables (ZZ,Matrix) := (n,A) -> for x in symGroup(n)

list (for i from 0 to n-1 list ((A^{i})_{x_i}) )

monomial = method()

monomial List := l-> for x in l list product x

L = method()

L ZZ := n-> for i from 0 to n-1 list i

dif = method()

dif ZZ := n-> symGroup(n) -( for j from 1 to n! list L(n) )

keepFixed=method()

keepFixed List := x -> for e in x list (if e==0 then e else continue)

totalFixed = method()

totalFixed List := x-> #keepFixed(x)-1

involution = method()

involution (ZZ,List) := (n,x) -> for i from 0 to n-2

list (I := for j from i+1 to n-1

list (if x_i<x_j then continue; i,j);#I)

signature = method()

signature (ZZ,List) := (n,x) -> (-1)^(sum(involution(n,x)))

weightedMonomials = method()

weightedMonomials (ZZ,Ring) := (n,R) -> (

d := dif(n);

l := symGroup(n);

s := for x in l list signature(n,x);

f := for x in d list totalFixed(x);
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character := for i to #l-1 list s_i*f_i;

M := genericMatrix(R,n,n);

x1 := monomialVariables(n,M);

xn := monomial(x1);

wM := for i to #l-1 list (character_i*xn_i)

)

immanant (ZZ,Ring) := (n,R)-> (sum(weightedMonomials(n,R)))_(0,0)

immanantMatrixFormat = method()

immanantMatrixFormat (ZZ,Ring) := (n,R) -> sum(weightedMonomials(n,R))

immanantV2 = method()

immanantV2 ZZ := n-> (

k := n^2;

R := QQ[vars(0..(k-1))];

immanant(n,R)

)

genericHessian = method()

genericHessian (ZZ,Ring):= (n,R) -> (

k := n^2;

M := mutableMatrix genericMatrix(R,1,k);

for i from 1 to k-1 do M_(0,i) = random(ZZ);

m := matrix M;

evalm := map(R,R,m);

imn := immanantMatrixFormat(n,R);

Affine := evalm(imn);

z := matrix mutableMatrix(R,1,k);

evalz := map(R,R,z);

M_(0,0) = (-1)*evalz(Affine)_(0,0);

a := (jacobian Affine)_(0,0);

if a=!=0 then for i from 1 to n-1 do M_(0,i*n)= a*M_(0,i*n);

N := matrix M;

evalN := map(R,R,N);

evalN(jacobian transpose jacobian imn)

)
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genericHessianV2 = method()

genericHessianV2 ZZ:= n -> (

k := n^2;

R := QQ[vars(0..(k-1))];

M := mutableMatrix genericMatrix(R,1,k);

for i from 1 to k-1 do M_(0,i) = random(ZZ);

m := matrix M;

evalm := map(R,R,m);

imn := immanantMatrixFormat(n,R);

Affine := evalm(imn);

z := matrix mutableMatrix(R,1,k);

evalz := map(R,R,z);

M_(0,0) = (-1)*evalz(Affine)_(0,0);

a := (jacobian Affine)_(0,0);

if a=!=0 then for i from 1 to n-1 do M_(0,i*n)= a*M_(0,i*n);

N := matrix M;

evalN := map(R,R,N);

evalN(jacobian transpose jacobian imn)

)

genericRank = method()

genericRank (ZZ,Ring) := (n,R) -> (

k := n^2;

M := mutableMatrix genericMatrix(R,1,k);

for i from 1 to k-1 do M_(0,i) = random(ZZ);

m := matrix M;

evalm := map(R,R,m);

imn := immanantMatrixFormat(n,R);

Affine := evalm(imn);

z := matrix mutableMatrix(R,1,k);

evalz := map(R,R,z);

M_(0,0) = (-1)*evalz(Affine)_(0,0);

a := (jacobian Affine)_(0,0);

if a=!=0 then for i from 1 to n-1 do M_(0,i*n)= a*M_(0,i*n);

N := matrix M;

evalN := map(R,R,N);

rank evalN(jacobian transpose jacobian imn)

)
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genericRankV2 = method()

genericRankV2 ZZ := n -> (

k := n^2;

R := QQ[vars(0..(k-1))];

M := mutableMatrix genericMatrix(R,1,k);

for i from 1 to k-1 do M_(0,i) = random(ZZ);

m := matrix M;

evalm := map(R,R,m);

imn := immanantMatrixFormat(n,R);

Affine := evalm(imn);

z := matrix mutableMatrix(R,1,k);

evalz := map(R,R,z);

M_(0,0) = (-1)*evalz(Affine)_(0,0);

a := (jacobian Affine)_(0,0);

if a=!=0 then for i from 1 to n-1 do M_(0,i*n)= a*M_(0,i*n);

N := matrix M;

evalN := map(R,R,N);

rank evalN(jacobian transpose jacobian imn)

)

genericZero = method()

genericZero (ZZ,Ring):= (n,R) -> (

k := n^2;

M := mutableMatrix genericMatrix(R,1,k);

for i from 1 to k-1 do M_(0,i) = random(ZZ);

m := matrix M;

evalm := map(R,R,m);

imn := immanantMatrixFormat(n,R);

Affine := evalm(imn);

z := matrix mutableMatrix(R,1,k);

evalz := map(R,R,z);

M_(0,0) = (-1)*evalz(Affine)_(0,0);

a := (jacobian Affine)_(0,0);

if a=!=0 then for i from 1 to n-1 do M_(0,i*n)= a*M_(0,i*n);

N := matrix M

)
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beginDocumentation()

document {

Key => Immanant

}

document {

Key => {(immanant,ZZ,Ring),immanant},

Usage => "immanant(n,R)",

Inputs => {"n", "R"}

}

document {

Key => {(immanantV2,ZZ),immanantV2,},

Usage => "ImmanantV2(n)",

Inputs => {"n"}

}

document {

Key => {(genericHessian,ZZ,Ring),genericHessian},

Usage => "genericHessian(n,R)",

Inputs => {"n", "R"}

}

document {

Key => {(genericHessianV2,ZZ),genericHessianV2},

Usage => "genericHessianV2(n)",

Inputs => {"n"}

}

document {

Key => {(genericRank,ZZ,Ring),genericRank},

Usage => "genericRank(n,R)",

Inputs => {"n", "R"}

}

document {

Key => {(genericRankV2,ZZ),genericRankV2},

Usage => "genericRankV2(n)",

Inputs => {"n"}

}

document {

Key => {(genericZero,ZZ,Ring),genericZero},

Usage => "genericZero(n,R)",

Inputs => {"n", "R"}
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}

TEST ///

assert ( ideal( immanant(2,QQ[x_1..x_4])) ==

permanents(2,genericMatrix(QQ[x_1..x_4])))

///
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