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Abstract

In this paper, we present local stereological estimators of Minkowski tensors
defined on convex bodies in Rd. Special cases cover a number of well-known
local stereological estimators of volume and surface area in R3, but the general
set-up also provides new local stereological estimators of various types of cen-
tres of gravity and tensors of rank two. Rank two tensors can be represented
as ellipsoids and contain information about shape and orientation. The per-
formance of some of the estimators of centres of gravity and volume tensors
of rank two is investigated by simulation.
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1 Introduction

Local stereology provides estimators of mean particle size without restrictive as-
sumptions about particle shape. It is also possible to stereologically estimate the
particle size distribution without shape assumptions when the size of the individually
sampled particles is determined with sufficient precision (Pawlas et al., 2009). How-
ever, it is still an open question how to estimate stereologically particle shape and
orientation without initially restricting to a specific class of shapes. A global stere-
ological procedure for estimating anisotropy is available (Cruz-Orive et al., 1985),
but otherwise the focus in the stereological literature has mainly been on estimat-
ing shape and orientation of ellipsoidal particles. For the cases of either prolate
or oblate ellipsoids, stereological methods of estimating the bivariate distribution
of the lengths of the two semiaxes from sectional data were already developed by
Cruz-Orive (1976, 1978), but the general case of stereologically estimating shape of
arbitrary particles has remained open.

In the present paper, we take up this problem. We associate to each particle a
system of Minkowski tensors and develop local stereological methods of estimating
these tensors. The rank zero Minkowski tensors are simply the intrinsic volumes for
which local stereological estimation procedures have already been developed. The
rank one tensors provide information about centres of gravity of different types.
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Rank two tensors can naturally be associated to ellipsoids and contain information
about the shape and orientation of the original particle.

Minkowski tensors have been used with success in material science (Beisbart
et al., 2002; Denis et al., 2008; Schröder-Turk et al., 2011a,b), but there are also
examples from the biosciences (Beisbart et al., 2006). In these applications, the
structure is observed directly. In the present paper, we use measurements on sections
through the particles instead.

The paper is organised as follows. In Section 2, we give a short introduction
to Minkowski tensors while Section 3 gives the geometric interpretation of the
Minkowski tensors as descriptors of size, shape and orientation. The local stereo-
logical estimators of Minkowski tensors are derived in Section 4 and all the special
cases in 3D are discussed in Section 5. A simulation study is presented in Section 6.
Perspectives and future research are discussed in Section 7.

2 Minkowski tensors

This section contains a condensed introduction to Minkowski tensors. For a more
comprehensive treatment; see Hug et al. (2008) and references therein.

Let X ⊆ Rd be a convex and compact subset of Rd. For a non-negative integer r,
the volume tensor of rank r is defined by

Φd,r,0(X) =
1

r!

∫

X

xrλd(dx), (2.1)

where xr is the tensor of rank r determined by x and λd is the Lebesgue measure
on Rd.

For k = 0, . . . , d− 1 and non-negative integers r and s, let

Φk,r,s(X) =
ωd−k

r! s!ωd−k+s

∫

Rd×Sd−1

xrusΛk(X, d(x, u)), (2.2)

where ωd = 2πd/2/Γ(d/2) is the surface area of Sd−1 and Λk(X, ·) is the kth support
measure or generalized curvature measure of X, k = 0, . . . , d− 1. Furthermore, xrus
is the symmetric tensor product of rank r + s of xr and us.

The support measures Λk(X, ·), k = 0, . . . , d−1, are concentrated on the normal
bundle NorX of X which consists of all pairs (x, u) where x ∈ ∂X and u is an outer
unit normal vector of X at x. For this reason, the tensors defined in (2.2) are called
surface tensors. For r = s = 0, Φk,0,0 = Vk, the kth intrinsic volume, k = 0, . . . , d.

If ∂X is a regular hypersurface of class C2, then (2.2) reduces to

Φk,r,s(X) =
ωd−k

r! s!ωd−k+s

∫

∂X

xru(x)sΦk(X, dx), (2.3)

where u(x) is the unique outer unit normal vector of X at x and Φk(X, ·) is the kth
curvature measure of X, k = 0, . . . , d− 1. For k = d− 1,

2Φd−1(X,A) = Hd−1(A ∩ ∂X),
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where Hd−1 is the (d−1)-dimensional Hausdorff measure, and (2.3) takes the simple
form

Φd−1,r,s(X) =
ωd−k

2 r! s!ωd−k+s

∫

∂X

xru(x)sHd−1(dx).

The tensors defined in (2.1) and (2.2) constitute the Minkowski tensors. They
are tensor-valued valuations, continuous with respect to the Hausdorff metric and
motion covariant.

3 Minkowski tensors as descriptors of size, shape
and orientation of convex bodies

Minkowski tensors of rank zero are simply the intrinsic volumes and as such contain
primarily size information. Minkowski tensors of rank one give information about
different types of centres of gravity of the convex body in question, i.e. information
about position. Minkowski tensors of rank two provide additional information about
shape and orientation of the convex body.

To make the latter statement more explicit, let us focus on volume tensors of
rank two. They are defined by the following equation

Φd,2,0(X) =
1

2

∫

X

x2λd(dx).

Now, suppose that X is an ellipsoid centred at the origin. Then, there exists a
symmetric positive definite matrix A such that

X = {Aw : w ∈ Bd},

where Bd is the unit ball in Rd. In this case, we have

Φd,2,0(X) =
|A|κd

2(d+ 2)
AA∗,

where κd = πd/2/Γ(1+d/2) is the volume of Bd. If we let A = BΛB∗ be the (unique)
spectral decomposition of A where B is an orthogonal matrix and Λ a diagonal
matrix, we can regard X as being obtained by rotating an ellipsoid with axes parallel
to the coordinate axes with the rotation B. The ellipsoid has semiaxis lengths equal
to the diagonal elements λi, i = 1, . . . , d, of Λ. Using this decomposition, we can
rewrite the volume tensor as follows

Φd,2,0(X) =
κd
∏d

i=1 λi
2(d+ 2)

BΛ2B∗.

Clearly, we can (uniquely) reconstruct X from its volume tensor. The volume tensor
will have a spectral decomposition of the form

Φd,2,0(X) = BΛ̃B∗
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with the same rotation matrix as A and a diagonal matrix with elements λ̃i satisfying

λ̃i =
κd
∏d

j=1 λj

2(d+ 2)
λ2i , i = 1, . . . , d.

Solving these equations we obtain

λi =

(
2(d+ 2)

κd

) 1
d+2 λ̃

d+1
2(d+2)

i

∏
j 6=i λ̃

1
2(d+2)

j

.

If X is not an ellipsoid centred at the origin, we may still determine its volume
tensor of rank two and associate to X an approximating ellipsoid. Below, we give
two examples.

Example 3.1. Let ai > 0, i = 1, . . . , d, and let X = [−a1, a1]× · · · × [−ad, ad] be a
centred box. Then, Φd,2,0(X) is a diagonal matrix with

Φd,2,0(X)ii = λ̃i =
2d−1

3
a3i
∏

j 6=i
aj, i = 1, . . . , d.

It follows that X is approximated by an ellipsoid with axes parallel to the coordinate
axes. The length of the ith semiaxis of this approximating ellipsoid is

λi = 2
d

d+2

(
d+ 2

3κd

) 1
d+2

ai, i = 1, . . . , d.

Example 3.2. Let r, h > 0 and let X be a centred spherical cylinder

X = {x ∈ Rd :
√
x21 + · · ·+ x2d−1 ≤ r, |xd| ≤ h}.

Then, Φd,2,0(X) is a diagonal matrix with

Φd,2,0(X)ii =





π
d−1
2

2Γ(d+3
2

)
h rd+1, i < d,

π
d−1
2

3Γ(d+1
2

)
h3 rd−1, i = d.

It follows that X is approximated by an ellipsoid with axes parallel to the coordinate
axes. The lengths of the semiaxes of this approximating ellipsoid are

λi =





( √
3(d+ 2)Γ(d+2

2
)

√
π
√
d+ 1 Γ(d+3

2
)

) 1
d+2

r, i < d,

(
d+ 1

3

) d+1
2(d+2)

(
(d+ 2)Γ(d+2

2
)√

πΓ(d+3
2

)

) 1
d+2

h, i = d.
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4 Local stereological estimators of Minkowski
tensors

Auneau-Cognacq et al. (2012) have derived a new rotational Crofton formula for
so-called integrated Minkowski tensors. Special cases of this formula express the
classical Minkowski tensors as rotational averages; see Auneau-Cognacq et al. (2012,
Corollary 4.4).

In this section, we will use this result to derive local stereological estimators of
Minkowski tensors based on observation in an isotropic p-subspace Lp, i.e. a random
p-dimensional linear subspace in Rd with distribution determined by a normalized
version of the rotation invariant measure on the set Ldp of all p-subspaces in Rd. The
rotation invariant measure on Ldp will be denoted by dLdp. Its total mass is chosen to
be ∫

Ldp
dLdp = cd,p,

where
cd,p =

ωdωd−1 · · ·ωd−p+1

ωpωp−1 · · ·ω1

.

The probability distribution of an isotropic p-subspace is thus dLdp/cd,p.
The local stereological estimators of Minkowski tensors presented in the proposi-

tion below are formulated in terms of integrals on the section X ∩Lp. The integrals
are with respect to affine subspaces of dimension p − 1 within Lp. The set of such
affine subspaces is denoted by Fpp−1. The measure dF p

p−1 used in the integration is
the motion invariant measure on Fpp−1. If Fp−1 = x+ Lp−1, where Lp−1 is a (p− 1)-
subspace in Lp and x ∈ L⊥p−1 ∩ Lp, then dF p

p−1 = λ1(dx)dLpp−1.
At first sight, the formulation in Proposition 4.1 below may appear to be a very

indirect way of expressing the local stereological estimators of Minkowski tensors.
It turns out, however, that this approach is very powerful because it is general and
it also points to how to determine the estimators in the sections. However, in many
special cases much more explicit formulae are available, as we shall see in the next
section.

Proposition 4.1. Let X be a convex body in Rd and let Lp be an isotropic p-
subspace. Then, for 0 < m < p ≤ d, a non-negative integer r and s ∈ {0, 1}

Φ̂d+m−p,r,s(X;Lp)

=
cd,p

ad,p−1,m−1,s

∫

Fp
p−1

Φ
(Fp−1)
m−1,r,s(X ∩ Fp−1)d(Fp−1, O)d−pdF p

p−1 (4.1)

is an unbiased estimator of Φd+m−p,r,s(X). Here,

ad,p−1,m−1,s = cd−1,p−2
(p− 2)!(d+m− p)!

(m− 1)!(d− 1)!

ωd+m−p+s+2

ωm+s+1

,

the upper index of Φ
(Fp−1)
m−1,r,s indicates that the Minkowski tensor is determined relative

to Fp−1 and d(Fp−1, O) is the distance of the affine subspace Fp−1 to the origin O.
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Furthermore, for 0 < p ≤ d and any non-negative integer r

Φ̂d,r,0(X;Lp) =
cd,p
cd,p−1

∫

Fp
p−1

Φ
(Fp−1)
p−1,r,0(X ∩ Fp−1)d(Fp−1, O)d−pdF p

p−1 (4.2)

is an unbiased estimator of Φd,r,0(X).

Proof. The result follows directly from the rotational integral geometric identities
presented in Auneau-Cognacq et al. (2012, Corollary 4.4), except in the case of (4.2)
for p = 1. In this case (4.2) reduces to

Φ̂d,r,0(X;L1) = cd,1
1

r!

∫

X∩L1

xrd(x,O)d−1λ1(dx).

The unbiasedness of this estimator is a consequence of polar decomposition of
Lebesgue measure in Rd

λd(dx) = d(x,O)d−1λ1(dx)dLd1.

A simplified expression for the estimator Φ̂d,r,0(X;Lp) can be obtained by using
Auneau-Cognacq et al. (2012, Proposition 5.1). We find

Φ̂d,r,0(X;Lp) =
cd,p

cd−1,p−1

1

r!

∫

X∩Lp

xrd(x,O)d−pλp(dx). (4.3)

Likewise, the estimator Φ̂d+m−p,r,s(X;Lp) may also be simplified. For instance, for
s = 0 and m = p − 1, Φ̂d+m−p,r,s(X;Lp) can be expressed as an integral over the
normal bundle of X ∩ Lp considered as a subset of Lp with respect to the (p− 1)th
support measure of X ∩ Lp, cf. Auneau-Cognacq et al. (2012, Proposition 5.5). For
determining of the estimator in practice, the expression given in Proposition 4.1
may, however, be more useful because it avoids measurements of angles.

For applications, it is also interesting to derive estimators of Minkowski tensors,
based on an isotropic p-subspace Lp(q) containing a fixed q-subspace, 0 ≤ q < p. The
set of such subspaces is denoted by Ldp(q). If we let dLdp(q) be the rotation invariant
measure on Ldp(q) with total mass cd−q,p−q, the probability distribution of an isotropic
p-subspace containing a fixed q-subspace is given by dLdp(q)/cd−q,p−q. Using that

cd−1−q,p−1−qλd(dx) = d(x, Lq)
d−pλp(dx)dLdp(q),

see e.g. Jensen (1998, Proposition 4.5), it is easy to derive an unbiased estimator of
a volume tensor based on such a subspace. The estimator takes the form

Φ̂d,r,0(X;Lp(q)) =
cd−q,p−q

cd−1−q,p−1−q

1

r!

∫

X∩Lp(q)

xrd(x, Lq)
d−pλp(dx). (4.4)
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5 Local estimators in 3D

In this section, we will show that Proposition 4.1 covers, as special cases, a number
of the well-known local stereological estimators of volume and surface area, but also
provides interesting new local stereological estimators of various types of centres of
gravity and tensors of rank two.

Throughout this section we assume that O ∈ X. Below, we explore all the
estimators provided by Proposition 4.1 for d = 3 and r + s ≤ 2. To the best of our
knowledge, the local estimators presented in Sections 5.2 and 5.3 are new.

5.1 The case r + s = 0

When d = 3 and r = s = 0, Proposition 4.1 provides local estimators of volume from
either lines or planes passing through the origin O (p = 1 or 2 in (4.2), respectively)
and surface area from planes through O (p = 2 in (4.1)). In addition, (4.4) provides
a local estimator of volume from vertical sections.

5.1.1 Volume from isotropic random lines: The nucleator

Letting d = 3, r = 0, p = 1 in (4.2) or, equivalently, in (4.3), we find

Φ̂3,0,0(X;L1) = 2π

∫

X∩L1

d(x,O)2λ1(dx).

Since O ∈ X and X is convex, X ∩ L1 = [x−, x+] is a line segment containing the
origin. It follows that

Φ̂3,0,0(X;L1) =
2π

3
(d(x+, O)3 + d(x−, O)3). (5.1)

If X is a ball centred at the origin O, then Φ̂3,0,0(X;L1) is identically equal to the
parameter to be estimated, the volume of the ball.

In practice, measurements along two perpendicular lines in a planar section are
performed. This results in an important variance reduction due to an antithetic
effect. The estimator was originally suggested by Gundersen (1988) and has been
widely used in the biomedical sciences ever since. In the applied literature, the
estimator is called the nucleator.

5.1.2 Volume from isotropic random planes: The isotropic rotator

Let d = 3, r = 0, p = 2 in (4.2) or, equivalently, in (4.3). Then,

Φ̂3,0,0(X;L2) = 2

∫

X∩L2

d(x,O)λ2(dx).

As for the nucleator, Φ̂3,0,0(X;L2) is exact for a ball centred at the origin.
This estimator is the method of choice for local volume estimation from isotropic

probes if automatic segmentation of particle sections is available because the estima-
tor has smaller variance than the nucleator. A discretised version of the estimator was
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originally suggested by Jensen and Gundersen (1993) under name of the isotropic
rotator. Recently, Cruz-Orive (2012) has shown that Φ̂3,0,0(X;L2) is identical to the
so-called wedge estimator, based on the invariator principle. The estimator can also
be obtained from the nucleator by integrating over all rotating lines through O in L2.
For this reason, the estimator has also been called the integrated nucleator (Hansen
et al., 2011).

5.1.3 Volume from vertical random planes: The vertical rotator

Let d = 3, r = 0, p = 2, q = 1 in (4.4). Then,

Φ̂3,0,0(X;L2(1)) = π

∫

X∩L2(1)

d(x, L1)λ2(dx).

This estimator is exact if X is a body of revolution around L1.
The estimator Φ̂3,0,0(X;L2(1)) may be discretised, using the following decompo-

sition of Lebesgue measure in L2(1)

Φ̂3,0,0(X;L2(1)) = π

∫

X∩L1

∫

X∩L2(1)∩(y+L⊥1 )

d(x, L1)λ1(dx)λ1(dy).

The resulting discretised estimator is called the vertical rotator (Jensen and Gun-
dersen, 1993). Vertical sections are useful when it is important to keep track of the
structure.

5.1.4 Surface area from isotropic random planes: The flower estimator

If we let d = 3, r = s = 0, p = 2, m = 1 in (4.1), we find

Φ̂2,0,0(X;L2) = 2

∫

F2
1

1{X ∩ F1 6= ∅}d(F1, O)dF 2
1 ,

where 1{·} denotes the indicator function and the integration is with respect to all
lines in X ∩ L2. The estimator Φ̂2,0,0(X;L2) is exact if X is a ball centred at the
origin.

Cruz-Orive (2005) has shown that Φ̂2,0,0(X;L2) is equal to two times the area of
the flower set associated with X ∩ L2. Recall that the flower set has the graph of
the support function of X ∩ L2 as its boundary. So Φ̂2,0,0(X;L2) may be called the
flower estimator.

There are a number of equivalent expressions for this surface area estimator. It
follows from Auneau-Cognacq et al. (2012, Proposition 5.5) that in the special case
where the boundary of X is smooth

Φ̂2,0,0(X;L2) =

∫

∂X∩L2

[cos β(x) + β(x) sin β(x)]d(x,O)H1(dx),

whereH1 is the one-dimensional Hausdorff measure (length measure) and β(x) is the
angle between span{x} and span{u(x)}. This expression for the estimator reveals
its intimate relation to another local estimator of surface area, the surfactor, that
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was suggested 25 years ago by Jensen and Gundersen (1987). The flower estimator
can thereby be interpreted as an integrated surfactor (Dvořák and Jensen, 2012).

Cruz-Orive (2005) has shown that the flower estimator can also be expressed as

Φ̂2,0,0(X;L2) =

∫ 2π

0

hX∩L2(θ)
2dθ,

where hX∩L2(·) is the support function of X ∩ L2. A discretisation of the flower
estimator based on determination of the support function in both directions along
two perpendicular lines in the section plane is very efficient (Dvořák and Jensen
2012). This discretisation is called the pivotal estimator (Cruz-Orive, 2008, 2011).

5.2 The case r + s = 1

When d = 3 and r + s = 1, Proposition 4.1 provides local estimators of Φ3,1,0(X)
from either lines or planes passing through the origin O (r = 1, p = 1 or 2 in (4.2),
respectively) and a local estimator of Φ2,1,0(X) from planes through O (r = 1, s = 0,
m = 1, p = 2 in (4.1)). In addition, (4.4) provides a local estimator of Φ3,1,0(X)
from vertical sections.

By combining these estimators with estimators of volume or surface area, we
obtain estimators of the usual centre of gravity Φ3,1,0(X)/Φ3,0,0(X) and a boundary
centre of gravity Φ2,1,0(X)/Φ2,0,0(X). Note that, Φ2,0,1 ≡ O.

5.2.1 Usual centre of gravity

We can estimate Φ3,1,0(X) from isotropic random lines, isotropic random planes, or
vertical random planes, i.e.

Φ̂3,1,0(X;L1) = 2π

∫

X∩L1

x d(x,O)2λ1(dx)

Φ̂3,1,0(X;L2) = 2

∫

X∩L2

x d(x,O)λ2(dx)

Φ̂3,1,0(X;L2(1)) = π

∫

X∩L2(1)

x d(x, L1)λ2(dx)

Note that Φ̂3,1,0(X;L1) = Φ̂3,1,0(X;L2) = O if X is centrally symmetric about O.
The estimator Φ̂3,1,0(X;L2(1)) is exact for a body of revolution around L1. Note also
that in all cases Φ̂3,1,0(X;Lp(q)) ∈ Lp(q), 0 ≤ q < p ≤ 2.

The estimator Φ̂3,1,0(X;L1) can be simplified considerably. Thus, let e be a unit
vector spanning L1. Then, if the endpoints of the line segment X ∩ L1 are chosen
such that x+ points in the direction of e while x− points in the opposite direction,
then

Φ̂3,1,0(X;L1) =
π

2
(d(x+, O)4 − d(x−, O)4)e. (5.2)
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5.2.2 Boundary centre of gravity

Proposition 4.1 provides the following local estimator of Φ2,1,0(X) based on mea-
surements in an isotropic random plane

Φ̂2,1,0(X;L2) = 2

∫

F2
1

( ∑

x∈∂(X∩F1)

x
)
d(F1, O)dF 2

1 .

The integration is with respect to all lines in X ∩ L2. Since X is convex, the sum
in the integrand involves at most two points. Note that this estimator also has the
property Φ̂2,1,0(X;L2) ∈ L2.

Proposition 4.1 also provides a local estimator of Φ2,0,1(X) ≡ O. The estimator

Φ̂2,0,1(X;L2) = 2

∫

F2
1

( ∑

x∈∂(X∩F1)

u(x)
)
d(F1, O)dF 2

1

is also identically equal to O since when F1 hits X

{u(x) : x ∈ ∂(X ∩ F1)} = {u0,−u0},
where u0 is a unit vector, spanning F1.

5.3 The case r + s = 2

When d = 3 and r + s = 2, Proposition 4.1 provides local estimators of Φ3,2,0(X)
from either lines or planes passing through the origin O (r = 2, p = 1 or 2 in (4.2),
respectively) and local estimators of Φ2,2,0(X) and Φ2,1,1(X) from planes through
O ((r, s) = (2, 0) or (1,1), respectively, m = 1, p = 2 in (4.1)). In addition, (4.4)
provides a local estimator of Φ3,2,0(X) from vertical sections.

5.3.1 Volume tensors of rank two

The local estimator of the volume tensor of rank two, based on measurements in an
isotropic random line through O, is given by

Φ̂3,2,0(X;L1) = π

∫

X∩L1

x2 d(x,O)2λ1(dx).

With the notation introduced in Section 5.2.1, this estimator reduces to

Φ̂3,2,0(X;L1) =
π

5

(
d(x+, O)5 + d(x−, O)5

)
e2, (5.3)

which is a singular random matrix.
It is no surprise that two measurements on a single random line are not enough

to construct a reliable estimate of the volume tensor of rank two which is a 3×3 sym-
metric matrix that contains 6 parameters. One would expect that two measurements
from at least three lines are needed. Thus, let us consider three isotropic, orthog-
onal lines L1i = span{ei} where ei, i = 1, 2, 3, are unit vectors, and the combined
estimator

1

3

3∑

i=1

Φ̂3,2,0(X;L1i) =
π

15

3∑

i=1

(
d(x+i, O)5 + d(x−i, O)5

)
e2i .
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In the special case where X is a ball with radius R centred at the origin

1

3

3∑

i=1

Φ̂3,2,0(X;L1i) =
2π

15
R5

3∑

i=1

e2i .

This estimator takes the form of (2π/15)R5 times an orthogonal random matrix with
known distribution. The mean of this matrix is the identity matrix I3. A spectral
decomposition of this estimator allows us to exactly reconstruct the ball. For the
estimation of functionals of the volume tensor of rank two such as eigenvalues or
eigenvectors, it is for general convex bodies preferable to work with more than three
lines; cf. Section 6.3.

The volume tensor of rank two may also be estimated from either isotropic
random planes or vertical random planes through O. In the case of vertical random
planes, we have the following estimator

Φ̂3,2,0(X;L2(1)) =
π

2

∫

X∩L2(1)

x2 d(x, L1)λ2(dx).

The estimator based on measurements on one plane is singular. Measurements on
at least two systematic vertical random planes should be used.

5.3.2 Surface tensors of rank two

The result (4.1) of Proposition 4.1 contains as special cases estimators of two surface
tensors of rank two, Φ2,2,0(X) and Φ2,1,1(X). Both estimators use information in an
isotropic random plane L2 through O and involve integration over all lines in the
section plane X ∩L2. At the moment, it is an open question whether these integrals
may be expressed in a closed form that is suitable for estimation purposes.

In Auneau-Cognacq et al. (2012, Section 7), it is shown that the remaining surface
tensor of rank two, Φ2,0,2(X), can be expressed as a rotational integral with respect
to planes through O. This result may be used to construct an estimator of Φ2,0,2(X)
of a similar type as the estimators mentioned above for Φ2,2,0(X) and Φ2,1,1(X).

6 A simulation study

The simulation study focuses on the local stereological estimators that are based
on measurements on lines, i.e. the estimators (5.1) and (5.2) that can be combined
to yield an estimator of the centre of gravity and the estimator (5.3) of the volume
tensor of rank two.

6.1 Systematic sampling on the sphere

Taking a systematic random sample of an interval [a, b] on the real line is straight
forward. Let U be uniformly distributed in [0, 1] and set xi = a+ (U + i)(b− a)/n,
i = 0, . . . , n − 1, where n ∈ N. Then {xi}i=0,...,n−1 is a systematic random sample
of [a, b] with n points. On the unit sphere S2 it is more difficult to specify what we
mean by a systematic random sample.

11



Figure 1: Systematic sets of N = 3, 7, 20 lines, respectively. The red dots visualize the
unit sphere S2.

Suppose we are given a set of n points {xi}i=0,...,n−1 ⊆ S2 that are equally spaced
in some reasonable sense. It is clear that we can create a systematic random sample
from these points by rotating them with a uniform random rotation matrix R ∈
SO(3). However, there are many ways to sensibly define equally spaced points on
the sphere. For our simulation study we have decided to follow the ideas of Leopardi
(2006). He defines so-called recursive zonal equal area partitions. They are partitions
of S2 into n regions Ak of equal area and small diameter. The regions produced by the
algorithm are rectilinear in spherical polar coordinates. We take xk to be the point
with spherical coordinates equal to the mid range of latitudes and longitudes within
Ak, respectively. As we are interested in systematic random samples of lines through
the origin rather than points in S2, we note that it is easy to modify Leopardi’s
algorithm for even numbers n = 2N such that for each xk ∈ {xi}i=0,...,2N−1 we also
have −xk ∈ {xi}i=0,...,2N−1. We can identify each pair (xk,−xk) with a line through
the origin.

When we speak of a systematic set of lines (through the origin) in the sequel, we
are referring to the above construction. Fig. 1 illustrates systematic random sets of
N = 3, 7, 20 lines, respectively.

6.2 Estimation of the centre of gravity

The two bodiesX that we have considered as examples are an ellipsoid with semiaxis
lengths a = 7, b = 6, c = 5, and a circular cylinder with height 2h = 6 and radius
r = 2. Both bodies are centred at the origin.

For the estimation of the centre of gravity, we need to choose the origin of our
coordinate system. In applications, one will aim to choose this origin as close as
possible to the true centre of gravity. Therefore, we model the initial guess by a
truncated normally distributed random vector O with mean zero and covariance
matrix σ2I3.

We chose σ = 0.3c for the ellipsoid, and σ = 0.3r for the cylinder, and truncated
the distribution outside a ball centred at the origin with radius c or r for the ellipsoid
and cylinder, respectively. This means that O ∈ X always holds. Let {L1i}i=0,...,N−1
be a systematic random set of N lines through O. Each line L1i is spanned by a
unit vector ei. As X is convex and O ∈ X, there are two endpoints (x+i, x−i) of the
line segment X ∩L1i, where x+i points in the same direction as ei. We estimate the

12
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Figure 2: Estimation of the centre of gravity, using systematic random sets of N = 3
or N = 7 lines for the left and right panels, respectively. In the top row, the red dots
visualize the ellipsoid; the black dots are the initially chosen origins distributed according
to a truncated trivariate normal distribution. The green dots show the estimated centres
of gravity. The histograms in the second row show the distribution of the norms of the
initially chosen origins (white bars) and of the estimated centres of gravity (green bars).

centre of gravity C(X) = Φ3,1,0(X)/Φ3,0,0(X) by

Ĉ(X) =
π
2

1
N

∑N−1
i=0

(
d(x+i,O)4 − d(x−i,O)4

)
ei

2π
3

1
N

∑N−1
i=0

(
d(x+i,O)3 + d(x−i,O)3

)

combining (5.1) and (5.2). The results of 500 simulations are visualized in Fig. 2
and 3 for the cylinder and ellipsoid, respectively. For both bodies the simulation
results are promising. The estimation procedure generally moves the initially chosen
origin towards the true centre of gravity of the body. However, the results for the
ellipsoid are better than for the cylinder.
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Figure 3: Estimation of the centre of gravity, using systematic random sets of N = 3 or
N = 7 lines for the left and right panels, respectively. In the top row, the red dots visualize
the cylinder; the black dots display the initially chosen origins distributed according to
a truncated trivariate normal distribution. The green dots show the estimated centres of
gravity. In the second row, the histograms display the norms of the initial origins (white
bars) and the estimated centres of gravity (green bars).
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6.3 Estimation of the volume tensor of rank two

The volume tensor of rank two of a body X is defined relative to the origin of the
coordinate system. If we want to use volume tensors to characterize the shape and
orientation of particles in a particle population, we need to specify a centre point (or
origin) for each particle in a unique way. We chose to consider the centre of gravity
as the “true” centre of the bodies (or particles) under consideration.

The volume tensor of rank two is a symmetric, positive definite 3 × 3 ma-
trix M . For each such matrix M it is possible to construct an ellipsoid Y such
that Φ3,2,0(Y ) = M ; cf. Section 3. We call this ellipsoid Y the associated ellipsoid
to M or to X, if Φ3,2,0(X) = M . This association may be regarded as an ellipsoidal
approximation to the original body X. If X is an ellipsoid itself then it is equal to its
associated ellipsoid. When characterizing the shape of X through the volume tensor
one can consider the largest and smallest eigenvalue of Φ3,2,0(X) or their quotient.
Alternatively, one can also compare the smallest and largest semiaxes of the associ-
ated ellipsoid to Φ3,2,0(X), which is our method of choice. The reason for this choice
is primarily that the lengths of the semiaxes of the associated (or approximating)
ellipsoid is easier to interpret geometrically. The orientation of X is characterized
by the eigenvectors of Φ3,2,0(X) which are the same as the directions of the semiaxes
of the associated ellipsoid.

The tensor Φ3,2,0(X) can be estimated from isotropic lines through the origin
using (5.3). We assumed that the origin is initially chosen asO, which has a trivariate
truncated normal distribution as specified in Section 6.2. In the first part of the
simulation study, we estimated Φ3,2,0(X) by

Φ̂3,2,0(X) =
1

N

π

5

N∑

i=1

(
d(x+i,O)5 + d(x−i,O)4

)
e2i (6.1)

from a systematic random set of lines {L1i}i=0,...,N−1 of size N = 3 or N = 7 with
respect to O using (5.3) and the notation introduced in Section 6.2. We used the
ellipsoid and the cylinder described in Section 6.2 as examples for X. The results of
1000 simulations are given in terms of the associated ellipsoid in Fig. 4. The eigen-
values of the associated ellipsoid were calculated from Φ̂3,2,0(X) using the formulas
in Section 3.

In the second part of the simulation study, we used a two-step procedure. First,
the centre of gravity was estimated by Ĉ(X) starting from O as described in Sec-
tion 6.2 using a systematic random set of N lines. Then an independent systematic
random set of lines of the same size, centred at Ĉ(X), was used to estimate Φ̂3,2,0(X)

by (6.1) with O replaced by Ĉ(X). The results of 1000 simulations are displayed in
Fig. 5 and 6.
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Figure 4: Smallest and largest semiaxes of the estimated associated ellipsoid. The panels
in the top row show scatter plots of the largest and smallest semiaxes for N = 3 lines
(in black) and for N = 7 lines (in green). The red lines mark the true values. In the
bottom row, histograms of the quotient of the largest over the smallest estimated semiaxes
normalized by the true quotient (i.e. the target value is 1) are displayed as empty bars
(N = 3) or green bars (N = 7). The left column corresponds to the example where X is
an ellipsoid, whereas the right column corresponds to the cylinder. The histogram for the
cylinder for N = 3 was cut off at 6. There were observed normalized quotients as large
as 10.73.

16



●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

● ●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

6 7 8 9 10 11

3.
5

4.
0

4.
5

5.
0

5.
5

Largest half axis

S
m

al
le

st
 h

al
f a

xi
s

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●
●●
●

●

●
●●

●

●●●
●●●

●

●

●

●

●

●
●
●

● ●● ●●

●●
●

●
●

●

●

●

●

●●
●●

●

●

●●● ●

●

●
●
●

●
●

●●

●
●

●
●●●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●
●
●

●●
●●

●●

●

●●●
●

●

●

●
●

● ●●
●
●●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●●

● ●

●

●

● ●

●

●

●

●

● ●

●●

●

●● ●

●

●●
●●

●

●

●

●
●
●

●

●●●

●
●

●
●

●

●●

● ●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●●

●

●●

●
●
●

●

●
●

●

●●
●

●
●●

●●
●

●

●
●

●

●

●● ●
●

●

●●
●

●
●

●●
●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●●●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●
●●

●

●●● ●
●

●
●

●

●

●

●

●

●

● ●●

●
●●

●

●

●● ●
●

●●

●
●

●
●

●

●● ●●●
●

●

●

●●

●

●

●

●●●

●

●
● ●●
●

●
●●
●

●
●

●
●

●
●
●●●

●
●●

●

●

●
●

●

●
●●●

●
●

●

●
●
●

●

●●● ●

●●
●● ●

●
●●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●● ●
●

●●

●

●●

●
●●

●

●●
●

●

●
●

●
●

●

●

●●●

●

●
●
●

●

●

●
●

●
●

●●●

●

●

●●

●
●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●●

●●

●
●

●

●●
●

●

●●
●

● ●

●●
●●

●
●

● ●

●

●
● ●

●

●
●

●

●
●

●●
●●
●

●●

●●
●

●
●

●
●
●●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●●
●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●●

●

●
●
●

●
●

●
●

●

●

●●● ●●
●●
●

●
●

●

●●

●

●●

●

●

●● ●●●●●●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●
●●

●●●
●

●
●●●

●
●

●
●●
●

●
●

●

●
● ●
● ●

●●

●●

●
●

●
● ● ●

●
●●●

●

●
●
●
●●

●
●
●●●

●
●

●

●
●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

● ●●
●

●

●

●●
●

●
●●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●●
●

● ●●●
●

●
●
●●
●

●
●

●●
●

●

●

●

●
●

●

● ●●

●
●

●

●

●●● ●

●●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●
●●

●

●●
●

●

●

●

●
●●●

●

●
● ●

●

●

●●

●

●●

●

●
●●

●

●

●●

●
●●●

●

●

●

●
●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●● ●

●

●

●●

●●
● ●

●

●●
●

●●

●●●
●●●

●

●●●

●
●●

●
●

●

●
●●

●●●●

●

●●

●

●

●

●
●

●

●

●
●● ●●

●

●
●

●

●
● ●

●● ●
●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●
●
●● ●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

● ●●●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●

●
●

●●●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

3 4 5 6 7

1.
0

1.
5

2.
0

2.
5

Largest half axis

S
m

al
le

st
 h

al
f a

xi
s

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●●

●
● ●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Normalised quotient

D
en

si
ty

1.0 1.5 2.0

0
2

4
6

8

Normalised quotient

D
en

si
ty

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 5: Smallest and largest semiaxes of the estimated associated ellipsoid for the two-
step procedure. The scatter plots in the top row show the largest vs. smallest semiaxes
for N = 3 lines (in black) and for N = 7 lines (in green). The red lines mark the true
values. Histograms of the normalized quotient of the largest over the smallest estimated
semiaxes are displayed in the bottom row. Empty bars correspond to N = 3, whereas green
bars correspond to N = 7. The normalization yields a target value of 1. The left column
corresponds to the ellipsoid, whereas the right column corresponds to the cylinder.
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Figure 6: Direction of the estimated largest and smallest semiaxes for the two-step pro-
cedure as points on the unit sphere. The black points correspond to N = 3 lines, whereas
the green points correspond to N = 7 lines. In the left and right column the results for the
ellipsoid and cylinder are displayed, respectively. The top row corresponds to the direction
of the largest semiaxis, whereas the bottom row corresponds to the direction of the smallest
semiaxis.
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In summary, the two-step procedure clearly outperforms the first approach. It
works well for detecting anisotropy for both the cylinder and the ellipsoid. In Fig. 5 it
can be seen that neither body is ever classified as spherical in 1000 simulations. There
is a marked improvement in estimating the degree of anisotropy by the quotient of
the half axes when working with N = 7 instead of N = 3 lines. This increase
in precision is also pronounced for the estimation of the direction of the extremal
semiaxes. The values of the smallest and largest semiaxes are captured well by the
estimates, for both, the ellipsoid and the cylinder.

7 Discussion

Minkowski tensors are a natural extension of intrinsic volumes. They provide descrip-
tors of size, location, shape and orientation of convex bodies. In material science their
usefulness as summary statistics of populations of shapes has been demonstrated in
the past. In these applications it is usually possible to observe the entire structure
and detect it automatically. In many stereological applications, especially in the bio-
sciences, it is often impossible to have access to the entire boundary of a particle of
interest.

We believe that Minkowski tensors can provide powerful descriptors of size, lo-
cation, shape and orientation in the biosciences. Therefore, this paper presents local
stereological methods to estimate the tensors based on measurements on sections or
lines through the particle. Some of the presented estimators have a long history and
have been widely applied for decades, whereas others are new. We have chosen to
present both, old and new estimators, as the tensorial perspective provides a unified
framework for seemingly different approaches.

In a simulation study we investigate the performance of two of the newly proposed
estimators on two example shapes. The results are promising, however, many applied
statistical questions remain to be addressed. For example, the volume tensor of the
particles is supposed to be used to discriminate whether a particle population shows a
preferred orientation or not. For this purpose, one needs to develop statistical tests.
In this context, it may be preferable to address the estimators in a model based
framework in order to have a suitable model under the null hypothesis. We believe,
that these questions should be answered in close collaboration with practitioners as
in different applications, different functionals of the volume tensor of rank two may
have a meaningful interpretation.

Acknowledgements

This work has been supported by Centre for Stochastic Geometry and Advanced
Bioimaging, funded by a grant from The Villum Foundation.

References

J. Auneau-Cognacq, J. Ziegel, and E. B. Vedel Jensen. Rotational integral geometry of
tensor valuations. CSGB Research Report, 12-02, 2012. Centre for Stochastic Geometry

19



and Advanced Bioimaging, Department of Mathematics, Aarhus University, Denmark.
Submitted.

C. Beisbart, R. Dahlke, K. R. Mecke, and H. Wagner. Vector- and tensor-valued descriptors
for spatial patterns. In Morphology of Condensed Matter, volume 600 of Lecture Notes
in Physics, pages 249–271. Springer, Berlin, 2002.

C. Beisbart, M. S. Barbosa, H. Wagner, and L. da F. Costa. Extended morphometric
analysis of neuronal cells with Minkowski valuations. Eur. Phys. J. B, 52:531–546, 2006.

L. M. Cruz-Orive. Particle size-shape distributions: the general spheroid problem. i. math-
ematical model. J. Microsc., 107:235–253, 1976.

L. M. Cruz-Orive. Particle size-shape distributions: the general spheroid problem. II.
Stochastic model and practical guide. J. Microsc., 112:153–167, 1978.

L. M. Cruz-Orive. A new stereological principle for test lines in three-dimensional space.
J. Microsc., 219:18–28, 2005.

L. M. Cruz-Orive. Comparative precision of the pivotal estimators of particle size. Image
Anal. Stereol., 27:17–22, 2008.

L. M. Cruz-Orive. Flowers and wedges for the stereology of particles. J. Microsc., 243:
86–102, 2011.

L. M. Cruz-Orive. Uniqueness properties of the invariator, leading to simple computations.
Image Anal. Stereol., 31:89–98, 2012.

L. M. Cruz-Orive, H. Hoppeler, O. Mathieu, and E. R. Weibel. Stereological analysis of
anisotropic structures using directional statistics. J. Roy. Statist. Soc. Ser. C, 34:14–32,
1985.

E. B. Denis, C. Barat, D. Jeulin, and C. Ducottet. 3D complex shape characterizations
by statistical analysis: Application to aluminium alloys. Mater. Charact., 59:338–343,
2008.

J. Dvořák and E. B. V. Jensen. On semi-automatic estimation of surface area. CSGB
Research Report, 12-06, 2012. Centre for Stochastic Geometry and Advanced Bioimaging,
Department of Mathematics, Aarhus University, Denmark. Submitted.

H. J. Gundersen. The nucleator. J. Microsc., 151:3–21, 1988.
L. V. Hansen, J. R. Nyengaard, J. B. Andersen, and E. B. V. Jensen. The semi-automatic

nucleator. Journal of Microscopy, 242:206–215, 2011. ISSN 1365-2818.
D. Hug, R. Schneider, and R. Schuster. Integral geometry of tensor valuations. Adv. Appl.

Math., 41:482–509, 2008.
E. B. Jensen and H. J. G. Gundersen. Stereological estimation of surface area of arbitrary

particles. Acta Stereol., 6:25–30, 1987.
E. B. V. Jensen. Local Stereology. World Scientific, London, 1998.
E. B. Vedel Jensen and H. J. Gundersen. The rotator. J. Microsc., 170:35–44, 1993.
Paul Leopardi. A partition of the unit sphere into regions of equal area and small diameter.

Electron. Trans. Numer. Anal., 25:309–327 (electronic), 2006. ISSN 1068-9613.
Z. Pawlas, J. R. Nyengaard, and E. B. Vedel Jensen. Particle sizes from sectional data.

Biometrics, 65:216–224, 2009.
G. E. Schröder-Turk, S. C. Kapfer, B. Breidenbach, C. Beisbart, and K. Mecke. Tensorial

Minkowski functionals and anisotropy measures for planar patterns. J. Microsc., 238:
57–74, 2011a.

G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, M. A. Klatt, F. M. Schaller, M. J. F. Hoff-
mann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert,
W. Schwieger, and K. Mecke. Minkowski tensor shape analysis of cellular, granular and
porous structures. Adv. Mater., 23:2535–2553, 2011b.

20


