On the asymptotic expansion of the curvature of
perturbations of the Ly connection






Abstract

We establish that the Hitchin connection is a perturbation of the Lo
connection. We notice that such a formulation of the Hitchin connection
does not necessarily require the manifold in question possessing a rigid
family of Kahler structures. We then proceed to calculate the asymptotic
expansion of general perturbations of the Li-connection, and see when
under certain assumptions such perturbations are flat and projectively
flat. During the calculations we also found an asymptotic expansion of
the projection operator 7 which projects onto the holomorphic sections
of the k—th tensor of prequantum line bundle.

Vi viser at Hitchin connectionen er en perturbation af L. connectio-
nen. Vi bemarker, at en sadan formulering af Hitchin connectionen ikke
ngdvendigvis kraever, at den pagaeldende mangfoldighed besidder en rigid
familie af Kéhler strukturer. Vi fortsatter derefter med at udregne den
asymptotiske udvidelse af generelle pertubationer af Lo connectionen og
ser, hvornar, under bestemte antagelser, sadanne pertubationer er flat og
projectively flat. I lgbet af udregningerne fandt vi desuden en asymp-
totisk udvidelse af projektionsoperatoren, w((,k), som projicerer ned pa de
holomorfe sektioner af den k’te tensor af prequantum linie bundtet.






Introduction

In his paper titled “Quantum field theory and the Jones polynomial” (Comm.
Math. Phys., 121(3):351-399, 1989), Witten proposed that Chern-Simons the-
ory should form the two dimensional part of (2 4+ 1)-dimensional TQFT, which
in turn led to the study of geometric quantization of the moduli space M of
flat SU (n)-connections on a surface ¥. This moduli space is prequantizable in
the sense that it admits a prequantum line bundle. Given the surface X, the
Teichmiiller space T associated to ¥ parametrizes the complex structures such
that for every o € 7 and for every k € N, we have the quantum space of ge-
ometric quantization, which is the space, H*) (o) = g = go (M, LF), of
holomorphic sections of the k-th tensor power of the prequantum line bundle.
The spaces H®) form the fibers of the Verlinde bundle over 7, and it was shown
independently by Hitchin and Axelrod, Della Pietra and Witten that this bun-
dle admits a natural projectively flat connection, called the Hitchin connection.
As a result, there exists an identification, as projective spaces, of the quan-
tum spaces associated with different complex structures, through the parallel
transport of this connection.

We now give a brief description of the Hitchin connection as developed in [1]
by Andersen. We start off with a compact symplectic (M,w) equipped with a
prequantum line bundle £, further satisfying the condition that H! (M,R) =0
and that there exists an n € Z such that the first Chern class of (M,w) is
nlw] € H? (M,Z). Now on L*, we have the smooth family of d operators V%!
defined at o € T by

1
Vol = 3 (Id +iJ,)V

For every o € T, consider the finite dimensional subspace of C*° (M, L*) given
by H® = HO (M, LF) = {s € C™ (M, LF)|V%s =0}. Our assumption is
that these subspaces of holomorphic sections form a smooth finite rank subbun-
dle H® of the trivial bundle TxC> (M, £*).

Let Vt denote the trivial connection in the trivial bundle 7xC> (M, £¥) and
let D (M, L¥) denote the vector space of differential operators on C*° (M, L*).
For any D (M, £¥)-valued smooth 1-form u on T, we have a connection V in
TxC>= (M, LF) given by Vi = Vi, —u (V) for all vector fields V on 7.

Proposition : The connection V in TxC>® (M, Lk) induces a connection in
H®) if and only if



%v [J] V20 + VOl (V) s =0 (1)

holds for all vector fields V on T and all smooth sections s on H*).
This induced connection is called the Hitchin Connection.

We next make the assumption that M is endowed with a rigid family J of Kahler
structures parametrised by the complex manifold 7. To find a u that satisfies
the above equation we use the operator

v1,0

Do C% (M, LF) = €= (M, THOM @ £F) S 0 (M, T M @ £F)
T 0 (M T M @ THOM @ £4) 25 ¢ (M, )

defined for G € C*® (M, 52 (TéLO)M)), where G satisfies the relation, V' [J] =
G (V)-w, V' being the (1,0) part of the vector field , and the relation concerning
rigidity i.e., 9, (G (V,,)) = 0. Under such circumstances it is proven in [1] that
1
V =
u(V) 2k +n

where F' is the Ricci potential and

o(V)+V'[F) (2)

1
o(V)= 5 AG(V) —VG(V)dF —nV’ [F]

solve the equation (1).

The Hitchin connection as defined above, necessarily requires the manifold M to
admit a rigid family of Kéhler structures. During the course of this thesis how-
ever, we eschew the concept of rigidity by attacking the problem from another
perspective.

We first begin by examining the relationship between the Hitchin connection
(associated to the form u that solves (1)) and the he Ly connection, denoted V%2,

which has the property that for a given vector field V on T, V‘L,Qs =7y (s),

where m(,k) denoted the projection onto holomorphic sections. In proposition 7
of chapter 5 of this thesis, we develop a new 1-form uy given by the equation

un (V) s = —% (Vo)) PV [J] V105



where P is the parametrix to the operator V0! (Vo’l)* + (Vo’l)* Vo1l (the
Laplace Operator) and that for a sufficiently large &, this 1-form wuy, solve the
equation (1).

We next consider the connection V¥, given by the equation VY = V N (V)
and we prove in proposition 9, chapter 5, that this is nothing but the L2 connec-
tion, itself. Further we prove that the relation between the Lo connection and
the Hitchin connection is given by the relation V# — VE2 = ( )u where u
is given by (2) (as developed by Andersen in [1]). Thus we see that the Hitchin

connection is of the form V™, whereVM = VE2 4+ Mg, where g, is a 1-form
on T with values in D (M, E").

The raison d’étre behind proceeding in this way, i.e. express the Hitchin con-
nection as V# = V&2 — 7"y is that given a connection of the form V¥ =
Vi 4 7r( )gk where g is a 1-form on T with values in D (M,E ), we hope to
calculate the asymptotic expansion of the curvature Fym and thus get a set of
conditions as to when such a connection might be flat or projectively flat (since
the Hitchin connection, we know is projectively flat).

We therefore carry out a curvature calculation of connections of the form VM
in section 5.1 to obtain the formula

Fou (X,Y)s =2 [X [x00] v [29]] s + 2 (g1 ) (X,7) s
+ 700 (V) X (7)) s = i (X)

+ [P g (X) 7P g ()] s

<
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Given this result we express the 1-form g; as an infinite series, given by g =
20 9Wk™!, where each g is a 1-form on 7 with values in D (M, £*). This
is the first step to giving an asymptotic expansion of the curvature of VM,
denoted Fywm , as given above. However in order to do so we first of all need
an aymptotic expansion of the operator 7r( ). This expansion is developed at
the end of chapter 4 in this thesis in theorems 9 and 10. We state the theorems
here for reference

Theorem : There exist global operators Dl(k) : O™ (M, Ek) — O (M7 Ek) such
that we have for all section s of L¥, we have an asymptotic expansion

s~s+z
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the norm being the C™ norm with respect to the norm on sections of L* over
M.

Theorem : For a vector field V onT, V (W,(;k)) s has the asymptotic expansion

e 2

=1

v () S_NZW{D(% =0 <1>

=1

the norm being the C™ norm with respect to the norm on sections of L* over
M.

With the help of the above results we are indeed able to give an asymptotic
expansion of the curvature Fgam in theorem 15. We state the theorem here for
reference (the notation used is as developed thus far).

Theorem : Keeping with the notation developed thus far, the asymptotic expan-
sion for the curvature Fywm is given by the expression

00 Tn
.FVJVI == Z ]{/’7
n=0
where
TO — dg(o) + g(o) A g(o)
Ty = dgt) + Dydg® + A, + D1 A + By

with Ay and Ay being given by

A1 =g A g™ 4 gM A GO 4 dDy A g — ¢ AdD,

and
AO = g(O) /\g(O)>

and

T, =dg™ + Y Didg"?

i+j=n
+A,+ > DiAj+B,+ » DB,
i+j=n i+j=n



where A, for n > 2 is given by

Ap= > g ng"+ > dD; AdD;+

i+j=n i+j=n
> dDingD — Y g% AdD,
1+j=n 1+j=n

and B, n > 0 is given by

By= > g9 ADg".
i+j+r=n

We then proceed to analyze the cases as to when the curvature may be flat.
This is done in theorem 16 (under the assumption g(®) = 0). In fact we get a set
of necessary and sufficient condition in theorem 16 for the connection VM to be
flat. These conditions are given by equations (76) and (77) in the statement of
theorem 16. We state the theorem here for reference

Theorem : Given the setting and notation of theorem 15, under the additional
assumption that ¢©) = 0, the necessary and sufficient conditions for the curva-
ture Fym to vanish are

g AdDy A gM) +2dDy AdDy AdDy =0
and

0= > g9 AdD;Ag" +2 Y dD;AdD; AdD,

i+j+r=n i+j+r=n

_ Z g% A ng(T) A gl + Z g A ng(T) AdD,
it+j+r+g=n i+j+r+q=n

+ Y ¢WADj(A+B)— > dDiAdD; A Dyg?
i+j+r=n i+j+r4+qg=n

+ Z gW AdD;j A D,g D — Z gD AD;g® A Dyg™
it+j+r+g=n i+j+pt+qgt+r=n

for n > 3.

We notice, in fact that the connection V™ may be made flat upto order 2 with
no obstructions whatsoever (indeed the equations given above point out the
obstructions to making the curvature Fywm flat to orders higher than 2). As a
corollary (corollary 16.1), we prove that the connection VM is flat up to order
2 if we let gV and ¢(® satisfy the following conditions

g (X) =iX (Dy)



and
dg® =o0.

We already know that the Hitchin connection is projectively flat and therefore
for the final portion of thesis, we turn our attention to when the connection VM
may be projectively flat . Before doing so we establish the following notation
- given the context and notation established thus far, for a given differential
operator D, fp is a function on M such that W((;k)DS = W,(;k)fD’kS. The case
when VM may be projectively flat is done is theorem 17 under the additional
assumption that ¢(*) (X) are smooth functions on M for all i’s. The rationale
behind making this assumption is that the Hitchin connection, in case of rigidity
is a perturbation of the Ly connection, of precisely this form (this is remarked
upon in the text in an exposition following proposition 9 in chapter 5). These
conditions are given by equations (91) and (95). We state theorem here in the
introduction for further reference

Theorem : Given the setting and the notation of theorem 15, and under the
additional assumptions that g(» (X) are C* functions on M for all, i > 0 and
vector fields, X on T, the conditions for projective flatness of the connection
VM are

drrdg® =0,

0= deg(l) (X, Y) +dyp (fDl’kdg(O) (X, Y)) +
dnr (fX(Dl),kg(o) ) = fy(py)eg” (X)) -

dy (fg(O)(X)Y(Dl),k - fg(o)(Y)X(Dl),k) +
dym (fg(o)(X)Dl,k'g(O) (Y) - fg(U)(Y)Dl,kg(O) (X))

10



and

0=dydg™ (X,Y)+ Y du (fDi,kdg(j) (X, Y)) +
i+j=n

Y du (fxpav o n = Frooxom)k) +
i+j=n

> du (fX(Di)ch(j) (V) = fr(p) kg™ (X)) -
i+j=n

> du (fg<i><X>Y<Dj>,k - fg<i><Y>X<Dj>,k> +
i+j=n

Z dar (fpse (Fx ()Y (D)l — FY (D)X (Do) k) +

1+l4+m=n

> du (fDi,k (fX(DL),kg(m) (V) = fy kg™ (X))> -

i+l+m=n

Y du (fouk (Feo v Dk = fao ) x (D)) +
i+l+m=n

Z dM((ng)(X)Dj,kg(r) (Y)— fg(i>(Y)Dj,k‘,g(T) (X)) +
i+j+r=n

> du (fDi,k (fg(l)(X)Dm,kg(p) Y) = fy0 )0 kg™ (X)>>

i+l+m+p=n

for all vector fields X and Y on T. Here dy; is the exterior derivative on M.

11
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1 Complex Differential Geometry

We begin by considering a smooth manifold M of dimension 2m and let TM be
the tangent bundle of M.

1.1 Almost Complex Structures

Definition 1 A smooth section I of the endomorphism bundle End (TM) of
the tangent bundle of M is called an almost complex structure if it satisfies the
relation I> = —Id where I denotes the identity morphism.

Given such an almost complex structure I, we can think of TM as a complex
vector bundle T'M;, where mutliplication by i is given by I. As a result we see
that any almost complex manifold must necessarily be even dimensional and
orientable. We now consider the complexified tangent bundle TM¢ = TM ® C.
The linear extentension of I induces a decomposition

TMe = T®O My 4+ 7OD My

where T(HO My and TDM; are the eigenspaces of I with eigenvalues i and
—i respectively; the explicit projections being given by w}l’o) =3 (Id—il) and
7T}o,l) = L (Id+iI). We use the notation X = X’ + X” where X' € T M,
and X” € TODM;, or the decomposition of a vector field on M.

Further we see that the almost complex structure acts on the cotangent bundle

TM* in an obvious way
(Io) X = a(IX)

for every a, a 1-form X a vector field on M. As before we have a decomposition
TME =TOOMF 4+ T7OD A
into subbundles of eigenspaces. It is easily seen that T(l’O)M}" consists of forms

vanishing on 7%V M; and T(OV M} consists of forms vanishing on 7% M.

Given the splittings of TMc¢ and T'M¢ obtained above, we now have splittings
on the level of the tensor bundles into direct sums of eigensubbundles of T'M¢

17



and TM¢. Let APITM; = NPTEO M@ AT OD M ¥ then we have the obvious
decomposition

S
NTME = AP T MY
Cp+g=k !
which in turn induces a splitting of the complex valued differential forms,
2
oF (M) = QP (M
()=

where QP4 (M) = C* (M, NP 1T M7}), the space of (p,q)-type complex differ-
ential forms. Similar splittings take place for other tensor bundles such as the
symmetric powers S (T M) and S* (T Mc).

This now leaves us in a position to define the 9 and @ operators, which we do
using the exterior differential d and the projections 774 : QP4 (M) — QP9 (M),

Or : QP4 (M) — QPTLa (M)
where 97 = 7T:})+1’q od and,
Or : QP4 (M) — QP41 (M)
DAt o g,

where 0 = 7}

We now turn our attention to defining the complex structure on M.

1.2 Complex Structures

Definition 2 A complex structure on the manifold M comprises of a maximal
atlas of smooth charts, p; : U* — Ui/ cC (E Rz), with the added condition
that every transition function ¢; o ;' @ ¢; (Ui/ N Uj’) — ©j (Ui/ N Uj/) is
holomorphic.

O

Remark Note that any complex manifold admits a natural and canonical almost
complex structure on its tangent bundle. To see this, let z*¥ = 2* + iy* be he

0 0
local coordinates, with the corresponding vector fields X* = 0k and Y* = Do

T Y
Then the almost complex structure is given by

I(X*)=Y"* and I(Y*)=-X*

18



ie.,
I o9\ 0 d I 2\ 0
ok | ~ oyt M k)~ dak

Since the transition functions on M are holomorphic, the almost complex struc-
ture is independent of the coordinates chosen and therefore the tangent bundle
becomes a complex vector bundle.

Definition 3 An almost complex structure is said to be integrable if it is in-
duced by a complex structure. We further define the torsion tensor N; (also
known as the Nijenhuis tensor), as the antisymmetric tensor on M given by

N; (X,Y)=[IX, IY] - [X, Y] - I[X, IY] - I[IX, Y]

for all vector fields X and Y on M.

It is easy to see that an intgrable almost complex structure implies that the Ni-
jenhuis tensor vanishes (i.e. an almost complex structure is torsion-free). How-
ever the converse statement is also true as stated in the celebrated Newlander-
Nirenberg theorem.

Theorem 1 (Newlander-Nirenberg Thoerem) Any torsion-free almost complex
structure is induced by a unique complex structure.

There are several equivalent formulations of integrability, a few of which are
listed in the following proposition (stated without proof) for future reference.

Proposition 1 Let I be an almost complex structure on M. Then the following
are eqivalent

(i) The Nijenhuis tensor N1 vanishes
(ii) The bundle TS0 M; is preserved by the Lie-bracket

19



(iii) The exterior differential decomposes as d = Or + 0j.

O

Remark Property (iii) from proposition 1 implies the following identities
(“)? =0 5? =0 and 010r = —0;0;.
As a result we have the cochain complex
P () 25 et (ar) 25 o2 (i) s

for every positive integer p, the cohomology, being denoted by H? (M) is called
the Dolbeault cohomogy of M.

1.3 Symplectic Structure

Definition 4 A manifold M is called a symplectic manifold if there is a defined
on M a closed non-degenerate 2-form w, i.e., w € Q% (M) such that

(i) dw =10

(ii) on each tangent tangent space T,,M, m € M if wy, (X,Y) = 0 for all
Y €T,,M then X = 0.

Remark The assumptions about w say that its restrictions to each m € M
makes the tangent space T,,M, into a symplectic vector space. Further by
the theorem of Darboux, we know that all symplectic manifolds of the same
dimensions are locally the same. We state the theorem for future reference.

Theorem 2 (Darbouz theorem) Let wy and wy be two non degenrate and closed
forms of degree 2 on a 2n dimensional manifold M with wo|m = wi|m for some
m € M. Then there exists a neighbourhood U of m with a diffeomorphism
F:U— F(U)CM with F(m) =m such that F*w; = wp.

20



We now turn to the concept of the Hamiltonian vector fields.

Definition 5 Given a symplectic manifold (M,w) and H € C*° (M). Then a
vector field Xy on M is called a Hamiltonian vector field with energy fuction
H, if we have i (Xg)w = dH. The triple (M,w, Xg) is called a Hamiltonian
system.

O

Remark With these definitions in mind, we are now in a position to discuss the
concept, of the Poisson structure. Given a symplectic structure on a manifold,
we can introduce the concept of the Poisson bracket on functions on M denoted
{-,-}, given by the formula

{f,9} = —w (X;, Xy)

It is easy to see that the Poisson bracket thus defined satisfies the Jacobi identity
and the Leibniz rule.

Definition 6 The Poisson bracket gives rise to a Poisson structure on a man-
ifold M, wherein the Poisson structure is an antisymmetric biliner mapping
{,-}:C® (M) xC>® (M) — C> (M) satisfying the Leibniz rule and the Jacobi
identity. The triple (M,w,{-,-}) denotes a Poisson manifold.

O

Remark It is easily seen that on a Poisson manifold we have the identity
X1 = [Xg, Xg].

Therefore we see that the association f — Xy is nothing but a Lie algebra
homomorphism from the Lie Algebra of smooth functions equipped with the
Poisson bracket to the Lie Algebra of Hamiltonian vector fields.

Definition 7 Given a vector field X on M, we have the divergence of X as the
unique function 6X such that

Lxw™ =6Xw™

21



where Lx denotes the Lie derivative with respect to X.

Remark Since Lxw = 0 for all locally Hamiltonian vector fields, and Hamilto-
nian vector fields in particular, we see that § X = 0 for all Hamiltonian vector
fields. This now leaves us in a position to explore the relationship between the
almost complex structure, the symplectic structure and the Riemannian metric.

Definition 8 Given a symplectic manifold (M,w), an almost complex structure
1, is said to be compatible if the assignment m --+ ¢, : TrnM X T\, M — R,
given by

Im (u,v) = w (u, I;mv)

defines a Riemannian metric on M, i.e., the bilinear form g must be symmetric
and positive definite. The triple (w,g,I) is called compatible triple if g (+,-) =
w (-, I).

Given a symplectic manifold (M,w) and a Riemannian metric g on M, it is
easily seen that there exists a canonical almost complex structure on which is
compatible. In particular, since Riemannian metrics always exist, any symplec-
tic manifold has compatible almost complex structures. Further it can be be
shown that the set of almost complex structures on a symplectic manifold is
path connected and indeed contractible.

Further it is easily seen that the symmetry of the metric g is equivalent to the
I-invariance of w, and therefore also of g. As a consequence both ¢ and w are
of type (1,1).

Remark The metric g induces the usual isomorphism iy : TM — TM™ given
by
ig (X) (V) =g(X,Y)

for all vector fields X and Y on M. This can be related to the corresponding
isomorphism i, by the equation

1y =1ig01.

22



Since the metric g and the symplectic form w have type (1, 1), the isomorphisms
interchange types. The inverse metric tensor g defined by the equation

g=(iy" ®is") (9)
is the unique bivector field which satisfies
9-9=g-g9=1Id

The relation between the Poisson tensor w and the metric tensor gis w =1 - g.

Remark We further note that the Riemannian metric g induces a Hermitian
structure 7" on the eigen subbundle T(1:9) by

W (X, Y) =g (X, Y)

which in turn gives the canonical bundle! K a Hermitian structure h’.2

1.4 Ké&hler Manifolds

Definition 9 A Kahler manifold is a complex, symplectic, Riemannian man-
ifold M with the added property that the symplectic form w, the Rimannian
metric g and the (integrable) almost complex structure I (arising from the com-
plex structure) form a compatible triple (compatibility, as defined in definition

8).

Definition 10 The Levi-Civita connection on a Riemannian manifold (in our
case Kdhler manifold) M is the unique connection V on the tangent bundle of
M such that that it is torsion free, in the sense that,

VxY - Vy X = [X,Y]

IThe canonical bundle K7 is defined by the following equation,
Ky =ArTWOO A

where 2n is the real dimension of M.

2In general we shall denote the Hermitian structure of a Hermitian vector bundle by h with
the name of the bundle as a superscript. However for the sake of brevity when the relevant
bundle is clear from the context, we shall drop the superscript. We shall be following the
same procedure regarding connections, etc.
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and compatible with the metric g, in the sense that
Vg=0&X[g(Y,2)]=9(VxY,Z)+9(Y,VxZ)
for all vector fields X, Y and Z.

O

Remark An important fact to note about K&hler manifolds is that the inte-
grable almost complex structure is parallel also with respect to the Levi-Civita
connection, i.e.,

VI=0&Vx (IY)=1VxY.

But since the compatibility relation of the almost complex structure states that
g = w(-,I), we have, due to the compatibility of the Riemannian metric g
with the Levi-Civita connection V, and the parallelism of I with respect to the
Levi-Civita connection, that w is itself parallel with respect to the Levi-Civita
connection. Further note that the parallelism of I implies that the Levi-Civita
connection preserves the eigen subbundles 79 M and TV M of TMc and
therefore as a result, induces a connection on 719 M which is compatible with
the Hermitian (and holomorphic) structure of 710 M.

Before we move on to curvature we state a propostion (without proof) of relating
to some special coordinates for Kahler manifolds called geodesic coordinates (see
[301)

Proposition 2 Around any point p of a Kdhler manifold M, there exist com-
plex coordinates z1, ..., zy, such that the corresponding coordinate vector fields
ZY, ..., Z™ (as defined in the previous section) satisfy

9(Z",27) =6, and  VZI=0

at the point p. These coordinates are called geodesic coordinates.

O

Definition 11 The Kéhler curvature R of the manifold M, is the curvature
corresponding to the Levi-Civita connection, given by,

R(X,Y)Z=VxVyZ—VyVxZ - Vixy|Z

for all vector fields X, Y and Z. Clearly this is a 2-form with values in the
endomorphism bundle of the tangent budle End(TM).
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Remark Since [ is parallel with respect to the Levi-Civita connection V, we
have

R(X,Y)IZ =VxVylZ —VyVxIZ - Vixy 17
=1 (VvaZ - VyVxZ - V[X,Y]Z)
=IR(X,Y)Z

for all vector fields X, Y and Z. Therefore we see that the endomorphism part
of the curvature preserves the type of the vector and as a result we conclude
that R is (1,1) form with values in End (7?0 M) & End (TVM).

Remark One can use the metric g to raise or lower the indices, as usual, and
in particular, by lowering an index, the curvature can be viewed as a symmetric
section of AV TM; @ AVITM;F called the curvature tensor. Alternatively, by
raising the index we get the curvature operator which is an endomorphism of
ASYT M.

Definition 12 The Ricci tensor denoted r is an I-invariant symmetric, bilinear
form determined by

r(X,Y)=Tr(Z— R(Z,X)Y)
The associated antisymmetric (1,1)-form p given by
p(X,Y) =7 (IX,Y)

is called the Ricci form.

Remark Using the symmetries of the Kéhler curvature it can be shown that
Ricci form is minus the image of the Kéhler form under the image of the cur-
vature operator, i.e.,

p=—R(w).

On any complex manifold, we know that closed forms are locally exact with
respect to the 90 operator, i.e., if we have a closed form a € Q77 (M) and a
contractible open subset U C M, then 8 € QP~1471 (U) such that a|y = 99.
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But on Kihler manifolds , a global version of this is true (as is stated and proved
in the following proposition from [6]).

Proposition 3 For any ezxact form a € QP4 (M), there exists a form (3 €
QP=La=1 (M), such that o = 2i00p.

We can apply the above proposition to the Ricci form which we know is closed
and therefore differs form its harmonic part p” by a real, exact (1,1)-form.
Consequently, we can write the Ricci-form as

p=p" +2i00F

where F' € C* (M) is a real function called the Ricci potential. Clearly if M is
compact the Ricci potential is determined upto a constant, and therefore it is
uniquely determined if we require that its average over M is 0.

We now turn our attention to the concept of prequantization and the prequan-
tum line bundle. As in the previous section, let M denote a symplectic manifold
of dimension 2n with symplectic form w. Let I' denote the group of symmetries
acting on M by symplectomorphisms.

Definition 13 A prequantum line bundle over a symplectic manifold (M,w),
is a triple (E, h*, VL), where L is a line bundle over M with a Hermitian metric
h* and a compatible connection V= whose curvature is
i
For = —
\vZ4 27rw
e.g.
vay - VyVX - V[ny] = w (X,Y)
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for all vector fields X and 'Y on M. We say the symplectic manifold (M,w) is
prequantizable if there exists a prequantum line bundle over it.

Remark It is often natural to require that the action of the symmetry group
I' on M lift to an action on the prequantum line bundle £ by means of bundle
maps that preserve the Hermitian structure and the connection.

Remark Interestingly every symplectic manifold need not be prequantizable.
We know that the real first Chern class of the prequantum line bundle is given
by ¢; (£) = |w]. This leads us to the necessary condition for prequantizability,
known as the prequantum condition,

[w] € Im (H? (M,Z) — H? (M,R)) .

This is also a sufficient condition (see [31]) for the existence of a prequantum
line bundle. When inequivalent prequantum line bundles exist over M, they are
parametrized by H' (M,U(1)).

Remark If we choose an almost complex structure I on our manifold (M,w)
which is compatible to the symplectic structure (and the metric), this will give
the manifold M, the structure of a K&hler manifold denoted M, and since w is
of the form (1,1), it follows that the connection on the prequantum line bundle
L gives it a holomorphic structure.
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2 Families of Kahler Structures

During the course of this chapter we shall study the families of Kdhler structures
on a symplectic manifold (which lies at the heart of our study of the Hitchin
connection). For the rest of this section we shall use 7 to denote a smooth
manifold that will parametrize the Kéhler structures on our symplectic manifold
denoted as usual as (M,w). The reference for this chapter is [6] and [14].

2.1 Families of Kihler Structures

Definition 14 A family of Kéahler Structures on a symplectic manifold (M, w)
parametrized by T is a map

I:T — C®(M,End(TM))

which associates to every point o € T an integrable, w-compatible almost com-
plex structure on M. For the point o the manifold M with its w-compatible
Kahler structure I (o) will be denoted M, (similar notation being used for the
corresponding metric), however when the point o is clear from the context we
shall omit the use of the subscript.

Definition 15 A family of Kdihler structures is called smooth if the map I (as
in definition 14) is smooth in the sense that it defines a smooth section of the pull

back bundle 7%, End (T M) over T x M, where w; is the canonical projection
of T x M onto M.

2.2 Infinitisemal Deformations

Given a smooth family of Kahler structures I, we can can take its derivative
along a vector field V on T to obtain the map

V[I]:T — C®(M,End (TM))
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Further we have the identity
I’=-Id (3)

Differentiating (3), we have
VII+1IV[I]=0. (4)

Therefore from equation (4), we see that I anti-commutes with V[I], thus im-
plying that V' [I]_ changes types on M,. Thus we have a decomposition

vi=vi+vi" (5)
where
VI, e ™ (M, 7O M, © T<0»1>M;)
and
V! ec™ (M, TODM, @ T(LO)M;> .
We see that

Vigl(X,Y) =w (X, V[I]Y)

since w is of type (1,1) and g is symmetric, we have that

Vigl e C® (M, S2(THOM?) @ §2 (T(071)M:)) .

We now define a bivector field G (V) € C> (M, TM¢ ® TMc) by the relation
VI =G(V) w
for any vector field V on 7. Further we define
G (V) e C™ (M, T M, T(l’O)Ma)

such that 3 -
GV)=GV)+G(V) (6)
where G (V) € C= (M, TV M, @ T®VM,) for all real vector fields V on 7.

We see that G and G are nothing but 1-forms with values in C'> (TMc ® T M)
and C™® (T(LO)MU ® T M,) respectively.

Remark We make the further assumption 7 is a complex manifold and I is
a holomorphic mapping (the family of Kéhler structures being called holomor-
phic). Conecretely this means that

V', =V, and V" [I], =V [I]/

g
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where V' is the (1,0) part of V and V" is the (0,1) of V.

Under the assumptions of the preceding remark we notice,
VII=G(V) w
and that G (V) = G (V). Since V [g] = w - V [I], we have
Vigl=w- VIl =w-G(V) w (7)

and from this it is clear that G takes values in C* (M, S? (TM¢)) and G in
C>= (M, S? (THOM,)).

Finally we need the variation of the Levi-Civita connection which is the tensor
field
Viy]eCc® (M, S2(TAOMF) @ T(I’O)MU) .

We state the formula for this variation without proof (for further reference see

161)-

Lemma 1 For all vector fields X,Y,Z on M, we have

29(VIVIx Y, 2) = vx (VIgh) (Y, 2) + vy (VIg)) (X, 2) — vz (V]g]) (X,Y)

2.3 Holomorphic Families of Kihler Structures

We now turn our attention to the necessary and sufficient conditions to ensure
the holomorphicity of the family of Kéahler structures. The reference for the
results in this section is [14]. Let us start this section by giving an alternative
characterization of holomorphic families of Kdhler structures from the one de-
veloped above. As in the remark in section 2.2, we start by assuming that 7 is
a complex manifold, I is a holomorphic mapping and the the family of Kéhler
structures is holomorphic. Let J be an integrable almost complex structure on
T induced by the complex structure. We now get an almost complex structure
I on T x M defined by

IVeX)=JVealIX (8)

where V @& X € T, p) (T x M).

31



Proposition 4 (Andersen, Gammelgaard and Lauridsen) The family I is holo-
morphic iff the complex structure I defined by equation (8) is integrable.

Proof: To say that Iis integrable is the same as saying that the Nijenhuis tensor
for I vanishes. We further know that J is integrable so the Nijenhuis tensor of J
vanishes when evaluated on vector tangent to 7 and similarly Nijenhuis tensor
of I vanishes when evaluated on vectors tangent to M since I is a family of
integrable almost complex structues on M. So let V and X be vector fields on
T and M respectively. We have [V, IX] =V [I] X, and so we have
N; (V' X)=[JV IX] - [V, X] - I[JV'.X] - T [V',IX]

=iV, IX] -1V IX]

=V [ X -IV'[[|X

= 2ir"' V' [1] X
and similarly we show that N; (V”, X) = =279V’ [I] X and therefore the Ni-

jemhuis tensor vanishes iff

WX =0 and V'] X=0

(9)

which completes the proof of the proposition.

O

Lemma 2 (Andersen, Gammelgaard and Lauridsen) If I is holomorphic family
of Kihler structures, then

WV = SV 1], W [1]

for any vector fields V and W on T such that V' and W" commute.

Proof: The holomorphicity of I implies that V' [I]7%? = 0, and therefore we
have

WV’ [I] = %V’ (1) W" (1] (10)

by differentiating along W”. In a similar fashion, by differentiating the relation
W [I] 7% = 0, we have

VW (1) = —%W” nukan (11)

By adding equations (10) and (11) and using the fact that V/ and W” commute,
we prove the assertion in the lemma.

O
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2.4 Rigid Families of Kédhler Structures

We now turn our attention to the the extremely important concept of rigidity.

Definition 16 (Andersen) A family of Kahler structures I is said to be rigid
if

VxrG(V)=0 (12)
for all vector fields X on M andV on'T (G (V) € C*> (M, THOM, @ T M,),
see section 2).

Remark We therefore have that the family I is rigid if G (V) is a holomorphic
section of S? (T(I’O)M), for any vector field V on T.

2.5 Families of Ricci Potential

We end this chapter with a short discussion on families of Ricci potential.
Throughout this discussion we shall assume that our manifold M is compact and
of real dimension 2n. For each o € T we have a corresponding Ricci potential
F, € C* (M) satistying

Po = Pf + 20050, F5

where pZ is the unique harmonic part of the Ricci form.

Since we assume that M is compact the function F, uniquely determined upto
a constant, we can fix a unique Ricci potential by demanding that it have 0
average on our manifold, i.e.
/ F,w™ =0.
M

With this normalization the Ricci potentials define a smooth function F e
C (T xM), which can be be interpreted as a smooth map F : T — C° (M).
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In general we say a smooth map FecC> (TxM) is a smooth family of Ricci
potentials if it satisfies -
po = pH +2i0,0,F, (13)

for any o € T.

We further make an additional assumption that there exists an m € Z such that
the real first Chern class of (M, w) is given by

& (M,w) =m lw] (14)

d

But we know that the real first Chern class is represented by 2£ and conse-
™

quently we have -
p =mw ~+ 2i00F. (15)

Since the Kihler form is harmonic. The following lemma (stated without proof,
see for reference [14]) gives a useful identity involving the variation of the Ricci
potential, given our assumptions.

Lemma 3 (Andersen) Suppose that M is a compact, symplectic manifold which

satisfies H' (M,R) = 0 and ¢, (M,w) = m % , and let I be a holomorphic

family Kdhler structures on M. Then any family of Ricci potentials satisfies
4i0V' [F) = 6 (V' [I]) + 2dF - V' [I]

for any vector field V on T.

O

Remark Using lemma 3 , we can express the divergence of V' [I] in terms of the
Ricci potential. By lemma 3 we have

4V X" [F] = =2 (V' [I)V) [F] + 4iX"V' [F] = 6 (V' [I]) X (16)
Conjugating equation (16), we have
V"X [Fl=6(V"[I)) X (17)
The result follows by adding the above identities.
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3 Hitchin Connection

3.1 Setup for the construction of the Hitchin Connection

In this chapter we will detail the construction of the Hitchin connection as
given in [1]. We begin with the assumption that the manifold M is a compact
(complex) Kéhler manifold with symplectic form w. We further assume that the
manifold M is prequantizable. Recall that for a manifold M to be prequantizable
means that there exists a prequantum line bundle (E, h~, Vc) over M where L
is a line bundle over M with a Hermitian metric h* and a compatible connection
V£ with curvature ;-w (see definition 13). Indeed having assumed our manifold
to be prquantizable, we fix the prequantum line bundle £ over it.

We next assume that the smooth manifold 7 smoothly parametrizes the Kéhler
structures on M (see definitions 14 and 15) by means of the map

I:7T—C*(M,End(TM)).

As in section 2.2 we make the further assumption that 7 is a complex manifold
and I is a holomorphic map.

Remark For the duration of this chapter, for the sake of brevity, we shall adopt
the usual notation along the lines established in chapter 2, by denoting I (o) as
I,.

Let V be a vector field on 7. Further as in section 2.2, we define a bivector fields
G (V) € C® (M, TMc ® TMc) and G (V) € C*= (M, THOM, @ THOM,) by
the relations 3
VII=G(V)- w.
and R -
GV)=G(V)+G(V)
where G (V) € C* (M, TOY M, @ TV M, ) for all real vector fields V on 7.

We now consider the k-th tensor power of the prequantum line bundle £, denoted
LF. For every o € T consider the operator V') given by

vl — —(Id +il,)V

1
2
where V is the connection induced on L* by the connection on £. This defines
a O operator on LF.
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Consider now the finite dimensional subspace of C> (M, L*) given by
HY = H (M,,£F) = {s € > (M, L) | VI's =0} .

We further make the assumption that these subspaces of holomorphic sections
form a smooth finite rank subbundle H*) of the trivial bundle H®*) = T x
C> (M , E’“).

We denote by V! the trivial connection in the trivial bundle H*) = T x
C> (M, L*). Let D (M, L") denote the vector space of differential operators on
C* (M, L*). For any smooth 1-form u on 7 with values in D (M, £*) we have

a connection V on H*) given by
Vy =V —u (V) (18)

for any vector field V on T.

We now state and prove the lemma from [1] that defines the condition for the
existence of the Hitchin connection.

Lemma 4 (Andersen) The connection V in H®) induces a connection in H®)
ioff _
%V’ 1V + VOlu (V) s =0 (19)

for all vector fields V on T and all smooth sections s of H*),

Proof: Let s be a section of the subbundle H*). Then ﬁvﬁ is a section of H*)
for V, a vector field on 7. Applying the V%! operator to Vy s, we have

v (%0 (1) ) = V2 (VL) - T (@ (V) ),
. —% (VINVH0s), = VD (u(V) 5),)

where the second equation above holds since
i
VO Vs, + 5 (VINTHs), =0

Therefore V preserves the subbundle H®) iff (19) holds.
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Remark Note that V" [I]V.%s = 0, where V" is the (0, 1)-part of the vec-
tor field V on 7. Therefore u (V") = 0 solves equation (19) along the anti-
holomorphic directions, i.e., the (0,1)-part of the trivial connection @ﬁ, (see
(18)) induces a d-operator on H*) and hence makes it a holomorphic vector
bundle over 7.

We now consider the bivector field G from the previous section. Recall (from
section 2.2) that G (V) € C*> (M, 52 (T M,)). Therefore G (V) induces the
bundle map

G (V) :TEOM: — T8O M

Corresponding to G (V) we construct the operator
Agvy : C= (M, LF) — ¢ (M, L")
defined by

V)®Id

Aoy : = (M, £¥) T2 o (M, TN @ ,ck) Sl oo (M, TN, & ,c’@)

ViORId+1d®Vie Tr

> (M, TOOM; @ TOOM, @ £5) 15 0 (M, £4)

Now let F' be the Ricci potential (see section 1.4 for reference). We now have
the following theorem.

3.2 The Hitchin Connection

We now construct an ansatz for a 1-form wu that solves (19).

Theorem 3 (Andersen) Suppose I is a rigid family of Kéihler structures on the
compact symplectic prequantizable manifold manifold (M,w), with the property
that there exists an n € Z such that the first Chern class of (M,w) is n|w] €
H?(M,Z) and H' (M,R) = 0. Then the 1-form u given by

u (V)

= 2k+no(v)+v’ [F] (20)
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where
1
o(V)=5A8¢wv) ~ Vawyar — V'[F] (21)
solves equation (18) for all k such that 2k + n # 0.

Lemma 5 (Andersen) Assume that the first Chern class of (M,w) is n|w] €
H?(M,Z). For any o € T and for and G € H° (M,,S5?(T,)) we have the
following formula

Vo (Ag (5) = 2Vaar, (s)) = —i (2k 4+ n) GuV2! (s)
— ikTr (—2G0,Fw + VI (G)w) s,

for all s € H° (Mmﬁk).

Proof: Consider the effect of applying the operator V%! to the operator Ag (s).
We have

Vol (Ag (s) = Tr (VHIVHIGVH0 (s))
=Tr (VHOVSGVh (s)) (22)
—ikTr (wGV0 (s)) —iTr (p, GV (s))
where p, € QU1 (M,) is the Ricci form (pZ € Q! (M,) being the harmonic

part of the Ricci form). Now G is holomorphic by our assumptions, therefore

(22) becomes
VI (A (s)) = —ikTr (V' (Gws)) 03
—ikTr (WGV (s)) —iTr (pe GV (s)) (23)

Now notice that V (w) = 0 due to our assmption that (M,w) is Kdhler. There-

fore we can further write (23) as
Vo (A (s)) = —ikTr (VM (G)w) @ s (24)
— 2ikTr (WGV'0 (s)) — iTr (p, GV (s))

Finally notice that the assumption ¢; (M,w) = nw implies that p2 = nw which
in turn implies ~
Po = Nw + 200,05 F,

Putting this in equation (24), one proves the lemma.

O

We next state (without proof) a lemma that gives us the formula for the varia-
tion of the Ricci-form.
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Lemma 6 (Andersen) For any smooth vector field V' on T we have that

(V' [ =~ 0T (VM0 (E (V) ).

Lemma 7 (Andersen) Given H' (M,R) = 0, we have the following relation

2i0, (V' [F],) = %Tr (2G (V)9 (F)w — V" (G(V))w)

g

Proof: We know by definition, that
p=p" +2idOF.
Further we have assumed that pf = nw. Hence we have
V' [p] = —dV' [I)dF + 2idoV’ [F)

Therefore we have

2i00V’ [F] = (V' [p])"" + oV’ [I] OF.
But from lemma 6, we know that

(V' [ = 50T (V0 (G (V) )

Therefore we have that
1 _
Dy <2T7~ (2G (V) 9Fw — V" (G (V) w)  — 2i0, V' [F}U> =0
But we know from lemma 5 that

4, CT (26 (V) 0Fw V10 (G (V))w), — 210,V m") -

1 _
Thus in fact §TT (2G (V) 0Fw — VMO (G (V) w)g — 2i0,V' [F], is a closed 1-

form on M. But our assumption for the manifold is that H' (M,R) = 0.
1 _
Therefore iTT (2G (V) 0Fw — VM (G (V))w)  — 2i0,V' [F], is also an exact

form, but then in fact it vanishes, since it is also of type (0,1) on M,.
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From lemmas 5 and 7 we conclude that

1 1
u(V) = 2% +n { 386w = Vewyar + 2V [F]}

solves (19) thus proving theorem 3.

O
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4 Toeplitz Operators and Star Products

4.1 Definition

During the course of this chapter we shall present a review of the concepts of
Toepltiz operators and other related concepts. We continue the notations of the
previous chapters and assume the manifold M to be as in the last chapter, i.e.
prequantizable, with a fixed prequantum line bundle £ (and £* denoting the
k-th tensor power of L).

Let us begin by considering the space C* (M). For each f € C*® (M) we
consider the prequantum operator

M 0> (M, LF) — = (M, L)

given by
M® (s)= f s

where s € H (M, £*) (H® (M, £*) as in last chapter).

It is clear that these operators acting on C'* (M, Ek) also act on H®) | but
since f is merely smooth, the operators of the form M need not preserve the
subbundle H° (M, £¥). Our aim however, is to have operators that preserve
the holomorphic subbundle H® (M, £*).

Consider the pre-Hilbert space structure on C'*° (M, Ek), i.e. the integral

(s1,82) = % /M (51,82)w™ (25)

(recall that the prequantum line bundle £ comes equipped with a Hermitian
structure (-,-)). Now recall that H(*) is defined to be

H®) =T x C> (M, L)

Therefore we can think of the pre-Hilbert space structure on C* (M, £*) given
by (-,-) in equation (25) as a pre-Hilbert space structure on H*). This in turn,
induces a pre-Hilbert space structure on the finite rank subbundle H®*) of #(*).
And this in turn induces the operator norm || - || on End(H(k)).
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Since H" is a finite dimensional subspace of C'® (M, LF) = HP) therefore it
is closed. As a result we have the orthogonal projection

W[(,k) : HS,’“) — H((,k).
Since H® is a smooth subbundle of H(¥), the projections W((;k) form a smooth
map 7*) from T to the space of bounded operatoes on the Ly-completion of
c> (M, Ek).
To see this consider a local frame (s1,- - , Sgank g ) of H*). Let
hij = (s1,s2)

where (s1, s2) is defined is (25). Let h;jl denote the inverse of the matrix h;;.

Then
7 =" (s, (50),) (hi}'), (55),

1,9

Definition 17 For a smooth function f € C*° (M), the corresponding Toeplitz
operator T;ka) is the operator

Tf(ﬁf) : 7-[5_’“) — HS,’“

defined by

71 () = 7P (fs)

for any element s € ’H((Tk) and any point o € T .

We now prove a small lemma but fundamental lemma relating to the adjoint of
the operator Vx where X € C>° (M, TMc).

Lemma 8 (Andersen) The adjoint of Vx, denoted (Vx)*, is given by

(Vx)" =-Vg —0X,

for any complex vector field X € C* (M, TMc).
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Proof: Recall from definition 7, that the divergence §X is the unique function
satisfying
Lgw" =0Xw".

Therefore we have
Lx (s1,82) w" = (Vgs1,82)w" + (51, Vxs2)w" + (s1,52) 0 Xw" (26)

for smooth sections s1,s2 € C* (M, LF). By Cartan’s formula for the Lie
derivative, the expression in equation (26) is an exact expression.

Applying integration and the Stoke’s theorem to (26), we get
<(VX)* 51752> = —(Vgsi1,82) — <5X81782>

which is what we seek.

O

Proposition 5 (Andersen) If X € C* (M, T(l’O)Mg) is a smooth section of
the holomorphic tangent bundle on M, then

k _ (k)
7Tc(, )VX = — 5(X),0

Proof: Let s; € C* (M, ﬁk) and sy € HY (M, Ek). Then we have
X (81782) = (VX$1,$2) + (817VX82)

But we have
(51, VXSQ) =0
Therefore
X (s1,82) = (Vxsi1,82)

Taking the Lie derivative along X of (s1, s2), we have
d((s1,s2)ixw™) = (Vxs1,S2)w” + (s1,82) 6 Xw"
Integrating over M, we have,
0= (Vxs1,82) + (6Xs1,82)

which implies the proposition.

O
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4.2 Star Products and Deformation Quantization

During the course of this section we will define star products and deformation
quantizations with separation of variables and investigate briefly some of their
properties. We begin by considering V', a Hausdorff topological vector space.
The references for this section are [17],[18] and [19]

Definition 18 The elements of the space of formal Laurent series with finite
principal part V [y, v]] are formal vectors. Let v(m), m € R be a family of
vectors in V that admits an asymptotic expansion as m tends to oo, v (m) ~

> vy mi- The formalizer F is a operator that acts on v (m) such that
F:v(m)— Z v,
r>rg
O

Now we turn our attention to our manifold M. Let U C M. We denote by F (U)
the space of all formal complex valued functions on U and let F (M) = F. Let
K = C [v~1,v]] be the set of all formal complex numbers.

Definition 19 A deformation quantization on (M,w) is an associative K-algebra
structure on F, with a product called star product, denoted x, such that for
f=>vif; and g = v*g, € F we have the following formula

Frg=>_v" > Ci(fj )
T itgtk
where C,. for r =0,1,--- is a sequence of bilinear mappings
Cr:C®(M)xC®(M)— C®(M)

such that Co (p,9) = ¢ and C1(p,¢¥) — C1(,9) = i{p, ¥} for ¢,9 €
C>® (M). If all C, are bidifferential operators, then the deformation quanti-

zation 1s called differential.

Remark Given an open set U C M, a deformation quantization F can be
localized to U (with the corresponding star product also denoted x).
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Definition 20 Two deformation quantizations (F,x1) and (F,*2) are said to
be equivalent if there exists an isomorphism B : (F,*1) — (F,*2) of algebras
such that B is of the form

B=1+4+vB,+1v?By+---

where By, are endomorphisms of C* (M).

Remark Given f € F, we have the operators left and right multiplication
operators denoted by Ly and Ry, such that

Lyg=Ryf = fxg

where f, g € F. It is clear that the associativity of the star product * corresponds
to the commutativity of Ly with R, for all f,g € F.

We now turn to the concept of deformation quantization with separation of
variables.

Definition 21 A deformation quantization (F,*) is said to be a deformation
quantization with separation of variables if for any open set U C M and any
holmorphic function a and antiholmorphic function b on U the operators L, and
Ry are pointwise multiplication operators by a and b respectively, i.e., L, = a
and R, = b.

Definition 22 A formal form & given by

@ = (i)quZVTwT

is called the formal deformation of the form (%)w if the forms w,., 7 > 0 are

closed but not necessarily nondegenerate (1,1)-forms on M.

47



We now give a brief description of how to construct the star product x with
separation of variables on M corresponding to the formal form @. The discussion
follows closely the discussion from [17].

Consider an arbitrary contractible coordinate chart U of M with holomorphic
coordinates {zF}. Let ® =3 . | v"®,, be a formal potential of the © on U,
i.e., ® = —i00®. The star product corresponding to & is such that on U we
have

Laq>/azk = 6¢‘/82k + a/@zk

and
R0<I>/32l = 0%/9z! + 9/pz".

Let L (U) be the set of all left multiplication operators on U. L (U) is completely
described as the set of all formal differential operators commuting with the point-
wise multiplication operators by antiholomorphic coordinates Rz = 2! and the
operators Ros/,.: defined above. One can then construct the star product on
U from the knowledge of L (U) and since the local star products agree on the
intersections, they define a global star product x on M.

We now state 2 theorems of Schlichenmaier’s that relates the operator Ty, with
the operator T Tj,.

Theorem 4 (Schlichenmaier) There exists a unique (formal) star product on
C> (M)

frg=> V' (f9)
=0

where ¢V (f, g) € C>® (M), such that for f,g € C> (M) and for every N € M
we have with suitable constants Ky (f,g) for all k

J N
1 1
k k
- 3 (1) - (1)

0<I<N
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Theorem 5 (Bordemann Meinrenken Schlichenmaier)

1) For every | € there 1s C > 0 such that
1) F felC>®(M)th is C' >0 h th
c K
I £ oo+ <IN THo <1 oo

In particular, limg_oo || Tf(? 1=l f lloos || - lloo @s the sup-norm of f on
M.

(ii) For every f,g € C* (M)

1
- | (k) k (k) _
|mi |7, 78| =1 1= 0 <m>
as k — oo.

(iii) For every f,g € C*> (M)

1
k k
I 1;70)29(-,]? - ngg?a =0 (m)

as k — oo.

O

4.3 Further Properties

We use the notations from [19]. As earlier V is a vecor field on the parametrizing
manifold 7. We begin by restating the setting from [19].

We begin by considering the dual line bundle 7 : £* — M, with metric h induced

by the metric h on £. We restrict our attention to the the S'-principal bundle
X defined by,

X:{a€£*|ﬁ(a):1}.

Let Q be defined as the S'-invariant volume form on X such that the following

holds
[ wha= [ so

for all f e C>(M).
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We next identify the sections of £F with the k-homogenous functions on £* by
means of the mapping
O 15 = s (27)

where

s (@) = a®* (s (2))
foralla € X,z € M andse C* (M,LF). In fact this is an isometry between
the Ly sections of £* and the k-th weight space of the S* action on Lo (X, Q)

For every o € T, we consider the Hardy space H,, a closed subset of square
integrable functions on X, which extends over the unit disc bundle D in L£*

holomorphically (D = {a €L | h(a)< 1}), with respect the complex struc-

ture induced from the one on M,. The orthogonal projection from Ly (X) to
H, is called the Szeg6 projection and is denoted I1,,.

The Hardy space H, splits up into weight spaces H, = ) H,(,m) where H((Tk)
is the k-th weight space of the the S' action on Lo (X, Q) The isomorphism

in (27) restricts to an isometry H® (M,,LF) = H". Denote the Bergman

projection (orthogonal projection) onto e by 7% and the Bergman kernel

by Bf,k) (note that B((,k) € C™ (X x X)).
4.3.1 Coherent states

Asusuallet x € M. Let o € L*—{0} ("— {0}’ means the zero section removed).

For every o € T, let egfz,— be the coherent state, i.e.,

<s, e&k(),> =a(s)

(28)
= a® (s ()

for all s € H (Mc,,ﬁk) ({.,.) being the hermitian scalar product on Lq (ﬁ’“),
antilinear in the second argument).

Now for s € C* (M, L"), we have
() o = o (a)

_ /X B® (a, 8) v, (8)(8).
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In fact we have that BS) (o, B) = <egi)7, e&’“?;> =1, () (see page 11 of [19]).

B,o

Since the Bergman kernel decays faster than any power of k (see page 13 of

[19]), it follows that
| <e(k) elk) > =0 (k™)

1,017 “(Q2,02

for all N € Njo; € L, 71 # x2 and 0; € T, i = 1,2. As a result we only need
the expression for the Bergman kernel B near the diagonal.

4.3.2 Near diagonal expansion for the Bergman kernel

We now recall the near diagonal expansion of the Bergman kernel from [19].

We fix an arbitrary point g € M, having chosen a ¢ € T. Let U C M be a
contractible neighbourhood of x with local coordinates {z*}. Let s be a local
holomorphic frame of £L* over U. Let a(x) be a smooth section of X over U
given by

If we set @ () = logh (s (z)), we can express « (z) as

D (z)
a(z) =exp <— 5 )s(m)

It follows from the fact the £ is a prequantum line bundle that & is a potential
of won U.

Let & € O (U x U) be an almost analytic extension of the potential ® from
the diagonal of U x U in the sense of Hérmander (see page 16 of [19]). It

is interesting to note that we may choose (1/2) (5 (z,y) + © (y,x)) instead of

d (z,7). Therefore we may choose ® such that ® (y,2) = ® (z,y). Denote by
X € C* (U x U) the function given by

X () =@ (2,9) 5 (@ () + 2 1)

It is clear that x (x,x) = 0. Further we can assume that Re (x (z,y)) < 0 (see
lemma 5.5 in [19]). Lastly we have that the function y — x (zo,y) has a non-
degenerate critical point at y = x¢. Having recalled the setup we can now state
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theorem 5.6 form [19] that gives us the near diagonal expansion of the Bergman
kernel.

Theorem 6 There exists an asymtotic expansion of the Bergman kernel on
U x U as m — oo, of the form

B (@ (), a(y)) ~ ket 3 (,ﬁ) e (29)
r20

such that

(i) for any compact E CU XU and N € N
N-1
supayyer | BY (a (@), a (y) k") S ( ) (z,y) |= O (k")
r=0

(ii) by (z,y) is an almost analytic extension of b, (z) from the diagonal of
U x U, where b., r 2 0, are as defined in [32].

0

4.3.3 Asymptotic expansion of 7,

Notation For the sake of brevity, for the rest of this subsection, whenever the
point o € T and the tensor power k of the bundle £* are clear, we shall simply
use 7 to denote the projection W,(;k).

Theorem 7 Let K C R" be a compact set, X an open neighbourhood of K and
m a positive integer. If u € CZ™, f € Cg’m"'l and Imf >0 in X, Imf = 0,
[ (zo) =0, detf” (xo) # 0, [ # 0 in K-{xo}, then

| / zkf z)dﬂj Zkf(xfl) (det (kf” CCO /271'1 Z k™ JL iU ‘
Jj<m
< k™™ Z sup | D%u | (30)
|a|<2m

with k > 0. Here C is bounded when f stays in a bounded set in C’SmH and
|z —xo0| /| f (z0) | has a uniform bound. With

Gao) () = [ (x) = [ (w0) = (f" (w0) (& — w0) ;& — w0) /2
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which vanishes to third order at ro we have
Liu= Y > id2 <f” (z0) " D,D> (G2 ) (zo) /pl).
v—p=j 2023

Here in keeping with the notation from [16], Gk = stands for the u-th power of
the function G,, and D stands for the column vector whose j —th entry is the

0
operator —i—, 0 < 5 <n.
8xj

O

Remark It is further proved in [16] that L, is a distribution of order 2j sup-
ported at zq

Theorem 8 (Hérmander) Given the setting of theorems 6 and 7, there exists
an asymptotic expansion of (s (@) (xo) given by

Yoy (@) (z0) ~ Y (;) D, (F)

r>0

where xg € M, U is a coordinate neighbourhood around xo, x,y € U, D, (for
r > 0) are distributions of R-th order supported at o and Dy = 6,,, 0., being
the Dirac measure, F (y) = b(zo,y,k) ¢ (y), b(x,y,k) € S° (U xU) xR) is
a symbol such that it has the asymptotic expansion b ~ > .°7 (1/m")b, and
o (y) = s (a(y)).

Proof: We begin by considering the expansion of the Toeplitz operator  (s).
We know that

7 (1) (@) = s (0) = / B (o, 8) s (8) 2 (8)
X

As per our discussion in the subsection on coherent states, we need only consider
the expansion of the Bergman kernel near the diagonal. Therefore using the
notation of theorem 6 and the discussion immediately preceding it, we have

7 (s) () (xo) ~ /B (a (o), o (y)) s (@) () 2 () (31)

But by (27) and (28), we can write the integral above (denoted by I) as

I (o) :/B(a (o), (y)) & (y) 2 (y) (32)
U
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where ¢ (y) = <Oé®k> 3> ().

Now as in [19], choose a symbol b (z,y, k) € S° (U x U) x R) such that it has
the asymptotic expansion b ~ Y72/ (1/m)" by. Therefore we have from theorem
6, the expansion of the Bergman kernel near the diagonal is asymptotically equal
to kmefX(@W)p (2,9, k). Therefore the intgral I (x) in equation (32) asymptoti-
cally becomes

I (o) ~ / KreRx @D (2 y k) 6 (4) Q (1) (33)
U

Treating b (zo, y, k) ¢ (y) as functions of the argument y we can write b (xo, y, k) ¢ (v)
as

Similary we can regard x (zo,y) as a function of the argument y, and write
X (z0,y) = x (y). Therefore the integral I (x) in equation (33), becomes

Iao) ~ [ RSOF ()0 (y)
U

= k" [ PXWF (y)Q(y).
/

We now follow closely the discussion on pages 15 - 17 of [19]. We notice that
we can assume, that within U, Re(x) < 0 (with equality holding for y = ).
Further as has been pointed out, the function y — x (xg,y) has only one non-
degenerate critical point at y = z¢ within U. Therefore as in [19], we can apply
theorem 7 to the integral in (34). Therefore our integral admits an asymptotic
expansion

I(z9) ~ k" Z (kn1+r> D, (F)

r>0

r>0

(35)

where D,., r > 0, are distributions of R-th order supported at x¢ and Doy = ¢,0z,;
¢, being a nonzero constant and d,, being the Dirac measure. We can further
normalize Dy to be just Dy = d,, (for reference see theorem 2.3 from [23] for
the explicit homotopy map which makes this possible).

O
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We next consider, in the same vein the asymptotic expansion of the term 7V (s).

Corollary 8.1 Given the setting in theorem 8, we have

Yrvis)) (@) (x0) ~ (;) D, (F1)

r>0

where xg € M, U is a coordinate neighbourhood around xo, x,y € U, D, (for
r > 0) are distributions of r-th order supported at xo and D, = 5%, 0z, being
the Dirac measure, Iy (y) = b(z0,y,k)d1(y), b(z,y.k) € S°(({U )
is a symbol such that it has the asymptotic expansion b ~ > 7 (1/m )

?1 (y) = Yy (s) (@) (y)-
O

) x
b,

We now shift to working withing a local coordinate neighbourhood U of xy and
a local trivialization of the bundle £*. Applying theorem 7, to the integral (33),
and using the notation from theorem 8 and the homotopy map given in [23] we
obtain the asymptotic expansion, given by *

< D) (s) (xo)

75 (w0) ~ s (w0) + Y g (36)
1=1
where
(o) - VG’(L \bs
Pk ey
o= 5 e (V) po) Tt
v—p=l2v>3p pev
and

Glao) (¥) = X () — (X" (x0) (y — 20) ,y — 20) /2

Notice that within the coordinate neighbourhood U, Dl’zo is smooth in z¢ (x
as defined in theorem 6 is smooth on U x U and the Hessian {” (z) at each
xo € U, is non vanishing as is proved in [19] and in [32]). Therefore comparing
equations (35) and (36) we have that within the coordinate neighbourhood U,

there are operators D( eD (U Ek) such that

~(k k
DY) (s) = DY) (s) (x0) .-

3with the asymptotics in equation (36) is in C™ in 2o € M with respect to the norm on
Lk over M
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If we take another coordinate neighbourhood U’ of g and repeat the process

above, we get an operator Dz(,@' satisfying the properties above in the neigh-

bourhood U’. Therefore on the intersection U’ NU, Dl(k[} = Dl(@,. Therefore we
can define a global operators

D . ¢ (M, £F) — > (M, £F)

such that for every zo € M we have (D;s) (zg) = Dj 4, (s) (note that the section
s can easily be considered to be a global section by the use of a bump function).
Therefore we now have an asymptotic expansion of 7%s with the asymptotics in
C™ in xp € M with respect to the norm on £* over M. We now differentiate
(36) along a vector field V on T to get the following asymtotic expansion

= v 5]

1% (nf,’”) 5~ Z — (37)

=1

Therefore we have the following theorems.

Theorem 9 There exist global operators Dl(k) : C™ (M, Ek) — O (M, /Jk)
such that we have for all section s of L¥, we have an asymptotic expansion

oo

N-1 D(k)( ) 1

oo 3 2o ()

=1

the norm being the C™ norm with respect to the norm on sections of L* over
M.

Theorem 10 For a vector field V on T,V ( (k )> s has the asymptotic expan-

sion . |:D(k)i| ( )

(U“)) ; e,
‘V(mgc))S Z‘W|_ (1)

=1

the norm being the C™ norm with respect to the norm on sections of L* over
M.
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Remark Note that, in view of corllary 8.1 the dependence of Dl(k) on k is a mild
one, in the sense that Dl(k) acts as the restriction of an operator D; : C> (£*) —

C® (L*). Therefore we shall suppress the k dependence of Dl(k) and instead use
the notation D; for the rest of the thesis.

Remark Suppose we have two operators
AP o> (M, £F) — o> (M, £*)

and
AP o> (M, £F) = > (M, £*)

where each Agk) for ¢ = 1,2 is given by

w" (y)
n!

where K Z.(k) (z,v) is the integral kernel for Agk). Now suppose we have the kernel
expansion for K;, like we do for the Bergman kernel (as given in theorem 6) we

can evaluate the composition Agk) and Aék) as follows

n!

Ay o Ays(x) = /Ké’“) (z,y) As (y) <

yeM

= [ @R ) SR
(y,2)EM XM

By considering the asymptotic expansion of the integral in the variable y and
then considering the asymptotic expansion in the variable z, it is easily seen
that the composition of the two expansions in terms of the distributions (as
given in theorem 7) gives the expansion of the compostion of the operators in
terms of the distributions. We will use this in the calculations of theorem 15.
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5 New ansatz for the Hitchin connection

For the rest of this chapter, we shall assume that (M, w) is a compact sympectic
manifold.

Recall that a prequantum line bundle over M is the triple (£, (-,-), V), where
L is a complex line bundle with a Hermitian structure (-,-) and a compatible

7

connection V whose curvature is given by Fy = o
7r

We say that a symplectic manifold M is prequantizable if there exists a pre-
quantum line bundle over it.

As in chapter 3, we parametrize the Kahler structures on the manifold M with
the smooth manifold T, i.e., we have a smooth map I : T — C*° (M, End (T M)),
such that (M, w, I,) is a Kdhler manifold for every o € 7. In fact, we assume
further that 7 is a complex manifold and I is holomorphic. Let V be a vector
field 7 and V’ be the (1, 0) part of the vector field. For every o € T we consider
the finite dimensional subspace of C'* (M7 ﬁk) given by

HY = H® (M,,£*) = {s € C*> (M, L*) | V2's = 0}

We make the assumption these subspaces of holomorphic sections form a smooth
finite rank subbundle H*) of the trivial bundle H*) = T x ¢ (M, E’“).

We denote by V! the trivial connection in the trivial bundle H*) = T x
C> (M, L*). Let D (M, L") denote the vector space of differential operators on
C®° (M, L*¥). For any smooth 1-form u on T with values in D (M, L") we have

a connection V on H®) given by
@V = @7%/ —Uu (V)
for any vector field V on T.
We restate for further reference, without proof, the lemma 4.
Lemma (Andersen) The connection V in H®) induces a connection in H®*)
if

%v’ [11V0s + VOl (V) s =0
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for all vector fields V on T and all smooth sections s of H*),

O

We further restate, for future reference, the 1-form w (V) that satisfies (19), as
obtained in [1] and theorem 3 of this thesis.

Proposition 6 (Andersen) The smooth 1-form w given by

1 1
U (V) = m { iAG(V) — vG(V)dF + 2KV [F]}

where F is the Ricci potential and Ng is an operator corresponding to the sym-

metric 2-tensor G (defined in section 2.4), given by Tr (V°GVO (s)), solves
(19) under the assumption of rigidity.

1
Next we notice that —§V’ [[V1Ys € KerV%!l. Further we know that

Kervol

Tvo’l: L[O’1 (M7;Ck) .

We now state the Kodaira-Serre vanishing theorem that we shall use to establish

that —%V’[I]vlvos € Imvo.

Theorem 11 (Kodaira-Serre Vanishing Thoerem) If is a positive line bundle
on M, then there exists a ko such that for any k > ko,

H™ (M, £*) =0

for any q > 0.

Since L is a positive line bundle on M we can apply the Kodaira-Serre vanishing
theorem to L£F for a sufficiently large k, to conclude that H%! (M, [,k) = 0 for
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)
such a k. This in turn allows us to conclude that —§V’[I]V1’Os € ImV9%1

under the assumption that & is sufficiently large.

We now consider the complex
v0,1 v0,1 VO 1

Q0 (M, £F) —— Q%' (M, £F) — Q%2 (M, LF) —— ...

where £F = L£®*, Define the operator A = V%! (Vo*l)* + (Vo’l)*vo’l. We
define a partial inverse P to A,

P QY (M, LF) — Q%' (M, £F)

such that AP = Id—m(,k) (where w((,k) is the orthogonal projection from C*>° (M, [,k)
to H° (M, £¥)). P is therefore a parametrix to A.

Proposition 7 The smooth 1-form uy on T with values in D (M, /Jk) given
by
un (Vs = _% (Vo) PV (1) V105 (38)

satifies (19).

Proof: Consider the effect of applying the operator V%! to the given 1-form uy

Voluy (V) s = Vo (VO P (—;V’ (1 v1,08>

From the Kodaira-Serre Vanishing theorem (theorem 1) we know tha f%V’ VIRARERS

Im V%! and therefore we have that,
VOluy (V) s = (Id - wg’ﬂ) (—;v’ 1] V1’03>

i
=—-V'[1]V"s
2
Thus proving the proposition.

O

We now turn our attention to exploring the relationship between the Hitchin
connection (as established in [1]), the Lo connection (defined by the property
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Vizs = v (s)) and the connection V¥V we have as a result of the the ansatz
uy satisfying (19), defined by V& = Vi, — uy (V) (see equation (18)).

Proposition 8 V¥ — V2 = —m(,k)u, with the notations as established before.
Proof: Recall that by lemma 4, proposition 3 and (18), we have that
VHE =V —u (V) (39)

But notice also that since the Hitchin connection is a connection in H®*), we
have that
Vs =rFvis (40)

Combining the equations (39) and (40), we establish that

Finally notice that Py [s] is nothing but V‘Lﬁs, thus proving the proposition.

O

Proposition 9 Given the notations established before, we have that VN = V2.
Proof: Since V¥ is a connection in ngk), we have for a section s € H((,k), the
identity
ks =g (41)
Differentiating the above with respect to a vector field V' on 7, we have that
v [wg’ﬂ s+ 70V [s] = V[s]

But this in turn implies

\%4 [77((,’“)} 5= (Id — ﬂgk)) Vis]. (42)
We further notice that
Vis) = 70V [s]+ (1d = n?) V I3 (43)

Notice further that (Id — m(,k)) V[s] € Im (V%) and that 78y (V) = 0.
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Now recall that Vs = V [s] —uy (V) s. But given equations (42) and (43), we
have that
Vs = VEs + (V [wg@} —uy (V)) s (44)

®)? _ )

Now consider the equation (77 s . Differentiating with respect to a

vector field V on T, we have that

14 [ﬂ'gk)] =V {ﬂ,(,k)} 70 4 gy |:7T((Tk)} (45)
2
But since (W((;k)> = 7" the equation (45) yields that

W[(,k)V [W((,k)] = W[(,k)V [W((,k)} W((,k) + W((,k)V [W((,k)} (46)

)

And as a result we have W((;k)V |:'/T((7k ] 7r<(,k) = 0. Therefore since s € H((,k), we

have that W,(;k) ((V [m(;k)} —upy (V)) s) = 0; and V¥ and V%2 are connections

in H,gk), this necessarily implies that (V {m(fk)] —un (V)) s = 0, hence proving
the assertion of the proposition.

O

We now temporarily turn to certain cases when the Hitchin connection is known
to exist, i.e. the case when the manifold M admits a rigid family of Kahler
structures. Recall firstly the result from proposition 8 which states that

VH = vlz 7Ry

Let g be a 1-form with values in D (M, E’“), satisfying the relation g, = —u.
Further let g; admit the asymptotic expansion

gr=> gk
1=0

where g() are 1-forms with values in D (M, £F).

Recall that u(V) is given by

1 1
u (V) = Gy {2Ag(v) - vG(V)dF + 2KV [F]}
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Thus we have that

1 1
u (V)= Y- { §AG(V) —Vewyar —nV’ [F]} + V' [F]

Thus ¢(® (V) is nothing but —V’ [F]. Now let

1 1
o(v) = i {2AG(V) —Vewyar —nV’ [F]} :

Therefore we have

- 2k +n

1 n) (1 ,
= o 1+ ok iAG(V) — Vg(v)dp —nV'[F]

Expanding the power series we have that the first order term 4! is nothing but

1 1
o(v) {QAG(V) - Veawyar —nV’ [F}}

1

1
(V) = 3 { 386wy = Vowyar —nV’ [F]}

Now applying 75 to a(1), we have that

111 .
MM (V) = Q{QW((;k)AG(V) - W((,k)VG(V)dF — 7 nv’ [F]} (47)

We now state two theorems from [2] that help us to simply the above equation.

Theorem 12 (Andersen and Gammelgaard) If X € C* (M, T(l’O)M) is a
smooth section of the holomorphic tangent bundle on M, then we have

TFVxs = -7 (6X) s

for any smooth section s € C'* (M, Ek).

Theorem 13 (Andersen and Gammelgaard) If B € C* (M, S? (T M)) is
a symmetric bivector field, then the operator Ap satisfies

ng)AB =0

for all smooth sections s € C*> (M7 ,Ck).
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Notice firstly that in equation (47), G (V)dF € C> (M, T M). Therefore
for the above two theorems, we have that

L {wg’% (G (V)dF) -z py” [F]} (48)

B (v) = 2

Therefore we have that g™ (V) is given by
1
gV (V) = S{=0(G (V) dF) +nV' [F]}

Indeed we have for all ¢\, since the | — th order term, (") is given by the
equation

(-1 att

,&(l)(v) = 9l

1
{ZAG(V) - Vewyar —nV’ [F]}
and proceeding as above, we have

gO(v) =

For the next sections we shall be dealing with connections of the form
VI = T8 4 ag,,

where g, is a D (M, £)-valued 1 form. Further we denote the curvature of
the connection VM as Fgnm.* We do not however assume that the manifold M
admits a rigid family of Kahler structures.

5.1 Calculation of curvature of connections of the form
VM

We note firstly that by the definition of the curvature of a connection, we can
express the curvature of the connection VM| denoted Fgar, as

Fou (X,Y)s = VYV s - VY Vs — Vi ys.

4We note from proposition 8 that this covers the case of the Hitchin connection, V¥ in
the case when it exists.
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Remark We know that in any local coordinate system U around a point o € T
(with coordinates given by (z1,...,%;,) where m is the dimension of T), we

have that
0 o) _o
E)xi’ 8xj o

for all 1 <4, 7 < m. We can always choose our vector fields X and Y to be
such that in a local coordinate patch around the point o,

0
and Y = —

X =
8xi aCCj,

for i # j (if we choose i = j, the Lie bracket is trivially 0). Then we have,
within the coordinate neighbourhood U, [X,Y] = 0. As a result we have

Fou (X,Y)s = VEVYs - VMUV s, (49)
We begin by calculating the curavture of the Lo connection.

Proposition 10 For vector field X, Y on T, such that [X,Y] = 0, the curvature
of the Lo connection, V2, given by Fgr, is be given by

Fyry (X,Y) s =aF) [X (W((,k)) Y (ﬂ'[(,k))} s.

Proof: Notice firstly that given vector fields X,Y on T, such that [X,Y] = 0,
we have that the curvature of the Ly connection, given by Fyr, can be given
by

Fous (X,Y)s =n) X (wg’ﬂy (s)) — oy (wf,’“)X (s))
(50)
=X (ﬂ'c(,k)> Y (s) — 7Py (ﬂ'gk)) X (s)

Now note that for our holomorphic section s, we have that m(,k)s = s. Therefore

differentiating we have

X (ﬂc(,k)) s+rhX (s) = X () (51)
which implies
X (wg@) 5= (_wgm + Id) X (s) (52)
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2
Further recall that (ﬂ((;k)) = 7r<(,k). Differentiating, we have

X (0 w8 4 0 () = X (s09) -
But (53), implies that w((,k)X (m(,k)> w((,k) =0.

So from equations (52) and (53) and the fact that 7$s = s, we have that

) X (ng)) Y (W[(,k)) s=nMX (ﬂc(,k)) (Id - ﬂ((,k)) Y (s)

= w((fk)X (W((,k)) Y (s) oY
Therefore we now have,
Fors (X,Y)s =alP) [X (W((,k)) Y (ﬂ'[(,k))} s. (55)

Theorem 14 For the connection VM given by the equation VM = VLQ—I—ﬂ'(O)gk,
the curvature Fgm, is given by

Fou (X,Y)s = For, (X,Y)s+C(X,Y)s, (56)

where Fyr, (X,Y)s = ng) [X (W,(,k)) Y (wék))] s as proven in proposition 10,
C(X,Y)s (henceforth called the correction term) is given by

C(X,Y)s=nWd (wyf) gk) (X,Y)s
+7g (V) X (7)) s = 7l ()Y (7)) s
+ [W,(;k)gk (X), 78 g (Y)} s
for all X, Y vector fields on T and smooth sections s of H*).
Proof: We begin the proof by considering the term VA V¥ s from (49).
VMM s = (V%’ + 7 g (X)) (VlL/Z + 7 g (Y)) s

= V)Lf V{fs + V?fﬁf,’“)gk (Y)s
+ ﬂ((,k)gk (X) Vfﬁs + W((,k)gk (X) ng)gk (Y)s
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As a result of equation (49) and the calculations above, we can write the cur-
vature Fywm (X,Y) s as

Fou (X,Y)s = Vevis + via® g (V) s+ 7P g, (X ( )Vizs
+7® g (X)7PF g (V) s — VE2vhes - vE2zB g, (X) s
—m e (V) ViEs —aPgi (V) 1790 (X) 5
But given our assumption that [X,Y] = 0, we have that,
Fyr, (X,Y)s = Ve Vizs — V2 vizs.
Therefore we can write Fym (X,Y) s as
Fos (X,1) 3= Fou (X07) 1+ T (V) 1+ 8 (06) T
g (X) 7 g (V) s = V2aPlge (X)s - (57)
—mM g (Y )fos —7Pge (V)7 g1 (X) s

Now we define C (X,Y) s to be

C(X,Y)s=VierWg (V)s+7PF g (X)Vizs + 70 g, (X) 7 gp (V) s
—Vrr g (X) s — 7 ge (V) Vigs — 7P ge (V) 7 gy, (X)

s
(58)
Because of equations (57) and (58), we can write
Fom (X,Y)s = Fyr, (X,Y)s+C(X,Y)s
Now recall that V42s = b [s]. Therefore we have,
g (X) Vi2s = 7 gi. (X) 7Y [5] (59)
g (V) Vs = n g, (V) ) X [s]. (60)

Next consider the terms of the form ngm(, )i (Y') s appearing in (58). Evalu-

ating VLzﬂg gr (Y) s, we have
VierFg, (V)s =a X [ﬂl(,k)gk (Y) s} o
= W((;k)X [ng)} gk (Y) s+ W((;k)X (g9r (Y) s) o

From equations (58), (59), (60) and (61), we have
C(X,Y)s=nPX {W((Tk)} g (V) s+ 78X (gr (V) s) + 70 g (X) 7Y [4]
= 7Y [79] gu (X) s = 7Y (g1 (X) 5) = 7 gn (V) 7P X [
+ 7 g (X) 7P g (V) s =7l g (V) 7 gi (X) 5
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But notice that
T X (g (V) 8) =i g (V) 7V X [s] = 7V X (gi (V) s
+ 7P (V) (1d - ) X [5

But we know that (Id - ng)) X [s] = [ (k)} s. Therefore we have that

X (g1 (V) 5) = 1004 (V) 70X [5] = 70X (g1 (¥)) 5

+ 7B g (V) X [w((,k)] s
Thus we have that
C(X,Y)s =7 [7] g (V) s + 70X (g1 (V) s + 7 gie (V) X (w)) s
Py [ﬂ((,k)} ge (X)s — 7Y (gp (X)) s — 7P g (X)Y (71'((,]“)) s
+ g (X) 7 g (V) s = 780 gr (V) 7 i (X) s

Note further that 75" X [ (k )} g: (Y) s+ X (9 (Y))s = * (x ( {W(k)gk (Y)] s)
(since (m(;k)>2 = w((,k)). Therefore we have that
C(X,Y)s=nkd (wgk)gk) (X,Y)s
+a® g (V) X (W[(,k)) s—mFg (X)Y (ﬂ[(,k)) s
+ [P0 (X) 7P g (v)] s
thus completing the proof of the theorem.

¢

5.2 Asymptotic expression for the curvature of the con-
nection V¥

We now return to the question of giving an expression for the curvature Fyum
of the connection VM. Recall that,

Fou (X,Y)s =7 [X I:ﬂ'gk):l Y {77((7 ” s+nFd (ﬂ'gk)gk>
+ Mg (V) X ( <k>) (w k>)

+ [0 (X) 7P gy <Y>] s

69



We next write the 1-form gj, in the above equation as

gk = Z A
1=0

where g() are 1-forms with values in D (M, £F).

Theorem 15 Keeping with the notation developed thus far, the asymptotic ex-
pansion for the curvature Fym is given by the expression

o0 Tn
Fou =2 1w
n=0
where
To = dg'® + @ A g©
Ty = dg"V + Dydg™ + Ay + D1 Ao + By
with A1 and Ag being given by
A1 =g A g™ 4 gM A GO 4 dDy A g9 — ¢ AdDy

and
AO = g(O) /\g(O)v

and

T, = dg(") + Z Didg(j)

i+j=n
+An+ Y DiAj+B.+ Y DiB;
i+j=n i+j=n

where A, for n > 2 is given by

i+j=n i+j=n
1+j=n 1+j=n

and B, n > 0 is given by

By= > g9 ADg".
i+jt+r=n
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Proof: We begin by examing the n-th order term in the expansion of m(,k)gk (X) w((,k)gk (Y)s.
As before let W((Tk)gk (Y) s = s1. Thus we have the expansion

78 g (X) 51 = go (X) 51 + i Dy (gx (Xkl) s1) (o) (62)
=1

But s itself admits the expansion

% 4) ()
gV (V) s+, Dig? (Y) s
s1=m1Mge (V)s =) 1;—; l

=1

Thus we see that the n-th order term (m(,k)gk (X) m(,k)gk (Y) s) , in the asymp-
totic expansion of 7 g (X) 7 gx (Y) s is given by

(7Pge (X)7Pgr (V)s) = 30 gV (0D ¥)s+ Y gD (X) Dy (¥)s
i+j=n 1+j+r=n

+ Y Di(gV (X)) (¥)s)

i+j+r=n

+ Y D¢V (0D (¥)s)
i+j+r+m=n
(63)

Next we turn to the terms of the form 7T¢(7k)X |:7T((;k)} Y [W((,k)} s. Upon exami-

nation that the n-th order term, (m(,k)X [m(;k)} Y {w((;k)} s) in the asymptotic
n
examination is given by

(e0x [«] ¥ [x]5) = 32 XYY (Ds+ Y DX (D)Y (D))
i+j=n i+j+r=n

(64)

Next we turn to the case of terms of the form W((;k)X [m(,k)} gr (Y) s. As before
let gi. (Y) s be denoted s'. Therefore, upon examination of the asymptotic ex-
pansion of both s! and X [ﬂ'((,k)] s! the n-th order term (ng)X [m(,k)} gk (Y) s)

can be given by

(F((Tk)X {Wg_k)} gk(y)s) =Y X)W (V)s+ Y. D (X(Dj)g(” (Y)S)

i+j=n i+j+r=n

(65)
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We next turn to the terms of the 75X (9x (Y)) s. And evaluating the asymp-
totic expansion, we see that the n-th order term <7T((;k)X (gx (Y)) s) is given
by "
(w},’f)X(g,c (Y))s) =X (g<">Y) s+ Y D (X <g(j)Y) s) (66)
i+j=n

Finally we turn to the terms of the form W((,k)gk ()X (m(,k)) s. As before we

examine the asymptotic expansions to get the expression for the n-th term

(m(,k)gk V)X (m(,k)) s) ,

n

(0 01X () ) = ¥ 4O X D)+ X D (s ()X (D))
itj=n i+j+r=n
(67)

Therefore from equations (63), (64), (65), (66) and (67), we can deduce that the
n-th order term in the asymptotic expansion of Fyam (X,Y) s, denoted T, (X,Y)
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is given by

WX Y)s = 3 (X000 (s Y g0 (X) Dig (V) s

i+j=n i+j+r=n

S
1+j+r=n

+ Y b (g@ (X) Dyg™ (v) 5)
i+j+r+m=n

- Y MgV (X)s— D ¢V (V) D" (X)s
i+j=n i+j+r=n

- > D9 (V)97 (X))
i+j+r=n

- Y (9P () D™ (X))
i+j+r+m=n

+ Y X(D)Y (Dj)s+ > Di(X(Dj)Y(Dy)s)
i+j=n i+j+r=n (68)

- Y Y(D)X(Dy)s— > Di(Y(Dj) X (Dy)s)
i+j=n i+j+r=n

+ Y XD (V)s+ > Di(X (D) g (vV)s)
i+j=n i+j+r=n

_ Z Y (D g(J) X)s— Z D, (Y(Dj)g(r) (X)S)
i+j=n i+j+r=n

+ Y W)X (Dy)s+ D; (9 (Y) X (D) 5)
i+j=n i+j+r=n

= Y XY (Dy)s- D; (9 (X)Y (D) s)
i+j=n i+j+r=n

+ Z D; (dg(j) (X,Y)s)
1+j=n

+dg"™ (X,Y) s

Let A, (X,Y) be given by the equation

A (X,Y) = 30 [0 (X),gD ()] + Y XD Y (D))

i+j=n i+j=n

+ > (XD g (V) - Y (D] (X)) (69)
i+j=n

+ Y (¢ M XD - (X)Y (D))
i+j=n
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Therefore we can write

A=Y gD ng"+ 3" dD; AdD;+

i+j=n i+j=n

Y dDingD - Y~ gD ndD;

i+j=n i+j=n

Let B, (X,Y) be given by the equation
By (X,Y)= > (49X D" (V) = gD () Dig (X)) (7D)
i+j+r=n
Therefore we can write

By= Y g9 ADjg" (72)
i+j+r=n

Therefore from equations (70) and (72), we have that

T, =dg™ + Y Didg!
i+j=n

(73)
+An+ > DiAj+ B+ Y DiB;
i+j=n i+j=n
In particular we have that
Ty = g(o) A g(o) =+ dg(o) (74)
Further, we have that
Ty = dg"V + D1dg® + A, + D1 A + By (75)
where
Al — g(o) A g(l) + g(l) A g(o) + le A g(o) _ g(o) A le
and

Ap = g© A g©

Thus proving the theorem

O

In the subsequent part of the thesis, we explore the conditions under which the
connection VM is flat.
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Theorem 16 Given the setting and notation of theorem 15, under the addi-
tional assumption that ¢(°) = 0, the necessary and sufficient conditions for the
curvature Fym to vanish are

gM AdDy A gM 4 2dDy A dDy A dDy =0 (76)
and

0= >  ¢WAdD;Ag™ +2 Y dD;AdD;AdD,

1+j+r=n 1+j+r=n
— Y gIADD NGO+ S gD A D AdD,
i+j+r+qg=n i+j+r+g=n (77)
+ > ¢YADj(A+B,)— Y. dD;AdD; A Dyg@
i+j+r=n i+j+r4+qg=n
+ Z g(i) A dDj A Drg(lI) _ Z g(i) A ng(p) A Dqg(r)
i+j+r+g=n i+j+ptgtr=n
for n > 3.

Proof: Note that under the assumption that ¢(°) = 0 the condition for the first
order term T to vanish is merely dg") = 0, but dg(!) (X,Y) = 0 merely implies
that locally the 1-form ¢! is exact, i.e., there exists a O-form §") such that for
any vector field X on T, we have that gV (X) = X [§V].

We now turn to the second order term T5. Note that under the assumptions of
the theorem, the expression for 75 is given by,

Ty = dg® + ¢ A g +dDy AdD; +dDy A g™ — g™ AdDy
We thus have

dTy = dg™ A gV — g Adg™M 4 ddDy A dDy — dDy A ddDy
+ddDy A g™ —dDy A dg™ — dg™ AdDy + g™ A ddD,y (78)
=0

Thus allowing us to solve for ¢ such that Tp = 0.

So far therefore under the assumptions of the theorem, we have not encountered
any obstructions to the curvature of the connection VM vanishing to order 2.
Let us now turn to order to the order 3 term 73. As in the earlier cases we
assume that we have obtained solutions for ¢(*) and ¢(®, such that the first and
second order terms, T) and T, vanish. Therefore we have that dg(*) = 0 and
that

dg'® = — A4y (79)
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where Ay = g A g +dDy AdDy +dDy A g™ — g™ AdD;. Therefore we have
Ty = dg® + Dydg'® + Dydg™ + A3z + Bs + D1 Ay
=dg® + D, (dg<2) + Ag) + A3 + B3
= dg® + A3 + ¢ A Dy gV
Thus we have that
dTs = dAs — g AdDy A g™
= —gW Adg® +dg® A g —dDy Adg'® —dg® AdD;  (80)
— g™ AdDy A g™

From equation (79), we have that dg(®) = —A,, and Ay = ¢ A g 4+ dD; A
dDy +dD; A g™ — g AdD;. Substituting these in equation (80), we have that

dTs = g A dDy A g™V +2dDy A dDy A dD,y

Therefore, we encounter our first obstruction to the curvature of VM vanishing,
namely, for the curvature Fga to vanish up to third order, () must necessarily
satisfy the equation

gM AdDy A gV 4 2dDy AdDy AdDy =0 (81)

We now turn to the general n-th order term. As before, we assume that the
Ty = 0 for all k¥ < n. Thus we have that

T, =dg™ + Y Didg?
i+j=n
+An+ > DiAj+B.+ » DB,
i+j=n i+j=n
=dg™ + A, +B,+ »_ D (dg(j) + A+ Bj)
i+j=n
=dg™ + A, + B,

where

A, = o gWagP+ > dD;ndDs+
i+j=n,i>0,7>0 i+j=n,i>0,7>0
> dDingD - Y gWAdD;

i+j=n,i>0,j>0 i+j=n,i>0,5>0

and

Bo= Y 49 AD0
i+j+r=n,i>0,7>0,r>0
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Given that we assume ¢(®) = 0, we shall assume for the rest of this proof that
all indices i and j are for g(¥ and D; are greater than 0. Therefore we have
that

dT, = dA, +dB, (82)

We first consider the term dB,,.

dB,, = Z dg®) A Djg™ — Z gD ANdD; A g™

i+j+r=n i+j+r=n
- > ¢V ADdg"
i+j+r=n
_ Z g(i) AdDj A g(T) 4 Z g(i) AD; (A, + By)
i+j+r=n _ . iHytr=n (83)
_ Z g(z) /\g(j) A Drg(q) _ Z dDz A dD] A\ Drg(q)
i+jtrra=n iritrte=n
— S dDingDADg D+ Y g AdD; A D@
i+j+r+q=n Hitrha=n

— Y gD ADP AD™
i+j+ptgtr=n

We now turn to the term dA,,. We have
dA, = Y dgW A gD — g NdgD) —dD; AdgY) — dg® ndD;  (84)
i+j=n

Recalling the formulae for A;, and By and keeping in mind our assumption that
T, =0, ie., dg') + A, + By, = 0 for all k < n, we have that

dA,=— > AingD — > Bingy

1+j=n 1+j=n
+ > 99N A+ > gD AB;
1+j=n i+j=n
+ > dDiAA;+ Y dD; A B;
i+j=n i+j=n
+ > AindD;+ Y BiAdD, (85)
i+j=n i+j=n
=2 > gWndD;Ag™ +2 > dD; AdD; AdD,
i+j+r=n i+j+r=n
+ Y GO AgDADGD — ST gD A D A g
i+j+r+q=n i+j+r+q=n
+ Z dD; A g9 A D,g D + Z ¢ A D;jg" AdD,
i+j+r+q=n it+j+rt+g=n
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Therefore we have that
dT,, = dA,, + dB,,
= Y ¢9ndD;Ag" +2 Y dD;AdD; AdD,

i+j+r=n i+j+r=n
_ Z g A ng(r) AglD 4+ Z g A ng(T) AdD,
i+j+r+qg=n it+j+r+qg=n
+ Y ¢9ADj(A+B)— > dDiAdD; A Dyg?
i+j+r=n i+j+r+g=n
+ Z ¢ NdD;j A D,g'? — Z gD AD;g® A Dyg™
i+j+r+q=n i+j+ptgt+r=n
(86)
Therefore the necessary condition for the solution of 7,, = 0 to exist is
0= > ¢9ndD;Ag" +2 Y dD;AdD; AdD,
i+j+r=n 1+j+r=n
— Z g® /\ng(r) A gD 4 Z g /\ng(r) AdD,
i+j+r+qg=n i+j+r+qg=n
+ 3 ¢PAD(A +B,)~ Y. dD;AdD; A D¢ @
1+j+r=n i+j+r4+qg=n
4 Z g(i) AdD; A Drg(Q) _ Z g(i) A ng(P) A Dqg(T)
it+j+rt+g=n i+j+pt+qgt+r=n

Thus proving the theorem.

O

Corollary 16.1 Under the setting of theorem 16, if we let gV and ¢® satisfy
the conditions
g (X) =iX (Dy)

and
dg® =0

then the connection VM is flat upto order 2.
Proof: Clearly, if gV (X) = iX (D;), we have dg'") = 0, therefore T} = 0. Now
consider 7. Recall that 75 is given by

TQ = dg(2) =+ g(l) AN g(l) + le N dD1 + le N g(l) - g(l) A dD1

Clearly dg® = 0 and ¢") (X) = iX (D;) satisfy Tb = 0, hence completing the
proof.

O
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We now turn our attention to the conditions that V* is projectively flat. Be-
fore proceeding however we establish the following notation. Given the context
and notation established thus far, for a given differential operator D, fp j is a

function on M such that ﬂ'c(;k)DS = wgk)fp,ks.

Theorem 17 Given the setting and the notation of theorem 15, and under the
additional assumptions that g (X) are C°° functions on M for all, i > 0 and
vector fields, X on T, the conditions for projective flatness of the connection
VM are

dadg® =0,

0 =dndg™ (X,Y) +dur (fDl,kdg(O) (X, Y)) +
dm (fX(Dl),kg(o) ) = fyonwg” (X)) -
dar (fy (x)v (D) .k — Foo (v)x(Do)k) +
dm (fg<o>(X)D1,kg(O) (Y) = fy0 vy 59 (X))

and

0= dadg™ (X,Y) + Z dmr (fDi,kdg(j) (X, Y)) +

i+j=n
Z dyr (fX(Di)Y(Dj),k - fY(D,;)X(D_,»),k) +
i+j=n
Z dur (fX(Di),kg(j) Y) = fyp,)sg"? (X)) -
i+j=n
> dy (fg(i)(X)Y(Dj),k - fg(i)(Y)X(Dj),k) +
i+j=n
Y du (fouk (Fxopy )k = (o) x(Da).k) +
i+l+m=n
Z dm (fDi,k (fX(Dl),kg(m) ) — fyon g™ (X)>> -
i+l+m=n
Y dar (fouk (Fg )y (D) k= fo® () x (D) 1)) +
i+l+m=n
> dM((fg<77)(X)Dj,kg(r) (Y) = fyor00yp, 19" (X)) +
itjtr=n
> du (fDi,/c (fg(l)(X)Dm,kg(p) Y) = fy0 vyp, 19" (X)))
i+l+m+p=n

for all vector fields X and 'Y on T. Here dp; is the exterior derivative on M.
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Proof: We begin by examining the first order term. Recall that T} is given by
the expression
T1 = dg(l) + Dldg(o) + A1 + D1A0 + Bl.

But notice that in this cas Ag = 0. Now consider the asymptotic expansion for
the curvature

> T, (X,Y
FvM (X,Y)S = Z %
n=0

Applying the projection operator 7r((,-k) to both sides of the above equation, we

have ®)
> g Tn X) Y
Wg.k)]:vl\l (X, Y) S = Z %
n=0
But notice that 7T((7-k).7:vM (X,Y)s =Fym (X,Y)s. Therefore we have that

< 1 (xy
Fou (X,Y)s=3 w

n=0

Therefore, for n = 1, we have that
0T (X,Y) s = 7P dg™ (X,Y) s + 7 Dydg® (X,Y) s

o

(87)
+ 74 (X, Y)s+ 7" B (X,Y) s

Now since D; is a differential operator, we can say that wf(,k)Dl = W((yk)thk,
where fp,  is a function on M. Since A; (X,Y) s is given by

A1 (X,Y)s = gD A g (X, Y) s+ g0 A g™ (X, V) s+
dDy A g (X,Y)s — g9 AdD;y (X,Y) s

and we know that all (") (X) are functions on M, we have that

A (X,Y)s=dDi A gD (X,Y)s—gO AdDy (X,Y) s

Applying T,(;k) to both sides we have that

A (X, Y)s =7 (fX(Dl),kg(O) Y) ~ fy oy xg” (X)) s

(88)
- Wt(yk) (fg(o)(X)Y(Dl),k: - fg<0>(y)X(D1),k) s
And since B; (X,Y) s is given by
B (X,Y)s=g¢9 ADg®(X,Y)s
We have that
7B (X,Y)s = W((rk)fg<0>(X)D1,k9(0) (Y)s— (29)

7T<(7k)fg(0>(Y)D1,kg(0) (X)s
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Thus we have that 75T, (X,Y)s= 78t (X,Y) s where t1 (X,Y) is a function
on M given by

8 (X,Y) = dg™M (X,Y) + fp, xdg® (X,Y) +
(fX(Dl),kg(O) Y) - fY(Dl),kg(O) (X)) -

(fg(O)(X)Y(Dl),kJ - fg(o) (Y)X(Dl),k) —|—
a0 )01 69" (Y) = foo vy, 59" (X)

Since the connection is projectively flat, we have that dast; (X,Y) = 0 where
dys is the exterior derivative on M. Thus we have the condition that

0 =dndg™ (X,Y) + dr (fDl,kdg(O) (X, Y)) +

dar (fX(Dl),kg(O) (Y) - fY(Dl),kg(O) (X)) -
dr (Fy0 (x)y D)k — Fo©@ (v)x(D1)k) +
dur (fg(o)(X)Dl,kg(O) (Y) = fy0 vy 49 (X))

(91)

We now turn our attention to the general term 7). Recall that 7;, is given by
the expression

T, =dg™ + Y Didg"?

i+j=n
+A,+ > DiAj+B,+ » DB,
i+j=n i+j=n

where A,, for n > 1 is given by

Ap= Y gD ng"+ 3" dD; AdD;+

i+j=n i+j=n
> dDing" - " gD ndD;
itj=n i+j=n

and B, for n > 1 is given by

i+j+r=n

Proceeding as before and applying m(,k) to By, (X,Y) s we have that

W((fk)Bn (X,Y)s= ng) Z (fg(i)(X)D]‘,kg(T) (Y) - fg<i>(y)Dj,k9(T) (X)) s
i+j+r=n
(92)
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And applying 75 to A, (X,Y) s we have that

T A, (X,Y)s = Z (fx D)y (D) 0k — fy (D) X(Dy).k) ST

i+j=n
Z (fX(Di),kg(j) (Y) - fY(D,-),kg(j) (X)) 5— (93)
i+j=n
gt i)k Jgt i)
Z (f (X)Y (Dy),k fg(')(y)x(D ) k) S
i+j=n

Thus we have that 757, (X,Y)s = ¥, (X,Y) s where t, (X,Y) is a func-
tion on M given by

tn (X,Y) =dg™ (X,Y)+ Y fo,xdg? (X,Y)+

i+j=n
Y- (Fxovmnn = froyxm ) +
i+j=n
Z (fX(Di),kg(j) (Y) - fY(Di),kg(j) (X)) -
i+j=n
) (fg<f><X>Y<Dj>,k - fg<i><Y>X(Dj>,k) +
i+j=n
Z ok (fX(D,)Y(Dm),k - fY(Dz)X(Dm),k) + (94)
i+l+m=n
> fook (fX(Dl)ch(m) Y) — fyoysg™ (X)> -
i+l+m=n
Z fDi?k (fg(’)(X)Y(Dm),k - fg(l)(y)X(D”L)yk;) +
i+l+m=n
Z (fg(n(X)Dj,kQ(T) (Y) - fg(i)(Y)Dj,k:g(T) (X)> +
i+j+r=n
Z IDik (fg(l)(X)Dm,kg(p) Y) = fy00vyp 19" (X))
i+l+m+p=n

Since the connection is projectively flat, we have that dast,, (X,Y) = 0 where

82



dps is the exterior derivative on M. Thus we have the condition that

0= dadg™ (X.Y)+ S du (fDi’kng') (X, Y)) n

i+j=n
Z dar (fx(poyy(Dy) e — Sy (Do)x (D)) +
i+j=n
Z dr (fX(Di),kg(j) (Y) - fY(Di),kg(j) (X)) -
i+j=n
> du (fg<i>(x>ywj),k - fg<i><Y>X<D_,»>,k) +
i+j=n
Z dar (fpoe (Fx o)y (Do) b — fy (D x(Dm)k)) +
i+l+m=n
Z dr (fDi,k (fX(Dl),kg(m) Y) — fyoysg™ (X))> -
i+l+m=n
Y dar (Foik (Fo0 )y (k= Fo0 ()X (D)) +
i+l+m=n
Z dM((fg(i)(X)Dj,kg(r) (Y) - fgm(y)Dj,kg(T) (X)> +
i+j+r=n
Z dmr (fDi,,k (fg<z>(x)pm,k9(p) Y) = fyo 0vyp 19" (X)))
i+l+m+p=n

which proves our theorem.
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