Aarhus University Seal / Aarhus Universitets segl

Forskningsområder

Igangværende forskningsprojekter

Forskningsarbejdet i matematik foregår fortsat hovedsageligt inden for områderne algebra, analyse og algebraisk topologi. Medarbejderne i matematik har næsten alle specialiseret sig inden for et af disse hovedområder. Der arbejdes i stigende grad med forskningsopgaver, der har relation til mere end én af disse discipliner, såvel som til andre områder, herunder matematikkens anvendelser inden for fysik, datalogi, genetik, økonomi, m.v. Blandt de forskningsopgaver, hvor afdelingen er særlig forskningsaktiv, kan nævnes: Algebraisk K-teori og mangfoldigheders geometri, algebraisk geometri, Lie algebraer og deres repræsentationer, kvantealgebraer, kategori-teori, homotopiteori, topologi af glatte afbildningskim, spredningsteori, konveksitetsteori, operatoralgebraer, Bose algebraer, kombinatorik, algebraisk talteori, repræsentation af Lie grupper, kodningsteori, kryptologi, invarianter af 3-dimensionale mangfoldigheder og Gauge teori.

Ligeledes forskes der inden for singularitetsteori, topologisk kvantefeltteori, modulirum, mapping-class grupper, computational biology, partielle differentialligninger med forbindelser til matematisk fysik, herunder spredningsteori, superledning, operatorteori og kvantemekanik, samt i analyse på mangfoldigheder. Desuden arbejdes med harmonisk analyse, analytisk talteori, diofantisk analyse, K-teori for operatoralgebraer og dynamiske systemer.

Forskningen i teoretisk statistik koncentrerer sig om sandsynlighedsteori og grundlagsspørgsmål for statistisk inferens. Specielt arbejdes der med stokastisk analyse, Markov processer og tilhørende potentialteori, sandsynlighedsteori i uendelig dimensionale rum, forsikringsmatematik og matematisk finansiering, simulering, asymptotisk likelihoodteori, inferens for små stikprøver og for stokastiske processer, Edgeworth - og saddelpunkts-approksimation, avancerede statistiske modeller for DNA, tidsrækkeanalyse, geometrisk sandsynlighed og stereologi, rumlig statistik, forbindelser mellem stokastik og kvantefysik, forsøgsplanlægning især med henblik på industrielle forsøg, analyse af konkrete statistiske modeller.

Ligeledes forskes der inden for stokastisk geometri og bioimaging, rum-tid modellering og statistiske metoder i bioinformatik.

Forskningen i operationsanalyse er koncentreret om optimering, optimal kontrolteori, produktionsøkonomi og finansiering. Optimeringsteorien er koncentreret om stokastisk programmering, multikriterie optimering samt kombinatoriske optimeringsproblemer. I produktionsøkonomi analyseres Markov beslutningsprocessers anvendelse til lagerstyring og til fastsættelse af priser. De centrale emner inden for finansieringsteori er prisfastsættelse af contingent claims, rentestrukturteori samt vekselvirkningen mellem finansieringsteori og forsikringsvidenskab. Endvidere analyseres modeller til anvendelse inden for energisektoren.

Større, ordinære og eksternt finansierede centre og projekter

Center for Videnskabsstudier (CSS)

Center for Videnskabsstudier har til formål at

  • Forske i naturvidenskabernes og teknologiens historie og filosofi samt i formidling af naturvidenskab
  • Undervise på akademisk niveau inden for centrets forskningsområder
  • Formidle naturvidenskabernes historie og filosofi

Hjemmeside: css.au.dk

Center for Research in Econometric Analysis of Time Series (CREATES)

Dette center har til huse på Institut for Økonomi, Det Samfundsvidenskabelige Fakultet. Institut for Matematiks forskere inden for finansiering tager del i CREATES’s forskning inden for tidsrækker og finansiel økonometri.

Centret blev oprettet i 2007 af Danmarks Grundforskningsfond (Centers of Excellence) med en bevilling på 40 mio.

Hjemmeside: creates.au.dk

CREATES

Sapere Aude - Semiklassisk kvantemekanik

Projektet Semiclassical Quantum Mechanics (Semiklassisk Kvantemekanik) er finansieret af en Sapere Aude: DFF-Topforsker bevilling fra det Frie Forskningsråd med Søren Fournais som hovedansøger. Dette projekt omhandler forskning indenfor matematikken i kvantemekanikken, specielt spektrale problemer med magnetfelter. Når magnetfeltet er meget stærkt og/eller man betragter mange vekselvirkende partikler kan man ofte vise, at de kvantemekaniske systemer kan beskrives med simplere - somme tider endda klassiske - modeller. Dette kan ses som et aspekt af Niels Bohr’s korrespondensprincip.

Hjemmeside: Semiclassical Quantum Mechanics

Aarhus Homological Algebra

Den Homologiske Algebragruppe i Aarhus er finansieret af en DG Chair og af Aarhus Universitets Forskningsfond.  Homologisk algebra er baseret på redskaber udviklet til studiet af topologiske rum.  Dens metoder har spredt sig til mange områder af matematikken, herunder kombinatorik, geometri og matematisk fysik.  Homologiske metoder er afgørende værktøjer for centrale dele af matematikken, og Den Homologiske Algebragruppe i Aarhus har et energisk forskningsprogram.  Der er anvendelser på højdimensionel kombinatorik, singulære rums geometri og streng-teori associeret med Calabi-Yau-kategorier. 

Hjemmeside: https://projects.au.dk/homologicalalgebra/

Peter Jørgensen, foto: Kathrine Tang Riewe.