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Abstract

Second-order characteristics are used to analyse the spatio-temporal structure
of the underlying point process, and thus these methods provide a natural
starting point for the analysis of spatio-temporal point process data. We re-
strict our attention to the spatio-temporal product density function, and de-
velop a non-parametric edge-corrected kernel estimate of the product density
under the second-order intensity-reweighted stationary hypothesis. The expec-
tation and variance of the estimator are obtained, and closed form expressions
derived under the Poisson case. A detailed simulation study is presented to
compare our close expression for the variance with estimated ones for Poisson
cases. The simulation experiments show that the theoretical form for the vari-
ance gives acceptable values, which can be used in practice. Finally, we apply
the resulting estimator to data on the spatio-temporal distribution of invasive
meningococcal disease in Germany.

Keywords: Edge Correction, Spatio-temporal separability, Second-order prod-
uct density, Second-order intensity-reweighted stationarity, Variance.

1 Introduction

Spatial and spatio-temporal point patterns are increasingly available in a wide range
of scientific settings, such as environmental sciences, climate prediction and mete-
orology, epidemiology, image analysis, agriculture and astronomy. Today, much at-
tention is paid to spatio-temporal point processes, where each point represents the
location and the time of an event, and thus we have data of the form (ui, si) ∈
W × T ⊂ R2 × R, i = 1, . . . , n. There are some recent works on spatio-temporal
models with focusing on variety of ad-hoc approaches (Diggle (2006); Gabriel and
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Diggle (2009); Møller and Diaz-Avalos (2010) Gelfand et al. (2010); Diggle (2013)).
We consider here processes that are temporally continuous and either spatially con-
tinuous or spatially discrete on a sufficiently large support to justify formulating
explicitly second-order spatio-temporal tools for the data.

For these processes second-order properties play an important role in the prac-
tical analysis of point patterns, in terms of exploratory and modelling strategies.
Usually, theK-function and pair correlation function (g(·)) are used for model check-
ing (Møller and Ghorbani, 2013) and parameter estimation (Møller and Ghorbani,
2012), while the product density is used for explanatory analysis. The form of these
functions helps to understand the type of interaction in the point pattern and to
find suitable point process models.

In this context, separate analyses of the spatial and the temporal components are
of limited value, because the scientific objectives of the analysis are to understand
and to model the underlying spatio-temporally interacting stochastic mechanisms.
There are basically two ways for modelling spatio-temporal point patterns (Diggle
(2006); Daley and Vere-Jones (2008)). The first is descriptive and aims at providing
an empirical description of the data, especially from second-order characteristics.
The second is mechanistic and aims at constructing parametric point process models
by specifying parametric models for the conditional intensity function. Here, we will
consider the former and analyses will be based on extensions of the product density
to summarize a spatio-temporal point pattern.

The inhomogeneous K-function has been extended to the spatio-temporal set-
ting by Gabriel and Diggle (2009). Second-order characteristics are thus analysed us-
ing the spatio-temporal inhomogeneous K-function (STIK-function) or equivalently
considering the spatio-temporal pair correlation function under the assumption of
second-order intensity re-weighted stationarity (Gabriel and Diggle (2009); Gabriel
et al. (2010), Gabriel et al. (2012); Gabriel (2013)). Spatio-temporal separability of
the STIK-function has been studied in Møller and Ghorbani (2012). These two func-
tions rely very much upon first-order characteristics which are unknown in practice,
and replacing the intensity by an estimate must be made carefully as it may imply
bias (Baddeley et al. (2000); Gabriel (2013)). However, the product density does not
show this problem, as will be shown in this paper.

Little attention has been paid so far to the first- and second-order moments
(expected and variance values) of the second-order properties of spatio-temporal
processes. And they are needed for performing statistical inference based on these
characteristics. In the spatial context we can only refer to Ripley (1988) who devel-
oped variance expressions for a series of estimators of the spatial K-function for the
Poisson process.

Then Stoyan et al. (1993) approximated the variance of spatial product densities,
and Cressie and Collins (2001a,b) obtained close expressions for the expected and
variance values of the local spatial product densities. To the best of our knowledge,
nothing has been developed in the spatio-temporal context. In this paper we de-
velop a non-parametric edge-corrected kernel estimate of the product density under
the second-order intensity-reweighted stationary hypothesis. We extend the origi-
nal ideas of Stoyan et al. (1993) to the spatio-temporal case for developing exact
and close expressions of the expectation and variance of the proposed estimator.
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Note that since estimated second-order characteristics deviate from their theoretical
counterparts because of statistical fluctuations, error bounds for these functions are
important. For example, they are needed to distinguish between statistical fluctu-
ations in an estimated product density function and peaks which are due to real
properties of the spatio-temporal point process under study.

Our estimator is accurate in estimating the spatio-temporal product density
both under separable and non-separable cases. It is unbiased and we present the
close expression of its variance. The simulation experiments show that the formulae
derived for this estimator give acceptable values, and thus can be used in practice.

The remainder of the paper is organised as follows. Section 2 provides a theoret-
ical background on the first- and second-order properties of spatio-temporal point
processes. In Section 3 we present the product density estimator and its expecta-
tion and variance for the general case, and under Poisson processes. Appendix A
discusses the corresponding moments of the product density estimator under the
hypothesis of separability. We then present some simulation results in Section 4.
Section 5 applies our methodology to analysis the spatio-temporal distribution of
invasive meningococcal disease in Germany. The paper ends with some final conclu-
sions.

2 Definitions and statistical background

Møller and Ghorbani (2012) discussed the second-order analysis of structured in-
homogeneous spatio-temporal point processes. The definitions and notations intro-
duced in that paper are used throughout the present paper. Following them, we con-
sider a spatio-temporal point process with no multiple points as a random countable
subset X of R2 × R, where a point (u, s) ∈ X corresponds to an event at u ∈ R2

occurring at time s ∈ R. In practice, we observe n events {(ui, si)} of X within a
bounded spatio-temporal region W × T ⊂ R2 × R, with area |W | > 0, and with
length |T | > 0. For formal definition of a point process based on measure theory see
e.g., (Daley and Vere-Jones, 2008).

For convenience, we introduce the following notations. Let N(A) be the number
of events falling in an arbitrary bounded region A ⊂ W × T ; Θn = {(u1, s1), . . . ,
(un, sn) ∈ X} be a set of n-tuples of events in X;

∫
B⊗k =

∫
B
· · ·
∫
B

for k times,
where B = W × T .

Assume that X has spatio-temporal nth-order product density function ρ(n), for
n ∈ N. For any non-negative Borel function f defined on (R2 × R)⊗n,

E
∑ 6=

Θn

f((u1, s1), . . . , (un, sn))

=

∫

B⊗n

f((u1, s1), . . . , (un, sn))

× ρ(n)((u1, s1), . . . , (un, sn)) d((u1, s1), . . . , (un, sn)),

(2.1)

where
∑6= is the sum over the n pairwise distinct points (u1, s1), . . . , (un, sn) (see

e.g., (Møller and Waagepetersen, 2004; Illian et al., 2008; Chiu et al., 2013)).
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2.1 First- and second-order properties

Considering (2.1), in particular for n = 1 and n = 2 the n-order product density
function is respectively called the intensity function and the second-order product
density (hereafter product density) function.

A process for which ρ(u, s) = ρ for all (u, s) is called homogeneous or first-order
stationary. Further, if ρ(2)((u, s), (v, l)) = ρ(2)(u− v, s − l), the process is called
second-order or weak stationary (Ghorbani, 2013).

2.2 Spatial and temporal components

It is assumed that the point process X is orderly, roughly meaning that coincident
points cannot occur. That is, any pair of points (u, s) and (v, l) of X are distinct, so
u 6= v and s 6= l. We can therefore ignore the case where the spatial and temporal
component processes Xspace and Xtime have multiple points, and following Møller
and Ghorbani (2012) we define them by

Xspace = {u : (u, s) ∈ X, s ∈ T} , Xtime = {s : (u, s) ∈ X,u ∈ W} .

Note that, using this notation, it is clear thatXspace depends on T , andXtime depends
on W .

2.2.1 First-order properties

Assume that X has intensity function ρ(u, s), then

ρspace(u) =

∫

T

ρ(u, s) ds and ρtime(s) =

∫

W

ρ(u, s) du.

Throughout the paper we assume first-order spatio-temporal separability, i.e.

ρ(u, s) = ρ̄1(u)ρ̄2(s), (u, s) ∈ R2 × R, (2.2)

where ρ̄1 and ρ̄2 are non-negative functions.
Considering the hypothesis of first-order spatio-temporal separability,

ρ(u, s) =
ρspace(u)ρtime(s)∫
ρ(u, s) d(u, s)

.

For a stationary point process X, ρ, ρspace and ρtime are all constant. For non-
parametric estimation of ρspace(u), ρtime(s) and ρ(u, s), see Ghorbani (2013).

2.2.2 Second-order properties

Throughout the paper we assume that X is second-order intensity-reweighted sta-
tionary (SOIRS), i.e.

ρ(2)((u, s), (v, l)) = ρ(2)(u− v, s− l), (u, s), (v, l) ∈ R2 × R (2.3)
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(Baddeley et al., 2000; Gabriel and Diggle, 2009; Gabriel, 2013). Further, if the
process is isotropic, then ρ(2)(u − v, s − l) = ρ

(2)
0 (‖u − v‖, |s − l|) for some non-

negative function ρ(2)
0 (·), where ‖ · ‖ denotes the Euclidean distance in R2 and | · |

denotes the usual distance in R.
Using (2.1) (with n = 2) and (2.3) we obtain that Xspace is SOIRS with product

density

ρ(2)
space(u,v) = ρ(2)

space(u− v) =

∫

T

∫

T

ρ(2)(u− v, s− l) ds dl. (2.4)

Analogously, Xtime is SOIRS with

ρ
(2)
time(s, l) = ρ

(2)
time(s− l) =

∫

W

∫

W

ρ(2)(u− v, s− l) du dv. (2.5)

It will always be clear from the context whether ρ(2)
space is considered to be a function

defined on R2 × R2 or R2, and whether ρ(2)
time is considered to be a function defined

on R× R or R.

2.2.3 Spatio-temporal separability of the product density function

The spatio-temporal product density function is separable if

ρ(2)((u, s), (v, l)) = ρ̄
(2)
1 (u,v)ρ̄

(2)
2 (s, l)

for non-negative functions ρ̄(2)
1 and ρ̄(2)

2 . Under the assumption (2.3) of SOIRS, this
hypothesis can be rewritten as

ρ(2)(u− v, s− l) = ρ̄
(2)
1 (u− v)ρ̄

(2)
2 (s− l), (u, s), (v, l) ∈ R2 × R. (2.6)

Considering (2.4), (2.5), and (2.6),

ρ(2)
space(u− v) = ρ̄

(2)
1 (u− v)

∫

T

∫

T

ρ̄
(2)
2 (s− l) ds dl, (2.7)

and

ρ
(2)
time(s− l) = ρ̄

(2)
2 (s− l)

∫

W

∫

W

ρ̄
(2)
1 (u− v) du dv. (2.8)

By substituting (2.7) and (2.8) in (2.6),

ρ(2)(u− v, s− l) =
ρ

(2)
space(u− v)ρ

(2)
time(s− l)∫ ∫

ρ(2)(u− v, s− l) d(u, s) d(v, l)
. (2.9)

As in the spatio-temporal first-order case, equation (2.9) suggests that

ρ(2)((u, s), (v, l)) ∝ ρ(2)
space(u,v)ρ

(2)
time(s, l).

Suppose that ρ̂(2)
space(u−v) respective ρ̂(2)

time(s−l) are estimators of ρ(2)
space(u−v)

respective ρ(2)
time(s − l) . If these are unbiased estimates of the expected number
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of distinct pairs of events, i.e.
∫
W
ρ̂(2)

space(u − v) du dv =
∫
T
ρ̂(2)

time(s − l) ds dl =
n(n − 1), then the estimate of the spatio-temporal product density function given
by

ρ̂(2)(u− v, s− l) =
ρ̂(2)

space(u− v)ρ̂(2)
time(s− l)

n(n− 1)
,

is also a ratio unbiased estimate of the expected number of observed points. See
more details in Section 3.

2.3 Relationship between the product density and the
K-function

For a SOIRS, isotropic, spatio-temporal point process X, Gabriel and Diggle (2009)
extended the inhomogeneous K-function from the spatial to the spatio-temporal
case. They defined the spatio-temporal inhomogeneous K-function as

K(r, t) =

∫
1 [‖u‖ ≤ r, |s| ≤ t] g0(u, s)d(u, s), r > 0, t > 0, (2.10)

where 1[·] denotes the indicator function, and g0(u, s) (with the abuse of the nota-
tions u and s for u = ‖u−v‖ and s = |s− l|) is the spatio-temporal pair correlation
function. For a Poisson process, g0 = 1 and K(r, t) = 2πr2t. For an unbiased esti-
mator of the K-function, see Gabriel (2013).

Considering the hypothesis of the first- and second-order spatio-temporal sep-
arabilities, for isotropic point process X and for non-negative Borel functions K̄1

and K̄2,
K(r, t) = K̄1(r)K̄2(t), r > 0, t > 0. (2.11)

Assume that X is isotropic, and Xspace and Xtime have pair correlation functions
gspace and gtime respectively. The corresponding spatial and temporal K-functions
are

Kspace(r) =

∫

||u||≤r

gspace(u) du, r > 0,

and

Ktime(t) =

t∫

−t

gtime(s) ds, t > 0.

Both in the stationary and isotropic case, and in the SOIRS and isotropic case,
the spatio-temporal pair correlation function is proportional to the derivative of
K(r, t) with respect to r and t. So, in the planar case using (2.10),

g0(r, t) =
1

4πr

∂2K(r, t)

∂r∂t
.

Thus, for the SOIRS and isotropic point process X,

ρ(2)((u, s), (v, l)) =
ρ(u, s)ρ(v, l)

4πr

∂2K(r, t)

∂r∂t
, r > 0, t > 0.
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Further, under spatio-temporal separability (2.2) and (2.11), we have that

ρ(2)(r, t) =
1

cSO

(
ρspace(u)ρspace(v)

2πr

∂Kspace(r)

∂r

)(
ρtime(s)ρtime(l)

2

∂Ktime(t)

∂t

)
.

(2.12)
Here

cSO = csSO × ctSO,

with
csSO =

(∫

W

ρ̄(2)(u) du

)
and ctSO =

(∫

T

ρ̄(2)(s) ds

)
,

and then
cSO =

(∫∫
ρ(2)(u, s) d(u, s)

)
,

which can be approximated by n(n− 1). Hence

ρ(2)
space(r) ∝

ρspace(u)ρspace(v)

2πr

∂Kspace(r)

∂r
, ρ

(2)
time(t) ∝

ρtime(s)ρtime(l)

2

∂Ktime(t)

∂t
.

For a stationary and isotropic point process X,

ρ(2)(r, t) =
ρ2

4πr

∂2K(r, t)

∂r∂t
. (2.13)

Moreover,

ρ(2)
space(r) ∝

ρ2
space

2πr

∂Kspace(r)

∂r
, ρ

(2)
time(t) ∝

ρ2
time

2

∂Ktime(t)

∂t
.

3 Estimation of the product density function

We avoid estimating the product density by applying numerical differentiation to
an estimate of ρ2K(r, t). Alternatively, considering that ρ2K(r, t) stands for the
expected number of ordered pairs of distinct points per unit area of the observation
window with pairwise distance and time lag less than r and t, by extending the idea
in Stoyan (1987) and Stoyan et al. (1995), we directly estimate the product density
using a non-parametric edge-corrected kernel estimate.

A spatio-temporal kernel density estimate of ρ2∂K(r, t)/∂r∂t takes the basic
form of a smoothed three-dimensional histogram,

(|W ||T |)−1
∑6=

(u,s),(v,l)∈X
κεδ(‖u− v‖ − r, |s− l| − t).

We assume that the kernel function κεδ(·, ·) has the multiplicative form

κεδ(‖u− v‖ − r, |s− l| − t) = κ1ε (‖u− v‖ − r)κ2δ (|s− l| − t) ,

where κ2δ and κ1ε are one-dimensional kernel functions with bandwidths ε and δ,
respectively.
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By extending the idea in Ohser (1983), an edge-corrected kernel estimate of the
product density function (2.13) is given by

ρ̂(2)
ε,δ(r, t) =

∑ 6=

(u,s),(v,l)∈X

κ1ε (‖u− v‖ − r)κ2δ (|s− l| − t)
4πrγW (r)γT (t)

, r > ε > 0, t > δ > 0.

(3.1)
Here γW (r) and γT (t) are the spatial and temporal set covariance functions, respec-
tively. For a convex region W , a general approximation formula for γW (r) for small
r is given by

γW (r) ≈ |W | − U(W )

π
r,

where U(W ) is the perimeter of W , and for a small t, γT (t) = |T | − t.
Under the hypothesis of spatio-temporal separability, and considering (2.9),

ρ̂(2)
ε,δ(r, t) '

ρ̂(2)
space,ε(r)ρ̂

(2)
time,δ(t)

n(n− 1)
, (3.2)

with

ρ̂(2)
space,ε(r) =

∑ 6=

u,v∈Xspace

κ1ε(‖u− v‖ − r)
2πrγW (r)

, r > ε > 0,

and

ρ̂(2)
time,δ(t) =

∑6=

s,l∈Xtime

κ2δ(|s− l| − t)
2γT (t)

, t > δ > 0.

3.1 Expectation and variance of the product density
estimator

In this section the expectation and variance of the product density estimator (3.1) is
obtained by considering the general case. The corresponding moments of the product
density estimator under the hypothesis of separability are developed in Appendix A.

3.1.1 Expectation

Using (2.1) with n = 2, the estimator (3.1) satisfies

E
[
ρ̂(2)

ε,δ(r, t)
]

(3.3)

=

∫ ∫
κ1ε(‖x− y‖ − r)κ2δ(|ξ − η| − t)

4πγW (r)γT (t)r
ρ(2)(‖x− y‖, |ξ − η|)d(x, ξ)d(y, η)

=

∞∫

−r/ε

∞∫

−t/δ

κ1(u)κ2(v)γW (r + εu)γT (t+ δv)

rγW (r)γT (t)
ρ(2)(r + εu, t+ δv)(r + εu)du dv
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The detailed proof is as follows. By applying formula (2.1) and the Fubini’s theorem
to (3.1), we have that

E
[
ρ̂(2)

ε,δ(r, t)
]

= E
∑ 6=

(u,s),(v,l)∈X

1W (u)1W (v)1T (s)1T (l)κ1ε (‖u− v‖ − r)κ2δ (|s− l| − t)
4πrγW (r)γT (t)

=

∫

W×T

∫

W×T

κ1ε(‖x− y‖ − r)κ2δ(|ξ − η| − t)
4πrγW (r)γT (t)

ρ(2)(‖x− y‖, |ξ − η|) d(x, ξ) d(y, η)

=

∫

(W−h1)×(T−h2)

∫

W×T

κ1ε(‖h1‖ − r)κ2δ(|h2| − t)
4πrγW (r)γT (t)

ρ(2)(‖h1‖, |h2|) d(h1, h2) d(y, η)

=

∫

R2×R

κ1ε(‖h1‖ − r)κ2δ(|h2| − t)γW (h1)γT (h2)

4πrγW (r)γT (t)
ρ(2)(‖h1‖, |h2|) d(h1, h2)

=

∞∫

0

∫

R

κ1ε(R− r)κ2δ(|h2| − t)γW (R)γT (h2)

2rγW (r)γT (t)
ρ(2)(R, |h2|)R dR dh2

=

∞∫

−r/ε

∞∫

0

κ1(u)κ2((h2 − t)/δ)γW (r + uε)γT (h2)

2δrγW (r)γT (t)
ρ(2)(r + uε, h2)(r + uε) du dh2

+

∞∫

−r/ε

0∫

−∞

κ1(u)κ2((−h2 − t)/δ)γW (r + uε)γT (h2)

2δrγW (r)γT (t)
ρ(2)(r + uε,−h2)(r + uε)du dh2

=

∞∫

−r/ε

∞∫

−t/δ

κ1(u)κ2(v1)γW (r + uε)γT (δv1 + t)

2rγW (r)γT (t)
ρ(2)(r + uε, δv1 + t)(r + uε)du dv1

+

∞∫

−r/ε

∞∫

−t/δ

κ1(u)κ2(v2)γW (r + uε)γT (δv2 + t)

2rγW (r)γT (t)
ρ(2)(r + uε, δv2 + t)(r + uε)du dv2

=

∞∫

−r/ε

∞∫

−t/δ

κ1(u)κ2(v)γW (r + uε)γT (δv + t)

rγW (r)γT (t)
ρ(2)(r + uε, δv + t)(r + uε)du dv

If (r, t) is a continuity point of ρ(2)(r, t), then

lim
(ε,δ)→(0,0)

E
[
ρ̂(2)

ε,δ(r, t)
]

= ρ(2)(r, t).

Hence, ρ̂(2)
ε,δ(r, t) is an approximately unbiased estimator for the spatio-temporal

product density.

3.1.2 Variance

The variance of the product density estimator (3.1) can be obtained by the direct
application of the extended Campbell’s Theorem (Illian et al., 2008; Chiu et al.,
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2013) for the spatio-temporal case. In particular, we have

E
[(
ρ̂(2)

ε,δ(r, t)
)2
]

=
(c(r, t))2

16
[4E1(B) + 2E2(B) + E3(B)] (3.4)

with
c(r, t) =

1

πrγW (r)γT (t)

and

E1(B) =

∫

B⊗3

κ1ε(‖x− y‖ − r)κ1ε(‖x− z‖ − r)κ2δ(|ξ − η| − t)κ2δ(|ξ − ζ| − t)

× ρ(3)((‖x− y‖, |ξ − η|), (‖x− z‖, |ξ − ζ|))d(x, ξ)d(y, η)d(z, ζ),

E2(B) =

∫

B⊗2

κ2
1ε(‖x− y‖ − r)κ2

2δ(|ξ − η| − t)ρ(2)(‖x− y‖, |ξ − η|)d(x, ξ)d(y, η),

E3(B) =

∫

B⊗4

κ1ε(‖x− y‖ − r)κ1ε(‖z−w‖ − r)κ2δ(|ξ − η| − t)κ2δ(|ζ − γ| − t)

× ρ(4)((‖x− y‖, |ξ − η|), (‖x− z‖, |ξ − ζ|), (‖x−w‖, |ξ − η|))
× d(x, ξ)d(y, η)d(z, ζ)d(w, γ).

Finding an expansion for the variance in terms of (ε, δ) will require knowledge of
the form of the third and fourth-order product density function for a given point
process model.

3.2 Expectation and variance under Poisson processes

3.2.1 Expectation

For a Poisson process with intensity ρ, the nth-order product density ρ(n) is equal
to ρn, so using (3.3) when (ε, δ)→ (0, 0),

E
[
ρ̂(2)

ε,δ(r, t)
]

=

∞∫

−r/ε

∞∫

−t/δ

κ1(u)κ2(v)γW (r + uε)γT (t+ δv)

rγW (r)γT (t)
(3.5)

× ρ(2)(r + uε, t+ δv)(r + uε)du dv = ρ2,

if the lower bound for the value of κ1 and κ2 are larger than −r/ε and −t/δ, respec-
tively.

3.2.2 Variance

Considering (3.4), and the unbiasedness property of the product density estimator,

Var
[
ρ̂(2)

ε,δ(r, t)
]

=
(c(r, t))2

16
[4ρ3S1 + 2ρ2S2], (3.6)
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where

S1 =

∫

B⊗3

κ1ε(‖x− y‖ − r)κ1ε(‖x− z‖ − r)κ2δ(|ξ − η| − t)

× κ2δ(|ξ − ζ| − t) d(x, ξ)d(y, η)d(z, ζ)

=

∫

B

{∫

B

κ1ε(‖x− y‖ − r)κ2δ(|ξ − η| − t) d(y, η)

}2

d(x, ξ) = Ss1S
t
1

and

S2 =

∫

B⊗2

κ2
1ε(‖x− y‖ − r)κ2

2δ(|ξ − η| − t)d(x, ξ)d(y, η) = Ss2S
t
2.

Here,

Ss1 =

∫

W

{∫

W

κ1ε(‖x− y‖ − r) dy

}2

dx, St1 =

∫

T

{∫

T

κ2δ(|ξ − η| − t) dη

}2

dξ,

Ss2 =

∫

W⊗2

κ2
1ε(‖x− y‖ − r)dxdy and St2 =

∫

T⊗2

κ2
2δ(|ξ − η| − t)dξdη.

For the spatial case, and using the Epanechnikov kernel, Stoyan et al. (1993)
showed that

Ss2 =
6

5ε

(
|W |πr − U(W )

(
ε2

7
+ r2

))

and
Ss1 = 4π2r2

(
|W | − A

)
+ 4(r + ε)2(π − 1)2A,

where A = U(W )(r + ε)− 4(r + ε)2.
For the temporal case, by using the uniform kernel, it is easy to show that

St2 =
|T |
δ

and St1 = 4|T | − 8(t+ δ) +
128

3
t2(t+ δ).

By combining the above expressions, an estimate of the variance of the product
density estimator is obtained. In practice we substitute ρ by its estimate ρ̂ = N(W×T )

|W ||T | .

4 Simulation study

The spatio-temporal product density function is of interest as it can be used to
discriminate among several spatio-temporal point process models. For example, for
a Poisson process E[ρ̂(2)

ε,δ(r, t)] = ρ2 as we have shown previously in (3.5). Values of
the spatio-temporal surface of the product density function larger than the values
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of the plane ρ2, indicate that the interevent distances around (r, t) are relatively
more frequent compared to those in a Poisson process, which is typical of a cluster
process, and conversely, values of the spatio-temporal surface of ρ̂(2)

ε,δ(r, t) smaller
than the values of the plane ρ2 indicate that the corresponding distances are rare
and this is typical of an inhibition process. The product density function can take
all values between zero and infinity.

We conducted a simulation experiment to analyse the behaviour of our estimator
of the second-order spatio-temporal product density function under random Poisson
structures. In addition, as we have developed close expressions for the variance under
the Poisson case, we use them to generate the corresponding confidence surfaces. We
considered the volumeW×T = [0, 10]2×[0, 10] and simulated spatio-temporal point
patterns with a varying expected number of points E[N(W×T )] = n = 100, 200, 300.
We considered Nsim = 100 repetitions per pattern and scenario. The work has been
implemented in R, and has used the stpp package Gabriel et al. (2012). We used
a fine grid for each spatial and temporal distances u and v spanning the sequence
starting from u > ε > 0 to 2.50 and v > δ > 0 to 2.50 with small increments of
distances. In the spatial case, Fiksel (1988) suggested the use of the Epanechnikov
kernel with bandwidth parameter ε = 0.1

√
5/ρ. In practice, we use the dpik function

in kernsmooth package to obtain the bandwidth (Wand and Ripley, 2013) based on
the distances between the spatial locations of the process. For the temporal case
the uniform kernel is used, where again we calculate the bandwidth δ using the dpik
function based on the time lag between the temporal instants of the process. Note
that the product density function was evaluated for any scenario and repetition over
the same spatio-temporal grid.

Table 1 shows some descriptive measures of the second-order spatio-temporal
product density kernel estimator for homogeneous Poisson process under different
expected number of points. The homogeneous Poisson processes are simulated using
the rpp function in stpp package, with constant intensity. The spatial and temporal
bandwidths are estimated for each one hundred repetitions. Table 1 displays the
average optimal bandwidths for each sample size (named “Est” in Table 1). We also
show the behaviour of the product density under two other fixed bandwidth values
designed to overestimate and underestimate the optimal values (named “Fix” in
Table 1). From all possible grid cells, in Table 1 we have only shown the descriptive
measures for some particular values of (r, t), for comparison purposes.

Table 1 also shows the theoretical product density under a Poisson case (ρ(2) = ρ̂2),
together with the estimated average surface (ρ̂(2)), (Q5%(ρ̂(2))) and (Q95%(ρ̂(2))) are
the 5% and 95% sample quantile values. Note that, we have estimated ρ(2) by n(n−1)

(|W ||T |)2
which is an unbiased estimator in the case of Poisson process (Stoyan and Stoyan,
1994). In terms of variances, we present the average approximate theoretical stan-
dard deviation surface (σ(ρ̂(2))) together with the average empirical standard devi-
ation surface values (σ̂(ρ̂(2))).

Table 1 shows the results for only three selected cells over the fine grid of spatial
and temporal distances to save space. We note that in general the difference between
the estimated product density and the theoretical one is smaller when using the
estimated bandwidth using dpik, compared with those cases where we use some
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other fixed values for the bandwidth. In addition, the variances coming from our
theoretical developed expression are in the same order of the empirical variance for
the selected cells, and even lower for many other cells.

The estimated product density function over the whole grid is depicted in Fig-
ures 1, for the case n = 200, ε = 0.7383 and δ = 0.2466. In this Figure: The top
panels show the Monte Carlo mean estimate of ρ̂(2)

ε,δ(r, t). Clearly ρ̂(2)
ε,δ(r, t) is

an approximate unbiased estimator of ρ(2)(r, t). Bottom left panel shows the Monte
Carlo mean estimate of standard deviation. Bottom right panel shows the confidence
surfaces under a Poisson process based on the estimated product density (constant
surface with value 0.0398) and two standard deviations calculated using the closed
form expression of the variance in Section 3.2.2. We have obtained the same results
for the cases n = 100 and n = 300, but the plots are omitted here.

Table 1: Descriptive measures of the estimation of the second-order spatio-temporal prod-
uct density under the Poisson case.

n Type ε δ r t ρ(2) = ρ̂2 Q5%(ρ̂(2)) ρ̂(2) Q95%(ρ̂(2)) σ(ρ̂(2)) σ̂(ρ̂(2))

1.1610 0.6192 0.0099 0.0097 0.0103 0.0160 0.0039 0.0030

Fix. 0.70 0.15 1.6631 1.3245 0.0099 0.0097 0.0104 0.0162 0.0063 0.0034

2.1653 2.0298 0.0099 0.0097 0.0100 0.0157 0.0115 0.0032

1.1610 0.6192 0.0099 0.0101 0.0102 0.0145 0.0038 0.0025

100 Est. 0.9936 0.3841 1.6631 1.3245 0.0099 0.0099 0.0101 0.0149 0.0069 0.0027

2.1653 2.0298 0.0099 0.0099 0.0099 0.0154 0.0128 0.0028

1.1610 0.6192 0.0099 0.0101 0.0100 0.0140 0.004 0.0023

Fix. 1.20 0.50 1.6631 1.3245 0.0099 0.0100 0.0100 0.0144 0.0075 0.0026

2.1653 2.0298 0.0099 0.0098 0.0099 0.0151 0.0138 0.0027

1.1610 0.6192 0.0398 0.0405 0.0407 0.0576 0.0113 0.0107

Fix. 0.48 0.07 1.6631 1.3245 0.0398 0.0414 0.0413 0.0584 0.0165 0.0105

2.1653 2.0298 0.0398 0.0398 0.0408 0.0582 0.0293 0.0100

1.1610 0.6192 0.0398 0.0399 0.0403 0.0525 0.0093 0.0067

200 Est. 0.7383 0.2466 1.6631 1.3245 0.0398 0.0405 0.0402 0.0518 0.0167 0.007

2.1653 2.0298 0.0398 0.0396 0.0402 0.0510 0.0313 0.0069

1.1610 0.6192 0.0398 0.0395 0.0398 0.0509 0.0096 0.0062

Fix. 0.90 0.36 1.6631 1.3245 0.0398 0.0392 0.0399 0.0508 0.0178 0.0066

2.1653 2.0298 0.0398 0.0396 0.0400 0.0497 0.0333 0.0064

1.1610 0.6192 0.0897 0.0923 0.0935 0.1305 0.0248 0.0238

Fix. 0.42 0.03 1.6631 1.3245 0.0897 0.0914 0.0944 0.1394 0.0326 0.0236

2.1653 2.0298 0.0897 0.0946 0.0948 0.1293 0.0546 0.0196

1.1610 0.6192 0.0897 0.0934 0.0933 0.1144 0.0166 0.0135

300 Est. 0.6093 0.1862 1.6631 1.3245 0.0897 0.0941 0.0947 0.1187 0.0295 0.0157

2.1653 2.0298 0.0897 0.0942 0.0953 0.1219 0.0556 0.0144

1.1610 0.6192 0.0897 0.0923 0.0926 0.1124 0.0171 0.0122

Fix. 0.81 0.34 1.6631 1.3245 0.0897 0.0931 0.0936 0.1160 0.0319 0.0137

2.1653 2.0298 0.0897 0.0929 0.0944 0.1161 0.0600 0.0135
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Figure 1: Statistical properties of the second-order spatio-temporal product density kernel
estimator under Poisson point process with expected number of points n = 200, ρ̂2 =
0.0398, ε = 0.7383 and δ = 0.2466.

5 Invasive Meningococcal Disease (IMD):
Second-order analysis

Meyer et al. (2012) quantified the transmission dynamics of the two most com-
mon meningococcal antigenic sequence types observed in Germany between 2002
and 2008. The conditional intensity function was modelled as a superposition of ad-
ditive and multiplicative components in space and time. The Invasive Meningococcal
Disease (IMD) is a known human disease which involves meningitis (50% of cases),
septicemia (5% to 20%) and/or pneumonia (5% to 15%) caused by the infection with
the bacterium Neisseria meningitidis. Meningococci can be transmitted airborne or
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by other mucous secretions from infected humans. The risk of contracting IMD is
much higher inside the household of an infected person, and the risk of secondary
infections is highest during the first few days. Meyer et al. (2012) claim that most
meningococci are commensal in humans, but only a few isolates are virulent and
cause invasive disease.

The area of Germany is 357 603 km2 with a perimeter of 6146 km. The IMD
dataset consists of the spatio-temporal reports of 636 cases of IMD caused by two
specific meningococcal finetypes in which the times are given by 2569 days over the
7-year period, so the temporal region is defined as T = [0, 2569]. Figure 2 shows the
estimated spatial intensity (a) and estimated temporal intensity (b). In the purely
spatial case, this figure shows clearly the inhomogeneity condition of IMD, with
a notorious high intensity of points per km2 in the western border of Germany,
and some lower intensity (but noticeable concentrations) near the north-eastern and
southern borders.
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Figure 2: Estimated spatial and temporal intensities for the IMD dataset.

Figure 3 shows the surface of the estimated product density using ε = 13.9686 km
and δ = 28 days. This figure shows large values for small spatial and temporal
distances, which is a typical behaviour of a cluster spatio-temporal point pattern.
However, the spatial aggregation decreases with increasing spatial distances, while
the temporal aggregation is kept throughout most of the temporal range, as clearly
shown in the right panel of Figure 2(a). This result is a consequence of many reports
of IMD occurring close in space and time, and thus for short temporal periods it is
quite likely that at least two reports of IMD occur close enough of each other. Ad-
ditionally, the spatial aggregation shows the same behaviour even during periods of
time sufficiently large. One way to emphasis this clustering behaviour is to compare
the empirical surface of the product density function for IMD with the theoretical
one for a Poisson point pattern with equal expected number of points than IMD.
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This result is clearly expected after visual inspection of Figure 3, and goes in the
line found by Meyer et al. (2012)).
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Figure 3: Product density kernel estimator for the spatio-temporal IMD dataset with
ε = 13.9686 km, and δ = 28 days.

The left panel of Figure 4 shows the 95%-envelope surfaces obtained from 39
simulations of a spatio-temporal Poisson point pattern, see Møller and Ghorbani
(2010) and Møller and Waagepetersen (2004)), together with the empirical product
density. This figure shows how the empirical surface of the product density function
for the IMD is larger than the upper 95%-envelope for small spatial and temporal
distances.

The right panel of Figure 4 shows the confidence surface under a Poisson pattern
based on the estimated ρ̂(2) ± 2 × standard deviations calculated using the close
form of the variance in Section 2. We also superimpose the empirical product density
for the IMD data. Again, the empirical density goes out the upper confidence surface.
These two figures reveal that IMD has a contagious behaviour in their immediate
spatio-temporal neighborhoods. These are solid arguments to reject the hypothesis
of complete randomness in favour of a clustering structure.
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Figure 4: (a) Empirical surface for IMD dataset (white surface), and average and pointwise
95% envelope surfaces calculated from 39 simulations under Poisson process (grey surfaces).
(b) Empirical surface for IMD dataset (white surface), and average and pointwise 95%
confidence surfaces under Poisson process (grey surfaces).

6 Discussion

The spatio-temporal inhomogeneous product density function describes second-order
characteristics of point processes. It is useful to analysis the spatio-temporal struc-
ture of the underlying point process, and thus provides a natural starting point
for the analysis of spatio-temporal point process data. It can be considered an ex-
ploratory tool, for testing spatio-temporal clustering or spatio-temporal interaction.

We have proposed a non-parametric edge-corrected kernel estimate of the prod-
uct density under the second-order intensity-reweighted stationary hypothesis. The
expectation and variance of the estimator are obtained, and close expressions are
derived under the Poisson case. First- and second-order spatio-temporal separability
has also been considered and discussed. It is known (see Gabriel (2013)) that the
performance of the pair correlation function and K-function can be severely altered
by the intensity estimate. This can be explained by over-parametrisation or over-
fitting in the case of a parametric estimation of the intensity function, or by the
incapacity of distinguish first- and second-order effects from a single realisation of
the point process in the case of a kernel-based estimation. This is in any case a kind
of handicap and weakness in using these characteristics. We postulate the use of the
product density as it provides the same amount of information, but with the added
value that there is no need to estimate the intensity function.

We have provided sufficiently statistical grounds in favour of using this second-
order tool in the practical analysis of spatio-temporal point patterns. However,
we have based under developments on the hypothesis of second-order intensity-
reweighted stationarity. The statistical properties of the spatio-temporal product
density under general non-stationarity conditions or anisotropic structures remains
an open problem.
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Appendix A :Moments of the product density
estimator under spatio-temporal separability

For non-negative Borel functions h1 and h2 defined on (R2)⊗n and R⊗n respectively,
we assume that h((u1, s1), . . . , (un, sn)) = h1(u1, . . . ,un)h2(s1, . . . , sn), and consid-
ering n-order spatio-temporal separability we can rewrite (2.1) as

E
∑6=

Θn

h((u1, s1), . . . , (un, sn))

=

∫

W⊗n

h1(u1, . . . ,un)ρ̄
(n)
1 (u1, . . . ,un)

n∏

i=1

dui (6.1)

×
∫

T⊗n

h2(s1, . . . , sn)ρ̄
(n)
2 (s1, . . . , sn)

n∏

i=1

dsi

= E
∑6=

u1,...,un∈Xspace

f1(u1, . . . ,un)E
∑6=

s1,...,sn∈Xtime

f2(s1, . . . , sn),

where

f1(u1, . . . ,un) = h1(u1, . . . ,un)/(

∫

W⊗n

ρ̄
(n)
1 (u1, . . . ,un)

n∏

i=1

dui)

and

f2(s1, . . . , sn) = h2(s1, . . . , sn)/(

∫

T⊗n

ρ̄
(n)
2 (s1, . . . , sn)

n∏

i=1

dsi)

.

A.1: Expectation

Combining (3.2) and (6.1) for n = 2 we have,

E
[
ρ̂(2)

ε,δ(r, t)
]

=
(n− 2)!

n!
E

∑ 6=

ui,uj∈Xspace

κ1ε(‖ui − uj‖ − r)
2πγW (r)r

E
∑ 6=

si,sj∈Xtime

κ2δ(|si − sj| − t)
2γT (t)

=

∞∫

−r/ε

∞∫

−t/δ

κ1(u)κ2(v)γW (r + εu)γT (t+ δv)

rγW (r)γT (t)
ρ(2)(r + εu, t+ δv)(r + εu)du dv

Note that under separability we obtain the same expression (3.3) as in the general
case.

A.2: Second-order moment

Under the same assumptions as in the above case for n = 3, 4 in (6.1), and using
(3.1) the second-order moment of the product density estimator under separability
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is given by

E
[(
ρ̂(2)

ε,δ(r, t)
)2
]

=
(c(r, t))2

16
[2E1(B) + 4E2(B) + E3(B)],

where E1(B), E2(B) and E3(B) are slightly different from their general correspond-
ing and can be obtained by the same procedure as expectation under separability.
So, expression (3.4) as in the general case is obtained. Thus all results and properties
for the general case are also satisfied under the separable case.
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