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CHAPTER 1

Introduction

The author has attempted to apply classical results from Teichmüller theory to

the two dimensional part of the Witten-Reshetikhin-Turaev Topological Quantum

Field Theory. It should be mentioned that this TQFT has been used very effectively

to solve problems in Teichmüller theory, for example, the asymptotic faithfulness

of the quantum representations of the mapping class groups [And06], the solu-

tion of Kazhdan’s Property(T) conjecture for the mapping class groups [And], and

that all finite groups are involved in the mapping class groups [MR12]. Here, we

propose studying quantum representations of the (orbifold) fundamental groups of

Teichmüller curves which will give quantum representations of pseudo-Anosov ele-

ments. We also propose studying the cocycle, and its Lyapunov spectrum, given

by the parallel transport of the Hitchin connection along the geodesic flow in the

unit tangent bundle of Teichmüller curves. We carry out this plan in the case of

one of the oldest and most popular Teichmüller curve, namely, the one generated

by the flat surface obtained from gluing two copies of a regular pentagon together.

This curve was discovered by Veech in [Vee89] and has been extensively studied

by Lochak in [Loc] and by McMullen in [McM06]. In theorem 0.2 below we give

an explicit expression for the quantum representation of the orbifold fundamental

group of this Teichmüller curve obtained via monodromy of the Hitchin connection.

This expression involves certain iterated integrals called Hyperlogarithms which first

appeared in [Poi84]. We then construct a cocycle, using the parallel transport of

the Hitchin connection, over the geodesic flow in the unit tangent bundle of this

Teichmüller curve, and relate this cocycle (in level one) to the Kontsevich-Zorich

cocycle considered in [KZ97] and [BM10].

Our constructions rely on the geometric point of view of the W-R-T TQFT. This

TQFT was first proposed by Witten in [Wit89], where he derived it from quanti-

zation, via path integral techniques, of the 2+1 dimensional Chern-Simons theory.

Shortly afterwards, Reshetikhin and Turaev gave a combinatorial construction of

this theory using the representation theory of the quantum group at a fixed root of

unity in [RT90], and [RT91], see also [Tur94]. Another construction, using skein

theory, was given by Blanchet, Habegger, Masbaum, and Vogel in [BHMV95].
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8 1. INTRODUCTION

From the geometric point of view, this theory relies on the existence of a Γg

invariant vector bundle V(k) → Tg with a Γg invariant projectively flat connection

∇(k) for every integer k > 0. Here Tg denotes the Teichmüller space of genus

g > 1 surface and Γg denotes the mapping class group of this surface. We recall

the definition of Tg and Γg in chapter four. The construction of this vector bundle

and the projectively flat connection was carried out by several authors, including,

[ADPW91], [Fal93], [Hit90], see also [And12], [AU07b], [AU07a], [AU12b],

and [AU12a]. This connection is now dubbed the Hitchin connection

We briefly recall the construction of V(k) and ∇(k). Let X be a compact Riemann

surface of genus g > 1. Let MX be the moduli space of semi-stable holomorphic

vector bundles of rank two with trivial determinant on X. We discuss these moduli

spaces, for the general situation of vector bundles of any rank and degree, and their

constructions in detail in chapter two. In [NS65], it is shown thatMX is a projective

variety, non-smooth in general, of dimension 3g−3. By a result of [DN69] it is known

that Pic(MX) ∼= Z. Let L be the ample generator of this Picard group. Then, for

all X ∈ Tg, the vector spaces H0(MX ,LkX) glue together to give the vector bundle

V(k) → Tg. The dimension of H0(MX ,LkX) is given by the following formula

dimH0(MX ,LkX) =

(
k + 2

2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
,

which is called the Verlinde formula.

The action of Γg lifts to V(k) and we get a quotient vector bundle (in the orb-

ifold sense) V(k) → Mg, where Mg
∼= Tg/Γg. Moreover, the connection ∇(k) is

invariant under the action of Γg, and descends to a projectively flat connection ∇(k)

in the bundle V(k)
. The monodromy of this connection provides us with a group

homomorphism

ϕk : πorb1 (Mg, X)→ EndP(V
(k)
X ).

Here, X ∈ Mg is a base point and V
(k)
X is the fiber of V(k)

over X. By defini-

tion, we have that Γg = πorb1 (Mg, X). We call this homomorphism the quantum

representation of the mapping class group at level k.

Following [vGdJ98], we give details on the construction of this vector bundle and

the Hitchin connection for g = 2 in chapter 2 section 4. In this case, the connection

and the vector bundle are defined over

C := {(z1, . . . , z6) ∈ C6|zi 6= zj if i 6= j},
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which is the space of ordered configurations of six points on C. The corresponding

family of smooth genus two curves is defined by the polynomials

y2 =

6∏
i=1

(x− zi)

where (z1, . . . , z6) ∈ C.
Given a smooth genus two curve X, [NR69] showed that

MX
∼= |2ΘX | := PH0(J1

X ,Θ
2).

Here J1
X = Pic1(X), and Θ := {L ∈ Pic1(X)|h0(X,L) > 0} is the canonical theta

divisor. We discuss this isomorphism in detail in chapter 2 section 4.1. It is well

known that the dimension of H0(J1
X ,Θ

2) is 2g for a genus g curve, which implies

MX
∼= CP3.

Moreover, the generator of the Picard group of CP3 is OCP3(1), which gives Lk ∼=
OCP3(k). This implies that H0(MX ,Lk) ∼= H0(CP3,OCP3(k)). Let V be the space

of homogenous polynomials in four variables of degree one. It is well known that

H0(CP3,OCP3(k)) is isomorphic to the space of homogenous polynomials in four

variables of degree k, thus H0(CP3,OCP3(k)) ∼= Sk(V ) where Sk denotes the kth

symmetric power of a vector space. By gluing the vector spaces H0(MX ,Lk) we get

a vector bundle V(k) → C such that the fiber of this bundle is isomorphic to Sk(V ).

Let C be the quotient of C by the action of the symmetric group S6. In [vGdJ98]

it is shown that there exists a diagram of smooth covering spaces

(1.1) C̃ P̃→ C P→ C

with the corresponding short exact sequence of deck groups

(Z/2Z)4 → A(G)→ S6.

Here A(G) is a subgroup of the group of automorphisms of the (finite) Heisenberg

group. This group A(G) can be identified with a quotient group of Sp(4,Z), i.e.

A(G) ∼= Sp(4,Z)/Γ2(2, 4), where

Γ2(2, 4) :=

{(
I + 2A 2B

2C I + 2D

)
∈ Sp(4,Z)|diag(B) ≡ diag(C) ≡ (0, 0) (mod 2)

}
.

In [vGdJ98] it is shown that P̃ ∗(V(k)) ∼= (Sk(V ) ⊗ N ) × C̃, where N → C̃ is a

line bundle. In the trivial bundle S(k)(V )× C̃, [vGdJ98], see also [GTNB00], give

an explicit expression for a flat connection which is as follows

∇̃
(k)

= d+ P̃ ∗(ω(k))
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where ω(k) is following End(Sk(V )) valued holomorphic 1-form on C

ω(k) = k̄
∑

16i<j66

Ω̂i,j dzi − dzj
zi − zj

where

k̄ :=
−1

16(k + 2)

and Ω̂i,j ∈ End(Sk(V )), defined in (2.19), are symbols of explicit differential opera-

tors which were calculated in [GTNB00].

The authors in [vGdJ98] write down a symplectic basis for V and construct a

projective (symplectic) representation of the deck group A(G) on V . This represen-

tation has a natural extension to PSk(V ) for all k > 0. We can thus consider the

following projective quotient bundle on C

(1.2) PSk(V )×A(G) C̃

where A(G) acts on the first factor by the projective representation and on the second

factor by deck transformations. The connection ∇̃
(k)

is projectively invariant under

the action of A(G), see [vGdJ98], and descends to a well defined flat connection in

(1.2) which we denote by ∇(k)
.

Remark 0.1. The pull back P̃ ∗(V(k)) is actually isomorphic to Sk(V )⊗N where

N → C̃ is a line bundle. But this line bundle, as remarked in [vGdJ98], does not

interfere with the construction of the connection.

Let C be a finite area hyperbolic surface equipped with a holomorphic embedding

f : C → Mg, with g > 1. The pair (C, f) is called a Teichmüller curve if the

embedding is isometric with respect to the hyperbolic metric on C and Teichmüller

metric on Mg. It is well known that Mg, for g > 2, contains infinitely many

Teichmüller curves, see [McM09].

In chapter 3 we explain the concept of an affine structure on a topological surface,

and discuss the action of PSL(2,R) on the unit cotangent bundle of the Teichmüller

space. Let (X, q) be in the unit cotangent bundle, i.e. X ∈ Tg and q ∈ H0(X,K2
X)

is a holomorphic quadratic differential on X of norm one. We explain and give

definition of the Veech group V (X, q) associated with the pair (X, q), and show that

V (X, q) can always be identified with a discrete subgroup of PSL(2,R). We then

discuss why the condition of V (X, q) being a lattice always leads to a Teichmüller

curve H/V (X, q) →Mg and how elements of V (X, q) are elements of the mapping

class group of X.
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We then study a particular Teichmüller curve φ : χ → M2. This curve was

discovered by Veech [Vee89] who showed that χ ∼= H/4(2, 5,∞) where

4(2, 5,∞) :=< S, T |S2 = (S ◦ T )5 = Id >

and

T =

(
1 2 cos π5
0 1

)
, S =

(
0 1

−1 0

)
∈ PSL(2,R).

The group 4(2, 5,∞) is also called the Hecke triangle group of order five. In terms

of affine structures and Veech group, this can be explained as follows. Let X be the

genus two Riemann surface defined by the equation y2 = x5 + 1 and let cdx
2

y2
be a

quadratic differential on it, where c is a normalizing constant such that ‖cdx2
y2
‖ = 1.

In [Vee89] it is shown that the Veech group V (y2 = x5 + 1, cdx
2

y2
) ∼= 4(2, 5,∞),

which is a lattice in PSL(2,R) and thus leads to a Teichmüller curve.

In terms of mapping classes, [Vee89] also shows that T corresponds to a Dehn

twist along two non-intersecting non-separating simple closed loops on X and U :=

S ◦ T corresponds to a diffeomorphism of order five on X. As such T,U ∈ Γ2.

In [Loc], Pierre Lochak gave a finite covering πχ̃ : χ̃∞ → χ, where χ̃∞ :=

(CP1 − µ5) and µ5 is set of fifth roots of unity, see also [McM06]. The deck

group corresponding to this covering is the order ten Dihedral group generated by

R(t) = ζ2(t), where ζ = e
i2π
5 , and I(t) = 1

t for all t ∈ χ̃∞. The points 0 and ∞ are

fixed under R and interchanged by I, as such they project to an order five orbifold

point in χ which we will denote by a ∈ χ. Let γ̃0 be the path in χ̃∞ starting from

0 and running along the real axis to (1 − ε). Let γ̃1 be the semi circle starting at

(1 − ε) making a counterclockwise turn around 1 to reach the point (1 − ε)−1. Let

γ0 and γ1 be projections of γ̃0 and γ̃1 to χ. Then the path γ := γ−1
0 · γ1 · γ0 is closed

in χ since (1− ε) and (1− ε)−1 are identified with each other under I.

Associated with the orbifold point a ∈ χ, is its order five stablizer group which is

isomorphic to 〈R〉. It is shown in [Loc] that 〈R〉 together with γ generate the orbifold

fundamental group πorb1 (χ, a), and under the isomorphism πorb1 (χ, a) ∼= 4(2, 5,∞),

U is identified with 〈R〉, and T is identified with the closed loop γ. We will consider

the point a as a constant loop in χ with the additional datum of the stabilizer group

of this orbifold point.

Let C∞ := {(z1, . . . , z6) ∈ (CP1)6|zi 6= zj if i 6= j} be the space of ordered config-

urations of six points on the Riemann sphere. In [Loc] an embedding φ̃ : χ̃→ C∞ is

given by

φ̃(t) = (1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t, ζ4 + ζ−4t,∞).
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Here, χ̃ := (CP1−{µ5 ∪∞}). Let Sn be the symmetric group on n elements and let

ν, ν ′ ∈ S5 / S6 be defined as follows

ν ′(z1, . . . , z6) = (z5, z1, z2, z3, z4, z6) and ν(z1, . . . , z6) = (z1, z5, z4, z3, z2, z6).

It is clear from the definition that ν2 = ν ′5 = Id and it can be easily checked that

ζν ′(φ(t)) = φ(R(t)) and
1

t
ν(φ(t)) = φ(I(t)).

Let C̄∞ be the quotient of C∞ by the symmetric group S6 and letM2 be the quotient

of C̄∞ by PSL(2,C). Likewise, we can consider M2 to be the quotient of C∞ by the

product group (PSL(2,C) × S6). Since multiplication by 1
t and ζ corresponds to

a dilation and a rotation in PSL(2,C) we get that the map φ̃ is equivariant with

respect to the D action on χ̃ and (PSL(2,C)× S6) action on C∞. This implies that

φ̃ descends to give a well defined map φ : χ → M2. In fact we get the following

commutative diagram,

χ̃ C∞

C̄∞

χ M2

πχ̃

φ

φ̃

P∞

P∞

Notice that the 1-form ω(k) is not defined on the entire C∞. Let

D∞m := {(z1, . . . , z6) ∈ C∞|zm =∞}

where 1 6 m 6 6. Notice that D∞m is a divisor in C∞ and isomorphic to the space of

ordered configurations of five points on C. We have the disjoint union

C∞ = C t6
m=1 D

∞
m .

The 1-form ω(k) is defined only on C.
In this case, to construct the quantum representation of πorb1 (M2, X), we first

choose a lift of any γ ∈ πorb1 (M2, X) to C∞ such that this lift lies in C ⊂ C∞. This

is possible, since if our chosen lift lies in D∞m for any m, we can use the action of

PSL(2,C) to move this lift into C. We then further lift this to the covering C̃ and use

the parallel transport of the connection ∇̃
(k)

in the trivial bundle Sk(V )× C̃, along

with the projective action of A(G), to give an element in End(PSk(V )). The result

is independent of our choice of the lift, since in chapter 2 section 4.5 we show that
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the 1-form ω(k) which defines the connection ∇̃
(k)

is projectively invariant under the

action of PSL(2,C). This then provides us with the homomorphism

ϕk : πorb1 (M2, X)→ EndPSk(V ).

Notice that this process is a little different than the general situation outlined in the

beginning.

We calculate the quantum representation of πorb1 (φ(χ), φ(a)). A natural lift to

consider of φ(γ) is φ̃(γ̃), unfortunately φ̃(γ̃) ⊂ D∞6 . Thus, before lifting φ̃(γ̃) to C̃
we must first move it into C. Let Z ∈ PSL(2,C) be the inversion in the unit circle,

and let χ̃0 := (CP1 − (µ5 ∪∞∪−µ5)). Consider the map

ψ : χ̃0 → C,

explicitly given as

ψ(t) = (
1

ζ + ζ−1t
,

1

ζ2 + ζ−2t
,

1

ζ3 + ζ−3t
,

1

ζ4 + ζ−4t
,

1

1 + t
, 0), for all t ∈ χ̃0.

This map is the composition of the Lochak map φ̃ with the inversion Z followed by

permuting the first and the fifth coordinate. Since we have used the composition of

a Möbius transformation Z with a permutation in S6 to move the image φ̃(χ̃) into

C, it follows that ψ(χ̃0) projects onto φ(χ). In particular, the loop ψ(γ̃) projects to

the loop φ(γ).

Let 〈x1, . . . , x4〉 denote the basis for V considered in [vGdJ98]. Let M ∈ A(G),

then M is an equivalence class of 4 × 4 (symplectic) matrices which act on PV .

Denote also by M a choice of element in this class, then we know the action of M

on every basis vector xi. Given a monomial xa1x
b
2x
c
3x
d
4, the matrix M acts as

M(xa1x
b
2x
c
3x
d
4) = M(x1)a ·M(x2)b ·M(x3)c ·M(x4)d.

Since a basis for Sk(V ) is given by monomials of the form xa1x
b
2x
c
3x
d
4 with a+b+c+d =

k we see how M induces an action on PSk(V ). We will denote this induced action

of M by M (k) ∈ EndPSk(V ). This is only a projective representation since M is an

element of A(G) which only has a projective action on Sk(V ).

The differential operators Ω̂i,j act on Sk(V ) by the Liebniz rule. We give an

expression for the following differential operator which will be needed later.

Ω̂1,4 + Ω̂2,3 =

2((x4∂x1)2 + (x3∂x2)2 + (x2∂x3)2 + (x1∂x4)2 − 2x1x4∂x1∂x4 − 2x2x3∂x2∂x3)

We can now state the main theorem.
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Theorem 0.2. Let k > 0 be an integer. Let ϕ(k) : πorb1 (M2, φ(a))→ EndP(Sk(V ))

be the quantum representation based at the orbifold point φ(a). Then, under the iso-

morphism πorb1 (χ, a) ∼= 4(2, 5,∞), we have that

(1) ϕ(k)(U) = M
(k)
0

(2) ϕ(k)(T ) = (Φ(k))−1 ·
(
M

(k)
1 · exp

(
k̄πiA1

))
.Φ(k),

where,

M0 =


0 0 −1 0

0 −2 −1 −3

1 −1 0 −1

1 1 0 1

 M1 =


−2 1 0 2

1 −2 2 0

1 −1 0 −1

−1 1 −1 0


and

Φ(k) = Id +

∞∑
r=1

k̄r
∑

ζi1 ,...,ζir∈(µ5)r

ζir 6=1

L0(ζi1 , . . . , ζir |1)Ai1 . . . Air ∈ End(S(k)(V ))

where, for 1 6 i 6 5, the complex number L0(ζi1 , . . . , ζir |1) =∫ 1

0

1

sir − ζir
(∫ sir

0

1

sir−1 − ζir−1
. . .

(∫ si2

0

1

si1 − ζi1
dsi1

)
. . . dsir−1

)
dsir

is an iterated integral along the interval [0, 1]and Ai = Ω̂a,b + Ω̂c,d such that [a+ b] =

[c+ d] = [i]
(
[x] := x(mod5)

)
.

The iterated integrals L0(ζi1 , . . . , ζir |1) also appear in the study of the motivic

fundamental group of (C∗ − µn) (when specialized to n=5) carried out in [DG], see

equation (5.16.1) and proposition 5.17 in the mentioned reference. In section 5.19

of the same reference, the authors discuss ”motivic” properties satisfied by these

integrals. These iterated integrals also appear in the construction of the cyclotomic

Drinfel’d associator carried out in [Enr], see section 2 and Appendix A in the men-

tioned reference.

Since the operators Ω̂i,j are homogeneous of degree two, it follows that they act

by zero on V . This implies that for k = 1 we get

ϕ(1)(U) = M0 ϕ(1)(T ) = M1.

Lastly, we construct a cocycle in the unit tangent bundle of the Teichmüller curve

using the parallel transport of the Hitchin connection. Let Uχ be the unit tangent

bundle of the Teichmüller curve and let µ be the canonical Louiville measure on Uχ.

It is well known that the geodesic flow in the unit tangent bundle of any finite area
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hyperbolic surface is ergodic with respect to the Louiville measure, [CFS82], which

implies the geodesic flow Ts : Uχ→ Uχ, for s ∈ R+, is ergodic with respect to µ. We

have the degree ten branched covering map πχ̃ : χ̃→ χ. Using this map we can pull

back the unit tangent bundle π∗χ̃Uχ→ χ̃ which we denote by Uχ̃→ χ̃. Likewise we

can lift the geodesic flow π∗χ̃Ts : π∗χ̃Uχ→ π∗χ̃Uχ, which we denote by T̃s : Uχ̃→ Uχ̃.

Let π∗χ̃(µ) := µ̃ be the lift of the Louiville measure. Since χ̃→ χ is a finite cover, it

follows that µ̃(Uχ̃) <∞, and T̃s is ergodic with respect to µ̃.

We have the embedding ψ : χ̃0 → C. In proposition 3.1 (chapter 5) we compute

that

ψ∗(ω(k)) = k̄
∑

16i65

Ai dt

t− ζi

where ζi = e2πi
(
i
5

)
, Ai = Ω̂a,b + Ω̂c,d for 1 6 a < b, c < d 6 5 such that [a + b] =

[c+ d] = [i]
(
[x] := x(mod5)

)
. This equation should be compared with equation (4)

and (64) in [Enr].

The pull back ψ∗(ω(k)) is a meromorphic 1-form on C with logarithmic singular-

ities at µ5. Since it is regular at −µ5, it is a holomorphic 1-form when restricted to

χ̃. We consider ψ∗(ω(k)) as a 1-form on χ̃ and denote it by ω
(k)
χ̃ . This 1-form defines

a flat connection

∇(k)
χ̃ := d+ ω

(k)
χ̃

in the trivial bundle Sk(V )× χ̃. Both the bundle and the connection can be pulled

back to Uχ̃, and we denote these pull backs by Sk(V )× Uχ̃ and ∇(k)
Uχ̃.

Let ‖.‖ be the operator norm on the vector space Sk(V ). We now have a finite

measure space (Uχ̃, µ̃), an ergodic flow T̃s : Uχ̃ → Uχ̃, and a flat normed vector

bundle Sk(V ) × Uχ̃. We are thus in a position to apply Oseledets multiplicative

ergodic theorem, see theorem 2.1 in the last section of chapter 6.

For any (x, v) ∈ Uχ̃ we have the map

PT
(k)
Uχ̃ (T̃s(x, v)) : R>0 → End(Sk(V )), s ∈ R>0

where PT
(k)
Uχ̃ denotes the parallel transport of ∇(k)

Uχ̃ along paths in Uχ̃. This induces

the cocycle

θ
(k)
(x,v)(s) : Sk(V )→ Sk(V ), s ∈ R>0, (x, v) ∈ Uχ̃

which is equivalent to the function

θ(k) : (R>0 × Uχ̃)→ End(Sk(V )).
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Let us suppose that the logarithm of the norm of θ(k) is integrable. That is, for any

s ∈ R>0, we have that ∫
Uχ̃

log(1 + ‖θ(k)(s, ·)‖) dµ̃ <∞

where the norm on End(Sk(V )) is induced from the norm on Sk(V ). Then Oseledets

multiplicative ergodic theorem guarantees a filtration,

Sk(V ) = F
(k)
1 ⊃ F (k)

2 ⊃ · · · ⊃ F (k)
n ⊃ 0

where F
(k)
j are sub-bundles, and constants

λ
(k)
1 > · · · > λ(k)

n

such that

‖θ(k)
(x,v)(s) · (f)‖ = e(λ

(k)
j t+O(s)), s→∞

where j is the maximal value for which f ∈ F (k)
j . Moreover, the filtration is preserved

by the cocycle, the number n depends on the dimension of Sk(V ), and due to the

ergodicity of the flow, the numbers λ
(k)
j do not depend on the initial point (x, v) ∈

Uχ̃. Thus for every integer k > 0, the numbers λ
(k)
j are invariants of the cocycle θ(k),

and thus are called characteristic or Lyapunov exponents of the cocycle in question.

In [KZ97] a cocycle, called the Kontsevich-Zorich cocycle, is constructed in unit

tangent bundles of Teichmüller curves, see also [BM10]. This cocycle, like θ(k),

is given by the parallel transport of a flat connection, namely the Gauss-Mannin

connection. LetH1 → χ̃ be the vector bundle with fiber over t ∈ χ̃ the first homology

(with real coefficients) of the compact genus two Riemann surface given by t ∈ χ̃.

This bundle carries the flat Gauss-Mannin connection, a symplectic structure, and

a norm induced from the Hodge metric. The bundle, along with the flat connection,

can be pulled back to the unit co-tangent bundle Uχ̃, and parallel transport of the

connection along the geodesic flow gives a cocycle θKZ : this is the Kontsevich-Zorich

cocycle.

Remark 0.3. The phase space of the cocycle in [KZ97] is more general, but it

specializes to the situation of unit tangent bundles of Teichmüller curves, as remarked

in [KZ97], see also [BM10].

At this point, one invokes the multiplicative ergodic theorem and obtains the

Lyapunov exponents

λKZ1 > λKZ2 > λKZ3 > λKZ4
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associated with the cocycle θKZ . Due to the symplectic structure in the vector

bundle, one has that, see [KZ97] or [BM10],

1 = λKZ1 = −λKZ4 and λKZ2 = −λKZ3 .

Notice that while θ(k) was associated with a trivial bundle, θKZ is not associated

with a trivial bundle, in fact, in [KZ97], see also [BM10], there is a formula for the

sum λKZ1 + λKZ2 in terms of the degree of the bundle H1 → χ̃.

We have the coincidence,

dim(V ) = dim(H1(Xt,C))

where the vector space on the right hand is the complexification of the fiberH1(Xt,R)

of the vector bundle H1 → χ̃ over any t ∈ χ̃. Moreover, in [vGdJ98], the authors

introduce a symplectic structure in V . We make the following

Conjecture 0.4. The cocycle θ(1) and θKZ coincide. i.e.

λKZi = λ
(1)
i where 1 6 i 6 4.

This conjecture would be true if the monodromy of ∇(1)
χ̃ was conjugate to the

monodromy of the Gauss-Mannin connection. That this is probable follows from the

fact that monodromy of ∇(1)
χ̃ is given by the two symplectic matrices M0 and M1

given in theorem 0.2.

1. Acknowledgements

I would like to thank first and foremost my advisor, Jørgen Ellegaard Andersen,

for not only introducing me to this subject but also for explaining this material,

sharing his insight, and patiently providing answers to my rather naive questions.

His contagious enthusiasm and encouragement made this work possible. It is with

great pleasure that I thank Niels Leth Gammelgaard not only for fruitful discussions,

but also for reading this document, providing numerous suggestions and ideas, and

helping with certain arguments.

I would also like to thank the entire staff of QGM for creating an extremely

hospitable and conducive to work environment. In particular, I would like to thank

Søren Fuglede Jørgensen, Jens Kristian Egsgaard, Jens-Jakob Kratmann Nissen,

Troels Bak Andersen, Paolo Masulli and Tobias Kildetoft for numerous discussions.

Last and not the least, I would like to thank Jane Jamshidi and Christine Dilling

for helping with practical issues on several occasions.





CHAPTER 2

Moduli of Vector Bundles and Hitchin Connection

1. Jacobian and the Picard Group

As a motivating example we study the moduli space of line bundles on a compact

Riemann surface X of g > 1. Associated to X is its canonical bundle KX → X. We

consider the space of abelian differentials, namely H0(X,KX). By the Riemann-

Roch formula, we know that dimH0(X,KX) = g and we let (ω1, ω2, . . . , ωg) be a

basis of this vector space. Given any curve γ on X we can define a linear form on

H0(X,KX) by integrating, that is,

ωi 7→
∫
γ
ωi.

We can consider cycles in H1(X,Z) as curves in X. Thus for all γ ∈ H1(X,Z)

we get a linear form

γ : H0(X,KX)→ C

which gives us the canonical map

Z : H1(X,Z)→ Hom(H0(X,KX),C).

Since H1(X,Z) is a lattice in R2g = Cg and Z is injective, see lemma 11.1.1 in

[LB92], the image of Z is a lattice in H0(X,KX)∗. We are now ready to give the

definition.

Definition 1.1. The Jacobian JX associated to X is the quotient

H0(X,KX)∗/Z(H1(X,Z)).

It follows that JX is a Complex Torus and can be identified with Cg/Z2g. In

fact, if we fix a basis (λ1, . . . , λ2g) of H1(X,Z) with intersection form given by the

matrix

(
0 Idg

Idg 0

)
,

19
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then we get a uniquely defined line bundle Θ → JX whose first chern class can be

identified with the intersection form above, see [LB92]. Together, (JX ,ΘX) define

a principally polarized abelian variety. It is a deep theorem of Torelli that two Rie-

mann surfaces X and Y are isomorphic if and only if (JX ,ΘX) and (JY ,ΘY ) are

isomorphic as principally polarized abelian varieties.

We now study holomorphic line bundles on X. A holomorphic line bundle is a

complex 2 dimensional manifold L with a holomorphic projection π : L → X such

that every fiber π−1(x) ∼= C. Moreover, we require the projection to be locally

trivial, that is

(1) for all x ∈ X there exists a neighbourhood U ⊂ X and ΦU : π−1(U) → U × C,

an isomorphism, equivariant with respect to projections to U.

(2) for nonempty V ∩ U , ΦV ◦ Φ−1
U is of the form (m,w) 7→ (m, f(m)w) where f

is a non-vanishing holomorphic function. We call such f transition functions for

π : L→ X. We denote by OX the sheaf of holomorphic functions on X and by O∗X
the sheaf of non vanishing holomorphic functions. It is obvious from the definition

that a transition function defines a cocycle in cech cohomolgy group Ĥ1(X,O∗X).

Conversely, given an element g ∈ Ĥ1(X,O∗X) one can construct a holomorphic line

bundle G→ X by declaring g to be the transition functions over the intersection of

open neighbourhoods whose cech cohomology groups we are considering.

Definition 1.2. Define PicX to be the set of all holomorphic lines bundles on

X. From the discussion above it is clear that PicX = H1(X,O∗X).

Since X is a compact complex manifold, it follows that Ĥ1(X,OX) is isomorphic

to the de Rham cohomolgy group H1(X,OX). We now associate a topological in-

variant to any line bundle. Consider the following fundamental exponential sequence

0→ Z→ OX → O∗X → 1.

The map OX → O∗X is given by f 7→ e2πif . This induces the following long exact

sequence

0→ Z→ C→ C∗ → H1(X,Z)→ H1(X,OX)→ H1(X,O∗X)

→ H2(X,Z)→ H2(X,OX)→ H2(X,O∗X)→ . . .

The first part of the sequence is due to the fact that all holomorphic functions on X

are constant. Since exponentiation is surjective, the map C→ C∗ is surjective, and

by exactness it follows that H1(X,Z)→ H1(X,OX) is injective. We also know that

H2(X,OX) must vanish. Putting all this together we get

0→ H1(X,OX)/H1(X,Z)→ H1(X,O∗X)→ H2(X,Z) = Z→ 0
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Definition 1.3. Let c1 : H1(X,O∗X) → H2(X,Z) = Z. Then the degree of

L ∈ H0(X,O∗X) is the integer c1(L).

By Serre Duality, H1(X,O∗X) = H0(X,KX), thus dimH1(X,O∗X) = g. From the

short exact sequence above, it follows that the set of degree 0 line bundles, which we

call Pic0
X , can be identified with the g dimensional complex torus

Pic0
X := H1(X,O∗X)/H1(X,Z).

The theorem of Abel and Jacobi implies that Pic0
X
∼= JX , in fact if we make the

choice of a basis for the homology, then these are equivalent as principally polarized

abelian varieties. In conclusion, we see that the set of degree 0 line bundles on a

Riemann surface X comes naturally equipped with the rich structure of an abelian

variety.

2. Moduli of Vector Bundles

In the last section we saw that the set of holomorphic line bundles of degree 0,

Pic0
X , on a Compact Riemann Surface X is isomorphic to the Complex Torus JX ,

the Jacobian of X. Indeed, a choice of basis for H1(X,Z), yields a canonical (ample)

line bundle ΘX → JX , the pair (JX ,ΘX) forms an (principally polarized) abelian

variety. In this section we study MB
X(n, d), the set of (semi-stable) holomorphic

vector bundles E → X of rank = n > 2 and degree = d ∈ Z. This makes MB
X(n, d)

a generalization of the Jacobian of X. WhileMB
X(n, d) is not a group like the Jaco-

bian, it is still a projective variety, singular in general. The topology of this variety

is well understood, in the sense that Betti numbers have been computed. We will

not deal with the topology of this space, but rather concentrate on its geometric

quantization, which forms an essential part of Witten’s three dimensional Topologi-

cal Quantum Field Theory [Wit89].

Let X be a compact Riemann Surface of genus g > 2. By a holomorphic vector

bundle of rank r on X, we mean a r + 1 dimensional complex manifold E, with a

holomorphic projection map π : E → X, such that π is locally trivial. The notion

of locally trivial is exactly the same as in the case of line bundles, except now the

fiber π−1(x) ∼= Cr. Also, the transition functions f are now matrix valued, that is

f ∈ Ĥ1(X,OX(GL(r,C))). Here OX(GL(r,C)) is sheaf of holomorphic functions

with values in invertible r × r matrices.

Apart from the rank of the vector bundle, its degree is also one of the basic

invariants. Given a vector bundle E → X we know that each fiber of the bundle
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is isomorphic to Cr. We can replace each fiber with its top exterior power, that is

∧rCr ∼= C. This procedure yeilds a two dimensional manifold ∧rE with holomorphic

projection ∧rE → X, thus, a line bundle. In the last section we saw that to every

line bundle L is associated its chern class c1(L) ∈ Z.

Definition 2.1. Let E → X be a holomorphic vector bundle. Then, degree of E

is the integer c1(∧rE).

At this point one could try to study the set of holomorphic vector bundles of

a given rank and degree. Unfortunately, this is too big a set to be parametrized

by a reasonable topological space. There are examples of continuous families of

holomorphic bundles Et → X for t ∈ D, where D is the unit disk in the complex plane,

such that degree(E0) 6= degree(Et) for any t ∈ (D− 0), and degree(Et) =degree(Et′)

where t, t′ ∈ (D− 0). This is called the jumping phenomena, that is, in a continuous

family the degree of the vector bundle can jump. Jumping phenomena makes it clear

that we must impose further restrictions on the set we are considering. It turns out

that the correct restriction is semi stability.

Definition 2.2. Let E → X be a holomorphic vector bundle of rank r and degree

d. Then, the slope of E is the following rational number µ(E) = degreeE
rankE .

We are now ready to define semi-stable Vector Bundles.

Definition 2.3. Let E → X be a holomorphic vector bundle. Then E is stable

(respectively semi-stable) if µ(F ) < µ(E) (respectively µ(F ) 6 µ(E)) for all non-

trivial holomorphic sub-bundles F ⊂ E.

Let MB
X(n, d)S be the set of stable vector bundles E → X of rank n and de-

gree d. David Mumford, using Geometric Invariant Theory, was able to show that

MB
X(n, d)S is a (smooth) quasi-projective variety. Being quasi-projective, this vari-

ety is not compact. A compactification of this variety was first given by Seshadri by

using the concept of S-equivalence classes of strictly semi-stable vector bundles. We

explain this concept now.

Lemma 2.4. Let 0 → E1 → E → E2 → 0 be a short exact sequence of Vector

Bundles on X. If any two vector bundles in this sequence have slope µ, then the

third also has slope µ.

Proof. Since 0 → E1 → E → E2 → 0 is a short exact sequence, we have that

rank(E) = rank(E1) + rank(E2), and we also have that degree(E) = degree(E1) +

degree(E2). Now a simple calculation in linear algebra shows that if slope of any
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two vector bundles is the same, then the third vector bundle must have the same

slope as well. �

Now, suppose E → X was a strictly semi-stable vector bundle. Then, by defini-

tion of semi-stability, there exists a sub-bundle F ⊂ E such that µ(F ) = µ(E). Now

consider the short exact sequence

0→ F → E → E

F
→ 0.

Since µ(F ) = µ(E) an application of lemma 2.4 yields that µ(EF ) = µ(E).

Proposition 2.5. Let E → X be a semi-stable vector bundle. Then there exists

a filtration (called the Jordan-Hoelder Filtration)

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that µ(
Ej+1

Ej
) = µ(E), and

Ej+1

Ej
is a stable vector bundle.

Proof. Suppose E → X is strictly semi-stable. Then there exists a sub-bundle

F ⊂ E such that µ(F ) = µ(E). We construct the sub-bundle E
F and we know by

lemma 2.4 that µ(EF ) = µ(E). Now, E
F is a semi-stable vector bundle, because if it

was not then there exists some sub-bundle W ⊂ E
F such µ(W ) > µ(EF ) = µ(E). But

since E is a semi-stable vector bundle it cannot have a sub-bundle (namely W ) with

slope bigger than the slope of E.

Now that we have constructed a semi-stable sub-bundle E
F , we can apply the above

process again to construct further semi-stable sub-bundles. We apply the process

iteratively until we hit the trivial sub-bundle, and this yeilds the desired filtration.

�

Remark 2.6. Notice that if E → X was strictly stable, that is, if all its sub-

bundles had slope strictly less than the slope of E, then the corresponding Jordan-

Hoelder Filtration would be empty. Thus, this concept is useful for strictly semi-

stable bundles.

Definition 2.7. Let E → X be a semi-stable vector bundle. Let

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

be its Jordan-Hoelder filtration. Then to E → X is associated the following graded

vector bundle

Gr(E) :=

m⊕
j=1

Ej
Ej−1

where 1 6 j 6 m.
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While the Jordan-Hoelder filtration of E → X is not unique, the associated

graded object, Gr(E), is determined by E.

Definition 2.8. Let E → X and E′ → X be two semi-stable holomorphic

vector bundles of rank n degree d. Then E is S-equivalent to E′ if and only if

Gr(E) = Gr(E′).

Notice that if E → X is stricly stable, then Gr(E) = E.

Definition 2.9. LetMB
X(n, d) be the set of S-equivalence classes of holomorphic

semi stable vector bundles of rank n and degree d.

Now, it is a result of Seshadri [Ses12] that MB
X(n, d) is a singular (in general)

projective variety of complex dimension n2(g − 1) + 1. The structure of a complex

variety on the set MB
X(n, d) is given as follows. First one shows that MB

X(n, d) as

a category is Artinian and Abelian. This implies that the deformation theory of

E → X is unobstructed. Thus, for any E ∈MB
X(n, d) there exists an open ball U ⊂

Cn2(g−1)+1, with a fiber bundle structure, i.e. π : E → U such that π−1(0) = E, and

π−1(x) = E′ where E′ ∈MB
X(n, d). This gives us a system of complex local charts on

MB
X(n, d), and it can be shown that these charts glue together to give the structure

of a Complex Manifold to the set MB
X(n, d). To further show that MB

X(n, d) is a

projective variety, one shows that there exists an ample line bundle L →MB
X(n, d)

and the sections of this line bundle can be used to embed MB
X(n, d) → Pn, making

it a projective variety. We will talk more about this ample line bundle in the chapter

on Geometric Quantization.

Since Gr(E) = E if E → X is a strictly stable bundle, we get that S-equivalence

class of E → X is the same as just the isomorphism class of E → X as a vector

bundle. In fact, the locus of smooth points of MB
X(n, d) is composed entirely of

equivalence classes of strictly stable vector bundles. The locus of singular points is

then entirely composed of S-equivalence classes of strictly semi-stable vector bundles.

Moreover, in the generic case, it turns out the locus of singular points is strictly of

co-dimension greater than 2. All of these are again results due to [Ses12].

We also mention another feature of stability of vector bundles.

Let E,E′ be two vector bundles. We denote by H0(Hom(E,E′)) the space of

sections of homomorphisms from E → E′. In this light we have the following lemma.

Lemma 2.10. Let E and E’ be two stable vector bundles of same rank and

degree. We have that H0(Hom(E,E′)) = 0 if E is not isomorphic to E’, and

H0(Hom(E,E′)) = C∗ if E is isomorphic to E’.
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This in particular implies that the space of automorphisms of a stable vector

bundle is just one dimensional. In fact, if E → X is any vector bundle such that

H0(Hom(E,E)) = C∗ then E is called a simple Vector Bundle. We in particular get

that every stable holomorphic vector bundle E → X is also simple.

3. Flat Unitary Connections and a theorem of

Narasimhan-Seshadri/Donaldson

In the last section we saw that to a compact Riemann Surface X is associated

the spaceMB
X(n, d) of semi-stable holomorphic vector bundles of rank n and degree

d. In this section we will show that the complex variety MB
X(n, d) warrants two

other descriptions. In particular, we will have the following diagram

MB
X(n, d)

FUX(n, d) RUX(n, d)

Narasimhan-SeshadriDonaldson

Weil

where FUX(n, d) is the space of gauge equivalence classes of unitary connections (with

constant central curvature) on a complex bundle E→ X and RUX(n, d) is the space of

irreducible representations of a central extension of fundamental group of X in U(n)

upto conjugation. The arrows represent homeomorphisms of topological spaces. We

will deal with the case d=0.

We first start with defining FUX(n, d) with d = 0. Let E → X be a Complex

Vector bundle of rank n and degree 0. By a Complex Vector bundle we mean a

smooth vector bundle, not holomorphic, such that the fiber is isomorphic to Cn. We

denote by En the sheaf of functions on X with values in the vector bundle E ⊗ Ωn
X

where Ωn
X is the nth power of the cotangent bundle of X. Notice that since X is

1-dimensional, Ω1
X
∼= KX where KX is the canonical line bundle.

Definition 3.1. A connection on E → X is a (Complex Linear) sheaf homo-

morphism

∇ : E0 → E1
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such that it satisfies the Liebniz rule

∇(f · s) = d(f)⊗ s+ f · ∇(s).

Here f is a function, s ∈ E0, and d stands for the exterior differential.

We will be interested in hermitian, or unitary, connections. So given a complex

vector bundle E→ X, we introduce an additional datum of a unitary inner product

h : E×E→ C. That is, hx is a unitary inner product in in the fiber Ex for all x ∈ X,

and it varies smoothly as x ∈ X varies. We call the pair (E, h)→ X a unitary vector

bundle. It is an elementary fact that every complex vector bundle admits a unitary

metric. We can now define the concept of unitary connections.

Definition 3.2. Let (E, h)→ X be a unitary vector bundle. Then a connection

∇ on E→ X is a unitary connection, if

d(h(s1, s2) = h(∇(s1), s2) + h(s1,∇(s2)).

This definition requires additional explanation. Here h(s1, s2) is considered as

a function and d(h(s1, s2) as the exterior differential applied to this function. We

also have that h(α ⊗ s1, s2) = αh(s1, s2) and h(s1, α ⊗ s2) = ᾱh(s1, s2) where α is

a complex valued 1-form. By definition we have that ∇(s) = α ⊗ s′ where s, s′ are

sections of E.

Given a connection ∇ : E0 → E1 in a vector bundle, we have a natural extension

∇ : Ek → Ek+1

defined the following way. Let α ∈ Ωk
X be a k-form and s ∈ E0, then of course we

have that α⊗ s ∈ Ek. The connection now acts as follows

∇(α⊗ s) = d(α)⊗ s+ (−1)kα ∧∇(s)

Notice that for k = 0 the above is just the Liebniz rule, which also ensures that the

map is well defined, i.e. ∇(α⊗ f · s) = ∇(f ·α⊗ s) where f is any smooth function.

Now, of course one would like to know if a connection ∇ is actually a differential,

i.e. ∇2 = 0, which will allow one to do cohomology theory on the complex Ek. The

obstruction to ∇2 = 0 is measured by the curvature of the connection ∇. We now

define curvature.

Definition 3.3. Let E→ X be a vector bundle with a connection ∇. Then the

curvature of the connection is defined as the following sheaf homomorphism

F∇ = ∇ ◦∇ : E → E2.
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We modify the above to the setting we need by the following definition.

Definition 3.4. Let (E, h)→ X be a unitary vector bundle. Let ∇ be a unitary

connection in this bundle. Then ∇ is called a flat unitary connection if F∇ = 0.

Let G be the group of automorphisms of (E, h)→ X, which preserve the metric

h. Given a connection ∇ in this vector bundle, and a g ∈ G, we get a new connection

g · ∇ · g−1.

Definition 3.5. Let (E, h) → X be a unitary vector bundle. Then two unitary

connections ∇, ∇′ are said to be gauge equivalent if and only if there exists a g ∈ G
such that ∇′ = g · ∇ · g−1

We now have all the requisites to define the set FUX(n, d).

Definition 3.6. Let (E, h)→ X be a unitary vector bundle of rank n, such that

the first chern class, or degree of E is d ∈ Z. Then FUX(n, d) is the set of all gauge

equivalent classes of unitary flat connections in (E, h)→ X.

By using standard techniques of gauge theory, for example slicing theorem for

infinite dimensional Banach spaces, one can show that FUX(n, d) is manifold of the

real dimension 2 + 2n2(g − 1). For more details, see for example [AB83]. Now we

can state the following theorem of Donaldson, please see [Don83].

Theorem 3.7. For every [∇] ∈ FUX(n, d) there exists a unique [E] ∈MB
X(n, d).

Here [∇] denotes the gauge equivalent class, and [E] represents S-equivalence

class. The above theorem can be improved to a homeomorphism between spaces

MB
X(n, d) and FUX(n, d), and in fact a diffeomorphism between strictly stable bundles

and irreducible flat unitary connections.

The idea behind this equivalence is following. Let ∇ be a unitary connection

in (E, h) → X. Using the complex structure on X, we get a decomposition ∇ =

∇1,0 +∇0,1 where

∇1,0 : E0 → E1,0, ∇0,1 : E0 → E0,1,

and the splitting E1 = E1,0⊕E0,1 is induced by the splitting Ω1
X = Ω1,0

X ⊕Ω0,1
X where

the later is simply induced by the holomorphic structure on X. More explicitly, the

last splitting is the Hodge decomposition of complex 1-forms into holomorphic and

anti-holomorphic 1-forms. On the other hand, to give a holomorphic structure on a

complex vector bundle E→ X it suffices to provide an operator

∂̄ : E0 → E0,1.
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We can already see that ∇0,1 behaves like the operator ∂̄ and can thus be used to

give a holomorphic structure in E→ X. The beauty of Donaldson’s theorem is that

given a flat unitary connection ∇ in (E, h) → X, the corresponding ∇0,1 not only

induces a holomorphic structure, but a stable holomorphic structure in E → X. It

turns out that flatness of a connection and stability of vector bundles is somehow

the same concept in two different guises.

We will now define a third space RUX(n, d) which has a rather topological flavor.

Let {Ai, Bi}, for 1 6 i 6 g, be loops in X such that the fundamental group of X has

the following presentation

π1(X) =< Ai, Bi > /(Πg
1[Ai, Bi]),

where [Ai, Bi] is the commutator of the loops Ai, Bi. Let ρ be a representation of

π1(X) on Cn. That is,

ρ : π1(X)→ GL(n,C).

Given a representation ρ, it is easy to build a flat unitary connection ∇ on X. The

construction goes as follows. Consider the trivial bundle

X̃ × Cn,

where X̃ is the universal cover of X. The fundamental group π1(X) has an action

on both X̃ and Cn, first as the deck group of transformations for X, and second as

automorphisms of Cn given by the image of ρ, i.e.

(y, v) 7→ (γ(y), ρ(γ)v).

Consider the quotient vector bundle

E = X̃ ×ρ Cn

by the action defined above. The trivial bundle is always equipped with the trivial

connection. This trivial connection descends to a connection ∇ in the bundle E.

The vector bundle E has degree 0, or equivalently, the first chern class of E vanishes.

Since the first chern class is the only obstruction to a connection being flat, it follows

that ∇ is a flat connection. In fact, if we assume that the representation is unitary,

i.e.

ρ : π1(X)→ U(n),

then ∇ is a flat unitary connection and [∇] ∈ FUX(n, 0) where [∇] is the gauge

equivalence class of ∇. Thus to every unitary representation one can associate a flat

unitary connection.
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On the other hand, to every flat unitary connection, a unitary representation of

the fundamental group can be canonically associated. To see this, let γ : [0, 1]→ X

be a path in X, and let γ̇ be the associated vector field. Let E → X be a vector

bundle of degree 0, equipped with a flat connection ∇. Let ψ ∈ Γ(X,E) be a section.

Then the section ψ is parallel along γ if the following is satisfied

∇γ̇(t)(ψ(t)) = 0.

Above is really a differential equation in local coordinates. Since any ∇ locally has

the form

∇ = d+A

where d is the deRahm differential and A an endomorphism valued 1-form, the pull

back to [0, 1] is

γ∗∇ = dt−A(t), t ∈ [0, 1].

Now the condition of ψ being parallel is that γ∗ψ should be a solution to the following

differential equation

dγ∗ψ

dt
= A(t).γ∗ψ(t).

Let a := γ(0) and let v be an element in the fiber over a ∈ X, i.e. v ∈ Ea. Then there

exists a unique section ψ ∈ Γ(X,E) which is parallel along γ and ψ(a) = v. This

is essentially because the above ordinary differential equation for parallel transport

always has a unique solution once an initial condition is given.

Now suppose that γ is a loop in X, i.e. γ(0) = γ(1) = a. Then any v ∈ Ea
can be parallel transported along γ and end as v′ ∈ Ea. Thus parallel transport

along a loop based at a ∈ X provides us with a linear map say ρ(γ) ∈ GL(n,C)

such that ρ(γ)(v) = v′. Now, it turns out that if ∇ is flat, then ρ only depends

on the homotopy class of γ. This is in particular implies that we get the following

representation from the parallel transport of a flat connection

ρ : π1(X, a)→ Aut(Ea).

In fact, if we start with a unitary bundle (E, h) → X of degree 0, and a unitary

flat connection ∇, then the parallel transport along any path in X preserves the

hermitian metric h in the bundle. This in particular implies that the representation

we obtain is unitary, i.e.

ρ : π1(X, a)→ U(n).

Thus given any ∇ ∈ FUX(n, 0), we get a unitary representation of the fundamental

group which we call ρ.
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In fact, given any ∇ ∈ FUX(n, d) we still get a representation, but of a central

extension π̃1(X) of the fundamental group, see the appendix of [Wel80]. That is,

we have the following short exact sequence,

0→ Z→ π̃1(X)→ π1(X)→ 1

and the parallel transport leads to the following representation

ρd : π̃1(X)→ U(n).

Notice that this representation has a topological invariant which is the integer d.

Now, fix (E, h)→ X, a hermitian vector bundle of degree d, and consider the set

R := {ρd|ρd : π̃1(X)→ U(n)}. There is an action of U(n) on this set which is given

as follows.

g.ρd(γ) 7→ g.ρd(γ).g−1, g ∈ U(n), γ ∈ π̃1(X).

We now define the following space,

Definition 3.8. RUX(n, d) := {ρd|ρd : π̃1(X)→ U(n)}/U(n).

It is well known that RUX(n, d) is a manifold, in fact it is a symplectic manifold.

From the discussions above we have the following

Proposition 3.9. There is a homeomorphism FUX(n, d) ∼= RUX(n, d).

So far our discussion did not involve any holomorphic structure on E → X. In

this light we have the theorem of Narasimhan Seshadri [NS65], which states that

for every unitary representation, there is a semi-stable vector bundle.

Theorem 3.10. There is a bijection between MB
X(n, d) and RUX(n, d).

A representation ρ is called irreducible if its action does not preserve any non-

trivial sub-bundle. The result in [NS65] actually says that ρd ∈ RUX(n, d) is irre-

ducible if and only if the corresponding [E] ∈MB
X(n, d) is stable. This theorem thus

establishes a link between algebraic geometry of stable bundles and topology of the

surface captured by unitary representations.

4. Geometric Quantization and Hitchin connection in genus 2

Let X be a Riemann surface of genus g > 2. In the last section we saw that

associated to X is its moduli space of holomorphic semistable vector bundles of rank

n and degree d, MB
X(n, d). In this section we specialize to bundles with n = 2 and
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trivial determinant. That is, let E → X be a semistable vector bundle of rank 2.

Then moduli space we consider is

MX : = {E → X| ∧2 E ∼= OX}/ ∼s
where ∼s means S-equivalence classes. It was shown in [NR69] that MX is a

quasi-projective variety of dimension 3g − 3 and non-smooth for g > 3. Under the

Narasimhan− Seshadri and Donaldson isomorphism, we have a homeomorphism

between MX and the moduli space of flat SU(2) connections on X.

The moduli space MX comes equipped with a non-abelian Theta Divisor, Ξ ⊂
MX , which is defined as follows,

Ξ: = {[E] ∈MX |h0(X,E ⊗ L) > 1}

where L ∈ Picg−1(X) such that h0(X,L) > 1. In [Bea88] it is shown that Ξ is a

Cartier divisor and its linear equivalence class is independent of the choice of L. It

turns out that the line bundle LX := OMX
(Ξ) is ample and generates the entire

Pic(MX), which of course implies that Pic(MX) ∼= Z [DN69]. The line bundle LX
is called the determinant line bundle, and the dialyzing sheaf of MX is isomorphic

to L−4
X [DN69]. For every positive integer k, we will denote by V

(k)
X the vector space

H0(MX ,LkX). Elements of V
(k)
X are called the non-abelian theta functions of level

k. The dimension of V
(k)
X is given by the famous Verlinde formula,(

k + 2

2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
.

By a result of [Hit90], the vector spaces V
(k)
X assemble to form a vector bundle

V(k) → T (S) over the Teicml̈ler space T (S). For the definition of T (S) please see

section 1 of chapter 3. In [?], it was proposed that this vector bundle can be equipped

with a projectively flat connection

∇(k) : Γ(V(k))→ Γ(V(k))⊗ Ω1
T (S).

That this connection exists was shown in [And12], [Fal93], [Hit90], and [ADPW91].

The connection ∇(k) is now dubbed the Hitchin connection. The action of the map-

ping class group Γ(S) on T (S), please see section 3 of chapter 3, lifts to an action on

the vector bundle V(k). Moreover, the Hitchin connection is invariant under the ac-

tion of Γ(S). This implies that we get a quotient vector bundle V(k) →Mg equipped

with the projectively flat connection ∇(k)
, which is the descent of ∇(k). Our main

aim is to study the monodromy representation of Γ(S) := πorb1 (Mg) in Vk given by

the projectively flat connection ∇(k)
. That is, to study the group homomorphism

ρk : (Mg, X)→ EndP(V
(k)
X )
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where X ∈Mg is an isomorphism class of a Riemann surface of genus g and V
(k)
X is

the fiber of V(k) over X.

From now on we will restrict to the case that X has genus g = 2. In this

situation, the techniques of [Hit90] do not apply. Nonetheless, a construction of the

’Hitchin Connection’ in genus 2 was given in [vGdJ98], and this is the construction

we will recall in the following sections. It should also be mentioned that the general

technique of quantizing a family of Kaehler Manifolds developed in [And12] also

applies in genus 2.

4.1. Moduli of Bundles and |2Θ|. Let ΘX := {L ∈ Picg−1|h0(X,L) > 1} be

the canonically defined Theta divisor in the space of line bundles of degree g − 1 on

X, and let |2ΘX | be the projective space of divisors linearly equivalent to 2ΘX . It is

a classical result that dimension of |nΘX | is ng − 1, thus |nΘX | ∼= Png−1. One way

of understanding the geometry of MX is through the following map

(2.1) ∆: MX → |2ΘX |,

where ∆(E) := {L ∈ Picg−1|h0(X,E ⊗ L) > 1}. It is shown in [Bea88] that for

a generic [E] ∈ MX , ∆(E) is indeed in |2ΘX | and that it only depends on the S-

equivalence class of E. We record main properties of this map proved in [Bea88]

after introducing one more piece of notation. Let α ∈ Picg−1(X). Then we get

a translation map Picg−1(X) → Pic0(X) given by L 7→ L ⊗ α−1. The divisor

Θ̂X ⊂ Pic0(X) is the image of ΘX ⊂ Picg−1(X) under the translation map with

respect to some α ∈ Picg−1(X).

Theorem 4.1. Let LX be the determinant line bundle onMX , then PH0(MX ,LX)∗

∼= |2ΘX | ∼= |2Θ̂X |∗ and 2.1 coincides with the natural map h : MX → PH0(MX ,LX)∗.

The theorem above in particular implies that H0(MX ,LX) ∼= H0(JX , 2Θ̂X), i.e.

level 1 non-abelian Theta functions are isomorphic to classical theta functions of

level 2.

Notice the peculiar coincidence when g = 2 where the dimensions of the domain

and codomain of 2.1 match. It is indeed a theorem of [NR69] that for X of g = 2

we have

(2.2) MX
∼= |2ΘX | ∼= CP3.

That this is an isomorphism is proved by constructing an explicit map ρ : |2ΘX | →
MX and showing that this map is inverse to (2.1). This isomorphism in particular

makes it possible to study the non-abelian Theta functions explicitly.
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Let [z0, . . . , zn] be global homogenous coordinates on Pn. Recall that O(1) is the

dual of the tautological line bundle O(−1) on Pn. Notice that any linear functional

L on Cn+1 induces a section σL of O(1) by restricting L to the fibers of O(−1). This

in particular gives an injection

(Cn+1)∗ → H0(Pn,O(1))

since σL is identically zero only if L is zero. These are in fact all the sections of O(1),

i.e. the map above is a bijection. Now any k-linear form F on Cn+1 induces a section

σF of O(k) by restriction to the fiber of O(−1). Since σF is given by restriction to

a line, it is zero only if it is alternating in any two factors. This gives us the map

Symk(Cn+1∗)→ H0(Pn,O(k))

which again is bijective. We identify Symk(Cn+1∗) with the space of homogenous

polynomials of degree k in n+ 1 variables.

Now if X is of genus g = 2, by using 2.1 we can identify MX with P3 and the

determinant line bundle LX with O(1). Then by the discussion above, non-abelian

Theta functions of level k can be identified with homogenous polynomials of degree

k in four variables, V
(k)
X
∼= C[z0, . . . , z3]k where [z0, . . . , z3] are chosen coordinates on

P3. This in particular gives an easy representation of the Verlinde formula

dimV
(k)
X =

(
k + 3

3

)
.

We have that

(2.3) H0(MX ,LkX) ∼= Sk(V )

4.2. Kummer Quartic Surface. We will now consider a special locus inMX

which will play an important role. Given X of genus g = 2, consider its Jacobian or

equivalently Pic0(X). One can define the following map [NR69]

f : Pic0(X)→MX

where f(L) := [L ⊕ L−1]. If we interpret MX as |2ΘX | under (2.1), then we have

an equivalent map

g : Pic0(X)→ |2ΘX |
given by g(L) := LΘX ∪ L−1ΘX ⊂ Pic1(X). Pic0(X) acts on Pic1(X) by multipli-

cation and LΘX := {L ⊗ ξ|ξ ∈ ΘX}, thus g(L) ∈ |2ΘX |. It is obvious that these

maps commute with (2.1) and we get g(L) = ∆(f(L)). Recall that we denoted by

Θ̂X ⊂Pic0(X) some translate of the canonical Theta divisor. We know that the line
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bundle OPic0(X)(2Θ̂X)corresponding to the divisor 2Θ̂X is ample and its sections

give the natural map

h : Pic0 → PH0(Pic0,OPic0(X)(2Θ̂X))∗ := |2Θ̂X |∗.

By theorem 4.1 we know that |2Θ̂X |∗ ∼= |2ΘX |, and under this identification f can

be realised as the natural map h. We thus have three different interpretations of P3,

and three different maps of the abelian surface Pic0 → P3 which can all be identified.

In fact, the equivalence of f with h implies that f∗LX ∼= OPic0(X)(2Θ̂X).

The Kummer Surface KX is defined to be the quotient Pic0(X)/i where i(L) =

L−1 is an involution. Notice that L is a fixed point of the involution if and only if

L2 = OX , i.e. if L ∈ PicX [2] is a 2-torsion point. The group PicX [2] is isomorphic

to (Z/2Z)2g, thus the number of 2-torsion points for g = 2 is 16, which are precisely

the singularities of KX . The map f factors over the Kummer surface and gives a

closed immersion

KX ↪→MX .

The image of KX is precisely the locus of strictly semi stable bundles.

Taking the tensor product of any [E] ∈MX with L ∈ PicX [2] does not effect the

semi stability or the determinant and gives us [E⊗L] ∈MX . This gives a well defined

action PicX [2] ×MX → MX . Moreover, we of course have PicX [2] × Pic0(X) →
Pic0(X) and the map f is equivariant with respect to these two actions. We also

have the action PicX [2] × Pic1(X) → Pic1(X) by tensor product, this induces an

action PicX [2] × |2ΘX | → |2ΘX | and the map g is also equivariant with respect to

this action. Lastly, the map (2.1) is also equivariant with respect to the action of

PicX [2] on its domain and codomain.

4.3. Heisenberg Group. . Now that we have an action of PicX [2] on our

moduli space MX , we would like to lift it to the line bundle LX and get an action

on the space of its sections H0(MX ,LX). If we are able to do that, we will get an

action on non-abelian Theta functions of all levels since V
(k)
X = Sk(V 1

X) where S(k)

denotes the kth symmetric power of a vector space. While the PicX [2] does not lift,

there exits a central extension

1→ C∗ → GX → PicX [2]→ 0,

which has a unique action GX × V1,X → V1,X . In fact the group GX can be defined

as the group of all lifts of actions of elements of PicX [2] to the line bundle L. The

group GX is called the Heisenberg group. This group also acts in a unique way on

the sections of the line bundle f∗LX ∼= OPic0(X)(2Θ̂X) and lifts the action of PicX [2]
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on Pic0
X . The Heisenberg group has a finite sub group G(X) which is the extension

of PicX [2] by the 4th roots of unity, µ4,

1→ µ4 → G(X)→ PicX [2]→ 0.

This group is also referred to as the finite Heisenberg group and is actually generated

by all the involutions in GX . As a set G(X) := µ4 × (Z/2Z)2 × (Z/2Z)2. The group

structure, G(X)×G(X)→ G(X), is given as follows,

(t, a, a′)(s, b, b′) 7→ (ts(−1)ab
′
, a+ b, a′ + b′),

where ab′ := Σg
i=1aibi. The group G(X) has 64 elements, and it is non-abelian with

centre ZG(X) = {(t, 0, 0)}. We are interested in the group of automorphisms of

G(X) which is defined as

(2.4) A(G) := {α ∈ Aut(G(X))|α|µ4 = Id}.

From [AM99] we have the short exact sequence

(2.5) 0→ PicX [2]∗ → A(G)→ Sp(PicX [2])→ 0,

where Sp(PicX [2]) are all automorphisms of PicX [2] which preserve the Weil pairing

and PicX [2]∗ = Hom(PicX [2], µ4).

In more concrete terms, A(G) can be defined as follows,

(2.6) A(G) := {φ ∈ AutG(X)|φ(t, 0, 0) = (t, 0, 0),∀t ∈ µ4}.

To understand the structure of this group better, define a symplectic form E on

(Z/2Z)4 ∼= (Z/2Z)2×(Z/2Z)2, by E(x, y) = ab′+a′b, where x = (a, a′) and y = (b, b′).

Then the action of each φ ∈ A(G) on (t, x) ∈ µ4 × (Z/2Z)4 can be written as

φ(t, x) = (hφ(x)t,Mφ(x))

where hφ : (Z/2Z)4 → C∗, and Mφ ∈ Aut((Z/2Z)4, E) = Sp(4,Z/2Z). This gives

us a group homomorphism M : A(G) → Sp(4, (Z/2Z)) by M(φ) = Mφ. The kernel

of this morphism is precisely G(X)/ZG(X) ∼= (Z/2Z)4. This leads to the following

short exact sequence

(2.7) 0→ (Z/2Z)4 → A(G)→ Sp(4,Z/2Z)→ 0

which will play a crucial role in the construction of the Hitchin connection.
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4.4. The Hitchin connection. In previous sections we fixed X, a compact

Riemann surface of genus two, and studied the properties of the moduli space MX

of semi-stable holomorphic vector bundles of rank two with trivial determinant on

X. The most notable feature was the isomorphism constructed in [NR69] between

MX and CP3, see (2.2). In this section, we will consider a family of genus two

compact Riemann surfaces and study the fiber bundle over this family whose fiber

is isomorphic to MX . We will then proceed to give the explicit expression of the

Hitchin connection, obtained in [vGdJ98], associated with this family.

Let

C := {(z1, ..., z6) ∈ C6|zi 6= zj for any i, j ∈ 1, , 6},
then C is the space of ordered configurations of six points on C. Consider the family

X → C of genus two compact Riemann surfaces where the fiber Xz over every z ∈ C
is the (canonical completion) of the curve defined by the equation

y2 =
6∏
i

(x− zi)

in the affine plane.

Associated to every Xz is its moduli space MXz , which we can glue together

to get a fiber bundle M → C. By the theorem of [NR69], see (2.2), we get that

M → C is a (non-trivial) CP3 bundle. Since the determinant line bundle of MXz

can be identified with O(1) for every z ∈ C, this construction also gives a line bundle

L → M such that L|MXz

∼= LXz ∼= O(1). The vector spaces H0(MXz ,LkXz) glue

together to give the vector bundle

(2.8) V(k) → C

for all positive integers k. Since H0(MXz ,LkXz) ∼= Sk(V ), see (2.3), where Sk(V ) is

the vector space of homogenous polynomials of degree k in four variables, we have

that the fibers of (2.8) are isomorphic to Sk(V ). There exists a covering P̃ : C̃ → C,
such that the pull back of (2.8) to C̃ trivializes, see [vGdJ98]. We will discuss this

covering since it is central to the construction of the Hitchin connection.

The symmetric group S6 acts on C as

(z1, . . . , z6) 7→ (zσ(1), . . . , zσ(6)) for all σ ∈ S6.

The resulting quotient C/S6 is denoted by C and we get the short exact sequence

(2.9) 1→ π1(C)→ π1(C)→ S6 → 1.

There is a well known isomorphism S6
∼= Sp(4,Z/2Z), see [CF96], thus the deck

group S6 appears as the last nontrivial group in the short exact sequence (2.7).
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The group π1(C) is isomorphic to the Braid group, B6, of six points in C, see

[Bir75]. Let T1, . . . , T5 be the standard generators of B6. Then there exists a group

homomorphism

(2.10) H : B6 → Sp(4,Z)

which is explicitly given as, see [CB88],

(2.11) T1 =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 , T−1
2 =


1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1



T3 =


1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1

 , T−1
4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1



T5 =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1


The group A(G), see (2.12), can be given as a qoutient group of the symplectic

group, i.e.

A(G) ∼= Sp(4,Z)/Γ2(2, 4)

where

(2.12)

Γ2(2, 4) :=

{(
I + 2A 2B

2C I + 2D

)
∈ Sp(4,Z)|diag(B) ≡ diag(C) ≡ (0, 0) (mod 2)

}
.

This isomorphism is given in [vGdJ98]. Since A(G) is a quotient group of Sp(4,Z),

the map (2.10) induces the group homomorphism

H : B6 → A(G).

The kernel of H defines a covering Q : C̃ → C and gives the short exact sequence

(2.13) 1→ π1(C̃)→ π1(C)→ A(G)→ 1.

We now have two coverings C̃ and C of C, with deck groups A(G) and S6
∼= Sp(4,Z).

The two deck groups are related by the following short exact sequence

0→ (Z/2Z)4 → A(G)→ S6 → 0
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which is just a rewriting of (2.7). This implies that we have a covering P̃ : C̃ → C
and the short exact sequence

1→ π1(C̃)→ π1(C)→ (Z/2Z)4 → 1.

In total, there is a diagram of covering spaces

(2.14) C̃ P̃→ C P→ C

with the following short exact sequence of covering groups

(2.15) (Z/2Z)4 → A(G)→ S6.

The following result is from [vGdJ98]

Lemma 4.2. The pull back of the vector bundle V(k) → C to the cover P̃ : C̃ → C
is trivial for all k, that is,

P̃ ∗(V(k)) ∼= (Sk(V ))× C̃.

Proof. It suffices to show the result for k = 1 since V(k) = Sk(V ). The argu-

ment for k = 1 goes as follows. Associated to the family M → C is the family of

groups G → C with fiber over every z ∈ C the Heisenberg group GXz , which, recall,

is a central extension of PicXz [2]. Now, from the previous section we know that

there exists a unique irreducible representation (the Schroedinger representation)

GXz ×V (k)
Xz
→ V

(k)
Xz

. By the theory of Theta functions, we know that the pull back of

G to C̃ trivializes, i.e. p∗G ∼= GXz × C̃, where GXz is a fixed group which has a unique

action on every fiber of p∗V(1) ∼= V . Application of Schur’s lemma now gives us a

canonical isomorphism between the fibers (as representations of GXz). This gives a

trivialization of p∗V(k). �

The authors in [vGdJ98] construct a connection in the trivial bundle

P̃ ∗(V(k)) as follows. For 1 6 i < j 6 6, consider the following F i,j ∈ Aut(C4) given

in [GTNB00].
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+i

[
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
, −i

[
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

]
, +1

[
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

]
, −1

[
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

]
, +i

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
−1

[
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

]
, −i

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
, +i

[
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

]
, +1

[
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

]
−i
[

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

]
, −i

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
,−1

[
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

]
,

+1

[
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

]
−i
[

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

]
+i

[
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]
Here the first row represents F 1,2, . . . F 1,6, second row F 2,3. . .F 2,6, and so on. Notice

that all these matrices are traceless. In fact, these matrices give a basis for sl(4)

and define its standard representation. Under the well known isomorphism sl(4) ∼=
so(6), these matrices give the half spin representation of so(6). Define the following

elements

Ωi,j := F i,j ⊗ F i,j , ∈ U(sl(4)).

Any representation ρ : sl(4) → End(C4) lifts to a representation of the associative

algebras ρ̃ : U(sl(4)) → End(C4), which thus gives us an action ρ̃(Ωi,j) ∈ End(C4).

We note here the following relations

(2.16) [Ωi,j ,Ωk,l] = 0, [Ωi,k,Ωi,j + Ωj,k] = 0

where i, j, k, l are distinct indices. We define Ωi,j
k := Sk(ρ̃(Ωi,j)) ∈ EndSk(C4) for

all k > 0.

Remark 4.3. The intuitive reason why sl(4) shows up is that MX
∼= CP3, and

PSL(4,C), which is a subgroup of finite index of SL(4,C), is the group of automor-

phisms of our moduli space. The representation of sl(4) just defined above, is a lift

of the automorphisms of CP3 to the line bundle O(1).

The Ωi,j
k can be considered as second order differential operators acting on Sk(V )

for any k as follows. For all 1 6 i < j 6 6 consider the second order differential

operator

(2.17) ρd(Ω
i,j
1 ) :=

(∑
aklxk∂l

)2
where F i,j = (akl) for 1 6 k, l 6 4 and 〈x1, . . . , x4〉 is a basis for V . Then ρd(Ω

i,j) ∈
End(S) where S is the space of all polynomials in the four variables x1, . . . , x4. The
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composition law for these operators as endomorphisms of S is

(2.18) (xi∂j) ◦ (xk∂l) = xixk∂j∂l + δjkxi∂l

which implies that there will be some first order terms in (2.17). Let σρd(Ω
i,j
1 ) be the

symbol of ρd(Ω
i,j
1 ), i.e. σρd(Ω

i,j
1 ) only contains the second order terms of ρd(Ω

i,j
1 ).

Define

(2.19) Ω̂i,j := σρd(Ω
i,j
1 ) ∈ End(V ).

For an integer k > 0, let

(2.20) k̄ :=
−1

16(k + 2)

and define

(2.21) Ω̂i,j
k := k̄(σρd(Ω

i,j
1 )) = k̄Ω̂i,j ∈ End(Sk(V )).

It is clear that Ω̂i,j
k preserve the subspace Sk(V ) ⊂ S of homogenuous polyno-

mials, and it is claimed in [vGdJ98] that Ω̂i,j
k satisfy (2.16). For an integer k > 0,

consider the End(Sk(V )) valued holomorphic 1-form on C,

ω(k) :=
∑

16i<j66

Ω̂i,j
k

dzi − dzj
zi − zj

(2.22)

= k̄
∑

16i<j66

Ω̂i,j dzi − dzj
zi − zj

(2.23)

and denote by ω̃(k) := P̃ ∗(ω(k)) the pull to C̃. Then ω̃(k) is an End(Sk(V )) valued

1-form, and the authors in [vGdJ98] define a connection

(2.24) ∇̃
(k)

:= d+ ω̃(k)

in the trivial bundle Sk(V )× C̃. That this connection is flat follows from (2.16).

We note the following relations, reminiscent of the Ward identities in two dimen-

sional conformal field theory, see [Koh02], which will be used extensively later.

Proposition 4.4. For any integer k > 1 we have that

1)
∑

16i<j66 Ω̂i,j
k = 3k̄k2 Id

2) for all 1 6 j 6 6,
∑6

i=1
i 6=j

Ω̂i,j
k = k̄k2 Id

3)
∑

16i<j66 Ω̂i,j
k (zi + zj) = 6k̄k2 Id

Proof. Direct computations, notice that (2) implies (3). �
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There exists a unique irreducible representation U : G(X) → Aut(V ) such that

the centre acts by multiplication.This representation is called the Schrödinger rep-

resentation [vGdJ98], and it has a natural extension to higher symmetric powers.

Recall A(G) is a certain subgroup of automorphisms of G(X). For any φ ∈ A(G),

we have that U ◦φ : G(X)→ Aut(V ) is still an irreducible representation. By Shur’s

lemma, for each φ ∈ A(G) we get a linear map Tφ : V → V , unique upto scaler multi-

plication, such that TφU(h) = U(φ(h))Tφ. This gives us the induced representation

on the projective automorphisms of V

(2.25) T : A(G)→ PGL(V ), φ 7→ Tφ,

which has a natural extension to projective automorphisms of higher symmetric

powers of V . Since A(G) acts on C̃ as the deck group of the covering C̃ → C and acts

on PSk(V ) by (2.25) we get a quotient bundle

(2.26) PSk(V )×A(G) C̃ → C.

Let

(2.27) End0(Sk(V )) := End(Sk(V ))/(C∗ · Id)).

Two End(Sk(V )) valued 1-forms which are equivalent as End0(Sk(V )) valued 1-

forms are called projectively equivalent. In the next section, we give an equivalent

definition of projective equivalence for End(Sk(V )) valued 1-forms on C in terms

of the coordinate functions. In [vGdJ98], the authors show that the 1-form ω̃(k),

and thus the connection ∇̃
(k)

, is projectively invariant under the action of A(G).

Projective invariance implies that the connection ∇̃
(k)

descends to a flat connection

in (2.26) which we will denote by ∇(k)
.

We wish to linearize the action 2.25.

Definition 4.5. Let

(2.28) Ã(G) := {T : C4 → C4|∃φ ∈ A(G) s.t T U(h) = U(φ(h))T}.

Then by definition we get the following short exact sequence

1→ C∗ → Ã(G)→ A(G)→ 1

which shows that Ã(G) is a central extension. This central extension is related to

the universal central extension of the mapping class group. That is, we have the

mapping class group Γ2 of genus 2 surface, which has a universal central extension

1→ Z→ Γ̃2 → Γ2 → 1,
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see for example [MR12]. Since A(G) is isomorphic to a quotient group of Sp(4,Z),

the representation of Γ2 on homology gives a surjective map Γ2 → A(G). By the

universal property, we get an induced map Γ̃2 → ˜A(G), in fact we get a map between

short exact sequences

(2.29)

1 Z Γ̃2 Γ2 1

1 C∗ ˜A(G) A(G) 1

The main property of ˜A(G) is that it lifts the projective action 2.25 to a linear action

(2.30) T̃ : ˜A(G)→ GL(C4).

We also define a finite version of ˜A(G).

Definition 4.6. Let

˜A(G)F := {T : C4 → C4|∃φ ∈ A(G) s.t T U(h) = U(φ(h))T and T order(φ) = Id}.

In this case we also have a short exact sequence

1→ F → ˜A(G)F → A(G)→ 1

where F is a finite group.

4.5. Invariance and Extension of the Hitchin Connection. In this section

we show that the Hitchin connection constructed in [vGdJ98] on the configuration

space C, this construction is recalled in the previous section, descends to a (pro-

jectively) flat connection on the moduli space M2 of genus two compact Riemann

surfaces.

Recall the configuration space C. We introduce the following equivalence relation

on this set:

Definition 4.7. Let z and z′ be in C, then z ∼ z′ if and only if there exists a

Möbius transformation

(2.31) F (z) =
az + b

cz + d
where ad− bc = 1 and z ∈ C

such that F (z) = z′, here F acts on C coordinate wise.

Lemma 4.8. The quotient space C := C/∼ has an action of the symmetric group

S6, and C/S6 is isomorphic to the moduli space M2.
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Proof. Let C∞ be the configuration space of six points on CP1. Then the

product group (PSL(2,C) × S6) acts on C∞ and the quotient is M2. This gives us

a map K : C∞ → M2 and, see [vGdJ98], the restriction of this map to the open

subset C of C∞ is surjective. This implies that C contains at least one pre image

of every X ∈ M2 under the map K. The pre images of K are orbits of Möbious

transformations, this implies that C/S6 is in one to one correspondence withM2. �

Definition 4.9. Let k > 0 be an integer. Let A and B be holomorphic 1-forms

with values in End(Sk(V )), then A and B are projectively equivalent if A − B is

trivial as a holomorphic 1-form with values in End0(Sk(V )), see (2.27).

In the sequel, we will deal with 1-forms on C, say A and B, with values in

End(Sk(V ) such that

A−B = (k2 Id)f
6∑
i=1

dzi

where f is a C∗ valued function. By definition 4.9 it is clear that A and B are

projectively equivalent.

Suppose ∇A := d + A and ∇B := d + B gave flat connections in the trivial

bundle V × C, and that A and B were projectively equivalent. Then the holonomy

of the two connections ∇A and ∇B would differ by a projective factor only. In

fact, if we consider V × C as an associated bundle of a principal GL(n,C) bundle,

and ∇A and ∇B as principal flat connections, then the reduction of the structure

group to PGL(n,C) gives an associated bundle isomorphic to P(V )×C with induced

flat connections ∇̄A and ∇̄B. If A and B are projectively equivalent, then the

two induced connections ∇̄A and ∇̄B are isomorphic. Also, if A is projectively

equivalent to B, then they are isomorphic as End0(Sk(V )) valued 1-forms, where

recall End0(Sk(V )) is the quotient of the lie algebra End(Sk(V )) by its center.

Recall the End(Sk(V )) valued holomorphic 1-form ω(k) on C defined in the (2.22).

We prove a certain invariance of this form under Möbious transformations.

Proposition 4.10. Let z and z′ be in C with small open neighbourhoods N(z) and

N(z′) respectively. Suppose F was a Möbious transformation such that F (N(z)) =

N(z′). Then F ∗(ω
(k)
|N(z′)) is projectively equivalent to ω

(k)
|N(z).
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Proof. Since F is a Möbious transformation we know that it has a representa-

tion of the form (2.31). This implies that

F ∗(ω
(k)
|N(z′)) = k̄

∑
16i<j66

Ω̂i,jd log

(
azi + b

czi + d
− azj + b

czj + d

)

= k̄
∑

16i<j66

Ω̂i,j

(
d log(zi − zj)− d log(czi + d)− d log(czj + d)

)

= k̄
∑

16i<j66

Ω̂i,j dzi − dzj
zi − zj

− k̄
∑

16i<j66

Ω̂i,j

(
cdzi
czi + d

+
cdzj
czj + d

)

= k̄
∑

16i<j66

Ω̂i,j dzi − dzj
zi − zj

− 6k2k̄ Id
6∑
i=1

cdzi
czi + d

where the last equality follows from (3) of proposition 4.4. This gives the proposition

since

F ∗(ω
(k)
|N(z′))− ω

(k)
|N(z) = 6k2k̄ Id

6∑
i=1

cdzi
czi + d

.

�

Recall the covering P̃ : C̃ → C with the deck group A(G), see (2.14). The equiv-

alence relation in definition 4.7 is a local statement and thus lifts to an equivalence

relation on C̃. Equivalently, we can say z̃ ∼ z̃′ if and only if P̃ (z̃) ∼ P̃(z̃′). Let

C̃ := C̃/ ∼ be the quotient space, this has an action of A(G) on it. A corollary of

lemma 4.8 is

C̃/A(G) ∼=M2.

Recall the connection ∇̃
(k)

, see (2.24), defined by the 1-form P̃ ∗(ω(k)) := ω̃(k) in

the trivial bundle Sk(V )× C̃.

Definition 4.11. Let (v, z̃) and (v′, z̃′) be in PSk(V )× C̃. Then (v, z̃) ∼ (v′, z̃′)

if and only if z̃ ∼ z̃′ and ω̃(k)(z̃′)(v′) = ω̃(k)(z̃)(v).

Due to proposition 4.10 we know that ω̃(k) is projectively invariant under (the

lift of) Möbious transformations. This implies that (v, z̃) ∼ (v′, z̃′) if and only if

z̃ ∼ z̃′ and v = v′. This gives that

(2.32) (PSk(V )× C̃)/∼ = PSk(V )× C̃,

and the connection ∇̃
(k)

restricts to a well defined connection in (2.32). We can now

construct a quotient vector bundle

(2.33) PSk(V )×A(G) C̃
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where A(G) acts on PSk(V ) by (2.25). In [vGdJ98] it is shown that ∇̃
(k)

is pro-

jectively invariant under the action of A(G), and thus descends to a flat connection

∇̂
(k)

in the bundle (2.33). We denote this vector bundle with a flat connection by

(2.34) (PV(k), ∇̂
(k)

)→M2.

Rest of this section is not directly related to the main results of this thesis. Let

C∞ := {(z1, . . . , z6) ∈ (CP1)6|zi 6= zj for all i 6= j},

this is the space of ordered configurations of six points on CP1. Notice that C is

contained in C∞. We wish to describe an extension of ω(k) to the entire space C∞.

It turns out that ω(k) does admit an extension, but as a meromorphic 1-form with

logarithmic singularities over certain subspaces of C∞.

We now lay the ground work and recall logarithmic 1-forms. We describe C∞ as

a disjoint union. For all 1 6 m 6 6, let

(2.35) D∞m := {(z1, . . . ,∞, . . . , z6) ∈ C∞ | zm =∞}.

Notice that D∞m is a divisor in C∞, and isomorphic to the space of ordered configu-

rations of five points on C. The space C∞ can now be written as a disjoint union,

C∞ = C t6
i=1 D

∞
m .

For 1 6 l 6= m 6 6, let

(2.36) D∞m,l := {(z1, . . . , z6) ∈ D∞m | zl = 0}.

Notice that D∞m,l is a divisor in D∞m and a co-dimension two sub-manifold of C∞. For

1 6 m 6 6 let

(2.37) D∞m := D∞m −
6⊔
l=1,

l 6=m

D∞m,l.

Lastly, for 1 6 m 6 6 let

(2.38) D0
m := {(z1, . . . , z6) ∈ C | zm = 0}

which is a divisor in C.

Lemma 4.12. For all 1 6 m 6 6, let

Im : D∞m → D0
m

be the restriction of inversion I : C∗ → C to D∞m . Then Im is a diffeomorphism.
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Proof. It is clear that Im is a bijection with inverse given by the restriction of

the involution I to D0
m. Smoothness follows since inversion is an automorphism of

C∞. �

Denote by ω
(k)
m the restriction of the 1-form ω(k) to D0

m. We have the following.

Lemma 4.13. Let 1 6 m 6 6. Then

(2.39) I∗m(ω(k)
m ) = k̄

( ∑
16i<j66

i,j 6=m

Ω̂i,j dzi − dzj
zi − zj

+ 5k2 Id
6∑
i=1
i 6=m

dzi
zi

)

Proof. Since the coordinate zm = 0 on D0
m, we have that

ω(k)
m = k̄

( ∑
16i<j66

i,j 6=m

Ω̂i,j dzi − dzj
zi − zj

+
6∑
i=1
i 6=m

Ω̂i,mdzi
zi

)

Here, in the last sum
∑

i=1
i 6=m

Ω̂i,m dzm
zm

, if i > m we replace Ω̂i,m with Ω̂m,i since

Ω̂i,m = Ω̂m,i. Now,

I∗m(ω(k)
m ) = k̄

( ∑
16i<j66

i,j 6=m

Ω̂i,j I∗m

(
dzi − dzj
zi − zj

)
+

6∑
i=1
i 6=m

Ω̂i,m I∗m

(
dzi
zi

))
.

We have that

I∗m

(
dzi − dzj
zi − zj

)
= I∗m(d log(zi − zj))

= d log(
1

zi
− 1

zj
)

= d log(zi − zj)− d log(zi)− d log(zj)

and similarly

I∗m

(
dzi
zi

)
= −d log(zi).

This gives

I∗m(ω(k)
m ) =

−1

16(k + 2)

( ∑
16i<j66

i,j 6=m

Ω̂i,j dzi − dzj
zi − zj

−
∑

16i<j66

i,j 6=m

Ω̂i,jd log(zi)

−
∑

16i<j66

i,j 6=m

Ω̂i,jd log(zj)−
6∑
i=1
i 6=m

Ω̂i,md log(zi)

)
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Now, ∑
16i<j66

i,j 6=m

Ω̂i,jd log(zi) +
∑

16i<j66

i,j 6=m

Ω̂i,jd log(zj) +

6∑
i=1
i 6=m

Ω̂i,md log(zi) =

∑
16i<j66

i 6=m

Ω̂i,jd log(zi) +
∑

16i<j66

j 6=m

Ω̂i,jd log(zj) = 5k2 Id
6∑
i=1
i 6=m

d log(zi)

Here, the last equality follows from (3) of proposition 4.4. This gives (2.39). �

If we wish to consider the extension of (2.39) as a 1-form on the entire D∞m =

D∞m
⊔6

l=1,

l 6=m
D∞m,l, then the term 5k2 Id dzl

zl
in (2.39) has a logarithmic singularity along

Dm,l. Meromorphic 1-forms with logarithmic singularities along normal crossing di-

visors on a complex manifold are well studied, see [GH94], [Voi07a], and [Voi07b],

and lie algebra valued meromorphic 1-forms with logarithmic singularities along nor-

mal crossing divisors, which leads to logarithmic connections, were first studied in

[Del70].

We briefly recall this concept for the special case of smooth hypersurfaces. Let

M be a complex manifold and let N ↪→ M be a smooth hypersurface. That is, for

any n ∈ N there exists an open subset U ⊂ M with local holomorphic coordinates

(z1, . . . , zk) such that

N ∩ U = {z1, . . . , zn = 0, . . . , zk}.

Denote by Ωp
M (rN), meromorphic forms of degree p with pole of order r along

N . That is, α ∈ Ωp
M (rN) if α is holomorphic on M∗ := M −N , and for any n ∈ N

with neighborhood U ⊂M as above, zrnα is holomorphic on U .

Denote by Ωp
M (logN) the subspace of Ωp

M (rN), where α ∈ Ωp
M (logN) if for

every n ∈ N with neighborhood U ⊂M as above, α can be represented as follows,

α = g1
dzn1

zn1

∧ · · · ∧ gl
dznl
znl
∧ gl+1dzi1 ∧ · · · ∧ gmdzim

where l + m = p, zi 6= zn, and gi are holomorphic functions on U . In particular, if

α ∈ Ωp
M (logN) then α has a pole of order one along N . Also, Ω1

M (logN)|U is a vector

space over holomorphic functions on U , spanned by 〈dz1, . . . , d̂zn, . . . , dzk,
dzn
zn
〉, and

Ωp
M (logN)|U =

p∧
Ω1
M (logN)|U .

Logarithmic forms with the exterior differential form a complex usually denoted

(Ω∗M (logN), d), for general (co)-homological results concerning this complex we refer

the reader to aforementioned literature. The residue of a meromorphic function/form
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also has generalization to the case of higher dimensional complex manifolds. The

following result shed lights on the nature of residue, which can be found in [Voi07a]

and [GH94].

Lemma 4.14. Let n ∈ N and U ⊂ M its neighborhood as above, then any α ∈
Ωp
M (logN)|U can be represented as

(2.40) α = θ ∧ dzn
zn

+ η

where θ and η are holomorphic p−1 and p forms on U respectively, and the restriction

of θ to U ∩N is unique. Infact, one gets the following Residue map

Res : Ωp
M (logN)→ Ωp−1

N

where Ωp−1
N denotes holomorphic p− 1 forms on N .

Since α ∈ Ωp
M (logN)|U can be represented as (2.40), Res(α) = θ.

Let E×M be a trivial vector bundle on M , and End(E)×M the induced bundle.

Let N ↪→ M be a smooth hyper surface. One similarly defines the following vector

spaces as before

(Ωp
M (logN)⊗ End(E)).

Let α ∈ (Ωp
M (logN) ⊗ End(E)), then around every n ∈ N , α has a representation

like (2.40), where now θ ∈ Ωp
N ⊗End(E), that is θ is a holomorphic p− 1 form on N

with values in End(E). Likewise, one gets the following map, see [Del70] for details,

(2.41) Res : (Ωp
M (logN))⊗ End(E)→ (Ωp−1

N ⊗ End(E)).

Following is the logarithmic analogue of a flat connection.

Definition 4.15. Let α ∈ (Ω1
M (logN) ⊗ End(E)), then ∇ = d + α is called a

flat logarithmic connection with singularities along N , if ∇|M∗, where M∗ = M−N ,

is a flat (holomorphic) connection.

The residue of the flat logarithmic connection ∇ = d+ α is defined to be

Res(α) ∈ Ω0
N ⊗ End(E)

where Res is the map (2.41). Thus, residue of a logarithmic connection is a holo-

morphic End(E) valued function along the locus of singularity of the connection.

The following result is essential in the theory of logarithmic flat connections, and

shows why such connections are well behaved. The proof of this result can be found

on page 79 of [Del70].
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Theorem 4.16. Let N ↪→ M be a smooth hyper surface. If ∇ = d + α, for

α ∈ (Ω1
M (logN) ⊗ End(E)), is a logarithmic flat connection on M with N as the

locus of singularity, then the conjugacy class of Res(α) in End(E) is constant.

We can now characterize the 1-form (2.39) as a logarithmic 1-form on the entire

divisor D∞m .

Corollary 4.17. We have that

I∗m(ω(k)
m ) ∈ Ω1

D∞m

(
log(

6⊔
l=1,

l 6=m

D∞m,l)
)

that is, the pulled back 1-form I∗m(ω
(k)
m ) extends to D∞m as a logarithmic 1-form with

singularities along the disjoint union of smooth hyper surfaces
⊔6

l=1,

l 6=m
D∞m,l. More-

over,

Res(I∗m(ω(k)
m )) = 5k2 Id .

Proof. Recall from (2.37) that D∞m = D∞m
⊔6

l=1,

l 6=m
D∞m,l. The 1-form I∗m(ω

(k)
m ) is

holomorphic on D∞m , but on each D∞m,l the term

k2 Id
dzm
zm

in I∗m(ω
(k)
m ) has a simple pole with residue k2 Id. �

The group of Möbius transformations, which we denote by M, is the group of

(complex) automorphisms of CP1 and thus acts on C∞. It is also well known, see

proposition C.4 of [Mas88], that M is isomorphic to PSL(2,C) and generated by the

following three one dimensional subgroups; namely

translations

(2.42) T (z) = z + a, a ∈ C

dilations

D(z) = az, a ∈ C∗

and special conformal transformations

S(z) =
z

az + 1
, a ∈ C

where z ∈ CP1. We show that ω
(k)
∞ in invariant under the action of M and that it

descends to the quotient space C∞/(M×S6), which is the moduli space of six points

on CP1. We begin with the following definition.
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Theorem 4.18. The 1-form ω
(k)
∞ is projectively invariant under the action of the

group of Möbius transformations M on C∞.

Proof. Recall from (2.42) the three groups T , D, and S which generate M. Let

s(a), t(a), and d(a) be smooth paths contained in S, T , and D passing through the

identity of the respective groups. We have the action map

A : M× C∞ → C∞.

Fix z=(z1, . . . , z6) ∈ C and denote by γs(a), γt(a), and γd(a) the image A(s(a), z),

A(t(a), z), and A(d(a), z). Then γs(a) is a path in C such that γs(0) = z, and

likewise for γt(0) and γd(1). Corresponding to these paths, we also have the vector

fields γ̇s(a), γ̇t(a), and γ̇d(a). Let LXω denote the Lie derivative along a smooth

vector field X of a differential form ω. We have the following computation of Lie

derivatives

(2.43) Lγ̇tω(k) = Lγ̇dω(k) = 0

and

(2.44) Lγ̇sω(k) = 6k2 Id
6∑
i=1

dzi.

Notice that these computations give the proof.

We now carry out the above mentioned computations. Let X be any vector field

on C. Then we have that

LXω(k) = LX
(
k̄
∑

16i<j66

Ω̂i,jd log(zi − zj)
)

= dLX
(
k̄
∑

16i<j66

Ω̂i,j log(zi − zj)
)

since Lie derivation commutes with exterior differential.
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We compute the following

Lγ̇s
(
k̄
∑

16i<j66

Ω̂i,j log(zi − zj)
)

= k̄
∑

16i<j66

Ω̂i,j

(
d

da

∣∣∣∣∣
a=0

log

(
zi

azi + 1
− zj
azj + 1

))

= k̄
∑

16i<j66

Ω̂i,j

(
d

da

∣∣∣∣∣
a=0

log

(
zi − zj

(azi + 1)(azj + 1)

))

= k̄
∑

16i<j66

Ω̂i,j

(
d

da

∣∣∣∣∣
a=0

log(zi − zj)− log(azi + 1)− log(azi + 1)

)
= k̄

∑
16i<j66

Ω̂i,j
(
zi + zj

)
= 6k2 Id

6∑
i=1

zi

where the last equality follows from (3) of proposition 4.4. This then gives us (2.44).

The calculation for (2.43) is similar and we leave it to the reader.

�

We now show that the Hitchin connection constructed on C in the last section

descends to the moduli space M2 of genus 2 compact Riemann surfaces. Recall C,
the space of unordered configurations of six points on the complex plane. We have

that P : C → C̄ is a covering with the deck group S6, and π1(C̄) ∼= B6. We also

have the explicit homomorphism B6 → Sp(4,Z) defined in (2.11) and the quotient

group A(G) = Sp(4,Z)/Γ2(2, 4) where Γ2(2, 4) is defined in (2.12). The kernel of

the induced homomorphism π1(C̄) → A(G) defines a covering C̃ → C̄. These three

spaces give the following diagram of covering spaces

C̃ P̃→ C P→ C.

with the following short exact sequence of covering groups

(2.45) (Z/2Z)4 → A(G)→ S6

Let C∞ be the quotient of C∞ by the symmetric group S6. Then π1(C∞) ∼= SB6,

where SB6 is the spherical braid. The group SB6 has a presentation in terms of

T1, . . . , T5, the generators of B6, such that Ti satisfy the usual braid relations along

with additional relation, see [Bir75],

(2.46) T1 . . . T4T
2
5 T4 . . . T1 = 1.
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Direct computation shows that the image of (2.46) is in the kernel of B6 → A(G),

which implies that the representation (2.11) induces a representation

(2.47) π1(C∞) ∼= SB6 → A(G).

The kernel of (2.47) defines a covering C̃∞ → C∞. We again get a diagram of covering

spaces

C̃∞ P̃∞→ C∞ P∞→ C∞
with (2.45) as the sequence of deck groups.

Proposition 4.19. The action of M on C∞ lifts to an action on C̃∞.

Proof. For any z̃ ∈ C̃ let z := P (z̃) ∈ C. Recall that M is generated by the

three one dimensional subgroups S, T , and D. For any a ∈ D let la ⊂ D be any

path connecting the identity of D with a. Then la · z ⊂ C is a path contained in C
with endpoints z and S(a)(z). Let ˜la · z be the unique lift of la · z such that it starts

at z̃. Let ã(z) be the end point of ˜la · z. If ˜la · z was independent of the choice of the

homotopy class of lα then we get a well defined lift of the action of D to C̃. Since S

and T are simply connected, by the same argument as above, we get that the action

of S and T lifts.

To prove that the action ofD lifts, we show that the end point ˜la · z is independent

of the choice of the homotopy class of la ⊂ D. Let S1
z ⊂ D be the orbit of the unit

circle in D. Then 〈S1
z〉 ∼= π1(D) ∼= Z. Since S1

z ⊂ C∞ is a closed loop, we have that

S1
z ∈ π1(C∞). Let S̃1

z be the unique lift of S1
z such that the identity of S̃1

z is z̃. Since

P̃ : C̃ → C is a smooth covering with deck group (Z/2Z)4 we have the short exact

sequence

π1(C̃)→ π1(C)→ (Z/2Z)4.

If S1
z was in the kernel of the second homomorphism of the short exact sequence

above, we would have that S̃1
z ∈ π1(C̃), and thus is a closed loop. If this was true,

then the lemma would follow, since the product of two non homotopic loops with

same end points will be some power of S1
z and thus the lift of this product will be a

closed loop, which implies that their end points will be same, and thus independent

of the homotopy class.

We now show that S1
z is indeed in the kernel of the second homomorphism of the

short exact sequence above. There are two cases to consider. One, where z is not in

D0
i for any i. In this case S1

z is homotopic to the pure braid

(2.48) (T1T2T3T4T5)6
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where Ti are generators of the braid group B6. We have the explicit representation

B6 → Sp(4,Z), see (2.11), and by (5.29) we have that (Z/2Z)4 is a normal subgroup

of A(G). Recall that A(G) is the quotient group Sp(4,Z)/Γ2(2, 4) and we get the

map

B6 → Sp(4,Z)→ A(G).

It is easily checked, using (5.29), that the image of (2.48) in A(G) is trivial, since

(Z/2Z)4 is a normal subgroup of A(G), it follows that the image of (2.48) in (Z/2Z)4

is trivial.

Now suppose that z ∈ D0
i for some i. In this case S1

z is homotopic to a pure

braid whose fifth power is homotopic to (2.48), which implies that its image is also

trivial in (Z/2Z)4. �

The product group (A(G)×M) acts on C̃∞, where M also denotes the lift of the

action on C∞, and the moduli space M2 is identified with the quotient

C̃∞/(A(G)×M).

Let ω̃
(k)
∞ denote the pull back P̃ ∗∞(ω

(k)
∞ ). Consider the trivial vector bundle

P(Sk(V ))× C̃∞
where Sk(V ) denotes the space of homogenous polynomials of degree k in four vari-

ables. The pulled back form defines a connection ∇̃
(k)

∞ := d+ ω̃
(k)
∞ . The form ω̃

(k)
∞ is

projectively invariant under the lifted action of M since it is the lift of a projectively

invariant form under the action of M. This implies that the connection ∇̃
(k)

∞ is pro-

jectively invariant under the lifted action M. Moreover, by the same argument used

in [vGdJ98] to show the projective invariance of P̃ ∗∞(ω(k)) under the action of the

group A(G), we get that the form ω̃
(k)
∞ , and thus the connection ∇̃

(k)

∞ , is projectively

invariant under the action of A(G).

Consider now the quotient bundle

(2.49) P(S(k)(V ))×(A(G)×M) C̃∞
where A(G) acts on C̃∞ by deck transformations and acts on P(S(k)(V )) by (2.25),

and M acts on C̃∞ by its lift (proposition 4.15), and acts on P(S(k)(V )) by parallel

transport of ∇̃
(k)

∞ along its orbits. Since ∇̃
(k)

∞ is projectively invariant under M, its

action defined on P(S(k)(V )) by parallel transport is trivial. The connection ∇̃
(k)

∞
descends to a flat connection in the quotient bundle (2.49), since it is projectively

invariant under the action of the product group (A(G) × M). We thus obtain a

projective vector bundle with a flat connection on the moduli space of genus two

compact Riemann surfaces, which is equivalent to (2.34).





CHAPTER 3

Ergodic Theory

In this chapter, we recall the well known result, first proved by Heinz Hopf, that

the geodesic flow in the unit tangent bundle of a finite area hyperbolic surface is

ergodic with respect to the Louiville measure. We start with basic definitions in

measure theory with the aim of introducing measure preserving transformations and

measure preserving flows on a measurable space. We then give some examples of

such transformations.

A foundational result in the theory of measurable transformations is the Poincare

recurrence theorem, we state this theorem and discuss its consequences in section

3. We then proceed to give the definition of an ergodic transformation. Given a

measurable transformation which is also ergodic, Birkhoff proved that the space

average and the time average of any function (which is integrable) on this space are

equal. We state and discuss this result in section 4.

Of particular interest is a measurable space not only equipped with an ergodic

transformation, but also with a (normed) vector bundle with a flat connection. In

the usual jargon of dynamical systems, this is the situation similar to a measurable

cocycle on a space with an ergodic transformation. In this regard, there is the

celebrated theorem of Oseledet called the multiplicative ergodic theorem. We recall

a statement of this theorem as it appears in [KZ97] and discuss its consequences in

section 5.

Lastly, we turn to the case of geodesic flow on a hyperbolic surface which we be

used later in this thesis.

Most of the material in this chapter is from [CFS82], [Wal00], and [BKS91].

1. Fundamentals of Measure Theory

We recall some basic facts from measure theory which are necessary in the study

of dynamical systems. Let X be a set.

Definition 1.1. A σ-algebra of subsets of X is a collection B of subsets of X

satisfying

55
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a) X ∈ B,

b) if B ∈ B =⇒ X\B ∈ B,

c) if Bn ∈ B for all n > 0 =⇒ ⋃∞
n=1Bn ∈ B.

The main property of a σ-algebra is that it is closed under countable unions,

and by property (b) of the definition, also closed under countable intersections. If

a σ-algebra has been chosen, then the pair (X,B) is called a measurable space, and

can be equipped with a measure. We know define what a measure is on (X,B).

Definition 1.2. Let (X,B) be a measurable space. Then a function µ : B → R>0

is called a measure if

µ

( ∞⋃
n=1

Bn

)
=
∞∑
n=1

µ(Bn)

when {Bn} is a pairwise disjoint sequence of elements in B.

A measure µ is thus a non-negative set function on a σ-algebra which is also

countably additive. If a σ-algebra and a measure µ has been chosen, then the

triple (X,B, µ) is called a measure space. The measure space (X,B, µ) is called a

probability space if the measure is normalized, i.e. µ(X) = 1. The measure space

(X,B, µ) is called complete if all subsets of X of measure zero are contained in B.

From now one we will solely restrict to complete measure spaces (X,B, µ) such that

µ(X) <∞.

Given (X,B, µ) we must now define a nice enough class of functions f : X → R
such that they preserve the measurable structure on X. To this end, we first recall

a canonical σ-algebra associated to any topological space X.

Definition 1.3. Let X be a topological space. The σ-algebra generated by the

closed subsets of X is called the Borel σ-algebra.

By property ( c) of the definition of a σ-algebra, it follows that the algebra

generated by the open subsets of a topological space X is also the Borel σ-algebra.

For R, the algebra generated by subsets of the form (−∞, a] is the Borel algebra.

We denote this σ-algebra by D.

Definition 1.4. Let (X,B, µ) be a measure space. A function f : X → R is

called measurable if for all Borel subsets D ⊂ R, i.e. D ∈ D, f−1(D) ∈ B.

We will now study maps between measure spaces which preserve the measurable

structure.
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Definition 1.5. Let (X1,B1, µ1) and (X2,B2, µ2) be measure spaces. Then

a) T : X1 → X2 is measurable if T−1(B2) ∈ B1 for all B2 ∈ B2.

b)T : X1 → X2 is measure preserving if T is measurable and µ1(T−1(B2)) = µ2(B2)

for all B2 ∈ B2.

A measure preserving transformation T : (X,B, µ) → (X,B, µ) is an automor-

phism if T is invertible and T−1 is also measure preserving. From now on we will

assume measure preserving transformations are automorphims. We will also be in-

terested in measure preserving flows on a measure space which we define below.

Definition 1.6. Let (X,B, µ) be a measure space. Suppose {Tt}, where t ∈
R, is a one-parameter group of measure preserving transformations of (X,B, µ),

i.e Ts+t(x) = Ts(Tt(x)) for all s, t ∈ R and x ∈ X. Then {Tt} is a flow if for

every measurable function f(x) on X the induced function f(Tt(x))on the Cartesian

product X × R is measurable.

We can define two types of DynamicalSystems.

Definition 1.7. A discrete dynamical system is a measure space (X,B, µ) equipped

with a measure preserving transformation T .

A continous dynamical system is a measure space (X,B, µ) equipped with a flow

{Tt}.

The basic problem in dynamical systems is to understand the long terms behavior

of the measure preserving transformations. For a discrete dynamical system, one

would like to understand

lim
n→∞

1

n

n=1∑
k=0

f(T k(x)

, for all x ∈ X. That is the long term evolution of a point under the measure

preserving transformation. Likewise, for continuous dynamical system one would

like to understand

lim
t→∞

1

t

∫ t

0
f(Tτ (x))dτ.

An answer to these questions is provided by basic ergodic theorems which we shall

cover in the following section.

We now study some examples of measure preserving transformations.

2. Examples of Dynamical Systems

Let Torn := S1 × · · · × S1 be the n dimensional torus. Let (x1, . . . , xn) be local

coordinates on this torus. Then the differential of the measure in local coordinates
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can be written as dµ = dx1 · · · dxn. In fact, Torn ∼= Rn/Zn, and as such induces a

measure ρ from the canonical lebesgue measure on Rn. Notice that this measure is

normalized, that is, ρ(Torn) = 1.

Now consider the following transformation T : Torn → Torn given as

T (x1, . . . , xn) := (x1 + α1(mod1), . . . , xn + αn(mod1)), αi ∈ R

This transformation obviously preserves the lebesgue measure ρ. Thus T is a measure

preserving transformation, it is called a translation on the torus. In particular, for

n = 1 we get the rotation of a circle.

Let M be a compact smooth manifold. Let (x1, . . . , xn) be a choice of local

coordinates, and let p(x1, . . . , xn) ∈ R>0 be an infinitely differentiable function. Then

the differential of a measure in local coordinates is given as dµ = p(x)dx1 · · · dxn.

In fact, p(x) is called the density of the measure µ. Notice, that a choice of any

smooth positively valued function provides us with a measure on M . The situation

is a little different if we impose the structure of a Riemannian manifold, in this we

get a canonical measure.

Let (M, g) be a compact Riemannian manifold. In local coordinates, the Rie-

mannian metric takes the following form

ds2 =
n∑

i,j=1

gi,jdxidxj ,

where the invertible matrix (gi,j) is the metric tensor. In this light one has the

following.

Definition 2.1. Let (M, g) be a Riemannian manifold. Then the differential

of canonical measure, µg, induced by the Riemannian metric g is given in local

coordinates as follows

dµg =
√
|det(gi,j)| × dx1, . . . , dxn.

So we see that any (M, g) is canonically a measure space.

Now, let M be a smooth manifold and let T be a smooth diffeomorphism. Let

µ be a measure on M with density p : M → R>0. We will state a condition for the

diffeomorphism T to be measure preserving. Let (x1, . . . , xn) be local coordinates

around x ∈M and let (y1, . . . , y2) be local coordinates around T (x) ∈M . T is locally

determined by smooth functions f1, . . . , fn such that yi = fi(x1, . . . , xn). Then T

preserves the measure µ if and only if

|det
(∂fk
∂xl

)
|x =

p(T (x))

p(x)
.
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If the above is true for all x ∈ X, then T is a measure preserving transformation of

M with measure µ.

We now define a continuous dynamical system on a smooth manifold. Let X be

a smooth vector field on M . Then, for all x ∈ M we get a system of differential

equations dx
dt = X(x). Let x1, . . . , xn) be local coordinates around x, the system of

differential equations can be written as

dx1

dt
= X1(x1, . . . , xn), . . . ,

dxn
dt

= Xn(x1, . . . , xn).

Definition 2.2. Let X be a vector on a smooth manifold M. For all x ∈ M ,

define Tt(x) ∈ M for t ∈ R to be the point of M given by the solution to above

differential equation at time t with initial condition T0(x) = x.

It is clear that this defines for us the a flow {Tt}. Weather this flow is measure

preserving or not is given by the following theorem of Louiville.

Theorem 2.3. Let M be a smooth manifold equipped with measure µ of density

p. Then µ is invariant with respect to {Tt} if and only if

m∑
k=1

∂

∂xk
(pXk) = 0.

Thus, any vector field on a smooth manifold with measure which satisfies the

above induces a continuous dynamical system, or a measure preserving flow on M .

3. Recurrence and Ergodicity

Let (X,B, µ) be a measure space equipped with a measure preserving transforma-

tion T : X → X. Corner stone of dynamical systems is the Poincare Recurrence Theorem

which states that almost all x ∈ X under iterations of T will come arbitrarily close

to x ∈ X. That is given enough time, the point x will return to any neighborhood

to x. We will make this more explicit.

Definition 3.1. Let (X,B, µ) be a measure space and T : X → X a measure

preserving transformation. Let B ∈ B. A point x ∈ B is said to be recurrent with

respect to B if there exists at least one n > 1 such that Tn(x) ∈ B.

The statement of Poincare Recurrence Theorem is as follows,

Theorem 3.2. Let (X,B, µ) be a measure space and T : X → X a measure

preserving transformation. Then for each B ∈ B almost every point x ∈ B is

recurrent with respect to B.
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Here, by almost every x ∈ B we mean that µ{x ∈ B|there exists no n >

1 Tn(x) ∈ B} = 0, i.e. the set of points in B which are not recurrent is of measure

zero.

Proof. Denote by N the subset of B consisting of points which are not recur-

rent. This then implies that N ∈ B since

N = B ∩
(
∪∞n=1 T

−n(X\B)

)
.

If x ∈ N , then all points of the form Tn(x), n = 1, 2, . . . do not belong to B,

and hence Tn(x) /∈ N . Therefore, N ∩ T−n = ∅, which means that all the sets,

N,T (N), T 2(N), . . . are disjoint. Therefore

1 > µ

(
∪∞n=0 T

−n(N)

)
=
∞∑
n=0

µ(T−n(N)) =
∞∑
n=0

µ(N)

But the last inequality follows if and only if µ(N) = 0. �

Given a measure space (X,B, µ) and a measure preserving transformation T : X →
X, it is possible that there exists some B ∈ B such that T−1(B) = B. In this case

the transformation can be split into two pieces and studied separately. That is, since

T−1(B) = B we get that T−1(X\B) = X\B, and one can study T|B and T|X\B in-

dividually. We thus need a concept of irreducibility of the transformation, and this

is provided by ergodicity. In other words, if a measure preserving transformation is

also ergodic, then it can not be reduced. We give the definition now.

Definition 3.3. Let (X,B, µ) be a measure space and T : X → X a measure

preserving transformation. Then T : X → X is ergodic if for B ∈ B, T−1(B) =

B =⇒ µ(B) = 0 or µ(B) = µ(X).

The ergodicity condition can be restated as: the only subsets of X which are

invariant under T : X → X are of measure 0 or of full measure. This in particular

implies that the dynamical is irreducible. We also have the following equivalent

definitions of ergodicity.

Lemma 3.4. Let (X,B, µ) be a measure space and T : X → X a measure pre-

serving transformation. Then the following are equivalent

a) T is ergodic.

b) µ(T−1(B)4B) = 0, B ∈ B =⇒ µ(B) = 0 or µ(B) = µ(X).

c) ∀A,B ∈ B, µ(A), µ(B) > 0 ∃n > 0 s.t. µ(T−n(A) ∩B) > 0.
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Here (A4B) denotes the symmetric difference between the sets A and B, i.e.

(A4B) := (A ∪B)\(A ∩B). To understand further properties of ergodicity we will

need the notion of invariant functions, which we define below.

Definition 3.5. Let (X,B, µ) be a measure space equipped with T : X → X,

a measure preserving transformation, or {Tt}, a measure preserving flow. Then a

function f is invariant with respect to T or {Tt} if for all x ∈ X we have

g(T (x)) = g(x) = g(T−1(x))

or

g(Tt(x)) = g(x), ∀t ∈ R.

Ergodicity has strong implications for invariant functions. Namely,

Lemma 3.6. Let (X,B, µ) be a measure space equipped with T : X → X, an

ergodic transformation, or {Tt}, an ergodic flow. Then every invariant function f

with respect to T or Tt is constant on any set of full measure.

Proof. If f(x) is an invariant function, then for any a the set Ca = {x ∈
X|f(x) < a} is invariant. Therefore µ(Ca) equals 0 or µ(X). This proves the

lemma. �

4. Space Average, Time Average, and Birkhoff’s Ergodic Theorem

One of the most useful property of ergodic transformations is that the space

average and the time average of functions (of class L1) is equal. This property

has found numerous applications in mathematics, and is essential in the study of

Statistical Mechanics. Let us begin by defining these objects.

Definition 4.1. Let (X,B, µ) be a measure space equipped with T : X → X, a

measure preserving transformation. Let f ∈ L1(X,B, µ). Then the time average of

f for all x ∈ X is

(3.1) lim
n→∞

1

n

n=1∑
k=0

f(T k(x)) := f̄(x).

Let (X,B, µ) be a measure space equipped with {Tt}, a measure preserving flow. Let

f ∈ L1(X,B, µ). Then the time average of f for all x ∈ X is

(3.2) lim
t→∞

1

t

∫ t

0
f(Tτ (x))dτ := f̄(x).

At this point the question of existence of the limits defined above, or the existence

of time averages, arises. This is answered by the following Birkhoff Ergodic Theorem.
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Theorem 4.2. Let (X,B, µ) be a measure space equipped with T : X → X, a

measure preserving transformation, or {Tt}, a measure preserving flow. In either

case, the time averages 3.1 and 3.2 exist for almost µ every x ∈ X. Moreover, the

time average f̄(x) ∈ L1(X,B, µ), and it is invariant under T or {Tt}, and∫
X
f̄(x)dµ =

∫
X
f(x)dµ.

The integral
∫
X f(x)dµ is called the space average of the function. If we assume

that our dynamical system is ergodic then we get the following corollary.

Corollary 4.3. Let (X,B, µ) be a measure space equipped with T : X → X, an

ergodic transformation, or {Tt}, an ergodic flow. Then for any f ∈ L1(X,B, µ), the

space average and the time average coincide, i.e. for almost µ every x ∈ X, we have

lim
n→∞

1

n

n=1∑
k=0

f(T k(x)) =

∫
X
f(x)dµ

or

lim
t→∞

1

t

∫ t

0
f(Tτ (x))dτ =

∫
X
f(x)dµ.

Ofcourse the RHS of the equalities above are independent of x ∈ X. This shows

that for an ergodic dynamical system the time averages are the same for almost any

x ∈ X, in other words, they are an invariant of the ergodic transformation.

Proof. Since Birkhoff ergodic theorem states that the time average is invariant

under the transformation or flow, and since any invariant function of an ergodic

transformation or ergodic flow is constant, we it follows that the time average is

constant. �

The fact that the time average and the space average is equal means that the

trajectory of a measure preserving transformation goes to every set in the measure

space, except possibly sets of measure zero. If the transformation is further assumed

to be ergodic, then the trajectories not only go to every set, but they are equi-

distributed. In this light we can state one more lemma.

Lemma 4.4. Let (X,B, µ) be a measure space with T an ergodic transformation.

Let B ∈ B be such that µ(B) > 0, then µ(∪n>0T
−n(B)) = 1.

5. Oseledet’s Multiplicative Ergodic Theorem and Lyapunov Exponents

We recall the setting in the last section. Let (X,B, µ) be a measure space with

a measure preserving transformation T . In this section we will study the situation
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where the dynamical system is equipped with a measurable function

ϕ : X → GL(n,R).

Such a function induces the map

Φ: Z×X → GL(n,R)

defined by

Φ(n, x) := ϕn−1(x) · · · · ϕ2(x) · ϕ(x)

for all x ∈ X and n ∈ Z.

Definition 5.1. Given a discrete dynamical system (X,B, µ) with T , any mea-

surable function Φ: Z×X → GL(n,R) is called a measurable co-cycle over T .

Notice that Φ(x, 0) = Id. Also the map ϕ is said to be the generator of the

cocycle. The cocyle Φ also induces the extension of ϕ which we call

F : X × Rn → X × Rn.

This extension is defined as follows

F (x, v) := (T (x), φ(x) · v).

In this case the mth iterate of F is defined as

Fm(x, v) = (Tn(x),Φ(m,x) · v).

This extension F effectively translates the dynamics, or behavior of any point

x ∈ X under iterations of T , into linear dynamics, that is the associated behavior

of (x, v) ∈ X × Rn under iterations Fm. In the case of dynamical system without

co cycles, we had the Birkhoff Ergodic theorem which stated the existence of time

averages. One wonders time averages can be defined for the extension F and if they

exist or not. As it turns out, there is a natural notion of time averages in this setting,

and there is a generalization of the Birkhoff Ergodic theorem, called the Oseledets

Multiplicative Ergodic theorem.

Theorem 5.2. Let (X,B, µ) be a measure space and T a measure preserving

transformation. Let ϕ : X → GL(n,R) be a measurable function, and Φ: X × Z →
GL(n,R) the associated co cycle. If∫

X
log‖ϕ(x)‖ <∞,

here ‖.‖ is any norm, then
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a) for almost all x ∈ X there exist real numbers λ1(x) < · · · < λn(x) and a

filtration

V0(x) ⊂ V1(x) ⊂ · · · ⊂ Vn(x) = Rn

which is kept invariant under the action of the extension F : X × Rn → X × Rn.

b) for all v ∈ Vi\Vi−1 we have

lim
n→∞

1

n
log‖Φ(n, x) · v‖ = λi.

The numbers λi are called the Lyapunov exponents and the filtration is called the

Lyapunov filtration.

A stated in the theorem, the choice of the norm does not effect the filtration or

the exponents. The geometric meaning of Lyapunov exponents is to indicate how

the length of any given vector changes under successive iterations of F .

If in the theorem we had also assumed that the measure preserving transfor-

mation T is also ergodic, then the Lyapunov exponents λi(x) are constant for all

x ∈ X. In other words, if T is ergodic, then the exponents are invariants of the

ergodic dynamical system (X,B, µ) with T .

There is also a version of the Multiplicative Ergodic theorem for a continuous

dynamical system. We will state this theorem as it appears in [KZ97].

Theorem 5.3. Let Tt : (X,B, µ) → (X,B, µ), for t ∈ R+, be an ergodic flow

on measurable space such that µ(X) < ∞. Let V → X be an R+ equivariant finite

dimensional vector bundle. Assume that a (non-equivaraint) norm ‖.‖ on V is chosen

such that for all t ∈ R+,

(3.3)

∫
X

log(1 + ‖Tt : Vx → VTt(x)‖)µ <∞.

Then there are constants λ1 > λ2 > . . . > λk and an invariant filtration of V

V = Vλ1 ⊃ · · · ⊃ Vλk ⊃ 0

such that, for µ-almost every x ∈ X and all v ∈ Vx one has

‖Tt(v)‖ = e(λjt+O(t)), t→∞

where j is the maximal value for which v ∈ (Vλj )x. Moreover, the filtration and the

constants do not depend on the choice of the norm.

Notice that this theorem is stated for a semi flow, i.e. {Tt} for t ∈ R+. If we

consider a flow, i.e. t ∈ R, then the dynamical system is reversible and the one

gets a filtration similar to above for t ∈ R−. The filtrations in the forward and
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reverse direction are compatible, and one gets an invariant decomposition of the

vector bundle.

We now give a few examples of cocycles on dynamical systems taken from

[KH95].

Let X = {x} be a single element, and φ(x) = A ∈ GL(n,R). Then the Lyapunov

exponents are logarithms of absolute values of the eigenvalues of A. In this case the

limits of course exist.

In the previous section we saw that a compact Riemannian manifold (M, g) is

a measure space, and a diffeomorphism f : M → M acts as a measure preserving

transformation. The derivative of the diffeomorphism

Dxf : TxM → Tf(x)M

acts on the tangent bundle of M and induces a cocycle as follows.

Represent M as a finite union of diffeomorphic copies of the n-simplex, that

is M = ∪4i, such that in each 4i there exist local coordinates so that TM ⊃
T4i

∼= 4i×Rn and all the non-empty intersections 4i∩4j are (n− 1) dimensional

manifolds. By slightly perturbing the boundaries ∂4i of the 4i if necessary one can

always obtain a decomposition {4}ri=1such that the measure of all the boundaries

∂4i is zero. Thus we obtain the following decomposition

M = ∪iInt4i

and on each 4i the tangent bundle is trivial. Therefore the derivative Df can be

interpreted as a linear cocycle

Df : M = ∪iInt4i → Rn

with Df(x) being the matrix representing the derivative at x in local coordinates, so

the cocycle Df depends on the choices of decomposition of M and local coordinates.

However, for another choice of local coordinates the coordinate change sending one

representation into another in uniformly bounded together with its inverse, and

we get that the spectrum of the derivative of the cocycle does not depend on the

coordinate representation.

6. Geodesic Flow on Hyperbolic Surfaces

Let H := {(x, y) ∈ R2|y > 0} be the upper half-plane. Equip H with the

hyperbolic metric

ds2 =
dx2 + dy2

y2
.
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The hyperbolic metric defines a topology on H. Once we have a topology, we can

take the Borel σ-algebra which is generated by all the open subsets of H. Denoting

by B this σ-algebra, we get a measurable space (H,B).

The hyperbolic metric provides us with the area form; dxdy
y2

. That is, given any

subset B ⊆ H, the area of B is defined as

Area(B) =

∫
B

dxdy

y2
.

This area form provides us with a non-negative function Area : B → R>0, which is

also countably additive, i.e.

Area
(
∪∞n=1 Bn

)
=
∞∑
n=1

Area(Bn)

where all Bn ∈ B are disjoint. Being a non-negative countably additive function

on the set B, Area provides us with a measure on (H,B). Notice that (H,B) with

the Area is not a finite measure space, i.e. Area(H) =∞.

We now study the geodesic flow on H with respect to the hyperbolic metric. To

study the geodesic flow, we need to consider UH, the unit tangent bundle of H. As

a set

UH := {(x, y, ϑ)|(x, y) ∈ H, ϑ ∈ (0, 2π)}

That is, the tuple (x, y, ϑ) ∈ UH represents the unit tangent vector based at

(x, y) ∈ H which makes the angle ϑ with the x-axis. It is clear that UH is a circle

bundle over H, i.e. every fiber of UH can be identified with S1. The circle has

a natural lebesgue measure, infact if we choose S1 = eiϑ for ϑ ∈ (0, 2π) then the

differential of this measure is simply dϑ. The form dxdydϑ
y2

now induces a measure,

which we denote by µ, on UH. That is, the measure of any subset B ⊆ UH is now

given as

µ(B) =

∫
B

dxdydϑ

y2
.

Again, notice that µ(UH) =∞.

Definition 6.1. The measure µ on the unit tangent bundle of the hyperbolic

plane is called the Louiville measure.

To describe the geodesic flow on UH the following identifications are useful.

Lemma 6.2. SL(2,R) = UH and SL(2,R)/SO(2) = H.
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Proof. SL(2,R) acts transitively on H. Consider the map

φ : SL(2,R)→ H,

where Id 7→ (0, 1) = i ∈ H, i.e. the identity element of the group is identified with i,

and for any A ∈ SL(2,R), we have that

A 7→ Ai ∈ H.

Since SL(2,R) acts transitively, we get that the map φ is surjective. Now, the

subgroup SO(2) acts by rotations, which means it has a fixed point or stabilizer.

This fixed point is i ∈ H. Thus, if S ∈ SO(2) then Si = i and SO(2) forms the

kernel of the map φ which implies SL(2,R)/SO(2) = H.

Since the fiber over i of UH is a circle, SO(2) acts transitively on this fiber, and

thus can be identified with it. Now, if z ∈ H then there exists A ∈ SL(2,R) such

that Ai = z, and we can identify the fiber of UH over z with the set A ·SO(2). This

gives us that SL(2,R) = UH. �

SL(2,R), being a locally compact lie group, can be equipped with the Haar

measure. Since we have identified SL(2,R) with UH, we will consider both these

spaces with the aforementioned Louiville measure, µ.

We now describe the geodesic flow on UH ∼= SL(2,R).

Definition 6.3. The geodesic flow Tt : SL(2,R)→ SL(2,R) is given by

A 7→ A ·
(
e
t
2 0

0 e
−t
2

)
for all t ∈ R.

The fact that {Tt} is a flow, i.e. Tt+s = Tt ◦ Ts, is obvious. The fact that {Tt}
is measure preserving follows because the action of SL(2,R) on H is by isometries,

thus

(
e
t
2 0

0 e
−t
2

)
∈ SL(2,R) preserves the hyperbolic metric. Since the measure µ is

essentially the area form of the metric, if the metric is preserved then the area form

is preserved, thus the measure µ is preserved.

In the jargon of dynamical systems, we have a measure space, (UH,B, µ) with

a measure preserving flow {Tt}. We still have the problem that µ(UH) = ∞. To

overcome this problem, we will pass to quotients of UH by discrete subgroups of

SL(2,R).

Let Γ be discrete subgroup of SL(2,R) such that H/Γ := X is a finite area not

necessarily compact surface. Since Γ is a subgroup of isometries of the hyperbolic
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metric, we get a well defined metric on the quotient X. Let F ⊂ H be a fundamental

domain for Γ. Then we have

Area(X) =

∫
F

dxdy

y2
.

For the unit tangent bundle UX = UH/Γ, we have the identification with the

homogenous space

UX = SL(2,R)/Γ.

In fact, the surface X can be identified with the double coset space

SO(2)\SL(2,R)/Γ.

Remark 6.4. Notice now we are considering the left action of SO(2) no SL(2,R)

where as before we were considering the right action.

The Liouville measure µ on UH descends to a measure µ̄ on UX. The total

measure µ̄(UX) < ∞ if and only if Area(X) < ∞, where Area(X), as mentioned

before, is just the hyperbolic are of the fundamental domain F .

Since the flow Tt : UH → UH is an isometry for all t ∈ R, it also descends to a

flow on UX. This is explicitly given as follows. We have that

UX = SL(2,R)/Γ := {B · Γ|B ∈ SL(2,R)}
We use the same notation for the flow Tt : UX → UX and define it as

B · Γ 7→ B ·
(
e
t
2 0

0 e
−t
2

)
· Γ

for all t ∈ R.

Assume that X := SL(2,R)/Γ has finite area. Then we get a continuous dynamical

system.

Definition 6.5. Let X be as above. Then we have a measure space (UX,B, µ̄)

with a measure preserving flow {Tt} which is described above. This dynamical system

is called the geodesic flow on the hyperbolic surface X

Of course now the question of ergodicity of {Tt} arises. In this regard we have

the following theorem which was first proved by Heinz Hopf .

Theorem 6.6. Let Γ be a discrete subgroup of SL(2,R) such that H/Γ := X has

finite area. Then the geodesic flow {Tt} on the space (UX,B, µ̄) is ergodic.

Remark 6.7. This theorem has been generalized to hyperbolic manifolds of

higher dimension.



CHAPTER 4

Teichmüller Theory

Given a topological surface S of genus g > 1, one wonders ’how many’ different

complex structures S can be endowed with and whether the set of all complex struc-

tures on S itself is a nice space, and if yes, whether it is an object in the category of

smooth manifolds, complex manifolds, etc. If one considers the set of complex struc-

tures, up to the equivalence of being biholomorphic, then Riemann showed that this

set Mg, now called Riemann’s Moduli space, is a non-compact complex manifold.

The Teichmüller space T (S) of S, is the set of equivalence classes of marked

complex structures on S. The significance of this space is that it can be thought of

as the universal covering space of Mg with the deck group of transformations being

the mapping class group, Γg, of S. The space T (S) is rich with geometric structures.

To name a couple, it has a (non-complete) Kähler metric, called the Weil-Petersson

metric, and it has a Finsler metric, called the Teichmüller metric.

In this chapter, after defining T (S), we take a look at its unit cotangent U∗T (S)

and in particular the geometry of the pair (X, q) ∈ U∗T (S). Such a pair defines a

singular flat structure on X, and provides a way to study X in terms of euclidean

geometry. In this respect, we study the PSL(2,R) action on any pair (X, q) and

define the Veech group V (X, q) associated with any pair (X, q). The Veech group

V (X, q) has a map to PSL(2,R), and if the image of this map is a lattice, then the

PSL(2,R) orbit of (X, q) descends to a unit tangent bundle of a hyperbolic surface

(non-compact) in the unit tangent bundle of the moduli space: U∗Mg. Such a

hyperbolic surface is called the Teichmüller curve given by (X, q).

We end this section by studying a particular Teichmüller curve which was dis-

covered in [Vee89]. We will use a degree ten branched cover of this curve which was

explicitly constructed in [Loc], see also [McM06].

Most of the material in this chapter is from [ACG11], [FM11], and [Pen12].

We wish to thank Anton Zorich for allowing us to use the figures appearing in his

beautiful treatise [Zor] on Flat surfaces.
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1. Teichmüller Space and its cotangent bundle

Let S be a smooth compact surface of genus g > 2. Let X be a compact Riemann

surface with an orientation preserving diffeomorphism f : S → X. The pair (X, f) is

called a marked Riemann surface, and f a marking. Two marked Riemann surfaces

(X, f) and (X ′, f ′) are said to be equivalent if f ′ ◦ f−1 is isotopic to an isomorphism

between X and X ′.

Definition 1.1. Given S as above, its Teichmüller space T (S) is the set of

equivalence classes of marked Riemann surfaces (X, f).

The space T (S) admits the structure of a complex analytic manifold of dimension

3g−3, see [ACG11], and [Abi80]. Topologically, T (S) is homeomorphic to the unit

ball in C3g−3, this is a result of Fricke. Let t = (X, f) ∈ T (S), then the fiber TtT (S)

of the tangent bundle TT (S) is the space of deformations of the complex structure on

X. By Kodaira−Spencer theory, this space of deformations is the first cohomology

of the sheaf of holomorphic vector fields on X, see [ACG11]. More explicitly, let

KX be the canonical bundle of X, then sections of K∗X are holomorphic vector fields

on X, thus H1(X,K∗X) is the deformation space of X. Moreover, by Serre duality

we obtain

H1(X,K∗X)∗ = H0(X,K2
X)

where the right hand side is referred to as the space of holomorphic quadratic differ-

entials on X. By Riemann-Roch formula, we know that the dimension of H0(X,K2
X)

is 3g − 3. Notice that this provides us with an identification of the fiber of the co-

tangent bundle T ∗t T (S) with H0(X,K2
X).

Let (X, f) ∈ T (S) and q ∈ H0(X,K2
X). We will recall some facts about the

geometry of a quadratic differential q on a Riemann surface X. Let {zα : Uα → C}
be an atlas of charts for X. With respect to this atlas, any q ∈ H0(X,K2

X) is

specified by a collection of expressions {φα(zα)dz2
α}, where dz2

α = dzα ⊗ dzα, such

that

1) Each φα : zα(Uα)→ C is a holomorphic function with at most a finite set of zeroes.

2) For any two overlapping charts zα and zβ, we have

φβ(zβ)
(dzβ
dzα

)2
= φα(zα).

The last condition says if ψ is the change of coordinate map between zα and zβ then

φβ(z)(dψ)2 = φα(z).

This also implies that the order of the zeros of a quadratic differential are independent

of the coordinate representation.
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A quadratic differential q ∈ H0(X,K2
X) induces a Hermitian metric on the punc-

tured surface X\Z(q) where Z(q) is the finite set of zeroes of q. If φ(z)dz2 is a local

expression for q, then the metric in these coordinates is given by

|φ(z)|dzdz̄.

Notice that this metric is flat, or euclidean, as one can introduce a coordinate ζ such

that φ(z)dz2 = dζ2, and the metric takes the form

dζdζ̄.

Thus, X\Z(q) can be equipped with a metric which locally looks like the euclidean

metric. In fact, this metric extends to a singular euclidean metric on X with cone

type singularities precisely at Z(q). Let γ : [0, 1] → X\Z(q) be a path, then γ is a

geodesic of this metric if and only if at each point γ(s), it is a straight line in the

coordinate ζ. An intrinsic characterization of geodesics is that

arg(q)|γ = constant,

where, by definition, we set arg(q)|γ = arg(φ(γ(s)) · γ̇2) if q(z) = φ(z)dz2.

Definition 1.2. Let X be a Riemann surface with a holomorphic quadratic dif-

ferential q. Then a path γ : [0, 1]→ X\Z(q) is a

a) horizontal geodesic if arg(q)|γ = 0

b) vertical geodesic if arg(q)|γ = π

in the singular euclidean metric induced by q on X.

Let us analyze what happens at zeroes of q. If p ∈ Z(q) is a zero of q of order n,

then locally around p there exist a coordinate ζ such that in this coordinate q can

be written as

q(ζ) =
(
dζ

n+2
2
)2
.

This coordinate neighborhood is the same as gluing n + 2 half disks together. In

other words, p will have n+ 2 horizontal geodesics emanating from it, likewise, n+ 2

vertical geodesics. The point p can be thought of as an n+ 2 pronged singularity, or

a conic singularity of angle π(n+ 2).

This metric also induces an area form. If φ(z)dz2 is a local expression for q, then

the area form is defined as

dAq(z) =
i

2
|φ(z)|dz̄ ∧ dz = |φ(z)|dx ∧ dy.

In fact, using the area form one can define a norm in H0(X,K2
X), which is given as

follows

‖q‖ =

∫
X
dAq ∀q ∈ H0(X,K2

X).
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Any q ∈ H0(X,K2
X) also determines a foliation on X. The recipe is as follows,

any q can be thought of as a map q : TX → C, where TX is the holomorphic tangent

bundle of X. In particular given a section of TX, i.e. a holomorphic vector field, q

acts as an evaluation on it. If γ̇ is a holomorphic vector field such that it evaluates

under q to positive real numbers, then the integral curve γ of this vector field will be

part of the horizontal foliation. The set of all integral curves γ such that γ̇ evaluates

to a positive real number, together with the set of zeroes of the differential q provide

foliation of X which we call the horizontal foliation. Likewise, the set of all integral

curves whose vector fields evaluate to negative real numbers provide the vertical

foliation of X. Both these foliations, as the name suggests, are transverse to each

other.

In fact, these foliations coming from q can also be equipped with a measure.

Again, suppose in some chart U ⊂ X, q has the representation φ(z)dz2. Then the

following function

µ(z) =

∫
U

∣∣Im(√φ(z)dz
)∣∣

provides a measure for the horizontal foliation. If we replace the imaginary value

by the real value, then we obtain a measure for the vertical foliation. Thus, any

q ∈ H0(X,K2
X) provides a measure foliation of X. In fact, it is a deep theorem of

Hubbard and Masur [HM79], that any measured foliation (upto a certain equiva-

lence) on X can be obtained from some q ∈ H0(X,K2
X).

2. Flat structures and PSL(2,R) action on the (unit)cotangent bundle

Let S be a smooth surface of genus g > 2, and let Σ be a finite set of marked

points on S. The following definition if due to [Vee89].

Definition 2.1. Let {Vi, φi} where φi : Vi → C be an atlas for S\Σ such that on

non-trivial intersection Vi ∩ Vj the transition function

φij = φj ◦ φ−1
i : C→ C

is a translation, i.e. φij(zi) = ±zj + cij where cij ∈ C is a constant. Then a Flat

structure on S\Σ is the obvious equivalence class of such atlases. We denote by

(S,Σ, u) a choice of Flat structure.

The above defined transition maps are of course biholomorphic, thus a Flat

structure on S\Σ is in particular a complex structure. In fact this complex structure

extends over the entire S. Outside of Σ, Flat structure endows S with a euclidean

metric which is simply the pull back of the euclidean metric on C ∼= R2 by the
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functions φi. In particular this metric induces an area form, and the area of S\Σ with

respect to this metric is called the euclidean area associated to the Flat structure.

At the points Σ a singularity of this euclidean metric is developed. That this

should be the case is obvious, since S has genus g > 2 and by uniformization theorem

can not admit a metric of zero curvature everywhere. Thus, all the negative curvature

of S is concentrated at Σ. In fact, the singularity of the euclidean metric at Σ is of

cone type. That is, around each p ∈ Σ the total angle is not 2π, but rather π(n+ 2)

for n > 1.

As an example, consider a polygon P with even number of edges, such that for

each edge ei there exist another edge ei′ of same length and parallel to ei. Let P ⊂ C.

Then P admits a Flat structure, where the interior of P is covered by one chart, and

each edge ei is identified with the corresponding parallel edge ei′ by translation. This

endows an atlas on P\V where V ⊂ P are the vertices of the polygon. Moreover,

the transition functions of this atlas are translations, thus P\V is endowed with a

Flat structure.
Flat Surfaces 23
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Fig. 12. Identifying corresponding pairs of sides of this polygon by parallel trans-
lations we obtain a flat surface.

check that the flat surface obtained from the polygon presented in Fig. 12 has
genus two and a single conical singularity with cone angle 6π.

3.2 Toy Example: Family of Flat Tori

In the previous section we have seen that a flat structure can be deformed.
This allows to consider a flat surface as an element of a family of flat surfaces
sharing a common geometry (genus, number of conical points). In this section
we study the simplest example of such family: we study the family of flat tori.
This time we consider the family of flat surfaces globally. We shall see that
it has a natural structure of a noncompact complex-analytic manifold (to be
more honest – orbifold). This “baby family” of flat surfaces, actually, exhibits
all principal features of any other family of flat surfaces, except that the family
of flat tori constitutes a homogeneous space endowed with a nice hyperbolic
metric, while general families of flat surfaces do not have the structure of a
homogeneous space.

To simplify consideration of flat tori as much as possible we make two
exceptions from the usual way in which we consider flat surfaces. Temporarily
(only in this section) we forget about the choice of the direction to North: in
this section two isometric flat tori define the same element of the family of all
flat tori. Another exception concerns normalization. Almost everywhere below
we consider the area of any flat surface to be normalized to one (which can be
achieved by a simple homothety). In this section it would be more convenient
for us to apply homothety in the way that the shortest closed geodesic on our
flat torus would have length 1. Find the closed geodesic which is next after the
shortest one in the length spectrum. Measure the angle φ, where 0 ≤ φ ≤ π
between these two geodesics; measure the length r of the second geodesic and
mark a point with polar coordinates (r, φ) on the upper half-plane. This point
encodes our torus.

Figure 1. The polygon P (After A. Zorich)

We will now study deformations of Flat structures. Given a Flat structure

(S,Σ, u), let {Vi, φi} be the collection of charts corresponding to u. Let A ∈
PSL(2,R). Then we get a new Flat structure (S,Σ, Au) which is defined as fol-

lows. Recall φi : Vi → C ∼= R2. Any matrix A ∈ PSL(2,R) acts on the R2. We post

compose the chart function φi with this action. That is, we define new holomorphic
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functions φi′ := A ◦ φi, and get

φi′ : Vi → C.

Lemma 2.2. The atlas {Vi, φi′} defines a Flat structure on S\Σ.

Proof. For {Vi, φi′} to define a Flat structure we must check that the transition

functions are translations. Since φi′ := A ◦ φi, we get that the transition function

φ(ij)(zi) = ±zj + cij changes to φ(ij)′(zi) = ±zj +Acij . Since Acij is again constant,

we get that φ(ij)′ is a translation. �

However, if A is a rotation. That is, if A = eiϑ, then the local change of co-

ordinates is simply z′ = eiϑz, and there is no change in the Flat structure. More

precisely, if A ∈ PSO(2,R) then (S,Σ, u) = (S,Σ, Au) as Flat structure. In fact,

(S,Σ, u) = (S,Σ, Au) only if A ∈ PSO(2,R).

Flat Surfaces 101

Note that flat structure used in the formulation of the Theorem below is
slightly more general than one considered in Sec. 1.2 and in Convention 1: it
corresponds to a half-translation structure and to a holomorphic quadratic dif-
ferential (see above in this section). In particular, speaking about a flat metric
compatible with a given complex structure we mean a flat metric correspond-
ing to a quadratic differential holomorphic in the given complex structure.

Theorem (Teichmüller). For any pair S0, S1 of Riemann surfaces of genus
g ≥ 1 there exist an extremal map f0 : S0 → S1 which minimizes the coefficient
of quasiconformality K(f).

For this extremal map f0 the coefficient of quasiconformality is constant
on S0 (outside of a finite collection of singular points)

Kx(f0) = K(f0) ∀x ∈ S0 − {P1, . . . , Pm}

One can choose a flat metric (half-translation structure) compatible with
the complex structure in which foliation along big (correspondingly small)
demi-axis of ellipses is the horizontal (correspondingly vertical) foliation in
the flat metric.

In flat coordinates the extremal map f0 is just expansion-contraction with
coefficient

√
K.

→

Fig. 43. In flat coordinates the extremal map f0 is just an expansion-contraction
linear map

8.2 Teichmüller Metric and Teichmüller Geodesic Flow

Now everything is ready to define the Teichmüller metric. In this metric we
measure the distance between two complex structures as

dist(S0, S1) =
1

2
log K(f0),

where f0 : S0 → S1 is the extremal map.
It means that a holomorphic quadratic differential defines a direction of

deformation of the complex structure and a geodesic in the Teichmüller metric.

Figure 2. Deformation of a Flat structure. (After A. Zorich)

Since the action of any A ∈ PSL(2,R) is area preserving, we get that the eu-

clidean area of the Flat structure (S,Σ, Au) is the same as the euclidean area of

(S,Σ, u).

The most important point of this construction is the fact that this deformation

of the Flat structure also provides a deformation of the complex structure. That

is, (S,Σ, Au) has the structure of a Riemann surface, and this complex structure

is not the same as the complex structure on (S,Σ, u), provided A /∈ PSO(2,R).
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Let H be the upper half plane and let (S,Σ, u) be a flat structure. Since H ∼=
PSL(2,R)/PSO(2,R) (see the section ”Geodesic Flow on Hyperbolic Surfaces”), we

get a family of Flat structures parametrized by H, where the fiber over i corresponds

to (S,Σ, u) and fiber over any A ∈ H corresponds to (S,Σ, Au).

As each Flat structure (S,Σ, u) is also a complex structure on S, we also get a

family of complex structures parametrized by H. We wish to make this more explicit

and give embeddings

H ↪→ T (S).

The trick to this construction is the fact that the pair (X, q), where X is a Riemann

surface and q is a holomorphic quadratic differential, induces canonically a Flat

structure (S,Σ, u(q)), where S is the underlying topological surface of X and Σ are

the zeroes of q.

Lemma 2.3. Let (X, q) be a Riemann surface with a quadratic differential q.

Then there exists a canonical Flat structure (S,Z(q), u(q)) where S is the underlying

topological surface of X and Z(q) ⊂ X is the set of zeroes of q.

Proof. We need to define an atlas on X̄ := X\Z(q) satisfying the desired

properties of a Flat structure. This is done by the help of the local expression of

q outside of Z(q). At any point of X̄, there exist natural coordinates, say ζ such

that q(ζ) = dζ2, and moreover these coordinates are defined upto an addition of a

constant. Thus, these coordinates provide an atlas for X̄ with the property that

transition functions are all translations, giving us the desired Flat structure. �

Let A ∈ PSL(2,R)/PSO(2,R) and consider the Flat structure (S,Z(q), Au(q)).

Corresponding to this Flat structure is a Riemann surface with a quadratic differen-

tial (X ′, q′), where X ′ is the complex structure induced by the atlas of Au(q) on X ′,

and the quadratic differential q′ ∈ H0(X ′,KX′) is the corresponding deformation of

q. Notice that the number and the order of zeros of q and q′ is the same. Also,

since A preserves the euclidean area, which is the norm of the quadratic differential

in complex analytic language, we get that

‖q‖ = ‖q′‖.

We use the notation A(X, q) := (X ′) to talk about the complex structure com-

ing from the Flat structure (S,Z(q), Au(q)). Let t = (X, f) ∈ T (S) and let q ∈
H0(X,K2

X) such that ‖q‖ = 1. All the constructions above work if one considers

(X, f, q) that is a marked Riemann surface with a holomorphic quadratic differential.
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We then have an embedding

H(X, f, q) ↪→ T (S),

given by A 7→ A(X, f, q) = (X ′, f) based at the point (X, f, q) ∈ U∗T (S) in the

unit cotangent bundle of T (S). That is under the embedding the point (i, i) ∈ UH
is identified with (X, f, q). Notice that we have a family of complex structures

parametrized by H, but the marking f remains the same. Thus, we get a family of

marked Riemann surfaces.

Definition 2.4. The embedding H(X, f, q) ↪→ T (S) is called the Teichmüller

disk based at (X, f, q).

Notice that if A ∈ PSO(2,R) then A(X, f, q) = (X, f). That is, A stabilizes the

marked complex structure. On the other hand, the action of A on q is by rotation,

that is Aq = eiϑq. In particular, the orbit PSO(2,R) · (X, f, q) ⊂ U∗(X,f)T (S) is a

copy of S1. In particular we have an action of PSL(2,R) on U∗T (S).

3. Veech Groups and Teichmüller curves

Let S be a smooth surface of genus g > 2. Let Γ(S) be the group of all iso-

topy classes of orientation preserving diffeomorphisms of S, in other words Γ(S) =

π0(Diff+(S)). The group Γ(S) is called the mapping class group of S. This group

acts on T (S) as follows, if g ∈ Γ(S) and (X, f) ∈ T (S), then

g · (X, f) = (X, f ◦ g−1).

If we consider T (S) as a complex manifold, then the action of Γ(S) is by holomorphic

transformations. Moreover, Γ acts properly and discontinuously but not effectively.

The resulting orbifold quotient is called the moduli space of genus g curves,

Mg := T (S)/Γ(S).

In the last section we saw that every (X, f, q) ∈ U∗(X,f)T (S) generated a Te-

ichmüller disk which was an embedding of the upper half plane,

H(X, f, q) ↪→ T (S)

based at (X, f, q).

Definition 3.1. Let (X, f, q) ∈ U∗(X,f)T (S). Then the Veech group of (X, f, q),

denoted by V (X, f, q) ⊂ Γ(S), is the group of mapping classes which stabilize the

Teichmüller disk H(X, f, q).
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Here by stabilize we mean a mapping class which preserves the disk globally, and

not point wise. Although, there may exist some mapping class which fixes the disk

point wise. We have the following result on generic Veech groups, see Möller’s article

in [Pap09].

Proposition 3.2. For a generic (X, f, q) the group V (X, f, q) is trivial.

We will especially be interested in the case V (X, f, q) is large. To make this more

precise, we first observe that there exists a group homomorphism

V (X, f, q)→ PSL(2,R)

which might have a non-trivial kernel. This is given as follows. Let (S,Σ, u) be a

Flat structure. Let Γ(S,Σ) be the group of orientation preserving diffeomorphisms

of S which preserve the set Σ point wise. Then g ∈ Γ(S,Σ) acts on (S,Σ, u) by

precomposition with charts. More precisely, let {Vi, φi} be the atlas giving the Flat

structure, consider a new atlas defined by {g(Vi), φi ◦ g−1}. That is, if φi : Vi → C is

a chart for u then φi ◦ g−1 : g(Vi)→ C is a chart for g · u.

Now consider the Flat structure (S,Z(q), u(q)) induced by (X, f, q). Let g ∈
V (X, f, q), and let g act on the Flat structure (S,Z(q), u(q)) as explained above.

Now, by the very definition of H(X, f, q) as an orbit of PSL(2,R), it follows that

H(X, f, q) is stabilized by g if and only if there exists an Ag ∈ PSL(2,R) such that

g ·u(q) = Ag(u). On a given chart (V, φ) this condition means that φ ◦ g−1 = Ag ◦φ.

In other words, the action of g on (X, f, q) is affine, the result again is a Flat

structure which is a deformation by Ag. This provides us with the aforementioned

group homomorphism

V (X, f, q)→ PSL(2,R) g 7→ Ag.

We state the following main characteristics of the image of V (X, f, q) obtained in

[Vee89].

Theorem 3.3. The image of V (X, f, q) in PSL(2,R) is always discrete and never

co-compact.

A discrete subgroup Λ / PSL(2,R) is called a lattice if a fundamental domain of

Λ has finite hyperbolic area, or equipvalenty, if the quotient surface H/Λ has finite

hyperbolic area.

Definition 3.4. (X, f, q) is said to be a Veech surface if the image of V (X, f, q)

in PSL(2,R) is a lattice.
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Although we are not concerned with dynamics of Flat structures, we state the

following remarkable result dubbed the V eech dichotomy.

Theorem 3.5. If (X, f, q) is a Veech surface, then for any given direction in

S1 either all foliations are ergodic or all foliations are periodic. In particular, there

exist at least one periodic direction.

It is the existence of this periodic direction which implies the non co-compactness

of V (X, f, q). If V (X, f, q) is a lattice then H(X, f, q)/V (X, f, q) is a finite area non-

compact hyperbolic surface.

Definition 3.6. Let (X, f, q) ∈ U∗T (S) be such that the Veech group V (X, f, q)

is a lattice. Then the surface χ := H(X, f, q)/V (X, f, q) is called the Teichmüller

curve generated by (X, f, q).

Notice that this curve descends to an embedding in the moduli space of curves

H(X, f, q) T (S)

χ Mg

We of course have that πorb1 (χ) = V (X, f, q). Teichmüller curves also provide a

large supply of pseudo-Anosov elements. By a theorem of Thurston, see [Thu88],

under the identification of πorb1 as a subgroup of PSL(2,R), any γ ∈ πorb1 (χ) whose

corresponding matrix Aγ ∈ PSL(2,R) is such that |TrAγ | > 2 corresponds to a

pseudo-Anosov mapping class in Γ(S). Moreover, any matrix with absolute value

of trace bigger than 2 is conjugate in PSL(2,R) to a unique diagonal matrix with

entries λ and λ−1 where λ is a positive real number. The stretch factor of Aγ is

bigger of two values λ and λ−1.

4. Example

Let X be the genus 2 algebraic curve defined by the equation y2 = x5 + 1. Let

q be the quadratic differential on X defined as cdx
2

y2
. Here c is a constant such that

‖q‖ = 1. Thus, (X, f, q) ∈ U∗T (S) where f : X → S is any arbitrary marking. In

[Vee89] it is shown that the image of V (X, f, q) in PSL(2,R) is a lattice, in fact

it is shown to be conjugate to the Hecke triangle group 4(2, 5,∞), which has the

following presentation
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(4.1) 4(2, 5,∞) :=< S, T |S2 = (S ◦ T )5 = Id > .

where

T =

(
1 2 cos π5
0 1

)
, S =

(
0 1

−1 0

)
.

The Flat structure (S,Σ, u(q)) corresponding to (X, f, q) can be described as

follows. Take a regular pentagon P in C. Let P1 be a reflection of P along one of

its edges. The union P ∪ P1 is a non-convex octagon, call it O.

Flat Surfaces 17

Fig. 7. We can unfold the billiard in the right triangle (π/2, π/5, 3π/10) into
different polygons. However, the resulting very flat surfaces are the same (see
also [HuSdt5]).

Note that in comparison with the initial construction, where we had only
two copies of the billiard table we get a more complicated surface. However,
what we gain is that in this new construction our flat surface is actually “very
flat”: it has trivial linear holonomy. It has a lot of consequences; say, due to a
Theorem of H. Masur [Ma4] it is possible to find a regular periodic geodesic on
any “very flat” surface. If the flat surface was constructed from a billiard, the
corresponding closed geodesic projects to a regular periodic trajectory of the
corresponding billiard which solves part of the Billiard Problem for billiards
in rational polygons.

We did not intend to present in this section any comprehensive information
about billiards, our goal was just to give a motivation for the study of flat
surfaces. A reader interested in billiards can get a good idea on the subject
from a very nice book of S. Tabachnikov [T]. Details about billiards in polygons
(especially rational polygons) can be found in the surveys of E. Gutkin [Gu1],
P. Hubert and T. Schmidt [HuSdt5], H. Masur and S. Tabachnikov [MaT] and
J. Smillie [S].

2.2 Electron Transport on Fermi-Surfaces

Consider a periodic surface M̃2 in R3 (i.e. a surface invariant under trans-
lations by any integer vector in Z3). Such a surface can be constructed in a
fundamental domain of a cubic lattice, see Fig. 8, and then reproduced re-
peatedly in the lattice. Choose now an affine plane in R3 and consider an
intersection line of the surface by the plane. This intersection line might have
some closed components and it may also have some unbounded components.
The question is how does an unbounded component propagate in R3?

The study of this subject was suggested by S. P. Novikov about 1980
(see [N]) as a mathematical formulation of the corresponding problem concern-

Figure 3. The octagon O (After A. Zorich)

For each edge ei ⊂ P , where ei is not the edge along which we reflected P ,

there exists an edge ei′ in P1 which is parallel to ei. We identify these parallel sides

to obtain a closed compact surface S. It can be checked, by triangulating O and

applying the Euler characteristic formula, that the genus of S is two.

Endow S with the complex structure X ′, such that the quadratic differential dz2

extends to a quadratic differential ψ on X. Scale O such that ‖ψ‖ = 1. All the edges

of O are identified to a single point Σ ∈ S. This point is the only zero of ψ and it

has order four. It is shown in [Vee89] that (X, q) is isomorphic to (X ′, ψ), see also

the article by Earle and Gardiner in [QS97].
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Since the image of V (X, f, q) in PSL(2,R) is a lattice, it follows that

χ := H(X, f, q, )/V (X, f, q) is a Techmüller curve, and we have the embedding,

χ ↪→M2.

We will study a degree ten ramified covering πχ̃ : χ̃→ χ which was introduced in

[Loc]. The advantage of this covering is that it has an embedding in the configuration

space of six points over which the Hitchin connection ∇ was defined in chapter 1

section 4. We make this more precise now.

Let C∞ := {(z1, . . . , z6) ∈ (CP1)6|zi 6= zj}, be the space of ordered configurations

of six points and C̄ ∼= C/S6, the space of unordered configurations defined in section

4 of chapter 1. Since PSL(2,C) is the group of complex automorphisms of CP1, it

also acts on C∞. We consider the action of the product of two groups

PSL(2,C)× S6 y C∞
and the qoutient M2 is the moduli space of six points on the Riemann sphere, or

equivalently, the moduli space of genus 2 curves. These moduli spaces are equivalent

since any (z1, . . . , z6) ∈ C defines a genus two curve given as the zero set of the equa-

tion y2 = (x−z1) . . . (x−z6). On the other hand given any genus 2 Riemann surface

X, a choice of basis for the homology induces a basis < α1, α2 > for H1(X,KX).

Then the following map

Φ: X → CP1, Φ(x) :=
α1(x)

α2(x)

is of degree two and simply branched over six points in CP1. Thus, X is a hyper

elliptic curve. The branching locus of X and X ′ is the same if and only if X and X ′

are isomorphic as Riemann surfaces.

We now study the aforementioned covering of the Teichmüller curve discovered

in [Loc].

Define χ̃ := (P1−µ5) where µ5 are the fifth roots of unity. We have the embedding

φ : χ̃∞ → C, where χ̃∞ := (P1 − (µ5 ∪ ∞)) given by the following explicit map

introduced in [Loc] and [McM06]

(4.2) φ̃(t) = (1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t, ζ4 + ζ−4t,∞),

where ζ = e
2πi
5 . Notice that φ(t) belongs to C∞ for all t ∈ χ̃. This follows from

the following computation: Suppose ζa 6= ζb. Then ζa + ζ−at = ζb + ζ−bt implies

t = − ζa−ζb
ζ−b+ζ−a

= ζa+b ∈ µ5.

Dihedral group.

We will now consider the action of Dihedral group of order 10 on χ̃. Consider the
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transformations R, I : CP1 → CP1 defined by R(x) = ζ2x and I(x) = 1
x . Notice

that R generates a cyclic group of order five and I is an involution. We define

D :=< R, I >. Explicitly, D has the following presentation

(4.3) D =< R, I|R5 = I2 = (R ◦ I)2 = Id > .

Notice that D(µ5) = µ5, i.e. the set of fifth roots of unity is preserved under the

action of D. This gives us a well defined action D y χ̃. We define the quotient

χ := χ̃/D and let πχ̃ : χ̃ → χ be the quotient map. Following is proposition 4.11

from [Loc].

Proposition 4.1. πorb1 (χ) ∼= 4(2, 5,∞) where 4(2, 5,∞) is the Hecke triangle

subgroup of PSL(2,R).

Notice that this proposition implies that χ is a hyperbolic orbifold, namely a

sphere with two orbifold points, say a, b ∈ χ and one puncture. Let us fix the

notation, such that the order of ramification at a, b is two and five respectively.

We consider now the following two elements ν, ν ′ ∈ S5 / S6.

Definition 4.2. ν(z1, . . . , z6) = (z5, z1, z2, z3, z4, z6)

and ν ′(z1, . . . , z6) = (z1, z5, z4, z3, z2, z6)

It is clear from definition that ν5 = ν ′2 = Id. We have the following relationship

between ν and R and between ν ′ and I.

Lemma 4.3. ν(φ̃(t)) = ζ−1φ̃(R(t)) and ν ′(φ̃(t)) = tφ̃(I(t)).

Proof. We compute

ζ−1φ̃(R(t)) = ζ−1(1 + ζ2t, ζ + ζt, ζ2 + t, ζ3 + ζ−1t, ζ4 + ζ−2t,∞)

= (ζ−1 + ζt, 1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t,∞).

Now, the last tuple is the same as

(ζ4 + ζ−4t, 1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t,∞) = ν(φ̃(t)).

By a similar calculation, we obtain that

tφ̃(I(t)) = (1 + t, ζ4 + ζ−4t, ζ3 + ζ−3t, ζ2 + ζ−2t, ζ + ζ−1t,∞) = σ(φ̃(t)).

�

Since multiplication by ζ−1 and t are both elements of the dilation subgroup of

PSL(2,C) this lemma immediately shows that the map (5.1) descends to give a well

defined map φ : χ→M2 and that we get the following commutative diagram
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χ̃ C∞

C̄∞

χ M2

πχ̃

φ

φ̃

P∞

P∞

Here C∞ is the quotient of C∞ by the group S6 andM2 is the quotient of C∞ by

PSL(2,C).



CHAPTER 5

Quantum representation of the (orbifold) fundamental

group

1. Introduction

Recall C∞, the space of ordered configurations of six points and C̄∞ ∼= C∞/S6,

the space of unordered configurations defined in section 4.4. Since PSL(2,C) is the

group of complex automorphisms of CP1, it also acts on C∞. We consider the action

of the product of two groups

PSL(2,C)× S6 y C∞

and denote the quotient by M2. Hence M2 is the moduli space of six points on the

Riemann sphere, or equivalently, the moduli space of genus 2 curves. We will study

the embedding of a Teichmüller curve in this moduli space discovered in [Vee89]

and further studied in [Loc].

Recall from the previous chapter, that χ̃∞ := (CP1 − µ5), where µ5 are the fifth

roots of unity, and that we have an embedding φ̃ : χ̃→ C∞, where χ̃ := CP1−(µ5∪∞),

given by

(5.1) φ̃(t) = (1 + t, ζ + ζ−1t, ζ2 + ζ−2t, ζ3 + ζ−3t, ζ4 + ζ−4t,∞),

where ζ = e
2πi
5 .

We consider the action of the Dihedral group D of order 10 on χ̃∞. This group

is generated by the transformations R, I : CP1 → CP1, defined by R(x) = ζ2x and

I(x) = 1
x , which are of order five and two, respectively.

Notice that D(µ5) = µ5, i.e. the set of fifth roots of unity is preserved under the

action of D. This gives us a well defined action D y χ̃∞, and we define the quotient

χ := χ̃∞/D with corresponding quotient map πχ̃ : χ̃∞ → χ. Then χ is a finite

volume hyperbolic surface with orbifold singularities. Topologically, it is a sphere

with two orbifold points b, a ∈ χ and one puncture, and the order of ramification at

b and a is two and five, respectively, i.e. π∗χ̃(b) = {−µ5} and π∗χ̃(b) = {0,∞}.
83



84 5. QUANTUM REPRESENTATION OF THE (ORBIFOLD) FUNDAMENTAL GROUP

The orbifold fundamental group is calculated in [Loc],

πorb1 (χ) ∼= 4(2, 5,∞),

where 4(2, 5,∞) is the Hecke triangle subgroup of PSL(2,R), which is generated by

the elements

T =

(
1 2 cos π5
0 1

)
, S =

(
0 1

−1 0

)
.

These satisfy the relations S2 = (S ◦ T )5 = Id.

We consider the following two elements ν, ν ′ ∈ S6,

ν(z1, . . . , z6) = (z5, z1, z2, z3, z4, z6) and ν ′(z1, . . . , z6) = (z1, z5, z4, z3, z2, z6),

and it is clear that ν5 = ν ′2 = Id. Also, we have the following relationship between

ν and R and between ν ′ and I,

ζν(φ̃(t)) = φ̃(R(t)) and
1

t
ν ′(φ̃(t)) = φ̃(I(t)).

Since multiplication by 1
t and ζ corresponds to a dilation and a rotation in

PSL(2,C), we get that the map φ̃ is equivariant with respect to the D action on

χ̃ and (PSL(2,C) × S6) action on C∞. This implies that φ̃ descends to give a well

defined map φ : χ→M2. In fact we get the following commutative diagram,

(5.2)

χ̃ C∞

C̄∞

χ M2

πχ̃

φ

φ̃

P∞

P∞

Here C∞ is the quotient of C∞ by the group S6 and M2 is the quotient of C∞ by

PSL(2,C).

In [Vee89], William Veech showed that the algebraic curve y2 = x5 +1 equipped

with the quadratic differential cdx
2

y2
generates a Teichmuller curve V →M2, and that

πorb1 (V ) is precisely 4(2, 5,∞). In proposition 5.8 of [Loc] it is shown that V ∼= χ

as Riemann surfaces and their images inM2 coincide. Thus, φ(χ) can be considered

the Teichmüller curve generated by the algebraic curve y2 = x5 + 1 equipped with

the quadratic differential cdx
2

y2
. Here c is a constant such that ‖cdx2

y2
‖ = 1.
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2. Generators of the (orbifold) fundamental group

Recall from the last section that πorb1 (χ) ∼= 4(2, 5,∞). We choose explicit paths

based at the order five orbifold point of χ such that they generate the group πorb1 (χ).

Let γ̃0 ⊂ χ̃ be the path starting from 0 and running along the real axis to 1−ε, where

ε is an arbitrarily small positive real number. Let γ̃1 be the semi-circle starting from

1 − ε moving around 1 in an anti clockwise direction until it reaches (1 − ε)−1. We

will also need γ̃−1
0 which is the path running from 1− ε to 0 along the real axis.

Recall that the order five rotation R stabilizes, or fixes, the point 0. This implies

that

πχ̃(0) =: a

is an orbifold point of order five, and the stabilizer group of this orbifold point is

isomorphic to 〈R〉. The end points of the semi-circle γ̃1 are identified with each other

under the involution I, which implies that the projection

πχ̃(γ̃1) =: γ1 ⊂ χ

is a homotopically non-trivial closed loop. Consider the projection of the path γ̃0,

πχ̃(γ̃0) =: γ0 ⊂ χ

then the composition

(5.3) γ−1
0 · γ1 · γ0 =: γ ⊂ χ

is a closed, connected, homotopically non-trivial loop with the property that it starts

and ends at the order five orbifold point a ∈ χ.

The following is part of proposition 4.11 from [Loc].

Proposition 2.1. The loop γ along with the orbifold stabilizer group 〈R〉 gen-

erates πorb1 (χ, a), and under the isomorphism πorb1 (χ, a) ∼= 4(2, 5,∞) the order five

stabilizer of the orbifold point a is identified with U := S ◦ T and γ is identified with

the infinite order element T .

By the commutativity of (5.2) and (5.3), it follows that

(P∞ ◦ P∞)(φ̃(γ̃0)−1) · (P∞ ◦ P∞)(φ̃(γ̃1))) · (P∞ ◦ P∞)(φ̃(γ̃0))) = φ(γ).

We will construct a lift γ̃, of φ(γ), such that γ̃ is a connected path contained in C.
Later we will compute the holonomy of the connection given by the 1-form (2.22)

along γ̃.
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Recall from (2.35) the divisors D∞m := {(z1, . . . ,∞, . . . , z6) ∈ C∞} where 1 6 m 6

6 and mth entry is fixed to ∞. Notice that Dm is a divisor in C∞ and isomorphic to

the space of ordered configurations of five points on C. We have the disjoint union

(5.4) C∞ = C t6
m=1 D

∞
m .

In particular, the image φ̃(χ̃) ⊂ D∞6 . Let Z ∈ PSL(2,C) be the inversion in the

unit circle, i.e.

Z =

[
0 1

1 0

]
,

and let

(5.5) χ̃0 := (CP1 − (µ5 ∪∞∪−µ5))

where µ5 is the set of fifth roots of unity. Consider the map

ψ : χ̃0 → C, ψ := Z ◦ φ̃

which can be written explicitly as

(5.6) ψ(t) = (
1

ζ + ζ−1t
,

1

ζ2 + ζ−2t
,

1

ζ3 + ζ−3t
,

1

ζ4 + ζ−4t
,

1

1 + t
, 0), for all t ∈ χ̃0.

The image ψ(χ̃0) is now contained in C. Since Z ∈ PSL(2,C) and M2 is the

quotient of C∞ by the product (PSL(2,C)× S6) it follows that the map ψ : χ̃0 → C
covers the map φ : χ → M2. In particular, (P∞ ◦ P∞)(ψ(χ̃0)) ⊂ φ(χ). Also, since

γ̃0 and γ̃1 are in the complement of −µ5, it follows that

(5.7) (P∞ ◦ P∞)(ψ(γ̃0)−1) · (P∞ ◦ P∞)(ψ(γ̃1))) · (P∞ ◦ P∞)(ψ(γ̃0))) = φ(γ).

We will construct a path pI ⊂ C such that

(ν ′ψ((γ̃0)−1))) · pI · ψ(γ̃1) · ψ(γ̃0) ⊂ C

is a connected path and projects to φ(γ) in M2.

Let us first analyze the image ψ(γ̃0). The initial point ψ(0) is shown in Figure

1. Here the six points form a symmetric configuration by taking the positions at the

fifth roots of unity and zero in the specified order.

In Figure 2 the dashed lines show the trajectory of the six points as one travels

along ψ(γ̃0). At the end point of ψ(γ̃0), the points z1 and z4 are a small distance

(depends on ε) away from the positive real number 1
2Re(ζ) and a quick calculation

shows that at the end points z1 and z4 are conjugate to each other, and both have

their real parts bigger than 1
2Re(ζ) . Moreover, z1 lies in lower half plane of C and

z4 lies in the upper half plane. This local picture at 1
2Re(ζ) is shown in Figure 3. A

similar story holds for the pair z2 and z3 around the negative real number 1
2Re(ζ2)

.



2. GENERATORS OF THE (ORBIFOLD) FUNDAMENTAL GROUP 87

t1

t2

t3

t4

t5

1

2

3

4

5

6

Figure 1. The configuration at ψ(0). The crosses represent the po-

sitions of the points and ti are the generators of the braid group

The point z5 moves to 1
2 and z6 remains fixed at zero. Notice also that the end point

of ψ(γ̃0) is the initial point of ψ(γ̃1). We now look at the configuration at the end

Figure 2

point of ψ(γ̃1). Recall that γ̃1 was a semi-circle traversed anti-clockwise around one

from (1 − ε) to (1 − ε)−1. At the end point of ψ(γ̃1), the points z1 and z4 are still

conjugate to each other but both have real parts smaller than 1
2Re(ζ) and z1 lies in

the upper half plane and z4 lies in the lower half plane. In effect, both z1 and z4

move in an anti-clockwise semi-circle around 1
2Re(ζ) . This is also shown in figure 3.
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A similar story holds for the pair z2 and z3 around the negative real number 1
2Re(ζ2)

.

The point z5 moves to 1
2 and z6 remains fixed at zero. Notice also that the end point

of ψ(γ̃1) is not the initial point of ψ(γ̃0)−1.

We now construct a path pI which whose initial point is the end point of ψ(γ̃1).

We calculate that

(5.8) ψ(1− ε) = ν ′(1− ε)−1(ψ(1− ε)−1).

Consider the following map

pI : [1, (1− ε)−1]→ PSL(2,C) s 7→
[
s 0

0 1

]
.

Let pI(ψ((1 − ε)−1)) be the path in C obtained by applying the path in Möbius

transformations pI to ψ(1−ε)−1. We will denote by pI also the path pI(ψ((1−ε)−1)).

It follows from (5.8) that the configuration at the end point of pI differs from the

configuration at ψ(1 − ε) only by the permutation ν ′. The trajectory of z4 and z1

along the path pI is shown in red in figure 3. A similar story holds for z2 and z3.

The point z5 moves a little to the right and z6 is fixed at zero.

r′

ψ(γ̃1)

ψ(γ̃0)

q(D∗δ )

Figure 3

Since the end point of pI differs from the initial point of (ψ(γ̃0)−1) by the per-

mutation ν ′, it follows that ν ′(ψ(γ̃0)−1)) · pI is a connected path with initial point

ψ((1− ε)−1) and end point ν ′(ψ(0).
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Since the initial point of ν ′(ψ(γ̃0)−1)) · pI is the end point of ψ(γ̃1) · ψ(γ̃0) it

follows that

(5.9) γ̃ := ν ′(ψ((γ̃0)−1))) · pI · ψ(γ̃1) · ψ(γ̃0) ⊂ C

is a closed path in C with initial point ψ(0) and end point ν ′(ψ(0)). Since the two

endpoints of γ̃ are related by the element ν ′ in S6, it follows that P∞(γ̃) ⊂ C is a

closed loop in C. Moreover, since pI is entirely contained in the PSL(2,C) orbit, it

follows that (P∞ ◦ P∞)(pI) is a constant loop in M2. Lastly, from (5.7) it follows

that

(P∞ ◦ P∞)(γ̃) = φ(γ).

WhileM2 is an orbifold, its covering C is a smooth manifold, thus the stabilizer

group 〈R〉 of the orbifold point φ(a) ∈M2 acts on C. Since 0 ∈ χ̃ is a fixed point of

the action of the generator R, we analyze the action of R on C by computing

ψ(R(0)) = ν−1ζ−1ψ(0)

= ψ(0)

where the second equality follows from the fact that R(0) = 0. This in particular

implies that ψ(0) is a fixed point of the transformation ν−1ζ−1 in the product group

(S6 × PSL(2,C)). We represent ν−1ζ−1 as a path in C as follows. Consider the

following path in PSL(2,C)

pR : [0,
1

5
]→ PSL(2,C), s 7→

[
e−πis 0

0 eπis

]
s ∈ [0,

1

5
].

Denote also by pR the path in C given by the action of pR on the point ψ(0). At both

the initial and the end point of this path the first five points sit at the fifth roots of

unity (sixth at zero) but with different ordering. The ordering differs by ν−1. Since

the end points of pR are related by an element in S6, P∞(pR) ⊂ C is a closed loop.

Moreover, since pR is entirely contained in the PSL(2,C) orbit, (P∞ · P∞)(pR) is a

constant path in M2, namely φ(a).

The paths γ̃ and pR both start at ψ(0). We now represent the image of these

paths in C as braids. Let

(5.10) ψ(0) := P (ψ(0)) γ := P (γ̃) pR := P (pR)

where P is the restriction of P∞ to C. Then γ and pR are both closed loops based

at ψ(0). We pick ψ(0) ∈ C as the base point for the fundamental group. It is well

known that

π1(C, ψ(0)) ∼= B6
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where B6 is the braid group of degree 6. The choice of generators that we make for

B6 based at ψ(0) is shown in figure 1. Here t1, . . . , t5 are the generators, where ti

corresponds to the point zi and zi+1 exchanging positions by traveling around each

other in anti-clockwise fashion.

It is now a straight forward exercise to represent the loops γ and pR in π1(C, ψ(0))

as braids in terms of the generators ti. Figure 4 shows the braid and the word in

the generators corresponding to pR and figure 5 shows the braid and the word in the

generators corresponding to γ.

2 3 4 5 1 6

1 2 3 4 5 6

Figure 4. The loop pR illustrated as the braid t4t3t2t1t5t5 from top

to bottom

1 5 4 3 2 6

1 2 3 4 5 6

Figure 5. The loop γ illustrated as the braid t4t2t3t4t2t5t5t1t1t3

from top to bottom
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Recall from (2.10) the group homomorphism

H : B6 → Sp(4,Z)

explicitly given by (2.11) and from (2.12) the quotient groupA(G) ∼= Sp(4,Z)/Γ2(2, 4)

where

Γ2(2, 4) :=

{(
I + 2A 2B

2C I + 2D

)
∈ Sp(4,Z)|diag(B) ≡ diag(C) ≡ (0, 0) (mod 2)

}
.

Since A(G) is a quotient group of Sp(4,Z), we have the short exact sequence

Γ2(2, 4)→ Sp(4,Z)→ A(G).

By composing the map H : B6 → Sp(4,Z) with the second homomorphism above,

we get the homomorphism

H : B6 → A(G).

The following lemma will be essential in our monodromy computations.

Lemma 2.2. The image of the closed loops pR and γ under the homomorphism

H : B6
∼= π1(C, ψ(0))→ A(G)

is M0 and M1 respectively where

M0 =


0 0 1 1

−1 1 0 3

−1 0 0 0

1 −1 0 −2

 M1 =


0 −1 0 −2

−1 0 −2 0

−1 1 −2 1

1 −1 1 −2

 .
Proof. Figure 4 and figure 5 show the words in our choice of generators for B6

for the loops pR and γ. We simply use the representation (2.11) on these words to

arrive at M0 and M1. �

3. Pullback of the connection and iterated integrals on the Teichmüller

curve

In the last section we defined the curve χ̃0 given by (5.5), and an embedding

ψ : χ̃0 → C

given by (5.6). Recall from section 4.4 the End(Sk(V )) valued 1-form ω(k) on C
defined in (2.22). In this section we compute and analyze the pull back of the 1-form

ω(k) under ψ.
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Proposition 3.1. We compute that projectively

(5.11) ψ∗(ω(k)) = k̄
∑

16i65

Ai dt

t− ζi

where ζi = e2πı
(
i
5

)
, Ai = Ω̂a,b + Ω̂c,d for 1 6 a < b, c < d 6 5 such that [a + b] =

[c+ d] = [i] where [x] := x(mod5).

Remark 3.2. For any 1 6 i 6 5, there exists only one solution for Ai with the

given constraints.

Proof. The image ψ(χ̃0) is contained in D0
6 ⊂ C, where D0

m for 1 6 m 6 6 are

defined in (2.38). The 1-form ω(k) restricted to D0
6 takes the following form

ω
(k)

|D0
6

= k̄

( ∑
16i<j65

Ω̂i,j dzi − dzj
zi − zj

+

5∑
i=1

Ω̂i,6dzi
zi

)

= k̄

( ∑
16i<j65

Ω̂i,jd log(zi − zj) +
5∑
i=1

Ω̂i,6d log(zi)

)
Thus the pull back is given by

ψ∗(ω(k)) = k̄

( ∑
16i<j65

Ω̂i,jd log

(
1

ζi + ζ−it
− 1

ζj + ζ−jt

)

−
5∑
i=1

Ω̂i,6d log(ζi + ζ−it)

)
Now

d log

(
1

ζi + ζ−it
− 1

ζj + ζ−jt

)
=d log(ζi + ζ−it− ζj − ζ−jt)

− d log(ζi + ζ−it)− d log(ζj + ζ−j)

which implies that

ψ∗(ω(k)) = k̄

( ∑
16i<j65

Ω̂i,jd log(ζi + ζ−it− ζj − ζ−jt)

−
∑

16i<j65

Ω̂i,jd log(ζi + ζ−it)−
∑

16i<j65

Ω̂i,jd log(ζj + ζ−jt))−
5∑
i=1

Ω̂i,6d log(ζi + ζ−it)

)
.

Now,∑
16i<j65

Ω̂i,jd log(ζi + ζ−it) +
∑

16i<j65

Ω̂i,jd log(ζj + ζ−jt)) +

5∑
i=1

Ω̂i,6d log(ζi + ζ−it) =
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∑
16i<j66

Ω̂i,jd log(ζi+ζ−it)+
∑

16i<j66

Ω̂i,jd log(ζj−ζ−jt)) = −k2 Id
6∑
i=5

d log(ζi+ζ−it)

where the last equality follows from (3) of propsition 4.4. This gives us that

ψ∗(ω(k)) = k̄

( ∑
16i<j65

Ω̂i,jd log(ζi + ζ−it− ζj − ζ−jt) + k2 Id
6∑
i=5

d log(ζi + ζ−it)

)
Now,

d log(ζi + ζ−it− ζj − ζ−jt) =
(ζ−i − ζ−j)dt

(ζi − ζj) + (ζ−i − ζ−j)t

=
dt

ζi−ζj
ζ−i−ζ−j + t

.

This can be simplified by

− ζi − ζj
ζ−i − ζ−j =

ζi − ζj
ζ−j − ζ−i .

ζi+j

ζi+j
= ζi+j ,

the result being

d log(ζi + ζ−it− ζj − ζ−jt) =
dt

t− ζi+j .

Notice that

ζi+j = ζk+l

if i+ j = k + l(mod5).

Similarly,

d log(ζi + ζ−it) =
ζ−idt

ζi + ζ−it

=
dt

t+ ζ2i
.

This implies that

(5.12) ψ∗(ω(k)) = k̄

( ∑
16i65

Ai dt

t− ζi + k2 Id
∑

16i65

dt

t+ ζ2i

)
which is projectively equivalent to (5.11).

�

Notice that while (5.12) has poles over the set of negative fifth roots of unity, the

1-form (5.11) does not and it extends as a holomorphic 1-form over χ̃. Both (5.11)

and (5.12) are Fuchsian differential equations with (regular) singularities at µ5 and
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µ10 respectively. Form now on we will consider (5.11) as an End0(Sk(V )) valued

holomorphic 1-form over χ̃ and denote by

(5.13) ω
(k)
χ̃ := ψ∗(ω(k))

and the corresponding flat connection in the trivial bundle P(S(k)(V ))× χ̃ by

(5.14) ∇(k)
χ̃ := d+ ω

(k)
χ̃ .

Let us make the choice of line segments running from ζi, for 1 6 i 6 5, to infinity

as the branch cuts for the logarithm on χ̃. With this choice (5.13) can be written as

ψ∗(ω(k)) = k̄
∑

16i65

d log(t− ζi)Ai.

From this expression it is clear that ω
(k)
χ̃ is a logarithm 1-form on C with values in

End0(Sk(V )), where the logarithmic singularities are at µ5, and the residue at each

ζi ∈ µ5 is Ai.

The differential forms dt
t−ζi where ζi ∈ µ5 give a basis for H1

dR(χ̃,C). Let

γ : [a, b]→ χ̃ be a smooth map and for each ζi let us denote by

γ∗
( dt

t− ζi
)

= fi(si)dsi

the pull back of the 1-form dt
t−ζi to the interval. The ordinary line integral of this

1-form is given by ∫
γ

dt

t− ζi =

∫ b

a
fi(si)dsi

which is independent of the parametrization of γ. Now choose some r-tuple (ζi1 , . . . , ζir)

where each ζil ∈ µ5, and consider the recursively defined integral

(5.15)

La(ζ
i1 , . . . , ζir |b) =

∫ b

a
fir(sir)

(∫ sir

0
fir−1(sir−1) . . .

(∫ si2

a
fi1(si1)dsi1

)
. . . dsir−1

)
dsir

where

fir(sir)dsir = γ∗
( dt

t− ζir
)
.

Given a smooth path γ and a tuple (ζi1 , . . . , ζir), the integral (5.15) is the iterated

integral of the differential forms dt
t−ζil

along the path γ. The integral (5.15) was

extensively studied in [LD53] under the name of Hyperlogarithms. This integral is

independent of the choice of the parametrization of γ and depends on the homotopy

class of γ. In particular, such integrals are building blocks of the solution to the

differential equation given by the parallel transport of (5.14), and thus play a crucial

role in monodromy computations involving the connection (5.14). For general prop-

erties of iterated integrals, we refer the reader to [Kas95] and [LD53]. We use these
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integrals in the next chapter to give an explicit expression of the parallel transport

of the connection (5.14) along arbitrary path in χ̃.

For now, let us consider iterated integrals over a generating set of the π1(χ̃, 0).

Let fm for 1 6 m 6 5 be the image of

pm : [0, 1− ε]→ χ̃, pm(s) = s ζm.

Associate to fm the loop gm := f−1
m · δm · fm ∈ π1(χ̃, 0), where δm is a small loop of

radius ε traveling around ζm based at the end point of fm.

The fundamental group π1(χ̃, 0) is generated by gm. Recall the automorphism

R : χ̃→ χ̃ given by multiplication by ζ. The automorphism R acts on the generators

of the fundamental group as follows,

R(gm) = g[m]+1

and it is clear that the action of R is transitive on the set of generators {gm}, i.e.

the set {gm} is the R orbit of any gm.

For the path f5, we have that

p∗5

(
dt

t− ζi
)

=
ds

s− ζi ,

thus for the choice of the r-tuple (ζi1 , . . . , ζir), the corresponding iterated integral

according to the formula (5.15) is

(5.16)

L0(ζi1 , . . . , ζir |1−ε) =

∫ 1−ε

0

1

sir − ζir
(∫ sir

0

1

sir−1 − ζir−1
. . .

(∫ si2

0

1

si1 − ζi1
dsi1

)
. . . dsir−1

)
dsir .

It is clear that the integral above converges as ε → 1 if and only if ζir 6= 1. For a

choice of (ζi1 , . . . , ζir) such that ζir 6= 1 we will denote by

(5.17) L0(ζi1 , . . . , ζir |1) ∈ C

the limit of the iterated intergal (5.16) as ε→ 0. For a given (ζi1 , . . . , ζir), the number

(5.17) can be evaluated as a sum of polylogarithms of degree n where 1 6 n 6 r.

We have that∑
16i64

L0(ζi|1) = log(5), and
∑
ζi1 ,ζi2

ζi2 6=1

L0(ζi1 , ζi2 |1) ∈ R.

It is probable that for any r > 1, the sum∑
ζi1 ,...,ζir∈(µ5)r

ζir 6=1

L0(ζi1 , . . . , ζir |1)

is a real number.
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For an integer k > 0, let us define the following convergent power series in

EndP(Sk(V ))

(5.18) Φ
(k)
5 := Id +

∞∑
r=1

k̄r
∑

ζi1 ,...,ζir∈(µ5)r

ζir 6=1

L0(ζi1 , . . . , ζir |1)Ai1 . . . Air .

We note here the striking similarity between the series Φ
(k)
5 and the cyclotomic

version of the Drinfel’d associator defined in [Enr]. The series, Φ
(k)
5 also appears in

[DG], see equation 5.16.1 and proposition 5.17 in the mentioned reference.

We construct a power series similar to (5.18) for other paths fm. For this purpose

we notice that R(fm) = f[m]+1 and

p∗j

(
dt

t− ζi
)

= p∗[j]+m

(
dt

t− ζi+m
)
.

In the light of these relations, we define a convergent power series for 1 6 m 6 5,

which is a shift of (5.18) by [m]. Let

(5.19) Φ(k)
m := Id +

∞∑
r=1

k̄r
∑

ζi1 ,...,ζir∈(µ5)r

ζir 6=1

L0(ζi1 , . . . , ζir |1)Ai1+[m] . . . Air+[m].

Notice that for all r > 1 we have Air+[m] 6= A1+[m] since ζir 6= 1.

Conjecture 3.3. Recall the order five matrix M0 from lemma 2.2. This matrix

has an action on EndP(Sk(V )) for all k > 0 which is denoted by M
(k)
0 . We have

that

(M
(k)
0 )−1 · k̄Ai ·M (k)

0 = A[i]+1.

Let us now define a map from the set of generators {gm} to EndP(Sk(V )), by

(5.20) ρ
(k)
χ̃ (gm) := (Φ(k)

m )−1 · ek̄Am · Φ(k)
m .

The permutation ν ′ ∈ S5 has a natural action on the set {Φm} given by permuting

the index m. A simple calculation also gives the following equivariance property

ρ
(k)
χ̃ (R(gm)) = (Φ

(k)
[m]+1)−1 · ek̄A[m]+1 · Φ(k)

[m]+1

= (Φ
(k)
ν′(m))

−1 · ek̄Aν′(m) · Φ(k)
ν′(m)

where the second equality follows from the definition of ν ′.

Lemma 3.4. The representation (5.20) extends to a group homomorphism

ρ
(k)
χ̃ : π1(χ̃, 0)→ EndP(Sk(V ))

which is infact the monodromy of the connection (5.14).



3. PULLBACK OF THE CONNECTION AND ITERATED INTEGRALS ON THE TEICHMÜLLER CURVE97

Proof. The represenation (5.20) clearly extends to the entire set of generators

{gm} of π1(χ̃, 0) thus inducing the morphism.The fact that this morphism is the mon-

odromy of (5.14) follows from the general theory of monodromy of such connections

outlined in [Was87], [Kas95] and [LD53]. �

For monodromy computation of the orbifold fundamental group of χ, we need to

analyze the asymptotic behavior of the parallel transport of ∇(k)
χ̃ in arbitrarily small

neighborhoods of the singularities µ5. Following results will be used in the sequel.

Fix an arbitrarily small positive real number ε. For each 1 6 i 6 5, consider the

following embedding

(5.21) Bi : D
∗
i → χ̃, bi 7→ ζi + bi

where D∗i := {bi ∈ C|0 < |bi| < ε}. An easy calculation shows

(5.22) B∗i (ω
(k)
χ̃ ) = k̄

(
Ai
bi

+
∑
16j65

i 6=j

Aj
bi − (ζj − ζi)

)
dbi

Let Yi(bi) be an EndP(S(k)(V )) valued function over Bi. Then Yi is a solution of

(5.22) if

(5.23) Y ′i = k̄

(
Ai
bi

+
∑
16j65

i 6=j

Aj
bi − (ζj − ζi)

)
Yi.

Proposition 3.5. For all 1 6 i 6 5, there exists a unique Yi satisfying (5.23)

such that

(5.24) Yi(bi) = Qi(bi) b
k̄Ai
i

where Qi(bi) =
∑

r>0 q
(i)
r bri , with q

(i)
r ∈ EndP(Sk(V )), and Qi(0) = q

(i)
0 = Id.

Remark 3.6. For the expression bk̄Aii to make sense on D∗i , we must choose a

branch cut for the logarithm. We choose the the positive real axis in D∗i as the

branch cut for the logarithm.

Proof. By the theory of ordinary differential equations there exists a solution

Yi satisfying (5.23). We show that there exits a family qir satisfying the above stated

requirements such that Yi is of the form (5.24). We write out

(5.25)

Y ′i (bi) =

(
Q′i(bi) + k̄

Qi(bi)Ai
bi

)
bk̄Aii = k̄

(
Ai
bi

+
∑
16j65

i 6=j

Aj
bi − (ζj − ζi)

)
Qi(bi) b

k̄Ai
i .
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This can be rewritten as

(5.26) biQ
′
i(bi)− k̄[Ai, Qi(bi)] = −k̄

∑
16j65

i 6=j

Aj
biQi(bi)

(ζj − ζi)− bi
.

Expanding the above in powers of bi, we get [Ai, q
i
0] = 0, and for r > 0

(5.27) rq(i)
r − k̄[Ai, q

(i)
r ] = −k̄

r∑
l=1

( ∑
16j65

i 6=j

Aj
(ζj − ζi)l

)
q

(i)
l−1

The above equations, for every r, have a solution. Indeed, if we take q
(i)
0 = Id,

then q
(i)
r is uniquely determined by q

(i)
0 , . . . , q

(i)
r−1 due to the fact that the operator

r Id−k̄ ad(Ai) is invertible with inverse equal to

(5.28)
1

r

∑
n>0

k̄n

rn
ad(Ai)

n.

The convergence of Qi(bi) results from the general fact that a formal solution of a

regular singular equation is necessarily convergent, see [Kas95]. �

4. Computing Monodromy

Recall from Chapter 1 that we have the diagram of covering spaces

C̃ P̃→ C P→ C

with the corresponding sequence of deck groups

(5.29) (Z/2Z)4 → A(G)→ S6

where A(G) is a quotient group of Sp(4,Z). We also have P : C → M2 where M2

is the moduli space of compact genus two Riemann surfaces. We also have the

bundles P(Sk(V ))× C̃, P(Sk(V ))×C, and the quotient bundle (2.26) on C, with flat

connections ∇̃
(k)

, ∇(k), and ∇(k)
respectively, where

∇(k) := d+ ω(k)

and ∇̃
(k)

is defined as the pull-back of ∇(k), and it (∇̃
(k)

) is equivalent to the pull

back of ∇(k)
by the appropriate composition of covering maps. We also have the

(projective) bundle with a flat connection on M2, see (2.34), and the pull-back of

(2.34) to C coincides with the bundle (2.26) and the connection ∇(k)
.

Recall from (5.10) the loops p̄R and γ̄ in π1(C, ψ(0)) such that the projection

of pR to M2 was the constant loop φ(a), namely the order five orbifold point of

the Teichmüller curve φ(χ), and the projection of γ̄ to M2 was the closed loop



4. COMPUTING MONODROMY 99

φ(γ) ⊂ φ(χ). Together, φ(γ) and the order five stabilizer group of the orbifold point

φ(a) generate the πorb1 (φ(χ), φ(a)).

Recall also, that we have preferred lifts of the point ψ(0) and the paths p̄R and

γ̄ in C, namely ψ(0), pR and γ̃. In this section, we compute the parallel transport of

the connection ∇(k) in the bundle Sk(V )×C along the paths pR and γ̃. Our strategy

is to use specific parametrizations of these paths, pull back the connection to the

parameter space and compute the parallel transport there.

Let C∗ be the group of non-zero complex numbers. There exists an obvious

action of C∗ on C given by coordinate wise multiplication. We denote by C∗z ⊂ C the

C∗ orbit of z ∈ C. Thus given any z ∈ C, we get an embedding

τz : C∗ → C

based at the point z.

Lemma 4.1. Given z ∈ C, the pull-back connection τ∗z∇(k) is trivial in the bundle

PSk(V )× C∗ over C∗.

Remark 4.2. This lemma is a direct corollary of proposition 4.10 and theorem

5.25 contained in chapter 2, but we give a direct proof here which is more instructive.

Proof. Recall the 1-form, (2.22), defining the connection ∇(k) is given as a

sum of holomorphic 1-forms k̄Ω̂i,j dzi−dzj
zi−zj , which take values in the endomorphisms

of Sk(V ). It is easy to see that

τ∗z

(
dzi − dzj
zi − zj

)
=

zi − zj
α(zi − zj)

dα =
dα

α
,

where α is the global coordinate on C∗. This implies that

τ∗z∇(k) = d+ k̄
∑

16i<j66

Ω̂i,j dα

α

= d− 3k̄ Id
dα

α

where the second equality follows from (4.4) of chapter 2.

Consider the following parametrization of the unit circle in C∗,

δ : [0, 2π]→ C∗ where δ(s) = eis.

Notice that 〈δ〉 ∼= π1(C∗, 1), i.e. δ generates the fundamental group of C∗.

Now τ∗z∇(k) restricted to δ is

(5.30) (τz ◦ δ)∗∇(k)(s) = d− 3k̄ Id
δ′

δ
= d− i3k̄ Id .
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Let

Y (s) = exp

(
− i3k̄ Id(s)

)
.

Then

Y ′(s) = −i3k̄ Id ·Y (s),

which implies that Y (s) gives the parallel transport of (5.30). The monodromy of

(5.30) around the generator δ is then

Y (2π) = exp

(
− 3(2πi)k̄ Id

)
= Id ∈ End0(Sk(V )).

This implies that the monodromy of τ∗z∇(k) along δ is trivial in PSk(V ), and

since δ generates the entire fundamental group, it follows that ∇(k) is trivial over

any orbit C∗z. �

We also get the following.

Corollary 4.3. The parallel transport of ∇(k) along pR is projectively trivial.

Proof. Recall that the path pR ⊂ C is given as the orbit of a rotation in

PSL(2,C) applied to ψ(0) . This implies that pR is contained in C∗ψ(0). The result

now follows from lemma 4.1 �

We will need the following statement later.

Proposition 4.4. The C∗ action on C lifts to C̃.

Proof. This follows from theorem 4.19 in chapter 2, where M is PSL(2,C), since

this C∗ action is the action of dilations in PSL(2,C). �

Now we compute the parallel transport of ∇(k) along γ̃. Recall from (5.9)

γ̃ := ν ′(ψ((γ̃0)−1))) · pI · ψ(γ̃1) · ψ(γ̃0) ⊂ C.

In order to compute the parallel transport along γ̃ we must compute the parallel

transport along all the paths separately appearing in the expression above.

We observe that the parallel transport of ∇(k) along pI is trivial. This follows

since pI is contained in the C∗ orbit of ψ((1− ε)−1) and proposition 4.1 tells us that

∇(k) is trivial along any C∗ orbit.

We now compute the parallel transport along ψ(γ̃1). The semi circle γ̃1 ⊂ χ̃ is

contained in the image of B1, defined in (5.21), which is a punctured disk of radius

ε based at 1 ∈ χ̃.
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Proposition 4.5. The parallel transport along (B1 ◦ ψ)∗(ψ(γ̃1)) with respect to

(B1 ◦ ψ)∗∇(k) in PSk(V ) is

Q1(−iε) · exp
(
− πik̄A1

)
·Q1(iε),

where Q1(b1) is the power series from proposition 3.5 (of this chapter).

Remark 4.6. We assume the ε in the definition of B1 to be bigger than the ε in

the definition of γ̃1. The ε appearing in the proposition refers to the ε for γ̃1.

Proof. From proposition 3.5 we know that the parallel transport of

(B1 ◦ ψ)∗∇(k) is given by a solution of the form Y (b1) shown in (5.24). The pull

back (B1 ◦ ψ)∗(ψ(γ̃1)) is a semi circle in D1 traveling in an anti-clockwise direction

from iε to −iε, avoiding the positive real axis in D1 (which was our choice for the

branch cut of the logarithm on D1). Thus the parallel transport is given by

Y (−iε)(Y (ε))−1 = Q1(−iε)(−iε)k̄A1(iε−k̄A1)Q1(iε)−1

= Q1(−iε)exp(log(−iε)k̄Ai)exp(−log(iε)k̄Ai)Q1(iε)−1

= Q1(−iε)exp((log(iε) + πi)k̄A1)exp(−log(iε)k̄A1)Q1(iε)−1

= Q1(−iε)exp(πik̄Ai)Q1(iε)−1,

where the first equality is from (5.24) and third equality follows from our choice of

the branch cut for the logarithm. �

Now we compute the parallel transport of ∇(k) along ψ(γ̃0). Recall that γ̃0 ⊂ χ̃ is

the interval [0, 1−ε]. We take the pull back ψ∗(∇(k)), which is given in (5.11), restrict

it to the interval [0, 1 − ε], and compute the monodromy there. This monodromy

was computed in section 3 of this chapter and is given by the following convergent

series

(5.31) P (k)(1− ε) = Id +

∞∑
r=1

k̄r
∑

ζi1 ,...,ζir∈µ5

L0(ζi1 , . . . , ζir |1− ε))Ai1 . . . Air ,

where the complex numbers L0(ζi1 , . . . , ζir |1 − ε) are iterated integrals defined in

(5.16).

Theorem 4.7. Let k > 0 be an integer. Let

ρ(k) : πorb1 (M2, φ(a))→ EndP(Sk(V ))

be the monodromy representation of the Hitchin connection based at the orbifold point

φ(a).

Recall U and T , the generators of the orbifold fundamental subgroup πorb1 (φ(χ), φ(a)).

Then
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1) ρ(k)(U) = (M
(k)
0 )−1

2) ρ(k)(T ) = P (k)(1− ε)−1 · (M (k)
1 )−1 ·Q1(−iε) · exp

(
−πik̄A1

)
·Q1(iε)−1 ·P (k)(1− ε)

where M
(k)
0 and M

(k)
1 are from lemma 2.2.

Proof. Recall from Proposition 2.1, that the elements U and T of πorb1 (χ, a)

are represented by the generator of the stabilizer of the orbifold point a ∈ χ and

the curve γ, respectively. These in turn lift to the loops p and γ in C̄, so we must

calculate the holonomy around these loops with respect to ∇(k)
.

Starting with p, let PT(p̄) denote the desired parallel transport map of ∇(k)

around p̄, and let PT(p(ψ(0))) denote the parallel transport of ∇(k) around the lift

p(ψ(0)) of p̄ to C. Then lemma 2.2 and corollary 4.3 imply that

PT(p̄) = M−1
0 · PT(p(ψ(0))) = M−1

0

as projective endomorphisms of Sk(V ), because PT(p(ψ(0))) is projectively trivial.

Also, proposition 4.4 implies that the element M0 ∈ A(G), which is the image of

p ∈ π1(C, ψ(0)) under the map

π1(C, ψ(0))→ A(G),

is in fact independent of the curve p ⊂ C∗ connecting 1 to ζ−1. This proves the first

part.

For the second statement, we first get that

PT(γ̄) = M−1
1 · PT(γ),

and by applying (5.9), we get that

PT(γ̄) = M−1
1 · PT(ν ′(ψ(γ̃0)−1)) · PT(p′(ψ((1− ε)−1)) · ψ(γ̃1)) · PT(ψ(γ̃0))

= PT(ψ(γ̃0)−1) ·M−1
1 · PT(p′(ψ((1− ε)−1)) · ψ(γ̃1)) · PT(ψ(γ̃0)),

where we used the fact that the connection ∇̃(k)
is equivariant with respect to the

action of A(G) to commute M−1
1 with the parallel transport. This commutation also

had the effect of removing ν ′ from ν ′(ψ(γ̃0)−1) because M−1
1 maps to ν ′ under the

map A(G)→ S6. Finally, PT(ψ(γ̃0)−1) is equal to Y (β), and therefore, the desired

expression follows from proposition 4.5. �

For k = 1, we in particular have that

ρ(1)(U) = (M
(1)
0 )−1 ρ(1)(T ) = (M

(1)
1 )−1

The second equality follows since Ω̂i,j are differential operators of order two and act

on homogenous polynomials of degree one, thus on P(V ), by zero. This implies that

P (1)(1− ε) = Q1(iε) = exp(−πik̄Ai) = Id.
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Moreover, in [Kas95] and [LD53] it is shown that

lim
ε→0

ρ(k)(T ) = (Φ
(k)
1 )−1 ·

(
(M

(k)
1 )−1 · exp

(
− πik̄Ai

))
· Φ(k)

1

where recall from the last section that

Φ
(k)
1 = Id +

∞∑
r=1

k̄r
∑

ζi1 ,...,ζir∈(µ5)r

ζir 6=1

L0(ζi1 , . . . , ζir |1)Ai1 . . . Air .

This gives the theorem 0.2 in the introduction with Φ(k) = Φ
(k)
1 .





CHAPTER 6

Geodesic Flow

1. Hyperlogarithm and Parallel Transport of Hitchin connection

Recall that χ̃ := CP1 − {µ5 ∪ ∞}. Let us make the choice of line segments

running from each element in µ5 to infinity as the branch cuts for the logarithm. Let

p, q ∈ χ̃ be distinct and let γ : [0, 1] → χ̃ be a path starting from p and ending at q

and avoiding the branch locus of logarithm. and let a ∈ µ5 . Consider the following

function

Lp(a|q) :=

∫ q

p

dt

t− a = log
q − a
p− a,

where t is the global rational coordinate on χ̃. Now choose some tuple (a1, a2, . . . , ar),

where each ai ∈ µ5, and consider the recursively defined integral in [LD53]

(6.1) Lp(a1, a2, ..., ar|q) :=

∫ q

p

Lp(a1, a2, . . . , ar−1|q)
t− ar

.

Such integrals are called Hyperlogarithms for al ∈ µ5.

We have the uniform bound

(6.2) |Lp(a1, a2, ..., ar|q)| <
1

r!

(
l(γ)

σ

)r
,

where l(γ) is the euclidean length of γ and σ is the shortest euclidean distance from

γ to µ5. If the path γ is such that it is contained entirely in a small disk around p,

then (6.1) can be expanded as the following series

(−1)r
∞∑
m=r

(q − p)m
∑

ν1+ν2+...+νr=m

1

ν1(ν1 + ν2)...(ν1 + ν2 + ...+ νr)

× 1

(a1 − p)ν1(a2 − p)ν2 ...(ar − p)νr
in this disk.

Recall from (5.14) the connection ∇(k)
χ̃ in the trivial bundle P(Sk(V ))× χ̃, where

V is the space of homogeneous polynomials of degree one in four variables. Let

γ : [0, 1]→ χ̃, we denote the parallel transport of ∇(k)
χ̃ along this path by

105
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PT (k)(γ(s)) : [0, 1]→ EndP(Sk(V )), s ∈ [0, 1]

and define

(6.3)

PT (k)(γ(s)) := Id +
∞∑
r>1

k̄r
∑

a1,a2,...,ar∈(µ5)r

La(a1, a2, ..., ar|γ(s))Aa1 , Aa2 , . . . Aar

where Aai ∈ EndP(Sk(V )) are second order differential operators defined in (5.11).

We show that (6.3) is convergent with respect to a suitable norm.

Let ‖.‖ be the operator norm on PSk(V ). This norm satisfies the schwartz and

the triangle inequalities. For convenience of notation, we define

(6.4)
∞∑
r>0

Xr(s) :=
∞∑
r>0

( ∑
a1,a2,...,ar∈µ5

La(a1, a2, . . . , ar|γ(s))Aa1 . . . Aar−1 , Aar

)
.

We rewrite the norm (6.2) as

(6.5) |La(a1, a2, ..., ar|γ(s))| 6 D(s)r

r!
,

where D(s) := l(s)
δ(s) and l(s) is the euclidean length of the path γ(s), and δ(s) is the

shortest length from the path γ(s) to any a ∈ µ5.

Proposition 1.1. The series
∑∞

r>0Xr(s) converges absolutely for s ∈ [0, 1] if

δ(s) > 0.

Proof. From definition we get

∞∑
r>0

‖Xr(s)‖ =

∞∑
r>0

(
‖

∑
a1,a2,...,ar∈µ5

La(a1, a2, ..., ar|γ(s))Aa1,k . . . Aar−1,kAar,k‖
)

6
∞∑
r>0

( ∑
a1,a2,...,ar∈µ5

|La(a1, a2, ..., ar|γ(s))| ‖Aa1,k . . . Aar−1,kAar,k‖
)

6
∞∑
r>0

( ∑
a1,a2,...,ar∈µ5

|La(a1, a2, ..., ar|γ(s))| ‖Aa1,k‖ . . . ‖Aar−1,k‖‖Aar,k‖
)

6
∞∑
r>0

(
D(s)r

r!

( ∑
a1,a2,...,ar∈µ5

‖Aa1,k‖ . . . ‖Aar−1,k‖‖Aar,k‖
))

Here, the first equality follows from triangle inequality, second from schwartz in-

equality, and third by the bound (6.5). Now, let za := ‖Aa,k‖ for all a ∈ µ5, and
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z :=
∑

a∈µ5 za. We then get that

∞∑
r>0

( ∑
a1,...,ar∈µ5

‖Aa1,k‖ . . . ‖Aar−1,k‖‖Aar,k‖
)

=

∞∑
r>0

( ∑
a1,...,ar∈µ5

za1za2 . . . zar−1zar

)

6
∞∑
r>0

( ∑
a∈µ5

za

)r
=
∞∑
r>0

zr

We substitute this in the expression derived above to obtain

∞∑
r>0

‖Xr(s)‖ 6
∞∑
r>0

(
D(s)r

r!

( ∑
a1,a2,...,ar∈µ5

‖Aa1,k‖ . . . ‖Aar−1,k‖‖Aar,k‖
))

6
∞∑
r>0

(
D(s)rzr

r!

)
= eD(s)z

If D(s)z < ∞ then eD(s)z < ∞, and the lemma is proved. Now, D(s)z = ∞ if and

only if δ(s) = 0. This case is excluded by assumption. �

We now show that (6.3) is the parallel transport of ∇(k)
χ̃ . Recall that

∇(k)
χ̃ = d+ ω

(k)
χ̃

where the 1-form ω
(k)
χ̃ is defined in (5.13).

Theorem 1.2. Let γ(s) be a path in χ̃. Then

(PT (k))′ = PT (k)ω
(k)
χ̃ .

Proof. From the definition of ω
(k)
χ̃ we must show that

(6.6)
dPT (k)(γ(s))

ds
= k̄

∑
a∈µ5

PT (k)(γ(s))
Aa

γ(s)− a.

Using (6.3) we have that,

dPT (k)(γ(s))

ds
=

d

ds

(
Id +

∞∑
r>1

k̄r
∑

a1,...,ar∈(µ5)r

La(a1, ..., ar|γ(s))Aa1 , . . . Aar

)

= Id +
∞∑
r>1

k̄r
d

ds

(∑
r>1

∑
a1,...,ar∈(µ5)r

La(a1, ..., ar|γ(s))Aa1 . . . Aar

)

From (6.1) it follows that the hyperlogarithm satisfies the following differential equa-

tion.
d

ds
La(a1, . . . , ar|γ(s)) =

La(a1, . . . , ar−1|γ(s))

γ(s)− ar
.



108 6. GEODESIC FLOW

Using this differential the right hand side above becomes

Id +
∞∑
r>1

k̄r
∑
a∈µ5

(∑
r>1

∑
a1,...,ar−1∈(µ5)r−1

La(a1, . . . , ar−1|γ(s))Aa1 . . . Aar−1

)
Aa

γ(s)− a.

Rearranging the terms we get

k̄
∑
a∈µ5

(
Id +

∞∑
r>1

k̄r
∑

a1,...,ar−1∈µ5

La(a1, . . . , ar−1|γ(s))Aa1 . . . Aar−1

)
Aa,k

γ(s)− a.

The term in the bracket is exactly PT (k)(γ(s)), which yields the desired result (6.6).

�

2. An application of Oseledets multiplicative ergodic theorem

Let Uχ be the unit tangent bundle of the Teichmüller curve and let µ be the

canonical Louiville measure on Uχ. It is well known that geodesic flow on the unit

tangent bundle of any finite area hyperbolic surface is ergodic with respect to the

Louiville measure, [CFS82], which implies the geodesic flow Ts : Uχ → Uχ, for

s ∈ R+, is ergodic with respect to µ. We have the degree ten branched covering map

πχ̃ : χ̃ → χ. Using this map we can pull back the unit tangent bundle π∗χ̃Uχ → χ̃

which we denote by Uχ̃→ χ̃. Likewise we can lift the geodesic flow π∗χ̃Ts : π∗χ̃Uχ→
π∗χ̃Uχ, which we denote by T̃s : Uχ̃→ Uχ̃. Let π∗χ̃(µ) := µ̃ be the lift of the Louiville

measure. Since χ̃→ χ is a finite cover, it follows that µ̃(Uχ̃) <∞, and T̃s is ergodic

with respect to µ̃.

In the previous section we developed that for integer an k > 0, we have the trivial

vector bundle PSk(V ) × χ̃ with the flat connection ∇(k)
χ̃ , where V is the space of

homogeneous polynomials of degree one in four variables. Both the bundle and the

connection can be pulled back to Uχ̃, and we denote these pull backs by PSk(V )×Uχ̃
and ∇(k)

Uχ̃.

Let us choose some norm ‖.‖ on the vector space PSk(V ). We now have a finite

measure space (Uχ̃, µ̃), an ergodic flow T̃s : Uχ̃ → Uχ̃, and a flat normed vector

bundle PSk(V ) × Uχ̃. We thus in the situation of Oseledets multiplicative ergodic

theorem which we recall as it appears in [KZ97].

Theorem 2.1. Let Ts : (X,µ) → (X,µ), for s ∈ R+, be an ergodic flow on

measurable space such that µ(X) < ∞. Let V → X be an R+ equivariant finite

dimensional vector bundle. Assume that a (non-equivariant) norm ‖.‖ on V is chosen

such that for all s ∈ R+,

(6.7)

∫
X

log(1 + ‖Ts : Vx → VTs(x)‖) dµ <∞.
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Then there are constants λ1 > λ2 > · · · > λk and an invariant filtration of V

V = Vλ1 ⊃ · · · ⊃ Vλk ⊃ 0

such that, for µ-almost every x ∈ X and all v ∈ Vx one has

‖Ts(v)‖ = e(λjt+O(s)), s→∞

where j is the maximal value for which v ∈ (Vλj )x.

For any (x, v) ∈ Uχ̃ we have the map

PT
(k)
Uχ̃ (T̃s(x, v)) : R>0 → EndPSk(V ), s ∈ R>0

where PT
(k)
Uχ̃ denotes the parallel transport of ∇(k) along paths in Uχ̃. This induces

the cocycle

(6.8) θ
(k)
(x,v)(s) : PSk(V )→ PSk(V ), s ∈ R>0, (x, v) ∈ Uχ̃.

The cocycle (6.8) is equivalent to the function

(6.9) θ(k) : (R>0 × Uχ̃)→ EndPSk(V ).

Let us suppose that our cocycle (6.9) is integrable. That is, for any s ∈ R>0, we

have that

(6.10)

∫
Uχ̃

log(1 + ‖θ(k)(s, ·)‖) dµ̃ <∞

where the norm on EndPSk(V ) is induced from the norm on PSk(V ).

Given (6.10) holds, Oseledets multiplicative ergodic theorem, see theorem 2.1 in

the introduction, guarantees a filtration,

PSk(V ) = F
(k)
1 ⊃ F (k)

2 ⊃ · · · ⊃ F (k)
n ⊃ 0

where F
(k)
j are projective sub-bundles, and constants

λ
(k)
1 > · · · > λ(k)

n

such that

‖θ(k)
(x,v)(s) · (f)‖ = e(λ

(k)
j t+O(s)), s→∞

where j is the maximal value for which f ∈ F (k)
j . Moreover, the filtration is preserved

by the cocycle (6.8), the number n depends on the dimension of Sk(V ), and due to

the ergodicity of the flow, the numbers λ
(k)
j do not depend on the initial point

(x, v) ∈ Uχ̃. Thus for every integer k > 0, the numbers λ
(k)
j are invariants of the

cocycle (6.8), and thus are called characteristic or Lyapunov exponents of the cocycle

in question.
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Our situation is analogous to [KZ97]. Recall that χ̃ parametrizes a family of

compact genus two Riemann surfaces. Corresponding to this family, one gets a vector

bundle on χ̃ whose fiber is the first homology (with coefficients in C) of the Riemann

surface. This bundle comes equipped with a flat connection called the Gauss-Mannin

connection. Just as in our case, one lifts this bundle and the connection to Uχ̃, and

uses the parallel transport of this lifted connection to give a cocycle

(6.11) θKZ : (R>0 × Uχ̃)→ End(H)

where H is the first homology group (with coefficients in C) of a genus two Riemann

surface corresponding to some x ∈ χ̃. Notice that in this case the vector bundle is not

trivial, but the authors in [KZ97] claim that it is trivializable (on the complement

of a set of measure zero) and thus the procedure works.

Remark 2.2. In [KZ97], the authors actually take H to be the first homology

group with real coefficients. It becomes clear in conjecture 2.3 why we consider

complex coefficients here.

As is well known, there exists a canonical intersection form with respect to which

H is a symplectic vector space, and this form provides a norm ‖.‖KZ on H. Moreover,

the Gauss-Mannin connection preserves the symplectic form, which implies that the

KZ cocycle (6.11) takes values in Sp(4,C).

Now we have the peculiar coincidence

dim(V ) = dim(H).

Moreover, in [vGdJ98] authors write a symplectic form in V , and we will denote the

induced norm by ‖.‖GJ in V . Recall that the monodromy representation of πorb1 (χ, a)

calculated by the parallel transport of ∇(k)
χ̃ when k = 1 is given by the two symplectic

matrices M0 and M1 calculated in lemma 2.2. This means that ∇(1)
χ̃ preserves the

symplectic form in V defined in [vGdJ98]. In the light of this discussion, we make

the following

Conjecture 2.3. Let us equip the vector spaces H and V with norms ‖.‖KZ
and ‖.‖GJ . Then, (6.9) is integrable, and the Lyapunov exponents of the cocycle θ(1)

and θKZ coincide.
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