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Abstract

This dissertation investigates the socle of the Steinberg squares for an algebraic group in positive
characteristic, and what this socle says about the decomposition of the Steinberg square into a
direct sum of indecomposable modules.

A main tool in this investigation will be the fact that tensoring the Steinberg module with a
simple module of restricted highest weight gives a module with a good filtration. This result was first
proved by Andersen when the characteristic is large enough. In this dissertation, generalizations of
those results, which are joint work with Daniel Nakano, are presented.

The main results of the dissertation provide formulas which describe how to find the multiplici-
ties of simple modules in the socle of a Steinberg square, given information about the multiplicities
of simple modules in Weyl modules. Further, it is shown that when the prime is large enough, the
socle completely determines how a Steinberg square decomposes.

The dissertation also investigates the socle of the Steinberg square for a finite group of Lie type,
again providing formulas which describe how to find the multiplicity of a simple module in the
socle, given information about the multiplicities of simple modules in Weyl modules.

Résumé

Denne afhandling undersøger soklen for Steinberg kvadraterne for en algebraisk gruppe i positiv
karakteristik, og hvad denne sokkel siger om dekompositionen af et Steinberg kvadrat som en sum
af indekomposable moduler.

Et af hovedredskaberne i dette er det resultat, som siger, at n̊ar man tensorerer Steinberg
modulet med et simpelt modul med restringeret højeste vægt, s̊a f̊ar man et modul med en god
filtration. Dette resultat blev først bevist af Andersen n̊ar karakteristikken er stor nok. I denne
afhandling bliver genereliseringer af disse resultater, som er fælles arbejde med Daniel Nakano,
præsenteret.

Hovedresultaterne i denne afhandling giver formler, der beskriver hvordan man finder multi-
pliciteten af et simpelt modul i soklen af et Steinberg kvadrat, givet information om multipliciteterne
af simple moduler i Weyl moduler. Det bliver yderligere vist at n̊ar karakteristikken er stor nok, s̊a
bestemmer soklen fuldstændigt dekompositionen af et Steinberg kvadrat.

Afhandlingen undersøger ogs̊a soklen for Steinberg kvadratet for en endelig gruppe af Lie type,
og giver igen formler, som beskriver hvordan man finder multipliciteten af et simpelt modul i soklen,
given information om multipliciteterne af simple moduler i Weyl moduler.
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1 Introduction

When studying the representation theory of a reductive algebraic group over an algebraically closed
field of positive characteristic, there are several difficulties that come up, which are not present in
the theory in characteristic 0.

In characteristic 0, one gets all simple modules by inducing 1-dimensional modules from a Borel
subgroup, and by combining this with the Borel-Weil-Bott theorem, this implies that the category
of finite dimensional modules is semisimple.

When the characteristic is positive, these induced modules are no longer generally simple. In-
stead, their socles are simple, and all simple modules occur as the socle of (a unique) such induced
module.

A general problem in representation theory is to describe the structure of the tensor product
of two simple modules. For algebraic groups in characteristic 0, this amounts to describing the
composition factors of such a tensor product, and since the characters of the simple modules are
given by Weyl’s character formula, this is fairly well-understood.

However, when working in characteristic p > 0 this gets more complicated for two reasons.
Firstly, since the resulting module will usually not be semisimple, it will not be sufficient to de-
scribe the composition factors. And secondly, we do not actually know the characters of the simple
modules, so even describing those composition factors will in general be very hard.

There are several ways one might lessen these complications. One is to focus on a specific
algebraic group of small rank, where calculations are more easily made. In [DH05], the above
problem was studied for the group SL2, in [BDM11a] it was studied for the group SL3 when p ≤ 3,
and in [BDM11b] for p ≥ 5.

Another way one might lessen the complications is to focus only on modules where the characters
are known. One possible way to do this is to find a class of induced modules which are still simple
when working in characteristic p.

An important example of such modules are the Steinberg modules. Not only are these simple,
they are also self-dual, and in many cases they have the sort of properties one usually finds in
characteristic 0.

Since the Steinberg modules are so well-understood, it should therefore be possible to describe
the structure of the tensor product of a Steinberg module with itself (a Steinberg square).

It turns out that one of the main questions that need to be answered in order to understand this
structure is what the socle of such a Steinberg square is, since (at least when p is large enough) the
socle will completely determine how the module splits as a direct sum of indecomposable modules.

The Steinberg squares have not been studied much before, at least not as modules for the
algebraic group. However, when viewed as modules for a finite group of Lie type (seen as a subgroup
of the algebraic group), it has been shown in [HSTZ13] that (except in some special cases) all simple
modules occur as composition factors of the Steinberg square.

A natural further question to ask is then what one can say about the socle of the Steinberg
square as a module for the finite group of Lie type, and what this says about the splitting into a
direct sum of indecomposables.

In this case, the Steinberg module is projective, so the same is true for the Steinberg square, and
the decomposition will be in terms of projective covers of simple modules. The socle will completely
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determine which ones occur and with what multiplicities.
Knowing these multiplicities will in turn yield information about the dimensions of the projec-

tive indecomposable modules for the finite group of Lie type, since the dimension of the Steinberg
square is known. Further, results due independently to Chastkofsky ([Cha81]) and Jantzen ([Jan81])
show how injective indecomposable modules for the Frobenius kernels split when viewed as modules
for the finite group of Lie type (assuming that these injective indecomposable modules lift to the al-
gebraic group), and this can potentially be used to make additional comparisons, once we know both
how the Steinberg square splits for the Frobenius kernel (which will follow from the way it splits for
the algebraic group when the prime is large enough) and how it splits for the finite group of Lie type.

These last two questions, of determining the socle of the Steinberg squares, both as modules for
the algebraic group and as modules for a suitable finite group of Lie type, will be the focus of this
dissertation.

The dissertation is structured as follows.

• In Section 3 I introduce affine schemes, group schemes and their representations. This section
is based on [Jan03], though I have added some additional detailed examples.

• In Section 4 I introduce those results about representations about reductive groups which
I need in later sections. This section is mainly based on [Jan03], though I have tried to include
references to the original versions of the main results where possible.

• In Section 5 I describe the basics of the representation theory of finite groups of Lie type in
the defining characteristic. This section is based on [Hum06], though I have in many places added
a substantial amount of detail to the proofs. Also, the proof that Str is injective and projective
(Theorem 5.18) is new.

• In Section 6 I present joint work with Daniel Nakano, based on the paper [KN14], where we
extend work of Andersen ([And01]) on a conjecture of Donkin (Conjecture 6.1).

The main results of this sections (Theorem 6.11 and the contents of Section 6.10) are that
tensoring the r’th Steinberg module with a simple module of r-restricted highest weight gives a
module with a good filtration (i.e. a filtration whose factors are isomorphic to modules induced
from 1-dimensional modules of the Borel subgroup). We prove this when either p ≥ 2h− 2 (where
h is the Coxeter number of the root system associated to the group), or when the root system is of
type A2, A3, B2 or G2, with the possible exception of p = 7 in type G2.

These results are instrumental in the later sections.

• In Section 7 I study the socle of the r’th Steinberg square and what this says about the
decomposition of the Steinberg square as a direct sum of indecomposable modules.

The main results of this section are formulas (Theorem 7.8), which (assuming p ≥ 2h − 2)
describe how to compute the multiplicity of a given simple module in the socle of a Steinberg
square, given knowledge of the character of the simple module.

In the two subsections of Section 7 I do these calculations more explicitly for the groups SL2

and SL3.

• In Section 8 I once again study the socle of the Steinberg square, this time as a module for a
finite group of Lie type.
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The main results of this section are formulas (Theorem 8.3), which (assuming p ≥ 2h − 2)
describe how to compute the multiplicity of a given simple module in the socle of the Steinberg
square as a module for the finite group of Lie type, given knowledge of the character of the simple
module.

In the two subsections of Section 8 I do some more explicit calculations for the groups SL2(p
r)

and SL3(p
r).

• Appendix A contains some weight calculations needed for one of the results in Section 6.

• Appendix B describes how to decompose tensor products of simple GLn(C)- and SLn(C)-
modules, which is needed to do the explicit calculations for SL2 and SL3.
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2 Notation and Conventions

In this dissertation, certain notation will be fixed at certain places. For convenience, once notation
has been fixed at some point, it will be fixed in the remainder of the dissertation. This section gives
a brief overview of what notation is fixed in what parts of the dissertation.

All through the dissertation:

• p is a fixed prime and r is a fixed positive integer.

• k is an algebraically closed field with char(k) = p.

From 4.1 and onwards:

• G is a reductive connected algebraic group over k, defined and split over Z.

• T is a fixed maximal torus in G.

• R is the set of roots of G with respect to the action of T, S is a fixed basis of R, and R+

(resp. R−) is the corresponding set of positive (resp. negative) roots.

• For each α ∈ R, Uα is the root subgroup of G corresponding to α.

• U (resp. U+) is the subgroup of G generated by the Uα for α ∈ R− (resp. α ∈ R+).

• B = UT and B+ = U+T.

• X = X(T) is the group of characters of T.

• W = NG(T)/T is the Weyl group of G.

• w0 ∈W is the longest element in W .

• α0 is the highest short root of R.

• ρ = 1
2

∑
α∈R+ α.

• h is the Coxeter number of R.

From 4.2 and onwards:

• F = F rG is the r’th iterate of the Frobenius morphism on G.

• G = GF is the subgroup of fixed points of F in G and similarly, T = TF , U = UF ,
U+ = (U+)F , B = BF , B+ = (B+)F .
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3 Affine Schemes, Group Schemes and Representations

For many purposes, it is sufficient to regard algebraic groups as group objects in the category of
affine varieties, and certainly the main results in this dissertation can be formulated using that
language. However, in order to prove some of the deeper theorems about the relations between
representations of connected reductive algebraic groups and their finite subgroups of Lie type, it
will be necessary to regard them as affine group schemes.

This section will introduce the basic definitions and notation needed for this purpose, though
it should be noted that in order to understand the full proofs of the later results, one needs not
just affine schemes but arbitrary schemes. However, we have decided to only introduce the affine
schemes here in order to keep the length of the section down. For a full account of the theory, one
should consult [Jan03].

In the following, let K be a commutative ring, {K -alg} the category of commutative K-algebras
and {Sets} the category of sets (here K-algebra will always mean commutative K-algebra unless
otherwise noted).

3.1 Affine Schemes

Definition 3.1 (K-functor). A K-functor is a functor from {K -alg} to {Sets}. A subfunctor of a
K-functor X is a K-functor Y such that for all K-algebras A, Y (A) ⊆ X(A) and such that for any
morphism of K-algebras ϕ : A→ B, Y (ϕ) = X(ϕ)|Y (A). If Y is a subfunctor of X we write Y ⊆ X.

Note that if Y ⊆ X is a subfunctor, then Y is uniquely determined by X and by what Y does
to K-algebras. Thus, whenever we specify something to be a subfunctor of a given functor, we will
not need to mention what it does to morphisms.

If R is a K-algebra, we define the K-functor SpK R by SpK R(A) = HomK -alg(R,A) for any
K-algebra A. For any morphism of K-algebras ϕ : A→ B we set SpK R(ϕ) to be the morphism of
sets HomK -alg(R,A)→ HomK -alg(R,B) given by f 7→ ϕ ◦ f .

Definition 3.2 (Affine K-scheme). A K-functor X is said to be an affine K-scheme if X is
isomorphic as a functor to SpK R for some K-algebra R.

Whenever the ring K is implicit, an affine K-scheme will simply be referred to as an affine
scheme.

An important example of a K-functor is the functor An (for a positive integer n), which to any
K-algebra A associates the set An and to any morphism of K-algebras ϕ : A → B associates the
map ϕn : An → Bn given by ϕn(x1, . . . , xn) = (ϕ(x1), . . . , ϕ(xn)).

In fact, An is an affine K-scheme, isomorphic to SpK K[T1, . . . , Tn]. The isomorphism is given
by the maps ψA : SpK K[T1, . . . , Tn](A) → An(A) with ψA(ϕ) = (ϕ(T1), . . . , ϕ(Tn)) (for any K-
algebra A and any ϕ ∈ SpK K[T1, . . . , Tn](A) = HomK -alg(K[T1, . . . , Tn], A)). Each of these maps
is a bijection, since any K-algebra homomorphism from K[T1, . . . , Tn] is uniquely determined by
its value on the Ti, and any such choice gives a valid homomorphism.

To show that it is an isomorphism of functors, we just need to verify that it is compatible with
the morphisms. For ease of notation, let X = SpK K[T1, . . . , Tn] and Y = An. In order to show
that the maps are compatible with morphisms, we then need to show that if ϕ : A → B is a
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homomorphism of K-algebras then ψB ◦X(ϕ) = Y (ϕ) ◦ ψA, and this is straightforward from the
definitions.

If X = SpK R is an affine scheme, we write R = K[X], the ring of regular functions on X (as
explained in [Jan03] I.1.3, given an affine scheme X, we can recover this ring as Mor(X,A1)).

If I EK[X] is an ideal, we define a subfunctor V (I) of X by

V (I)(A) = {ϕ ∈ HomK -alg(K[X], A) | I ⊆ ker(ϕ)}

(we could have done this for an arbitrary subset rather than an ideal, but it is clear that it only
depends on the ideal generated by such a subset anyway).

Definition 3.3 (Closed subfunctor). A subfunctor of an affine scheme X is said to be closed if it
has the form V (I) for an ideal I EK[X].

Proposition 3.4. Let X = SpK R be an affine scheme and I, J ER be ideals. Then

I ⊆ J ⇔ V (J) ⊆ V (I)

Proof. Clearly, if I ⊆ J then any homomorphism containing J in its kernel will also contain I, so
V (J) ⊆ V (I).

To show the other implication, it is enough to show that if I 6⊆ J then there exists a K-algebra
A and a homomorphism ϕ : R → A such that J ⊆ ker(ϕ) but I 6⊆ ker(ϕ). So let A = R/J and ϕ
be the canonical map from R to R/J . This homomorphism clearly has J in its kernel, but since
I 6⊆ J and ker(ϕ) = J , it does not have I in its kernel, and the proof is complete.

If Y and Z are subfunctors of a K-functor X, we define the intersection Y ∩Z as the subfunctor
of Y (and of Z) given by (Y ∩ Z)(A) = Y (A) ∩ Z(A) for any K-algebra A.

Proposition 3.5. Let X = SpK R be an affine scheme. If Iα is a family of ideals of R then

⋂

α

V (Iα) = V (
∑

α

Iα)

Proof. Let A be a K-algebra and ϕ ∈ SpK R(A). If ϕ ∈ V (
∑

α Iα)(A) then ϕ ∈ V (Iα)(A) for all α
since all the Iα are contained in

∑
α Iα, and thus ϕ ∈ ⋂α V (Iα).

On the other hand, if ϕ ∈ ⋂α V (Iα) and x =
∑

α xα is an arbitrary element in
∑

α Iα (so only
finitely many non-zero terms), then ϕ(x) = ϕ(

∑
α xα) =

∑
α ϕ(xα) = 0 so ϕ ∈ V (

∑
α Iα)(A).

From above, we see that the intersection of any family of closed subfunctors is again a closed
subfunctor, which means that any subfunctor Y is contained in a unique smallest closed subfunctor
(the intersection of all closed subfunctors containing it), called the closure of Y and denoted Y .

The terminology suggests that the closed subfunctors should in some sense define a topology
(though it is not clear on what set), so we should also be able to take finite unions of closed
subfunctors and again get a closed subfunctor. The problem is that if we define the union of
subfunctors in the obvious way (namely (Y ∪ Z)(A) = Y (A) ∪ Z(A)), we would not in general get
a closed subfunctor. Instead, we have the following proposition to guide the definition:

Proposition 3.6. Let X = SpK R be an affine scheme and I, J ER be ideals. Define a subfunctor
Y ⊆ X by Y (A) = V (I)(A) ∪ V (J)(A). Then Y = V (I ∩ J).
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Proof. If ϕ ∈ Y (A) and x ∈ I ∩ J then clearly ϕ(x) = 0, so Y ⊆ V (I ∩ J) and since V (I ∩ J) is
closed, we also get Y ⊆ V (I ∩ J).

On the other hand, if L is an ideal of R such that Y ⊆ V (L) then we must have V (I) ⊆ V (L)
and V (J) ⊆ V (L) so by Proposition 3.4 we get that L ⊆ I ∩ J and thus that V (I ∩ J) ⊆ V (L),
and since this was for any V (L) containing Y , we must have Y = V (I ∩ J).

In light of the above, we define the union of two closed subfunctors as the subfunctor given by
(V (I) ∪ V (J))(A) = V (I ∩ J)(A). Note that this means we have not defined arbitrary unions, but
this is sufficient for our needs.

To illustrate the problem with the naive definition of the union of closed subfunctors, let us con-
sider the example K = Z (so we are just looking at rings and ring homomorphisms) and the affine
scheme SpZ Z. Let I = (2) and J = (3) be ideals of Z. To show that A 7→ V (I)(A) ∪ V (J)(A) does
not define a closed subfunctor, we just need to find an A such that V (I)(A)∪V (J)(A) 6= V (I ∩J).
If A = Z/6Z then both V (I)(A) and V (J)(A) are empty, as the unique homomorphism from Z to
Z/6Z vanishes at neither 2 nor 3. On the other hand, I ∩ J = (6), and the unique homomorphism
from Z to Z/6Z does vanish at 6, so V (I ∩ J)(A) contains this homomorphism and is thus strictly
larger than V (I)(A) ∪ V (J)(A).

We now have sufficient machinery to define what it means for an affine scheme to be connected,
since we can define this in the usual way from topology as the non-existence of disjoint non-empty
closed sets whose union is the entire set. Translated to a property of K[X] this says that if I and
J are non-zero ideals of K[X] such that I ∩ J = (0) then I + J 6= K[X].

In particular, we see that if R is an integral domain then the affine scheme SpK R is connected
(in fact irreducible, as the intersection of any two non-zero ideals contains a non-zero element).

One of the reasons we will not need to deal with general schemes is the following:

Proposition 3.7. Let X = SpK R be an affine scheme and IER be an ideal. Then V (I) ∼= SpK R/I.

Proof. For each K-algebra A define the map ψA : V (I)(A) → SpK R/I(A) by ϕ 7→ ϕ ◦ π where
π : R→ R/I is the canonical projection.

This is obviously a bijective map for each K-algebra A, so we just need to check that it is
compatible with the morphisms. Thus, we need to show that for any homomorphism ϕ : A → B
we have ψB ◦ V (I)(ϕ) = SpK R/I(ϕ) ◦ψA, but from the definitions, this is simply the associativity
of function composition.

From the above we see that a closed subfunctor of an affine scheme is again an affine scheme.

The affine schemes we will be most interested in are the ones satisfying the following:

Definition 3.8 (Algebraic and reduced schemes). An affine scheme X is said to be algebraic if
K[X] is a finitely presented K-algebra.

It is called reduced if 0 is the only nilpotent element in K[X].

If A is a K-algebra and X is a K-functor, we define the A-functor XA as the restriction of X to
those K-algebras that are A-algebras (this gives an A-functor as any A-algebra is also a K-algebra
since A is a K-algebra).

If X = SpK R is an affine scheme, then XA is also an affine scheme, isomorphic to SpA(R⊗KA).
If Y is an A-functor, then Y is said to be defined over K if Y = XA for some K-functor X.
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3.2 Group Schemes

Definition 3.9 (K-group functor). A K-group functor is a functor from {K -alg} to the category
of groups.

Since we can compose a K-group functor with the forgetful functor from the category of groups
to {Sets}, we can regard any K-group functor as a K-functor, so all the concepts introduced in the
previous section will also be applicable to K-group functors.

Definition 3.10 (K-group scheme). A K-group scheme is a K-group functor which, when viewed
as a K-functor, is an affine scheme.

As with affine K-schemes, whenever the algebra K is implicit, we will simply refer to a K-group
scheme as a group scheme (note that we have also dropped the word ”affine”, since we will not be
dealing with non-affine schemes).

Example 3.11 (Additive group scheme Ga). The additive group scheme Ga is given by the functor
Ga(A) = (A,+) for any K-algebra A, and Ga(ϕ) = ϕ for any homomorphism of K-algebras. It is
a group scheme since the corresponding functor to {Sets} is just A1 = SpK K[T ].

Example 3.12 (Multiplicative group scheme Gm). The multiplicative group scheme Gm is given
by the functor Gm(A) = (A×, ·) (i.e. the units in A under multiplication) for any K-algebra A, and
Gm(ϕ) = ϕ for any homomorphism of K-algebras. This is a group scheme as the corresponding
functor to {Sets} is isomorphic to SpK K[T, T−1].

Example 3.13 (GLn). The group scheme GLn is given by the functor

GLn(A) = {M ∈Mn(A) | det(M) ∈ A×}

for any K-algebra A, where Mn(A) is the ring of n × n matrices with coefficients in A. For any
homomorphism ϕ : A → B of K-algebras, GLn(ϕ) is the map that applies ϕ to each entry of a
matrix. This is a group scheme as the corresponding functor to {Sets} is isomorphic to SpK R where

R = K[T1,1, T1,2, . . . , T1,n, T2,1, T2,2, . . . , Tn,n, det−1]

and

det =
∑

σ∈Sn
sign(σ)

n∏

i=1

Ti,σ(i)

is the determinant polynomial (sign : Sn → {−1, 1} is the sign homomorphism).

If K is an integral domain, then all the algebras in the above examples are integral domains, so
the examples are all connected and reduced. Since the algebras are finitely presented, all the groups
in the examples are algebraic.

A subgroup functor of a K-group functor is defined in the obvious way, and it is said to be
closed if the corresponding functor to {Sets} is. In that case, it is also called a closed subgroup
scheme.

A subgroup functor H of G is said to be normal if H(A) is normal in G(A) for each K-algebra
A.
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From now on, if G is a group scheme, a subgroup of G will mean a subgroup functor of G.
If G and H are group schemes, Mor(G,H) will denote the set of morphisms from G to H as

K-functors, and Hom(G,H) will denote the set of morphisms from G to H as K-group functors
(so Hom(G,H) ⊆ Mor(G,H)).

Example 3.14 (SLn). The group scheme SLn is given as the subgroup functor of GLn with

SLn(A) = {M ∈Mn(A) | det(M) = 1}

for any K-algebra A. It is a closed subgroup scheme of GLn, given by the ideal (det−1), and hence
it is a group scheme isomorphic to SpK R with

R = K[T1,1, T1,2, . . . , T1,n, T2,1, T2,2, . . . , Tn,n]/(det−1)

A final example that will be important for the definition of representations is the following:

Example 3.15 (Ma). If M is a K-module, we will define the K-group functor Ma by letting
Ma(A) = (M ⊗K A,+) for any K-algebra A, and Ma(ϕ) = idM ⊗ϕ for any homomorphism of
K-algebras ϕ.

If M = Kn then we see that we can identify Ma(A) = (Kn ⊗K A,+) with (An,+), so in this
case Ma is a group scheme and the corresponding functor to {Sets} is isomorphic to An.

3.3 Representations of Group Schemes

If X and Y are K-functors, we define the K-functor X×Y by (X×Y )(A) = X(A)×Y (A) for any
K-algebra A, and for any homomorphism of K-algebras ϕ : A→ B and any (x, y) ∈ X(A)× Y (A)
we set (X × Y )(ϕ)(x, y) = (X(ϕ)(x), Y (ϕ)(y)) ∈ X(B)× Y (B).

If G is a K-group functor and X is any K-functor, a left operation of G on X is a morphism
of functors from G×X to X such that for each K-algebra A the induced map from G(A)×X(A)
to X(A) is an action of G(A) on X(A) in the usual sense from group theory (a right operation is
defined similarly).

If M is a K-module then we define a representation of G on M to be an operation of G on the
K-functor Ma such that for each K-algebra A, the action of G(A) on Ma(A) = M ⊗K A is via
A-linear maps. We also call such an operation a structure as a G-module on M , and we simply call
M a G-module.

Example 3.16. Let G = GLn and M = Kn. Define for each K-algebra A a map ψA from
G(A)×Ma(A) to Ma(A) by (g, x) 7→ gx where we identify Ma(A) = Kn⊗K A with An in the usual
way, and where gx is the regular multiplication of matrices. Each of these maps is clearly an action
of G(A) on Ma(A) via A-linear maps, so we just need to check that they define a morphism of the
functors.

So let ϕ : A → B be a homomorphism of K-algebras. What we then need to check is that
ψB ◦ (G×Ma)(ϕ) = Ma(ϕ) ◦ ψA, so let (g, x) ∈ G(A)×Ma(A). We compute

ψB((G×Ma)(ϕ)(g, x)) = ψB((G(ϕ)(g),Ma(ϕ)(x))) = G(ϕ)(g)Ma(ϕ)(x)

and
Ma(ϕ)(ψA(g, x)) = Ma(ϕ)(gx)

12



But under our identification of Ma(A) with An we see that Ma(ϕ)(x) simply applies ϕ to each
entry in the vector x, and since G(ϕ) does the same to g, it is clear that

G(ϕ)(g)Ma(ϕ)(x) = Ma(ϕ)(gx)

so the maps do indeed define a morphism of functors.
Hence, we have now defined a representation of G on M .

If G is a group scheme and M is a G-module, we have an action of G(K[G]) = EndK -alg(K[G])
onMa(K[G]) = M⊗KK[G]. In particular, we get an action of the element idK[G] ∈ EndK -alg(K[G]),
giving us a K-linear map ∆M : M → M ⊗K K[G] with ∆M (m) = idK[G](m⊗ 1) for each m ∈ M .
The map ∆M is called the comodule map of the G-module M . For the properties of this map, one
should refer to [Jan03] I.2.8.

If M and M ′ are G-modules and ϕ : M →M ′ is a homomorphism of K-modules, then we call
ϕ a homomorphism of G-modules if ∆M ′ ◦ ϕ = (ϕ⊗ idK[G]) ◦∆M (again, we refer to [Jan03] I.2.8
for the details).

Example 3.17. Let G = GLn and M = Kn and define a G-module structure on M as in 3.16.
We wish to compute the comodule map ∆M : M → M ⊗K K[G]. For this, we first note that
idK[G] ∈ EndK -alg(K[G]) corresponds to the matrix in Mn(K[G]) which on the (i, j)-entry has Ti,j .
Call this matrix ∆. In order to see what ∆(m⊗1) looks like, we need to remember that the action is
given by matrix multiplication, so we need to identify m⊗ 1 ∈M ⊗KK[G] with a vector in K[G]n.
The way this identification works is that we simply use that the structure homomorphism from K
to K[G] is injective in this case, so we can identify any element in K with its image in K[G], and
thus we identify the element (m1, . . . ,mn)⊗ 1 ∈ Kn ⊗K K[G] with (m1, . . . ,mn) ∈ K[G]n.

We now see that if m = (m1, . . . ,mn) ∈ M then the i’th entry in ∆M (m) equals
∑n

j=1mjTi,j .
When we then revert the identification to get an element in M ⊗K K[G] we get (here ei is the i’th
standard basis vector of Kn)

∆M (m) =

n∑

i=1

n∑

j=1

mj(ei ⊗ Ti,j)

Usually, given a G-module, it would be natural to ask about whether it has any non-trivial
submodules and what these are. But due to the way a G-module has been defined, it is not clear
how to define submodules at all, unless we at least assume a bit more about G.

Definition 3.18 (Flat group scheme). A K-group scheme G is said to be flat if K[G] is a flat
K-module.

Example 3.19. If G = GLn then

K[G] ∼= K[T1,1, T1,2, . . . , T1,n, T2,1, T2,2, . . . , Tn,n, det−1]

If K is a field or if K = Z then this is certainly a flat K-module, so in these cases (which will be
the important ones later on), G is a flat group scheme.

We can now define what we mean by a G-submodule of a G-module M .

Definition 3.20. If G is a flat group scheme and M is a G-module, then a G-submodule of M is
a K-submodule N of M such that ∆M (N) ⊆ N ⊗K K[G].
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For more information about how submodules can be defined without the assumption that G is
flat and for proofs that this definition gives the usual properties of submodules, we refer to [Jan03]
I.2.9.

If G is a flat group scheme and M is a G-module, we see that the K-submodules 0 and M of
M are G-submodules. If these are the only G-submodules of M (and M 6= 0), we call M simple
(when referring to M as a representation of G rather than as a G-module, we will call M irreducible
instead).

Example 3.21. Let G = GLn and assume that K is a field (so G is automatically flat). Let
M = Kn ⊗K Kn and identify Ma(A) = Kn ⊗K Kn ⊗K A with An ⊗A An. Define a structure as
a G-module on M by letting G(A) act on Ma(A) via v ⊗ w 7→ gv ⊗ gw for any v, w ∈ An and
g ∈ G(A) where the multiplication is the usual matrix multiplication (and extend this linearly to
all of An⊗A An). That this gives a G-module is essentially the same arguments as in 3.16. Now let
us compute the comodule map for this module. Let ∆ be as in 3.16 and let ai be the i’th standard
basis vector of K[G]n and ei the i’th standard basis vector of Kn. We have

∆M (ei ⊗ ej) = ∆(ai ⊗ aj) = ∆ai ⊗∆aj = ∆i ⊗∆j

where ∆i is the i’column of ∆. Under our identification, this is the element

n∑

l=1

n∑

m=1

(el ⊗ em ⊗ Tl,iTm,j)

so we get

∆M (ei ⊗ ej + ej ⊗ ei) =
n∑

l=1

n∑

m=1

((el ⊗ em + em ⊗ el)⊗ Tl,iTm,j)

and hence we see that the K-submodule of M spanned by ei ⊗ ej + ej ⊗ ei (for 1 ≤ i, j ≤ n) is a
G-submodule of M . Call this submodule S2(M).

Similarly, we can see that the K-submodule spanned by ei ⊗ ej − ej ⊗ ei for 1 ≤ i, j ≤ n is a
G-submodule. Call this submodule Λ2(M). If the characteristic of K is not 2, then any vector in
Kn⊗K Kn can be written as a linear combination of vectors in S2(M) and Λ2(M), and since their
dimensions add up to n2 (S2(M) has as a basis those ei⊗ej +ej⊗ei with i ≤ j, so it has dimension
n(n+1)

2 and Λ2(M) has as a basis those ei ⊗ ej − ej ⊗ ei with i < j so it has dimension n(n−1)
2 ), we

see that M = S2(M)⊕ Λ2(M).

If G is a group scheme and M is a representation of G, we define the set of fixed points of G
on M as

MG = {m ∈M |∆M (m) = m⊗ 1}
This is obviously a K-submodule of M . See [Jan03] I.2.10 for further details.

3.4 The Induction Functor

Let G be a group scheme and H a subgroup scheme of G. In this section the functor indGH from the
category of H-modules to the category of G-modules will be defined, and its main properties will
be recalled.
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Let G be a flat group scheme and H a subgroup scheme of G. Define a functor indGH from the
category of H-modules to the category of G-modules by

indGH(M) = {f ∈ Mor(G,Ma) | fA(gh) = h−1fA(g) for all A ∈ {K -alg}, g ∈ G(A) and h ∈ H(A)}

for any H-module M . At first, this is a functor from the category of H-modules to the category of
K-modules (with the obvious structure of a K-module on Mor(G,Ma) and treating morphisms in
the usual way). To define a structure as a G-module on this K-module, we need to define an action of
G(A) on Mor(G,Ma)⊗KA, and we can identify the latter with Mor(GA, (M⊗KA)a). For g ∈ G(A)
and f ∈ Mor(GA, (M ⊗K A)a) we define gf ∈ Mor(GA, (M ⊗K A)a) by (gf)B(g′) = fB(g−1g′) for
any A-algebra B.

It is now easy (though the notation can get tedious) to check that this does indeed define a
functor from H-modules to G-modules. The details can be found in [Jan03] I.3.3.

The main property of the induction functor we will need is the following (resGH is the restriction
functor from G-modules to H-modules). This result is known as Frobenius Reciprocity.

Proposition 3.22 ([Jan03, Proposition I.3.4]). Let H be a flat subgroup scheme of G. For any
H-module M and any G-module N , there is a natural isomorphism

HomG(N, indGH(M)) ∼= HomH(resGH(N),M)

We will also need the following property of the induction functor, known as the Tensor Identity.

Proposition 3.23 ([Jan03, Proposition I.3.6]). Let H be a flat subgroup scheme of G. For any
G-module N , which is flat over K, and any H-module M , there is a canonical isomorphism of
G-modules

indGH(M ⊗ resGH(N)) ∼= indGH(M)⊗N

Since the induction functor is left exact but not generally right exact, we will also be interested
in the right derived functors Ri indGH for i > 0.

In certain cases, the induction functor has a relation to quotients of group schemes, which we
will need a consequence of. To avoid introducing such quotients in general, we will only look at a
special case:

Assume that K is an algebraically closed field, let G be a K-group scheme, H a closed subgroup
scheme and X be an affine K-scheme. Let π : G → X be a surjective morphism of affine schemes
(which means that it is surjective on each K-algebra that is a field), and which is constant on left
cosets of H. Then we can identify X with the quotient G/H, and if we follow the constructions
in [Jan03] I.5, we get an associated sheaf OG/H which has K[G/H] as its global sections. We then
have the following:

Proposition 3.24. There is an isomorphism

indGH(K) ∼= K[G/H]

Proof. This is a special case of [Jan03] I.5.12(a) with n = 0 and M = k since the 0’th cohomology
of a sheaf is just the global sections of the sheaf, which by construction is K[G/H].

Now we note that since indGH(K) = {f ∈ K[G] | f(gh) = f(g) for all h ∈ H, g ∈ G}, we can
identify K[G/H] with K[G]H by the above proposition. This identification will be needed later on.

We will also need the following.
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Proposition 3.25 ([Jan03, Corollary I.5.13]). In the above situation, where G/H is affine, the
functor indGH is exact.

If the functor indGH is exact, then we say that H is exact in G. Later, we will need the following
consequence of this property.

Proposition 3.26 ([Jan03, Corollary I.4.6(a)]). Assume that H is exact in G and let M be an
H-module. For any G-module N and any i ≥ 0 there is an isomorphism

ExtiG(N, indGH(M)) ∼= ExtiH(N,M)
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4 Reductive Groups

In this section we present the results about reductive groups and their representations needed in
the later parts.

4.1 Representations of Reductive Groups

In this section, we will give a brief overview of how the irreducible representations of a connected
reductive algebraic group are obtained.

Assume from now on that K is an algebraically closed field.
If n is a positive integer, we define the K-group scheme Tn to be the functor that assigns to any

K-algebra A the group of diagonal matrices with entries in A, and with the obvious morphisms.
This is a closed subgroup scheme of GLn.

A K-group scheme is said to be a torus if it is isomorphic to Tn for some n.

Definition 4.1. Let G be an algebraic and reduced K-group scheme and let H be a maximal
solvable, normal, connected, closed subgroup of G. G is said to be reductive if H is a torus.

G is said to be semisimple if H is trivial.

For the details of the following, see [Jan03] II.1.

From now on, let G be a connected, reductive K-group scheme, which is defined over Z, and T
a maximal torus in G.

Let X = X(T) = Hom(T,Gm) be the character group of T and Y = Y (T) = Hom(Gm,T) be
the group of cocharacters of T.

There is a natural bilinear pairing, denoted 〈·, ·〉, on X × Y .
Associated to G (and T) is a root system, from now on denoted R (identified with a subset of

X). Let S be a fixed basis of R and R+ the corresponding set of positive roots.
The number |S| is called the semisimple rank of G.
Each root α determines a unique coroot α∨ ∈ Y . The set of coroots will be denoted R∨.
For each root α, we have a homomorphism xα : Ga → G such that for any t ∈ T and any

a ∈ Ga, txα(a)t−1 = xα(α(t)a).
This homomorphism gives us, for each root α, a root subgroup Uα of G (the image of xα), and

we set U to be the subgroup of G generated by Uα for all α ∈ −R+. Similarly, we set U+ to be
the subgroup generated by the Uα for α ∈ R+.

There is also for each α ∈ R a homomorphism ϕα : SL2 → G. (This is the homomorphism that
lets us define the coroots). Unless α∨ is twice a cocharacter, then this homomorphism is injective,
and it has image generated by Uα and U−α, which intersects T exactly in those elements of the
form α∨(Gm).

The multiplication in G induces an isomorphism of schemes from the product of the Uα with
α ∈ −R+ to U and similarly one from the product of the Uα with α ∈ R+ to U+.

Let B be the subgroup of G generated by U and T and similarly B+ be the subgroup generated
by U+ and T.

Each λ ∈ X defines a representation of T on K, and this extends uniquely to a representation
of B on K, which will also be denoted λ for simplicity (if confusion is possible, it will be denoted
Kλ).

Define X+ = {λ ∈ X | 〈λ, α∨〉 ≥ 0 for all α ∈ R+}. If λ ∈ X+ then λ is called dominant.

17



For λ ∈ X, define ∇(λ) = indG
B(λ) (though note that because of Proposition 4.8 these will only

be of interest when λ ∈ X+. Also note that these modules are denoted H0(λ) in [Jan03]).
Let W be the Weyl group of G, identified with a group of automorphisms of X ⊗ZR and let w0

be the longest element of W .
Denote by α0 the highest short root of R.
Define ρ = 1

2

∑
α∈R+ α.

Denote by h = 〈ρ, α∨0 〉+ 1 the Coxeter number of R.
If M is any T-module and λ ∈ X, then we will consider the submodule

Mλ = {m ∈M | t.m = λ(t)m for all t ∈ T(K)}

and we then have M =
⊕

λ∈XMλ.
The “dot” action is given by w · λ = w(λ+ ρ)− ρ for w ∈W and λ ∈ X.

With all this notation defined, let us consider two examples.

Example 4.2. Let G = GLn, which is reductive and connected. T = Tn is a maximal torus in G
(identified with the diagonal matrices). The group of characters X = X(T) is isomorphic to Zn,
where we identify the element (x1, . . . , xn) ∈ Zn with the homomorphism that sends diag(t1, . . . , tn)
to tx11 t

x2
2 · · · txnn .

The root system R of G then consists of those λ ∈ X of the form λi,j = ei − ej for 1 ≤ i, j ≤ n
and i 6= j, where ei is the element in Zn which has a 1 on the i’th position and 0’s elsewhere. We
choose our basis of R to be the roots of the form λi = ei − ei+1 for 1 ≤ i ≤ n − 1, so our positive
roots are the ones of the form λi,j with i < j.

We have
X+ = {(λ1, . . . , λn) ∈ Zn |λi ≥ λi+1 for 1 ≤ i ≤ n− 1}

The root subgroup Uλi,j consists of the matrices with 1’s on the diagonal and an arbitrary
element in the (i, j) position. We then have the subgroups U and U+ as the subgroups consisting
of respectively lower and upper triangular matrices with 1’s on the diagonal.

The subgroups B and B+ and thus the groups consisting of respectively lower and upper
triangular matrices.

The Weyl group of G is Sn, the symmetric group on n symbols.
The modules ∇(λ) will be described in more detail later, but for now, let us consider a few

examples.
If λ = (1, 0, . . . , 0) then ∇(λ) is the representation of G described in 3.16 (the standard repre-

sentation).
If λ = (2, 0, . . . , 0) then ∇(λ) is the first of the two submodules described in 3.21 (the second

symmetric power of the standard representation).
If λ = (1, 1, 0, . . . , 0) (and n ≥ 2) then ∇(λ) is the second of the two submodules described in

3.21 (the second exterior power of the standard representation).
If λ = (1, 1, . . . , 1) then ∇(λ) is the 1-dimensional determinant module Det where each matrix

A acts by the scalar det(A).

Example 4.3. Let G = SLn (with n ≥ 2) which is connected and semisimple. The diagonal
matrices T are still a maximal torus in G but this time we have them isomorphic to Tn−1 as we
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require the determinant to be 1. The group of characters X = X(T) is then isomorphic to Zn−1
where the element (x1, . . . , xn−1) ∈ Zn−1 corresponds to the homomorphism

diag(t1, . . . , tn−1, (t1t2 . . . tn−1)−1) 7→ tx11 . . . t
xn−1

n−1

The root system R consists of the elements λi,j with 1 ≤ i, j ≤ n − 1 and i 6= j (defined as
above), along with the elements

±λi,n = ±


ei +

n−1∑

j=1

ej




for 1 ≤ i ≤ n− 1.
Here we have that

X+ = {(λ1, . . . , λn−1) ∈ Zn−1 | 0 ≤ λi ≤ λi−1 for 2 ≤ i ≤ n− 1}

so the dominant weights correspond to partitions of length at most n− 1.
The subgroups Uα, U, U+, B, and B+ have the same description as for GLn, and the Weyl

group is also the same.
If λ = (1, 0, . . . , 0), λ = (2, 0, . . . , 0) or λ = (1, 1, 0, . . . , 0) (and n ≥ 3), then the modules ∇(λ)

are just the ones described in the case of GLn viewed as G-modules.

If G is semisimple, S is a basis for X ⊗Z Q and the set {α∨ |α ∈ S} is a basis for Y ⊗Z Q, so
there are elements ωα ∈ X ⊗Z Q such that 〈ωα, β∨〉 = δα,β for all α, β ∈ S. These are called the
fundamental weights.

If all the ωα are in X (rather than just in X ⊗Z Q) then G is called simply connected. In this
case, ρ =

∑
α∈S ωα, so in particular, ρ ∈ X (and in fact, ρ ∈ X+ since 〈ρ, β∨〉 = 1 for all β ∈ S).

Example 4.4. Let G = SLn.
Since G is semisimple, let us compute the fundamental weights for G. In order to do this, we

need to look closer at how the pairing between X and Y looks, and what the coroots look like.
To make this simpler, we will instead of identifying X with Zn−1, identify it with a quotient of

Zn (we have the surjective homomorphism Zn → Zn−1 given by

(λ1, λ2, . . . , λn) 7→ (λ1 − λn, λ2 − λn, . . . , λn−1 − λn)

so to each element in Zn we associate a character (though two different element can give the same
character).

With this identification, the roots, positive roots and simple roots have representatives in Zn
given by exactly those elements described for GLn.

We will also identify Y with the subset of Zn consisting of those tuples that sum to 0, by
assigning to a tuple (λ1, . . . , λn) summing to 0 the cocharacter x 7→ diag(xλ1 , . . . , xλn).

With these identifications, the pairing between X and Y is simply the usual dot product on Zn

〈(λ1, . . . , λn), (µ1, . . . , µn)〉 =

n∑

i=1

λiµi

and for each root α, we have α∨ = α (note that all the roots described for GLn are tuples that sum
to 0).
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Now define ωi =
∑i

j=1 ej for 1 ≤ i ≤ n − 1. We easily check that for each 1 ≤ i, j ≤ n − 1 we

have
〈
ωi, λ

∨
j

〉
= δi,j , so the images of the ωi in Zn−1 are the fundamental weights for G (if we also

denote the image of ωi by ωi we have ωi = ωλi).
Thus, we see that SLn is simply connected, and we can now easily compute

ρ =
∑

α∈S
ωα =

n−1∑

i=1

ωi = (n− 1, n− 2, . . . , 2, 1)

(we could of course also have done this directly from the definition, but this calculation is slightly
simpler).

Example 4.5. If we look at G = GLn, we see that

ρ = (
n− 1

2
,
n− 3

2
, . . . ,

−n+ 3

2
,
−n+ 1

2
)

so unless n is odd, this is not a character of T.
On the other hand, if we look at the character ρ̃ = (n − 1, n − 2, . . . , 1, 0) then this defines as

described previously a character for T ∩ SLn, and for T ∩ SLn the character is exactly ρ.
We also see that for any α ∈ S, 〈ρ̃, α∨〉 = 1, just like what holds for ρ (for a semisimple group

this property would have determined the character uniquely, but this is not the case in general for
reductive groups).

In the following, if some statement is made where GLn would have satisfied the criteria of the
statement if ρ had been a weight for GLn, then that statement should be read as ”...in the case of
GLn, replace ρ by ρ̃” unless otherwise noted. The reason for this is that whenever one can show
something about a module where the highest weight involves ρ, then what one really needs is the
above property about the pairing with the coroots of the simple roots.

The following results describe what ∇(λ) looks like when it is not 0, and also tell us exactly
when this happens.

Proposition 4.6 ([Jan03, Proposition II.2.2(a)]). Let λ ∈ X with ∇(λ) 6= 0. Then dim(∇(λ)U
+

) =
1 and ∇(λ)U

+
= ∇(λ)λ.

Corollary 4.7 ([Jan03, Corollary II.2.3]). If ∇(λ) 6= 0 then socG(∇(λ)) is simple.

Proposition 4.8 ([Jan03, Proposition II.2.6]). Let λ ∈ X. The following are equivalent:

1. λ is dominant

2. ∇(λ) 6= 0

3. There is a G-module V with (V U+
)λ 6= 0

If λ ∈ X+, then by the above ∇(λ) is a non-zero G-module with a unique simple submodule.
We will call this simple submodule L(λ).

We will also write ∆(λ) = ∇(−w0(λ))∗ (this is called V (λ) in [Jan03]).

Proposition 4.9 ([Jan03, Proposition II.2.4]).

1. Any simple G-module is isomorphic to exactly one L(λ) with λ ∈ X+.
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2. Let λ ∈ X+. Then L(λ)U
+

= L(λ)λ, and dim(L(λ)U
+

) = 1. Any weight µ of ∇(λ) satisfies
w0(λ) ≤ µ ≤ λ. The multiplicity of L(λ) as a composition factor of ∇(λ) is equal to one.

What the above result tells us is that in order to understand the simple G-modules, we just
need to study the L(λ) (for λ dominant) and the previous results tell us that in order to understand
these, we need to understand the ∇(λ).

Further, to understand all the L(λ), it turns out that it is actually sufficient to understand those
where λ ∈ X1, due to Steinberg’s tensor product theorem:

Theorem 4.10 ([Ste63, Theorem 1.1],[Jan03, Proposition II.3.16]). Let λ be a dominant weight
and write λ = λ0 + prλ1 with λ0 ∈ Xr.

Then L(λ) ∼= L(λ0)⊗ L(λ1)
(r).

Since we would like to understand∇(λ), this means we should also try to understand the functor
indG

B , and since this functor is unfortunately not exact, this again means we would like to know
something about Ri indG

B . The following three results will be important for us. The first shows that
there are only finitely many i for which we need to study this.

Theorem 4.11 ([Jan03, II.4.2(3)]). Ri indG
B = 0 for all i > |R+|.

The next tells us that when inducing dominant weights, we do not need to consider any higher
derived functors. This result is known as Kempf’s vanishing theorem.

Theorem 4.12 ([Kem76, Theorem 1],[Jan03, Proposition II.4.5]). If λ ∈ X+ then Ri indG
B(λ) = 0

for all i ≥ 1.

The third result then tells us that for certain weights, all the derived functors vanish.

Proposition 4.13 ([Jan03, Proposition II.5.4(a)]). Let λ ∈ X and assume that 〈λ, α∨〉 = −1 for
some α ∈ S. Then Ri indG

B(λ) = 0 for all i ≥ 0.

For dealing with specific cases, it will be useful to know for which dominant weights λ we have
L(λ) ∼= ∇(λ) when R is of type A. The following formulation is taken from the last part of II.8.21
in [Jan03] with the difference that we have the requirement α− β0 ∈ R∪{0} instead of α− β0 ∈ R
(without this change the formulation is not correct).

Theorem 4.14 ([Jan73, Satz 9]). Assume that R is of type An and let λ ∈ X+. For each α ∈ R+

write 〈λ+ ρ, α∨〉 = aαp
sα + bαp

sα+1 for natural numbers aα, bα, sα with 0 < aα < p.
Then L(λ) ∼= ∇(λ) if and only if for all α ∈ R+ there are positive roots β0, β1, . . . , βbα such

that 〈λ+ ρ, β∨0 〉 = aαp
sα and for all 1 ≤ i ≤ bα we have 〈λ+ ρ, β∨i 〉 = psα+1 and such that further

α =
∑bα

i=0 βi and α− β0 ∈ R ∪ {0}.
Note that when applying the above theorem to determine whether L(λ) ∼= ∇(λ) for some

λ ∈ X+, we only need to consider those α ∈ R+ with 〈λ+ρ, α∨〉 > p, since the condition is trivially
satisfied for all other positive roots (by picking β0 = α since in that case we have bα = 0).

Note that a special case of the above shows that if λ ∈ X+ with 〈λ+ρ, α∨0 〉 ≤ p then L(λ) ∼= ∇(λ).
This actually holds without restricting to type A, which will be useful later.

Proposition 4.15 ([Jan03, Corollary II.5.6]). If λ ∈ X+ with 〈λ+ ρ, α∨0 〉 ≤ p then L(λ) ∼= ∇(λ).

We will also need to know something about when simple G-modules can extend each other.
This is given in the following.
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Proposition 4.16 ([Jan03, II.2.14]). Let λ and µ be dominant weights with λ 6< µ and assume
that Ext1G(L(λ), L(µ)) 6= 0. Then L(λ) is a composition factor of ∆(µ).

Another result, which tells us something about when it is possible to have a non-trivial extension
between simple modules is the linkage principle. The original reference for this is [And80b] where
a stronger statement is proved. The following is an immediate consequence due to the above.

Theorem 4.17 ([And80b, Theorem 1],[Jan03, Proposition II.6.13]). Let λ, µ ∈ X+ and assume
that Ext1G(L(λ), L(µ)) 6= 0. Then λ = w · µ+ pβ for some w ∈W and some β ∈ ZR.

From the above we see that many questions will require knowing the composition factors of
∇(λ). Unfortunately, these are not completely known, but a partial answer is given by the Jantzen
sum formula. In order to formulate this, we will need a bit more notation.

For a G-module M , we define chM ∈ Z[X] by

chM =
∑

λ∈X
dim(Mλ)e(λ)

where e(λ) is the element in Z[X] corresponding to λ ∈ X.
For λ ∈ X we then define

χ(λ) =
∑

i≥0
(−1)i chRi indG

B(λ).

Note that the sum is in fact finite due to Theorem 4.11, and that we for λ ∈ X+ get χ(λ) = ch∇(λ)
by Theorem 4.12. The following was originally proved for p ≥ h in [Jan80] and then for all p and
in more generality in [And83]

Theorem 4.18 ([Jan03, Proposition II.8.19]). For any λ ∈ X+ there is a filtration

∆(λ) ⊃ V 1 ⊃ V 2 ⊃ · · ·

such that ∆(λ)/V 1 ∼= L(λ) and such that

∑

i≥1
chV i =

∑

α∈R+

∑

0<mp<〈λ+ρ,α∨〉
νp(mp)χ(sα · λ+mpα)

where νp denotes the p-valuation.

In applying the above formula, the following is generally useful.

Proposition 4.19 ([Jan03, II.5.9]). For any λ ∈ X and any α ∈ S we have χ(λ) = −χ(sα · λ).

4.2 Frobenius Kernels

In this section, we will be working over k, which is an algebraically closed field of characteristic
p > 0.

We then have the map F : k 7→ k given by F (x) = xp which is an automorphism of k. It thus
makes sense to talk about xp

m
for any x ∈ k and any integer m.

For any k-algebra A and any integer m, we define the k-algebra A(m) to be the k-algebra that
coincides with A as a ring, but where each x ∈ k acts as xp

−m
would on A.
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It is easy to see that A 7→ A(m) defines an autoequivalence of {K -alg} for any integer m (the
inverse being given by A 7→ A(−m)).

For each k-algebra A, each integer m and each positive integer r, the map γr : A(m) → A(m−r)

given by a 7→ ap
r

is clearly a homomorphism.
Given any k-functor X and positive integer r, we can then define a new k-functor X(r) by

X(r)(A) = X(A(−r)) (so we just compose the two functors).
We also get a morphism of functors F rX : X → X(r) given by

(F rX)A = X(γr) : X(A)→ X(A(−r)) = X(r)(A)

The morphism F rX will be called the r’th Frobenius morphism on X.
Note that if X is defined over Fp then we can identify X with X(r) for any positive integer r.

If G is a group scheme, we see that G(r) is again a group scheme and the functor F rG is a
morphism of group schemes. We define the r’th Frobenius kernel of G, written Gr, to be the kernel
of F rG. This is then a normal subgroup scheme of G.

Let us now return to looking at the reductive group G, this time over k (so we retain all the
notation introduced for this group). Let r be a fixed positive integer. Since G is defined over Z, it
is also defined over Fp, so we will identify G and G(r) and view F rG as an endomorphism of G. We
note that the subgroups T, U, U+, B and B+ are all stable under F rG and the restriction of the
map to these subgroups is just the corresponding Frobenius map for the corresponding k-functors.
We therefore also get the subgroups Tr, Ur, U+

r , Br and B+
r .

Any λ ∈ X defines a character for Tr by restriction, which we will again call λ as long as no
confusion is possible. In the same way as for G, we can extend this to a module for Br by having
Ur act trivially, which will also be called λ.

We now define
Z ′r(λ) = indGr

Br
(λ)

The following results show that the representation theory of these Frobenius kernels look much
like that of G itself.

Proposition 4.20 ([Jan03, II.3.9(1)]). For any λ ∈ X, Z ′r(λ) has a simple socle as a Gr-module.

Since the above tells us that each Z ′r(λ) has a unique simple submodule, we set Lr(λ) equal to
this submodule, analogously to what we did for G (though now we do not need to assume that λ
is dominant for this).

Proposition 4.21 ([Jan03, Proposition II.3.10]). For all λ ∈ X, we have Lr(λ)U
+
r = λ.

If Λ is a set of representatives in X for X/prX then each simple Gr-module is isomorphic to
exactly one Lr(λ) with λ ∈ Λ.

Define
Xr = {λ ∈ X | 0 ≤

〈
λ, α∨

〉
< pr for all α ∈ S}

The r = 1 case of the following was originally proven in [Cur60] under some additional restric-
tions.

Proposition 4.22 ([Jan03, Proposition II.3.15]). If λ ∈ Xr then L(λ) remains simple when viewed
as a Gr-module, and is isomorphic to Lr(λ).
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If we look at the example G = GLn then we see that the map F rG sends a matrix with (i, j)-entry

ai,j to the matrix with (i, j)-entry ap
r

i,j , so if we only look at the points of G over k, the Frobenius
kernel is trivial. On the other hand, as we can see from the above results, seen as affine schemes,
these kernels have a very rich representation theory, which will be of enormous use later on.

Being able to use these Frobenius kernels is the main reason why this dissertation has been
dealing with group schemes, rather than just Zariski-closed subgroups of some GLn(k) such as
might often be the outset of a study of algebraic groups and their representations. And indeed
much of what is contained in the previous chapters could as well have been done in that setting.

The main results presented in this dissertation can also be formulated in terms of just such
subgroups of GLn(k), but in order to prove these, we will need access to the Frobenius kernels and
their representations.

Finally, let us take a look at what a Frobenius kernel can look like when it is not trivial. Let
r = 1 and let A = k[T ]/(T p). Now we see that on A, the map sending x to xp just returns the p’th
power of the constant term of a polynomial, so G1(A) consists of those matrices where the diagonal
entries have constant term 1, and the remaining entries have constant term 0.

Later we will also need to be able to compare extensions of G-modules to extensions of Gr-
modules. The way to do this is to apply the Lyndon-Hochschild-Serre spectral sequence. We only
state the special case of it that we will need.

Theorem 4.23 ([Jan03, Proposition I.6.6]). For any pair of G-modules M and N , there is a
spectral sequence with terms Ep,q2 = ExtpG/Gr

(k,ExtqGr
(M,N)) =⇒ Extp+qG (M,N)

4.3 Modules with a good filtration

We once again consider the reductive group G over k. A G-module M is said to have a good
filtration if it has a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆M
such that

⋃
i≥0Mi = M and for all i ≥ 1, the quotient Mi/Mi−1 is isomorphic to ∇(λi) for suitable

λi ∈ X+.
For modules with a good filtration, such a filtration will turn out to be able to play the same

role as a composition series in many situations. First of all, the quotients appearing are uniquely
determined (with multiplicity), though the order can of course vary:

Theorem 4.24 ([Don81, Corollary 1.3],[Jan03, Proposition II.4.16]). Let V be a G-module.

1. If V admits a good filtration, then for each λ ∈ X+, the number of factors in the filtration
isomorphic to ∇(λ) is equal to dim(HomG(∆(λ), V )).

2. Suppose that dim(HomG(∆(λ), V )) <∞ for all λ ∈ X+. Then the following are equivalent:

(a) V admits a good filtration.

(b) ExtiG(∆(λ), V ) = 0 for all λ ∈ X+ and all i ≥ 1.

(c) Ext1G(∆(λ), V ) = 0 for all λ ∈ X+.

If M admits a good filtration and λ ∈ X+ we will denote the number of times ∇(λ) occurs
in a good filtration of M by [M : ∇(λ)]∇. We use the subscript ∇ to distinguish this from the
composition multiplicity of ∇(λ) in M (in case ∇(λ) is simple). By the above proposition, this is
a well-defined number.
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Theorem 4.25 ([Mat90, Theorem 1],[Jan03, Proposition II.4.19]). Let V and V ′ be G-modules
admitting good filtrations. Then so does V ⊗ V ′.

Another way to find the factors occurring in a good filtration is looking at the character of the
module. The reason this works is due to the following (recall that if λ ∈ X+ then χ(λ) = ch∇(λ)).

Proposition 4.26 ([Jan03, Remark to II.5.8]). The χ(λ) for λ ∈ X+ are linearly independent
elements of Z[X].

To use this we need to be able to write the character of a module with a good filtration in terms
of the χ(λ). Fortunately, we know the χ(λ) explicitly by Weyl’s character formula.

Theorem 4.27 ([Jan03, Proposition II.5.10]). For all λ ∈ X+

χ(λ) =
A(λ+ ρ)

A(ρ)

where for any µ ∈ X+

A(µ) =
∑

w∈W
det(w)e(w(µ)) ∈ Z[X ⊗Z Q]

In particular, it should be noted that the above formula does not depend on the field k, so if
we denote by GC the group corresponding to G over C (recall that G was required to be defined
over Z, so this makes sense), we get that the character of ∇(λ) as a G-module is the same as the
character of the simple GC-module with highest weight λ. This will be especially important when
we work with SLn.

Proposition 4.28 ([Don88, 1.4(17)],[Jan03, Proposition II.4.20]). Consider k[G] as a (G ×G)-
module with the first factor acting via the left regular representation and the second factor acting
via the right regular representation. Then k[G] admits a good filtration. The factors are of the form
∇(λ)⊗∇(−w0(λ)) for λ ∈ X+ and each such factor occurs exactly once.

4.4 The Steinberg Module

In this section, we will look at a specific family of modules for the reductive group G over k.
Let r be a positive integer.
Throughout the section, we will assume that (pr − 1)ρ ∈ X. This is automatic if p is odd or if

G is semisimple and simply connected (and recall that if G = GLn then ρ has a different meaning,
such that it is also guaranteed to hold in that case).

Note also that in this case, we in fact have (pr − 1)ρ ∈ X+ and even (pr − 1)ρ ∈ Xr.
We define Str = L((pr − 1)ρ) ∼= ∇((pr − 1)ρ) ∼= ∆((pr − 1)ρ) (see the remark at the end of

II.3.19 in [Jan03]).
By Proposition 4.22 we also get that as a Gr-module, Str ∼= Lr((p

r − 1)ρ).
For any G-module M , we can compose the action of G with the Frobenius map F rG : G → G

to get a new G-module, which will be denoted M (r).
We have the following nice property of Str.

Theorem 4.29 ([And80a, Theorem 2.5],[Jan03, Proposition II.3.19]). For each λ ∈ X+ there is
an isomorphism of G-modules

∇((pr − 1)ρ+ prλ) ∼= Str ⊗∇(λ)(r)
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Recall that as mentioned, the above result still holds for GLn, even though ρ is defined differently
in that case.

As a Gr-module, we also have the following.

Theorem 4.30 ([Hum76, Proposition 10.1],[Jan03, Proposition II.10.2]). Str is both projective and
injective as a Gr-module.

4.5 Tilting Modules

If M is a finite-dimensional G-module such that both M and M∗ have good filtrations, then M is
called a tilting module (or M is said to be tilting).

It turns out that the indecomposable tilting modules have a similar classification to that of the
simple modules, and all tilting modules will be a direct sum of indecomposable tilting modules in
a unique way. The following was originally proved by Ringel in [Rin91] in a more general setting.
In [Don93] Donkin then translated this general setting to our setting in the following way.

Theorem 4.31 ([Don93, Theorem 1.1],[Jan03, Proposition E.6]). For any λ ∈ X+ there is a unique
(up to isomorphism) indecomposable tilting module T (λ) with dim(T (λ)λ) = 1 and such that for all
µ ∈ X we have T (λ)µ 6= 0 =⇒ µ ≤ λ.

If Q is a tilting module, then there are uniquely determined natural numbers n(ν) such that
Q ∼=

⊕
ν∈X+

n(ν)T (ν).

Indecomposable tilting modules have many properties in common with the irreducible modules.
Some that we will need are.

Proposition 4.32 ([Jan03, Remark to E.6]). Let λ, µ ∈ X+. Then T (λ)∗ ∼= T (−w0(λ)) and
HomG(L(µ), T (λ)) ∼= HomG(T (λ), L(µ)).

Later we will need to know when indecomposable tilting modules are injective as Gr-modules.
This is completely described by the following.

Proposition 4.33 ([Don93, Proposition 2.4],[Jan03, Lemma E.8]). If λ ∈ X+ then T (λ) is injective
as a Gr-module if and only if 〈λ, α∨〉 ≥ pr − 1 for all α ∈ S.

Proposition 4.34 ([Don93, Proposition 2.1],[Jan03, Lemma E.9]). Let µ = (pr − 1)ρ + λ with
λ ∈ Xr and let ν ∈ X+. Then T (µ) ⊗ T (ν)(r) is tilting, and if T (µ) is indecomposable as a Gr-
module, then T (µ)⊗ T (ν)(r) ∼= T (µ+ prν).

The condition that T (µ) is indecomposable as a Gr-module when µ is as in the above proposition
is in fact conjectured to always hold (see [Don93, Conjecture 2.2]). It is known to hold if p ≥ 2h−2.

Theorem 4.35 ([Jan03, E.9]). If λ ∈ Xr and p ≥ 2h− 2 then

socG(T ((pr − 1)ρ+ λ)) = socGr(T ((pr − 1)ρ+ λ)) = L((pr − 1)ρ+ w0(λ))

4.6 Representations of SLn

In this section we will take a closer look at the representations of SLn. We will in particular be
interested in finding filtrations of tensor products.
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First, we need to setup some notation for this special case, as we will be denoting the weights
in two different ways.

Usually, we will write all weights in terms of the fundamental weights (since SLn is semisimple
and simply connected), so this way we identify X with Zn−1, X+ is the set of elements in Zn−1
with non-negative entries, and Xr is the set of elements in Zn−1 with all entries xi satisfying
0 ≤ xi ≤ pr − 1.

Given a λ = (λ1, λ2, . . . , λn−1) ∈ X+ (written in the basis as mentioned above), we get a
partition λ̃ = (λ̃1, λ̃2, . . . , λ̃n−1) where λ̃i =

∑n−1
j=i λj . In this way we have λi = λ̃i − λ̃i+1 (where

for convenience we will set λ̃n = 0).
From now on, any element λ = (λ1, . . . , λn−1) ∈ X+ will be assumed to be written in terms

of the fundamental weights, whereas elements in X+ written as partition will be decorated with
a˜(so whenever we write λ̃ = (λ̃1, . . . , λ̃n−1) ∈ X+ this means that when written in terms of the
fundamental weights this is the element λ = (λ̃1 − λ̃2, . . . , λ̃1 − λ̃0)).

As will be seen later, we need to be able to compute [∇(λ)⊗∇(µ) : ∇(ν)]∇ for any λ, µ, ν ∈ X+

(this is well-defined by Theorem 4.25). In order to do this, we first use that by Proposition 4.26 this
number can be determined by computing χ(λ) and χ(µ), multiplying these and writing the result
as a linear combination of χ(σ)’s for various σ ∈ X+. [∇(λ)⊗∇(µ) : ∇(ν)]∇ is then the number of
times χ(ν) appears in this.

To compute these characters, we use that by Theorem 4.27 these characters only depend on the
root system, so we can do the same calculation working with SLn(C) instead.

Now, for SLn(C) we have that ∇(λ) is simple for all λ ∈ X+ by [Jan03, Corollary II.5.6], so
what we need to do is decompose a tensor product of irreducible modules for SLn(C), and the way
to do this is described in Appendix B.

Summarizing the above we get (we use the notation from Appendix B, so for a dominant weight
λ = (λ1, . . . , λn−1) we have |λ̃| = ∑n−1

i=1 iλi).

Proposition 4.36. Let G = SLn and λ, µ, ν ∈ X+. Set m = |λ̃|+|µ̃|−|ν̃|
n and ω̃ =

n︷ ︸︸ ︷
(1, 1, . . . , 1). Then

[∇(λ)⊗∇(µ) : ∇(ν)]∇ =

{
cν̃+mω̃
λ̃,µ̃

if m is a non-negative integer

0 else

The same arguments also show.

Proposition 4.37. Let λ1, . . . , λs, µ ∈ X+ and set

m =

∑s
i=1 |λ̃i| − |µ̃|

n

Then

[
n⊗

i=1

∇(λi) : ∇(µ)]∇ = 0

unless m is a non-negative integer.
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5 Finite Groups of Lie Type

We consider again the reductive group G over k and let r be a fixed positive integer. Denote by F
the r’th Frobenius morphism F rG.

Let G = GF be the subgroup of G consisting of those elements that are fixed by F (since we
identify G with G(r) this makes sense). Similarly, we define the subgroups T , U , U+, B and B+.

In this dissertation, a finite group of Lie type will be a group of the form G(k) (so we take the
points over k of a group as above). The proofs in this section are generally the same as those in
chapter 2 of [Hum06], though with some more details.

Example 5.1. Let G = GLn, so the map F sends the matrix with (i, j)-entry ai,j to the one with

(i, j)-entry ap
r

i,j .
We then get that G(k) consists of invertible n × n matrices with coefficients that are fixed by

the map x 7→ xp
r
, so we can identify this with the set of matrices with coefficients in the finite field

Fpr , GLn(Fpr).

It turns out that the representation theory of G, G and of Gr have a lot in common. One
of the tools in studying the connection between them is the Lang map L : G → G given by
L(x) = F (x)x−1. The following is known as Lang’s Theorem.

Theorem 5.2 ([Spr09, Theorem 4.4.17]). The map L(x) = F (x)x−1 is a surjective morphism of
G.

If H is a subgroup of G which is invariant under F , then L(x) ∈ H if and only if x ∈ H, so the
restriction of L to any such H gives a surjective morphism LH : H→ H.

We denote by L∗ the comorphism of L from k[G] to itself.
The properties of L (and L∗) that we now need are the following:

Lemma 5.3. k[U+]U
+

is the image of L∗ restricted to k[U+], i.e. the elements in k[U+] of the
form f ◦ L for f ∈ k[U+].

Similarly, k[U+]U
+
r is the image of F ∗ restricted to k[U+], i.e. the elements of the form f ◦ F

for f ∈ k[U+].

Proof. Since L is surjective, it is a quotient map, which gives an isomorphism of affine schemes
U+/U+ → U+, so the comorphism gives an isomorphism of algebras L∗ : k[U+]→ k[U+/U+]. But
since we have k[U+/U+] = k[U+]U

+
, this means that k[U+]U

+
is the image of L∗ which exactly

consists of the elements of the form f ◦ L for f ∈ k[U+].
The second statement follows by the same argument.

We can regard k[U+] as a B+-module by letting U+ act by translation from the right and T
act by conjugation. This gives us a decomposition into weight spaces as usual for T-modules.

Lemma 5.4. If f ∈ k[U+]µ for some µ ∈ X then f ◦L is the sum of f ◦F (which is in k[U+]prµ)
and other elements f ′ which lie in certain k[U+]prµ−α where α is in NR+.

Proof. We will view k[U+] as morphisms from U+ to A1, but we will simplify the notation a bit by
letting A be a fixed k-algebra and writing f instead of fA for f ∈ k[U+], so we are really looking
at maps. Let µ ∈ X and f ∈ k[U+]µ be fixed.
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For any positive root α, we can compose f with xα to get a morphism A1 → A1, and since any
such map is given by a polynomial, for any a ∈ Ga, we can write f(xα(a)) =

∑
i≥0 cia

i for suitable
ci in k, only finitely many of which are non-zero.

Since f has weight µ, we have for any t ∈ T and any a ∈ Ga that
∑

i≥0
µ(t)cia

i = µ(t)f(xα(a)) = f(txα(a)t−1) = f(xα(α(t)a)) =
∑

i≥0
α(t)icia

i

so we get that for some i ≥ 0, µ(t) = α(t)i, so µ = iα, and for all j 6= i we have cj = 0.
This means that f(xα(a)) = cia

i.
On the other hand, if β 6= α is a positive root, then we can again write f(xβ(a)) =

∑
j≥0 dja

j

and we get that
∑

j≥0
α(t)idja

j = (iα)(t)f(xβ(a)) = f(txβ(a)t−1) = f(xβ(β(t)a)) =
∑

j≥0
β(t)jdja

j

so since we picked β 6= α this means that all dj = 0 so f(xβ(a)) = 0 for all a ∈ Ga. We also get
that (f ◦L)(xβ(a)) = 0, so we now only need to check that the statement holds on elements of the
form xα(a).

First, let us show that the weight of f ◦ F is indeed prµ. This is easily done by a direct
computation.

t.(f ◦ F )(u) = f(F (tut−1)) = f(F (t)F (u)F (t)−1)

= f(tp
r
F (u)t−p

r
) = µ(t)p

r
f(F (u)) = (prµ)(t)(f ◦ F )(u)

We will also need to note that F (xα(a)) = xα(ap
r
) (this is clear from the way F has been

defined).
Let us now compute (f ◦ L)(xα(a)) using the above. We get

(f ◦ L)(xα(a)) = f(L(xα(a))) = f(F (xα(a))xα(a)−1)

= f(xα(ap
r
)xα(−a)) = f(xα(ap

r − a)) = ci(a
pr − a)i = cia

pri + b

where b is some polynomial of degree less than pri.
From the above we see now that since f ◦L is uniquely determined by what it does to elements

of the form xα(a), that the decomposition of f ◦L into a sum of elements in various weight spaces,
corresponds exactly to the above decomposition of f ◦ L ◦ xα as a decomposition into monomials,
and some f ′ ∈ k[U+] has weight jα exactly if f(xα(a)) = caj for some c ∈ k.

The summands we get are thus elements in weight spaces of weight prµ− jα for suitable j ≥ 0,
so for j 6= 0 these are strictly smaller than prµ. All we then need to show is that the summand
with weight prµ is indeed f ◦ F .

But if we calculate (f ◦ F )(xα(a)) = f(F (xα(a))) = f(xα(ap
r
)) = cia

pri, we see that this is the
case.

We will also need the following:

Lemma 5.5 ([Jan03, II.8.17]). For any λ ∈ X+ there is a symmetric, non-degenerate, bilinear
form (·, ·) on L(λ), such that for any µ, µ′ ∈ X with µ 6= µ′, the weight spaces L(λ)µ and L(λ)µ′ are
orthogonal. If H is a subgroup of G and V is an H-submodule of L(λ), then so is the orthogonal
complement of V .
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The way we have constructed the L(λ) means they are submodules of k[G], and since the big
cell UB+ is dense, we see that the restriction map from k[G] to k[U+] is injective on any L(λ) as
the action on these is uniquely determined by the action of the big cell.

This means that we can identify L(λ) with a submodule of k[U+], but the decomposition of the
weight spaces will be different, as we on k[G] have T acting by translation and on k[U+] it acts
by conjugation. Thus, the λ weight space of L(λ) obtains weight 0 when viewed as a submodule of
k[U+].

Lemma 5.6. Let M be a B+-submodule of k[U+] and assume that M ∩ k[U+]U
+
r = k. Then

M ∩ k[U+]U
+

= k.

Proof. By Lemma 5.3 what we need to show is that under the assumptions, if we have an f ∈ k[U+]
such that f ◦ L ∈M then f has weight 0, so we need to show that f ◦ F ∈M .

Write f =
∑

µ fµ where fµ has weight µ, and similarly write f ◦ L =
∑

µ gµ. By assumption,
f ◦ L ∈ M , which is a T-submodule, so all gµ are in M . Let ν be maximal with fν 6= 0. We now
have that fν ◦ F = gprν because of Lemma 5.4, since that tells us that fν ◦ L has fν ◦ F as the
unique summand of weight prν. This means that fν ◦ F lies in both M and F ∗(k[U+]), which by

Lemma 5.3 means that fν ∈ M ∩ k[U+]U
+
r , which by assumption is k, so gprν has weight 0 which

means that prν = 0 so ν = 0. But since ν was chosen to be maximal, this means that f = f0, so f
has weight 0, which was what we needed to show.

Lemma 5.7. For any λ ∈ Xr we have L(λ)U
+

= L(λ)λ.

Proof. This follows directly from Lemma 5.6, Proposition 4.21 and Proposition 4.22, by letting the
M in 5.6 be the copy of L(λ) inside k[U+] as described previously (recall that the 0 weight space
in k[U+] corresponds to the λ weight space in k[G] when we make this identification).

We are now ready to prove that restricting simple G-modules to G will again give us a simple
module, as long as we put some restrictions on the highest weight.

Proposition 5.8. Let λ ∈ Xr. Then L(λ) remains simple when viewed as a G-module.

Proof. Since L(λ)U
+

= L(λ)λ is 1-dimensional, we can let v+ span this subspace. Since U+ is a
p-group, any non-zero U+-submodule of L(λ) will have a non-zero fixed point. So if M is a G-
submodule of L(λ) then M must intersect non-trivially with L(λ)U

+
, so it must contain v+. This

means that the G-submodule generated by v+ is the unique simple G-submodule of L(λ).
We now want to show that in fact, v+ generates all of L(λ) as a G-module, so let M be

this module. For this, we use the non-degenerate bilinear form on L(λ). Since weight spaces with
distinct weights are orthogonal with respect to this form and the form is non-degenerate, we must
have (v+, v+) 6= 0 since the λ weight space is 1-dimensional.

But now the orthogonal complement of M will again be a G-submodule, and since it does not
contain v+, this means that it is 0. Thus, we must have M = L(λ) as desired.

We will also be able to prove that these L(λ) are pair-wise non-isomorphic and form a complete
set of irreducible G-modules, as long as we assume G to be semisimple and simply connected. For
this, we will need to know the number of such modules, which is provided by the following results.
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Theorem 5.9 ([Isa76, Corollary 15.11]). If H is a finite group then the number of isomorphism
classes of irreducible representations of H over k is equal to the number of p-regular conjugacy
classes of H.

Theorem 5.10 ([Car93, Theorem 3.7.6]). If the derived subgroup G′ is simply connected then the
number of semisimple conjugacy classes in G is |(Z(G)0)F |prl where l is the semisimple rank of G.

Proposition 5.11. If G is semisimple and simply connected, then the number of isomorphism
classes of simple G-modules is prl, where l is the semisimple rank of G.

Proof. Since G is semisimple, Z(G) is finite and thus the connected component Z(G)0 is trivial so
|(Z(G)0)F | = 1. We also get that G is equal to its derived subgroup, so we can use 5.10 and get
that the number of semisimple conjugacy classes of G is prl.

So by 5.9 we just need to show that an element of G is semisimple if and only if it is p-regular.
Since k is algebraically closed, we just need to show that under any embedding of G into some

GLn(k), the elements corresponding to diagonalizable matrices are exactly the p-regular ones. But
this just means that we need to show that a matrix in GLn(k) of finite order is diagonalizable if
and only if it has order not divisible by p.

First, assume A ∈ GLn(k) is diagonalizable, so D = XAX−1 is diagonal for some X. Now the
order of D is not divisible by p, since there are no elements in k of order divisible by p (if x was
such an element then we would have (xm)p = 1 so (xm)p − 1 = (xm − 1)p = 0 so xm = 1).

Conversely, assume that the order of A ∈ GLn(k) is not divisible by p. By the multiplicative
Jordan-decomposition, we can write A = BC = CB with B diagonalizable and C unipotent. Thus,
we are done if we can show that the order of any unipotent matrix has order divisible by p.

So assume that B is a unipotent matrix, so (B− I)m = 0 for some m. Now let m′ be given such

that pm
′ ≥ m. Then 0 = (B − I)p

m′
= Bpm

′
− I so the order of B is a power of p, and we are done.

We will also need a further result in order to distinguish how G acts on the various L(λ). It will
turn out that knowing how T acts gives us most of the information needed, but we will in some
cases also need to know something about the action of U−α for a simple root α.

Lemma 5.12. Let λ ∈ X+ and α ∈ S. Then U−α stabilizes the weight space L(λ)λ if and only if
〈λ, α∨〉 = 0.

Proof. Since G is split, it is enough to show that the statement holds for U−α, as the stabilizer
of some subspace of L(λ) when viewed as a G-module is just the fixed points under the Frobenius
morphism of the stabilizer when viewed as a G-module.

Let v span L(λ)λ. Assume first that 〈λ, α∨〉 = 0. We wish to show that for any a ∈ Ga we have
x−α(a).v = cv for some c ∈ k.

We know that since x−α is a homomorphism from Ga, the action of x−α(a) is given by a
polynomial in a, so we can write x−α.v =

∑
µ fµ(a)vµ where vµ ∈ L(λ)µ and fµ ∈ k[a].

Now let t ∈ T. We can compute t.x−α(a).t−1.v in two ways. We have

t.x−α(a).t−1.v = (tx−α(a)t−1).v = x−α(−α(t)a).v =
∑

µ

fµ(−α(t)a)vµ

but also since v ∈ L(λ)λ that

t.x−α(a).t−1.v = t.x−α(a).(λ(t)−1v) = t.
∑

µ

λ(t)−1fµ(a)vµ =
∑

µ

λ(t)−1fµ(a)µ(t)vµ
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Since the vµ are linearly independent, this means that we have fµ(−α(a)) = µ(t)λ(t)−1fµ(a)
for each µ, so if fµ(a) =

∑m
i=0 cia

i we get that for each i we have µ(t)λ(t)−1ci = ci(−α(t))i so all
but one ci must be 0, and we get that fµ(a) = cia

i for some i. Since this was for an arbitrary t ∈ T,
we then get that µ− λ = i(−α) so µ = λ+ i(−α).

So we see that the possible weights that can occur when we act by x−α(a) are those of the form
λ − iα for non-negative integers i. Now, if λ − iα is a root, then so is sα(λ − iα) (where sα is the
reflection corresponding to the simple root α). But we have

sα(λ− iα) = sα(λ)− sα(iα) = λ−
〈
λ, α∨

〉
α+ iα

and since we know that λ is the highest weight of L(λ), this forces i ≤ 〈λ, α∨〉, which then means
that i = 0, and that x−α(a).v = cv for a suitable constant c ∈ k as desired.

Now we look at the other direction. So assume that x−α(a).v ∈ kv for all a ∈ Ga.
We will look at the image of ϕα in G, which is isomorphic to SL2. Call this subgroup L. Let

M be the L-module generated by v. Now, we see that M is a highest weight module for L, so we
know that it is generated by the vectors u.v for u ∈ U−α. If U−α stabilizes the subspace spanned
by v, then this will imply that M is 1-dimensional. We know that this must mean that the highest
weight of M (with respect to the action of the maximal torus in L) is 0.

On the other hand, we know that the maximal torus of L consists of those elements in T of
the form α∨(Gm), so for any t in this maximal torus, we know that the action on v is given by
multiplication by t〈λ,α

∨〉, so the weight is 〈λ, α∨〉, which must then be 0, as was the claim.

Proposition 5.13. Let G be semisimple and simply connected and let L be a finite-dimensional
simple G-module. Then L is isomorphic to exactly one L(λ) with λ ∈ Xr.

Proof. Since G is semisimple and simply connected, we can write any λ ∈ X as a Z-linear combi-
nation of the fundamental weights ω1, . . . , ωl where l is the rank of G.

We then see that we have λ ∈ Xr exactly if λ can be written as
∑l

i=1 aiωi with 0 ≤ ai < pr for
1 ≤ i ≤ l.

Now it is clear by 5.11 that if we can show that distinct elements of Xr give rise to non-
isomorphic simple modules even when restricted to G, then we are done, as there are exactly prl

elements in Xr and this is also the number of simple G-modules.
Now, if L(λ) and L(µ) (with λ, µ ∈ Xr) are isomorphic as G-modules, then such an isomorphism

will send U+-invariant vectors to U+-invariant vectors, and since the U+-invariant vectors are
exactly those of weight λ (for L(λ)) or µ (for L(µ)), this means that for all t ∈ T , we have
λ(t) = µ(t). Now write λ =

∑l
i=1 aiωi and µ =

∑l
i=1 biωi. The preceding requirement is then that

for all x ∈ Fpr and 1 ≤ i ≤ l, we have xai = xbi , so we have ai ≡ bi (mod pr − 1).
Since all the ai and bi are between 0 and pr − 1, this means that if λ 6= µ then for some i

we have ai = 0 and bi = pr − 1 (or vice versa, but we can assume this by symmetry). If this is
the case, we cannot distinguish the modules by the T -action alone, but we can see that if α is the
root corresponding to the i’th fundamental weight, then the root subgroup U−α will stabilize the
U+-invariant vectors in L(λ), but not the ones in L(µ) by Lemma 5.12, so the modules are not
isomorphic.

Note that the above proposition also holds without the assumption of G being simply connected
(see [Hum06] Theorem 2.11), but the proof requires some other considerations, as we no longer
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have as good a description of the number of finite-dimensional simple modules, nor can we use the
fundamental weights as was done in the above proof.

The last part of the above proposition fails for arbitrary reductive groups, as can be seen by
looking at GLn where there are infinitely many distinct weights in Xr, but clearly there are only
finitely many isomorphism classes of finite-dimensional simple modules.

For G = GLn we can still determine all the simple modules for G, by using that the derived
subgroup of G is SLn, which is semisimple and simply connected, so we can use 5.10 along with 5.9
and the arguments from the proof of 5.11 to find the number of isomorphism classes of irreducible
G-modules. We see that this means that we need to find |(Z(G)0)F |, but since the center of G is
isomorphic to k×, it is connected, and we know that the fixed points under F just correspond to
F×pr , so there are pr − 1 elements.

We thus need to find (pr − 1)pr(n−1) simple non-isomorphic G-modules. But we know that

Xr = {(λ1, . . . , λn) | 0 ≤ λi − λi+1 < pr for all 1 ≤ i ≤ n− 1}
so if we restrict ourselves to just those λ ∈ Xr with λn = 0, we get pr(n−1) such λ. Now we see that
any module of the form L(λ)⊗Detm will be simple when restricted to SLn, and we see that they
are pairwise non-isomorphic if we require 0 ≤ m ≤ pr − 2, so we now have (pr − 1)pr(n−1) pair-wise
non-isomorphic simple G-modules as we wanted.

5.1 Composition Multiplicity of the Steinberg Module

If M is some G-module with a good filtration, we would like to be able to calculate the composition
multiplicity of the r’th Steinberg module Str in M , seen as a G-module. We denote this multiplicity
by [M : Str] and note that since Str is injective and projective (see Theorem 5.18), we have
[M : Str] = dim(HomG(Str,M)).

In order to find a formula for this multiplicity, we will use some ideas from [BNP12], where they
study the module Gr = indG

G (k).
The properties of this module we will need are the following (see also [BNP12]).

Proposition 5.14. Let M and N be G-modules. Then, for all i ≥ 0,

ExtiG(M,N) ∼= ExtiG(M,N ⊗ Gr)
Proof. Since G/G is isomorphic to G as an affine scheme, it is itself affine, and by Proposition 3.25
G is exact in G. Now we can apply Proposition 3.26 together with Proposition 3.23 and get

ExtiG(M,N ⊗ Gr) = ExtiG(M,N ⊗ indG
G (k)) ∼= ExtiG(M, indG

G (k ⊗ resGG (N))) ∼= ExtiG(M,N)

as was the claim.

The above proposition allows us to change the calculation of dim(HomG(Str,M)) to a calculation
of dim(HomG(Str,M⊗Gr)), and we already have a lot of tools to study Hom-spaces for G-modules.

In order to better understand the G-module Gr, we will show that it is in fact isomorphic to
k[G] but with a different action of G than the usual one. Let k[G]∨ denote the G-module that as
a k-module is k[G] and where the action of G is given as follows: Embed G into G ×G via the
usual diagonal map ∆, and let ϕ : G ×G → G ×G be given by (F, id). Let G ×G act on k[G]
by letting the first factor act via the left regular representation and the second factor act via the
right regular representation. Let G act on k[G]∨ via the composition of the maps ∆ and ϕ.

This means that we have (g.f)(x) = f(F (g)−1xg).
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Proposition 5.15. As a G-module, Gr is isomorphic to k[G]∨, and has a filtration with factors of
the form ∇(λ)⊗∇(−w0(λ))(r), where for each λ ∈ X+, the corresponding factor has multiplicity 1.

Proof. Let L : G → G be the Lang map as defined previously. By Theorem 5.2 and the following
lemmas, the map L∗ is a bijection from k[G] to k[G]G. But we have

Gr = indG
G (k) = {f ∈ k[G] | f(gh) = f(g) for all g ∈ G, h ∈ G} = k[G]G

so we have a bijection from k[G] to Gr. We then just need to check that this map is a morphism of
G-modules when we use the action of G on k[G] described above.

So we calculate
L∗(g.f)(x) = (g.f)(L(x)) = f(F (g)−1L(x)g)

and
(g.(L∗(f)))(x) = L∗(f(g−1x)) = f(L(g−1x))

= f(F (g−1x)(g−1x)−1) = f(F (g)−1F (x)x−1g) = f(F (g)−1L(x)g)

and we see that it is indeed a morphism of G-modules.
The existence of the claimed filtration now follows directly from Proposition 4.28.

Before we go further, we will present a proof that Str is projective as a G-module, using the
above results.

We will first need two lemmas.
Define a new ordering on X by µ ≤Q λ if λ−µ is a non-negative linear combination of positive

roots with rational coefficients.

Lemma 5.16 ([Hum06, Proposition 5.8(a)]). If λ ∈ X+, µ ∈ Xr and L(µ) is a composition factor
of ∇(λ) as a G-module, then µ ≤Q λ.

Lemma 5.17 ([Hum06, Theorem 3.7(d)]). If λ ∈ Xr then dim(∆(λ)) ≤ dim(Str).

Theorem 5.18. As a G-module, Str is both projective and injective.

Proof. We first prove that ExtiG(∆(λ), Str) = 0 for all λ ∈ Xr and all i ≥ 1.
By Proposition 5.14 we have ExtiG(∆(λ),Str) ∼= ExtiG(∆(λ),Str ⊗Gr), and by Proposition 5.15

we have a filtration of Str ⊗Gr with factors of the form Str ⊗∇(µ)⊗∇(−w0(µ))(r) which is isomor-
phic to ∇(µ)⊗∇((pr−1)ρ−prw0(µ)) by Theorem 4.29. By Theorem 4.25 this has a good filtration,
and thus Str ⊗Gr has a good filtration, which yields the first claim by Theorem 4.24.

To prove the theorem, we need to show that ExtiG(L(λ),Str) = 0 for all λ ∈ Xr and all i ≥ 1.
We do this by induction on λ (with respect to the ordering ≤Q). If we apply HomG(−,Str) to the
short exact sequence 0→ N → ∆(λ)→ L(λ)→ 0 we get a long exact sequence with terms

ExtiG(N, Str)→ Exti+1
G (L(λ), Str)→ Exti+1

G (∆(λ), Str).

When i ≥ 1 we get the claim by induction using Lemma 5.16, so we only need to consider the
case i = 0 where we have

HomG(N, Str)→ Ext1G(L(λ),Str)→ Ext1G(∆(λ),Str) = 0

where the last term is 0 by the previous claim. But HomG(N, Str) = 0 since Str is simple as a
G-module and since dim(N) < dim(∆(λ)) ≤ dim(Str), which completes the proof.

That also ExtiG(Str, L(λ)) = 0 for all λ ∈ Xr and all i ≥ 1 can be shown in the same way.
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Some notes on the above proof: First it should be noted that the result can be proven much more
easily as a special case of the theorem that if M is a G-module which is injective as a Gr-module,
then M is injective as a G-module (see [Dru13, Theorem 2.3]).

Another note is that when Str ⊗L(λ) has a good filtration for all λ ∈ Xr (so for example when
p ≥ 2h − 2 by Theorem 6.11), then the proof can be simplified, as then it is possible to use the
precise same arguments as those for the vanishing of ExtiG(∆(λ),Str) to show the vanishing of
ExtiG(L(λ), Str) by applying Theorem 6.10 and using that

ExtiG(L(λ),Str ⊗∇(µ)⊗∇(−w0(µ))(r)) ∼= ExtiG(∆(−w0(µ)), Str ⊗L(λ)⊗∇(−w0(µ))(r))

The formula for the multiplicity we can prove is then the following (the proof is due to Pillen,
see [WW11, Proposition 2.5]).

Theorem 5.19. Let N be a finite-dimensional G-module admitting a good filtration. Then

dim(HomG(Str, N)) =
∑

λ∈X+

[N ⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

Proof. First, we will compute ExtiG(Str, N ⊗ ∇(λ) ⊗ ∇(−w0(λ))(r)) for some λ ∈ X+. We start
by noting that by the definition of ∆(λ) it is isomorphic to ExtiG(Str ⊗∆(λ)(r), N ⊗∇(λ)) and by
Theorem 4.29 this is isomorphic to ExtiG(∆((pr − 1)ρ + prλ), N ⊗ ∇(λ)). Finally, by Proposition
4.24, we know that if i ≥ 1 this is 0 and for i = 0 we get

HomG(Str, N ⊗∇(λ)⊗∇(−w0(λ))(r)) ∼= HomG(∆((pr − 1)ρ+ prλ), N ⊗∇(λ))

If M is a G-module admitting a filtration with factors of the form ∇(λ)⊗∇(−w0(λ)(r) and S is
a G-submodule of M admitting a filtration of the same form, then so does the quotient Q = M/S.
The short exact sequence 0→ S →M → Q→ 0 induces a long exact sequence

0→ HomG(Str, N ⊗ S)→ HomG(Str, N ⊗M)→ HomG(Str, N ⊗Q)→ Ext1G(Str, N ⊗ S)

and by the previous calculation, the last term vanishes, which shows that

dim(HomG(Str, N ⊗M)) = dim(HomG(Str, N ⊗ S)) + dim(HomG(Str, N ⊗Q))

By repeating the above identity and using the filtration of Gr described in Proposition 5.15, we
get that

dim(HomG(Str, N ⊗ Gr)) =
∑

λ∈X+

dim(HomG(Str, N ⊗∇(λ)⊗∇(−w0(λ))(r)))

By Proposition 5.14 the left-hand side of the above is dim(HomG(Str, N)), and we can now use
the calculations from the start of this proof to get that the right-hand side is

∑

λ∈X+

dim(HomG(∆((pr − 1)ρ+ prλ), N ⊗∇(λ)))

and now the claim follows from applying Proposition 4.24 which says that

dim(HomG(∆((pr − 1)ρ+ prλ), N ⊗∇(λ))) = [N ⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇
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6 A Conjecture of Donkin

This section is based on the joint paper with Daniel Nakano [KN14], where we extend previous
work of Andersen ([And01]) on a conjecture of Donkin (Conjecture 6.1).

Assume for convenience in this section that G is semisimple and simply connected.

6.1 Good (p, r)-filtrations

For λ ∈ X+ write λ = λ0 + prλ1 with λ0 ∈ Xr (then λ1 ∈ X+ automatically).
Define ∇(p,r)(λ) = L(λ0)⊗∇(λ1)

(r).
A good (p, r)-filtration of a G-module M is a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆M

such that
⋃
iMi = M and such that Mi/Mi−1 ∼= ∇(p,r)(λi) for all i ≥ 1 and for suitable λi ∈ X+.

The following conjecture which was introduced by Donkin at an MSRI lecture in 1990 interre-
lates good filtrations with good (p, r)-filtrations via the Steinberg module.

Conjecture 6.1. Let M be a finite-dimensional G-module admitting a good (p, r)-filtration. Then
Str ⊗M has a good filtration.

In [And01], Andersen showed that the above conjecture is true when p ≥ 2h − 2. Donkin also
conjectured that the reverse implication should hold, but this part of the conjecture will not be
mentioned further in this dissertation.

In this section, we will expand on the results of Andersen by proving that when M has a good
(p, r)-filtration then Str ⊗M has a good filtration, provided a suitable inequality holds between p,
r, h and the weights occurring in the good (p, r)-filtration of M . As a special case, we recover the
results of Andersen, though our method of proof is markedly different. Our method of proof involves
the use of Donkin’s cohomological criterion for the existence of a good filtration (Theorem 4.24),
and a careful analysis of the vanishing of extension groups with suitable conditions on weights of
the form w.0 + pβ with w ∈W and β ∈ ZR.

In order to prove Conjecture 6.1, it is clearly enough to prove that Str ⊗∇(p,r)(λ) has a good
filtration for any λ ∈ X+. However, due to a result of Andersen (included as Proposition 6.10),
it turns out that it is enough to show that Str ⊗L(λ) has a good filtration for any λ ∈ Xr. The
inequality we obtain allows us to prove that Str ⊗L(λ) has a good filtration with smaller restrictions
on p provided that the weight λ is also suitably smaller. This still leaves weights λ ∈ X+ for which we
do not know whether Str ⊗∇(p,r)(λ) has a good filtration when p is small. However, if λ = λ0+prλ1
with λ0 ∈ Xr and if λ1 is large enough compared to λ0 (made precise in Theorem 6.19), then we
can still show that Str ⊗∇(p,r)(λ) has a good filtration, even if λ0 is not small enough to satisfy the
inequality we get with respect to p, r and h.

A natural question is for which λ ∈ X+ does Str ⊗L(λ) have a good filtration? When p ≥ 2h−2
and if 〈λ, α∨0 〉 ≤ (pr − 1)(h− 1) we have that L(λ) ' ∇(p,r)(λ) (Proposition 6.13) so in these cases
it does hold. However, we also prove that this is close to being the best bound of this type possible.
Namely, we show that if p = 2h−5 and R is of type A, then there is a λ with 〈λ, α∨0 〉 ≤ (p−1)(h−1)
and such that St1⊗L(λ) does not have a good filtration. By examining the weights more closely,
we prove that Conjecture 6.1 is true if R is of type A2, A3, B2 or G2, without restrictions on p,
apart from p 6= 7 in the G2 case.
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6.2 Weights of the form w · 0
Throughout this section we will make use of the observation that if λ ≤ µ with λ, µ ∈ X then
〈λ, α∨0 〉 ≤ 〈µ, α∨0 〉. This follows because µ = λ+ β where β is a non-negative linear combination of
the simple roots, and inner product of any simple root with α∨0 is greater or equal to zero.

Lemma 6.2. Let w ∈W and set R<0
w = {α ∈ −R+ | w−1(α) > 0}. Then

w.0 =
∑

α∈R<0
w

α

In particular, w0.0 ≤ w.0 ≤ 0.

Proof. Define R>0
w = {α ∈ R+ | w−1(α) > 0}.

We first claim that w(R+) = R>0
w ∪ R<0

w . This follows by noting that in fact we also have
R>0
w = {w(α) | α ∈ R+, w(α) > 0} and R<0

w = {w(α) | α ∈ R+, w(α) < 0}.
We also have that R+ = R>0

w ∪ −R<0
w . Since |R+| = |w(R+)|, and clearly R>0

w ∪ −R<0
w ⊆ R+,

it is enough to check that R>0
w and −R<0

w are disjoint. But if α ∈ R>0
w ∩ −R<0

w , then by the above
note we have that α = w(β) for some β ∈ R+ and also that −α = w(γ) for some γ ∈ R+, and
hence we have w(β + γ) = α− α = 0 so β + γ = 0, but this is not possible for positive roots β and
γ.

We note that w.0 = w(ρ) − ρ and since w permutes the roots and ρ is half the sum of all the
positive roots, we get from the above that

w(ρ) = w


1

2

∑

α∈R+

α


 =

1

2

∑

α∈R+

w(α) =
1

2

∑

β∈w(R+)

β =
1

2


 ∑

α∈R>0
w

α+
∑

α∈R<0
w

α




so
w(ρ)− ρ =

∑

α∈R<0
w

α

and hence the first part of the claim. Since w0.0 = w0(ρ) − ρ = −2ρ =
∑

α∈−R+ α this gives the
second part of the claim.

We can now prove bounds on the size of the inner products of w · 0 with coroots.

Proposition 6.3. Let w ∈W . Then

(a) 〈w · 0, α∨0 〉 ≥ −2(h− 1);

(b) 〈w · 0, α∨〉 ≤ h− 2 for any α ∈ S.

Proof. (a) By Lemma 6.2 we have w · 0 ≥ w0 · 0, thus

〈w · 0, α∨0 〉 ≥ 〈w0 · 0, α∨0 〉 = 〈−2ρ, α∨0 〉 = −2(h− 1).

(b) Observe that 〈w · 0, α∨〉 = 〈w(ρ) − ρ, α∨〉 = 〈w(ρ), α∨〉 − 〈ρ, α∨〉 = 〈ρ, w−1(α∨)〉 − 1. But
〈ρ, w−1(α∨)〉 is at most 〈ρ, α∨0 〉 because for any root β we have that 〈ρ, β∨〉 is the height of β∨. Part
(b) now follows because 〈ρ, α∨0 〉 = h− 1.
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6.3 Dominant weights in the root lattice

We summarize the results on dominant weights which will be used in the subsequent sections in
the following proposition.

Proposition 6.4. Let λ ∈ X+ and assume that p ≥ h− 1.

(a) If λ = w · 0 + pβ for some w ∈W and β ∈ ZR and λ 6= 0, then 〈λ, α∨0 〉 ≥ 2(p− h+ 1).

(b) Suppose that ExtiG(k, L(λ)) 6= 0 for some i ≥ 1. Then 〈λ, α∨0 〉 ≥ 2(p− h+ 1).

Proof. (a) By Proposition 6.3(b), if α ∈ S, we have 〈w · 0, α∨〉 ≤ h− 2. Since λ is dominant

0 ≤ 〈w · 0 + pβ, α∨〉 ≤ (h− 1) + p〈β, α∨〉.

Now by assumption p ≥ h− 1 which forces 〈β, α∨〉 ≥ 0, so β must be dominant.
Next we observe that by Proposition A.1, we must have 〈β, α∨0 〉 ≥ 2 since β 6= 0. Combining

this fact with Proposition 6.3(a), we see that

〈λ, α∨0 〉 = 〈w · 0, α∨0 〉+ p〈β, α∨0 〉 ≥ −2(h− 1) + 2p = 2(p− h+ 1)

as claimed.
(b) The linkage principle (Theorem 4.17) implies that λ = w · 0 + pβ for some w ∈W and some

β ∈ ZR, so the result follows directly from part (a) since we must have λ 6= 0.

Note that when p ≥ h the above cannot be improved. This is because, for λ = (p − h + 1)α0,
there is a short exact sequence 0 → L(λ) → ∇(λ) → L(0) → 0, as can be seen by applying the
Jantzen sum formula (Theorem 4.18).

6.4 A Cohomological Criterion

Theorem 4.24 will be the main tool used to prove the existence of good filtrations, but for our
purposes it is convenient to provide a modified version of this cohomological criterion. We note that
if Donkin’s conjecture holds, parts (b) and (c) of the theorem below would give a cohomological
criterion for the existence of good (p, r)-filtrations.

Theorem 6.5. Let M be a G-module. The following are equivalent

(a) Str ⊗M has a good filtration.

(b) Ext1G/Gr
(k,HomGr(∆(µ), Str ⊗M)) = 0 for all µ ∈ X+.

(c) ExtiG/Gr
(k,HomGr(∆(µ), Str ⊗M)) = 0 for all µ ∈ X+, i ≥ 1.

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence (Theorem 4.23)

Ep,q2 = ExtpG/Gr
(k,ExtqGr

(∆(µ),Str ⊗M))⇒ Extp+qG (∆(µ), Str ⊗M).

Since Str is injective as a Gr-module by Theorem 4.30, we also have that Str ⊗M is injective as a
Gr-module. Therefore, this spectral sequence collapses and yields the isomorphism:

ExtiG(∆(µ),Str ⊗M) ∼= ExtiG/Gr
(k,HomGr(∆(µ), Str ⊗M)) (1)

for all i ≥ 0. The theorem now follows from Theorem 4.24.
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6.5 Good filtrations for Str⊗L(λ): bounds on λ

From the proof of Theorem 6.5, we have

Ext1G(∆(µ),Str ⊗M) ∼= Ext1G/Gr
(k,HomGr(∆(µ), Str ⊗M)) (2)

We will first show that we can restrict our attention to a finite set of weights µ ∈ X+ in order to
verify that this extension group is zero.

Lemma 6.6. Let λ, µ ∈ X+ and assume that Ext1G(∆(µ),Str ⊗L(λ)) 6= 0. Then

〈µ, α∨0 〉 ≤ 〈λ, α∨0 〉+ (pr − 1)(h− 1).

Proof. Consider the short exact sequence 0 → L(λ) → ∇(λ) → Q → 0. One can tensor this
sequence with Str and apply HomG(∆(µ),−) to obtain the long exact sequence

· · · → HomG(∆(µ),Str ⊗Q)→ Ext1G(∆(µ),Str ⊗L(λ))→ Ext1G(∆(µ), Str ⊗∇(λ))→ · · ·

Since Str ⊗∇(λ) has a good filtration by Theorem 4.25, it follows from Theorem 4.24 that we have
Ext1G(∆(µ), Str ⊗∇(λ)) = 0. From our hypothesis, Ext1G(∆(µ),Str ⊗L(λ)) 6= 0 which implies that
HomG(∆(µ), Str ⊗Q) 6= 0.

The head of ∆(µ) is L(µ), so µ must then be a weight of Str ⊗Q and also a weight of Str ⊗∇(λ).
In particular, µ ≤ (pr − 1)ρ+ λ, and

〈µ, α∨0 〉 ≤ 〈(pr − 1)ρ+ λ, α∨0 〉 = (pr − 1)(h− 1) + 〈λ, α∨0 〉.

Using the result in the preceding section we can then obtain another bound for µ which is
needed in order to get Ext1G(∆(µ), Str ⊗L(λ)) 6= 0, this time requiring 〈µ, α∨0 〉 to be large enough
compared to λ, p and r.

Proposition 6.7. Let p ≥ h− 1 and assume that Ext1G(∆(µ), Str ⊗L(λ)) 6= 0 for some λ, µ ∈ X+.
Then

〈µ, α∨0 〉 ≥ (pr − 1)(h− 1) + 2pr(p− h+ 1)− 〈λ, α∨0 〉.

Proof. From (2) and using the fact that Str ∼= St∗r and ∆(µ)∗ ∼= ∇(−w0(µ)) we have

Ext1G(∆(µ),Str ⊗L(λ)) ∼= Ext1G/Gr
(k,HomGr(∆(µ), Str ⊗L(λ)))

∼= Ext1G/Gr
(k,HomGr(Str,∇(−w0(µ))⊗ L(λ)))

so we can assume the last Ext-group is not 0. Set ν = −w0(µ).
If we take a composition series for ∇(ν) ⊗ L(λ) (as a G-module), this gives us a filtration of

HomGr(Str,∇(ν)⊗L(λ)) since Str is projective as a Gr-module by Theorem 4.30. Therefore, since
we assume that Ext1G/Gr

(k,Hom(Str,∇(ν) ⊗ L(λ))) 6= 0, there must be some σ ∈ X+ such that

L(σ) is a composition factor of ∇(ν)⊗ L(λ) and such that Ext1G/Gr
(k,HomGr(Str, L(σ))) 6= 0.

In particular, HomGr(Str, L(σ)) 6= 0. By Theorem 4.10 we have L(σ) ∼= L(σ0)⊗L(σ1)
(r) where

σ = σ0 + prσ1 with σ0 ∈ Xr and σ1 ∈ X+. Consequently,

0 6= HomGr(Str, L(σ)) ∼= HomGr(Str, L(σ0)⊗ L(σ1)
(r)) ∼= HomGr(Str, L(σ0))⊗ L(σ1)

(r).
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Since Str is simple as a Gr-module, σ0 = (pr − 1)ρ, and HomGr(Str, L(σ)) ∼= L(σ1)
(r). We now

have
0 6= Ext1G/Gr

(k,HomGr(Str, L(σ))) ∼= Ext1G(k, L(σ1)).

Now apply Proposition 6.4(b), which shows that 〈σ1, α∨0 〉 ≥ 2(p− h+ 1). This yields

〈σ, α∨0 〉 ≥ (pr − 1)(h− 1) + 2pr(p− h+ 1).

Since L(σ) was assumed to be a composition factor of ∇(ν) ⊗ L(λ) we get that σ ≤ ν + λ.
Therefore,

(pr − 1)(h− 1) + 2pr(p− h+ 1) ≤ 〈σ, α∨0 〉 ≤ 〈ν + λ, α∨0 〉.
It now follows that

〈µ, α∨0 〉 = 〈µ,−w0(α
∨
0 )〉 = 〈ν, α∨0 〉 ≥ (pr − 1)(h− 1) + 2pr(p− h+ 1)− 〈λ, α∨0 〉.

The preceding results allow us to provide sufficient conditions for Str ⊗L(λ) to admit a good
filtration.

Theorem 6.8. Let p ≥ h − 1 and assume that Ext1G(∆(µ), Str ⊗L(λ)) 6= 0 for some λ, µ ∈ X+.
Then

(pr − 1)(h− 1) + 2pr(p− h+ 1)− 〈λ, α∨0 〉 ≤ 〈µ, α∨0 〉 ≤ 〈λ, α∨0 〉+ (pr − 1)(h− 1)

Proof. This follows directly by combining Lemma 6.6 and Proposition 6.7.

And we also obtain the following theorem, removing the mention of µ. We only state the result
for p ≥ h as the conditions on λ are never satisfied for p = h− 1.

Theorem 6.9. Assume that p ≥ h and let λ ∈ X+ with 〈λ, α∨0 〉 < pr(p − h + 1). Then Str ⊗L(λ)
has a good filtration.

Proof. If Str ⊗L(λ) does not have a good filtration, then by Theorem 4.24 there must be some
µ ∈ X+ with Ext1G(∆(µ), Str ⊗L(λ)) 6= 0. Hence, by Theorem 6.8

(pr − 1)(h− 1) + 2pr(p− h+ 1)− 〈λ, α∨0 〉 ≤ 〈µ, α∨0 〉 ≤ 〈λ, α∨0 〉+ (pr − 1)(h− 1)

and in particular

(pr − 1)(h− 1) + 2pr(p− h+ 1)− 〈λ, α∨0 〉 ≤ 〈λ, α∨0 〉+ (pr − 1)(h− 1)

which gives 〈λ, α∨0 〉 ≥ pr(p− h+ 1), contradicting the choice of λ.
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6.6 Donkin’s Conjecture

We first recall the result of Andersen (cf. [And01, Proposition 2.6]), which allows us to reduce the
general question of whether Str ⊗∇(p,r)(λ) has a good filtration to just considering the case when
λ ∈ Xr (i.e., whether Str ⊗L(λ) has a good filtration). A proof is included below as we need a
slightly more general version than the one originally given by Andersen.

Proposition 6.10. Let V be a G-module. The following are equivalent.

(a) Str ⊗V has a good filtration.

(b) Str ⊗V ⊗∇(λ)(r) has a good filtration for all λ ∈ X+.

Proof. Since ∇(0)(r) ∼= k(r) ∼= k, we clearly have that (b) implies (a). For the other direction (i.e.
(a) implies (b)) assume that Str ⊗V has a good filtration. Then by Theorem 4.25, Str ⊗V ⊗∇(prλ)
has a good filtration for all λ ∈ X+. Since direct summands of modules with good filtrations
themselves have good filtrations (by Theorem 4.24), it is sufficient to show that Str ⊗∇(λ)(r) is a
direct summand of Str ⊗∇(prλ), which would then imply that Str ⊗V ⊗∇(λ)(r) is a direct summand
of Str ⊗V ⊗∇(prλ).

For our purposes we need to show that there are maps ϕ : Str ⊗∇(λ)(r) → Str ⊗∇(prλ) and
ψ : Str ⊗∇(prλ)→ Str ⊗∇(λ)(r) such that ψ ◦ ϕ = id. Since Str ⊗∇(λ)(r) ∼= ∇((pr − 1)ρ+ prλ) by
Theorem 4.29, and this has a simple socle and 1-dimensional space of endomorphisms, it is sufficient
to find such ϕ and ψ such that the weight space of weight (pr − 1)ρ + prλ is not in the kernel of
the composed map.

In order for maps ϕ and ψ as above to exist, we need HomG(Str ⊗∇(λ)(r),Str ⊗∇(prλ)) 6= 0
and HomG(Str ⊗∇(prλ), Str ⊗∇(λ)(r)) 6= 0. We prove this below, and note that the arguments for
this claim also show that choosing any non-zero maps ϕ and ψ will in fact give the desired property.

By Frobenius reciprocity (Proposition 3.22), we have

HomG(∇(λ)(r),∇(prλ)) ∼= HomB(∇(λ)(r), prλ) 6= 0

since prλ is the highest weight of ∇(λ)(r). Hence, HomG(Str ⊗∇(λ)(r),Str ⊗∇(prλ)) 6= 0.
On the other hand, we have Str ⊗∇(λ)(r) ∼= ∇((pr − 1)ρ+ prλ), and by Frobenius reciprocity,

HomG(Str ⊗∇(prλ),Str ⊗∇(λ)(r)) ∼= HomG(Str ⊗∇(prλ),∇((pr − 1)ρ+ prλ))
∼= HomB(Str ⊗∇(prλ), (pr − 1)ρ+ prλ)

6= 0

since (pr − 1)ρ+ prλ is the highest weight of Str ⊗∇(prλ). This shows that Str ⊗∇(λ)(r) is a direct
summand of Str ⊗∇(prλ) which completes the proof.

We can now present a proof of one direction of Donkin’s Conjecture when p ≥ 2h − 2 which
recovers Proposition 2.10 of [And01].

Theorem 6.11. Let p ≥ 2h−2. If M has a good (p, r)-filtration then Str ⊗M has a good filtration.

Proof. Since p ≥ 2h− 2 we have p− h+ 1 ≥ h− 1. Therefore, for any λ ∈ Xr,

〈λ, α∨0 〉 ≤ (pr − 1)(h− 1) < pr(h− 1) ≤ pr(p− h+ 1).

Hence, according to Theorem 6.9, Str ⊗L(λ) has a good filtration for all λ ∈ Xr. The statement of
the theorem now follows from Proposition 6.10.
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6.7 Other bounds

In this section, we will present another method to obtain sufficient conditions on p, r and λ to
ensure that Str ⊗L(λ) has a good filtration. This procedure starts with the r = 1 case and then
uses an inductive argument similar to the one in [And01, Proposition 2.10], though the formulation
below is more general. In some cases, it will be easier to deal with the r = 1 case.

Proposition 6.12. Let m be a positive integer and let Γ1 ⊆ Xm be a set of weights, such that
Stm⊗L(λ) has a good filtration for all λ ∈ Γ1. Let Γr =

∑r−1
i=0 p

imΓ1 be the set of weights λ of the
form λ = λ0 + pmλ1 + · · ·+ p(r−1)mλr−1 with all λi ∈ Γ1.

Then Strm⊗L(λ) has a good filtration for all λ ∈ Γr.

Proof. We proceed by induction on r. Using Theorem 4.10, we have

Strm = L((prm − 1)ρ) = L((pm − 1)ρ+ pm(p(r−1)m − 1)ρ) ∼= Stm⊗St
(m)
(r−1)m

and if λ = λ0 + pmλ1 + · · ·+ p(r−1)mλr−1 with all λi ∈ Γ1, then we can write λ = λ0 + pmµ where
µ = λ1 + pmλ2 + · · ·+ p(r−2)mλr−1 ∈ Γr−1, and L(λ) ∼= L(λ0)⊗ L(µ)(m).

Now Strm⊗L(λ) ∼= Stm⊗L(λ0)⊗ (St(r−1)m⊗L(µ))(m). By assumption Stm⊗L(λ0) has a good
filtration since λ0 ∈ Γ1, and by induction we get that St(r−1)m⊗L(µ) has a good filtration. The
result now follows by Proposition 6.10.

The case of the above that will be of most interest is when m = 1. As a special case one obtains
the result: if St1⊗L(λ) has a good filtration for all λ ∈ X1, then Str ⊗L(λ) has a good filtration
for all λ ∈ Xr.

One way to use Proposition 6.12 is to use Theorem 6.9 in the case r = 1 to get a set of weights
to use, and then expand. The set of weights thus obtained for arbitrary r will generally contain
weights not satisfying the inequality of Theorem 6.9 unless either p ≤ h or p ≥ 2h− 2. In the case
of p ≥ 2h− 2 we can take Γ1 = X1 and obtain an alternative proof of Corollary 6.11. Furthermore,
if p < 2h − 2 then there are weights in X1 which do not satisfy the inequality in Theorem 6.9, so
we cannot directly improve the bound on p this way.

6.8 Tensoring with other simple modules

The methods employed in the preceding sections use the condition that 〈λ, α∨0 〉 is not too large
to show that Str ⊗L(λ) has a good filtration. In particular, our techniques do not need that L(λ)
remains simple when restricted to Gr (i.e., λ ∈ Xr).

Therefore, a natural question to ask is whether one can replace the conjecture that Str ⊗L(λ)
has a good filtration for all λ ∈ Xr (which is still only a conjecture when p < 2h − 2) with the
stronger statement that Str ⊗L(λ) has a good filtration for all λ ∈ X+ with 〈λ, α∨0 〉 ≤ (pr−1)(h−1)
(which also holds when p ≥ 2h− 2 by Corollary 6.9).

However, we will show that this is not the case for smaller primes. For p ≥ 2h − 2 with
〈λ, α∨0 〉 ≤ (pr − 1)(h − 1), λ also satisfies 〈λ, α∨0 〉 < pr(p − h + 1), and we have the following
result which does hold for smaller primes.

Proposition 6.13. Let λ ∈ X+ with 〈λ, α∨0 〉 < pr(p− h+ 1). Then L(λ) ∼= ∇(p,r)(λ).
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Proof. Write λ = λ0 + prλ1 with λ0 ∈ Xr and observe that

〈λ1, α∨0 〉 ≤
1

pr
〈λ, α∨0 〉 < p− h+ 1

so 〈λ1 + ρ, α∨0 〉 < (p− h+ 1) + (h− 1) = p and hence L(λ1) ∼= ∇(λ1) by Proposition 4.15.
Consequently, by Theorem 4.10

∇(p,r)(λ) = L(λ0)⊗∇(λ1)
(r) ∼= L(λ0)⊗ L(λ1)

(r) ∼= L(λ0 + prλ1) = L(λ).

The following class of counterexamples shows that St1⊗L(λ) need not have a good filtration
when 〈λ, α∨0 〉 ≤ (p− 1)(h− 1).

Proposition 6.14. Let R be of type An with n ≥ 3 and assume that p = 2h − 5 is a prime. Let
λ = p(ω1 + ω2 + · · · + ωn−1). Then 〈λ, α∨0 〉 ≤ (p − 1)(h − 1) but St1⊗L(λ) does not have a good
filtration.

Proof. Since h ≥ 4 (recall that h = n+ 1) we have

〈λ, α∨0 〉 = p(n− 1) = (2h− 5)(h− 2) = 2h2 − 9h+ 10 = 2h2 − 8h+ 6− (h− 4)

≤ 2h2 − 8h+ 6 = (2h− 6)(h− 1) = (p− 1)(h− 1)

which was the first part of the claim.
Let µ = ω1 + ω2 + · · · + ωn−1 (so λ = pµ). We claim that ∇(µ) 6∼= L(µ). First apply Theorem

4.14 with the positive root α = α1 + α2 + · · ·+ αn−1. One has

〈µ+ ρ, α∨〉 = (n− 1) + (n− 1) = 2h− 4 = 1 + p

so if we had ∇(µ) ∼= L(µ) there would have to be a positive root β0 with 〈µ + ρ, β∨0 〉 = 1 and
α− β0 ∈ R ∪ {0}.

However, the only positive root β0 such that 〈µ+ ρ, β∨0 〉 = 1 is β0 = αn since µ+ ρ is dominant
and all other simple roots γ have 〈µ + ρ, γ∨〉 = 2. Since α − αn is not a root (and α 6= αn), this
shows the claim.

Now one has St1⊗L(λ) ∼= St1⊗L(µ)(1) ∼= L((p− 1)ρ+ pµ) by Theorem 4.10. But since this is a
simple module, the only way it can have a good filtration is if it is isomorphic to ∇((p− 1)ρ+ pµ).
But by Theorem 4.29 we have ∇((p − 1)ρ + pµ) ∼= St1⊗∇(µ)(1). Since L(µ)(1) is a submodule
of ∇(µ)(1), it follows that if St1⊗L(µ)(1) ∼= St1⊗∇(µ)(1) then also L(µ)(1) ∼= ∇(µ)(1), and thus
L(µ) ∼= ∇(µ), which is not the case.

The existence of the aforementioned family of counterexamples means that if one wants to show
that St1⊗L(λ) has a good filtration for all λ ∈ X1 when p is small, then the methods needs to take
into account more than just the size of 〈λ, α∨0 〉.
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6.9 Good filtrations on Str⊗∇(p,r)(λ)

The goal of this section is to show that if λ = λ0 + prλ1 with λ0 ∈ Xr and λ1 ∈ X+ where λ1 is
“large enough” compared to λ0 (and p and r), then Str ⊗∇(p,r)(λ) has a good filtration, even if λ0
is not small enough compared to p and r to apply Theorem 6.9. We start with some preliminary
lemmas. The first lemma involves weights of ∇(λ) and the second provides conditions on when
R1 indG

B(λ) = 0.

Lemma 6.15. Let λ ∈ X+ and assume that µ is a weight of ∇(λ). Then 〈µ, α∨〉 ≥ −〈λ, α∨0 〉 for
all α ∈ R+. In particular, the same inequality holds for any weight of L(λ).

Proof. Since the Weyl group acts transitively on the Weyl chambers, there is some w ∈ W such
that 〈w(µ), α∨〉 ≤ 0 for all α ∈ R+. Then 〈w(µ), α∨〉 ≥ 〈w(µ), α∨0 〉 for all α ∈ R for the same reason
that the reverse inequality would hold if w(µ) was dominant.

For any α ∈ R+, 〈µ, α∨〉 = 〈w(µ), w(α∨)〉 ≥ 〈w(µ), α∨0 〉. Since µ is a weight of ∇(λ), so is w(µ).
Hence, w(µ) ≥ w0(λ) and 〈w(µ), α∨0 〉 ≥ 〈w0(λ), α∨0 〉. Furthermore, 〈w0(λ), α∨0 〉 = −〈λ, α∨0 〉 which
gives the first claim. If µ is a weight of L(λ) then µ is also a weight of ∇(λ), thus the second claim
follows.

Lemma 6.16. Let λ ∈ X. If 〈λ, α∨〉 ≥ −1 for all α ∈ S then R1 indG
B(λ) = 0.

Proof. This follows by combining Theorem 4.12 with Proposition 4.13, since if λ 6∈ X+, the condi-
tions mean that there is some α ∈ S with 〈λ, α∨〉 = −1.

The preceding lemmas can be used to determine sufficient conditions for ∇(ν) ⊗ L(λ) to have
a good filtration.

Proposition 6.17. Let λ, ν ∈ X+ with 〈λ, α∨0 〉 ≤ 〈ν, α∨〉+ 1 for all α ∈ S. Then ∇(ν)⊗ L(λ) has
a good filtration.

Proof. First note that by Lemma 6.15, for any weight µ of L(λ) and any α ∈ S,

〈ν + µ, α∨〉 = 〈ν, α∨〉+ 〈µ, α∨〉 ≥ 〈ν, α∨〉 − 〈λ, α∨0 〉 ≥ −1.

Now apply Proposition 3.23 which gives

∇(ν)⊗ L(λ) = indG
B(ν)⊗ L(λ) ∼= indG

B(ν ⊗ L(λ)).

The weights of L(λ) gives a filtration of L(λ) as a B-module, so we obtain a filtration of ν ⊗ L(λ)
with factors of the form ν + µ where µ is a weight of L(λ).

We wish to show that this filtration gives a filtration of indG
B(ν ⊗L(λ)) with terms of the form

indG
B(ν + µ). In order to do this, it is sufficient to show that R1 indG

B(ν + µ) = 0 for all weights µ
of L(λ). But, for any such µ and α ∈ S one has 〈ν + µ, α∨〉 ≥ −1, so this follows by Lemma 6.16.
Therefore, we have demonstrated that ∇(ν)⊗L(λ) has a filtration with factors of the form indG

B(γ)
for suitable γ which finishes the proof.

As a direct consequence of the above, we get a sufficient condition on λ which guarantees that
Str ⊗L(λ) has a good filtration, with no requirement on p. For p = h this condition is better than
the one obtained from Theorem 6.9.

Theorem 6.18. If λ ∈ X+ with 〈λ, α∨0 〉 ≤ pr then Str ⊗L(λ) has a good filtration.
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Proof. This follows directly from Proposition 6.17 since 〈(pr − 1)ρ, α∨〉 = pr − 1 for all α ∈ S.

We now present sufficient conditions to insure that Str ⊗∇(p,r)(λ) has a good filtration.

Theorem 6.19. Let λ be a dominant weight and write λ = λ0 + prλ1 with λ0 ∈ Xr. Moreover,
assume that 〈λ0, α∨0 〉 ≤ pr(〈λ1, α∨〉+ 1) for all α ∈ S. Then Str ⊗∇(p,r)(λ) has a good filtration.

Proof. By Theorem 4.29

Str ⊗∇(p,r)(λ) = Str ⊗∇(λ1)
(r) ⊗ L(λ0) ∼= ∇((pr − 1)ρ+ prλ1)⊗ L(λ0)

so the claim follows from Proposition 6.17 since 〈(pr− 1)ρ+ prλ1, α
∨〉 = pr〈λ1, α∨〉+ pr− 1 for any

α ∈ S.

As a special case of above theorem, we see that if pr(〈λ1, α∨〉+1) ≥ (pr−1)(h−1) for all α ∈ S,
then for any λ = λ0 + prλ1 with λ0 ∈ Xr, Str ⊗∇(p,r)(λ) has a good filtration.

6.10 Root systems of small rank

For the root systems of type A2, A3, B2 and G2 we can show that Str ⊗M has a good filtration for
any G-module M with a good (p, r)-filtration, without any restrictions on p, except for the case
p = 7 in type G2.

We do this by proving that St1⊗L(λ) has a good filtration for all λ ∈ X1, since then the
statement follows from Proposition 6.12 and Proposition 6.10.

In the following, we will call a weight λ ∈ X+ simple if L(λ) = ∇(λ).
We start with a result similar to Lemma 6.6 and Proposition 6.7. We will not give a proof here,

as the arguments are completely identical to those of the mentioned results.

Proposition 6.20. Let λ ∈ X1 and assume that St1⊗L(λ) does not have a good filtration.
Then there are weights µ, σ ∈ X+ with µ 6= λ such that Ext1G(k, L(σ)) 6= 0, [∇(λ) : L(µ)] 6= 0

and pσ ≤ λ+ µ.
In particular, λ is not simple, pσ ≤ 2λ, p〈σ, α∨0 〉 ≤ 2〈λ, α∨0 〉, and p〈σ, α∨0 〉 ≤ 〈λ+ µ, α∨0 〉.

In order to apply the above, we start by obtaining a version of Proposition 6.4 (b) when p ≤ h−1
(for p ≥ h we can use the proposition itself, and as remarked there, we cannot improve this). We
do this by using that if Ext1G(k, L(σ)) 6= 0 then [∆(σ) : k] 6= 0 (Proposition 4.16), and then apply
the Jantzen sum formula (Theorem 4.18) to see which σ satisfies this. Note that in type G2, we
instead use the tables in [Hag83] to do this.

Once we have obtained the above, we apply Proposition 6.20 in several steps.
The first step is to use it to reduce the set of weights we need to consider. In some cases, we

will instead apply Theorem 6.18 for this.
In some cases, we will also need to apply the Jantzen sum formula to ∆(λ) for some of those

weights λ we are left with, (or use the tables in [Hag83]), in order to know which simple modules
can occur as composition factors of ∇(λ) (since the composition factors of ∇(λ) are the same as
those of ∆(λ)). This will also give a further reduction in the weights we need to consider, as we do
not need to consider any simple weights.

In the following we will write all weights in the basis consisting of the fundamental weights.
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Type A2

Since we have 2h− 2 = 4, we need to consider the cases p = 2 and p = 3.

p = 2

In this case we are done as soon as we apply Theorem 6.18 as there are no weights left to consider.

p = 3

The only weight left to consider after applying Theorem 6.18 is (2, 2) = (p − 1)ρ which is simple,
so we are done.

Type A3

Since 2h− 2 = 6, the cases we need to consider are p = 2, p = 3 and p = 5.

p = 2

The only weight left to consider after applying Theorem 6.18 is (1, 1, 1) = (p− 1)ρ, which is simple
so we are done.

p = 3

We see that if Ext1G(k, L(σ)) 6= 0 then 〈σ, α∨0 〉 ≥ 2 since all the fundamental weights are simple.
The weight (0, 2, 0) shows that we cannot do any better, but this is the only such weight where
equality holds (as can be checked using the Jantzen sum formula).

By Theorem 6.18, we need to consider the weights (0, 2, 2), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 0, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1) and (2, 2, 2). But applying Theorem 4.14 we see that the only
ones of these we need to consider are (1, 1, 2), (1, 2, 1), (2, 0, 2), (2, 1, 1) and (2, 1, 2) as the rest are
simple.

By Proposition 6.20 we can then further restrict to those weights λ such that we either have
3(0, 2, 0) ≤ 2λ or 〈λ, α∨0 〉 ≥ 5. This rules out the weights (1, 1, 2), (2, 0, 2) and (2, 1, 1), so we are
left with just (1, 2, 1) and (2, 1, 2).

Applying the Jantzen sum formula to ∆(1, 2, 1) we see that we have a short exact sequence
0→ L(1, 2, 1)→ ∇(1, 2, 1)→ L(0, 2, 0)→ 0, we can use Proposition 6.20 to rule out this weight, as
we do not have 3(0, 2, 0) ≤ (1, 2, 1) + (0, 2, 0) since (1, 2, 1) + (0, 2, 0)− 3(0, 2, 0) = (1,−2, 1) = −α2.

For the weight (2, 1, 2) we again apply the Jantzen sum formula and get a short exact sequence
0→ L(2, 1, 2)→ ∇(2, 1, 2)→ L(0, 1, 0)→ 0. Like before, we can rule out this weight as we do not
have 3(0, 2, 0) ≤ (0, 1, 0) + (2, 1, 2) since (0, 1, 0) + (2, 1, 2)− 3(0, 2, 0) = (2,−4, 2) = −2α2.

p = 5

After applying Theorem 6.9, we are left with the weights (2, 4, 4), (3, 3, 4), (3, 4, 3), (3, 4, 4), (4, 2, 4),
(4, 3, 3), (4, 3, 4), (4, 4, 2), (4, 4, 3) and (4, 4, 4). But applying Theorem 4.14 we reduce this to just
the weights (3, 3, 4), (3, 4, 3), (4, 2, 4), (4, 3, 3) and (4, 3, 4). And the result for (3, 3, 4) follows from
the result for (4, 3, 3) = −w0(3, 3, 4).
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By Proposition 6.4, if Ext1G(k, L(σ)) 6= 0 then 〈σ, α∨0 〉 ≥ 4. Thus, by Proposition 6.20 we see
that it will be sufficient, for each weight λ in the above list, to show that if L(µ) is a composition
factor of ∇(λ) with µ 6= λ then 〈µ+ λ, α∨0 〉 < 5 · 4 = 32, i.e. that 〈µ, α∨0 〉 ≤ 19− 〈λ, α∨0 〉.

Applying the Jantzen sum formula, we get the following (we do not need to compute the
characters completely, as we only need bounds on the weights occurring):

For λ = (4, 3, 3), all weights µ that occur have 〈µ, α∨0 〉 ≤ 7 < 19− 〈λ, α∨0 〉 = 9.
For λ = (4, 3, 4), all weights µ that occur have 〈µ, α∨0 〉 ≤ 3 < 19− 〈λ, α∨0 〉 = 8.
For λ = (4, 2, 4), all weights µ that occur have 〈µ, α∨0 〉 ≤ 4 < 19− 〈λ, α∨0 〉 = 9.
For λ = (3, 4, 3), all weights µ that occur have 〈µ, α∨0 〉 ≤ 6 < 19− 〈λ, α∨0 〉 = 9.
Thus we have dealt with all the weights in this case.

Type B2

Here 2h− 2 = 6 so we need to deal with the cases p = 2, p = 3 and p = 5.

p = 2

After applying Theorem 6.18, the only weight left is (1, 1) = (p− 1)ρ which is simple, so this case
is done.

p = 3

In this case we see that if Ext1G(k, L(σ)) 6= 0 then 〈σ, α∨0 〉 ≥ 3 (by using the Jantzen sum formula
to check that all the weights (1, 0), (0, 1) and (0, 2) are simple).

Thus by Proposition 6.20 we only need to consider weights λ with 2〈λ, α∨0 〉 ≥ 3 · 3 = 9, i.e. with
〈λ, α∨0 〉 ≥ 5. This means we just need to consider the weights (2, 1) and (2, 2) = (p−1)ρ. The latter
is simple, as is (2, 1) (by applying the Jantzen sum formula), so this case is done.

p = 5

After applying Theorem 6.9 we are left with the weights (3, 4), (4, 2), (4, 3) and (4, 4) = (p − 1)ρ.
The last of these is simple, and so are (4, 2) and (4, 3) (seen by applying the Jantzen sum formula).
This leaves us with just the weight (3, 4).

By Proposition 6.4, if Ext1G(k, L(σ)) 6= 0 then 〈σ, α∨0 〉 ≥ 4.
Applying the Jantzen sum formula to the weight (3, 4), we see that there is a short exact

sequence 0 → L(3, 4) → ∇(3, 4) → L(0, 4) → 0, so we are done by Proposition 6.20 since it is not
the case that 14 = 〈(3, 4) + (0, 4), α∨0 〉 ≥ 5 · 4 = 20.

Type G2

Here 2h− 2 = 10 so we need to deal with the cases p = 2, p = 3, p = 5 and p = 7. However, we will
not be able to deal with the case p = 7.

p = 2

Here the weights we need to consider after applying Theorem 6.18 are (0, 1) and (1, 1) = (p− 1)ρ.
The last of these is simple, and so is (0, 1) (as can be seen from the table on p. 90 of [Hag83]). So
we are done in this case.
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p = 3

From the table on p. 85 of [Hag83] we see that if Ext1G(k, L(σ)) 6= 0 then 〈σ, α∨0 〉 ≥ 5.
By Proposition 6.20 we thus only need to consider weights λ with 2〈λ, α∨0 〉 ≥ 3 ·5 = 15, i.e. with

〈λ, α∨0 〉 ≥ 8. But the only restricted weight satisfying this are (1, 2) and (2, 2) = (p− 1)ρ. Since the
latter of these is simple, we are left with (1, 2).

Looking at the same table again, we see that if L(µ) is a composition factor of ∇(1, 2) then
〈µ, α∨0 〉 ≤ 6, so by Proposition 6.20we are done, since 〈(1, 2), α∨0 〉+ 6 = 14 < 3 · 5 = 15.

p = 5

From the table on p. 83 of [Hag83] we see that if Ext1G(k, L(σ)) 6= 0 then 〈σ, α∨0 〉 ≥ 15.
By Proposition 6.20 we see that we only need to consider weights λ with 2〈λ, α∨0 〉 ≥ 5 · 15 = 75.

But there are no restricted weights satisfying this, so we are done.
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7 The Steinberg Square

In this section we will study the G-module Str ⊗Str.
By Theorem 4.25 we see that Str ⊗Str is tilting (since St∗r ∼= Str), so by Proposition 4.31 we

have
Str ⊗Str ∼=

⊕

ν∈X+

tr(ν)T (ν)

for suitable natural numbers tr(ν).
Also write

socG(Str ⊗Str) =
⊕

ν∈X+

sr(ν)L(ν)

We will be interested in studying the numbers tr(ν) and sr(ν). In particular, some questions we
would like to be able to answer are:

1. Is there a relation between those ν with tr(ν) 6= 0 and those ν with sr(ν) 6= 0?

2. For which ν ∈ X+ do we have tr(ν) 6= 0, and for which do we have sr(ν) 6= 0?

3. Given t1(ν) and s1(ν) for all ν ∈ X+, can we determine tr(ν) and sr(ν) for all r and all
ν ∈ X+?

4. Can we determine tr(ν) or sr(ν) in terms of ν?

To summarize the answers:

1. The answer to this is “yes”, at least when p ≥ 2h− 2 (see Corollary 7.5).

2. We can only give a complete answer to this in some special cases. In general, we have to make
do with some necessary conditions (see Proposition 7.7).

3. The answer to this is “yes”, in some special cases (see Proposition 7.13).

4. For this question, we can only give an answer in some special cases.

In order to be able to study these, we will need to know a bit more about the socles of certain
tilting modules.

An easy proposition, which will simplify a lot of things is the following.

Proposition 7.1. For all ν ∈ X+ we have sr(ν) = sr(−w0(ν)) and tr(ν) = tr(−w0(ν)).

Proof. Since (Str ⊗Str)
∗ ∼= Str ⊗Str we get from Proposition 4.32 that

sr(ν) = dim(HomG(L(ν),Str ⊗Str)) = dim(HomG(Str ⊗Str, L(ν)))

= dim(HomG(L(−w0(ν)),Str ⊗Str)) = sr(−w0(ν))

which was the first claim.
The second claim also follows from Proposition 4.32 since Str ⊗Str being self-dual means that

any T (ν) must appear precisely the same number of times as T (ν)∗ ∼= T (−w0(ν)) in the decompo-
sition.
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For convenience, we will from now on use the following notation: For λ = λ0 + prλ1 ∈ X+ with
λ0 ∈ Xr we write wr(λ) = (pr − 1)ρ+ w0(λ0) + prλ1 (note that wr is not an element in W but we
do have wr(wr(λ)) = λ).

We also have the following property of wr.

Lemma 7.2. If λ = λ0 + pλ1 + · · ·+ pr−1λr−1 with all λi ∈ X1 then

wr(λ) = w1(λ0) + pw1(λ1) + · · ·+ pr−1w1(λr−1)

Proof. Note that λ ∈ Xr so

wr(λ) = (pr − 1)ρ+ w0(λ) = (p− 1)ρ+ p(pr−1 − 1)ρ+ w0(λ0) + pw0(λ1 + pλ2 + · · ·+ pr−2λr−1)

= w1(λ0) + pwr−1(λ1 + pλ2 + · · ·+ pr−2λr−1)

from which the claim easily follows by induction on r.

Lemma 7.3. Assume that p ≥ 2h − 2 and let λ ∈ X+ with 〈λ, α∨0 〉 ≤ (pr − 1)(h − 1). Then
socG(T ((pr − 1)ρ+ λ)) = L(wr(λ)).

Proof. Write λ = λ0 + prλ1 with λ0 ∈ Xr. Then by Theorem 4.34 we have

T ((pr − 1)ρ+ λ) ∼= T ((pr − 1)ρ+ λ0)⊗ T (λ1)
(r)

Now we get by Theorem 4.35 that socGr(T ((pr − 1)ρ + λ0)) = L((pr − 1)ρ + w0(λ0)), so for
µ = µ0 + prµ1 ∈ X+ with µ0 ∈ Xr we get, by Theorem 4.10

HomG(L(µ), T ((pr − 1)ρ+ λ))

∼= HomG/Gr
(L(µ1)

(r),HomGr(L(µ0), T ((pr − 1)ρ+ λ0))⊗ T (λ1)
(r))

∼=
{

HomG(L(µ1), T (λ1)) if µ0 = (pr − 1)ρ+ w0(λ0)

0 else

so we just need to show that socG(T (λ1)) = L(λ1). In fact, we claim that T (λ1) is simple, which
clearly implies the claim.

To see this, we note that we have 〈prλ1, α∨0 〉 ≤ (pr − 1)(h− 1) so

〈λ1 + ρ, α∨0 〉 ≤ (h− 1) + (h− 1) = 2h− 2 ≤ p

which shows that ∇(λ1) is simple by Proposition 4.15, and hence also that L(λ1) is tilting, or in
other words that T (λ1) is simple (being the unique indecomposable tilting module of highest weight
λ1).

Thus we have shown that socG(T ((pr − 1)ρ + λ)) = L((pr − 1)ρ + w0(λ0) + prλ1) = L(wr(λ))
as was the claim.

The way to apply the above lemma is given in the following.

Proposition 7.4. If tr(ν) 6= 0 for some ν ∈ X+ then ν = (pr − 1)ρ + λ for some λ ∈ X+ with
〈λ, α∨0 〉 ≤ (pr − 1)(h− 1).
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Proof. Since Str ⊗Str is injective as a Gr-module by Theorem 4.30, the same must be true for T (ν)
since this is a direct summand of Str ⊗Str by assumption. Now it follows by Proposition 4.33 that
ν = (pr − 1)ρ+ λ for some λ ∈ X+.

Since ν must be a weight of Str ⊗Str we must have 〈ν, α∨0 〉 ≤ 2(pr − 1)(h − 1), and hence we
get 〈λ, α∨0 〉 = 〈ν, α∨0 〉 − (pr − 1)(h− 1) ≤ (pr − 1)(h− 1) as was the claim.

Combining the above results, we get the following.

Corollary 7.5. Assume that p ≥ 2h−2. Then for any ν ∈ X+ we have sr(ν) = tr((p
r−1)ρ+wr(ν))

Proof. This follows directly from combining Lemma 7.3 and Proposition 7.4 (recall that we have
wr(wr(ν)) = ν).

A useful tool is the following.

Theorem 7.6. Assume that p ≥ 2h−2 and let ν ∈ X+ with sr(ν) 6= 0. Then Str ⊗L(ν) has a good
filtration.

Proof. By Corollary 7.5 and Proposition 7.4 we see that ν = wr(µ) for some dominant weight µ
with 〈µ, α∨0 〉 ≤ (pr−1)(h−1). So if we write µ = µ0+prµ1 with µ0 ∈ Xr we have ν = ν0+prν1 with

ν0 = (pr − 1)ρ+w0(µ0) ∈ Xr and ν1 = µ1. In particular, we have 〈ν1, α∨0 〉 ≤ (pr−1)(h−1)
pr ≤ h− 1 so

〈ν1 + ρ, α∨0 〉 ≤ (h− 1) + (h− 1) ≤ p and hence L(ν1) ∼= ∇(ν1) by Proposition 4.15.
By Theorem 4.10 we now have

L(ν) ∼= L(ν0)⊗ L(ν1)
(r) ∼= L(ν0)⊗∇(ν1)

(r)

so the claim follows by combining Theorem 6.11 and Theorem 6.10.

In order to determine necessary conditions on ν ∈ X+ to have sr(ν) 6= 0 we can make use of.

Proposition 7.7. Let ν = ν0 + prν1 ∈ X+ with ν0 ∈ Xr. We have

1. sr(ν) ≤ [Str ⊗∇(−w0(ν)) : Str]∇.

2. sr(ν) ≤ [Str ⊗∇(ν) : Str]∇.

3. sr(ν) ≤ [∇((pr − 1)ρ+ prν1)⊗∇(ν0) : Str]∇.

4. sr(ν) ≤ [Str ⊗∇(ν0) : ∇((pr − 1)ρ− prw0(ν1))]∇.

Proof. We have

sr(ν) = dim(HomG(L(ν), Str ⊗Str)) = dim(HomG(Str, Str ⊗L(−w0(ν))))

and the inclusion L(−w0(ν)) ↪→ ∇(−w0(ν)) gives the inequality

dim(HomG(Str, Str ⊗L(−w0(ν)))) ≤ dim(HomG(Str,Str ⊗∇(−w0(ν))))

and by Theorem 4.24 we have dim(HomG(Str, Str ⊗∇(−w0(ν)))) = [Str ⊗∇(−w0(ν)) : Str]∇ which
proves the first claim (since Str ⊗∇(−w0(ν)) has a good filtration by Theorem 4.25).

The second claim now follows since sr(ν) = sr(−w0(ν)) by Proposition 7.1.
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For the third claim we use that by Theorem 4.10 we have L(ν) ∼= L(ν0) ⊗ L(ν1)
(r), and the

inclusions L(ν0) ↪→ ∇(ν0) and L(ν1)
(r) ↪→ ∇(ν1)

(r) gives like above an inequality (again using
Proposition 7.1)

sr(ν) = sr(−w0(ν)) ≤ dim(HomG(Str,Str ⊗∇(ν1)
(r) ⊗∇(ν0)))

and applying Theorem 4.29 we get

sr(ν) ≤ dim(HomG(Str,∇((pr − 1)ρ+ prν1)⊗∇(ν0))) = [∇((pr − 1)ρ+ prν1)⊗∇(ν0) : Str]∇

by Theorem 4.24 as claimed.
The final claim follows similarly by once again applying Theorem 4.29 to get

dim(HomG(Str, Str ⊗∇(ν0)∇(ν1)
(r))) = dim(HomG(∆((pr − 1)ρ− prw0(ν1)),Str ⊗∇(ν0)))

= [Str ⊗∇(ν0) : ∇((pr − 1)ρ− prw0(ν1))]∇

by Theorem 4.24.

Theorem 7.8. Assume that p ≥ 2h − 2 and let ν = ν0 + prν1 ∈ X+ with ν0 ∈ Xr and sr(ν) 6= 0.
Then we have

1. sr(ν) = [Str ⊗L(−w0(ν)) : Str]∇.

2. sr(ν) = [Str ⊗L(ν) : Str]∇.

3. sr(ν) = [∇((pr − 1)ρ+ prν1)⊗ L(ν0) : Str]∇.

4. sr(ν) = [Str ⊗L(ν0) : ∇((pr − 1)ρ− prw0(ν1))]∇.

Proof. If p ≥ 2h−2 and sr(ν) 6= 0 then also sr(−w0(ν)) 6= 0 by Proposition 7.1, so Str ⊗L(−w0(ν))
has a good filtration by Theorem 7.6, and we have

[Str ⊗L(−w0(ν)) : Str]∇ = dim(HomG(Str, Str ⊗L(−w0(ν))))

by Theorem 4.24, so the first claim follows.
The second claim follows since sr(ν) = sr(−w0(ν)) by Proposition 7.1.
For the third and fourth claims, we use that by Theorem 4.10 we have L(ν) ∼= L(ν0)⊗L(ν1)

(r),
and from Proposition 7.4 together with Corollary 7.5 we see that 〈prν1, α∨0 〉 ≤ (pr−1)(h−1) (since
wr(p

rν1) = prν1). This gives 〈ν1+ρ, α∨0 〉 ≤ (h−1)+(h−1) = 2h−2 ≤ p and since −w0(ν1) satisfies
the same inequality, we get L(−w0(ν1)) ∼= ∇(−w0(ν1)) by Proposition 4.15. Applying Theorem 4.29
we thus have Str ⊗L(−w0(ν1))

(r) ∼= ∆((pr−1)ρ−prw0(ν1)) and Str ⊗L(ν1)
(r) ∼= ∇((pr−1)+prν1).

We can therefore use the previous part and rewrite

sr(ν) = [Str ⊗L(ν) : Str]∇
= dim(HomG(Str, Str ⊗L(ν)))

= dim(HomG(Str, Str ⊗L(ν1)
(r) ⊗ L(ν0)))

= dim(HomG(Str,∇((pr − 1)ρ+ prν1)⊗ L(ν0)))

= [∇((pr − 1)ρ+ prν1)⊗ L( nu0) : Str]∇
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and

sr(ν) = [Str ⊗L(ν) : Str]∇
= dim(HomG(Str,Str ⊗L(ν)))

= dim(HomG(Str ⊗L(−w0(ν1))
(r), Str ⊗L(ν0)))

= dim(HomG(∆((pr − 1)ρ− prw0(ν1)),Str ⊗L(ν0)))

= [Str ⊗L( nu0) : ∇((pr − 1)ρ− prw0(ν1))]∇

As a corollary we get.

Corollary 7.9. Let ν = ν0 + prν1 ∈ X+ with ν0 ∈ Xr. Assume that sr(ν) 6= 0. Then

1. ν ≥ 0.

2. ν0 + prw0(ν1) ≥ 0.

3. 〈ν1, α∨0 〉 ≤
〈ν0,α∨0 〉
pr .

4. 〈ν1, α∨0 〉 ≤ (pr−1)(h−1)
pr .

Proof. If sr(ν) 6= 0 then by Proposition 7.7 we have [Str ⊗∇(ν) : Str]∇ 6= 0 and thus (pr−1)ρ must
be a weight of Str ⊗∇(ν), which means that (pr − 1)ρ ≤ (pr − 1)ρ + ν, so ν ≥ 0, as was the first
claim.

Proposition 7.7 also shows that we have [Str ⊗∇(ν0) : ∇((pr − 1)ρ − prw0(ν1))]∇ 6= 0. Thus,
(pr − 1)ρ − prw0(ν1) is a weight of Str ⊗L(ν0), so we have (pr − 1)ρ − prw0(ν1) ≤ (pr − 1)ρ + ν0
which gives the second claim.

For the third claim, we have the inequality 〈ν0 + prw0(ν1), α
∨
0 〉 ≥ 0 from the previous claim.

We can rearrange this inequality by using that

〈ν0 + prw0(ν1), α
∨
0 〉 = 〈ν0, α∨0 〉+ pr〈w0(ν1), α

∨
0 〉 = 〈ν0, α∨0 〉 − pr〈ν1, α∨0 〉

which turns it into

〈ν1, α∨0 〉 ≤
〈ν0, α∨0 〉
pr

which was the claim.
The final claim follows by noting that 〈ν0, α∨0 〉 ≤ (pr − 1)(h− 1) since ν0 ∈ Xr.

A further corollary is the following, which can be applied inductively given some character data.

Corollary 7.10. Assume that p ≥ 2h− 2 and let ν ∈ X+ with sr(ν) 6= 0. Write

ch∇(ν) = chL(ν) +
∑

µ∈X+, µ 6=ν
aµ chL(µ)

and assume that Str ⊗L(µ) has a good filtration whenever aµ 6= 0.
Then

sr(ν) = [Str ⊗∇(ν) : Str]∇ −
∑

µ∈X+

aµsr(µ)
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Proof. By Theorem 7.8 we see that sr(ν) = [Str ⊗L(ν) : Str]∇, and this is completely determined
by the character of Str ⊗L(ν). Thus we have

sr(ν) = [Str ⊗∇(ν) : Str]∇ −
∑

µ∈X+

aµ[Str ⊗L(µ) : Str]∇

Now apply Theorem 7.8 again to see that whenever aµ 6= 0 we have sr(µ) = [Str ⊗L(µ) : Str]∇,
which finishes the proof (the requirement in that proposition that sr(µ) 6= 0 is only needed to
ensure that Str ⊗L(µ) has a good filtration, which we have assumed to hold here).

A similar result is the following, which has slightly different assumptions.

Corollary 7.11. Assume that p ≥ 2h− 2 and let ν = ν0 + prν1 ∈ X+ with ν0 ∈ Xr and sr(ν) 6= 0.
Write

ch∇(ν0) = chL(ν0) +
∑

µ∈X+, µ 6=ν
aµ chL(µ)

and assume that aµ 6= 0 =⇒ µ ∈ Xr. Then

sr(ν) = [Str ⊗∇(ν0) : ∇((pr − 1)ρ− prw0(ν1))]∇ −
∑

µ∈X+

aµsr(µ+ prν1)

Proof. By Theorem 7.8 we have sr(ν) = [Str ⊗L(ν0) : ∇((pr−1)ρ−prw0(ν1))]∇ which only depends
on the character of Str ⊗L(ν0). Note that by Theorem 6.11 the assumptions imply that Str ⊗L(µ)
has a good filtration whenever aµ 6= 0, so we get

sr(ν) = [Str ⊗L(ν0) : ∇((pr − 1)ρ− prw0(ν1))]∇

= [Str ⊗∇(ν0) : ∇((pr − 1)ρ− prw0(ν1))]∇ −
∑

µ∈X+

aµ[Str ⊗L(µ) : ∇((pr − 1)ρ− prw0(ν1))]∇

and by Theorem 7.8 we have [Str ⊗L(µ) : ∇((pr − 1)ρ− prw0(ν1))]∇ = sr(µ+ prν1) since µ ∈ Xr,
which completes the proof.

Note that if ν ∈ Xr we cannot be sure that we can apply Corollary 7.11 since not all the L(µ)
that occur need have µ ∈ Xr. However, if ν ∈ Xr we can always apply Corollary 7.10 (by Theorem
6.9).

As a special case of this we get.

Corollary 7.12. Assume that p ≥ 2h − 2 and let ν ∈ X+ with sr(ν) 6= 0. Assume further that
Str ⊗L(µ) as a good filtration for all µ such that L(µ) is a composition factor of ∇(ν) and that for
all such µ we have sr(µ) = 0. Then sr(ν) = [Str ⊗∇(ν) : Str]∇.

Proof. This follows directly from Corollary 7.10

In order to determine sr(ν) and tr(ν) from s1(ν) and t1(ν) we will use that by Theorem 4.29 we
have Str ⊗Str ∼= (St1⊗St1)⊗ (Str−1⊗Str−1)(1). But to use this properly, we will need a stronger
assumption that just p ≥ 2h− 2, namely that s1(ν) is only non-zero for ν ∈ X1. This turns out to
hold when G is SL2 or when G is SL3 and p = 2 (see Proposition 7.18 and Proposition 7.31), but
it seems like this might not hold in any further generality (see Example 7.14 and Theorem 7.29).

Note that the following theorem also gives us the tr(ν) by Corollary 7.5.
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Proposition 7.13. Assume that p ≥ 2h− 2 and that s1(ν) = 0 for all ν 6∈ X1.
If λ = λ0 + pλ1 + · · ·+ pr−1λr−1 with all λi ∈ X1, then

sr(λ) =

r−1∏

i=0

s1(λi)

In particular, sr(λ) is non-zero precisely when λ has a p-adic expansion in terms of weights occurring
as the highest weights in the socle of St1⊗St1.

Proof. By Theorem 4.29 we have Str ⊗Str ∼= (St1⊗St1)⊗ (Str−1⊗Str−1)(1), so we will proceed by
induction on r, the base case of r = 1 being clear.

Now we have

(St1⊗St1)⊗ (Str−1⊗Str−1)(1) ∼=
⊕

ν∈X+

t1(ν)T (ν)⊗


⊕

µ∈X+

tr−1(µ)T (µ)




(1)

The assumptions, together with Lemma 7.3 imply that the only ν with t1(ν) 6= 0 are those with
ν = (p− 1)ρ+ ν0 where ν0 ∈ X1. Similarly, by induction, the only µ with tr−1(µ) 6= 0 are those of
the form (pr−1 − 1)ρ+ µ0 with µ0 ∈ Xr−1.

Now we can apply Theorem 4.34 to get

Str ⊗Str ∼=
⊕

ν,µ∈X+

t1(ν)tr−1(µ)T (ν + pµ)

∼=
⊕

ν,µ∈X+

t1(ν)tr−1(µ)T ((p− 1)ρ+ ν0 + p((pr−1 − 1)ρ+ µ0))

and note that (p− 1)ρ+ p(pr−1 − 1)ρ = (pr − 1)ρ which means that we get

Str ⊗Str ∼=
⊕

ν,µ∈X+

t1(ν)tr−1(µ)T ((pr − 1)ρ+ (ν0 + pµ0))

Now we get that

tr((p
r − 1)ρ+ (ν0 + pµ0)) = t1((p− 1) + ν0)tr−1((pr−1 − 1)ρ+ µ0)

which by Corollary 7.5 gives

sr(wr(ν0 + pµ0)) = s1(w1(ν0))sr−1(wr−1(µ0))

Write µ0 = σ0 + pσ1 + · · ·+ pr−2σr−2 with all σi ∈ X1, so by Lemma 7.2 we have

wr−1(µ0) = w1(σ0) + pw1(σ1) + · · ·+ pr−2w1(σr−2)

and by induction we have

sr−1(wr(µ0)) =

r−2∏

i=0

s1(w1(σi))

Now the result follows by writing

λ = wr(wr(λ)) = wr(w1(λ0) + pw1(λ1) + · · ·+ pr−1w1(λr−1))

by Lemma 7.2.
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As mentioned, the assumption that s1(ν) is only non-zero for ν ∈ X1 does not seem to hold in
much generality, as demonstrated by the following example.

Example 7.14. Let G = SL4 and p = 7 (then p ≥ 2h − 2 = 6). Let ν = (6, 1, 1) + 7(0, 0, 1) (we
adopt the notation from 4.6). We claim that then s1(ν) 6= 0 even though ν 6∈ X1.

First we note that by Theorem 4.14 we have L(6, 1, 1) ∼= ∇(6, 1, 1) ∼= ∆(6, 1, 1) and clearly
L(0, 0, 1) ∼= ∇(0, 0, 1) ∼= ∆(0, 0, 1), so we have

dim(HomG(L(ν),St1⊗St1)) = dim(HomG(St1,∇(6ρ+ 7(1, 0, 0))⊗∇(1, 1, 6)))

= [∇(6ρ+ 7(1, 0, 0))⊗∇(1, 1, 6) : St1]∇

(by applying Theorem 4.10, Theorem 4.29 and Theorem 4.24).
Let λ = 6ρ+ 7(1, 0, 0), µ = (1, 1, 6) and σ = 6ρ. Let

m =
|λ̃|+ |µ̃| − |σ̃|

4
=

(6 · 6 + 7) + 3 · 7− 6 · 6
4

=
4 · 7

4
= 7

so by Proposition 4.36 we have

[∇(6ρ+ 7(1, 0, 0))⊗∇(1, 1, 6) : St1]∇ = cσ̃+7ω̃

λ̃,µ̃

where ω̃ = (1, 1, 1, 1). So we wish to show that there exists an SSYT of shape (σ̃+ 7ω̃)/λ̃ and with
type µ̃. So the shape will be the white part of

and the claim is that is it possible to insert 8 1’s, 7 2’s and 6 3’s in that shape and get an SSYT
whose reverse reading word is a lattice permutation. One possible such way is

1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 3 3 3 3 3 3

where the reverse reading word is (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1) which is indeed a
lattice permutation.

Note that the above example actually works for arbitrary primes if one replaces the weight ν
by (p− 1, 1, 1) + p(0, 0, 1). We chose to only put the details for the specific case as it made for nicer
illustrations.

Even though we cannot be sure that sr(ν) is only non-zero for ν ∈ Xr, we at least have the
following, which can sometimes be helpful.

Proposition 7.15. If ν = prλ for some λ ∈ X+ with λ 6= 0 then sr(ν) = 0.
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Proof. By Theorem 4.10 we have L(ν) ∼= L(λ)(r) so we get

sr(ν) = dim(HomG(L(ν), Str ⊗Str)) = dim(HomG(Str, Str ⊗L(−w0(λ))(r)))

= dim(HomG(Str, L((pr − 1)ρ− prw0(λ)))) = 0

since we assumed that λ 6= 0.

Removing the requirement that s1(ν) 6= 0 =⇒ ν ∈ X1 is not very straightforward. As can
be seen from the proof of Proposition 7.13 we will also need to consider some terms of the form
T (σ)⊗T ((pr−1− 1)ρ+λ) (where we can not even be sure that λ ∈ Xr−1). We do know that σ will
be small enough that T (σ) ∼= ∇(σ), so there is some hope that it can be done, but it will not be
easy.

However, we can get the following weaker statement.

Proposition 7.16. Assume that p ≥ 2h − 2 and let λ ∈ Xr with λ = λ0 + pλ1 + · · · + pr−1λr−1
where all λi ∈ X1.

Then

sr(λ) ≥
r−1∏

i=0

s1(λi)

Proof. By Theorem 4.29 we have Str ⊗Str ∼= (St1⊗St1)⊗ (Str−1⊗Str−1)(1), so we will proceed by
induction on r, the base case of r = 1 being clear.

Now we have

(St1⊗St1)⊗ (Str−1⊗Str−1)(1) ∼=
⊕

ν∈X+

t1(ν)T (ν)⊗


⊕

µ∈X+

tr−1(µ)T (µ)




(1)

By Proposition 7.4 the only ν that occur are those of the form (p− 1)ρ+ ν0 and those µ that
occur have the form (pr−1 − 1)ρ+ µ0, so we split up the first sum further to get

⊕

ν0∈X1

t1((p− 1)ρ+ ν0)T ((p− 1)ρ+ ν0)⊗


 ⊕

µ0∈X+

tr−1((pr−1 − 1)ρ+ µ0)T ((pr−1 − 1)ρ+ µ0)




(1)

⊕
⊕

ν0 6∈X1

t1((p− 1)ρ+ ν0)T ((p− 1)ρ+ ν0)⊗


 ⊕

µ0∈X+

tr−1((pr−1 − 1)ρ+ µ0)T ((pr−1 − 1)ρ+ µ0)




(1)

By Theorem 4.34 the first summand is isomorphic to
⊕

ν0∈X1, µ∈X+

t1((p− 1)ρ+ ν0)tr−1((pr−1 − 1)ρ+ µ0)T ((p− 1)ρ+ ν0 + p((pr−1 − 1)ρ+ µ0))

∼=
⊕

ν0∈X1, µ∈X+

t1((p− 1)ρ+ ν0)tr−1((pr−1 − 1)ρ+ µ0)T ((pr − 1)ρ+ ν0 + pµ0)

In particular, for λ ∈ Xr we have by Proposition 7.5 that sr(λ) is the number of times the module
T ((pr − 1)ρ + wr(λ)) occurs in the decomposition of Str ⊗Str, so if we write λ = λ0 + pλ′ then
by Proposition 7.2 we have wr(λ) = w1(λ0) + pwr−1(λ′) so this number of times will be at least
t1((p− 1)ρ+ w1(λ0))tr−1((pr−1 − 1)ρ+ wr−1(λ′)) which by Proposition 7.5 equals s1(λ0)sr−1(λ′),
and now the claim follows by induction.
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We also get as a corollary.

Corollary 7.17. Assume that p ≥ 2h− 2 and let ν = ν0 + pν1 + · · · + pr−1νr−1 with all νi ∈ X1.
If s1(νi) 6= 0 for all i then sr(ν) 6= 0.

Proof. This follows directly from Proposition 7.16.

7.1 SL2

In this section we will let G = SL2. In this case, we can completely determine sr(ν) and tr(ν) for
all ν ∈ X+.

First, we note the following.

Proposition 7.18. If G = SL2 and sr(ν) 6= 0 for some ν ∈ X+, then ν ∈ Xr.

Proof. Since we have h = 2 this follows directly from Corollary 7.9, since we have

(pr − 1)(h− 1)

pr
=
pr − 1

pr
< 1

Note that the above means that by Proposition 7.13 and Corollary 7.5 it is in fact enough to
find s1(ν) for all ν ∈ X1 in order to find all sr(ν) and tr(ν) (since we automatically have p ≥ 2h−2).

Note also that X1 is identified with the set of integers ν with 0 ≤ ν ≤ p− 1.
Something that makes everything much easier in the case G = SL2 is the following.

Proposition 7.19. If G = SL2 and ν ∈ X1 then L(ν) ∼= ∇(ν).

Proof. We have 〈ν+ρ, α∨0 〉 = ν+1 ≤ p so the statement follows directly from Proposition 4.15.

To simplify the calculations, we will use the following lemma.

Lemma 7.20. Let λ̃, µ̃ and ν̃ be partitions with l(λ̃) = l(µ̃) = 1 and l(ν̃) ≤ 2. Then

cν̃
λ̃,µ̃

=

{
1 if ν̃2 ≤ λ̃1 ≤ ν̃1 and |λ̃|+ |µ̃| = |ν̃|
0 else

Proof. If either λ̃1 6≤ ν̃1 or |λ̃|+ |µ̃| 6= |ν̃| then clearly cν̃
λ̃,µ̃

= 0.

If ν̃2 > λ̃1 then the shape of ν̃/λ̃ will look like

· · · · · ·
· · · · · ·

and since the gray boxes will need to contain 1’s, the black boxes would need to contain numbers
strictly grater than 1, but since l(µ̃) = 1 we are only allowed to place 1’s, so there are no SSYTs of
this shape and type µ̃.

If ν̃2 ≤ λ̃1 ≤ ν̃1 and |λ̃|+ |µ̃| = |ν̃| then we see that we can indeed construct an SSYT of shape
ν̃/λ̃ and type µ̃ since there will be no overlap between the two rows, so putting 1’s in all boxes give
a valid SSYT. Since the reverse reading word will consist of only 1’s, it will trivially be a lattice
permutation, so we do indeed have cν̃

λ̃,µ̃
= 1 in this case (there can never be more than one way to

make an SSYT of a given shape when the type has length 1).
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Theorem 7.21. If G = SL2 and 0 ≤ ν ≤ p− 1 then

s1(ν) =

{
1 if ν is even

0 if ν is odd

Proof. By Theorem 7.8 we have s1(ν) = [St1⊗L(ν) : St1]∇ which by Proposition 7.19 equals
[St1⊗∇(ν) : St1]∇.

Let

m =
(p− 1) + ν − (p− 1)

2
=
ν

2

so by Proposition 4.36 we have [St1⊗∇(ν) : St1]∇ = 0 unless m is an integer, i.e. unless ν is even.

If ν is even then Proposition 4.36 says that [St1⊗∇(ν) : St1]∇ = c
(p−1)ρ̃+mω̃
(p−1)ρ̃,ν̃ where ω̃ = (1, 1).

We can thus apply Lemma 7.20 which says that what we need to show is that (p−1) ≤ (p−1)+m,
that m ≤ (p− 1) and that (p− 1) + ν = (p− 1) + 2m, and all these are clear since 0 ≤ ν ≤ p− 1
so also 0 ≤ m ≤ p− 1 (and the last one is by definition of m).

We can now describe sr(ν) completely. The following is a special case of [DH05, Theorem 2.1].

Corollary 7.22. If G = SL2 and ν ∈ Xr then

sr(ν) =

{
1 if ν has a p-adic expansion where all terms are even

0 else

Proof. This follows directly by combining Theorem 7.21 with Proposition 7.13.

A special case of the above worth noting is the following.

Corollary 7.23. If G = SL2 and p = 2 then Str ⊗Str is indecomposable and isomorphic to
T (2(pr − 1)ρ) = T (2r+1 − 2).

Proof. By Corollary 7.22 we have socG(Str ⊗Str) = L(0), so the module is indecomposable and
tilting. Since the highest weight is (pr − 1)ρ+ (pr − 1)ρ = 2(pr − 1)ρ = 2r+1− 2 the statement now
follows.

7.2 SL3

In this section, we consider the case G = SL3. In this case we can determine s1(ν) and t1(ν) for
all ν ∈ X+, and for p = 2 we will determine sr(ν) and tr(ν) for all ν ∈ X+ and all r.

We will adopt the notation from 4.6, so all dominant weights will be written in terms of the
fundamental weights.

Unfortunately, we will be able to have s1(ν) 6= 0 with ν 6∈ X1, but we do have the following to
limit the possibilities.

Proposition 7.24. Let G = SL3. If ν = ν0 + prν1 ∈ X+ with ν0 ∈ Xr and sr(ν) 6= 0 then
〈ν1, α∨0 〉 ≤ 1 and if ν1 6= 0 then 〈ν0, α∨0 〉 ≥ pr.
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Proof. Since h = 3, we can apply Corollary 7.9 to see that

〈ν1, α∨0 〉 ≤
(pr − 1)(h− 1)

pr
=

2(pr − 1)

pr
< 2

which gives the first claim.
The second claim follows similarly since Corollary 7.9 gives

1 ≤ 〈ν1, α∨0 〉 ≤
〈ν0, α∨0 〉
pr

and hence 〈ν0, α∨〉 ≥ pr as claimed.

A big part of why we are able to completely determine s1(ν) here is the following result, which
allows us to apply Corollary 7.10 or Corollary 7.11.

Proposition 7.25. Let G = SL3 and ν = (ν1, ν2) ∈ X1.

1. If either ν1 + ν2 ≤ p− 2 or max(ν1, ν2) = p− 1 then L(ν) ∼= ∇(ν).

2. If neither of the above holds, there is a short exact sequence 0→ L(ν)→ ∇(ν)→ ∇(µ)→ 0
where µ = (p− ν2 − 2, p− ν1 − 2).

Proof. The first claim follows directly from Theorem 4.14.
The second claim follows by applying the Jantzen sum formula (Theorem 4.18), since we note

that the only root that adds anything to the sum is α0, where we get 〈ν + ρ, α∨0 〉 = ν1 + ν2 + 2, so
since α0 = (1, 1), this contributes the term χ(ν − (ν1 + ν2 + 2− p)(1, 1)) = χ(p− ν2− 2, p− ν1− 2).

The result now follows by noting that when we set µ = (p − ν2 − 2, p − ν1 − 2) then we get
〈µ+ ρ, α∨0 〉 = 2p− (ν1 + ν2)− 2 ≤ p since we assumed that ν1 + ν2 > p− 2. Thus L(µ) ∼= ∇(µ) by
Proposition 4.15, which yields the claim.

Like for SL2 we will need a lemma that tells us how to compute those Littlewood-Richardson
coefficients that can show up.

Lemma 7.26. Let λ̃, ν̃ and µ̃ be partitions satisfying

• l(λ̃) ≤ 2, l(ν̃) ≤ 2 and l(µ̃) ≤ 3.

• λ̃2 ≥ µ̃3.

• λ̃1 ≥ µ̃2.

• µ̃1 − λ̃1 ≥ ν̃2.

• µ̃3 ≥ ν̃2.

• µ̃2 − λ̃2 ≥ ν̃2.

• |λ̃|+ |ν̃| = |µ̃|.

Then cµ̃
λ̃,ν̃

= ν̃2 + 1.
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Proof. First we note that all columns of µ̃/λ̃ have at most one box, since we have µ̃3 ≤ λ̃2 and
µ̃2 ≤ λ̃1.

We also note that in order to make an SSYT of shape µ̃/λ̃ whose reverse reading word is a
lattice permutation, we must only put 1’s in the top row. But since the top row then contains
µ̃1 − λ̃1 ≥ ν̃2 1’s, we are guaranteed that the resulting SSYT will have a lattice permutation as its
reverse reading word, no matter how we place the remaining 1’s and 2’s, since the number of 2’s
we need to place is ν̃2, and we have already placed at least that many 1’s in the top row.

Since there are no columns with more than one box, to make an SSYT we just need to place
numbers in non-decreasing order in the two remaining rows. Thus, any such SSYT is uniquely
determined by the number of 2’s placed in the bottom row, and since the number of boxes in the
bottom row is µ̃3 ≥ ν̃2 and the number of boxes in the second row is µ̃2 − λ̃2 ≥ ν̃2, we see that we
can pick any number of 2’s between 0 and ν̃2 to place there.

This gives precisely ν̃2 + 1 possible choices, as was the claim (these choices actually work since
we have assumed that |λ̃|+ |ν̃| = |µ̃|).

Using the above lemma we then get the following.

Lemma 7.27. Let ν = (ν1, ν2) ∈ X1 with ν2 ≤ ν1. Then

[St1⊗∇(ν) : St1]∇ =

{
ν2 + 1 if 3 | ν1 + 2ν2

0 else

Proof. Let

m =
(p− 1)|ρ̃|+ |ν̃| − (p− 1)|ρ̃|

3
=
|ν̃|
3

=
ν1 + 2ν2

3

so by Proposition 4.36 we see that if 3 does not divide ν1 + 2ν2 we have [St1⊗∇(ν) : St1]∇ = 0.
If 3 does divide ν1 + 2ν2 then by Proposition 4.36 we have

[St1⊗∇(ν) : St1]∇ = sρ̃1+mω̃ρ̃1,ν̃

where ρ1 = (p− 1)ρ and ω̃ = (1, 1, 1).
We claim that if we set λ̃ = ρ̃1 and µ̃ = ρ̃1 + mω̃ then the partitions λ̃, ν̃ and µ̃ satisfy the

conditions of Lemma 7.26, which implies that [St1⊗∇(ν) : St1]∇ = ν2 + 1 as claimed.
The conditions we need to show are:

• l(λ̃) ≤ 2, l(ν̃) ≤ 2 and l(µ̃) ≤ 3: This is clear from the definitions.

• λ̃2 ≥ µ̃3: We have

λ̃2 = (p− 1) =
3(p− 1)

3
≥ 3ν1

3
≥ ν1 + 2ν2

3
= m = µ̃3

• λ̃1 ≥ µ̃2: We have

λ̃1 = 2(p− 1) = (p− 1) +
3(p− 1)

3
≥ (p− 1) +

3ν1
3
≥ (p− 1) +

ν1 + 2ν2
3

= (p− 1) +m = µ̃2

• µ̃1 − λ̃1 ≥ ν̃2: We have

µ̃1 − λ̃1 = 2(p− 1) +m− 2(p− 1) = m =
ν1 + 2ν2

3
≥ 3ν2

3
= ν2
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• µ̃3 ≥ ν̃2: We have

µ̃3 = m =
ν1 + 2ν2

3
≥ 3ν2

3
= ν2

• µ̃2 − λ̃2 ≥ ν̃2: We have

µ̃2 − λ̃2 = (p− 1) +m− (p− 1) = m =
ν1 + 2ν2

3
≥ 3ν2

3
= ν2

• |λ̃|+ |ν̃| = |µ̃|: We have

|λ̃|+ |ν̃| = 3(p− 1) + ν1 + 2ν2 = 3(p− 1) + 3m = 3(p− 1) +m|ω̃| = |µ̃|

We can now determine s1(ν) for all ν ∈ X1 and when p ≥ 5. The assumption of p ≥ 5 is not
really needed, but we will later go through the cases p = 2 and p = 3 explicitly anyway.

Theorem 7.28. Assume that p ≥ 5 and let G = SL3. Let ν = (ν1, ν2) ∈ X1. Then

s1(ν) =





0 unless 3 | ν1 + 2ν2

min(ν1, ν2) + 1 if either ν1 + ν2 ≤ p− 2 or max(ν1, ν2) = p− 1

ν1 + ν2 + 2− p else

Proof. First we note that by combining Proposition 7.7 and Lemma 7.27 we see that if 3 does not
divide ν1 + 2ν2 then s1(ν) = 0.

So from now on we assume that 3 | ν1 + 2ν2. Further, by using Proposition 7.1 we can assume
that ν2 ≤ ν1 (since we can otherwise just replace ν by −w0(ν)). If either ν1 + ν2 ≤ p − 2 or
max(ν1, ν2) = p−1 then by Proposition 7.25 we have L(ν) ∼= ∇(ν) and by Theorem 7.8 we get that
s1(ν) = [St1⊗∇(ν) : St1]∇ which equals ν2 + 1 by Lemma 7.27. Since we assumed that ν2 ≤ ν1 this
is precisely min(ν1, ν2) + 1 as was the claim.

So now we assume that ν1 + ν2 > p− 2 and that neither ν1 nor ν2 equals p− 1. We still assume
that ν2 ≤ ν1.

By combining Corollary 7.10 with Proposition 7.25 we see that

s1(ν) = [St1⊗∇(ν) : St1]∇ − s1(p− ν2 − 2, p− ν1 − 2)

and by the above we see that

s1(p− ν2 − 2, p− ν1 − 2) = min(p− ν2 − 2, p− ν1 − 2) + 1 = p− ν1 − 2 + 1

since we assumed that ν1 ≥ ν2 and since the weight (p − ν2 − 2, p − ν1 − 2) satisfies the above
criteria.

From Lemma 7.27 we now have

s1(ν) = [St1⊗∇(ν) : St1]∇ − (p− ν1 − 2 + 1) = ν2 + 1− (p− ν1 − 2 + 1) = ν1 + ν2 + 2− p

as was the claim.

We now need to also describe s1(ν) when ν 6∈ X1.

62



Lemma 7.29. Let ν = (ν1, ν2) ∈ X1. Let m = ν1+2ν2−p
3 .

Then

[St1⊗∇(ν) : ∇((p− 1)ρ+ p(1, 0))]∇ =

{
2m+ 1− ν2 if m ∈ Z≥0 and 2ν1 + ν2 ≥ 2p

0 else

Proof. Let ρ1 = (p− 1)ρ and µ = ρ1 + p(1, 0).

By Proposition 4.36 we just need to show that c
µ̃+m(1,1,1)
ρ̃1,ν̃

= 2m + 1 − ν2 whenever m is a
non-negative integer and 2ν1 + ν2 ≥ 2p, and 0 whenever 2ν1 + ν2 < 2p.

First we note that in the skew-shape (µ̃ + m(1, 1, 1))/ρ̃1 there are no columns with more than
one box, since in the third row of µ̃+m(1, 1, 1) we have m boxes,

m =
ν1 + 2ν2 − p

3
≤ 3p− 3− p

3
=

2p− 3

3
≤ p− 1

and p− 1 is the number of boxes in the second row of ρ̃1. The same argument works for the second
row, as there we have (p− 1) +m boxes, and the number of boxes in the first row of ρ̃1 is 2(p− 1).

The above arguments mean that in order to make an SSYT of skew-shape (µ̃+m(1, 1, 1))/ρ̃1,
we just need to have the rows be non-decreasing. We further see that to make the reverse reading
word be a lattice permutation, we can only add 1’s in the top row, but once we have added these,
we have p+m 1’s in the top row, and since ν2 ≤ p− 1 ≤ p+m, this means that we can place the
2’s any way we like, as long as the rows are non-decreasing.

By the above we see that there is such an SSYT exactly when we have enough 1’s to put in the
top row, i.e. when

ν1 + ν2 ≥ p+m = p+
ν1 + 2ν2 − p

3
=

2p+ ν1 + 2ν2
3

which happens precisely when 2ν1 + ν2 ≥ 2p.
Thus, each such SSYT is uniquely determined by the number of 2’s in the last row, so we need

to see what the possible numbers are for these. First, we claim that we have enough 2’s to fill up
the bottom row, so we need to show that ν2 ≥ m which is true since the assumption ν1 ≤ p− 1 ≤ p
gives

m =
ν1 + 2ν2 − p

3
=

2ν2
3

+
ν1 − p

3
≤ 2ν2

3
≤ ν2

Next, we note that we need to add enough 2’s in the bottom row that there is room for the
remaining 2’s in the second row. So if we are to add a 2’s in the bottom row, we need ν2 − a ≤ m
which means that we need a ≥ ν2 −m (note that we have ν2 −m ≥ m since 2m = 2ν1+4ν2−2p

3 so
2m ≥ ν2 is equivalent to 2ν1 + ν2 ≥ 2p which was part of the assumption). This means that all a
with ν2−m ≤ a ≤ m are possible, which gives m− (ν2−m) + 1 = 2m+ 1− ν2 possibilities, as was
the claim.

We can now also determine s1(ν) for those ν 6∈ X1. Again the assumption of p ≥ 5 is not
actually needed.

Theorem 7.30. Let G = SL3 and assume that p ≥ 5. Let ν = (ν1, ν2) ∈ X1 and m = ν1+2ν2−p
3 .

Then

s1(ν + p(0, 1)) =

{
2m+ 1− ν2 if m is a non-negative integer and 2ν1 + ν2 ≥ 2p

0 else
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Proof. Since p ≥ 5 ≥ 2h− 2 = 4 we can apply Theorem 7.8 to see that

s1(ν + p(1, 0)) = [St1⊗L(ν) : ∇((p− 1)ρ+ p(0, 1))]∇

so if L(ν) ∼= ∇(ν) the claim follows directly from Lemma 7.29.
If this is not the case, then we can apply Proposition 7.25 to see that

s1(ν + p(0, 1)) = [St1⊗∇(ν) : ∇((p− 1)ρ+ p(1, 0))]∇ − [St1⊗∇(µ) : ∇((p− 1)ρ+ p(1, 0))]∇

where µ = (p− ν2 − 2, p− ν1 − 2).
The claim now follows like above if we can show that [St1⊗∇(µ) : ∇((p− 1)ρ+ p(1, 0))]∇ = 0.

But by Lemma 7.29 if this is non-zero, then

(p− ν2 − 2) + 2(p− ν1 − 2)− p ≥ 0 and 2(p− ν2 − 2) + (p− ν1 − 2) ≥ 2p

The first inequality gives 2ν1 + ν2 + 6 ≤ 2p and the second one gives ν1 + 2ν2 + 6 ≤ p. Adding these
gives 3ν1 + 3ν2 + 12 ≤ 3p and thus ν1 + ν2 ≤ p− 4 ≤ p− 2 which by Proposition 7.25 would imply
that L(ν) ∼= ∇(ν) which contradicts our assumption.

We have now completely described s1(ν) for all ν ∈ X+ for SL3 when p ≥ 5, since by Proposition
7.24, if s1(ν) 6= 0 and ν 6∈ X1 then ν = ν0 + p(1, 0) or ν = ν0 + p(0, 1) with ν0 ∈ X1, and by
Proposition 7.1 we can then get s1(ν) from Theorem 7.30 either directly or by replacing ν by
−w0(ν).

We thus also get all t1(ν) when p ≥ 5 by Proposition 7.5.
We will now look at the two remaining cases for SL3, namely p = 2 and p = 3.
For p = 2 the result is a special case of [BDM11a, Proposition 3.2(a)].

Proposition 7.31. If G = SL3 and p = 2 then socG(St1⊗St1) = L(0, 0)⊕ 2 St1.

Proof. We wish to show that s1(0, 0) = 1, s1(1, 1) = 2 and that s1(ν) = 0 for all other ν ∈ X+.
By Proposition 7.7 together with Lemma 7.27 we see that we only need to consider ν = (ν1, ν2)

such that ν1 + 2ν2 is divisible by 3, and since ν must be a weight of St1⊗St1 we also see that we
can assume that ν1 + ν2 ≤ 4.

This leaves the weights (0, 0), (1, 1), (3, 0), (0, 3) and (2, 2). By Proposition 7.1, once we show
that s1(3, 0) = 0 we also see that s1(0, 3) = 0. That s1(2, 2) = 0 follows from Proposition 7.15.

• (0, 0): We have s1(0, 0) = dim(HomG(L(0, 0), St1⊗St1)) = dim(HomG(St1,St1)) = 1.

• (1, 1): Since L(1, 1) = St1 we have

s1(1, 1) = dim(HomG(St1,St1⊗St1)) = [St1⊗St1 : St1]∇ = 2

by Lemma 7.27.

• (3, 0): Here we first apply the Jantzen sum formula (Theorem 4.18) so see that we have a short
exact sequence 0 → L(3, 0) → ∇(3, 0) → L(0) → 0. We would now like to apply Corollary 7.10,
but that requires p ≥ 2h− 2. However, if we can show that St1⊗L(3, 0) has a good filtration, the
proof still works. Since we have (3, 0) = (1, 0) + 2(1, 0) we see that L(3, 0) ∼= L(1, 0)⊗ L(1, 0)(1) by
Theorem 4.10. Now we easily see from Theorem 4.14 that L(1, 0) ∼= ∇(1, 0) and hence St1⊗L(3, 0)
has a good filtration by Theorem 6.10 and Theorem 4.25.
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Thus, we can apply Corollary 7.10 to see that

s1(3, 0) = [St1⊗∇(3, 0) : St1]∇ − s1(0, 0) = [St1⊗∇(3, 0) : St1]∇ − 1

so we just need to show that [St1⊗∇(3, 0) : St1]∇ ≤ 1, which is clear by Proposition 4.36 since
whenever l(ν̃) ≤ 1 we have cµ̃

λ̃,ν̃
≤ 1.

We see above that when p = 2 we have s1(ν) 6= 0 =⇒ ν ∈ X1, so we would like to be able to
apply Proposition 7.13. For this we need p ≥ 2h − 2, but the only place in the proof it is needed
is to be able to apply the tensor decomposition from Proposition 4.34, and for SL3 this is actually
known to hold for all p (see the remarks to [Jan03, II.11.16]). Hence, we do get all sr(ν) and all
tr(ν) when p = 2 (the same argument also shows that we can apply Proposition 7.5).

For p = 3 we get the following, which is a special case of [BDM11a, Proposition 3.2(a)].

Proposition 7.32. If G = SL3 and p = 3 then

socG(St1⊗St1) = L(0, 0)⊕ L(1, 1)⊕ 3 St1⊕L(5, 2)⊕ L(2, 5)

Proof. We wish to show that s1(0, 0) = 1, s1(1, 1) = 1, s1(2, 2) = 3, s1(5, 2) = 1, s1(2, 5) = 1 and
s1(ν) = 0 for all other ν ∈ X+.

By Proposition 7.7 and Lemma 7.27 we only need to consider weights ν = (ν1, ν2) such that
3 | ν1 + 2ν2, and if s1(ν) 6= 0 then ν must be a weight of St1⊗St1 so in particular, we must have
〈ν, α∨0 〉 ≤ 2(p− 1)(h− 1) = 8.

This means that we need to consider the weights (0, 0), (1, 1), (3, 0), (0, 3), (2, 2), (4, 1), (1, 4),
(3, 3), (6, 0), (0, 6), (5, 2), (2, 5), (7, 1), (1, 7) and (4, 4). By Proposition 7.15 we immediately see that
we do not need to consider the weights (3, 0), (0, 3), (3, 3), (6, 0) and (0, 6). Also, by Proposition
7.1, we can restrict ourselves to those ν = (ν1, ν2) with ν2 ≤ ν1.

• (0, 0): We have s1(0, 0) = dim(HomG(L(0, 0), St1⊗St1)) = dim(HomG(St1, St1)) = 1.

• (1, 1): Applying Proposition 7.25 and using the results from Section 6.10 we see that we can
apply Corollary 7.10 and Lemma 7.27 to get

s1(1, 1) = [St1⊗∇(1, 1) : St1]∇ − s1(0, 0) = 2− 1 = 1

• (2, 2): Since we have L(2, 2) = St1 we get

s1(2, 2) = dim(HomG(St1, St1⊗St1)) = [St1⊗∇(2, 2) : St1]∇ = 3

by Lemma 7.27.

• (4, 1): We have (4, 1) = (1, 1)+3(1, 0) so by Theorem 4.10 we have L(4, 1) ∼= L(1, 1)⊗L(1, 0)(1)

and since L(1, 0) ∼= ∇(1, 0) by Proposition 7.25 we see that (applying Theorem 4.10)

s1(4, 1) = dim(HomG(L(4, 1), St1⊗St1)) = dim(HomG(St1⊗L(1, 0)(1), St1⊗L(1, 1)))

≤ dim(HomG(∇(2ρ+ 3(1, 0)), St1⊗∇(1, 1)) = [Str ⊗∇(1, 1) : ∇(2ρ+ 3(1, 0))]∇

and the claim now follows by Lemma 7.29 since if ν = (ν1, ν2) = (1, 1) we have 2ν1+ν2 = 3 < 2p = 6.
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• (5, 2): We have (5, 2) = (2, 2) + 3(1, 0) and since we have L(2, 2) = St1 = ∇(2, 2) and by
Proposition 7.25 we have L(1, 0) ∼= ∇(1, 0), Theorem 4.29 shows that L(5, 2) ∼= ∇(5, 2), so we get

s1(5, 2) = [St1⊗St1 : ∇(2ρ+ 3(1, 0))]∇

which is 22+2·2−3
3 +1−2 = 1 by Lemma 7.29 since 0 ≤ 2+2·2−3 is divisible by 3 and 2·2+2 ≥ 2·3 = 6.

• (7, 1): By Proposition 7.7 we have s1(7, 1) ≤ [St1⊗∇(7, 1) : St1]∇ so it is sufficient to show
that the latter is 0.

By Proposition 4.36 it equals c
(7,5,3)
(4,2),(8,1) so we need to show that there is no SSYT of skew-shape

(7, 5, 3)/(4, 2) and type (8, 1). But the shape is

and since the gray boxes must contain a 1 or greater, both of the black boxes must contain a 2 or
greater. But since the type needs to be (8, 1) we can only place one 2, so there is no SSYT of this
shape and type.

• (4, 4): We can write (4, 4) = (1, 1) + 3(1, 1) so by Proposition 7.7 we get the inequality

sr(4, 4) ≤ [∇(2ρ + 3(1, 1)) ⊗ ∇(1, 1) : St1]∇ and by Proposition 4.36 the latter equals c
(4,2)+m(1,1)
(10,5),(2,1)

where m = 15+3−6
3 = 4. But since 10 > 4 +m = 8 we see that (10, 5) 6⊆ (4, 2) +m(1, 1) so this is 0.

By the above we see that if G = SL3 and p = 3 then we can still apply the arguments from
Lemma 7.3 and Proposition 7.5 to also get all t1(ν).

We could have simplified the calculations in the cases ν = (7, 1) and ν = (4, 4) by appealing
to Proposition 7.24, but we chose to include the full details to illustrate how the combinatorics
behave.
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8 The Steinberg Square for Finite Groups of Lie type

In this section we will fix a natural number r and let G = GF r .
We will study the restriction of Str ⊗Str to G. Since Str is projective as a G-module (by

Theorem 5.18) the same is true for Str ⊗Str, so if we write

socG(Str ⊗Str) =
⊕

ν∈Xr
fr(ν)L(ν)

then we get

Str ⊗Str ∼=
⊕

ν∈Xr
fr(ν)P (ν)

where P (ν) denotes the projective cover of L(ν) as a G-module.
So in order to better understand Str ⊗Str as a G-module, we wish to understand the numbers

fr(ν) for ν ∈ Xr.
We will be able to get similar results about fr(ν) to the ones for sr(ν), except that in this case

the formulas will be considerably more complicated.
A nice thing about the Steinberg square as a G-module is that, except in some special cases, it

has all simple G-modules as composition factors (see [HSTZ13, Theorem 1.2]).
First we will need a result analogous to Proposition 7.1.

Proposition 8.1. For all ν ∈ Xr we have fr(ν) = fr(−w0(ν)).

Proof. Since we have (Str ⊗Str)
∗ ∼= Str ⊗Str we see that the number of times any P (ν) occurs in

the decomposition must be the same as the number of times P (ν)∗ ∼= P (−w0(ν)) occurs, which
gives the claim.

We can then get some conditions analogous to those in Proposition 7.7. These are all very
similar but which one is the most practical to use can vary.

Proposition 8.2. Let ν ∈ Xr. We have the following.

1.
fr(ν) ≤

∑

λ∈X+

[Str ⊗∇(−w0(ν))⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

2.
fr(ν) ≤

∑

λ∈X+

[Str ⊗∇(ν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

3.
fr(ν) ≤

∑

λ∈X+

[∇((pr − 1)ρ− prw0(ν))⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

4.

fr(ν) ≤
∑

λ∈X+

[∇((pr − 1)ρ+ prν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇
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Proof. By definition we have

fr(ν) = dim(HomG(L(ν),Str ⊗Str)) = dim(HomG(Str,Str ⊗L(−w0(ν))))

and the injection L(−w0(ν)) ↪→ ∇(−w0(ν)) then gives the inequality

fr(ν) ≤ dim(HomG(Str ⊗∇(−w0(ν))))

Applying Theorem 5.19 we then get

fr(ν) ≤ dim(HomG(Str,Str ⊗∇(−w0(ν)))) =
∑

λ∈X+

[Str ⊗∇(−w0(ν))⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

as was the first claim.
The second claim follows from the first by applying Proposition 8.1.
The third claim follows by noting that for any G-module M we have M ∼= M (r), so arguing as

above, we get
fr(ν) ≤ dim(HomG(Str, Str ⊗∇(−w0(ν))(r)))

and applying Theorem 4.29 yields the claim.
The final claim then follows from the third claim by once again applying Proposition 8.1.

Theorem 8.3. Assume p ≥ 2h− 2 and let ν ∈ Xr. Then we have

1.
fr(ν) =

∑

λ∈X+

[Str ⊗L(−w0(ν))⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

2.
fr(ν) =

∑

λ∈X+

[Str ⊗L(ν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

Proof. By definition we have

fr(ν) = dim(HomG(L(ν),Str ⊗Str)) = dim(HomG(Str,Str ⊗L(−w0(ν))))

By Theorem 6.11 we see that Str ⊗L(ν) has a good filtration, so we can apply Theorem 5.19 to
get

fr(ν) =
∑

λ∈X+

[Str ⊗L(−w0(ν))⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

as was the first claim.
The second claim follows from the above by applying Proposition 8.1.

Note that in the above proof, the assumption that p ≥ 2h−2 can be replaced by the assumption
that Str ⊗L(ν) has a good filtration, as is conjectured to hold for all ν ∈ Xr without restrictions
on p, and is known to hold in some small cases (by the results in Section 6.10).

In particular, we can also apply the above whenever we have L(ν) ∼= ∇(ν).
By Proposition 8.2 we see that it will be necessary to know something about when we have

[Str ⊗∇(ν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇ 6= 0.
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Proposition 8.4. If [Str ⊗∇(ν) ⊗ ∇(λ) : ∇((pr − 1)ρ + prλ)]∇ 6= 0 for some ν, λ ∈ X+ then
ν ≥ (pr − 1)λ.

In particular, 〈ν, α∨0 〉 ≥ (pr − 1)〈λ, α∨0 〉.
Proof. If [Str ⊗∇(ν) ⊗ ∇(λ) : ∇((pr − 1)ρ + prλ)]∇ 6= 0 then (pr − 1)ρ + prλ is a weight of
Str ⊗∇(ν)∇(λ) so we have (pr − 1)ρ+ prλ ≤ (pr − 1)ρ+ ν + λ and hence ν ≥ (pr − 1)λ as was the
first claim.

The second claim is now clear.

Corollary 8.5. If [Str ⊗∇(ν)⊗∇(λ) : ∇((pr−1)ρ+prλ)]∇ 6= 0 for some λ ∈ X+ and some ν ∈ Xr

then 〈λ, α∨0 〉 ≤ h− 1.

Proof. We have 〈ν, α∨0 〉 ≤ (pr − 1)(h− 1), so the claim follows directly from Proposition 8.4.

The above also immediately allows us to calculate fr(ν) when ν is “small”.

Proposition 8.6. Assume that p ≥ 2h−2 and let ν ∈ Xr with 〈ν, α∨0 〉 < pr−1. Then fr(ν) = sr(ν).

Proof. By Theorem 8.3 we have

fr(ν) =
∑

λ∈X+

[Str ⊗L(ν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

but Proposition 8.4 shows that the assumptions imply that all summands except possibly the one
for λ = 0 are 0. Thus we get

fr(ν) = [Str ⊗L(ν) : Str]∇ = sr(ν)

by Theorem 7.8.

8.1 SL2(p
r)

When G = SL2 (so G = SL2(p
r)) it turns out that the calculations of fr(ν) are almost identical

to those for sr(ν), so we will be able to completely determine these for all r and all ν ∈ Xr.
As previously for SL2 we identify Xr with the set of integers ν satisfying 0 ≤ ν ≤ pr − 1.

Theorem 8.7. Let G = SL2, p ≥ 3 and ν ∈ Xr. Then

fr(ν) =





1 if ν ≤ pr − 2 and ν has a p-adic expansion with all even terms

2 if ν = pr − 1

0 else

Proof. If ν ≤ pr − 2 then by Proposition 8.6 we have fr(ν) = sr(ν), and thus the claim follows by
Corollary 7.22.

If ν = pr − 1 we have L(ν) = Str and we see from Proposition 8.4 and Theorem 8.3 that

fr(ν) = [Str ⊗Str : Str]∇ + [Str ⊗Str ⊗L(1) : ∇(2pr − 1)]∇

The first summand is precisely sr(ν) = 1 by Theorem 7.8 and Corollary 7.22, so we just need to
show that the second summand is also 1.

But this follows by Proposition 4.36 since we have (pr − 1) + (pr − 1) + 1 = 2pr − 1, and for any

partitions λ̃ and µ̃ we have cλ̃+µ̃
λ̃,µ̃

= 1.
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Theorem 8.8. If G = SL2 and p = 2 then Str ⊗ Str ∼= P (0)⊕ Str.

Proof. The claim is that fr(0) = 1, fr(2
r − 1) = 1 and fr(ν) = 0 for all other ν ∈ Xr.

When ν ≤ 2r − 2 we see by Proposition 8.6 that fr(ν) = sr(ν), so in this case the claim follows
by Corollary 7.22.

For ν = 2r − 1 we have L(ν) = Str and we see from Proposition 8.4 and Theorem 8.3 that

fr(ν) = [Str ⊗Str : Str]∇ + [Str ⊗Str ⊗L(1) : ∇(2r+1 − 1)]∇

and by Theorem 7.8 the first summand is sr(ν) = 0 by Corollary 7.22.
Thus we just need to show that [Str ⊗Str ⊗L(1) : ∇(2r+1 − 1)]∇ = 1, and this follows from

Proposition 4.36 since we have (2r − 1) + (2r − 1) + 1 = 2r+1 − 1.

Note that the above is a special case of [Tsu90, Theorem 3].
Also worth noting is the following, which is a special case of [AJL83, Lemma 4.1].

Corollary 8.9. Let G = SL2 and p ≥ 3. Let ν ∈ Xr with ν 6= 0 and such that ν has a p-adic
expansion where all terms are even. Then we have isomorphisms of G-modules

1. T (2(pr − 1)) ∼= P (0)⊕ Str

2. T (2(pr − 1)− ν) ∼= P (ν)

Proof. By comparing the values of sr(ν) and fr(ν) (using Corollary 7.22 and Theorem 8.7) we see
that it is sufficient to show that dim(HomG(Str, T (2(pr − 1)))) 6= 0. But since T (2(pr − 1)) has a
good filtration, we can use Theorem 5.19. One of the factors in this good filtration is ∇(2(pr − 1)),
and we claim that in fact dim(HomG(Str,∇(2(pr − 1)))) 6= 0.

By looking at the formula from Theorem 5.19 we see that it will in fact be sufficient to find a
λ ∈ X+ such that (pr − 1) + 2(pr − 1) + λ = (pr − 1) + prλ, and it is easily seen that this holds for
λ = 2.

8.2 SL3(p
r)

When G = SL3 (so G = SL3(p
r)) it is a lot more difficult to determine the fr(ν). We will only be

able to determine these completely when r = 1 and p = 2 or p = 3.
We start with a result similar to Proposition 8.4, but which gives more precise information for

SL3.

Proposition 8.10. Let ν = (ν1, ν2) ∈ X+ and λ = (λ1, λ2) ∈ X+. If

[Str ⊗∇(ν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇ 6= 0

then ν1 + 2ν2 − (pr − 1)(λ1 + 2λ2) is a non-negative integer divisible by 3.

Proof. This follows directly from Proposition 4.37.

We can then compute f1(ν) for all ν ∈ X1 and p = 2.

Proposition 8.11. Let G = SL3 and p = 2. Then

socG(St1⊗St1) = L(0, 0)⊕ L(1, 0)⊕ L(0, 1)⊕ 3 St1
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Proof. By Proposition 7.25 we have L(ν) ∼= ∇(ν) for all ν ∈ X1 when p = 2, so the inequalities in
Proposition 8.2 are in fact equalities in this case.

For ν ∈ X1 we need to consider a sum with terms of the form [St1⊗∇(ν)⊗∇(λ) : ∇(ρ+ 2λ)]∇,
and we will use Proposition 8.10 to restrict which λ we need to consider for each ν ∈ X1. We can
also assume that ν1 ≥ ν2 by Proposition 8.1.

We can then calculate f1(ν) as follows:

• ν = (0, 0): By Proposition 8.6 and Proposition 7.31 we have f1(0, 0) = s1(0, 0) = 1.

• ν = (1, 0): Here we only need to consider λ = (1, 0) where we get

[St1⊗∇(1, 0)⊗∇(1, 0) : ∇(ρ+ 2(1, 0))]∇ = 1

since we have ρ+ 2(1, 0) = ρ+ (1, 0) + (1, 0).

• ν = (1, 1): Here we have L(1, 1) = St1 and we need to consider λ = (0, 0) and λ = (1, 1).

For λ = (0, 0) we get a contribution of [St1⊗St1 : St1]∇ = s1(1, 1) = 2 by Proposition 7.31.

For λ = (1, 1) we get a contribution of [St1⊗St1⊗St1 : ∇(ρ+2ρ)]∇ = 1 since ρ+2ρ = ρ+ρ+ρ.

Adding these we get f1(1, 1) = 3 as claimed.

And we can also compute f1(ν) when p = 3.

Proposition 8.12. Let G = SL3 and p = 3. Then

socG(St1⊗St1) = L(0, 0)⊕ L(1, 1)⊕ L(2, 0)⊕ L(0, 2)⊕ L(2, 1)⊕ L(1, 2)⊕ 4 St1

Proof. By Proposition 7.25 we see that the only weights ν ∈ X1 where we do not have L(ν) ∼= ∇(ν)
are ν = (1, 0) and ν = (0, 1). But for these weights we have f1(ν) = s1(ν) by Proposition 8.6 and
by Proposition 7.32 we have s1(ν) = 0 for these.

For the remaining weights we thus have equalities in Proposition 7.7, so we get that f1(ν) is a
sum with terms of the form [St1⊗∇(ν)⊗∇(λ) : ∇(2ρ+ 3λ)]∇ and we will use Proposition 8.10 to
restrict which λ we need to consider for each ν ∈ X1. We will also by Proposition 8.1 only consider
those ν = (ν1, ν2) with ν1 ≥ ν2.

We can now compute f1(ν) as follows.

• ν = (0, 0): By Proposition 8.6 and Proposition 7.32 we have f1(0, 0) = s1(0, 0) = 1.

• ν = (1, 1): Here we only need to consider λ = (0, 0), where the contribution is precisely
s1(1, 1) = 1 by Proposition 7.32.

• ν = (2, 0): Here we need to consider λ = (1, 0) where the contribution is

[St1⊗∇(2, 0)⊗∇(1, 0) : ∇(2ρ+ 3(1, 0))]∇ = 1

since 2ρ+ 3(1, 0) = 2ρ+ (2, 0) + (1, 0).
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• ν = (2, 1): Here we need to consider λ = (2, 0) and λ = (0, 1).

For λ = (2, 0) we get the contribution

[St1⊗∇(2, 1)⊗∇(2, 0) : ∇(2ρ+ 3(2, 0))]∇

and we claim that this is 0. The reason for this is that if it was not 0 then there would be a µ ∈ X+

such that

[St1⊗∇(2, 1) : ∇(µ)]∇ 6= 0 and [∇(µ)⊗∇(2, 0) : ∇(2ρ+ 3(2, 0))]∇ 6= 0

The latter of these would imply that if µ = (µ1, µ2) then µ2 ≤ 2 since we would need to have
µ̃ ⊆ 2ρ̃+ 3(2, 0). But then the first one implies that |µ̃| < |2ρ̃|+ |(3, 1)| which is not possible since
we have |2ρ̃+ 3(2, 0)| = |2ρ̃|+ |(3, 1)|+ |(2, 0)|.

For λ = (0, 1) we get the contribution

[St1⊗∇(2, 1)⊗∇(0, 1) : ∇(2ρ+ 3(0, 1))]∇

and the claim is that this is 1. So we need to see for which µ it is possible to have both

[St1⊗∇(2, 1) : ∇(µ)]∇ 6= 0 and [∇(µ)⊗∇(0, 1) : ∇(2ρ+ 3(0, 1))]∇ 6= 0

We note that since |2ρ̃+3(1, 1)| = |2ρ̃|+|(3, 1)|+|(1, 1)| we must have |µ̃| = |2ρ̃|+|(3, 1)| = 6+4 = 10.
We now see that µ̃ must be contained in

so µ̃ is obtained by removing two boxes from this diagram such that the result is a partition and
such that it is possible to put a 1 in one of the boxes and a 2 in the other in such a way that we
get an SSYT where the reverse reading word is a lattice permutation. This rules out removing two
boxes in the same row, as we would then need to place the 1 to the left of the 2, and the reverse
reading word would become (2, 1) which is not a lattice permutation.

Thus, we see that the only possibility is µ̃ = (6, 4) (so µ = (2, 4)). Hence, the claim boils down
to showing that [St1⊗∇(2, 1) : ∇(2, 4)]∇ = 1. Applying Proposition 4.36 we see that it equals the
number of SSYTs of type (3, 1) and shape

whose reverse reading word is a lattice permutation. But we see that the only such SSYT is

1 1

1 2

which yields the claim.
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• ν = (2, 2): Here we need to consider λ = (0, 0) and λ = (1, 1).

For λ = (0, 0) we get a contribution of s1(ν) = 3 by Proposition 7.32.

For λ = (1, 1) we get a contribution of

[St1⊗St1⊗∇(1, 1) : ∇(2ρ+ 3(1, 1))]∇

and the claim is that this is 1. But this is clear since 2ρ+ 3(1, 1) = 2ρ+ 2ρ+ (1, 1).

As can be seen from the above calculations, everything gets increasingly complicated when we
increase p. It turns out that a lot of the behavior of the f1(ν) and more generally the fr(ν) depends
on whether 3 divides pr − 1.

The following relates the multiplicity of Str in socG(Str ⊗Str) and in socG(Str ⊗Str).

Proposition 8.13. Let G = SL3 and assume that 3 does not divide pr − 1. Then

fr((p
r − 1)ρ) = sr((p

r − 1)ρ) + 1

Proof. Since L((pr − 1)ρ) = Str ∼= ∇((pr − 1)ρ), the inequalities in Proposition 8.2 are equalities,
and we get

fr((p
r − 1)ρ) =

∑

λ∈X+

[Str ⊗Str ⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

For λ = (0, 0) the contribution to the sum is precisely sr((p
r − 1)ρ), so we need to show that the

remaining sum equals 1.
In fact, by Proposition 8.10 we see that the only λ = (λ1, λ2) that can contribute to the sum

are those where 3 divides λ1 + 2λ2, since 3 does not divide pr − 1. But by Corollary 8.5 we must
also have λ1 + λ2 ≤ h − 1 = 2, so the only non-zero possible λ is λ = (1, 1) = ρ, and the claim is
thus that

[St1⊗St1⊗∇(ρ) : ∇((pr − 1)ρ+ prρ)]∇ = 1

which is clear since
(pr − 1)ρ+ prρ = (pr − 1)ρ+ (pr − 1)ρ+ ρ

The above shows that when we decompose Str ⊗Str, we get an extra copy of Str when we view
it as a G-module instead of as a G-module. The following corollary then shows that this extra copy
always comes from a specific part of the decomposition, namely from the restriction of T (2(pr−1)ρ)
to G (note that this summand will always be in Str ⊗Str with multiplicity 1 since it corresponds
to the number of times L(0) occurs in the G-socle).

Corollary 8.14. Let G = SL3 and assume that 3 does not divide pr−1. Assume that ν ∈ X+ with
ν 6= 0 is given such that sr(ν) 6= 0 and such that Str is a composition factor of T ((pr − 1)ρ+ ν) as
a G-module.

Then ν = (pr − 1)ρ.
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Proof. By Proposition 8.13 it is sufficient to show that Str is a composition factor of T (2(pr − 1)ρ)
as a G-module, since whenever Str is a composition factor, it will in fact be a direct summand, as
it is both injective and projective (by Theorem 5.18).

So we need to show that dim(HomG(Str, T (2(pr − 1)ρ))) ≥ 1, and since T (2(pr − 1)ρ) has a
good filtration where one of the factors is ∇(2(pr − 1)ρ), it is sufficient to show that

dim(HomG(Str,∇(2(pr − 1)ρ))) ≥ 1

By Theorem 5.19 this equals
∑

λ∈X+

[∇(2(pr − 1)ρ)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

so it is sufficient to find a λ such that (pr − 1)ρ+ prλ = 2(pr − 1)ρ+ λ, and clearly λ = ρ satisfies
this.

Continuing with the same assumptions, we then show that when L(ν) occurs in the G-socle
of Str ⊗Str (for some ν ∈ Xr), then it does not occur any more times in the G-socle than in the
G-socle, unless we have L(ν) = Str.

Proposition 8.15. Let G = SL3 and assume that 3 does not divide pr − 1. If ν ∈ Xr with
ν 6= (pr − 1)ρ and sr(ν) 6= 0 then fr(ν) = sr(ν).

Proof. Write ν = (ν1, ν2). If sr(ν) 6= 0 then by Proposition 7.7 together with Proposition 4.36 we
see that 3 divides ν1 + 2ν2.

By Proposition 8.2 we see that

fr(ν) ≤
∑

λ∈X+

[Str ⊗∇(ν)⊗∇(λ) : ∇((pr − 1)ρ+ prλ)]∇

and by Proposition 8.10 we see that if λ = (λ1, λ2) ∈ X+ is given such that the corresponding
summand is not 0, then ν1 + 2ν2 − (pr − 1)(λ1 + 2λ2) is a nonnegative integer divisible by 3.

But since ν1 + 2ν2 is divisible by 3 and pr − 1 is not divisible by 3, this means that λ1 + 2λ2 is
divisible by 3, and since we have λ1 + λ2 ≤ h − 1 = 2 by Corollary 8.5, this means that the only
possibility is λ = (1, 1). But since ν 6= (pr − 1)ρ we have ν1 + 2ν2 < 3(pr − 1) = (pr − 1)(λ1 + 2λ2),
so we also do not get any contribution from this λ.

We note that we can apply both Theorem 7.8 and Theorem 8.3 since the requirements there of
p ≥ 2h− 2 is only needed to ensure that Str ⊗L(λ) has a good filtration for all λ ∈ Xr and for SL3

we know this to hold without restrictions on p by the results in Section 6.10. Thus, by the above
we have

fr(ν) = [Str ⊗L(ν) : Str]∇ = sr(ν)

as claimed.

We have now had several results about what happens when pr − 1 is not divisible by 3. If we
instead assume that 3 divides p − 1, then we see that the those L(ν) that occur in the G-socle of
St1⊗St1 are precisely the same as those that occur in the G-socle (when ν ∈ X1).

Proposition 8.16. Let G = SL3 and assume that p ≡ 1 (mod 3). Let ν ∈ X1. Then

s1(ν) 6= 0⇔ f1(ν) 6= 0
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Proof. Since we have s1(ν) ≤ f1(ν) for all ν ∈ X1, it is clear that if s1(ν) 6= 0 then f1(ν) 6= 0.
So assume that f1(ν) 6= 0. If ν = (ν1, ν2) then by Proposition 8.10 we must have that 3 divides

ν1 + 2ν2, since by assumption 3 divides p− 1. Thus, we see that s1(ν) 6= 0 by Theorem 7.28.
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A Appendix - Dominant Weights in the Root Lattice

In this appendix, we will prove that if β ∈ ZR is a non-zero dominant weight, then 〈β, α∨0 〉 ≥ 2.
Since we assume β to be non-zero, this simply means that we need to rule out the possibility

that 〈β, α∨0 〉 = 1. Since any dominant weight can be written as a non-negative integral linear
combination of the fundamental weights, we see that this simply means ruling out certain of the
fundamental weights being in the root lattice.

We will need the following description of α∨0 . These have been calculated by taking the coroot
of each of the highest short roots listed in [Hum78], p. 66 Table 2.

Type An: α∨0 = α∨1 + α∨2 + · · ·+ α∨n .

Type Bn: α∨0 = 2α∨1 + 2α∨2 + · · ·+ 2α∨n−1 + α∨n .

Type Cn: α∨0 = α∨1 + 2α∨2 + · · ·+ 2α∨n .

Type Dn: α∨0 = α∨1 + 2α∨2 + · · ·+ 2α∨n−2 + α∨n−1 + α∨n .

Type E6: α
∨
0 = α∨1 + 2α∨2 + 2α∨3 + 3α∨4 + 2α∨5 + α∨6 .

Type E7: α
∨
0 = 2α∨1 + 2α∨2 + 3α∨3 + 4α∨4 + 3α∨5 + 2α∨6 + α∨7 .

Type E8: α
∨
0 = 2α∨1 + 3α∨2 + 4α∨3 + 6α∨4 + 5α∨5 + 4α∨6 + 3α∨7 + 2α∨8 .

Type F4: α
∨
0 = 2α∨1 + 4α∨2 + 3α∨3 + 2α∨4 .

Type G2: α
∨
0 = 2α∨1 + 3α∨2 .

In particular, looking at the expressions for α∨0 in each of the types of root system, we see that
the fundamental weights we need to rule out are the ones corresponding to the simple coroots with
a coefficient of 1 in α∨0 :

Type An: We need to rule out all the fundamental weights.

Type Bn: We just need to rule out the fundamental weight ωn.

Type Cn: We just need to rule out the fundamental weight ω1.

Type Dn: We need to rule out the fundamental weights ω1, ωn−1 and ωn.

Type E6: We need to rule out the fundamental weights ω1 and ω6.

Type E7: We just need to rule out the fundamental weight ω7.

Type E8: We don’t need to rule out anything here.

Type F4: We don’t need to rule out anything here.

Type G2: We don’t need to rule out anything here.
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A.1 Type An

We need to show that no fundamental weight can be written as an integral linear combination of
the simple roots. Since any weight can be written in a unique way as a linear combination of the
simple roots, this means we just need to write ωi =

∑n
j=1 ai,jαj and show that at least one ai,j is

not an integer. Let ai,0 = ai,n+1 = 0 for convenience. We will determine the ai,j by regarding the
inner products 〈ωi, α∨l 〉 one at a time, starting from l = 1 and using them to express ai,j+1 in terms
of ai,j , which will give an expression for ai,j+1 in terms of ai,1. When we then do this for all l, we
end up with some equations that determine ai,1.

We see that for l < i we have 0 = 〈ωi, α∨l 〉 = 2ai,l − ai,l−1 − ai,l+1 so ai,l+1 = 2ai,l − ai,l−1 and
this gives ai,l+1 = (l + 1)ai,1. We also have 1 = 〈ωi, α∨i 〉 = 2ai,i − ai,i−1 − ai,i+1 which means that
ai,i+1 = 2ai,i − ai,i−1 − 1 = (i+ 1)ai,1 − 1. For l > i we similarly get ai,l+1 = 2ai,l − ai,l−1, but this
time, this gives ai,l+1 = (l + 1)ai,1 − (l − i+ 1).

Combining these, we see that we get ai,n = nai,1 − (n − i). We now need to look at the final
inner product, 〈ωi, α∨n〉, which gives

0 = 2ai,n − ai,n−1 = 2(nai,1 − (n− i))− ((n− 1)ai,1 − (n− 1− i)) = (n+ 1)ai,1 − (n+ 1− i)

if i 6= n and
1 = 2an,n − an,n−1 = 2nan,1 − (n− 1)an,1 = (n+ 1)an,1

if i = n, which gives ai,1 = n+1−i
n+1 in both cases, and this is clearly not an integer for any i.

A.2 Type Bn

Keep the notation from the type An calculations. We are now only interested in the i = n case,
so write aj = an,j for simplicity. We can use the same calculations as before to see that we get
aj = ja1 for all j, since this did not include any inner product of the form 〈·, α∨n〉. Now we use that
we have 1 = 〈ωn, α∨n〉 = 2an − 2an−1 = 2(an − an−1) = 2(na1 − (n− 1)a1) = 2a1 and hence a1 = 1

2 ,
which shows that ωn is not in the root lattice in this case, as desired.

A.3 Type Cn

Keep the notation from type An but write aj = a1,j as we are only interested in the i = 1 case.
The same calculations as before show that aj = ja1 − (j − 1) for j ≤ n− 1, and we then continue
by using 0 = 〈ω1, α

∨
n−1〉 = 2an−1 − an−2 − 2an so we get

an =
1

2
(2an−1 − an−2) =

1

2
(2(n− 1)a1 − 2(n− 2)− ((n− 2)a1 − (n− 3))) =

1

2
(na1 − (n− 1))

We then combine this with the final inner product to get

0 = 〈ω1, α
∨
n〉 = 2an − an−1 = na1 − (n− 1)− ((n− 1)a1 − (n− 2)) = a1 − 1

and hence a1 = 1. Now we see that an = 1
2(n− (n− 1)) = 1

2 and since this is not an integer, we are
done.

77



A.4 Type Dn

Again keep the notation from type An. Here the cases of interest are those where i ∈ {1, n− 1, n}.
As before, we use the same calculations to get ai,j = jai,1 − δi,1(j − 1) for j ≤ n− 2. We then use
0 = 〈ωi, α∨n−2〉 = 2ai,n−2 − ai,n−3 − ai,n−1 − ai,n which gives ai,n−1 + ai,n = (n− 1)ai,1 − δi,1(n− 2).
Using the final two inner products, we get δi,n−1 = 〈ωi, α∨n−1〉 = 2ai,n−1 − ai,n−2 so

ai,n−1 =
1

2
(ai,n−2 + δi,n−1) =

1

2
((n− 2)ai,1 − δi,1(n− 3) + δi,n−1)

and similarly, ai,n = 1
2((n− 2)ai,1 − δi,1(n− 3) + δi,n).

Adding the last two equalities and combining with the above gives

(n− 1)ai,1 − δi,1(n− 2) = (n− 2)ai,1 − δi,1(n− 3) +
1

2
(δi,n−1 + δi,n)

and hence ai,1 = δi,1 + 1
2(δi,n−1 + δi,n) and the only way this can be an integer is if i = 1 in which

case we get ai,1 = 1. But then ai,n−1 = 1
2((n− 2)− (n− 3)) = 1

2 and since this is not an integer, we
are done.

A.5 Type E6

This time the calculations will be somewhat different than the previous ones, due to the ordering
of the roots. We will therefore consider the inner products in a different order. The cases of interest
are those where i ∈ {1, 6}.

So first we compute δi,1 = 〈ωi, α∨1 〉 = 2ai,1 − ai,3 which gives ai,3 = 2ai,1 − δi,1. Next, we
consider 0 = 〈ωi, α∨3 〉 = 2ai,3 − ai,1 − ai,4 which gives ai,4 = 2ai,3 − ai,1 = 3ai,1 − 2δi,1 and then
we look at 0 = 〈ωi, α∨4 〉 = 2ai,4 − ai,2 − ai,3 − ai,5 giving ai,2 + ai,5 = 4ai,1 − 3δi,1. Combining
this with 0 = 〈ωi, α∨2 〉 = 2ai,2 − ai,4 which gives ai,2 = 1

2ai,4 = 1
2(3ai,1 − 2δi,1), we get that

we have ai,5 = 4ai,1 − 3δi,1 − 1
2(3ai,1 − 2δi,1) = 1

2(5ai,1 − 4δi,1). We then continue by using that
we have 0 = 〈ωi, α∨5 〉 = 2ai,5 − ai,4 − ai,6 giving ai,6 = 2ai,5 − ai,4 = 3ai,1 − 2δi,1 and finally
δi,6 = 〈ωi, α∨6 〉 = 2ai,6−ai,5 giving ai,6 = 1

2(ai,5 +δi,6) = 1
4(5ai,1−4δi,1 +2δi,6). Combining these, we

get 5ai,1−4δi,1 +2δi,6 = 12ai,1−8δi,1, so ai,1 = 1
7(4δi,1 +2δi,6) which is not an integer for i ∈ {1, 6}.

A.6 Type E7

Here we can reuse the calculations from type E6, but the case of interest is i = 7, so write aj = a7,j .
This means we get a5 = 3

2a1 and a6 = 3a1 (since δi,1 = 0), and we continue by considering
0 = 〈ω7, α

∨
6 〉 = 2a6 − a5 − a7 giving a7 = 2a6 − a5 = 9

2a1. Finally, we have 1 = 〈ω7, α
∨
7 〉 = 2a7 − a6

giving a7 = 1
2(a6 + 1) = 1

2(3a1 + 1). Combining these, we get 3a1 + 1 = 9a1 so a1 = 1
6 which is not

an integer.

A.7 Summary

We now summarize the calculations of this appendix in the following.

Proposition A.1. If β ∈ ZR is a non-zero dominant weight, then 〈β, α∨0 〉 ≥ 2.
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B Appendix - Tensor Products of Simple Modules for GLn(C)

In this section the combinatorial concepts needed in order to compute the decomposition of tensor
products of simple GLn(C)-modules will be introduced.

In this section, a partition will be a non-increasing sequence of non-negative integers containing
0. If λ = (λ1, λ2, . . . ) is a partition, we set |λ| = ∑i λi and write λ ` |λ|. Let l(λ) = max{i |λi 6= 0}
and call this the length of λ.

If λ and µ are partitions, we say that µ is contained in λ and write µ ⊆ λ if µi ≤ λi for all i.

Definition B.1. Let λ and µ be partitions with µ ⊆ λ.A semistandard young tableau (from now
on abbreviated SSYT) of skew-shape λ/µ is a 2-dimensional array of positive integers Ti,j with
1 ≤ i ≤ l(λ) and µi + 1 ≤ j ≤ λi such that whenever the numbers are defined, Ti,j ≤ Ti+1,j and
Ti,j < Ti,j+1.

We will write an SSYT graphically by putting the array T inside an l(λ) × λ1 box, where for
each Ti,j which exists, we put a box with Ti,j in it.

Example B.2. If λ = (4, 3, 2) and µ = (2, 1) then an SSYT of shape λ/µ will look like (before we
put in the values)

Example B.3. A possible full SSYT of same shape as in Example B.2 could look like

1 1

1 2

3 4

Note that when looking at an SSYT like this, the requirements become that each row is non-
decreasing, and each column is strictly increasing.

Definition B.4. If T is an SSYT, we define the type of T to be the sequence α(T ) = (α1, α2, . . . )
where αm = |{(i, j) |Ti,j = m}|

Example B.5. If T is the SSYT from Example B.3 then α(T ) = (3, 1, 1, 1).

Definition B.6. If T is an SSYT of skew-shape λ/µ with l(λ) = n, we define the reverse reading
word of T to be the sequence (T1,λ1 , T1,λ1−1, . . . , T1,µ1+1, T2,λ2 , . . . , Tn,λn , . . . , Tn,µn+1). That is, the
sequence obtained by reading the entries in T one row at a time from right to left and top to bottom.

Example B.7. If T is the SSYT from Example B.3 then the reverse reading word of T is
(1, 1, 2, 1, 4, 3).

Definition B.8. A lattice permutation is a sequence of positive integers (x1, x2, . . . , xn) such that
for any positive integer i and any subsequence of the form x = (x1, . . . , xk), i appears in x at least
as many times as i+ 1 does.
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Example B.9. If T is the SSYT from Example B.3 then the reverse reading word of T (Example
B.7) is not a lattice permutation, since there is a 4 before the first 3.

If instead we take T to be the SSYT

1 1

1 2

2 3

then the reverse reading word becomes (1, 1, 2, 1, 3, 2) which is a lattice permutation.

Definition B.10. Let λ, µ, ν be partitions. Define the Littlewood-Richardson coefficient cνλ,µ as
follows:

If λ 6⊆ ν then cνλ,µ = 0. Otherwise, it is the number of SSYT T of skew-shape ν/λ and type µ
such that the reverse reading word of T is a lattice permutation.

The above is not the usual definition of the Littlewood-Richardson coefficients, which are instead
defined in terms of decomposition of certain symmetric functions, but due to Theorem A1.3.3 in
[Sta99], the above definition is equivalent to the usual one.

One feature of these coefficients that is not quite obvious from this definition, however, it that
cνλ,µ = cνµ,λ which is clear from the usual definition.

The reason these coefficients will be interesting is that the simple modules for GLn(C) can be
indexed by tuples λ = (λ1, . . . , λn) with λi ≥ λi+1 for all i (such a λ corresponds to a dominant
weight for GLn(C) and the simple module is just L(λ) which, since this is over C, is also ∇(λ)). If
λ = (λ1, . . . , λn) is a dominant weight and λ = (λ1−λn, λ2−λn, . . . , λn−1−λn, 0) then it is easy to
see that L(λ) ∼= L(λ)⊗C Detλn where Deti is the 1-dimensional GLn(C)-module where g ∈ GLn(C)
acts by the scalar det(g)i.

Since it is also easy to check that the tensor product of two simpleGLn(C)-modules is semisimple
(for example by reducing to SLn(C) and using that the center of GLn(C) acts semisimply), we would
like to be able to decompose a tensor product L(λ) ⊗C L(µ) as a direct sum of L(ν) for suitable
dominant weights ν. By the above remark, we can assume that λ and µ are partitions (by tensoring
with suitable powers of the determinant module), and it turns out (see [Sta99] Appendix 2) that if
λ and µ are partitions, then

L(λ)⊗C L(µ) ∼=
⊕

ν`(|λ|+|µ|), l(ν)≤n
cνλ,µL(ν)

so we can in fact determine this decomposition completely, as long as we can calculate all the
Littlewood-Richardson coefficients.

Example B.11. Let us consider the example L(λ) where λ = (1, 0, . . . , 0). It is easy to see that this
is simply Cn with the usual matrix multiplication as the action of GLn(C). If we want to calculate
L(λ)⊗C L(λ) then the above rules tell us we need to find partitions µ such that λ ⊆ µ (this holds
for any non-zero partition), |µ| = 2|λ| = 2 and such that there exists an SSYT of skew-shape µ/λ
of type λ whose reverse reading word is a lattice permutation.

Since the reverse reading word will in this case only contain one element, the requirement that
it be a lattice permutation is simply that that element is a 1, which is already automatic since the
type had to be λ = (1, 0, . . . , 0).

So we see that any partition µ ` 2 works, and also that for any such µ, cµλ,λ = 1.
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We conclude that L(λ) ⊗C L(λ) ∼= L(µ) ⊕ L(ν) where µ = (2, 0, . . . , 0) and ν = (1, 1, 0, . . . , 0)
(as long as n ≥ 2. If n = 1 then L(λ) is the trivial module and so is the tensor product considered).

Now, if n ≥ 2 then we have here a decomposition into two simple modules, and in Example
3.21 we also have a decomposition into two GLn(C)-submodules, namely the modules S2(M) and
Λ2(M). This must then mean that those modules are irreducible (when K = C) and that one of
them is isomorphic to L(µ) and the other is isomorphic to L(ν). By looking at how the diagonal
matrices in GLn(C) act, we can see that S2(M) ∼= L(µ) and Λ2(M) ∼= L(ν).

Example B.12. Let us consider an example, which is slightly more complicated. We consider
λ = (m, 0, . . . , 0) and µ = (1, 1, . . . , 1, 0, . . . , 0) (l 1’s). To decompose L(λ)⊗C L(µ) we need to find
those partitions ν such that |ν| = |λ|+ |µ| = m+ l, λ ⊆ ν and such that there exists an SSYT T of
skew-shape ν/λ of type µ such that the reverse reading word of T is a lattice permutation. On the
other hand, as noted after defining the Littlewood-Richardson coefficients, we can also find those
ν such that µ ⊆ ν and such that there is an SSYT T of skew-shape ν/µ and type λ, and such that
the reverse reading word of T is a lattice permutation.

If we choose to look at it in the second way, we see that since the desired type of the SSYT
is λ, it must consist of only 1’s, so since it has to be an SSYT, this means that whenever Ti,j is
defined, Ti+1,j is not, so this must mean that we have either ν = (m, 1, . . . , 1, 0, . . . , 0) (l 1’s) or
ν = (m+ 1, 1, . . . , 1, 0, . . . , 0) (l − 1 1’s).

In both cases, we see that the coefficient is 1, as there can never be more than one SSYT of a given
shape and type λ, so we get that L(λ) ⊗C L(µ) ∼= L(ν1) ⊕ L(ν2) where ν1 = (m, 1, . . . , 1, 0, . . . , 0)
and ν2 = (m+ 1, 1, . . . , 1, 0, . . . , 0) are the possibilities from above.

Once again, we need to be careful if n = l (it does not make sense to look at the module L(µ)
if n < l), as in that case, one of those modules does not occur. But in that case, the module L(µ)
can easily be seen to be the determinant module, and the tensor product is indeed irreducible in
that case.

In the above examples the Littlewood-Richardson coefficients appearing were all 0 or 1. This
is not the case in general, as for example there are two SSY T of skew-shape ν/λ and type µ if
λ = µ = (2, 1) and ν = (3, 2, 1), namely

1

1

2

and
1

2

1

Let us now consider what happens for SLn(C) instead of GLn(C). Here the simple modules
have the form L(λ) where λ is a partition with l(λ) ≤ n − 1. On the other hand, if we take the
corresponding simple GLn(C)-module L(λ) and view it as an SLn(C)-module, then it stays simple,
so we can use the same tools as for GLn(C) to decompose tensor products of simple SLn(C)-
modules. We just need to know what happens to a simple GLn(C)-module L(λ) when reduced
to SLn(C) when λ is not a partition of length at most n − 1. But as noted previously, we have
L(λ) ∼= L(λ) ⊗C Detλn where λ = (λ1 − λn, λ2 − λn, . . . , λn−1 − λn, 0) is a partition of length at
most n − 1. Since the determinant module for GLn(C) reduces to the trivial module for SLn(C),
this means that as SLn(C)-modules, L(λ) ∼= L(λ).

Example B.13. Let us consider the SLn(C)-module Cn with the usual matrix multiplication as
the action. As in the previous example, it is easy to see that this module is isomorphic to L(λ) where
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λ = (1, 0, . . . , 0), so we can compute L(λ)⊗C L(λ) in the same way as before and get L(µ)⊕ L(ν)
with µ = (2, 0, . . . , 0) and ν = (1, 1, 0, . . . , 0). If n ≥ 3 then this is also the decomposition as
SLn(C)-modules, but if n = 2 then the module L(ν) has to be identified with the module L(0)
(which is the trivial module) as described above, which fits the earlier remarks that this is in fact
the determinant module for GLn(C).

Example B.14. Let us consider the simple SLn(C)-modules L(λ) and L(µ) with λ = (m, 0, . . . , 0)
and µ = (1, 1, . . . , 1, 0, . . . , 0) (l 1’s). As before, we get that L(λ) ⊗C L(µ) ∼= L(ν1) ⊕ L(ν2) where
ν1 = (m, 1, . . . , 1, 0, . . . , ) (l 1’s) and ν2 = (m+ 1, 1, . . . , 1, 0, . . . , 0) (l − 1 1’s).

If n ≥ l + 2 this is again the decomposition as SLn(C)-modules, but if n = l + 1 (if n < l + 1
it does not make sense to consider the module L(µ) in the first place), then L(ν1) ∼= L(ν3) with
ν3 = (m − 1, 0, . . . , 0) as SLn(C)-modules, so in this case we get that the decomposition becomes
L(λ)⊗C L(µ) ∼= L(ν2)⊕ L(ν3).
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