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Abstract

In the present paper, statistical procedures for estimating shape and orienta-
tion of arbitrary three-dimensional particles are developed. The focus of this
work is on the case where the particles cannot be observed directly, but only
via sections. Volume tensors are used for describing particle shape and ori-
entation, and stereological estimators of the tensors are derived. It is shown
that these estimators can be combined to provide consistent estimators of the
moments of the so-called particle cover density. The covariance structure as-
sociated with the particle cover density depends on the orientation and shape
of the particles. For instance, if the distribution of the typical particle is in-
variant under all rotations, then the covariance matrix is proportional to the
identity matrix. A non-parametric test for such isotropy is developed. A flex-
ible Lévy-based particle model is proposed, which may be analysed using a
generalized methods of moments in which the volume tensors enter. The de-
veloped methods are used to study the cell organization in the human brain
cortex.

Keywords: Ellipsoidal approximation, Local stereology, Optical rotator, Par-
ticle cover density, Particle shape, Particle orientation, Volume tensors

1 Introduction

Inference about shape and orientation of particles plays a fundamental role in the
analysis of data, obtained by a wide range of imaging techniques. In cases where it
is impossible to observe the particles directly, it is challenging to obtain valid shape
and orientation information without initially restricting to a subclass of shapes. In
such cases, the particles may only be observable in sections or through projections.
Early examples where shape analysis was done under restrictions to small classes
of shapes may be found in Cruz-Orive (1976, 1978) where ellipsoidal particles were
analysed using random sections.

In the present paper, we take up this problem. We associate to each (arbitrarily
shaped) particle a collection of volume tensors. These tensors are used as descriptors
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of particle size, position, shape and orientation. The volume tensor of rank 0 is
simply the volume of the particle while a normalized version of the volume tensor of
rank 1 is the centre of gravity of the particle. The volume tensor of rank 2 contains
information about particle shape and orientation.

If a 3D voxel image of each sampled particle can be constructed by the imaging
technique in question, it is fairly straightforward to determine the volume tensors
precisely and make inference by standard statistical techniques. For instance, for
volume tensors of rank 2, the approach yields a sample of 3 × 3 positive definite
matrices. Such analyses of volume tensors, or more generally Minkowski tensors,
have been used with success for shape description in material science (Beisbart
et al., 2002; Denis et al., 2008; Schröder-Turk et al., 2011a,b), and there are also
examples from the biosciences (Beisbart et al., 2006).

In the present paper, we focus on the more difficult situation where the construc-
tion of such 3D voxel images is not feasible. Even in conventional microscopy, it is
difficult to construct such images. For this case, we develop stereological methods
of estimating volume tensors. The main practical purpose of stereology is to esti-
mate quantitative parameters of a spatial object from microscopy images of sections
through the object (Baddeley and Jensen, 2005). A recent account of the mathemati-
cal and statistical foundations of stereology and the closely related field of stochastic
geometry can be found in Schneider and Weil (2008). Local stereology is concerned
with estimators based on observations in sections through fixed lower dimensional
subspaces (Jensen, 1998).

Local stereology of volume tensors (and more generally Minkowski tensors) has
been studied in the recent papers by Auneau-Cognacq et al. (2013) and Jensen
and Ziegel (2013). In Jensen and Ziegel (2013), the focus is on local stereological
estimation, using lines and planes passing through fixed points. In the present paper,
we show how a number of other geometric designs can be used for estimating volume
tensors, including the Cavalieri design and the optical rotator design (Baddeley and
Jensen, 2005; Tandrup et al., 1997).

If the estimator variances are large, we cannot use these estimators in a direct
study of the distribution of volume tensors of the particle population. We will show
that the estimators can then instead be combined to provide consistent (in a proba-
bilistic sense) estimators of moments of the so-called particle cover density. If we let
K0 be a typical particle with reference point at the origin, the cover density takes
the form

fK0(x) = P (x ∈ K0)/EV (K0), x ∈ R3,

where V denotes volume. The density fK0 may be envisaged as a kind of probability
cloud, indicating how often the different points in space are visited by the typical
particle K0. The covariance matrix of the cover density can be visualized by a
centred ellipsoid called the Miles ellipsoid, containing information about average
particle shape and orientation. We develop a non-parametric test of the hypothesis
that the distribution of K0 is rotation invariant in which case the Miles ellipsoid is
a ball.

An alternative to the non-parametric approach is to use a flexible stochastic par-
ticle model. Such a model, defined as a kernel smoothing of a Lévy basis, is also
developed in the paper extending the approach of Hansen et al. (2011). The mean
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values of the volume tensors are derived in terms of the model parameters which
may be estimated, using a generalized method of moments. The model accommo-
dates anisotropic particle distributions, in contrast to Hobolth (2003); Hannila et al.
(2004). The particle model is used in a simulation study of the distribution of the
non-parametric test for isotropy. More specifically, it is investigated how many par-
ticles have to be to sampled before the asymptotic distribution is a valid approxi-
mation to the exact distribution of the test statistic under consideration.

The paper is organized as follows. In Section 2, volume tensors are defined.
Section 3 presents stereological designs by means of which volume tensors may be
estimated from sections. In Section 4, the particle process is introduced as a marked
point process, and estimators of moments of the cover density and their precision
are derived as well as a non-parametric test for isotropy. The developed methods are
used in Section 5 for the analysis of a data set obtained by optical microscopy of the
human brain cortex. In Section 6, the Lévy-based stochastic particle model is defined
and subsequently used in a parametric analysis of the data. A simulation study of
the performance of the developed statistical procedures is presented in Section 7.
Technical details are deferred to two appendices.

2 Volume tensors

Let K be a compact subset of R3. We can associate to K a collection of volume
tensors. The volume tensor of rank r is given by

Φr(K) =
1

r!

∫

K

xr dx, r = 0, 1, . . . (2.1)

Here, xr is the symmetric tensor of rank r determined by x = (x1, x2, x3). For r = 0
and 1, we have x0 = 1 and x1 = x, respectively. For r = 2, x2 is a symmetric 3× 3
matrix with entries

(x2)i,j = xixj, i, j = 1, 2, 3.

For general r, xr can be represented as an r−dimensional array. The integration in
(2.1) is to be understood coordinate-wise.

The volume tensors provide important information about the size, shape and
orientation of K. The volume tensor of rank 0 is simply the volume of K, Φ0(K) =
V (K), while a normalized version of the volume tensor of rank 1 is the centre of
gravity ofK, Φ1(K)/Φ0(K) = c(K). The volume tensor of rank 2 contains additional
information about the shape and orientation of K.

To see this, let
K̄ = [K − c(K)]/V (K)1/3

be a centred and rescaled version of K with unit volume. The volume tensor of
rank 2 of K̄ takes the form

Φ2(K̄) =
1

Φ0(K)5/3

(
Φ2(K)− Φ1(K)2

2Φ0(K)

)
.
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If K is an ellipsoid, then Φ2(K̄) determines the directions and (up to a scale factor)
the lengths of its semi-axes uniquely (Jensen and Ziegel, 2013). Thus, if

Φ2(K̄) = BΛB∗ (2.2)

is a spectral decomposition of Φ2(K̄), then the columns of the orthogonal matrix B
determine the directions of the semi-axes of K and the lengths of the semi-axes are

ai =

(
3V (K)

4π

)1/3
λ

1/2
i∏
j λ

1/6
j

, (2.3)

where λi, i = 1, 2, 3, are the diagonal elements of Λ.
For a general compact set K, we may still construct the spectral decomposition

(2.2) of Φ2(K̄). The centred ellipsoid with the same volume as K, directions of
semi-axes given in the columns of B and lengths of semi-axes given by (2.3) will be
denoted by e(K). If K is actually an ellipsoid, then K = c(K) + e(K). Otherwise,
we may use c(K) + e(K) as an ellipsoidal approximation to K, see Figure 1 for
an illustration in 2D. Ellipsoidal approximations to a right circular cylinder and a
rectangular parallelepiped are shown in Figure 2.

Figure 1: 2D illustration of the ellipsoidal approximation to a compact set K. Here, c(K)
is the centre of gravity and e(K) is a centred ellipsoid, approximating K − c(K). If K is
an ellipsoid, then K = c(K) + e(K).

Figure 2: Ellipsoidal approximations to a right circular cylinder and a rectangular paral-
lelepiped in R3.

3 Stereological estimators of volume tensors

If K cannot be observed directly, but only via sections, we can estimate its volume
tensors by stereological methods. In this section, we give examples of such stereo-
logical designs. The estimators are design-unbiased, that is unbiased with respect to
the randomness of the design.
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The Cavalieri design (Baddeley and Jensen, 2005, p. 155) uses a systematic set of
planes with fixed orientation and uniform random position. The estimate of Φr(K)
is given by

Φ̂r(K) = T
∑

i

1

r!

∫

L2i

1{x ∈ K}xrdx,

where T is the distance between neighbour planes, the sum is taken over section
planes and L2i is the ith plane. If automatic segmentation of the planar section
K ∩L2i is not available, K ∩L2i may be subsampled, using a uniformly placed point
grid on K ∩ L2i. The resulting estimator takes the form

̂̂
Φr(K) = T · a

∑

ij

1

r!
1{xij ∈ K}xrij,

where a is the area of the fundamental region of the point grid and xij is the jth
point of the point grid on the ith section plane L2i. Variance formulae for these
estimators may be found in Baddeley and Jensen (2005, Chapter 13).

An alternative is to use local stereological estimators of Φr(K), based on mea-
surements on random sections of K, passing through a reference point of K (Jensen
and Ziegel, 2013). Such estimators have been constructed using a recently derived
rotational Crofton formula (Auneau-Cognacq et al., 2013). Yet another possibility
are estimators based on the intersection of K with a randomly rotating convex body
M (Andersen et al., 2014).

The designs mentioned above require that the peripheral parts of K can be
identified accurately. This is often not the case in optical microscopy, due to over-
projection effects. A design that solves this problem is the optical rotator design
that only uses measurements from the central part of K (Tandrup et al., 1997).

It turns out that this design can be used to estimate volume tensors. Thus, let L2

be a plane passing through a centrally placed point in K, taken to be the origin O.
Let B(O, t) be the ball with centre at O and radius t. Then, T2 = L2 +B(O, t) is a
slice centred at O of thickness 2t, see Figure 3.

Figure 3: The optical rotator design by means of which Φr(K) may be estimated. The
slice T2 is randomly rotated around L1.

We suppose that T2 is a so-called vertical random slice, containing a fixed axis
L1 (the vertical axis), passing through O. Thus, T2 is randomly rotated around L1.
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(In the data example to be presented later, T2 is cut perpendicular to the brain
surface.) Now, let x ∈ R3 be a fixed point in space. If we let d(x, L1) be the distance
of x to L1, then the probability that T2 hits x is

P (x ∈ T2) =
2

π
arcsin(t/d(x, L1)),

if t ≤ d(x, L1), and 1, otherwise.
Using this result, we can construct a design-unbiased estimator of Φr(K) based

on observations in the vertical random slice T2,

Φ̂r(K) =
1

r!

∫

K∩T2
xrP (x ∈ T2)−1 dx.

More details are given in Appendix A where also procedures for subsampling of the
slice with planes and subsequent subsampling of the planes with lines are described.

4 Inference for particle processes

We assume that the particle process X can be represented as a stationary marked
point process. We thus assume that a reference point x(K) ∈ K is associated to
each particle K ∈ X, see Figure 4. The marked point process is then given by

{[x(K);K − x(K)] : K ∈ X}.

The particle (mark) distribution is denoted by Q. We let K0 be a random compact
set with distribution Q. Here, K0 may be imagined as a randomly chosen particle
or a typical particle with the origin O put at its reference point.

Figure 4: The particle process X is represented as a stationary marked point process
in R3. A reference point x(K) ∈ K is associated to each particle.

4.1 Sampling of particles

Let {K ∈ X : x(K) ∈ W} be a sample of particles, where the Borel set W ⊆ R3 is
a sampling window with 0 < V (W ) < ∞. (In Figure 5, it is illustrated how such a
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3D sample of particles may be obtained, using optical microscopy.) The distribution
of the tensors Φr(K0) of the typical particle K0 may be studied via the empirical
distribution of

{Φr(K − x(K)) : K ∈ X, x(K) ∈ W}. (4.1)

This requires that, for each of the sampled particles, a 3D voxel image with satis-
factory resolution is available.

Figure 5: Sampling of particlesK for which x(K) ∈W . In optical microscopy,W is gener-
ated by moving the focal plane (shown dark grey) down through a transparent histological
slab.

If complete access to the sampled particles is not possible, the distribution
of Φr(K0) may still be studied via (4.1) if a precise estimate Φ̂r(K − x(K)) of
Φr(K − x(K)) is available. However, in the applications considered in this paper,
the estimators of volume tensors have large variances and cannot be used directly in
the study of the distribution of volume tensors in the particle population. Through
a combination of a model- and design-based approach, the estimators may instead
be used to provide consistent estimators of moments of the so-called particle cover
density.

4.2 The particle cover density

The particle cover density is the probability density on R3 given by

fK0(x) = P (x ∈ K0)/EV (K0), x ∈ R3.

The density fK0 indicates how likely it is for a point in space to be visited by the
typical particle K0.

Example 4.1. Suppose that the particle process consists of balls with their centres
as reference points. Their radii are 1 or 2 with probability 1/2, cf. Figure 6, left.
Then,

P (x ∈ K0) =





1 if ‖x‖ ≤ 1,
1
2

if 1 < ‖x‖ ≤ 2,
0 if ‖x‖ > 2.

Example 4.2. Suppose that the particle process consists of balls with radii 1, whose
reference points are independent displacements of their centres following a normal
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distribution with covariance σ2I3, cf. Figure 6, right. Then, if we let B(x, r) be the
ball centred at x ∈ R3 and with radius r,

P (x ∈ K0) =

∫

B(x,1)

ϕ(u;σ2) du,

where ϕ(·;σ2) is the density of a normal distribution with covariance σ2I3.

Figure 6: Two simple examples of particle processes.

If K0 is deterministic, then

fK0(x) ∝ 1(x ∈ K0),

and K0 can be reconstructed from fK0 . If Q is invariant under rotations, then fK0 is
also rotation invariant and fK0(x) only depends on the norm of x. If Q is invariant
under rotations around an axis, represented by a line L1 passing through O, then
fK0(x) only depends on the distance of x to L1. The last type of invariance will be
called restricted isotropy.

Let Y ∈ R3 be a random vector with density fK0 . Then, the mean of Y is

µ = EY =

∫

R3

xfK0(x)dx,

while the covariance matrix of Y is given by

Σ = Cov(Y) =

∫

R3

x2fK0(x)dx−
(∫

R3

xfK0(x)dx

)2

.

Note that if Q is invariant under all rotations, then

Σ = σ2I3,

while in the case where Q is invariant under rotations around L1, then the spectral
decomposition of Σ takes the form

Σ = BΛ̃BT ,

where the first column in the orthogonal matrix B is a unit vector, spanning L1,
and Λ̃ = diag(η1, η2, η3) with η2 = η3.

We may visualize Σ by the centred ellipsoid e(X) which is uniquely determined
by the equations V (e(X)) = EV (K0) and

∫

e(X)

x2 dx

V (e(X))
= Σ.

Notice that when K0 is deterministic, then e(X) = e(K0). Furthermore, if all par-
ticles are translates of the same K, then e(X) = e(K). We will call e(X) the Miles
ellipsoid of the particle process.
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4.3 Estimation of moments of the cover density

The volume tensors of the particles are closely related to the cover density. In fact,
the rth moment of the cover density is proportional to the mean particle volume
tensor of rank r

EΦr(K0)

EV (K0)
=

1

r!

∫

R3

xrfK0(x)dx. (4.2)

If precise estimation on the particle level is not possible, we may still get accurate
information about the moments of the cover density. Let us suppose that Φ̂r(K −
x(K)) is a design-unbiased estimator such that

E(Φ̂r(K − x(K))|X) = Φr(K − x(K)).

Let K1, . . . , Kn be the sampled particles and let

Yr =
1

n

n∑

l=1

Φ̂r(Kl − x(Kl)), r = 0, 1, 2.

Then, using (4.2),
EYr
EY0

=
1

r!

∫

R3

xrfK0(x)dx. (4.3)

The mean and covariance matrix of the cover density can be expressed as

µ =
EY1

EY0

, Σ =
2EY2

EY0

−
(
EY1

EY0

)2

.

Therefore, the moments of the cover density can be estimated consistently, also in
the case where the design variance Var(Φ̂r(K − x(K))|X) of Φ̂r(K − x(K)) is large.
If the particles are i.i.d. this is clear from standard asymptotic theory. However,
consistency also follows under much weaker assumptions on the particle process in
an expanding window regime. For the case of a ergodic particle process, see Daley
and Vere-Jones (2008, Corollary 12.2.V).

For r = 1, let Y1 = (Y11, Y12, Y13) and, for r = 2,

Y2 = (Y2ij)i,j=1,2,3,

say. Consistent estimators of the elements µi and σij of µ and Σ, respectively, are
then

µ̂i =
Y1i

Y0

, σ̂ij =
2Y2ij

Y0

− Y1iY1j

Y 2
0

. (4.4)

Using a Taylor expansion of the function f(x, y) = x/y, we find

cov(µ̂i, µ̂i′) ≈
cov(Y1i, Y1i′)

(EY0)2
− cov(Y1i, Y0)

EY1i′

(EY0)3

− cov(Y1i′ , Y0)
EY1i

(EY0)3
+ var(Y0)

EY1iEY1i′

(EY0)4
. (4.5)
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Likewise, using a Taylor expansion of the function

f(x, y, z, v) =
2x

y
− zv

y2

≈ f(x0, y0, z0, v0) +
2

y0

(x− x0) +

(−2x0

y2
0

+
2z0v0

y3
0

)
(y − y0)

− v0

y2
0

(z − z0)− z0

y2
0

(v − v0),

we find
cov(σ̂ij, σ̂i′j′) ≈ Cij;i′j′ + Ci′j′;ij, (4.6)

where

Cij;i′j′ =
2

(EY0)6
∆ij∆i′j′varY0

+
2∆ij

(EY0)5

[
EY1j′ cov(Y0, Y1i′) + EY1i′ cov(Y0, Y1j′)

]
− 4

(EY0)4
∆ij cov(Y0, Y2i′j′)

+
1

2(EY0)4

[
EY1jEY1j′ cov(Y1i, Y1i′) + 2EY1iEY1j′ cov(Y1j, Y1i′)

+ EY1iEY1i′ cov(Y1j, Y1j′)
]

− 2

(EY0)3

[
EY1j cov(Y1i, Y2i′j′) + EY1i cov(Y1j, Y2i′j′)

]
+

2

(EY0)2
cov(Y2ij, Y2i′j′),

and
∆ij = EY2ijEY0 − EY1iEY1j.

Note that the right-hand sides of (4.5) and (4.6) may be consistently estimated if the
particles K1, . . . , Kn are assumed to be i.i.d., or, in an expanding window regime, if
the particle process is ergodic (Daley and Vere-Jones, 2008, Corollary 12.2.V).

4.4 Estimation of Σ under rotational invariance

The estimate Σ̂ = (σ̂ij)ij of the covariance matrix Σ of the cover density, with σ̂ij
given at (4.4), is generally applicable without assumptions about rotational invari-
ance.

Under the isotropy model (invariance under all rotations), we have Σ = σ2I3.

We suggest to estimate σ2 by σ̂2 which is the minimizer β of the Frobenius matrix
norm of

Σ̂− βI3,

where

Σ̂ =
2Y2

Y0

−
(
Y1

Y0

)2

.

We obtain

σ̂2 = arg min
β

√∑3

i=1
(η̂i − β)2 = 1

3
(η̂1 + η̂2 + η̂3),

where η̂1, η̂2, η̂3 are the eigenvalues of Σ̂.
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Under the restricted isotropy model (invariance under rotations around an axis L1),
we have Σ = BΛ̃BT , where the orthogonal matrixB is known and Λ̃ = diag(η1, η2, η3)
with η2 = η3. We suggest to estimate η1 and η2 by minimizing the Frobenius matrix
norm between the theoretical covariance matrix under restricted isotropy and Σ̂.

4.5 A non-parametric test for isotropy

In an actual application, it is clearly of interest to test the hypothesis that the
distribution Q of K0 is rotation invariant. Under isotropy, the covariance matrix Σ
of the cover density is proportional to the identity matrix. We thus want to test the
following hypothesis

H0 : σii = σ2 > 0, σij = 0, i 6= j.

For convenience, let

Z = (Z1, Z2, Z3, Z4, Z5, Z6) = (σ̂11, σ̂22, σ̂33, σ̂12, σ̂13, σ̂23),

where σ̂ij is given at (4.4). We approximate the distribution of Z by a 6-dimensional
normal distribution with mean

(σ11, σ22, σ33, σ12, σ13, σ23)

and covariance matrix cov(Z) = Λ. This approximation is justified by the delta
method for reasonably large n.

The hypothesis H0 can now be tested as follows. Let

Z̄13 = (Z1 + Z2 + Z3)/3.

Then, under H0

U = (Z1 − Z̄13, Z2 − Z̄13, Z4, Z5, Z6)

is approximately N5(0, AΛAT )-distributed, where A is the 5×6 matrix with elements

aij =





2
3
, if i = j, i ∈ {1, 2},

−1
3
, if i 6= j, i ∈ {1, 2}, j ∈ {1, 2, 3},

1, if i = j − 1, i ∈ {3, 4, 5},
0, otherwise.

As test statistic, we can use T = U(AΛAT )−1UT which is approximately χ2(5)-
distributed under H0. Large values of T are critical for H0. In an actual application
of the test statistic T , Λ has to be replaced by an estimate.

An estimate of Λ may be derived by using the approximation (4.6) of the ele-
ments of Λ and replacing theoretical moments by empirical moments, obtained from
measurements on n particles. The test statistic T shows the right level for smaller
n if it is used that under the isotropy hypothesis

EY2 =

[
σ2EY0 I3 +

(EY1)2

EY0

]
/2, (4.7)

11



and EY2 is replaced in (4.6) by the right-hand side of (4.7) in all the terms where it
appears. In particular, we also replace EY2 by the right-hand side of (4.7) in the terms
of the form cov(Y∗, Y2ij) = EY∗Y2ij−EY∗EY2ij. Hence, the estimates Φ̂2(Kl−x(Kl))
are only used to estimated the mixed moments EY∗Y2ij.

The statistical performance of the test is investigated in a simulation study,
presented in Section 7, for the stochastic particle model presented in Section 6.

5 Data analysis – non-parametric inference

The data has been collected from one histological slabW of thickness 140 µm through
the human brain cortex. The section has been taken perpendicular to the brain sur-
face and with a random rotation around the normal to the brain surface. The focus
in the investigation was on the pyramidal neurons that are known to be orientated
perpendicular to the brain surface. The question to be examined in the investigation
was whether the directional properties of the pyramidal neurons are reflected in an
elongation of their nuclei in the same direction perpendicular to the brain surface.

A total of n = 100 neuron nuclei were measured. The nucleolus was used as
reference point. For each sampled nucleus, the volume tensors of rank 0, 1 and 2
were estimated, using locally the optical sectioning design illustrated in Figure 3
with L2 parallel to the surface of the big histological section. In all cases t = 2.5 µm.
For each nucleus, the optical slice T2 was subsampled by a systematic set of planes
parallel to L2 with distance 1.67 µm between neighbour planes and the planes were
subsampled by a systematic set of lines that alternatingly was parallel to the vertical
axis L1 and perpendicular to L1, see Appendix A. The distance was 5 µm between
neighbour lines within a plane. It took about 21

2
hours to collect these measurements

for all 100 nuclei.
For all nuclei (in the coordinate systems relative to their reference points), we

have (approximately)

u =




0.987
−0.162

0


 , v =




0
0
1


 , w =



−0.162
−0.987

0


 .

Here, u is spanning the direction perpendicular to the brain surface while v is per-
pendicular to the histological slab.

The estimated mean particle volume and estimated variance are

Y0 = 606.535, var(Y0) ≈ 1

n
57751.57 = 577.516.

Using the approximation formula (4.5) for the covariance matrix of µ̂, we obtain

µ̂ =



−0.111
−0.224
0.069


 , cov(µ̂) ≈ 1

n




1.5 0.391 0.073
0.391 3.34 −0.157
0.073 −0.157 0.404


 .

The estimated covariance Σ̂ of the cover density is

Σ̂ =




9.479 0.575 0.04
0.575 11.274 −0.058
0.04 −0.058 1.992


 .
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Using the approximation (4.6), the matrix of estimated variances var(Σ̂) = {var(σ̂ij)}ij
becomes

var(Σ̂) =
1

n




13.505 11.778 1.125
11.778 37.851 1.867
1.125 1.867 0.37


 .

For the spectral decomposition of Σ̂ = BDB> we obtain

B =



−0.281 0.96 −0.006
−0.96 −0.281 0.007
0.005 0.007 1


 , D =




11.443 0 0
0 9.311 0
0 0 1.992


 .

In the present application, we will use that the developed estimators of volume
tensors can be used in a model-based setting with restricted isotropy without actu-
ally generating independently rotated optical slices for each sampled particle. This is
a very important observation, since it is generally unfeasible in optical microscopy to
generate a new rotation for each sampled particle. For the collected data, the same
rotation was used for all particles. The result is a Miles ellipsoid that is invariant
under rotations around the vertical axis. This was no restriction for the biologists,
involved in the project, because they were interested in the distributional properties
in relation to the vertical axis.

Under the assumption of isotropy, the Miles ellipsoid is a sphere with radius 5.251.
Under the assumption of restricted isotropy, the Miles ellipsoid is a prolate ellipsoid
with the axis of rotation in the direction of u and semi-axis length 5.866 in this
direction. The other half-axes have length 4.968.

The non-parametric test for isotropy rejects at level 5% the null-hypothesis
of an isotropic particle distribution. We conclude that the neuron nuclei have an
anisotropic distribution. Under restricted isotropy, the nuclei show slight elongation
in the direction u perpendicular to the brain surface. This is consistent with the
fact that the human cerebral cortex is developed in an inside-out manner where mi-
totically dividing progenitor cells in the centre of the brain are migrating outward
towards the brain surface to form the neocortex.

6 A stochastic particle model

6.1 Description of the model

We consider particles K0, that are star-shaped with respect to c0 ∈ R3, hence they
can be written as K0 = c0 +M for some particle M that is star-shaped with respect
to the origin. Let R : S2 → [0,∞) denote the radial function of M.

We assume the following multiplicative model for R

R(u) = M(u)ε(u), u ∈ S2, (6.1)

where M is the radial function of a fixed star-shaped set E , and ε > 0 is an isotropic
random field on S2. In this manuscript, we only consider the case where E is an
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ellipsoid that is centred at the origin with semi-axes lengths a1, a2, a3, and ε > 0 is
the random field on S2 that is given by

ε(u) =

∫

S2
k(u, v)Z(dv),

where Z is a Gamma Lévy basis with parameters κ, τ > 0 and

k(u, v) = eα cos d(u,v)

is the von Mises-Fisher kernel proposed by Hansen et al. (2011). It has a parameter
α > 0 and d(u, v) denotes the great circle distance between u and v. The short
terminology of a Lévy basis has been introduced in Barndorff-Nielsen and Schmiegel
(2004), see also Hellmund et al. (2008) and Jónsdóttir et al. (2008).

6.2 Moments of the cover density

The field ε is isotropic. Therefore, its moments are constant over the sphere and we
define

E(ε(u)k) =: µk.

In Appendix B, the moments µk are derived in terms of the model parameters κ, τ, α.
For the moments of the cover density of K0 we first calculate the volume tensors
of K0. We obtain with u(θ, φ) = (sin θ cosϕ, sin θ sinϕ, cos θ), θ ∈ [0, π), ϕ ∈ [0, 2π),

Φ0(K0) =

∫

c0+M

λ3(dx) =

∫

M

λ3(dx) =

∫ π

0

∫ 2π

0

∫ R(u(θ,ϕ))

0

r2 sin θ dr dϕ dθ

=
1

3

∫ π

0

∫ 2π

0

M(u(θ, ϕ))3ε(u(θ, ϕ))3 sin θ dϕ dθ.

Therefore,

EV (K0) = E
(
Φ0(K0)

)
= µ3Φ0(E) = µ3

4π

3
a1a2a3. (6.2)

Similar calculations show that

E
(
Φ1(K0)

)
= µ3Φ0(E)c0 = µ3

4π

3
a1a2a3 c0,

and

E
(
Φ2(K0)

)
= µ5Φ2(E) + 1

2
µ3Φ0(E)c2

0

= E
(
Φ2(M)

)
+

1

2E
(
Φ0(K0)

)E
(
Φ1(K0)

)2
,

because E
(
Φ2(M)

)
= µ5Φ2(E). Using (4.2), the first moment of the cover density

fK0 is given by

µ =
E
(
Φ1(K0)

)

E
(
Φ0(K0)

) = c0.
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Its covariance matrix is

Σ = 2
EΦ2(K0)

EΦ0(K0)
−
(
EΦ1(K0)

EΦ0(K0)

)2

= 2
EΦ2(M)

EΦ0(M)
=

3µ5

2πµ3a1a2a3

Φ2(E).

The semi-axes lengths a1, a2, a3 of E and the eigenvalues λ1, λ2, λ3 of Φ2(E) are con-
nected by λi = 2πa1a2a3a

2
i /15, i = 1, 2, 3; see Jensen and Ziegel (2013). Therefore,

the eigenvalues η1, η2, η3 of Σ are connected to the semi-axes lengths of E by the
relation

ai =

√
5µ3

µ5

ηi, i = 1, 2, 3. (6.3)

A short calculation shows that the Miles ellipsoid e(X) of the process is the ellipsoid
with semi-axes µ1/3

3 ai, i = 1, 2, 3, in the same directions as the semi-axes of E . This
ellipsoid has volume EV (K0).

6.3 Fitting the parameters

Suppose we are given, with the notation from Section 4.3, estimates Y0 of E(Φ0(K0)) =
E(V (K0)) and Y1/Y0 of the mean µ of the cover density. Let Σ̃ be an estimate of
the covariance matrix Σ of the cover density under the hypothesis about isotropy
considered. For instance, if no rotation invariance is assumed

Σ̃ =
2Y2

Y0

−
(
Y1

Y0

)2

.

Estimates Σ̃ of Σ under (restricted) isotropy are given in Section 4.4.
We fix the parameter α = 4, as this choice appears to generate reasonable particle

shapes. The model parameters to be estimated are then the semi-axes lengths and
directions of E , the centre c0 and the parameters τ and κ of the Lévy basis. We
estimate c0 by ĉ0 = Y1/Y0. Combining (6.2) and (6.3), we find

EV (K0) = µ3
4π

3
a1a2a3 =

µ
5/2
3

µ
3/2
5

53/24π

3

√
η1η2η3. (6.4)

Since the left-hand side of (6.4) and the eigenvalues ηi of Σ can be estimated, we can
use (6.4) as one of the estimating equations for τ and κ. As a second equation, we
simply use µ3 = 1, which guarantees that EV (K0) = V (E), cf. (6.2). It remains to
estimate the semi-axes lengths and directions of E . The directions of the semi-axes
of E are chosen as the directions of the eigenvectors of Σ̃. The semi-axes lengths are
obtained as a plug-in estimate using (6.3).

6.4 Data analysis - parametric inference

Using the generalized method of moments described in Section 6.3, we fit the pa-
rameters of the stochastic particle model to the particle data described in Section 5,
under no rotational invariance, and under the assumptions of isotropy or restricted
isotropy; see Section 4.4. The resulting parameter values are summarized in Tables 1
and 2, respectively.
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Table 1: Parameters of the anisotropic model for K0. The parameters for E are the semi-
axes’ lengths and directions.

E a = 7.273, (−0.281,−0.96, 0.005)>

b = 6.561, (0.96,−0.281, 0.007)>

c = 3.034, (−0.006, 0.007, 1)>

c0 (−0.111,−0.224, 0.069)>

τ 1740.415

κ 19.982

Table 2: Parameters of the isotropic and restricted isotropy model for K0. The parameters
for E are the semi-axes’ lengths and directions.

Isotropic model Restricted isotropy model

E a = b = c = 5.251 a = 5.866, (0.987,−0.162, 0)>

b = c = 4.968

c0 (−0.111,−0.224, 0.069)> (−0.111,−0.224, 0.069)>

τ 425.923 443.752

κ 4.652 4.860

As the hypothesis of an isotropic model is clearly rejected by the presented non-
parametric test, we do not investigate this model. Furthermore, the data did not
contain enough information to provide a reliable estimate of a tri-axial Miles ellipsoid
in the anisotropic model, due to the reasons described at the end of Section 5. This
was also confirmed by a visual comparison of simulated and observed particle profiles.
The simulated profiles showed much less variability than the observed profiles. In
contrast, the restricted isotropy model provides a satisfactory fit to the data, as
judged from visual inspection of observed and simulated profiles. Figure 7 shows
the profiles of the 100 measured particles in a plane through the reference point
perpendicular to v = (0, 0, 1)>. For comparison, in Figure 8 simulated profiles under
the restricted isotropy model are provided. The vertical axis u is shown as a drawn
line for reference. Images of simulated 3D particles under restricted isotropy are
given in Figure 9.
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Figure 7: Profiles of the 100 measured particles in a plane through their reference points
perpendicular to v = (0, 0, 1)>. The direction of the vertical axis u is marked as a line for
each particle.
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Figure 8: Profiles of 100 particles simulated from the restricted isotropy model as described
in the right part of Table 2 in a plane through their reference points perpendicular to
v = (0, 0, 1)>. The direction of the vertical axis u is marked as a line for each particle.

Figure 9: Particles simulated from the fitted model under the assumption of restricted
isotropy. The parameter values are given in Table 2.
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Figure 10: Particles simulated from the model with parameter values given in Table 1.

7 Simulation study

7.1 Statistical performance of the moment estimators

The aim of the simulation study is to investigate the statistical properties of the
estimators discussed in Section 4.3 of the mean and covariance matrix of the cover
density, as a function of the number n of particles sampled. The stochastic parti-
cle model, presented in Section 6, is used in the simulations. We simulated 50,000
particles, each, from the anisotropic model and the restricted isotropy model, whose
parameters are given in Tables 1 and 2, respectively. The anisotropic model is much
less variable than the restricted isotropy model as can be seen in the illustrations
in Figures 9 and 10. The particles were measured using the optical rotator design
described in Section 3 and Appendix A.

Using subsamples of sizes n ∈ {25, 100, 200}, we analysed the estimators µ̂ and Σ̂.
The sample size used for the estimation is denoted by n, and nsimu indicates how
many samples of size n were analysed. In Tables 3 and 4 the mean and covariance
of µ̂ are given for the two different models, respectively. For each subsample of size
n the covariance cov(µ̂) was also estimated using the approximation formula (4.5).
The mean of these estimates is given in the last column of the tables. Note that
the bias of µ̂ is negligible and the approximation formula (4.5) works well, also for
small n.

The mean and componentwise variance of Σ̂ can be found in Tables 5 and 6 for
the anisotropic and the restricted isotropy model, respectively. The true covariances
Σani and Σriso for the anisotropic and the restricted isotropy model, respectively, are
given by

Σani =




9.479 −0.575 −0.031
−0.575 11.274 −0.067
−0.031 −0.067 1.992


 , Σriso =




9.273 0 −0.421
0 6.702 0

−0.421 0 6.771


 . (7.1)

The last columns of Tables 5 and 6 contain the mean of the componentwise variances
estimated using the approximation formula (4.6). Again, the estimators are well-
behaved.

Table 7 summarizes the mean and covariance of the estimated semi-axes of the
Miles ellipsoid for both simulated models. Note that the bias of the estimated semi-
axes is small, also for n = 25.
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Table 3: Estimated mean of the cover density for the anisotropic model with parameters
given in Table 1. The true mean of the cover density is µ = c0 = (−0.111,−0.224, 0.069)>.
The last column gives the mean of the covariance estimated from the subsamples using the
approximation formula (4.5).

n nsimu Eµ̂ n cov(µ̂) nEĉov(µ̂)

25 2000



−0.106
−0.212
0.067







0.622 0.331 0.01
0.331 2.126 0.001
0.01 0.001 0.197







0.624 0.303 0.006
0.303 2.06 −0.01
0.006 −0.01 0.201




100 500



−0.106
−0.213
0.066







0.612 0.353 0.009
0.353 2.148 0.03
0.009 0.03 0.201







0.647 0.325 0.007
0.325 2.199 −0.008
0.007 −0.008 0.202




200 250



−0.106
−0.214
0.066







0.576 0.308 0.016
0.308 2.228 0.059
0.016 0.059 0.19







0.652 0.331 0.007
0.331 2.226 −0.007
0.007 −0.007 0.202




Table 4: Estimated mean of the cover density for the restricted isotropy model with
parameters given in Table 2. The true mean of the cover density is µ = c0 =
(−0.111,−0.224, 0.069)>. The last column gives the mean of the covariance estimated
from the subsamples using the approximation formula (4.5).

n nsimu Eµ̂ n cov(µ̂) nEĉov(µ̂)

25 2000



−0.118
−0.224
0.062







2.277 0.025 0.019
0.025 2.313 0.004
0.019 0.004 2.255







2.038 −0.002 −0.02
−0.002 2.172 0.018
−0.02 0.018 2.198




100 500



−0.118
−0.225
0.062







2.406 0.049 −0.101
0.049 2.505 0.073
−0.101 0.073 2.193







2.201 −0.003 −0.021
−0.003 2.349 0.011
−0.021 0.011 2.368




200 250



−0.117
−0.225
0.062







2.436 0.174 −0.119
0.174 2.758 0.224
−0.119 0.224 2.049







2.227 −0.003 −0.02
−0.003 2.381 0.01
−0.02 0.01 2.397




Table 5: Estimated covariance of the cover density for the anisotropic model with param-
eters given in Table 1. The true covariance of the cover density is given at (7.1).

n nsimu EΣ̂ n var(Σ̂) nEv̂ar(Σ̂)

25 2000




9.417 −0.573 −0.025
−0.573 11.077 −0.038
−0.025 −0.038 1.989







7.661 15.011 1.145
15.011 54.901 5.129
1.145 5.129 0.792







7.391 14.282 1.167
14.282 51.122 5.148
1.167 5.148 0.817




100 500




9.45 −0.604 −0.023
−0.604 11.239 −0.04
−0.023 −0.04 1.991







7.696 14.498 1.158
14.498 56.771 5.374
1.158 5.374 0.761







7.849 14.937 1.183
14.937 56.625 5.171
1.183 5.171 0.815




200 250




9.456 −0.608 −0.023
−0.608 11.267 −0.04
−0.023 −0.04 1.991







7.868 15.148 1.15
15.148 57.775 5.139
1.15 5.139 0.806







7.943 15.029 1.187
15.029 57.672 5.183
1.187 5.183 0.815



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Table 6: Estimated covariance of the cover density for the restricted isotropy model with
parameters given in Table 2. The true covariance of the cover density is given at (7.1).

n nsimu EΣ̂ n var(Σ̂) nEv̂ar(Σ̂)

25 2000




9.152 −0.029 −0.399
−0.029 6.559 0.008
−0.399 0.008 6.637







32.632 15.588 16.058
15.588 39.63 25.292
16.058 25.292 41







28.778 15.444 15.814
15.444 34.137 22.733
15.814 22.733 34.951




100 500




9.268 −0.027 −0.399
−0.027 6.674 0.005
−0.399 0.005 6.744







33.81 16.719 16.885
16.719 43.244 29.013
16.885 29.013 45.4







35.381 15.07 15.499
15.07 42.315 27.249
15.499 27.249 43.548




200 250




9.286 −0.028 −0.4
−0.028 6.694 0.003
−0.4 0.003 6.762







32.918 16.108 15.737
16.108 44.868 27.451
15.737 27.451 50.225







36.572 15.008 15.417
15.008 43.983 28.151
15.417 28.151 45.323




Table 7: Mean and covariance of the estimated semi-axes of the Miles ellipsoids for the
two simulated models. The true parameters are given in Tables 1 and 2.

Anisotropic model Restricted isotropy

n nsimu E(â1, â2, â3)> n cov((â1, â2, â3)>) E(â1, â2, â3)> n cov((â1, â2, â3)>)

25 2000




7.354
6.491
3.029







8.102 1.933 −0.269
1.933 1.809 −0.142
−0.269 −0.142 0.269







5.838
4.983
4.983







2.66 −0.215 −0.215
−0.215 1.143 1.143
−0.215 1.143 1.143




100 500




7.292
6.544
3.033







10.414 1.559 −0.358
1.559 1.293 −0.074
−0.358 −0.074 0.255







5.832
4.988
4.988







2.761 −0.356 −0.356
−0.356 1.262 1.262
−0.356 1.262 1.262




200 250




7.288
6.547
3.033







10.964 1.57 −0.389
1.57 1.367 −0.06
−0.389 −0.06 0.281







5.831
4.989
4.989







2.913 −0.491 −0.491
−0.491 1.297 1.297
−0.491 1.297 1.297




7.2 Level and power of the isotropy test

In order to assess the level and power of the non-parametric isotropy test, we con-
ducted a simulations study with independent and identically distributed particles
following the particle model described in Section 6 for different sets of parameters.
We considered two isotropic models and two models that fulfil the assumption of
restricted isotropy. Overall, the test is well-behaved for reasonable sample sizes and
also shows satisfactory power.

For the isotropic models, E is a sphere with radius 5.475. For the first model the
parameters κ and τ were chosen to induce only moderate variations from a spherical
shape, whereas in the second model more variability is observed. In both cases the
centre c0 is slightly moved away from the origin. For the exact parameter values
and an illustration of the resulting particles, see Figures 11 and 12 for the first and
second isotropy model, respectively.

We simulated N = 105, 000 particles for each of the two models. For differ-
ent sample sizes n ∈ {25, 50, 100, 150, 200} we calculated the empirical level of the
isotropy test resulting from nsimu = N/n realizations of the test statistic T for de-
sired levels α ∈ {0.01, 0.05, 0.1}. The results are summarized in Table 8. The test
appears to be slightly conservative for sample sizes n = 25, whereas for sample sizes
of n = 50 or larger the desired level is kept reasonably well.

To investigate the power of the proposed test, we simulated particles from two
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Figure 11: Five particles simulated from the first isotropic model with a = b = c = 5.475,
τ = 1826.117, κ = 21.106, c0 = (−0.514,−0.417,−0.094). In the second row, profiles of
the particles in a plane through c0 perpendicular to (0, 0, 1) are displayed.
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Figure 12: Five particles simulated from the second isotropic model with a = b = c =
5.475, τ = 471.292, κ = 5.296, c0 = (−0.514,−0.417,−0.094). In the second row, profiles
of the particles in a plane through c0 perpendicular to (0, 0, 1) are displayed.

Table 8: Empirical levels of the isotropy test for the isotropic models described in Fig-
ures 11 and 12. The first column gives the sample size n used for the test, nsimu refers to
the number of realizations of the test statistic used to determine the empirical level for
different levels α.

First model Second model

n nsimu α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

25 4200 0.003 0.042 0.1 0.001 0.026 0.082
50 2100 0.012 0.056 0.112 0.008 0.048 0.109
100 1050 0.012 0.07 0.127 0.012 0.056 0.111
150 700 0.006 0.051 0.106 0.011 0.049 0.104
200 525 0.013 0.067 0.124 0.006 0.044 0.101
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anisotropic models that are illustrated in Figures 13 and 14. Both anisotropic mod-
els considered fulfil the assumption of restricted isotropy. The first model can be
considered to be closer to isotropy than the second model, so we expect a higher
power of the test in the second case.

We simulated 96,000 particles from the first model and 56,000 from the second
model. The numerical values of the model parameters are given in Figures 13 and 14.
The power of the anisotropy test for different levels α is summarized in Table 9. It
is clear that a sample size of n = 25 is not sufficient to ensure a reasonable power
of the test. For a level of α = 0.05 the test performs well for sample sizes of at
least n = 100.
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Figure 13: Five particles simulated from the first anisotropic model with a = 5.841,
b = c = 5.3, τ = 518.447, κ = 5.847, c0 = (−0.514,−0.417,−0.094). In the second row,
profiles of the particles in a plane through c0 perpendicular to (0, 0, 1) are displayed.
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Figure 14: Five particles simulated from the second isotropic model with a = 6.545,
b = c = 5.007, τ = 518.447, κ = 5.847, c0 = (−0.514,−0.417,−0.094). In the second row,
profiles of the particles in a plane through c0 perpendicular to (0, 0, 1) are displayed.
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Table 9: Empirical powers of the isotropy test for the isotropic models described in Fig-
ures 13 and 14. The first column gives the sample size n used for the test, nsimu refers to
the number of realizations of the test statistic used to determine the empirical power for
different levels α.

First model Second model

n nsimu α = 0.01 0.05 0.1 nsimu α = 0.01 0.05 0.1

25 3840 0.003 0.048 0.139 2240 0.018 0.252 0.5
50 1920 0.026 0.146 0.262 1120 0.355 0.733 0.871
100 960 0.096 0.293 0.473 560 0.893 0.98 0.998
150 640 0.219 0.489 0.628 373 0.995 0.997 1
200 480 0.365 0.654 0.796 280 1 1 1
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A The optical rotator design

If we observe a vertical random slice T2 = L2 + B(O, t) of thickness 2t around the
axis L1, then a design-unbiased estimator of Φr(K) is given by

Φ̂r(K) =
1

r!

∫

K∩T2
xrF1,1

( t2

d(x, L1)2

)−1

dx,
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where

F1,1(x) =





0, if x < 0
2
π

arcsin(
√
x), if 0 ≤ x ≤ 1

1, if x > 1

is the distribution function of a beta-distribution with parameters α = β = 1/2
(Jensen, 1998, Proposition 6.2).

The slice T2 is now subsampled with a uniformly translated systematic grid of
planes parallel to L2. Each such plane is of the form L2 + δv, where δ ∈ [−t, t], and
v is a unit vector perpendicular to L2. In such a plane we need to determine

∫

K∩(L2+δv)

xrF1,1

( t2

d(x, L1)2

)−1

dx.

We discretise this integral by a uniformly translated systematic grid of lines in
L2 +δv. We focus on the case where K intersected with such a line is a line-segment.

First, we treat the case where these lines are parallel to L1. Let w ∈ L2 be a unit
vector perpendicular to L1. Then,
∫

K∩(L2+δv)

xrF1,1

( t2

d(x, L1)2

)−1

dx =

∫

R

∫

K∩(L1+δv+τw)

xrF1,1

( t2

d(x, L1)2

)−1

dx dτ.

Let u be a unit vector that spans L1. For each τ (small enough) there are real
numbers b− < b+ such that K ∩ (L1 + δv + τw) = {ρu + δv + τw | ρ ∈ [b−, b+]}.
Then, we obtain

∫

K∩(L1+δv+τw)

xrF1,1

( t2

d(x, L1)2

)−1

dx

= F1,1

( t2

‖δv + τw‖2

)−1
∫ b+

b−

(ρu+ δv + τw)r dρ

= F1,1

( t2

δ2 + τ 2

)−1
r∑

s=0

(
r

s

)∫ b+

b−

ρsdρ us(δv + τw)r−s

= F1,1

( t2

δ2 + τ 2

)−1
r∑

s=0

(
r

s

)
1

s+ 1
(bs+1

+ − bs+1
− )us(δv + τw)r−s,

using the binomial formula for symmetric tensors; see e.g., Jensen (2011, Lemma 4.1).
Now, we treat the case where the lines in L2 + δv are perpendicular to L1. With

the notation as above we obtain
∫

K∩(L2+δv)

xrF1,1

( t2

d(x, L1)2

)−1

dx =

∫

R

∫

K∩(〈w〉+δv+τu)

xrF1,1

( t2

d(x, L1)2

)−1

dx dτ.
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For each τ (small enough) there are real numbers d− < d+ such that K∩(〈w〉+δv+
τu) = {ρw + δv + τu | ρ ∈ [d−, d+]}. Then,

∫

K∩(〈w〉+δv+τu)

xrF1,1

( t2

d(x, L1)2

)−1

dx

=

∫ d+

d−

(ρw + δv + τu)rF1,1

( t2

d(ρw + δv + τu, 〈u〉)2

)−1

dρ

=

∫ d+

d−

(ρw + δv + τu)rF1,1

( t2

‖ρw + δv‖2

)−1

dρ

=
r∑

s=0

(
r

s

)∫ d+

d−

ρsF1,1

( t2

ρ2 + δ2

)−1

dρws(δv + τu)r−s.

These integrals cannot be integrated explicitly, but numerical integration can be
used.

B Moments of the random field ε

In order to calculate the moments of the random field ε, we used the results on the
cumulant generating function of Lévy based models that can for example be found
in Jónsdóttir et al. (2008).

The cumulant generating function of a gamma random variable Z ′ with param-
eters κ and τ is given by

C(λ ‡ Z ′) = −κ log
(

1− iλ

τ

)
, λ ∈ R.

Therefore, the cumulant generating function of ε(u) is given by

C(λ ‡ ε(u)) =

∫

S2
C(λk(u, v) ‡ Z ′)dv

= −κ
∫

S2
log
(

1− iλk(u, v)

τ

)
dv

= −2πκ

∫ π

0

log
(

1− iλeα cos θ

τ

)
sin θdθ

=
−2πκ

α

∫ α

−α
log
(

1− iλeu

τ

)
du.

For λ small enough we can use the Mercator series to rewrite the integrand, and
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obtain

C(λ ‡ ε(u)) =
−2πκ

α

∫ α

−α
log
(

1− iλeu

τ

)
du

=
−2πκ

α

∫ α

−α

∞∑

n=1

(−1)n+1

n

(
− iλeu

τ

)n
du

=
2πκ

α

∞∑

n=1

(iλ
τ

)n 1

n

∫ α

−α
enudu

=
2πκ

α

∞∑

n=1

λn
( i
τ

)n 2

n2
sinh(an).

This implies the following formula for the cumulants kn

kn =
4πκ

α

(n− 1)! sinh(an)

nτn
.

Via the formula

µn = kn +
n−1∑

i=1

(
n− 1

i− 1

)
kiµn−i

all the moments of ε(u) can be calculated.
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