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Abstract

Let X be lognormal(µ, σ2) with density f(x), let θ > 0 and define L(θ) =
Ee−θX . We study properties of the exponentially tilted density (Esscher
transform) fθ(x) = e−θxf(x)/L(θ), in particular its moments, its asymp-
totic form as θ → ∞ and asymptotics for the saddlepoint θ(x) determined
by E[Xe−θX ]/L(θ) = x. The asymptotic formulas involve the Lambert W
function. The established relations are used to provide two different nu-
merical methods for evaluating the left tail probability of lognormal sum
Sn = X1+ · · ·+Xn: a saddlepoint approximation and an exponential twisting
importance sampling estimator. For the latter we demonstrate logarithmic
efficiency. Numerical examples for the cdf Fn(x) and the pdf fn(x) of Sn are
given in a range of values of σ2, n, x motivated from portfolio Value-at-Risk
calculations.
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1 Introduction

The lognormal distribution arises in a wide variety of disciplines such as engineering,
economics, insurance or finance, and is often employed in modeling across the sci-
ences (Aitchison and Brown, 1957; Crow and Shimizu, 1988; Dufresne, 2009; Johnson
et al., 1994; Limpert et al., 2001). In consequence, it is natural that sums of lognor-
mals come up in a number of contexts. For instance, a basic example in finance is the
Black-Scholes model, which asserts that security prices can be modeled as indepen-
dent lognormals (equivalently, the logprices are independent normally distributed).
This implies that the value of a portfolio with n securities can be conveniently mod-
eled as a sum of lognormals. Another example occurs in the valuation of arithmetic
Asian options where the payoff depends on the finite sum of correlated lognormals
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(Dufresne, 2004; Milevsky and Posner, 1998). In insurance, individual claim sizes
are often modeled as independent lognormals, so the total claim amount in a cer-
tain period is a random sum of lognormals (Thorin and Wikstad, 1977). A further
example occurs in telecommunications, where the inverse of the signal-to-noise ratio
(a measure of performance in wireless systems) can be modeled as a sum of i.i.d.
lognormals (Gubner, 2006).

However, the distribution of a sum of n lognormals Sn is not available in explicit
form and its numerical approximation is considered to be a challenging problem.
In consequence, a number of methods for its evaluation has been developed across
several decades, but these can rarely deliver arbitrary precisions in the whole support
of the distribution, particularly in the tails. The later case is of key relevance in
certain applications which often require to evaluate tail probabilities at very high
precisions. For instance, the Value-at-Risk (VaR) is an important measure of market
risk defined as an appropriate (1 − α)-quantile of the loss distribution, and the
standard financial treatise Basel II (2004) asks for calculations of the VaR for so
small values as α = 0.03%.

When considering lognormals sums, the literature has sofar concentrated on the
right tail (with the exception of the recent paper Gulisashvili and Tankov, 2014). In
this paper, our object of study is rather the left tail and certain mathematical prob-
lems that naturally come up in this context. To be precise, let Yi be normal(µi, σ2

i )
(we don’t at the moment specify the dependence structure), let Xi = eYi and
Sn = X1 + · · · + Xn. We then want to compute P(Sn ≤ z) in situations where
this probability is small.

An obvious motivation for this problem comes from the VaR problem. Here
Sn may represent the future value of the portfolio. If Π is the present value, Π −
Sn is then the loss, and so calculation of α-quantiles are equivalent to left tail
calculations for Sn. A further example occurs in the wireless systems setting, where
an outage occurs when the signal-to-noise ratio exceeds a large threshold. The outage
probability is therefore obviously related to the left tail probability of a lognormal
sum.

The problem of approximating the distribution of a sum of i.i.d. lognormals has as
mentioned a long history. The classical approach is to approximate the distribution
of a sum of i.i.d. lognormals with another lognormal distribution. This goes back at
least to Fenton (1960) and it is nowadays known as the Fenton-Wilkinson method ;
according to Marlow (1967) this approximation was already used by Wilkinson since
1934. However, the Fenton-Wilkinson method, being a central limit type result, can
deliver rather inaccurate approximations of the distribution of the lognormal sum
when the number of summand is rather small or the dispersion parameter is too
high—in particular in the tail regions. Another topic which has been much stud-
ied recently is approximations and simulation algorithms for right tail probabilities
P(Sn ≥ y) under heavy-tailed assumptions and allowing for dependence, see in par-
ticular Asmussen et al. (2011); Asmussen and Rojas-Nandayapa (2008); Blanchet
and Rojas-Nandayapa (2011); Foss and Richards (2010); Mitra and Resnick (2009).
For further literature surveys, see Gulisashvili and Tankov (2014).

Our approach is to use the saddlepoint approximations and a closely related sim-
ulation algorithm based on the same exponential change of measure. This requires
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i.i.d. assumptions, in particular µi ≡ µ, σ2
i ≡ σ2. Since µ is just a scaling factor,

we will assume µ = 0. The saddlepoint approximation occurs in various (closely
related) forms, but all involve the function κ(θ) = logL(θ), where

L(θ) = Ee−θXi =

∫ ∞

0

e−θxf(x) dx with f(x) =
1

xσ
√

2π
e− log2 x/2σ2

,

and its two first derivatives κ′(θ) and κ′′(θ) (note that since the right tail of the
lognormal distribution is heavy, these quantities are only defined for θ ≥ 0). Define
the exponentially tilted density fθ(x) (Esscher transform) by

fθ(x) = e−θx−κ(θ)f(x), x > 0, (1.1)

and let its corresponding cumulative distribution function be Fθ with expectation
operator Eθ. Then

κ′(θ) = −EθX , κ′′(θ) = VarθX (1.2)

and one can connect the given distribution of Sn (corresponding to θ = 0) to the
Pθ-distribution by means of the likelihood ratio identity

P(Sn ∈ A) = Eθ
[
exp{θSn + nκ(θ)}; Sn ∈ A

]
.

The details of the saddlepoint approximation involve writing z = nx, defining the
saddlepoint θ(x) as the solution of the equation

−κ′
(
θ(x)

)
= Eθ(x)[X] = x, (1.3)

and taking θ = θ(x). This choice of θ means that EθSn = z so that the Pθ-
distribution is centered around z and central limit expansions apply. For a short
exposition of the implementation of this program in its simplest form, see p. 355,
Asmussen (2003).

The application of saddlepoint approximations to the lognormal left tail seems
to have appeared for the first time in the third author’s 2008 Dissertation (Rojas-
Nandayapa, 2008), but in a more incomplete and preliminary form than the one
presented here. A first difficulty is that κ(θ) is not explicitly available for the
lognormal distribution. However, approximations with error rates were recently
given in the companion paper Asmussen et al. (2014b). The result is in terms of the
Lambert W function W (a) (Corless et al., 1996), defined as the unique solution of
W (a)eW (a) = a for a > 0. The expression for κ(θ) in Asmussen et al. (2014b) is

L(θ) =

exp

{
− W (θσ2)2 + 2 W (θσ2)

2σ2

}

√
1 + W (θσ2)

∫ ∞

−∞
g0(z) dz, (1.4)

where g0 is a certain function such that
∫
g0(z)dz is close to 1 (see Section 2 for

more detail; we also give an extension to expectations of the form E[Xke−θX ] there).
Note that the Lambert W function is convenient for numerical computations since
it is implemented in many software packages.

The paper is organized as follows. In Section 2, we study the exponential family
(Fθ)θ≥0. We give an approximation to the derivatives of the Laplace transform, an
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approximation to the saddlepoint θ(x), and discuss various approximations to the
tilted density fθ. The first important application of our results, namely the saddle-
point approximation for P(Sn ≤ z), is given in Section 3. The second is a Monte
Carlo estimator for P(Sn ≤ z) given in Section 4.2. It follows a classical route (VI.2,
Asmussen and Glynn, 2007) by attempting importance sampling with importance
distribution Fθ(x), but the implementation faces the difficulty that neither θ(x) nor
κ
(
θ(x)

)
are explicitly known. The importance sampling algorithm requires simula-

tion from Fθ, and we suggest an acceptance-rejection (A-R) for this with a Gamma
proposal. The Appendix contains a proof that the importance sampling proposed
in Section 4.2 has a certain asymptotical efficiency property.

2 The exponential family generated by the
lognormal distribution

We let F be the cumulative distribution function of X and adopt the notation
X ∼ LN (0, σ2). For convenience, we write fn and Fn for the pdf and cdf of Sn,
respectively.

The exponential tilting scheme in the Introduction is often also referred to as
Esscher transformation. Note that since κ(θ) is well-defined for all θ > 0, the
saddlepoint θ(x) exists for all 0 < x ≤ EX (the relevant case for our left tail
problem) and large deviations results can be used. The latter are based on the
Legendre-Fenchel transform defined as the convex conjugate κ∗(x) = κ(θ(x))+xθ(x).

We first consider ways of evaluating and approximating derivatives of the Laplace
transform given through

Lk(θ) = E[Xke−θX ] =

∫ ∞

−∞

1√
2πσ2

e−hk(y)dy, with hk(y) = −ky+θey+
y2

2σ2
. (2.1)

Define the following quantities:

wk(θ) = W (θσ2ekσ
2

), σk(θ)
2 =

σ2

1 + wk(θ)
,

La(k, θ) =
σk(θ)

σ
exp

{
− 1

2σ2
wk(θ)

2 − 1

σ2
wk(θ) + 1

2
k2σ2

}
, (2.2)

Ik(θ) =

∫ ∞

−∞

1√
2π

exp
{
− wk(θ)

σ2

(
ezσk(θ) − 1− zσk(θ)

)
− σk(θ)

2

2σ2
z2
}

dz, (2.3)

Jk(θ) =

∫ ∞

−∞

1√
2π

exp
{
− w0(θ)

σ2

(
ezσ0(θ) − 1− zσ0(θ)

)
− σ0(θ)2

2σ2
z2

+ kσ0(θ)z − 1
2
σ0(θ)2k2

}
dz.

The following proposition extends Proposition 2.1 of Asmussen et al. (2014b). To
understand the orders of the different terms one should keep in mind that wk(θ) is
asymptotically of order log(θ) for θ →∞. Also we use the fact that wk(0) = 0.
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Proposition 2.1. Let X ∼ LN (0, σ2), k ∈ N and θ ≥ 0. Then

Lk(θ) = La(k, θ)Ik(θ) and Lk(θ) = La(0, θ) exp
{
−kw0(θ)+ 1

2
σ0(θ)2k2

}
Jk(θ). (2.4)

Moreover,

Ik(θ) =





1 θ = 0,

1− 3wk(θ)σk(θ
4

24σ2
+

5wk(θ)
2σk(θ)

6

24σ4
+ O

(
σk(θ)

4
)

θ →∞,

and

Jk(θ) =





1 θ = 0,

1− (1 + 4k)w0(θ)σ0(θ4

8σ2
+

5w0(θ)2σ0(θ)6

24σ4
+ O

(
σ0(θ)4

)
θ →∞.

The proof of Proposition 2.1 is based on the Laplace approximation as the proof
of Proposition 2.1 in the companion paper Asmussen et al. (2014b). We give here
only a brief sketch of the proof. For the first result involving La(k, θ), the function
hk(y) is expanded around its minimizer yk(θ) given as the solution to θey+y/σ2−k =
0, that is, yk(θ) = kσ2 − wk(θ). Then the exponential part of La(k, θ) is simply
−hk

(
yk(θ)

)
, and the exponential part of the integrand in Ik(θ) is −

{
hk
(
yk(θ) +

σk(θ)z
)
− hk

(
yk(θ)

)}
. Expansion of the latter gives

−1
2
z2 − wk(θ)σk(θ)

3

6σ2
z3 − wk(θ)σk(θ)

4

24σ2
z4 + O

(
σk(θ)

3|z|5
)
,

and expanding the exponential of the last three terms gives the result in the propo-
sition for Ik(θ). For the alternative formula with Jk(θ) we expand hk(y) around
y0(θ). Then the exponential part of La(0, θ) together with −kw0(θ) is simply
−h(y0(θ)), and the exponential part of the integrand in Jk(θ) is −

{
hk
(
y0(θ) +

σ0(θ)z
)
− hk

(
y0(θ)

)}
− σ0(θ)2k2/2. Expanding the latter we get

−1
2

(
z − kσ0(θ)

)2 − w0(θ)σ0(θ)3

6σ2
z3 − w0(θ)σ0(θ)4

24σ2
z4 + O

(
σ0(θ)3|z|5

)
,

which leads to the result in the proposition.
The results of Proposition 2.1 immediately lead to an approximation to the

mean and variance of the exponentially tilted measure. These are denoted by Eθ
and Varθ, respectively. Note that, although the results below are for θ → ∞, the
approximations are actually exact for θ = 0 as well.

Corollary 2.2. Let X ∼ LN (0, σ2). Then as θ →∞

Eθ[X] = exp
{
−w0(θ) + 1

2
σ0(θ)2

}(
1 + O(σ0(θ)2)

)
, (2.5)

Varθ[X] = exp
{
−2w0(θ) + σ0(θ)2

}(
eσ0(θ)2 − 1

)(
1 + O(σ0(θ)2)

)
. (2.6)

Proof. Simply use Eθ[X] = L1(θ)/L0(θ) and Varθ[X] = L2(θ)/L0(θ)−(L1(θ)/L0(θ))2

together with the second part of (2.4).
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Interestingly, one could at least at the heuristic level identify the tilted measure
Fθ as approximate lognormal with parameters −w0(θ) and σ0(θ)2, Fθ ≈ LN(−w0(θ),
σ0(θ)2). For θ = 0 we have the correct lognormal distribution and, as Corollary 2.2
shows, the lognormal approximation produces the correct asymptotic mean and
variance as θ → ∞. The approximation is illustrated in Figure 1 with σ = 0.25,
where the true log–density fθ and the approximating lognormal density are displayed
for θ = 10, 25, 100. It is notable how little even such a large values as θ = 100 shifts
the distribution towards the origin, which can be explained by the lognormal density
decaying only slowly to 0 as x ↓ 0. As can be seen from the figure the approximation
is very good, more so as θ →∞. We next show that, as θ →∞, the limiting centered
and scaled tilted density fθ is a standard normal density. It follows from this that
the lognormal approximation becomes exact as θ →∞. We will use the result below
in the following sections.

Proposition 2.3. Write the tilted density fθ(x) as exp
{
−m(x) − κ(θ)

}
/
√

2πσ2

with m(x) = log(x) + (log(x))2/(2σ2) + θx. Furthermore, let w = w0(θ) and define
m0(u) = m

(
e−w(1 + σu/

√
w)
)
−m(e−w). Then, as θ →∞,

m0(u) = 1
2
u2 + O

(
(|u|+ |u|3)σ/

√
w
)

for
|u|3√
w
≤ 1,

and for θ sufficiently large

m′0(u) >
1

2

(√w
σ

)1/6

for u >
(√w
σ

)1/6

,

m′0(u) < −1

2

(√w
σ

)1/6

for u < −
(√w
σ

)1/6

.

The above relations imply that the centered and scaled density fθ converges to a
standard normal density, and moments of fθ converge as well.

Proof. We first note that the lognormal density f(x) is logconcave for x < e1−σ2

since

d2

dx2
log(f(x)) = − 1

x2σ2

(
− log(x) + σ2 − 1

)
< 0 for x < e1−σ2

. (2.7)

We rewrite m0(u) as

m0(u) = log
(

1 +
σ√
w
u
)

+
1

2σ2

{[
−w + log

(
1 +

σ√
w
u
)]2

− w2
}

+

√
w

σ
u.

Taylor expanding log(1+σu/
√
w) we obtain the first result of the proposition. Next,

we find the derivative of m0(u):

m′0(u) =
σ/
√
w

1 + σu/
√
w

+

√
w

σ
+

1

σ2

[
−w + log(1 + σu/

√
w)
] σ/

√
w

1 + σu/
√
w
.

For u > (
√
w/σ)1/6 we get the bound

m′0 >

√
w

σ

(
1− 1

1 + σu/
√
w

)
=

(
√
w/σ)1/6

1 + (
√
w/σ)−5/6

> 1
2
(
√
w/σ)1/6,
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as long as σ/
√
w < 1, which is true for θ →∞. For u < −(

√
w/σ)1/6 we have from

the logconcavity that m′0(u) < m′0
(
−(
√
w/σ)1/6

)
. For the latter we find

m′0
(
−(
√
w/σ)1/6

)
∼ −

(√w
σ

)1/6

as θ →∞.

0.0 0.5 1.0 1.5 2.0

−
10

−
8

−
6

−
4

−
2

0
2

x

lo
g(

de
ns

ity
)

σ=0.25

100
25

10

Figure 1: Log of tilted density fθ (full drawn) and lognormal approximation (dashed).
The three cases are θ = 10, 25, 100 all with σ = 0.25. Included is also for θ = 25, 100 the
Gamma approximation considered in Section 4.1 (dotted curve).

2.1 The saddlepoint θ(x)

Corollary 2.2 in a natural way leads to an approximation to the saddlepoint θ(x),
the latter being the solution of the equation L1(θ)/L0(θ) = x. We simply let the
approximation θ̃(x) be the solution of

exp
{
−w0(θ) + 1

2
σ0(θ)2

}
= x.

This gives the equation−w0(θ)+ 1
2
σ2/(1+w0(θ)) = log(x), which leads to a quadratic

equation in w0(θ). Since w0(θ) ≥ 0, we find

w0(θ) = γ(x) with γ(x) = 1
2

(
−1− log x+

√
(1− log x)2 + 2σ2

)
.
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Then from the definition of w0(θ) we obtain

θ̃(x) =
1

σ2
γ(x)eγ(x). (2.8)

The following proposition states the quality of this approximation.

Proposition 2.4. For x→ 0 we have θ̃(x) ∼ (− log x)/(xσ2) and

Eθ̃(x)[X] = x
(

1 + O
( 1

| log(x)|
))
,

θ(x) = θ̃(x)
(

1 + O
( 1

| log(x)|
))
.

Proof. Below we write θ̄ for θ(x) and θ̃ for θ̃(x). We first note that γ(x) ∼ − log(x)
for x→ 0, which gives that θ̃ = γ(x)eγ(x)/σ2 ∼ (− log x)/(xσ2). From the definition
of θ̃ and (2.5) we have Eθ̃[X] = x(1 + O

(
1/w0(θ̃)

)
, and the first result follows from

w0(θ̃) = γ(x) ∼ − log(x). Using that Eθ̄[X] = x we rewrite the first result as
Eθ̄[X]/Eθ̃[X] = 1 + O

(
1/w0(θ̃)

)
. From a Taylor expansion of Eθ[X] around θ̃ we get

to first order

1 + O
( 1

w0(θ̃)

)
≈ 1 +

Varθ̃[X]

Eθ̃[X]
θ̃
(

1− θ̄

θ̃

)
≈ 1 +

σ2

w0(θ̃)
e−2w0(θ̃)

e−w0(θ̃)

w0(θ̃)

σ2
ew0(θ̃)

(
1− θ̄

θ̃

)

≈ 1 +
(

1− θ̄

θ̃

)
,

from which we conclude that 1− θ̄/θ̃ = O
(
1/w0(θ̃)

)
or θ̄ = θ̃

(
1 + O(1/| log(x)|

)
.

In Sections 3 and 4.2 we will employ the results of this section to construct a
saddlepoint approximation and a Monte Carlo estimator of the left tail probability of
a sum of lognormal random variables. In particular, the asymptotic results derived
above will be useful to show that when the approximation θ̃(x) used as the tilting
parameter of an exponential change of measure the Monte Carlo estimator remains
asymptotically efficient as x→ 0.

3 Saddlepoint approximation in the left tail of a
lognormal sum

Daniels’ saddlepoint method produces an approximation of the density function of
a sum of i.i.d. random variables which is valid asymptotically on the number of
summands. The first and second order approximations are embodied in the formula

fn(nx) ≈
√

1

2πnκ′′(θ(x))
exp

{
nκ∗(x)

}(
1 + 1

n

[
ζ4(θ(x))/8− 5ζ3(θ(x))2/24

])
,

where κ∗(x) = κ
(
θ(x)

)
+ xθ(x) is the convex conjugate of κ(x) and

ζk(θ) =
κ(k)(θ)

κ′′(θ)k/2
,
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is the standardized cumulant.
The corresponding saddlepoint approximation for the cumulative distribution

function is given by Jensen (1995)

Fn(nx) =
1

λn(x)
exp

{
nκ∗(x)

}{
B0

(
λn(x)

)

+
ζ3

(
θ(x)

)

6
√
n

B3

(
λn(x)

)
+
ζ4

(
θ(x)

)

24n
B4

(
λn(x)

)
+
ζ3

(
θ(x)

)2

72n
B6

(
λn(x)

)}
,

where λn(x) = θ(x)
√
nκ′′(θ(x)) and

B0(λ) = λeλ
2/2Φ(−λ),

B3(λ) = −
{
λ3B0(λ)− (λ3 − λ)/

√
2π
}
,

B4(λ) = λ4B0(λ)− (λ4 − λ2)/
√

2π,

B6(λ) = λ6B0(λ)− (λ6 − λ4 + 3λ2)/
√

2π.

General results for the saddlepoint approximation state that for a fixed x the relative
error is O(1/n) for the first order approximation and O(1/n2) for the second order
approximation. More can be said, however, for the case of a lognormal sum. It
is simple to see that the density f(x) is logconcave for x < e1−σ2 , see (2.7), and
according to Jensen (1995), we therefore have that the saddlepoint approximations
have the stated relative errors uniformly for x in a region around zero. Furthermore,
the convergence of the tilted density as θ → ∞ outlined in Proposition 2.3 implies
that the saddlepoint approximation become exact in the same limit.

To calculate the saddlepoint approximation we need to find the Laplace transform
and its derivatives numerically. We want to implement the integration in such a way
that the relative accuracy of the integration is of the same order irrespective of the
argument θ. For k = 0, 1, 2, 3, 4 we want to evaluate the integral Lk(θ) from (2.1).
This leads to the integral Ik(θ) from (2.3). Instead of the scale σk(θ) chosen there,
we consider another scale τ and the integral

Ik(θ) =
1√
2π

τ

σk(θ)

∫ ∞

−∞
exp
{
−h̃(z)

}
dz, h̃(z) =

wk(θ)

σ2

(
eτz − 1− τz

)
+

τ 2

2σ2
z2.

Since h̃′′(z) = τ 2
(
wk(θ)e

τz + 1
)
/σ2 > 0 we see that h̃ is convex. Choosing the scale

τ such that 2h̃(−τ) = 1 we obtain that 2h̃(z) is a convex function bounded between
0 and 1 for −1 < z < 0, is above −z for z < −1 and with h̃(z) ≥ h̃(−z) for z > 0.
In this way the precision of the numerical integration of exp

{
−h̃(z)

}
will be of the

same order irrespective of the value of w and σ2. In practice we can take τ as

τ =

{
σk(θ), σk(θ) ≤ c0,√
wk(θ)2 + 2wk(θ) + σ2 − wk(θ) σk(θ) > c0,

where c0 is an arbitrary constant. Unless σ2 is large we can use τ = σk(θ) for all θ.
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4 Simulation

4.1 Random variate generation from Fθ

We first consider the problem of generating a random variable from the tilted density
fθ from (1.1).

The obvious naive choice is acceptance-rejection (A-R; Asmussen and Glynn,
2007, II.2), simulating Z from f and rejecting with probaility e−θZ . This choice
produces a very simple algorithm for generating from fθ and the method is exact
even when we do not have an explicit expression for κ(θ).

Algorithm 4.1.

1. Simulate U ∼ U(0, 1), Z ∼ LN(0, σ2).

2. If U > e−θZ repeat. Else, return Z.

Ideally, we would like to have a rejection probability p close to 1, but in our case
p = eκ(θ), so as the value of θ increases, the probability of acceptance diminishes,
and hence the expected number of rejection steps goes to infinity. In consequence,
this estimator is very inefficient for large values of θ.

As noted in Proposition 2.3 if Xθ is a random variable with density fθ, the
variable U = (Xθ − e−w)

√
wew/σ, w = w0(θ), has a standard normal distribution

in the limit θ → ∞. However, the limiting normal distribution can not be used
as proposal for an A-R algorithm because the right tail is lighter than that of Xθ.
Similarly, the lognormal approximation is not applicable because the left tail of(
Xθ + w0(θ)

)
/σ0(θ) is lighter.

What we know, however, is that the right tail of Xθ is trivially lighter than
e−θx. This points to the possibility of using a gamma proposal Z ∼ Gamma(λ, θ).
Rewriting the tilted density fθ as

e−κ(θ)

√
2πσ2

xλ−1 exp
{
−θx− 1

2σ2
(log x)2 − λ log x

}

=
e−κ(θ)+ 1

2
λ2σ2

√
2πσ2

xλ−1 exp
{
−θx− 1

2σ2
(λσ2 + log x)2

}
. (4.1)

ewe choose λ such that λσ2 + log(E[Z]) = 0. Solving for λ we obtain 0 = λσ2 +
log(λ/θ) or λ = w0(θ)/σ2. This gives the following A-R algorithm.

Algorithm 4.2.

1. Simulate U ∼ U(0, 1) and Z ∼ Gamma(w0(θ)/σ2 + 1, θ).

2. If U > exp
{
−
(
w0(θ) + logZ

)
/2σ2

}
repeat. Else, return Xθ = Z.

Let us center and scale Z using E[Z] = e−w and Var[Z] = σ2e−2w/w, w = w0(θ).
From this we write Z = e−w(1 +σV/

√
w). Then as θ →∞ we have that V becomes

standard normally distributed, and the acceptance probability becomes

E
[
exp
{
−
(
w0(θ) + logZ

)
/2σ2

}]
= E

[
exp
{
−
(
log(1 + σV/

√
w
)2
/2σ2

}]
→ 1.
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Actually, from (4.1) we can give an explicit expression for the acceptance prob-
ability as follows:

E[e−
1

2σ2
(w+logZ)2 ] =

∫ ∞

−∞

θw/σ
2

Γ(w/σ2)
xλ−1 exp

{
−θx− 1

2σ2
(λσ2 + log x)2

}
dx

=
θw/σ

2
√

2πσ2

Γ(w/σ2)e−κ(θ)+ 1
2
λ2σ2

.

Figure 2 shows the acceptance probability for both Algorithm 4.1 and Algorithm 4.2
for various values of σ. In the figure the acceptance probabilities for Algorithm 4.1
are almost the same for the three values of σ considered. For small values of θ
Algorithm 4.1 is better than Algorithm 4.2. Thus, it seems natural to choose between
the two algorithms according to which has the highest acceptance probability. Note
also, that for small values of σ there is a region of values of θ where neither algorithm
performs particular well.
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Figure 2: The acceptance probability for Algorithm 4.1 (full drawn lines) and for Algo-
rithm 4.2 (dashed lines) for the three cases σ = 0.05, 0.1, 0.2. Thee are three full drawn
lines that are almost indistinguishable.

4.2 Efficient Monte Carlo for left tails of lognormal sums

In this section we develop an asymptotically efficient Monte Carlo estimator α̂n(x),
for the left tail probability of a lognormal sum αn(x) = P(Sn ≤ nx) as x→ 0.

We start by recalling some standard concepts from rare event simulation (VI.1
Asmussen and Glynn, 2007). In our setting, we say that a Monte Carlo estimator

11



α̂n(x) is strongly efficient or has bounded relative error as x→ 0 if

lim sup
x→0

Var α̂n(x)

α2
n(x)

<∞.

This efficiency property implies that the number of replications required to estimate
αn(x) with certain fixed relative precision remains bounded as x → 0. A weaker
criterion is logarithmic efficiency defined as

lim sup
x→0

Var α̂n(x)

α2−ε
n (x)

= 0, ∀ε > 0.

From a practical point of view, there is no substantial difference between these
two criteria. However, it is often easier to prove logarithmic efficiency rather than
bounded relative error. Logarithmic efficiency implies that the number of replica-
tions needed for achieving certain relative precision grows at rate of order at most
| log(αn(x))|. The efficiency properties can also be studied for n → ∞ instead of
x→ 0. We mention this situation below also.

An unbiased estimator can be obtained by using the variance reduction technique
importance sampling (V.1, Asmussen and Glynn, 2007). This method relies on the
existence of a Radon-Nikodym derivative with respect to a probability measure,
say Q. If we are interested in estimating E[h(W )], where E is the expectation
operator under the measure P, and Q is an absolutely continuous measure with
respect to P, then it holds that

E[h(W )] = EQ[Lh(W )],

where EQ is the expectation operator under the measure Q and L = dP/dQ is the
Radon-Nikodym derivative of P with respect to Q (the last also goes under the name
likelihood ratio in the simulation community). Hence, if X is simulated according
to Q, then Lh(W ) serves as an unbiased estimator of the quantity E[h(W )]. The
strategy of selecting an importance distribution from the exponential family gen-
erated by the lognormal {Fθ : θ ∈ Θ} is often referred to as exponential twisting,
exponential tilting or simply exponential change of measure. Ideally, the twisting
parameter θ is selected as the value of the saddlepoint θ(·) from (1.3) evaluated
at x.

Notice, however, that difficulties arise in the right tail if theXi’s are heavy-tailed:
then the integral associated with E[e−θX ] diverges for negative values of the argument
θ and in consequence, the equation (1.3) has no solution if x > E[Xi]. Further
difficulties in the heavy-tailed environment are exposed in Asmussen et al. (2000);
Bassamboo et al. (2008). Nevertheless, exponential twisting can be implemented
for the left tail probability of a lognormal sum; moreover, it turns out that it is
logarithmically efficient.

Theorem 4.3. Consider X1, . . . , Xn ∼ Fθ(x) and set Sn = X1 + · · ·+Xn. Define

βn(x) = L(θ(x))n eθ(x)Sn I{Sn < nx}.

Then βn(x) is a logarithmically efficient and unbiased estimator of αn(x) as n→∞.

12



Proof. The lognormal density is log-concave for small x (see (2.7)) and so the result
follows immediately from the proof of Theorem 2.10, Chapter VI in Asmussen and
Glynn (2007).

The above optimal exponential twisting algorithm requires the value of the
Laplace transform L(θ) and the saddlepoint θ(·). These can be found by numerical
integration. We next consider an alternative estimator based on the approximation
(2.8) to the saddlepoint and an unbiased estimator of the Laplace transform. This
alternative estimator is unbiased and logarithmic efficient as x→ 0

Algorithm 4.4.

1. Use the approximation θ̃(x) to the sadlepoint given in (2.8).

2. Obtain n independent unbiased estimates L̂i(θ̃(x)) = La(0, θ̃(x))Vi of the
Laplace transform and set L̂n(θ̃(x)) =

∏n
i=1 L̂i(θ̃(x)).

3. Simulate X1, . . . , Xn ∼ Fθ̃(x) and set Sn = X1 + · · ·+Xn.

4. Return
α̂n(x) = eθ̃(x)SnL̂n(θ̃(x)) I(Sn < nx). (4.2)

The product of n independent copies of an unbiased estimate L̂(θ̃(x)) is needed
because L̂n(θ̃(x)) is not an unbiased estimate of Ln(θ̃(x)). As suggested in Asmussen
et al. (2014b) an unbiased estimator of L(θ) is obtained as

L̂(θ) = La(0, θ)I(Y, θ) (4.3)

where La(0, θ) is given in (2.2), Y ∼ N(0, σ2) and

I(Y, θ) = exp

{
−w0(θ)

σ2

(
eY − 1− Y

)} σ

σ0(θ)
.

We next state the properties of the proposed algorithm.

Proposition 4.5. Let α̂n(x) be defined as in (4.2) and assume that E[V 2
i ] ≤ c as

x → 0 for some constant c. Then α̂n(x) is an unbiased and logarithmic efficient
estimator of αn(x) as x→ 0.

For the proof, see Appendix A.

4.3 Density estimation

Consider the problem of estimating the density of a lognormal sum via simulation.
Following Asmussen and Glynn (2007), Example V.4.3 p. 146, slightly extended, we
first note that the conditional density at nx of Sn given

Sn,−i = X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn = Sn −Xi

is f(nx− Sn,−i). Hence an unbiased estimator of fn(nx) is
∑n

1 f(nx− Sn,−i)/n.
However, since we are dealing with values of x far to the left of EX, it is likely

that Sn,−i > x so that f(nx − Sn,−i) = 0 and the procedure will come out with a
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large number of zeroes. Hence we employ the same importance sampling estimator
as used above. That is, we simulate the Xj from Fθ̃(x) and return the estimator

f̂n(nx) =
exp{θ̃(x)nx+ nκ

(
θ̃(x)

)
}

n

n∑

i=1

fθ̃(x)(nx− Sn,−i)

(in practice to be averaged over R replications). A slight reformulation gives

f̂n(nx) =
1

n

n∑

i=1

f(nx− Sn,−i) exp{θ̃(x)Sn,−i + (n− 1)κ
(
θ̃(x)

)
} .

In Gulisashvili and Tankov (2014), an importance sampling estimator for Fn(z)
is suggested and it is written that a parallel estimator for fn(z) can be constructed
in the same way. Nevertheless, we do not follow the details for the construction of
that estimator of fn(z).

5 Numerical examples

In our numerical experiments, we have taken parameter values that we consider
realistic from the point of view of financial applications. A yearly volatility of order
0.25 is often argued to be typical. We have considered periods of lengths one year,
one quarter, one month and one week, corresponding to σ = 0.25, σ = 0.25/

√
4 =

0.125, σ = 0.25/
√

12 = 0.072, resp. σ = 0.25/
√

52 = 0.035. Real-life portfolios are
often large, even in the thousands; the values we have chosen are n = 4, 16, 64, 256.

For each combination of n and σ we have conducted several numerical empiri-
cal analyses. In all numerical experiments involving simulation we have employed
R = 100, 000 replications. The complete set of numerical results can be found in
Asmussen et al. (2014a). Here we present and discuss an example with n = 16 and
σ = 0.125.

Approximation of the Cramér function

We consider the approximation θ̃(x) given in equation (2.8) to the saddlepoint θ(x).
The overall result is given in Proposition 2.4. Here we consider a few numerical
illustrations. Table 1 gives θ̃(x), θ(x) and the mean under the tilted measure corre-
sponding to θ̃(x). We want the latter mean to be close to x. As can be realized from
the table the relative error of the latter mean as an approximation to x is less than
one percent. Furthermore, when using θ̃(x) as the initial value in a Newton-Raphson
search for θ(x), in all cases considered in Table 1 at most four iterations are needed
to find θ(x) to accuracy 10−10.

Left tail of the Lognormal Sum

Next we verify the approximations for the cdf and pdf of the lognormal sum. We have
thereby been thinking of a portfolio of n assets with next-period values Y1, . . . , Yn
assumed i.i.d. lognormal(µ, σ2), such that a loss corresponds to a small value x of
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Table 1: Evaluation of the approximation θ̃(x) from (2.8) to the saddlepoint θ(x) for the
case σ = 0.125.

x θ̃(x) θ(x) Eθ̃(x)[X]

1.0 0.500 0.496 0.9999
0.9 8.048 7.992 0.8994
0.8 18.477 18.360 0.7990
0.7 33.325 33.134 0.6989
0.6 55.322 55.037 0.5989
0.5 89.724 89.312 0.4991
0.4 147.857 147.257 0.3992
0.3 258.516 257.602 0.2994
0.2 517.522 515.977 0.1996
0.1 1478.659 1475.167 0.0998

Sn = Y1, . . . , Yn. When choosing x, we have had in mind the recommended VaR
values 0.99%–0.9997% of Basel II (2004) and chosen P(Sn ≤ nx) to cover the interval
0.0001–0.0100.

We have proposed two type of approximations: saddlepoint approximations and
Monte Carlo estimators. Thus, in Tables 2–3 we included the first and second order
saddlepoint approximation (labeled Saddle1 and Saddle2) based on our formulas in
Section 3, and a Monte Carlo estimators (MC) based on our algorithms in Section 4.
The last is based on the proposed importance sampling estimator where the impor-
tance distribution is selected from the exponential family. The general estimator for
the CDF of the lognormal sum has the form

F̂n(nx) = L(θ)n eθSn I{Sn < nx}, (5.1)

where Sn = X1 + · · ·+Xn and X1, . . . , Xn is a sample from the exponential family.
Similarly, the MC estimator of the pdf of the lognormal sum has the form

f̂n(nx) = L(θ)n−1

[
1

n

n∑

i=1

eθSn,−i f(nx− Sn,−i).
]
.

The parameter θ defining the distribution is selected to be equal to the saddlepoint
θ(·) evaluated at x. Table 2 contains the numerical results for the CDF while results
for the PDF are given in Table 3.

In the Tables 2–3, θ(x) corresponds to the solution obtained by using Newton-
Raphson and the one used for obtaining the saddlepoint approximations and MC
estimators. In the cases considered, the first and second order saddlepoint approxi-
mations for both the CDF and PDF are quite close, and the second order approxi-
mation agrees with the results from the Monte Carlo simulations. The last column
of Table 2 indicates the relative error that one would introduce on replacing the
Laplace transform in (5.1) with its approximation La(0, θ̃). For n = 16 the relative
errors are (1 + ε)n − 1, where ε is the entry in the table.

5.1 Comparison with Gulisashvili and Tankov (2014)

For comparison purposes we consider the following example where the asymptotic
results of Gulisashvili and Tankov (2014) have been included. As that approximation
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Table 2: Approximation of the CDF of a lognormal sum with n = 16 and σ = 0.125. The
entry Lapp is the relative error L(θ̃(x))/La(0, θ̃(x))− 1.

x θ(x) θ̃(x) Saddle1 Saddle2 MC Lapp

0.70 33.13 33.33 1.755 · 10−31 1.761 · 10−31 (1.748± 0.124) · 10−31 2.12 · 10−4

0.80 18.36 18.48 9.752 · 10−14 9.807 · 10−14 (9.819± 0.171) · 10−14 2.04 · 10−4

0.85 12.74 12.83 3.009 · 10−8 3.031 · 10−8 (3.003± 0.045) · 10−8 1.83 · 10−4

0.90 7.99 8.05 1.615 · 10−4 1.632 · 10−4 (1.624± 0.098) · 10−4 1.48 · 10−4

0.91 7.13 7.18 5.892 · 10−4 5.956 · 10−4 (5.921± 0.069) · 10−4 1.38 · 10−4

0.92 6.30 6.34 1.890 · 10−3 1.912 · 10−3 (1.932± 0.021) · 10−3 1.28 · 10−4

0.93 5.49 5.53 5.358 · 10−3 5.424 · 10−3 (5.431± 0.056) · 10−3 1.17 · 10−4

0.94 4.71 4.74 1.350 · 10−2 1.368 · 10−2 (1.363± 0.013) · 10−2 1.06 · 10−4

0.95 3.95 3.98 3.039 · 10−2 3.081 · 10−2 (3.056± 0.028) · 10−2 9.29 · 10−5

0.98 1.82 1.83 1.872 · 10−1 1.901 · 10−1 (1.911± 0.014) · 10−1 4.92 · 10−5

Table 3: Approximation of the PDF of a lognormal sum with n = 16 and σ = 0.125. The
first and second order saddlepoint approximations are identical to the order stated.

x θ(x) θ̃(x) Saddle1 Saddle2 MC

0.70 33.13 33.33 5.873 · 10−30 5.873 · 10−30 (5.855± 0.050) · 10−30

0.80 18.36 18.48 1.829 · 10−12 1.829 · 10−12 (1.834± 0.016) · 10−12

0.85 12.74 12.83 3.975 · 10−7 3.975 · 10−7 (3.967± 0.034) · 10−7

0.90 7.99 8.05 1.388 · 10−3 1.388 · 10−3 (1.393± 0.012) · 10−3

0.91 7.13 7.18 4.576 · 10−3 4.577 · 10−3 (4.582± 0.039) · 10−3

0.92 6.30 6.34 1.318 · 10−2 1.319 · 10−2 (1.317± 0.011) · 10−2

0.93 5.49 5.53 3.332 · 10−2 3.332 · 10−2 (3.324± 0.029) · 10−2

0.94 4.71 4.74 7.415 · 10−2 7.416 · 10−2 (7.416± 0.064) · 10−2

0.95 3.95 3.98 1.459 · 10−1 1.460 · 10−1 (1.456± 0.013) · 10−1

0.98 1.82 1.83 5.520 · 10−1 5.520 · 10−1 (5.505± 0.047) · 10−1

is only valid for values x < 1 we restrict to this set. The results are summarized in
Table 4. We note that the relative error of our MC estimates (not shown) is of the
order 10−2 in all cases.

However, only for very small values of P(Sn ≤ z in the range of parameters we
have considered does the asymptotic expression in Gulisashvili and Tankov (2014)
become close to the exact value. It should be noted, however, that Gulisashvili and
Tankov (2014) also applies to some specific types of dependence as well as different
µi, σ

2
i whereas we are restricted to the i.i.d. case.
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Table 4: Approximations of the CDF and PDF of a lognormal sum with n = 4 and
σ = 0.250.

CDF PDF

x z θ(x) Saddle1 MC GT Saddle1 MC GT

0.03 0.1 2365.14 1.02 · 10−192 1.03 · 10−192 4.77 · 10−192 2.42 · 10−189 2.43 · 10−189 7.03 · 10−189

0.05 0.2 961.13 3.93 · 10−128 4.01 · 10−128 2.88 · 10−127 3.80 · 10−125 3.80 · 10−125 1.49 · 10−124

0.08 0.3 554.44 1.60 · 10−96 1.62 · 10−96 1.79 · 10−95 8.92 · 10−94 8.93 · 10−94 4.59 · 10−93

0.10 0.4 369.92 7.40 · 10−77 7.50 · 10−77 1.29 · 10−75 2.76 · 10−74 2.76 · 10−74 1.89 · 10−73

0.13 0.5 267.46 3.53 · 10−63 3.53 · 10−63 1.01 · 10−61 9.53 · 10−61 9.51 · 10−61 8.92 · 10−60

0.15 0.6 203.51 5.03 · 10−53 5.16 · 10−53 2.57 · 10−51 1.04 · 10−50 1.04 · 10−50 1.40 · 10−49

0.17 0.7 160.39 3.72 · 10−45 3.69 · 10−45 3.96 · 10−43 6.05 · 10−43 6.04 · 10−43 1.29 · 10−41

0.20 0.8 129.71 7.21 · 10−39 7.28 · 10−39 2.13 · 10−36 9.50 · 10−37 9.51 · 10−37 3.80 · 10−35

0.23 0.9 106.96 9.91 · 10−34 1.01 · 10−33 1.66 · 10−30 1.08 · 10−31 1.08 · 10−31 1.24 · 10−29
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A Appendix: Proof of Proposition 4.5

Let θ̃ = θ̃(x), µ̃ = Eθ̃[X], σ̃2 = Varθ̃[X] and Zn = (Sn − nµ̃)/σ̃, where Sn is based
on a random sample from Fθ̃. We want to estimate

αn(x) = P(Sn ≤ nx) = Eθ̃[L(θ̃)neθ̃SnI{Sn < nx}

=
enθ̃µ̃√
nθ̃σ̃

L(θ̃)nEθ̃[
√
nθ̃σ̃e

√
nθ̃σ̃(ξ−Zn)I{Zn < ξ}], ξ =

√
n(x− µ̃)/σ̃. (A.1)
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We know from Proposition 2.3 that as x → 0, corresponding to θ̃ → ∞, the
distribution of Zn approaches a standard normal distribution. Furthermore, θ̃ ∼
| log x|/(σ2x), µ̃ ∼ x(1 + O

(
1/| log x|)

)
, σ̃ ∼ xσ/

√
(| log x|), which gives

ξ =

√
n(x− µ̃)

σ̃
= O

(√
n/
√

(| log x|)
)
→ 0,

and
√
nθ̃σ̃ ∼

√
| log x|
σ

→∞.

These findings show that the mean value in (A.1) tends to 1/
√

2π as x → 0. The
same type of argument also gives that

Eθ̃
[{√

nθ̃σ̃e−
√
nθ̃σ̃(xi−Zn)I{Zn < ξ}

}2]

= 1
2

√
nθ̃σ̃Eθ̃

[
2
√
nθ̃σ̃e−2

√
nθ̃σ̃(ξ−Zn)I{Zn < ξ}

]

∼ 1

2
√

2π

√
nθ̃σ̃. (A.2)

Consider now the unbiased estimator

β̂n(x) = L(θ̃)neθ̃SnI{Sn < nx},
where Sn is based on a sample from the tilted measure Fθ̃. The above calculations
show that

Var[β̂n(x)]

βn(x)2−ε = O

({
enθ̃µ̃L(θ̃)n/(

√
nθ̃σ̃)

}2√
nθ̃σ̃

{
enθ̃µ̃L(θ̃)n/(

√
nθ̃σ̃)

}2−ε

)

= O
({

enθ̃µ̃L(θ̃)n
}ε(√

nθ̃σ̃
)1−ε

)

= O
(
exp{−εw0(θ̃)/σ2}w0(θ̃)(1−ε)/2)→ 0.

This shows the logaritmic efficiency of the estimator β̂n(x).
Consider next the unbiased estimator

α̂n(x) = L̂n(θ̃)eθ̃SnI{Sn < nx},
where L̂n(θ̃) =

∏n
i=1 L̂i(θ̃). Here L̂i(θ̃), i = 1, . . . , n, are independent and L̂i(θ̃) =

La(0, θ̃)Vi with
E[Vi] = L(θ̃)/La(0, θ̃) and E[V 2

i ] ≤ c,

for some constant c. Instead of (A.2) we have

Eθ̃
[{( n∏

i=1

Vi

)√
nθ̃σ̃e−

√
nθ̃σ̃(xi−Zn)I{Zn < ξ}

}2]
= O

(
cn
√
nθ̃σ̃

)
,

and

Var[α̂n(x)]

αn(x)2−ε = O

({
enθ̃µ̃La(0, θ̃)

n/(
√
nθ̃σ̃)

}2√
nθ̃σ̃

{
enθ̃µ̃La(0, θ̃)n/(

√
nθ̃σ̃)

}2−ε

)

= O
({

enθ̃µ̃La(0, θ̃)
n
}ε(√

nθ̃σ̃
)1−ε

)

= O
(
exp{−εw0(θ̃)/σ2}w0(θ̃)(1−ε)/2)→ 0.

This shows the logaritmic efficiency of the estimator α̂n(x).
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