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Abstract

This dissertation investigates fusion rings, which are Grothendieck groups
of rigid, monoidal, semisimple, abelian categories. Special interest is in
rational fusion rings, i.e., fusion rings which admit a finite basis, for as
commutative rings they may be presented as quotients of polynomial rings
by the so-called fusion ideals.

The fusion rings of Wess-Zumino-Witten models have been widely stud-
ied and are well understood in terms of precise combinatorial descriptions
and explicit generating sets of the fusion ideals. They also appear in an-
other, more general, setting via tilting modules for quantum groups at com-
plex roots of unity. The main goal of this dissertation is to generalize pre-
vious results to this setting.

Resumé

Denne athandling undersgger fusionsringe, som er Grothendieck-grupperne
for rigide, monoidale, semisimple, abelske kategorier. Szerlig interesse laegges
i rationale fusionsringe, dvs. fusionsringe for hvilke der findes en endelig
basis, for som kommutative ringe kan de praesenteres som kvotienter af
polynomiumsringe med de sakalde fusionsidealer.

Fusionsringene der hgrer til Wess-Zumino-Witten-modeller har vaeret et
udbredt forskningsemne, og er blevet praecist beskrevet med hensyn til kom-
binatorikken og eksplicitte frembringere af fusionsidealerne. De forekommer
ogsa i en anden, mere generel, opsatning via tiltingmoduler for kvantegrup-
per hvis parametre er komplekse enhedsrgdder. Hovedformalet med denne
afhandling er at generalisere de tidligere resultater til denne opsaetning.
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Introduction

Consider for some field k£ an abelian category JF, which is k-linear and
semisimple, i.e., the Hom-spaces are finite-dimensional k-vector spaces,
composition of morphisms is k-linear and there is a countable collection
of simple objects {L; | i € I}, such that dimj Homz(L;, L;) = 0, ; and any
object in F is isomorphic to a finite direct sum of the L;. Assume fur-
thermore that the category is rigid, monoidal and that the unit object is
simple. We call F a fusion category, and its Grothendieck group F' = K¢ (F)
is called a fusion ring. If there are only finitely many isomorphism classes
of simple objects, then we call F' a rational fusion ring.

We are mainly interested in fusion rings associated to a semisimple Lie
algebra g. Examples of settings where they arise include:

(i) The category of finite-dimensional g-modules.

(ii) The category of fixed-level representations of the affine Kac-Moody
algebra g associated to g.

(iii) The category of tilting modules of the associated quantum group at a
complex root of unity.

(iv) The category of rational modules of the corresponding semisimple,
simply connected algebraic group over a field of positive characteristic.

The first three examples will be examined in this dissertation, with the
main focus on the case (iii). An examination of (iv) can be found in [AP95,
Section 2|. Of these four examples the last three lead to rational fusion
rings.

Let us deduce some properties of fusion rings with the aim to make the
notion of a fusion ring independent of the category theory. Let {[i] | i € I}
denote the Z-basis for F' corresponding to the isomorphism classes of the
simple objects in F. The ring structure on F' relative to this basis is given

by
[d]17] = > N1,

lel

v
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where N} ; = dimy, Homz(L; ® Lj, L;) > 0 is the multiplicity with which L,
occurs in a decomposition of L; ® L; into simple summands. The duality
functor L — L* on F has L ~ (L*)*, so it maps simple objects to simple ob-
jects, giving an involution i — ¢* of I, which induces an antiautomorphism
of F'. If we let iy € I correspond to the unit object in F, this means that
N{% = 6; ;+ together with NX .. = N!,. We end up with the axiomatization
of a fusion ring given in Definition 1.1.

Among other things, you may ask the following questions about fusion
rings:

Given a fusion ring F', in the sense of a countable set I and a set of
integers {Ni{j € N | 4,5,l € I} satisfying the above properties, can we
classify the non-equivalent fusion categories, whose Grothendieck group is
isomorphic to F'? By Ocneanu rigity, cf. [ENOO05, Theorem 2.28|, over a
field of characteristic 0 the number of such is finite. An approach to this
problem is to classify fusion categories with a small number of isomorphism
classes of simple objects, and here [Ost03], [Ost08] and [Lar14] take care of
the cases of 2, 3 and 4 classes.

Given a fusion category, give an effective method for calculating the
structure constants Ni{j in the fusion ring. We ask for either an algorithm
that terminates in polynomial time or an identification of the structure
constants with known numbers.

If we consider the basis elements {[i] | i € I} as formal variables we may
present a rational fusion ring F' as the quotient of the free polynomial ring
in || variables by some ideal, namely

Fzld] /7,
where .J is the ideal generated by relations [i][j] —>,., N},[I] foralli,j € I.
Some of these variables can be eliminated, e.g. we may identify [ig] = 1.
Fix a subset {iy,...,i,} C I such that F' >~ Z[[i1],...,[i,]] /J' and no such

elimination may occur. What is a minimal generating set of J'?
Of these questions we will focus on the last two.

Summary

The dissertation is structured as follows. Chapter 0 introduces notation
and terminology used throughout the dissertation.

In Chapter 1 three main examples of fusion rings are examined. The case
(i) above is used as a prototypical example to describe the combinatorial
structure of a fusion ring in terms of fusion rules. From (ii) we define a
rational fusion ring, which is realized as a quotient of the first example.
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Finally (iii) gives rise to a class of fusion rings, which is seen to encompass
the previous examples.

Chapter 2 is a historical overview of the development of the theory on
fusion rings. Focus is on presenting the results used in this dissertation
according to when they were first introduced in the literature.

In Chapter 3 we address the problem of finding a minimal generating
set of the defining ideal in a presentation of the fusion ring as a quotient
of a polynomial ring. A combinatorial approach is used for Lie algebras
of classical type, giving explicit expressions for generating sets in these
cases. For Lie algebras of low rank, general algebraic arguments give a
non-constructive result on an upper bound for the number of elements in a
minimal generating set.

In Chapter 4 we do a treatment of the fusion rings associated to simple
Lie algebras of rank 2. Case by case, explicit generating sets of the fusion
ideal are presented and shown by calculations to work. The findings are
compared to the results in the previous chapter.

In Chapter 5 we relax the axioms of a fusion ring to get similar structures
for which the previously studied methods and results apply. In particular
we study tensor ideals in the category of tilting modules of a quantum
group. We give a general result on finding a generating set of the tensor
ideal, together with an explicit analysis in a case related to a Lie algebra of
rank 2.

In Chapter 6 we present our unfinished work and open projects. In
|[Doul3] a canonical generating set of the fusion ideal is presented for each
fusion ring in the setting of (ii). We present our progress in generalizing
this result to fusion rings for quantum groups, and outline the obstructions
that arise in this setting.
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Chapter 0

Notation and terminology

We fix once and for all notation for well known objects and constructions.
General references are [Hum72| and [Jan96].

NCZ

ey Wy

The set of non-negative numbers sitting inside the ring of
integers.

The fields of rational numbers, real numbers and complex
numbers.

A simple complex Lie algebra of rank r, a Borel and a
Cartan subalgebra.

The corresponding root system and set of positive roots.
The simple roots of ®+.

The highest short root and the highest long root.

The root lattice ZP.

Euclidean vector space (Q ®zR spanned by the root system.
Inner product on E such that (o, o) = 2 for all short roots
.

The numbers % for each simple root which are either
1, 2 or 3 depending on g.

The fundamental weights, dual in E to the basis 3‘—11, e 3—:.
The integral weight lattice > ;| Zw;.

The dominant weights ") Nw;.

The order on P given by A\<pu<s u—Ae@QnNPt.

Half the sum of the positive roots 3 >, cor @ = Y i_; Wi
The integers 2((25)) for A € P,a € ®.

The reflection A — A — (A, a¥)a on P with regards to
ae .

The Weyl group generated by all reflections s,,a € .
The longest element of the Weyl group.
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(aij)i j=1 The Cartan matrix, a; = (o, ).

The Laurent polynomial ring Z[v, v'] over the integers.

Q(v) The quotient field of A.

v; The number v%.

[n], The nth quantum number 2=+

;;LJ The Gaussian binomial coefficient %

U, ’ The generic quantum group over Q(v) associated to g with
generators F;, F;, K; and Ki_l,i = 1,...,r and certain re-
lations, cf. [Jan96, 4.3|.

EZ-(n), Ffm The divided powers [f]—v, [leT’ n>1.

[{f’] The element Hi,:l Kivi_s;ljgilvf_l ,t € N.

Uy K The Lusztig A-form, the A-subalgebra of U, spanned by all
Ei(n),Fl-(n) and Kiﬂ,i =1,...,r,n>1.

U, The quantum group U ®4 C over the A-algebra C by spe-

cializing v to a non-zero element g € C.
U, U, Ul The subalgebras of U, generated by {Fi(”) li=1,...,m,n>
+1
1}, {KH {Kz } |i=1,...,r,t € N} resp. {E™ | i =
qi

1,...,7,n > q}. Here ¢; = q¥.

Unless otherwise stated tensor products are always over the complex
numbers, i.e., we write ® = ®c. We also write dim short for dimc.

We assume for simplicity that the Lie algebra g is simple as the gener-
alization to the case of a semisimple Lie algebra is immediate.

0.1 Monoidal categories

The main subject in this dissertation is on rings in different shades. The
purpose of this section is to set up the language necessary to formalize
categorification of rings. As a general reference one may use [ML9S|.

A category is additive if all Hom-spaces have a structure of abelian
groups such that composition of morphisms is bilinear and every finite set
of objects have a biproduct. Necessarily the empty biproduct is a zero
object in the category. We use & for notation of the biproduct.

An additive category is abelian if all morphisms have a kernel and cok-
ernel and if every monomorphism is the kernel of some morphism and every
epimorphism is the cokernel of some morphism.
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A semisimple category is an abelian category where every short exact
sequence splits.

A (weak) monoidal category A consists of a bifunctor ® : A x A — A
written A® B, functorial isomorphisms as o : (AR B)®C ~ AR (B®C)
for any A, B,C € A, a unit object I € A, functorial isomorphisms A4 :
I®A~Aand py : AR I ~ A for any A € A subject to the following
axioms:

(i) The pentagon aziom: For any A, B,C, D € A the diagram

(A®B)®C)® D

aa,B,0®id W

(A® (BRC)) @D (A® B)® (C ® D)
A® ((B®C)® D) ol A® (B® (C® D))

commutes.
(ii) The triangle aziom: For any A, B € A the diagram

QAIB

(AI)® B A®((I®B)

A®B

commutes. A is called strict monoidal if the isomorphisms a4 ¢, Aa,
pa are actually equalities.

By Mac Lane’s strictness theorem every weak monoidal category is
equivalent to a strict monoidal category. We will therefore often omit the
associativity isomorphisms a4 p ¢ and the unit isomorphisms A, pa.

Let A, A" be monoidal categories. A monoidal functor consists of a
functor F': A — A’, functorial isomorphisms 45 : F(A® B) — F(A) &
F(B) for all A,B € A, and an isomorphism ¢ : F'(I) — I’ satisfying the
natural compatibilities: For any A, B,C € A the diagrams

BagB,C

F((A® B)® C)2°5°F(A ® B) o F(C) 222

F(A)®' F(B))® F(C)
FQA,B,CL a%(A%F(B),F(C)

F(A® (B® ) “*F(A) & F(B® C) 2F(4) &' (F(B) ' F(C))
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and
FIoA) LRy F(A)  F(Ae D) -5 F(A) e F(I)
F(/\A)l j@,id F(PA)L lid@ﬁ
F(A) I'e F(A) F(A)~—— F(A) &' I
F(A) F(A)

are commutative.
Let A be a monoidal category and A € A be a given object. A right
dual to A is an object A* together with two morphisms

A:A*(X)A—)[,LAZ[—)A@A*

such that the compositions

A f o A @ AN Y

A998 px o A @ A* AL g

are equal to the identity morphisms. There is a similar notion of a left dual
*A to A. The category A is called rigid if every object in A has a right
and a left dual. If A is a semisimple, rigid, monoidal category, then for any
object A € A there is an isomorphism A* ~ *A.

Let still A be a monoidal category. A module category M over A consists
of an exact bifunctor ® : 4 x M — M, functorial isomorphisms ji4 g s :
(A®B)@M — A®(BM) forany A,B€ A/ M € Mandey : IQM — M
for any M € M such that the diagrams

A ® B ® C
(A® (B®C)) (A® B)® (C® M)
lﬂA,B@C’,A{ lHA,B,C®M
id®up,c,m
A®((B®C)® M) e A®(B® (C® M)
and
(A1) oM faLy A®(I® M)
AQ M

commute for any A, B,C € A, M € M.
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If A is a rigid monoidal category and M a module category of A then
we have canonical isomorphisms

HOH]A(A®M,N) ~
Homy(M,A® N) ~

Hom4(M,* A® N),
Hom 4 (A* @ M, N)

for any A e A, M, N € M.

Let M, M’ be module categories over a monoidal category A. A module
functor consists of a functor F' : M — M’ and functorial morphisms
Yam : FIA®@ M) - A F(M) for any A € A, M € M such that the
diagrams

(A® B)®@ M)

F(A® (B® M)) (A® B) ® F(M)
lVA,BQg]M

A® F(B® M)

L'U‘;X,B,F(AI)

A® (B& F(M))

id®’'vB, M

and
Fep

F(I'®M)

[ F(M)

F(M)

commute for any A, B € A, M € M. The module functor is called strict if
all the morphisms 4 5s are isomorphisms. If A is rigid, any module functor
is automatically strict.

Let A be any category. A congruence relation R on A consists of an
equivalence relation R4 p on Homy (A, B) for any A, B € A such that the
equivalence relations respects composition of morphisms. Le., if fi, fo are
related in Hom 4(A, B) and g, g2 are related in Hom 4 (B, C) then g1 f1, 91 f2,
g2f1, g2.fo are related in Homy (A, C'). We define the quotient category A/R
as the category whose objects are those of A and morphisms are equivalence
classes of morphisms in A, i.e., Hom 4,r(A, B) = Homu(A, B)/R4 5.

Let A be an additive, monoidal category. We say a full subcategory Z of
Ais a tensor ideal if K@ L eZifandonlyif K,LeZandifAe A, JeT
implies A®.J € Z. Let R be the congruence relation on A where R4 5(f, 9)
if f—g: A — B factors through an element of Z, and define A/Z to be the
associated quotient category. This becomes an additive, monoidal category.
Furthermore A4/Z is a module category over A.
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0.2 The Grothendieck group

Let A be an additive category. The split Grothendieck group Kg(A) of A
is the quotient of the free abelian group generated by isomorphism classes
[A] of objects A € A modulo relations [A] = [B] + [C] whenever there is an
isomorphism A~ B & C.

If A is an abelian category then, as it is an additive category as well,
we could consider its split Grothendieck group. This group however is in
some ways too big. For instance two objects with the same composition
factors may not be identified in Kg (A). Instead we define the (non-split)
Grothendieck group Ko(A) to be the quotient of the free abelian group
generated by isomorphism classes [A], A € A modulo relations [A] = [B] +
[C] whenever there is a short exact sequence 0 - B - A — C — 0.

If A is additive, but not abelian, then we write Ky(.A) instead of K§ (A).
Whether A is additive or abelian we call Ko(.A) the decategorification of A.
For any abelian group G isomophic to Ky(.A) we say that A categorifies G.

If A is an additive/abelian and monoidal category, then the (split/non-
split) Grothendieck group has a ring structure induced by ®: [A|[B] =
[A® B]. If an additive/abelian category M is a module category over A
then its Grothendieck group Ko(M) has the structure of a Ky(.A)-module.

If Z C Ais a full subcategory of an additive category such that K ® L €
7 if and only if KL € Z then there is an injective embedding of the
Grothendieck group Ko(Z) in Ko(.A). If A is a monoidal category and Z is
a tensor ideal in A then Ky(Z) furthermore has the structure of a Kgy(A)-
ideal and we may form the quotient Ko(A)/Ko(Z).

Given a commutative, unital ring R and A the R-decategorification of an
additive/abelian category A is Ko(A)®zR. If M is an R-module then an R-
categorification of M is an additive/abelian category A and an isomorphism
M ~ KO (.A) Xz R.

0.3 The character ring and character
formulas

Define Z[P] to be the group algebra over Z of the weight lattice P. It is
free with Z-basis {e* | A\ € P} and its multiplicative structure is e*
eMH N, € P. The Weyl group action on P induces an action on Z[P] by
wer = e* w € W and we define the character ring Z|P]" to consist of the
invariant elements under this action. Then Z[P]" is a subalgebra of Z[P].

Each finite-dimensional g-module L splits into a direct sum of its weight
spaces L = @®xepLy, obeying dim Ly = dim L, for all w € W, so L

el =
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defines an element in the character ring: ¢ch L = >, _p dim Lye* € Z[P]".
It is well-known that the character ch L(\) of the simple finite-dimensional
highest weight module L(\), A € P* is given by the Weyl characters

D wew (—1)!Wer o)
T e (C1 e

and the set {x, | A € P*} constitutes a Z-basis for Z[P]". (1) makes sense
for all A € P and we note that if the stabilizer Staby (A) = {w € W | w.\ =
A} of A in W under the shifted action w.A = w(\ + p) — p is non-trivial
then x, = 0. If the stabilizer is trivial then there is a unique w € W such
that w.A € Pt and y, = (—=1)"®x, ..

If 3 cpaue” € Z[P]" is a W-invariant element then multiplication
with a Weyl character is explicitly given by

(Z aueu)X)\ = Z QX A p-

neP neP

(1)

As a Z-algebra Z[P]" is generated freely by x..,i = 1,...,7, i.e., we
have an isomorphism Z[X;,..., X,] ~ Z[P]" mapping X; to x.,. This
means that any W-invariant element »_ _pa,e” € Z[P]V can be written
as a polynomial in the fundamental characters.






Chapter 1

Fusion rings

Let F denote the category of finite-dimensional g-modules. For a dominant
weight A € PT denote by L()) the simple module of highest weight A. These
constitute all finite-dimensional simple g-modules, and any module M € F
splits as a direct sum of simple components: M = @, p+ L(\)TOD,
CL)\<M) e N.

For A\, € P the module L(\) ® L(p) is again finite-dimensional and
its decomposition into simple components are given by numbers My =
a,(L(N) ® L(u)). We recall a few well-known properties of these tensor
products.

Direct sum & and tensor product ® give F the structure of an abelian,
monoidal category. The trivial highest weight module L(0) = C is a unit
element, i.e., MY = 0y,.

The structure constants MY  are non-negative integers and given A, u €
P* only for finitely many v € P+ are they non-zero.

For any L(A) the dual module L(\)* is again a simple module of highest
weight \* = —wo()\) € PT, where wy(\) is the lowest weight of L()\). We
have (L(A)*)* = L(\), L(0) appears exactly once in the tensor product
L(\) @ L(\) and in fact MY , = d,-. This means F is a rigid monoidal
category.

The tensor product of dual modules is the dual of the tensor product of
the modules themselves, in the sense that M)’f; = My ,. We also see ex-
plicitly that the structure constants are given by My , = d1m Homy(L(\) ®
L(p) ® L(v*),C).

If we forget the categorical structure on F and consider only the struc-
ture constants {My , | A, u,v € PT}, what can we say about them? We
consider formal sums of elements indexed by P and give them a product
defined by the structure constants My . This is the ring structure on the
Grothendieck group Ko(F) with various additional properties correspond-

9
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ing to the properties deduced above. In the following section we formalize
these properties.

1.1 Fusion ring axioms

Definition 1.1. Let I be a countable set. A fusion rule on I is a set of
non-negative integers N = {NY , € N | \,u,v € I} such that

(i) NX, =N}, forall \,p,v €1,

(ii) 3, Ny NS, =3, o NILNS, for all A, p,v, ¢ €1,

(11i) there is an element \g € I and an associated map \ — \* given by
N{°, = 8y such that (\*)* = X and NY. .. = NY, for all A, p,v € I.

The associated fusion ring F = F(N) is the free Z-module with basis
{IA | A € I} equipped with multiplication [N[u] = >, NX [v]. If the
indexing set I is finite the fusion ring has finite rank and we say it is ra-
tional.

Remark. The requirements in the definition has the following interpreta-
tion. The condition (i) is equivalent to the multiplication being commuta-

tive
Nl =Y N =D Ny = [N

vel vel

and the condition (ii) is equivalent to it being associative

:ZN;;L ZN/T\];L 771/ ZNn NC

nel nCel el
= 3" N2 = ([l V)

Define a map [A\] — [A]* = [A\*] and extend by linearity to all of F.
Then (iii) is equivalent to this map being an involution ([A]*)* = [A] and a
homomorphism ([A][u])* = [A]*[u]* O

We say that two fusion rings F") and F® are isomorphic if there is a
bijection of their underlying index sets o : I) — I® which respects (i)-(iii)
o . v o(v 1 2
of Definition 1.1, i.e., such that (NW) == (N(z))ag,\;,a(u)v c(AM) = A},
og(A*) =a(N)"
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Properties of fusion rings

We deduce some results from the axioms of a fusion ring F' = F(N) for a
fusion rule NV on a set .

WehaveN)‘ = G = Ope oy = N> a0 [v] = [V = ZHGIN’\O '
= >, N9 ] which lets us rewrite the multiplication
=D Nauwlv
vel
where N, ,, = N” = Znel Ny N’\D The set of structure constants

{Napw | A v € ]} are Completely symmetrlc in the A\, p,v € I, for in-
stance Ny ., = 35 o NY NJO =37 ) NY NG = Ny, As aconsequence
we see that

o = = = /\o —
N/\()’“ - N)‘O’/"V* - NMV*M\O - N vx N = 6#71/

1,
so the special element [A\g] acts as the identity on F, denote it 1 = [A¢].
Moreover by the same formula Ni\é) = Oxgu We see that [Ao]" = [Ao].

Given an x € F write it in the basis given by I as x = ), ., na[A] and
define a Z-linear form t(x) = n,,. By assumption it satisfies ¢([A][u]*) =
N/{\f’ = 0, and furthermore t(x[u*]) = Y, oy nat([N[u*]) = ny. For x,y €
F define a Z-bilinear form (x,y) = t(xy*). It is positive-definite since
(A (1) = a0

Assume now that the indexing set [ is finite. Then the bilinear form
defines an isomorphism of Z-modules of F' with Homgz(F,Z) by = — [f, :
y — (z,y)]. If we give Homgy(F,Z) an F-action by zf(y) = f(z*y), then
this isomorphism is actually an isomorphism of F-modules since f,.(y) =
(zz,y) = (x,2*y) = zf.(y) for all z € F.

The exact sequence 0 — Z — Q — Q/Z — 0 induces to

0 — Homy(F,Z) — Homy(F, Q) — Homyz(F,Q/Z) — 0.

Since Q and Q/Z are injective Z-modules Homyz(F, Q) and Homz(F,Q/Z)
are injective F-modules. This means that Homy(F,Z) has finite injective
dimension, and by the module isomorphism F' ~ Homgy(F,Z) constructed
above, we conclude that so has F, i.e., rational fusion rings are Gorenstein.

1.2 The Wess-Zumino-Witten fusion rings

We resume in this section the work with representations of the Lie alge-
bra g initated in the beginning of the chapter. The representation ring
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R = Ky(F) has as elements formal differences of isomorphism classes of
finite-dimensional representations of g with addition given by direct sums
of representations and multiplication given by tensor product. The struc-
ture constants M = {My , | A\,u,v € P*} define a fusion rule on P,
and the representation ring with Z-basis {[L(\)] | A € P*} and product

structure
[LOVIL()] = MY, [Lw)]

vePy

is the associated fusion ring F'(M). The goal is now to show how to define a
rational fusion ring in a natural way from this construction. The following
is mainly based on [Bea96|.

Associated affine Lie algebra

Consider the ring C[[z]] of formal power series >~ c,2". Its quotient

field C((2)) consists of formal Laurent series ) _, c,2" with ¢, # 0 for
only finitely many negative n, and thus we have the polynomial ring C[27]
embedded in C((z)).

Let g = g ® C((z)) @ CK denote the affine Lie algebra associated to
g. This is the central extension of the infinite-dimensional Lie algebra g ®
C((z)) with one-dimensional center CK. The Lie bracket on g ® C((z)) of
two elements r ® f and y ® g is

[z® fLy®g| =[z,y] ® fg+ K (z,y) Res,—o(gdf ) K.

Here k(-,-) is the Killing form on g normalized such that coroots Y =
(5—%) € b corresponding to long roots 8 € ® has k (8Y,5") = 2.
We have a decomposition

g=9 ®g®CKag",

where g~ = g® 27 !C[z7!], g% = g ® 2C|[2]] and g = g ® 2° are subalgebras
of g. Let also p = g® CK & g" denote a parabolic subalgebra of g.

For a dominant weight A € P* let A(\) = U(g) ®u() Cx denote the
universal highest weight module of highest weight A\. Then L(\) occurs as
the unique simple quotient of A(\).

Denote by s the subalgebra of g spanned by z_5,®z, K— ) ®1, 25,®2"1,
where 44, € g1, are root vectors chosen such that [xg,, x_g] = —f5y. As
a Lie algebra s is isomorphic to sls.

Given an integer & > 0 we extend the action of g on A()\) to p by letting
K act by multiplication with k& and gt act trivially. We define the induced
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highest weight modules A(\) = U(g) Qup) A(A). A(A) has a unique simple
quotient L(\).

Recall the triangular decomposition g = n~ @ h & n of the Lie algebra g.
We call a g-module integrable if it is locally n~-finite and locally n-finite.
We say a g-module L is integrable if L is integrable as a g-module and also

as an s-module. Then the simple module L(\) is integrable if and only if
NeP,={ e P | (\Fy) <k}

Rational conformal field theory

Consider the Lie algebra g ® O[U] where U = P!\ {2y, 29,23} is the pro-
jective line minus 3 distinct points and O[U] is the ring of regular functions
on U. For an f € O[U] let (f)., € C((z)) denote the Laurent series expan-
sion of f at z;. For an integer k > 0 and 3 weights A, u,v € Py there is a
g ® O[U]-action on L(\) ® L(p) ® L(v*) given by

(2@ f)v1 @2 ®v3) =(1 @ (f)e,01) ®V2 @3+ 1 @ (@ (f)a,v2) @ 3
+ 01 @2 @ (2@ (f)es03)-

Then we define the vector space of conformal blocks on P! with 3 marked
points

Vil (A, g1, ) = Homgg oy (L(N) @ L(p) @ L(v*),C).

It is a fact that up to isomorphism these spaces do not depend on the choice
of local coordinates x1, xs, x3.

Definition 1.2. The fusion ring F' = F(g, k) for the Lie algebra g at level
k is the free Z-module with basis {[A] | A € Py} and product structure
N[u] =D, cp, NX V], where NY , = dimc V]P,TI(A, V).

Remark. This defines a fusion rule on P,. It is clear that the proposed
product structure is commutative. That it is associative follows from a
result in [TUY8&9].

The involution \* = —wy(A) preserves the positive part of the root
system, therefore fixes the longest root 5y and consequently A € P, < \* €
Py, i.e., it restricts to an involution on F.

An analogue of [Bea96, Proposition 2.8] shows that V];l()\,u, V) ~
VIJI()\*,M*,V) so NY, = Ni- . and thus the conditions in Definition 1.1
are satisfied.

Note that the indexing set P is finite so F' is a rational fusion ring. [J
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Combinatorial description of WZW fusion rings

We will identify the representation ring R and the fusion ring F' defined
above with certain anti-invariants in the free Z-module over the weight
lattice and describe their mutual relationship.

Let H, C FE denote the hyperplane fixed by the reflection s,. For
an integer n > 0 we let s,, denote reflection in the affine hyperplane
Hypn = na/2 + Hy, ie., San(A) = XA+ (n— (A, aY))a. In this section we
define the affine Weyl group Wy, v to be the group generated by W and
Sgo.k+hv, Where hY = (p, B/) + 1 is the dual Coxeter number.

Consider the group algebra Z[P] of P with Z-basis {e* | A\ € P}. The
action of W and Wy v on P extends by linearity to Z[P]|. Let Z[P]w
resp. Z[Plw,,,., denote quotients of Z[P] by the ideals generated by all
et — det(w)e?* for A € P and w in W resp. Wy, v (these rings are not to
be confused with the character ring Z[P]"'). Then Z[P] is a quotient
of Z[P]w and we denote the quotient map p.

By [Bea96, Lemma 8.2] we have the following

Wiinv

Lemma 1.3. The linear maps
¢: R—Z[Plw, wr:F —Z[Plw,,.
which maps [L(\)] to the resp. classes of e’ are bijections.
By the lemma there is a map 7 : R — F' making the diagram

R— ™ . F (1.1)

e

Z[Plw —>Z[P]

Wk+hv

commutative. Explicitly the map 7 is as follows. If a weight A € P* lies on
an affine wall, i.e., A+ p is fixed by an element of Wy v then m([L()\)]) = 0.
Otherwise there is a unique w € Wy v such that w. A =w(A+p) —p € P
and 7([L(\)]) = det(w)[L(w.\)]. In particular 7([L(\)]) = [L(A)] for A €
P;.

It is a fact that 7 is a ring homomorphism for all semisimple Lie algebras,
cf. [BK09, Theorem 3.7|. If A\, i € Py this means

> ML A(LE) = Y NYL[LW)],
gepry veEPy

1.e.

Ny, = > det(w)Myy. (1.2)

weEW v
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As a commutative, associative Z-algebra the representation ring R is
freely generated by the fundamental representations X; = [L(w;)],i =
1,...,r, i.e. it may be presented as the polynomial ring R ~ Z[ X1, ..., X,].
Since the map 7 in (1.1) is surjective and a ring homomorphism we may
identify the fusion ring F' as a quotient Z[X;, ..., X,|/I; where the ideal
Iy CZ[Xy,...,X,] corresponds to the kernel Ker(7) C R.

1.3 Fusion rings for quantum groups

Let ¢ € C be a root of unity and let [ denote the order of ¢?. If [ is even
this means ¢ is a primitive 2/th root of unity, and if [ is odd then ¢ is a
primitive [th or 2[th root of unity.

We work with U,, the quantum group at ¢ obtained from the Lusztig
A-form Uy of the generic quantum group U, by specializing v to ¢. This is
a Hopf algebra and it has a triangular decomposition U, = U(;U;)Uq*. We
denote by B, = U, Ug the quantized version of the Borel subalgebra.

Each weight A = >/, \iw; € P defines a homomorphism X : Ug —C
by

ME:) = ¢, N {ﬂ )= [A’f] 5

i=1,...,7,t € N. In this way A defines a 1-dimensional U)-module C
which becomes a Bj-module with trivial U -action.
For a U(?—module M and a weight A € P we define the A\-weight space

My ={me M | um = Xu)m Yu € UJ}.

We say A is a weight of M if M) # 0. The different weight spaces of M
form a direct sum, and if M is a U;-module the subspace @, p M, is a
U,-submodule of M.

We say a U;-module M is integrable if M is the sum of its weight spaces
and if, for each m € M and each 1 =1,...,7r, Ei(")m =0= Fi(")m for large
enough n. Let C, denote the category of integrable U,-modules (of type 1).
Similarly we denote by C,~ the category of integrable B;,-modules.

Induction modules

We have a functor F' from the category of U,-modules to C, which takes a
module M to its maximal integrable submodule F(M) = {m € M | Vi :

E™m = F™m =0 for n > 0}.
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Define the induction functor Hy : C; — C, by
H)(N) = F(Homp, (U, N))

for N € C; . Here U, is a B,-module by left multiplication and Homp, (U, N)
is a Ugjmodule by uf(x) = f(xu),u,x € Uy, f € Homp, (Uy, N). The in-
duction functor is left exact, and we denote its ith right derived functor by
H ; =R'H 8.

Recall that each A € P defines a one-dimensional B,-module C,. We
define the induction modules

V,(\) = HI(C).

Then V,(A\) # 0if and only if A\ € PT, and for such A it has a unique simple
submodule L,(A\). In this case it is finite-dimensional and its character
chVy(A) = > ,cpdim V(A) et € Z[P] is equal to the Weyl character x,.
For any M € C, we have Irobenius reciprocity

Homy, (M, V(X)) ~ Homp, (M, C,). (1.3)

Given an M € C, and a weight A\ of M the projection M — M), is a
NoN-zero Ug—homomorphism. If X\ is a highest weight of M then um ¢ M,
for any u € U, ,m € M, meaning the projection is a B;,-homomorphism.
Taking a 1-dimensional summand of M), and identifying it with C, gives
us an element of the right hand side of (1.3), which induces to a non-zero
U,homomorphism M — V,(A).

It follows that the modules L,(\), A\ € PT up to isomorphism form a
complete set of nonisomorphic simple finite-dimensional modules in C,. For
given a simple finite-dimensional U,-module M, let A be a highest weight
of M and take a non-zero homomorphism M — V,()) as above. This must
be an injection identifying M with the unique simple submodule L,(\).

The antipode S on U, gives the dual M* = Hom¢ (M, C) a U;-module
structure by uf(m) = f(S(u)m),uv € U,,m € M, f € Homc(M,C). We
define

Ay(A) = Vo (A7)

where still \* = —wpA. Then A (\) and V,(A\) have the same characters,
and L,(\) occurs as the unique simple quotient of Aj(\).

Lemma 1.4. For all A\, € P* we have Exty, (Aqy(N), Vg(p)) = 0.

Proof. Suppose that
0— V() = E— AN —0
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is a short exact sequence in C,. If A 2 1 then p is a maximal weight for E,
and we have seen above that Frobenius reciprocity (1.3) gives us a non-zero
homomorphism E — V,(u) and the sequence is split. If A > p we dualize
the sequence and get

0—V,\)—=E"—= A, u)—0

which by the same argument is split, and consequently the first sequence is
too. 0

The Grothendieck group of C,

Let Ko(C,) denote the Grothendieck group generated by isomorphism classes
[M] of integrable modules M € C, modulo relations [M] = [L] + [IN] when
we have a short exact sequence 0 = L — M — N — 0 of modules in C,.
The sets {[V,(A)] | A € PT} and {[L,(\)] | A € Pt} are two Z-bases of
Ko(C,). For M € C, we write [M : V,(\)] for the coefficient of [V, (\)] when
[M] is written in the former basis.

For a finite-dimensional B,-module N we define the Euler character yy

in Ko(C,) by
Xn =D (1) [Hy(N)].
>0

For N = C,, A € P simply write y,. By the quantum version of Kempf’s
vanishing theorem (cf. [APK91, Corollary 5.7], proved in general in [RHO03|)
all higher induction modules for Cy, A € P vanish such that x) = [V ()]
justifying the abuse of notation as ch V() is equal to the Weyl character.
Likewise we have y, = (—1)"®)x,. for general A\ € P and w € W, cf.
[And03, Corollary 3.8].

An integrable module N € C; splits into a direct sum of its weight
spaces N = @ cp Ny, which leads to a B -filtration of IV, and we have yy =
Y sep(dim Ny)xy. The comultiplication of U, makes C, into a monoidal
category and gives Ky(C,) a ring structure. The tensor identity [APK91,
Proposition 2.16] H;(M ® N) ~ M ® H}(N) for M € C, finite-dimensional,
together with the fact that y is additive with respect to short exact se-
quences, gives us for A € Pt

[M][V,(N)] = x(M @ Cy) = > (dim M, ) x4

veP

- Z (Z(—l)l(w) dime,l,A> [V, (v)].

vePtT \weWw
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This can be rewritten as

[M & V,(A): V()] = > (=1)!) dim M, (1.4)

weW

for M € C, finite-dimensional and \,v € P*.

The linkage and translation principles

Following [And03] we define the strong linkage relation for U,. Recall that
the Weyl group W is generated by the reflections s,,a € ® of P given by
Sa(A) = A= (A, a") a, and that P* is a fundamental domain for this action.
We also have the shifted action of W on P fixing —p instead of 0, the shifted
reflections being so. A =s,(A+p) —p=A—(A+p,a’) .

For i = 1,...,r let [; = [/gcd(l,d;) and for any root a € ® with
a = w(wy), let I, = l;. Note that this is independent of the choice of
1=1,...,rand w € W.

For a € ® and m € Z define the affine reflection s, m(A) = so(A) +mlaa
and in the same way the shifted affine reflection. The affine Weyl group W,
is the group generated by all shifted affine reflections s, ., € &, m € Z.
Define the fundamental alcove

A={AeP|0< (A +pa’)<l,Vaed"}
The closure of A; is

A ={AeP|0< (A+p,a’)<l,Vae dt}
and this set is a fundamental domain for the affine Weyl group.

Remark. This notion of affine Weyl group is a generalization of the one in
Section 1.2. There will be more details on this at the end of the chapter. [J

The shape of A; depends on whether [ = [, for all « € ® or not. In
the first case it is easy to see that A4, = {\ € PT | (A\+p,q) < ([} and
likewise in the second case A; = {\ € Pt | (A\+p,3y) <1/dg,}. For g of
type B,, C, or F, this is a question of whether 2 divides [ and for type G5
of whether 3 divides [. If [ is prime to all d;, then the affine Weyl group is
actually the affine Weyl group for the dual root system in the Bourbakian
convention.

Let s; = s4,,72 = 1,...,7 denote the simple reflections in W. The affine
Weyl group is generated by the reflections in the walls of A;. Let sy denote
the reflection in the upper wall of A, i.e., if | = [, for all « € ® then
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S0 = Sap1 and otherwise sy = sg,1. Then {sg,s1,...,s,} with the shifted
action on P is a simple generating set of W;.

Write A 15 wif A\, u € P are related by = sg,.Afor f € ®Fand m € N
with (A + p, 5Y) < mlg, i.e., X < sgm.A. We say that X is strongly linked
to p and write A T u, or just A T p, if there are A = Ay, Ao, ..., A\, = p such
that \; 75, Ait1 for some 3; € &%,

We record the linkage principle for which a proof can be found in [And03,
Theorem 3.13].

Theorem 1.5. Let N\, + p € Pt. Assume that Ly(\) is a composition
factor of H)(w.p) for some w € W and i > 0. Then A\ 1 p.

Corollary 1.6. Let V € C, be an indecomposable module. If \,u € P+
such that both Ly(\) and L,(p) are composition factors of V' then p € Wi A.

Proof. Suppose that p ¢ W;.\. We will show that any extension
0—L,\)—=V =L, (u) =0

splits. Assume that A £ p such that A is a maximal weight of V. We have
seen that Frobenius reciprocity (1.3) gives us a non-zero U;-homomorphism
V — V,(A). By the theorem L,(u) is not a composition factor of V()
so the map V' — V() has image L,(\) and the sequence is split. In case
A < p we dualize the sequence, and the above shows that

0— Ly(u*) = V"= L,(\")—0
is split, which in turn tells us that the original sequence is split. 0

For ;1 € A; N P* there are no dominant A € P* strongly linked to u
other than A = pu, so the module V,(u) = L,(1) is simple.

For A € A; let C,(\) be the full subcategory of C, consisting of modules
whose composition factors have highest weights in W;.A\. By the corollary
the category C, is a direct sum of these subcategories

Cq = EB Cq@‘)

)\EAl

and we let py : C; = C,(\) denote projection functors.
For \,u € A; let w € W be such that w(u — \) € PT. Define the
translation functor T} : Cy(A\) — Cy(p) by T (M) = p, (M & Ly(w(p—N))).
We record the translation principle for which a proof can be found in
[APK91, Theorem 8.3|.
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Theorem 1.7. Let A € A;,u € A;. Then
(i) TYH(w.\) ~ Hi(w.pu) for all i > 0,w € W,
(ii) if w € W, with w.\ € PT then

Ly(w.p) if w.p is in the upper closure of w.A

0 otherwise ’

T\ Ly(w.\) = {
(1i1) if Staby,(u) = {1,s} and w € W, satisfies w. A < ws.\, then there is
an eract sequence

0 A 770 0
0— H)(w\) — T H)(w.u) = H(ws.\) —

i A pyi i
— Hy(w.\) — T Hi(w.pu) — Hi(ws.\) =

Tilting modules

A finite-dimensional module 7' € C, is a tilting module if it has both a
V., and a Ajfiltration. Let 7, denote the subcategory of C, consisting of
all tilting modules. It is obvious that direct sums and direct summands of
tilting modules are again tilting modules. We also note the non-trivial fact
that the tensor product of two tilting modules is also a tilting module, cf.
[Par92, Theorem 3.3|.

We immediately see that for all A € 4; N P* the module V,(\) ~
L,(N\) =~ Ay ()) is tilting, and in fact for general A the induction module
V,(A) is tilting if and only if it is simple.

The tensor product of a tilting module with a finite-dimensional module
is again a tilting module, and therefore the category of tilting modules is
closed under translation functors.

Proposition 1.8. Let A\ € P*. Then there exists an indecomposable tilting
module T, (\) € T, such that

(i) all weights p of T,(\) have p < A,
(i) AimT,(A\), =1 and
(i) T,(X\) is unique up to isomorphism.

The proof is an analogue of [AP95, Proposition 1.7], which is originally
due to Ringel [Rin91] and Donkin [Don93|.
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Proof. We have already noted that if A € A; N P* then T,(\) = V,()) is a
tilting module that meets the requirements. We will use induction on the
length I(w) of elements w € W, for which w.4; C P* to show existence of
T,(w.\) where \ € A,.

Let w € W, be such that w.A; € P and pick a simple reflection s for
which l(w) < l(ws). If ws.A = w.\ there is nothing to prove. Otherwise
pick pu € A; with Stabyy, (1) = {1, s}. Then T,(w.u) exists by the induction
hypothesis. Consider Tqu(w.u) which is a tilting module. By Theorem 1.7
we have a short exact sequence

0— Vy(wA) — T:Vq(w.u) — Vy(ws.A) =0

showing that V,(ws.\) will occur with multiplicity 1 in a V-filtration of
T)Ty(w.p). Therefore we take T,(ws.\) to be the unique indecomposable
summand of this module such that 7, (ws.\)ys.x 7# 0.

To prove uniqueness, suppose that T, (A) and T,(\) are two indecompos-
able tilting modules with the properties (i) and (ii). Then A,()) occurs as
a submodule in the A filtrations of both T, (\) and T;(A). This fits into a
diagram

0—=4y(N) —=T4,(A) —=T,(A)/Ag(A) —=0

0—— 8, () —> TJ(\) — TYN) /Ay (A) —> 0

As Ty(N)/Ag(N) has a Afiltration and T;()\) has a V- filtration induc-
tion on the lengths of the filtrations together with Lemma 1.4 gives us
Exty, (T,(A)/Aq(A), T;(X)) = 0. Under the surjection Homg, (T;()), T;()))
— Homy, (Ay(A), Ty(N)) let o @ Ty(A) — T;(A) be a homomorphism which
restricts to the identity on A,()\). Similarly we get a homomorphism
¢+ Tj(A) — Tg(\) which restricts to the identity on A,()). The com-
position ¢’ oy is an endomorphism of T} (A\) which is the identity on T,(\),.
Since T,()) is indecomposable and of finite length, it is a standard result
that ¢’ oy is either bijective or nilpotent, and we see the latter is impossible.
As the same applies to ¢ o ¢’ we conclude that T (\) = T;(N). O

In the split Grothendieck group Ko(7,) we have a Z-basis {[T,(\)] | A €
P*}andlet (T : T,(X)) denote the multiplicity of 7, ()) as a direct summand
of ' € T,. As aring Ko(7;) is freely generated by the isomorphism classes of
the indecomposable tilting modules belonging to the fundamental weights,
i.e., we have a presentation Ko(7,) ~ Z[X1,...,X,] with X; = [T(w;)],7 =
1,...,r.
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Proposition 1.9. Let T' € 7T, be a tilting module. Then for all X € A; we

have
(T:T,00) = 3 (~1) [TV, (wN)].

weW,
wAEPT

We repeat the proof from [AP95, Proposition 3.20].

Proof. Since both sides are additive in 7T, it is enough to show the formula
for T'=T,(v),v € P, for which the left hand side is (7,(v) : T;()\)) = 0y
If v =X € A; then T,(v) = V,(v) by the linkage principle, and the right
hand side is also 1. We are left to show that the right hand side is 0 for all
other values of v.

By the linkage principle Corollary 1.6 the right hand side is 0 unless
v € Wi\, So suppose that v = w.\ for some non-trivial element w € W;.
Consider the construction of Ty(w.)\) as a summand of T)T;(w.y) where
€ A is a weight fixed by a single non-trivial reflection s such that w.p is
in the lower closure of the alcove containing v. Since translation is exact,
for each V,(y.1),y € W, occuring as a sub-quotient in a V filtration of
Ty(w.p), we will see TV, (y.41) as a subquotient in a filtration of T T, (w.p).
If y.A < ys.\ the modules fit into an exact sequence

0— Vy(y\) — Tl;\Vq(y.,u) — V4(ys.\) = 0.

If y. A > ys. A we have a similar result. Since the sequence is non-split we see,
that if V,(y.A) occurs in a V filtration of T,(w.)\), then V,(ys.\) occurs
too and contributes with opposite sign to the formula. O

The above proposition together with (1.4) applied to 7" = Ty()\) ®
T,(u), A\, u € AANPT, and v € A, gives us the following multiplicity formula

(T4(N) @ Ty(p) : To(v)) = Z (_1)l(w) dim Vg (A)w.v—p- (1.5)

weW,

The negligible tilting modules

Let N, denote the subcategory of 7, consisting of those tilting modules
which have no summands T}, (\) with A € A;, these are called the negligible
tilting modules. It is shown in [AP95, Thm 3.21] that N, is a tensor ideal
in 7, and that the quotient 7,/N is semisimple.

Definition 1.10. Define the fusion ring F, = F,(g,l) for the quantum
group U, to be the quotient of the Grothendieck group Ko(T,) by Ko(N).
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Remark. The product structure on Ky(7,) induces a product structure on
the fusion ring F}, which satisfies Definition 1.1: It is commutative because
the multiplication on Ko(7;) is.

Let [A] denote the image of [T,(\)] in F, for A € A;. As a Z-module
F, is free with finite basis [A\], A € A;. We extend the notation [\] € F,
to all A\ € P by saying [A\] = 0 if A lies on a wall for W, and otherwise
[\ = (=1 [wy A for the unique wy € W, with wy.\ € A;.

From (1.5) the multiplication in F} is then given by

Nl = D (TN @ Ty(w) : T,(v)) V]

vEA;

= > (D (=)™ dim V(A V]
VEAZ wGWl

= Z dim V (A, [ + V]
veP

for A\, u € A;. In this notation we show associativity of the product struc-
ture:

(D] = = dim V,(A),[n][p + v]
= Z dim V,(X), dim V(n)¢[p + v + (]
v,(EP
—Zdlmv A+ ]
¢epr

= (Wl[ul) = Nl ]).-

The notation above satisfies [A]* = [\*] for all A € P: Since the involu-
tion —wyq preserves both the highest short root and the highest long root
it preserves A;. Then it also permutes the walls 4; \ 4; and therefore the
walls of W7, i.e., [\] = 0 if and only if [\*] = 0.

On the other hand, if A lies off the walls, then wywy-wq is an element of
W, with wowy=wg. A = —wo(wy«.(—weA)) = (wy=.A*)* € A;, so by unique-
ness it equals wy, i.e., [\] = [\*]*.

Using this we see
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showing that the involution on Fj, is a homomorphism. O

As a ring F, is generated by the images of X; = [Ly(w;)],i = 1,...,7,
when [ is big enough that A; # 0. In the presentation of the Grothendieck
group Ko(7,) as a polynomial ring Z[X,,..., X,] let I; be the ideal corre-
sponding to the Grothendieck group Ko(N,). Then F, ~ Z[X, ..., X,]/I.

Identification with the WZW fusion rings

Given a Lie algebra g the fundamental alcove A; matches the region P
for certain integers k,[ € N, and it is reasonable to expect the fusion rings
F(g,k) and F,(g,l) to be isomorphic. To be precise, we require that [ is
divisible by all d;,;i = 1,...,r, (if g is simply laced this is always the case)
and then that k =lg, — hY = lz, — ((p, By) + 1). In this case the definition
of Wi, pv from Section 1.2 and the definition of W, of this section match up,
since they are both generated by reflections of P in the walls of P, = A;.

Under the above assumptions we show equality of the fusion rule N =
{NY | A, v € B} from (1.2) and the fusion rule N = {N'y | | A\, p,v €
A} from (1.5). To do this we recall Klimyk’s formula [Hum72, Exercise
24.9] for A\, p € P*

[LO) ® L()] = Yty dim L) [L(( 41+ p) " = p)]

nepr

where t; = 0 if ( € P is fixed by a non-trivial element of W, and otherwise
te = (=1)!®) for w € W the unique element of the Weyl group such that
w¢ € P7T is dominant. In both cases (T is the unique element in P*
conjugate to ¢ by W. Then the coefficient of [L(£)],£ € PT appearing in
this sum is

M, = Y turpdmINe= 3 (~) dim LM e
weWw weW
w.(uin):f w.fE;H-n

Finally we sum over all w’' € Wy v, w’.v = £ and get

NL= Y (@M = Y (1)@ dim L)y

w/EWk+hV weWk+h\/
w' . v=¢

Now this number matches exactly N’y , = Zwewl(—l)l(“’) dim V(A w.v—ps
since they are both given by the Weyl character x,. Thus the fusion rules N
and N' on P, = A, are the same, and the associated fusion rings F(g, k) and
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F,(g,l) are isomorphic. We will therefore mostly work with the quantum
version of the fusion ring in the rest of the dissertation.

We note that all results and properties regarding the combinatorics of
the fusion ring F'(g, k) in the Lie algebra setup are valid for the correspond-
ing fusion ring F,(g,!) for the quantum group where the order [ of ¢? is
divisible by all d;,i = 1,...,r. Much of the work in this dissertation is
focused on giving self-contained proofs in the quantum group setup and
generalizing them to arbitrary orders [.

The fusion ring for U, (sl)

As an example we explore the structure of the fusion rings associated to
the quantum group U, (slz). We let ¢ € C be a root of unity such that, for
[ the order of ¢?, we have k =1 —2 > 0.

Identify the dominant weights P with the natural numbers N. For each
dominant weight n € P* the induction module V,(n) is (n+1)-dimensional
with a basis ey, . . ., e, such that e; has weight n—2¢. The simple submodule
L,(n) € V,(n) is the span of those e; for which the quantum binomial

coefficient m # 0. When n < | = ord(¢®) all [y], = % # 0 for
q

0 < <n and the induction module V,(n) = L,(n) is simple.
For n,i € N write n = n(® 4+ (nMW i = i + iV with 0 < n©® 0 <.
By [Lus10, Lemma 34.1.2 (c)] we have

Nl 0 1)) (D 1) (D2 nM\ [n©
i, 1 iw ) [i@]

This shows that
(i) If 0 <n < then V,(n) = L,(n) is simple.
(i) If n = —1 mod [ then V,(n) = L,(n) is simple.

(iii) Tf n = n©® + n® with 0 < n® < —1 and nV > 1 then we have a
short exact sequence

0 — Ly(n) = Vy(n) = Ly(n — 20 —2) — 0.

We conclude that V,(n) = T,(n) is a tilting module if and only if 0 <
n<lorn=-1 modl

Consider as in case (iii) an n = n(0+InM with 0 < n©® < -1 and nV) >
1,i.e., nis a regular weight. For m = InY) —1 we know that T,(m) = V,(m),
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and that T,,(n) is the direct summand of V,(m)® L,(n®) 4+ 1) involving the
weight n. In conclusion we have a short exact sequence

0— Vy(n—2n" —2) = T,(n) = V,(n) — 0. (1.6)

The ideal V, has an N-basis in the indecomposable tilting modules T} (n)
with highest weight outside the fundamental alcove, i.e., in PT\ 4, = {n €
N | n >1—1}. We claim that the tilting module T, (I — 1) = V (I — 1)
generates N, over T,. To see this either use the general Proposition 3.1 or
check directly for low values of n > 1 —1

Ty(1 = 1) @ Vo(1) = T(1)

T~ 1)@ Vy(@) ~ Tyl + ) & Ty(l 1)

Tyl = 1) @ Vy(3) =~ Ty(l+2) ® To(1)

T,(1=1) @ V4(4) 2 Tyl +3) @ Ty(l+1) & Ty(l — 1)

This is seen by looking at which induction modules occur in a V filtration
of V(I —1) ® L for L finite-dimensional, and compare it with (1.6).

In the Grothendieck group of 7, we set X = [V,(1)], and identify
Ko(7,) ~ Z[X]. The character of V,(1) is e + e~! meaning that for any
n>1

X[Ve(n)] = [Vo(n + 1) + [Vg(n = 1)]. (1.7)
For low values of n we calculate
[Va(2)] = X[V4(1)] = [Vg(0)] = X* — 1
[Vq(?))] = X[vq(2)] - [vq(l)] =X’ -2X
[Vo(4)] = X[V4(3)] = [V4(2)] = X* = 3X7 + 1
[V,(5)] = X[Vy(4)] = [V,(3)] = X* — 4X7 + 3X

(" 1 n—2i
w0 = (") ae
=0
and check that it respects (1.7). Then the presentation of the fusion ring
F, = F,(sly,1), as a quotient of a polynomial ring, is given by

-1

Z[X]/ <F:J (—1) (l P 2) Xl—%—1> |



Chapter 2

Known results and conjectures

In this chapter we go through the development of the theory of fusion rings
associated to semisimple Lie algebras. Our focus is on getting precise ex-
pressions of the fusion rules and on presenting the fusion ring as a quotient
of a polynomial ring. We present key points in a seletion of papers con-
tributing to these areas in the notation introduced in Chapter 1.

2.1 Gepner 1991

In [Gep91] the fusion ring F' = F(g, k) at level k € N for a simple complex
Lie algebra g of type A,,r > 1, is studied. The study exploits heavily the
symmetry of the Weyl group W = S, and the character ring Z[P]".

A simple finite-dimensional representation L(\) is identified with the
Young diagram corresponding to A € P*. For A = >\ mw; € P set
ANi=m;+---+mpi=1,...,7. Then \y > Xy > --- > A\, > 0 and the
level of A is simply (A, By) = A1, i.e., A € Py if and only if Ay < k. The
Young diagram of A is then the non-increasing rows of boxes with \; boxes
in the ith row. Use the notation [ay,...,a,| where n = A; is the number
of columns in the Young diagram, and a; is the number of boxes in the ith
column. Thenr > a; > a9 > --- > a, > 0.

There are two types of special representations of g: the fundamental
representations L(w;),7 = 1,...,r, whose Young diagram [i] consist of one
column with ¢ boxes, and L(nw;),n € N, whose Young diagram [1,...,1]
consist of one row with n boxes.

Gepner proves a (Pieri) formula for the product of the isomorphism class
X; = [L(w;)] of a fundamental representation with any other element of R
represented in Young diagram by

[{far, - an) =) [bi,. .., bl (2.1)

27
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where the sum is over all those r+1 > by > --- > b, > 0 with ) b; =
>oa;+1i,a;+1>b; > a;, and with the convention that b; = r + 1 is the
same as b; = 0. This corresponds to adding ¢ boxes to the Young diagram
without adding two boxes in the same row, and if a column has r + 1 boxes
in it we remove it. As a consequence of this, he proves a (Giambelli) formula
which expresses any element in R as a polynomial in the X;:

[al, . ,an] = det([ai + 17— j])lgi,jgn (22)

where det is the determinant of this matrix with the convention that [0] =
[r+1]=1and [i]]=0fori>r+1ori<D0.

For a weight A\ € P, we denote by [A] the corresponding basis element
in F'. The associated Young diagram has at most k columns, and we write
it [ay,...,a] allowing some of the a; to be 0. The corresponding (Pieri)
formula for multiplication of [w;] with another element of F' is a truncated
version of (2.1):

({ar, .. a) = [br, .. by (2.3)

where the sum is over all those r +1 > by > --- > b, > 0 with Y b; =
Zaj +1, a; +1 > b; > a;, and with the convention that b; = r + 1 is the
same as b; = 0. This corresponds to adding ¢ boxes to the Young diagram
without adding two boxes in the same row, and we do not allow more than
a total of k£ columns. If a column ends up with r 4+ 1 boxes in it, we remove
it.

As the representation ring R is generated freely by the classes of the
fundamental representations X;,7 = 1,...,r, there is an identification R ~
Z[Xy,...,X,] with the polynomial ring in r variables. Gepner shows that
there is a surjective algebra homomorphism ¢ : R — F' whose kernel [ =

Ker(yp) is generated by the classes [L((k+ 1)w1)], ..., [L((k+7)wy)], i.e., we
have an isomorphism
F~R/{L((k+ Dw)],...,[L((k+7)w)]).

This is done by showing that all elements in R of level k£ 4 1 is contained
in the ideal using the determinantal formula (2.2). Then the two formulas
for multiplication (2.1) and (2.3) agree.

The next step is to show that the relations [L((k + i)w;)] € R can be
integrated to a single polynomial V(X7,...,X,), i.e. the partial deriva-
tives of V w.r.t. the variables X gives the relations [L((k 4 7)w;)]. Such a
polynomial is called a potential function for the ideal I.

Denote by €1 = wi,6; = w; — w1, = 2,...,r and €41 = —w, =
—(e1 + -+ + &) the weights of the standard representation L(w;) and set
g =€, ie, chl(w) =>,, ¢ ¢€ZP".

,,,,,
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Written in these variables the character of the fundamental representa-

tion L(w;) is
Xw; = E Qj1 - - - DG
1< < <gi<r+1

and the character of the representation L(nw) is

Xnwi — Z 4j1 - - -4

1< < Sgn<r+1

which can be seen, for instance, by the Weyl character formula (1).
For each positive number m > 1 consider the element

r+1

1 m
E 121 q; (2-4)

living in Z[P] ®z Q. The set of weights {me; | i = 1,...,r + 1} is W-
invariant, so the element Z:;l e defines an element of the character ring
Z[P]V. Consequently the element in (2.4) can be written as a polynomial

with rational coefficients in the fundamental characters x,,,7 = 1,...,7.
Let V,,(X1,...,X,) € R®z Q be the same polynomial in the isomorphism
classes of the fundamental representations X;,7 = 1,...,r. GGepner proves
by calculations on the generating function V(t) =Y > (=1)™"!V,,t™ that
the derivatives of V,,, w.r.t. the X, are elements of R satistying

T2 = () (= i)

for m > 1. We therefore set V' = Vj,,11, and we have the desired formula

ov ov
F—R/<0_AX717...’8_XT>.

Gepner ends the work with the type A, case stating a conjecture on
fusion rings for Lie algebras of other types.

Conjecture 2.1. All fusion rings defined in the setting of rational confor-
mal field theory are presentable as the quotient of a polynomial ring by an
ideal generated by the partial derivatives of a potential function V', which is
a polynomaial with integral coefficients.
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2.2 Gepner and Schwimmer 1992

In |GS92] much of the work from |Gep91| is generalized to a Lie algebra
g of type C,.,r > 2. Again the focus is on describing the fusion ring F =
F(g,k),k € N, as a quotient of a polynomial ring modulo an ideal generated
by partial derivatives of a potential function.

The methods in this article are less combinatorial than in the previous
one, and characterizes the fusion ideal as an ideal of polynomials vanishing
on a specific set of points. The result, however, is phrased in the same
language as before.

Denote by €1 = wy, &, = w;—w;_1,1 = 2,...,r, some of the weights of the
standard representation L(w;) and set ¢; = €%, i.e., chL(A) = > 7 (¢ +
¢;') € Z[P]". For m > 1 the set of weights {£me; | i = 1,...,7} is
invariant under the Weyl group action, so the element

% i(qzm +q;™) (2:5)

defines an element of Z[P]" ®7 Q and can therefore be written as a polyno-
mial in in the fundamental characters y,,,? = 1,...,r with rational coeffi-
cients. Let X; = [L(w;)],i = 1,...,r, denote the isomorphism classes of the
fundamental representations. Let V,,(X1,...,X,) € R®zQ be the polyno-
mials obtained from (2.5). Then the partial derivatives of V' =V, ., are
elements of R that generate the fusion ideal:

ov ov
F—R/<a_‘)(vl’...,a_Xr>.

In conclusion, Gepner and Schwimmer confirms Conjecture 2.1 in the
case of a Lie algebra of type C..

2.3 Bouwknegt and Ridout 2006

In [BRO6] the method from [Gep9l] and [GS92] for presenting the fusion
ring ' = F(g,k),k € N, for a Lie algebra g of type A, or C, in terms
of a potential function is revisited. It is shown that analogous potential
functions cannot describe the fusion ring for Lie algebras of other types,
which explains why no progress has since been made on Conjecture 2.1.
More precisely, for a simple complex Lie algebra g let P, denote the
set of weights with multiplicities of the representation L()), i.e. ch L(\) =
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> e, and consider the element
HEPy

> e e 7P @7 Q. (2.6)

HE Py

k+hv

For A = w; this is formula (2.4) if g has type A, and formula (2.5) if g
has type C,. The set of weights {(k + hY)u | p € P\} is W-invariant, so
> uep, e® 1 s an element of the character ring Z[P]V, and (2.6) can

be written as a polynomial in the fundamental characters x,,,i =1,...,7,
with rational coefficients. Let V* € Z[X1,..., X,] ®z Q denote the same
polynomial in the isomorphism classes X; = [L(w;)],i = 1,...,r, of the

fundamental representations.
Recall from Section 1.2 the presentation of the fusion ring F" as a quotient
of R by an ideal I.. Tt is shown by Bouwknegt and Ridout that the ideal

<%, e aX > C R generated by the derivatives of V* does not equal the

fusion ideal I, for any A € P*, unless g has type A, or C,. The crucial
difference is, that for type A, or C, all integers (w;,3)) = 1,i =1,...,7,
but for all other types there is an ¢ with (w;, y) > 1. Thus another method
is required in order to prove Conjecture 2.1.

Having established this negative result Bouwknegt and Ridout turn to
a different method for describing a generating set of the fusion ideal ;. Let
A= Zl | Aiw; be a dominant weight. In a decomposition of L(w)M ®...®
L(w,)* into irreducible components the module L()\) occurs exactly once,
and all other occuring components L(u) are of lower height (i, p¥) < (X, p¥).
Then in the presentation of the representation ring as a polynomial ring we
have

[L(N)] = X ... X — "lower terms".

They proceed to define a monomial ordering on R making this precise, such
that the leading term of [L(\)] is indeed X' ... X

Define a monomial ordering < on R by saying X;' ... X < X" Xk
if and only if

(A By ) < (. By) or
(A By = (s By) and (A, p¥) < (p, p”) or
N BYY = (u, BY) and (N, p¥) = (u, p¥) and X1, XM </ XWX
where <’ is any other monomial ordering on R. This order indeed picks out
the leading term LT ([L(\)]) = X ... X
Note that the fusion ring has as Z-basis the elements {[L()\)
t

Pt (X By) <k}, which are distinguished by < from those elemen
Wlth weights 1 € PT\ P, outside the alcove P, = {\ € Pt | (),

|| A e
s [L(p)]
Bo) <k}
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Consider the ideal (LT<(1})) in R generated by the leading terms w.r.t <
of polynomials in Ij,. Bouwknegt and Ridout show, that as an abelian group
(LT (I;)) is generated freely by the set of monomials M = {X} .. X
(A, By > k}, and as an ideal it is generated by the atomic monomials in
M, i.e., those monomials which cannot be expressed as the product of a
monomial in M and an Xj.

Note that the atomic monomials in M include all monomials X7 ... X
associated to weights on the boundary (A, 57) = k + 1. For g of type A,
or C, these account for all atomic monomials, since (w;,3y) = 1 for all
i=1,...,7, 80 if a monomial X{" ..., X# has (u,y) > k+ 1 then we can
find an i such that p—w; € P* and (i — w;, ) > k+1. For the remaining
types there will generally be other atomic monomials.

For all monomials X;" ... X € M define a polynomial py € I, C R
whose leading term w.r.t. < is X" ... X If X is on a shifted affine alcove
boundary, then [L(A)] is in Iy, so set py = [L(A)]. Otherwise, find a w € W,
such that w.A € Py and set py = [L(A\)] — det(w)[L(w.\)] € I.

The following result is [BR06, Proposition 3|:

Proposition 2.2. The polynomials py associated to atomic monomials form
a Gribner basis for the fusion ideal w.r.t. the monomial ordering <, i.e.

Iy =(p» € R| A€ P"\ P, with A\ —w; ¢ P\ P, for all i)

2.4 Boysal and Kumar 2009

In [BK09] a number of conjectures regarding specific generators of the fusion
ideal is proposed. Again the isomorphism class of a simple representation
[L(A)] is presented as an element of the polynomial ring Z[ X1, ..., X,] with
variables the isomorphism classes of the fundamental representations X; =
[L(w)],t=1,...,7.

For a natural number k£ € N they work with the fusion ideal I, C R and
seek to conjecturally describe it in terms of a generating set whose size is
independent of the level k. They give 3 equivalent definitions of the fusion
ring where the first one is repeated in Section 1.2. Therefore we may use
the formula in Proposition 2.2 as a definition of I.

Below we state the main theorem of the paper and the subsequent con-
jecture.

Theorem 2.3. Let k be any positive integer. We have the following inclu-
sions of ideals
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(a) For g of type B,., D, or Eg

L, 2 Lk + Do), [L((k + 2)w01)], - [L((k + 7Y — D))

(b) For g of type Gy

Lo {\/<[L((/<r + Dw)], [L((k + 2)wr)], [L(((k +1)/2)wo)]), if k is odd
=\ VAE( + D)), [L((k + 2)an)], [Lwr + (k/2)am)]),  if k is even.

(¢) For g of type Fy

Ik D \/ k + 1 w4)] [L((kf + 2)W4)] ..... [L((kf + 6)W4)]>

(d) For g of type Ex;

I, O V{L((k + Dwy)], [L((k + 2)wr)], . . ., [L((k+ hY — 1)wq)]).

(e) For g of type Eg

L((k +29)ws)]), if k is even
VL +2)ws)], -, [L((k +29)ws)], [L(((k + 1) /2)ws)]), if k is odd.

Conjecture 2.4. (a) All the inclusions in (a)-(b) in the above theorem are
equalities for g of type B,., D, or Gs.

(b) In addition, for g of type B,

VALK + Dw)], [L((k + 2)wy)], o, [L((k + 7Y = Dwn)])
= ([L((k + Dw))], [L((k + 2)w)], - [L((k + 1Y = Dwn)], [Lkwr +w,)])

and for g of type D,

VAL + Dewn)], [L((k + 2)w)], - [L((k + 2 = 1)wn)])
= ([L((k + D)w)], -, [L((k + hY = Dwy)], [L(kwy + wr—1)], [L(kwr + w,)]) -
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Verifying the conjectures

Computer aided we verify several of the conjectures for low levels k. For
each weight A € PT we first calculate an expression of [L(\)] in terms of
the fundamental classes X; in the polynomial presentation of R.

Given an ideal I C R we use a version of Buchberger’s algorithm to
calculate a Grobner basis for I, cf. for example [KRK88|. To test whether
a given element p € R belongs to I, we check whether p reduces to zero by
the Grébner basis.

To test for membership of p in the radical VI of an ideal we add an
extra variable t to the polynomial presentation of the representation ring
and embed both p and I in R[t]. By the following lemma p € /T if and
only if the ideal (I,tp — 1) is the whole ring R[t].

Lemma 2.5. Let R be a noetherian ring and let I C R be an ideal. Then
p € VT if and only if the ideal localized at p contains a unit: I, = R,.

Proof. Assume p € VI, i.e., p" € I for some n > 1. Then 1 = p"/p" € 1,
so I, = R,. On the other hand, let / C p be an arbitrary prime ideal. If
I, = R, then p, = R, so write 1 = a/f™ for some a € p. Then p"*t* = ap*
in p for some k& > 0 and consequently p € p. So p € [\, p = VI, O

These techniques and algorithms have been implemented in a java pro-
gram!, and results of an attempted verification of the conjectures can be
seen in Table 2.3. Calculations for higher levels were initiated but aborted,
as the algorithm didn’t terminate after 24 hours of calculating. We see that
Conjecture 2.4 (a) for g of type G5 is refuted for certain levels.

Let us make this concrete in the case where g has type G and the level
is k = 7. The polynomials in Z[X;, X5] corresponding to the generators of

the radical ideal are

[L8wy)]: p1= X8 — X7 —7X0X, —5X0 +4XPX, +6X7 + 15X X2 +
21 X X+ 5 X 42X3 X2 6X} X, —8X3—10X2 X35 —27TX2 X2~
15X X, — 88X, X35 — 12X, X7 + 3X; + Xy + X5

[L(9wy)]: po=X) — XP —8XTXy — 6X] +5X0X, +8X0 + 21X X2 +
30X7 Xy + 6X7 — 13X} X, — 13X) — 20X3 X3 — 50X X2 —
30XPXo+2X7 —14X2 X3 —12X2X249X2 X0 +TX3 45X, Xy +
16X X34+21 X X248X, Xo—2X +4 X3 +11 X5 +6X2—-2X,—1

[L(4wo)] 1 p3 = XV — X? — 2X{ X, — 3X} — 3X3X2 - 2X3 X, +2X7 +
6X2Xo+3X7+6X 1 X3 +9X1 X5 +2X, Xy — X; + X3 +5X35+
4X2 —2X, —1

! Available at http://home.imf.au.dk/troels/Del-B/ReAlGriDPCv1l.2.zip
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The weight 4w, + 2w, lies on the affine wall so the element
[L(4wy + 2wo)] 1 q = —X{ +2X0 +4X7 X, + X7 4+ X1 X3 — 2X1 X, —

4X1 —5X3X2 —10X3 X, + 2X3 — 3X7P X3 — 3X2X3 +
3X2Xo+2X2 46X X24+6X, Xo—2X, + X5 +2X3+ X2

belongs to the fusion ideal. However if we consider the ideal (p1, p2, p3, ¢T — 1)
C Z[X1, X5, T] we do not get the whole ring.

Type of g Conjecture 2.4 (a) Conjecture 2.4 (b)
B3 verified for levels 1 — 7 verified for levels 1 — 7
By verified for levels 1 — 4 verified for levels 1 — 4
Dy verified for levels 1 — 4 verified for levels 1 — 5
a verified for levels 1 — 6,8, 10,12
2

refuted for levels 7,9,11,13

Table 2.3

2.5 Korff and Stroppel 2010

In [KS10] the combinatorial structures of two geometric constructions re-
lated to g = sl,.; and an integer £ > 0 are extrinsically defined in an
analogues way.

One is the fusion ring F' = F(sl.;1,k) emerging in the theory of ra-
tional conformal field theory. The natural Z-basis is indexed by partitions
A whose Young diagram fits into a bounding box of size r x k, to which
the multiplicative structure constants are given as dimensions of conformal
blocks on P! with 3 marked points.

The other is the quantum cohomology ring ¢H*®(Koy »4x11), which is a
deformation of the ordinary cohomology ring of Koy, 1. It has a Z[g]-
basis in Shubert classes [(2,] indexed by partitions A, whose Young diagram
fits into a bounding box of size k x (r + 1), and the structure constants are
given by certain Gromov-Witten invariants.

In both cases the multiplicative structures are defined in terms of sym-
metric polynomials in pairwise non-commuting variables. The main theo-
rem of the paper is a realization of F" as a quotient of ¢*(Koy 4 x+1), which
comes as a consequence of the analogy of the combinatorial descriptions.

An interpretation of these variables are given as particle hopping oper-
ators on the extended Dynkin diagram of sl,,;: A partition A\ = Z:zl mW;
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gives a basis element of F if and only if m = 3", m; < k. In this case we
set mo = k —m and we interpret the basis element as a configuration of k
particles on a circle with » + 1 marked points with m; particles at place .
Let a;,7 = 0,...,7 be the operator that moves a particle from the ¢th place
to the ¢ + 1st place in clockwise direction. If there are no particles at place
1 the operator kills the configuration instead.

For a subset I C {0,1,...,7}, let a; = a;, . ..a;, be the product of the
operators a;, with ¢5 running through [ in anticlockwise cyclical order, i.e.,
such that if iy = is+1 mod (r+1) then a;, occurs to the right of a;,. Define
the elementary symmetric polynomial e,(a) = > ;_, a; for 1 <n <r, set
eo(a) and e,11(a) to be the identity and e,,(a) =0if m <0orm > r+ 1.
Then by [KS10, Corollary 5.14| the operators e, (a) commute and therefore

sx(a) = det(ex iy ;(a)) (2.7)

is well-defined. Here \! is the number of boxes in the ith column of the
dynkin diagram of A\. Now by [KS10, Theorem 6.18] multiplication in F' is
given on the basis elements A by

Ak = sx(a)p. (2.8)

2.6 Douglas 2013

In his paper [Dou09] Douglas gives an abstract presentation of the fusion
ring ' = F(g,k) for a simple complex Lie algebra g and integer k € N
as a quotient of the representation ring R by an ideal [ generated by a
set pi(k),...,pn,(k) € R, where the p;i(k),i = 1,...,ng, are isomorphism
classes of representations of g depending on the level k, such that the num-
ber ng is independent of the level. An upper bound on the number of
generators ng of the fusion ideal is Y ., [W]/ ‘W(%)‘ where W (i) is the
subgroup of W generated by all simple reflections sq,...,$;,...,s, except
the ith.

In his sequential paper [Doul3| Douglas improves drastically on the
upper bound of ny and extended the method to give a complete computation
of explicit generators in each case. For g a simple complex Lie algebra of
classical type or of type Gy we repeat in Table 2.4 his results on specific
generators for the fusion ideal I for level £ € N.

We also refer to Chapter 6 where we have sought to generalize part of
the work in the two papers to the setting of quantum groups.
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kE+ Dwy)], [L(kwy 4+ wo)], ..., [L(kwy + w,)])
(k — Dwy +wa)], .-, [L((k — Dw;y + wr_1)],
(k — Dwy + 2w,)], [L(kwr + w,)], .. [L(kwy + w3)],
kw + w2)] + [L(kwy)], [L((k + 1)w1)]>
(k + D], [L(kwr +ws)], - - o, [L(kwr 4w, )])
(k= Dwy +wa)], ..., [L((k — 1)w1 + w,_9)],
(k= 1wy + w1 + wT)], [L(kwy + w,)], [L(kw; + wr_1)],
kwi + wr—q1 +wp)], [L(kwy + wr—2)], - . ., [L(kwy + ws)],
kwy + w2)] + [L(kwy)], [L((k + Lwi)])
L((5 = Dws)] + [L(5w2)], [L(wr + Fwa)],
L(3wi + (£ = 1)ws)]), k even
(%3
(

NN N N N N N N

L

(L

L

L

Cr, r Z 2 ]k = <[L
L

L

L

L

{

GQ Ik =

(L5 w,)], [L(2w1 + 5rw,)],

L(3wr + 551w)] + (L3 + 55%wa))), & odd

— — — —

Table 2.4: Part of the table in [Doul3, Theorem 1.1]

2.7 Andersen and Stroppel 2014

In [AS14] an overview of the theory of fusion rings in the setting of tilting
modules for quantum groups, as presented in our Section 1.3, is provided,
and several of the techniques from the above-mentioned papers are applied.

In particular a generating set G for the category of negligible tilting
modules NV, as a tensor ideal in T, is presented analogous to the Grobner
basis analysis that lies behind Proposition 2.2.

Similarly they realize the fusion ring as a quotient of a polynomial ring.
The defining ideal in this commutative presentation is generated by the
polynomials corresponding to the elements in G, and in many cases they
are able to produce alternative generating sets of much smaller sizes via
classical determinantal identities.

The story here deviates from the one in the previous papers, as the
type of the affine Weyl group W; depends on whether [ is divisible by all
off-diagonal entries in the Cartan matrix or not: In the first case the type
matches that of the associated affine Lie algebra g, but in the second case
it is the dual type in Bourbakian convention. The fusion rings that are
constructed in this latter case have not been studied much before. Thus
the fusion rings that arise in this setting encompass all the ones studied in
the previous papers and as well as everal others.

In the case where g has type A, the multiplicative structure in the fusion
ring is compared to the explicit expression given in (2.8). Once it is shown
that the two multiplicative structures acts identical relative to chosen bases,
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it follows as a consequence of commutativity of the tensor product in 7,
that the determinant in (2.7) is well-defined and (2.8) is commutative.

An analogues description of the multiplicative structure in the fusion
ring in terms of symmetric polynomials in non-commutative variables is
made in the case where g has type C,.. An interpretation of the variables are
again given as particle hopping on the extended Dynkin diagram associated
to W,. The type of the diagram and the number of particles depends on
whether [ is odd or even.



Chapter 3

Generators of the fusion i1deal

In this and the following chapters we return to working with the fusion ring
F, = F,(g,!) for the quantum group U, associated to a simple Lie algebra g,
with [ the order of ¢> € C. We consider the polynomial presentation of the
(split) Grothendieck group Ko(7,) ~ R = Z[X1,...,X,] and will explore
the ideal I; C R for which F, ~ R/I,.

A priori the ideal is generated by infinitely many relations, and the
focus in this chapter is to reduce the number of generators. [} is a finitely
generated free Z-module, so it has Krull dimension 1, and being a quotient of
the r 4+ 1-dimensional ring R the ideal I; is generated by at least r elements.
In case I; is generated by r elements, these generators will constitute a
regular R-sequence, and since R is a regular ring the fusion ring is a complete
intersection ring.

Assuming we have proven [; is a complete intersection we may be able to

find explicit generators py,...,p, € R of I; with %pi symmetric in ¢ and j.
J

Then oo = Y, pidX; is a closed 1-form, do = Z:jzl %pide ANdX; =0,
) J

hence it integrates to a potential function V€ R, a=dV =3, %VdXi,

and the generators p; = %V are described by a single polynomial V.
We end up with the following set of problems on the defining ideal I; of
the fusion ring Fj,.

(i) Find a finite generating set of I; for each value of [.

(ii) Find a level-independent upper bound on the number of elements
necessary to generate I;, preferably together with a uniform explicit
generating set.

(iii) Decide whether I; can be generated by r elements, preferably together
with 7 explicit generators.

39
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(iv) Describe these r generators as the partial derivatives of an explicit
potential function.

The plan for this chapter is to explore these problems for each Lie algebra
g of classical type or of type G5. To sum it up (i) has been achieved in all
cases, (ii) has been achieved achieved in all cases but type C, for odd I, (iii)
has been achieved for type A;, type B, for odd [, type C, for even [ and for
type Gy and finally (iv) has been achieved for type A;, type B, for odd I
and type C,. for even [.

If ] =1, for all & € ® then set k = [ — ({(p,y) + 1) and otherwise
k=1/dg, — ({p,By) + 1). In the first case we also say that the level of a
weight A € P is (A, o) and otherwise (A, 5y). The fundamental alcove A,
consists of all dominant weights of level at most k. We will assume that
A; # 0 which is equivalent to & > 0.

3.1 A finite generating set

We describe in this section a method for solving problem (i) listed above
for any simple complex Lie algebra g. Next we go through this method in
detail for g of specific types.

The following is inspired by the method in Section 2.3 originally de-
veloped in [BRO6]. Let =< denote the ordering on P defined by A < p if
p—A=>"_, aw; with ay,...,a, > 0. We have the following

Proposition 3.1. The tensor ideal Ny C T, is generated by the set
{T, (1) | @ minimal in P*\ A; with respect to <}. (3.1)

For a proof see [AS14, Proposition 2.4]. To find a finite generating set of
I, we take the isomorphism class [T,()\)] of a tilting module belonging to a
minimal highest weight A € P™\ A; and describe it as a polynomial in the
fundamental classes X; = [Ly(w;)], i =1,...,7.

Note that the size of this set is finite but dependent on [.

Type A,

Let g be of type A,,r > 1. We have k = 1 — (r +1). A weight A =
Yoy miw; € P has level (A, ay) = > ._,m;, thus the minimal weights in
P\ A certainly includes all

O mw e PT Y mi=k+1} (3.2)
i=1 =1
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If a weight A =>""_ myw; € PT\ A has level >\ m; > k + 1, then it is
not minimal. For say m; > 0, then A —w; € P* and has level > k + 1, so is
not in A;. Thus the above set includes all the minimal weights in P\ A,.

The cardinality of the set above is a polynomial in k of degree r — 1, in
fact it is equal to the binomial coefficient (ff;) When 0 <m; < k+1is
fixed, there is by induction on r ((k“*:'ﬂ);(“m) choices of mo,...,m, >0

surknming up to k+1 —kml, making the total number of choices equal to
S (1) = DL - () = () - ()

Type C.

Let g be of type C,,r > 2. If [ is even, then k = 1/2 — (r + 1). A weight
A=Y muw; haslevel (A, By) = > 7_, my, so the same argument as before
shows that the minimal weights are

O miwi € PY| Y mi=k+ 1}, (3.3)
=1 =1

and that this set contains (ff;) elements.

If [ is odd, then k =1 —2r. A weight A =Y, m;w; has level (\, o) =
my + Y ;_,2m;. The set of minimal weights in P* \ A; contains all the
elements

=1 =2

and a priori it also contains the elements {Y_;_, mw; € PT | >0, 2m,; =
k+2}, but since k is odd, k+2 is also odd, and this set is empty. Therefore
the above set exhausts all the minimal weights.

In (3.4) m; = 2m must be even, and when 0 < m < % is fixed, the

number of choices of elements ms, ..., m, > 0 for which 2>, ,m; = k+1—
2m has already been determined to be (%;ZM—Q), making the total num-

ktl g k+1
ber of elements in (3.4) equal to >, 2, (%_m“*) — Zmio((%—mﬁ—l) _

r—2 r—1
(%—m+r—2)) _ (%+r—1

o o ), which is also a polynomial of degree r — 1 in k.

Type B,

Let g be of type B,,r > 3. If [ is even, then k =1/2 — (2r — 1). A weight
A = 37 mw; has level (X, 8Y) = my + S2—) 2m; + m,. Thus besides
the weights of level k + 1, the minimal weights in P+ \ A; include those
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Y oi_y maw; of level k + 2 with my =m, =0, i.e., the set is

r r—1
{Zmiwi eP|m —i—ZQmH—mT =k+1}
i—1 i—2
r—1 r—1 (35)

=2 1=2

k

Eyrq

21) elements and the
L2 SR |

second set ( +T3 2) elements. If k is odd, the first set contains ( I ) +

( Tf; ) elements and the second set is empty. This is verified by doing
manipulations similar to those in the previous cases.

Ifl is odd, then k =1 —2r. A weight A = ", m,w; has level (X, o) =
Yo ' 9m; 4+ m,, so the minimal weights are

If k is even, the first set in the union contains 2(

r—1
Z:meZ e Pt | Zle—i—mr =k+1}. (3.6)
i=1 =1

Again the set of minimal weights a priori contains the elements {37 m,w; €
Pty = k + 2}, but since k is odd this set is empty. It is easy to

see that (3.6) contains (%iffl) elements.

Type D,

Let g be of type D,.,r > 4. We have k = [—(2r—3). A weight A = "' muw;
has level (A, ay) = my +>27—2 2m; +m, 11 +m,, so the minimal weights are

r—2
meleP ]m1+22ml+mr+1+mr—k+1}
=1 =2
r—2 r—2 (37)

=2 1=2

If k is even, the first set in the union contains 3( 5 47— 1) + (g:rj_z) elements

-1 1
+r3

and the second set ( ) ) elements. If k is odd, the first set contains

k+1
(T+7'71

1 ) + S(kHH 2) elements and the second set is empty.
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Type G,

Let g be of type Go. If 3 divides [, then &k = [/3 — 4. A weight A =
miwy + mows has level (A, By) = mq + 2ma, so the minimal weights are

{miw; + mows € P | my +2my = k + 1}

3.8
U{m2w26p+|2m2:k+2}. ( )

If k£ is even, the first set in the union contains g elements and the second 1
element. If k is odd, the first set contains % elements and the second set
is empty.

If [ is prime to 3, then £k = [ — 6 is also prime to 3. A weight \ =
miwy + maows has level (X, o) = 2my + 3mag, so the set of minimal weights
contains all weights of level £k + 1 and k + 2. If a weight miw; + mows has
level k + 3, then it must have m; > 0, and it is not minimal in PT \ A;.

The minimal weights are therefore
{miwy + mows € PT | k+1<2my + 3my < k + 2}. (3.9)

If k=1 mod 6 this set contains % elements, if £ =2 mod 6 it contains
% elements, if Kk =4 mod 6 it contains % elements and if k =5 mod 6
k—2

it contains = elements.

3.2 Finding canonical generators

We now review the method of expressing irreducible characters of the clas-
sical Lie algebras as determinants of matrices whose entries are given by
symmetric polynomials, following [BR06, Appendix A]. The calculations
start with the Weyl character formula

X = % e z[P]V
p
for a dominant A € P*, where Ay = > . (—1)®e*™ € Z[P] is an
antisymmetric element with maximal weight \. Case by case we will rewrite
this as a polynomial in variables ¢ = e® for weights ¢ of the standard
representation L(w;). By careful manipulations we may be able to show
that the characters of the generators of Proposition 3.1 can be expressed
by a canonical set characters of elements belonging to N/,.

Another strategy is to use some of the results presented in Chapter 2
when possible. If [ is divisible by all d;,© = 1, ..., 7, we have an isomorphism
of the fusion ring F,(g,!) with the WZW fusion ring F'(g, k) for k = [/dg, —
({p, 8y) + 1). In these cases the presentations in Table 2.4 applies to give
us canonical sets of generators of the fusion ideal I;.
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Type A,

Assume g has type A,,r > 1. The weights of the standard representation
are ] =wy, & =w; —w;_y forl <i<rande.y3 = —w, = —(e14+---+¢,).
The Weyl group W = S, permutes these weights. Write ¢; = €% for
1 =1,...,r as formal exponentials.

Given a weight A = > myw; € Pt we write it as .., \jg; with
Ai=mi+---+m,, 1 <i<r and A,y =0. Then Ay > Ao > --- > A\, > 0.
Specifically p = >0 pie; has p; = r+1—14. We calculate using the Leibniz
formula for determinants

r+1
— Z:il )\Zw(a) o . i ;i r+1
A\ = Z det (w)e>i=1 = Z sgn(o) an(i) = | o
weWw UGST+1 =1

We now identify the character x» = Axy,/A, with the Schur polynomial

|q>;i+r+1—i}
Sx=5\q1, - Gr1) = ]C]le’

J

We let H,, = H,(q1,--.,qr+1),m > 0, denote the complete symmetric
polynomial in r + 1 variables, i.e., the sum of all distinct monomials of
degree m with the constraint that ¢;...¢.41 = 1. Formally, let H,, = 0
for m < 0 and note also that Hy = 1. A relationship between the Schur
polynomials and the complete symmetric polynomials is given by a Jacobi-
Trudi identity, cf. [FHI1, (24.10)]:

Lemma 3.2. Let A be a partition of a positive integer into v parts. Then
the Schur polynomial is given by

r+1
1,7=1

S/\ = |H)\j+i7j

As M\;1 = 0 the last column is just (0,...,0,1)T and this determinant
equals

H>\1 H)\Q—l s H)\r—r—‘rl
. Hy, 11 Hy, ... Hxyx_rp2
il - | (310
H/\1~H”71 H)\2+T‘72 cee H)\r

The formula applied to A = mw; = mey, m > 0, shows us that X, = Hp.
The following result is [Gep91, (2.20)], and the proof is from [BROG,
3.2].
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Proposition 3.3. The fusion ideal I; for the fusion ring F,(g,!), where g
has type A, and k =1— (r+1) > 0, has the following sets of r generators

Iy = ([Vo((k + Dwn)], [Va((k + 2)wa)], ..., [Vo((k + 7)w1)])
= ([V,((k+ Dw1)], [Vy(kwr + wa)], ..., [Vy(kwr + w,)]) .

Proof. We know from the previous section that the ideal I; is generated
by all [T,(\)] with A = 7, m;w; the minimal weights in (3.2). All of
these weights lie in the closure of the alcove A, so [T,(\)] = [V,()\)]. Since
the character of V,()) is the Weyl character y,, we use the lemma to get
expressions of these generators.

When we write such a A in the basis €1, ..., &, it satisfies k +1 = Ay >
-+ > A\, > 0. Expanding the determinant (3.10) along the first column,
we get [V ()] written as a linear combination of [V, ((k 4+ 1)w)], [V4((k +
2)w1)], ..., [V4((k + 7r)wr)], showing that I; is included in the first ideal.

Next we show that the first ideal is contained in the second ideal. Con-
sider the weight kw; + w; = (kK + 1)e; + 9 + -+ + &, for which (3.10)
is

Hpyn o Ho
Hyo H  Hy 0
X _ Hyyia Hy
e T Hgyo Hiy Hin oo Hy
Hiyyir Hy  Hy
Hyyr H.y Hoo ... H._j1 Hy
showing that Xiw, 1w, + (—=1)'Hyri € (Hys1, ..., Heyio1). By induction all
X(k‘Jri)wl = Hk’+i € <X(k+1)w17ka1+WQa o 7ka1+wi>-

Lastly we notice that all the weights kw; +w; belong to (3.2) so the last
ideal is contained in I;. O
Type C,

Assume that g has type C,.,r > 2. The weights of the standard representa-
tion are +¢;,7 = 1,...,r, where 1 = w; and ¢; = w; —w;_1 for 2 <@ < r.

The Weyl group is W = S, x Zj, where S, permutes the indices and each

Zo changes sign on one g; and leaves the others invariant. Write ¢; = e®.
Given a weight A = Y7 m;w; € PT we again write it A = Y. | \ig;

with \; = m; +---+m,,e = 1,...,r. Then again A\ > --- > )\, > 0 and
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pi =1+ 1 —1i. We calculate
Ay = Z det(w)ezgzl Aiw(eq)

WESy XLy
) Y s T
=Y sen(o) [ — a3 = |67 —a |
oes, i=1 ni=1

giving a formula for the irreducible character of highest weight \:

Aj+r+1—j —(A\jHr+1—5)
i - q;

Xx = q§+1fj _ q;(rJrlfj)

A version of the Jacobi-Trudi identity, [FH91, Proposition 24.22|, cal-
culates the character in terms of complete symmetric polynomials J,, =

Hy(q, @, ., ¢ b) in the variables ¢; and their inverses ¢; *. Again
Jo=1and J,, =0 for m < 0.

Lemma 3.4. Let \; > -+ > X\, > 0 and consider the character ring Z[P]"
for g of type C.. Then the irreducible character of highest weight A\ =
YL i equals

I . Ir—rt1
Iy + Jy, — T S ) W
a=| " (3.11)
I—tgr + Dmrpr oo I+ Daorge

Again the formula applied to A = mw; = mey, m > 0, shows us Xmw, = -
The following result is [BMRS92, (2.9)], and the proof is from [BROG,
3.2].

Proposition 3.5. Let g have type C,. and let | be a positive integer. If |
is even, we assume that k =1/2 — (r +1) > 0. The fusion ideal I; for the
fusion ring F,(g,1) has the following sets of r generators

1 ={[V((k + D)), [Vo((k + 2)wn)] + [Vy(kn)], ..
[Va(k - P)eon)] + [V (k +2 = r)eon)])
=([Vy((k+ Dw)], [Vg(kwi +w2)], ..., [Ve(kwi + w,)]) .

If | is odd, we assume k =1 —2r > 0. The fusion ideal I; has the following
set of generators

L={V,M] | M+ =k+1).
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Proof. When [ is even, the fusion ideal is generated by the classes [T,()\)] =
[V,(A)] with A = >0 myw; € P ranging over the minimal weights in
(3.3) of level > ., m; = k+ 1. Written in the basis €1, ..., ¢, such a weight
satisfies k +1 =Xy > --- > X\, > 0, and an expansion of the determinantal
expression in (3.11) along the first column gives us [V, (\)] written as a lin-
ear combination of [V, ((k+1)w1)], [V ((E+2)w1)]+ [V, (kwi)], ..., [V ((k+
rwi)] + [V4((k+2 —r)wy)], ie., I is included in the first ideal.

Now consider the weight kwy +w; = (k + 1)e; + &3 + - - + &; for which
(3.11) looks like

Jrt1 Jo
Jit2 + Ji J1

w0

Xkwitw; = | Jhti T Jrpo—i e Ji )

Jetit1 + Jrg1—i Jo Jo
Jietr + Jigo—r v i Jo

SO Xkwntwi + (= 1) (Jiti + Jigo—i) € (Jitts Jir2 + Jis ooy i1 + Jira—i)-
By induction Ji.; + Jrio; € <X(k+1)wl s Xliw +wss - - - ,kal+wi>, showing that
the first ideal is contained in the second. Finally all weights kw; + w; has
weight k£ + 1 so belong to (3.3).

When [ is odd, a A = >/, mw; is an element of (3.4) if and only
if my +>.._,2m; = k+ 1. Written in the basis ¢1,...,¢, this means

We note that for odd [ the determinant method does not give us a
canonical set of generators of the fusion ideal. The culprit is that the level
of Ais (A, ) = A1 + A2, which means that the elements in a single column
of (3.11) will not belong to I;. We refer to [BR06, Section 4] for a method
of expanding the determinant down the first two columns simultaniously.
The result is a much smaller set of generators compared to the set in the
proposition, but one whose size is not level-independent.

Type B,

Assume that g has type B,,r > 3. The weights of the standard repre-
sentation are +¢;,7 = 1,...,r, and 0, where ¢ = wy, &, = w; — w;_1,1 =
2,...,7r—1and ¢, = 2w, — w,_1. The Weyl group is again W = S, x Z]
acting on the non-zero weights +¢; by permutation and sign change. Write
q; = €.
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Given a weight A\ = Y7 mw; € PT write it as >, \g; with ), =
m;+ -+ me_g +my/2,1 < i <r—1,and \, = m,/2, i.e., the \; are
all either integers or half-integers. In any case \; > --- > \. > 0 and
p; =1+ 1/2—1i. Since the Weyl group only permutes the non-zero weights
of the standard representation, we get the same calculation as in the C,
case:

A "

q4;" — g,

7,7=1

A=Y sen(o) [ [ (600 — ao00) =
1

ocES, =

Therefore we have a formula for the irreducible character of highest

weight A:
AATitl/2 _ —(gr=itl/2)

7 7

Xx= r—j41/2 —(r—j+1/2)
Z — %

Then [FH91, Proposition 24.33] expresses y, as a determinant in the
complete symmetric polynomials H,,(q1,...,¢,1,q;",...,q ") in the vari-
ables ¢;, their inverses ¢; ' and 1. Use the following notation:

Kn:Hn(q17-"7QT717q1_17'--7qr_1)7nS 1
Km:Hm(Qla"'7Q7‘717q1_17"'7%"_1)
- m72(CI1,---7Qr717QI17-~~aqr )7m22

Lemma 3.6. Let A\; > --- > X\, > 0 and consider the character ring Z[P]"
for g of type B,.. Then the irreducible character of highest weight A =
iy Nigi equals

Ky o Ko
Ko+ Kn 1 oo Kovio+ Ky

Yy = 1+1 : 1—1 +2: (312)
Ky —14r + Kxjorp1 oo Ky + Ky 2042

The formula tells us that for A = mw; = mey,m > 0, we have Xw, = K-
The following is [AS14, Theorem 6.1].

Proposition 3.7. Let g have type B, and let | be a positive integer. If |
is even, we assume k = 1/2 — (2r — 1) > 0. The fusion ideal I; has the
following set of generators

Il = <[Vq(/\)]a [Tq(/JJ)] | )\1 + )\2 =k+ 1,2,&1 = 2:“/2 =k+ 27:“/7“ = 0> .
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If 1 1s odd, we assume k =1 —2r > 0. Then I; has the following set of r
generators

Iy =<[Vq(k i 1w1)], [%((% + i)wr)] + vq[«% —Dw)] | i=2,....7)
(9, 19 e )] e )
Vot 4+ 2w,)])

Proof. When [ is even, a minimal weight from (3.5) is eithera A = Y/, m;w;

€ P of level m, —1—2::_21 2my+m, = k+lorapu= Z:;Ql n;w; € Pt of level
2::_21 2n; = k+2. Written in the basis €1, ..., ¢, this means A\ + s = k+1
or 21y =2y =k + 2, u,. = 0.

When [ is odd, we know that the fusion ideal is generated by T,(\) =
V,(A) with A =377 Aie; the level k + 1 weights in (3.6), i.e., 2X\; = k + 1.
An expansion of the determinantal formula (3.12) for the character of these
weights along the first column show that y, is in the ideal generated by
K% and the elements K%H — K%_i,i =2,...,r, le., I; is included in
the first ideal.

Now consider the weights AV = 2w A0 = E-Lyy 4w, i =2, r —
LA = %wl + 2w, for which A = %51 + &9 + -+ +¢;. The character
of A is given by (3.12)

K% Ky
K%+2+K%_2 Kl

o = Kg+ Ko,

i K,
K%HH + K%*i*l Ky Ko
Kia, + Ko, K, i K,

showing that x o) + (—1)i(ch2;1+i + K%_i) belongs to the ideal generated
by K% and the K%H—K%ﬂ.,i =2,...,7— 1. By induction Kk2;1+i+
K%_i € (Xam,---,Xa®) and the first ideal is contained in the second.

Finally all weights A) have level k + 1, so the second ideal is contained in
1. O

Note that for [ even the level of a weight A is (A, 5y) = A\ + A2 so
again the determinant method does not give a canonical set of generators.
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This time however we may use the identification of F,(g,!) with the WZW
fusion ring F'(g,(/2 — (2r — 1)) for which we have a canonical set of 2r — 1
generators given in Table 2.4:

I =([Vo((k = Dwi + wa)], ..., [V ((k = Dwr 4+ wi—1)],
Vo(k = Dwy + 2w, )], [Va(kwr +w,)], ..., [Vg(kwr + ws)],
[Vg(kwi + ws)] + [Vg(kwi)], [Vo((k + L)wi)])

As the root system B, is dual to C, you might expect the associated
fusion rings to be related. More precisely, let g’ have type C, and let I’
be a positive integer. When the parities of [ and [’ are different the affine
Weyl groups W; and W}, have the same type. Assume that the fusion rings
F,(g,1) and F,(g¢',!") isomorphic. Then in specific we have a bijection of the
underlying index sets [ and [I'.

Assume first that [ is odd, and let I’ = 2(l —r — 1). When we look at
the fundamental alcoves A; for g and Ay for g’, we see that the index sets
are given by

r—1

I={(my,...,m,) e N"| ZQmi—l—mrgk:}

i=1

I'={(my,...,m,) e N"| Zmigk}
i=1

where k =1 —2r =1'/2— (r+ 1) and these sets are clearly of different size.

If we assume that 2 divides [ exactly once we may similarly let g’ have
type C, with ' = % + 1, and the index sets are now given by

r—1

]:{(ml,...,mr)GNr|m1+22mi+mT§k3}
1=2

I'={(my,...,m,) e N"| ml—I—ZQmi <k}

=2

where k =1/2+ (2r— 1) =10' —2r.

Though we do not have an isomorphism of the fusion rings they do share
some properties. We note from Propositions 3.5 and 3.7, that when [ is even
and [’ is odd, the fusion ideals I; and I can be generated by r elements
but, for [ odd and [’ even we have not been able to prove this.
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Type D,

Assume that g has type D,,r > 4. The weights of the standard representa-
tion are +e;,¢ = 1,...,r, where 61 = wi,6; = w; —w;_1,t = 2,...,1 —
2,6p01 = Wp + Wp1 — Wpo and &, = w, — wW,_1. The Weyl group is

W = S, x Z5 ', where S, permutes the indices and Z5 ' acts by chang-
ing the sign on an even number of the weights +¢; and leaving the rest
invariant. Write ¢; = e®'.

Given a weight A = > mw; € Pt, write it as >, \&; with \; =
mi+ -+ me o+ (Mg +m)/2,1 <i<r—2 A\_o=(m_1+m,)/2
and \, = (—m,_1+m,)/2. Again, all \; are either integers or half-integers.
Now A\ > --- > |\ and p; = r —i. We have

r

2/4)\ = q?j+qi_Aj

ij=1 i.j=1

If any A\; = O then the second determinant vanishes. In particular A, =

(r=7) . Therefore we have a formula for the irreducible char-
ij=1

acter of highest weight A\ € P+:

s +a

Nj+r—j —(Nj+r—j)

Aj+r—j —(Aj+r—g
Zi +ZZ - J — 2. ( J .7)

_I_

XA =

Then [FH91, Proposition 24.44] expresses x, as a determinant in the
complete symmetric polynomials H,,(qi,..., ¢ q; " ,...,¢ ') in the vari-
ables ¢; and their inverses ¢, ! Use the following notation:

Ln:Hn(Qla'--aqra(h_l?"'aqr_l)anS 1
Lm:Hm(q17"'7Q’I‘7q1—1""7qr_1)_Hm—2<q17"'7q1‘7q1_1a"'7qr_1)am22'

Lemma 3.8. Let A\; > --- > X\, > 0 and consider the character ring Z|P]"
for g of type D,. Then the irreducible character of highest weight A =
S \igi equals

Ly, U
Lo+ Lait oo Lavio+ oo

X}\ _ A1+1 : A1—1 A +2: A (313)
Ly —14r + Lxg—ry1 - Ly, + Ly 2042

The formula tells us that for A = mw; = mey, m > 0 we have Xynw, = L.
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Proposition 3.9. Let g have type D, and let | be a positive integer with
k=1—(2r—3)>0. If k is even the fusion ideal I, for the fusion ring
F,(g,1) has the following set of generators

L= (VWL [T | M+ A =k + 1,20 =209 =k + 2, ptr1 = p = 0) .
If k @s odd the fusion ideal I; has the following set of generators
L=(V,N] | M +Xa=k+1).

Proof. A minimal weight from (3.7) is eithera A = 37 _ i € Pt of level
ml—l—zl 22m2—|—mr 1+m, =k+1lorapu= Z: 5, niw; € P of level
ZZ 5 2n; = k+2. Written in the basis 1, ..., ¢, this means Ay + Xy = k+1
or 2uy = 2 = k+ 2, 1y = p = 0. If k is odd there are no weights

MEP+With2,u1:k—|—2. O

Again we do not get a canonical set of generators of the fusion ideal by
using the determinant method. We may however use the identification of
F,(g,1) with the WZW fusion ring F'(g,!— (2r —3)) to show that the fusion
ideal is generated by 2r — 1 generators:

(k= o+ 2], [V = Dor + )],

(k — Dwy + wr—1 +wy)], [Vg(kwr +wp)], [V (kwr + wr_1)],
kwy + we—1 + wp)], [V(kwr + wr2)], .., [V (kwr + ws)],
o + )]+ [V (on)], [V + D))

B
A~~~ I/~

3.3 Complete intersections and fusion
potentials

For a Lie algebra of type A, and [ arbitrary, of type B, and [ odd or of type
C, and [ even we have seen that the fusion ideal [, C R = Z[X;,..., X,]is a
complete intersection, and we have an explicit set of r generators py,...,p,.
Furthermore, for type A, and type C, these generators integrates to an
explicit potential function V/(Xi, ..., X,), i.e., p; = 55 V.

If we do a change of basis to the complex numbers this is always the
case. Let I' = I, ®; C C C[X},...,X,] and F;C = C[Xy,...,X,]/IF. The
algebraic variety V(IF) C C" consists of a finite number of points, each
corresponding to a basis element of F(;C, i.e., an element of A;. As points
in the variety corresponds to maximal ideals in the coordinate ring, the
ideal IF is locally a complete intersection. By [Kun85, Theorem 5.21] it is
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globally a complete intersection, i.e., I* can be generated by r elements in
the coordinate ring C[ X7, ..., X,].

We refer to [Fuc94, 6.2] for an exposition on how to do a change of
variable X, — X, and construct an abstract polynomial V()~(1, Xoy .o, X))
€ C[X1,Xo,.... X,], for which FC ~ C[X, Xa,...,X,]/dV, i.e., the com-
plexified fusion ring Fj, ®z C can be presented as the quotient of a complex
polynomial ring by an ideal generated by the partial derivatives of a po-
tential function. It should be noted, that there is no reason to expect
the coefficients of the potential function V' to be even rational integers, so
there is poor chance it will give a similar presentation of Fj as a quotient
Z[)?l,Xg, ..., X,]/dV. Also, the polynomial V' is far from unique, so it
should not be expected to possess any independent meaning.

In the case where we have explicit generators p,...,p. € Z[Xy,..., X,]
of the fusion ideal I;, we may look for an invertible r x r-matrix S over
Z[Xy,...,X,], such that the alternative generating set given by (p; ...p,) =
(P} ...pL)S, satisfies %iji is symmetric in ¢ and j. As mentioned this
would imply that the 1-form Y., p;dX; integrates to a potential function
V. However there is currently no method to produce such a matrix, and
in the cases where it has been done, it seems that the starting point has
been a concrete potential function, obtained by educated guessing, with a

subsequent verification of its properties, cf. the discussion in the last section
of [BRO6|.

3.4 Non-constructive methods

So far we have used combinatorial tools to find concrete generating sets of
the fusion ideal. If we are only interested in setting an upper bound on the
minimal number of elements necessary to generate the ideal, then several
algebraic tools may help us.

Rank 2

We prove in this subsection that the fusion ideal for quantum groups asso-
ciated to a Lie algebra of rank 2 can always be generated by 2 elements.
The proof utilizes commutative algebra and works with the fusion ring from
an abstract point of view. Therefore there is little chance to say anything
explicit about actual generators in specific examples.

We work with a commutative presentation of the fusion ring F' as a
quotient of the polynomial ring R = Z[X,Y] in 2 variables by an ideal I.
We know [’ is a Gorenstein ring, meaning that we have an isomorphism
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of R/I-modules Homy(R/I,7Z) ~ R/I, which lifts to an isomorphism of
R-modules.
We first prove a technical lemma.

Lemma 3.10. Let S be a noetherian ring, let T be a ring that is a finitely
generated S-module and let b € T. Consider T as an S[X]-module by the
mapping X — b. Then there is an isomorphism of S[X]-modules

Exty(T, S) =~ Extgy (T, S[X])
for all 1 > 0.

Proof. Set T|X]| = S[X]| ®g T with trivial S[X]-action. Multiplication on
T[X] by X — b fits in to a short exact sequence

0— TX] S TIX] =T = 0.
Apply the left exact functor Homgyx)(—, S[X])

. = Extiy ) (T[X], S[X]) — Extiy | (T[X], S[X]) —> Extth) |(T,S[X]) — ...

: ;

0 — S[X] ®s ExtL (T, S) — S[X] ®s Ext(T, S) Cok 0

where the vertical isomorphisms come from the fact that S — S[X] is flat.
The lower homomorphism makes the diagram commutative, so by naturality
of the isomorphisms it is multiplication by X — b, identifying the cokernel
with Ext%(T,S). Diagram chasing gives us a map

Exty (T, 5) — Extih (T, S[X])

which is an isomorphism by the Five Lemma. U

Proposition 3.11. Let I C R =Z[X,Y] be an ideal such that we have an
isomorphism of R-modules

Homgy(R/I,7Z) ~ R/I. (3.14)
Then I is generated by an R-regular sequence of length 2.

Proof. Necessarily from the duality (3.14) R/I is a finitely generated Z-
module, so Lemma 3.10 with S =7, T = R/I and x = X + 1 € R/I gives

us
Exty(R/1,Z) =~ Extyry(R/1, Z[X]).
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Now R/I is still finitely generated as an S’ = Z[X]-module, so the lemma
with y =Y + I € R/I gives us

Extyix) (R/1, Z[X]) ~ Extyfy ) (R/1, Z[X, Y]).

With ¢ = 0 and the assumption, we get
Ext%(R/I, R) ~ Homg(R/I,7Z) ~ R/I.

Pick a unit e € R/I. With the identification Ext%(R/I, R) ~ ExthL(I, R)
this element corresponds to a nonsplit short exact sequence

0—+R—-M—1—0. (3.15)

The goal is to show that M ~ R? for then the image of two generators
under the surjection in (3.15) will generate I.

We prove first that Exth (M, R) = 0 for all i > 1. Consider the long
exact sequence associated to (3.15):

Homp(R, R) % Exth(I, R) — ExthL(M, R) — Exth(R, R) = 0.

By construction we have p(id) = e € Extp(I, R) ~ R/I. Choose an f € R
with e™? = f+1. Since p is an R-homomorphism p(f) = fe = (f+1)e =1,
so p is surjective and Extp(M,R) = 0. Let now i > 2. Since R/I is
Gorenstein it is Cohen-Macaulay, and localizing at a prime ideal p C R
containing I gives us projdimg(R/I) = 2 by the Auslander-Buchsbaum
formula. Then 0 = Ext'(R/I, R) ~ Exth(I, R) ~ Exth(M, R).

Now induction on the length of a projective resolution on a given module
N gives Exti(M, N) =0 for all i > 1, i.e., M is projective.

Then [Qui76, Theorem 4] says that all projective modules over Z[ X, Y]
are actually free, so M ~ R¥. Choose any prime ideal p C R not containing
I. Localizing (3.15) at p we get

0—= Ry, — M, = R, =0

showing that & = 2. Here we used that I N (R \ p) # 0 so I, contains a
unit. O

Note that the proof does not give us an explicit set of generators. Our
method for taking the local data of a projective module to a global setting
using Quillen’s theorem does not give us any information on the structure
of the resulting free module.
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Rank 3 and higher

Many of the techniques in the above proof generalize to higher ranks. When
we consider a general ideal I C R = Z[X;, ..., X, such that Homz(R/I,7Z)
~ R/I, Lemma (3.10) applied r times still gives us

R/I ~ Homg(R/I,Z) ~ Extyx (R/1, Z[X1]) ~
o (R/LZ[Xy, ... X)),

Locally, the Auslander-Buchsbaum formula still gives us projdimgz(R/I) =
r, so Exth(R/I,R) = 0 for i > r. We also have our tool to give us
global information from local data: By [Qui76, Theorem 4| any projec-
tive Z[ X1, ..., X,]-module is free. The case r = 2 is special though, since
only then will a unit in Ext,(R/I, R) ~ Ext’; ' (I, R) give us a short exact
sequence as in (3.15), which is a paramount part of the proof.

In [Ser63] it was proved that a quotient of a regular local ring of codi-
mension 2 is a complete intersection ring if and only if it is Gorenstein.
After more than 50 years this result has not been generalized to higher
codimensions, suggesting that a generalization of Theorem 3.11 to higher
ranks is not possible without further assumptions on the ideal.

For a Lie algebra of rank 3 we may instead use a result from [BET74],
stating that for a local noetherian ring and an ideal such that the quotient
is Gorenstein the minimal number of generators of the ideal must be odd.
Applied to our problem, we may consider the fusion ring for g of type Cjs
for odd [ or type Bs for even [. If we were able to find an explicit generating
set of the fusion ideal consisting of 4 elements, then we would know, that
locally the minimal number of generators of the ideal was actually 3, i.e.,
the fusion ideal is locally a complete intersection. Note that this does not
say anything about the ideal itself being globally generated by 3 explicit
generators.



Chapter 4

Fusion rings for g of rank 2

In this chapter we do a treatment of the fusion ring F(g,!) for each simple
complex Lie algebra of rank 2. In Section 3.4 of the previous chapter it was
proven, that in this case the fusion ideal I; can always be generated by 2
elements. For each value of [ we propose a generating set of the fusion ideal
I; and show explicitly that it works. For type As or Cs we find a generating
set of 2 elements as predicted by Proposition 3.11, but for type G5 we can
only find an explicit generating set of 3 elements.
We identify a weight A\ = aw; + bw, € P with (a,b) € Z2.

4.1 Type A,

We have two simple roots oy, as and positive roots & = {ay, an, ap }, where
Qg = aq + g is the highest root. The level is k£ = [ — 3, so we assume [ > 3.
The fundamental weights are w; = %041 + %ag and wy = %041 + %Oég, so the
fundamental alcove is

A ={(a,b) € N* | a+b < Ek}.
The characters of the fundamental representations are

h V(i) = O 4 () (1)

Proposition 4.1. Let g have type Ag, let | > 3 and set k =1 — 3. The
fusion ideal I, for the fusion ring F,(g,1) has the following set of 2 generators

L= ([Vq4(k +1,0)], [Vo(k, D)) -

57
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Proof. We have already seen in Proposition 3.3 that the two proposed gen-
erators work, but let us show it by calculations in an inductive manner. We
know from (3.2) that the fusion ideal is generated by all elements that have
level k + 1. We define elements

gi = [Vg(k+1—-14,4)],0<i < k+1,

ri=T,(k+1—i,149)]=[Vy(k+1—i,1+4)]+[Vy(k—1i,1)],0<i<k.
The g;'s are all the elements in Ky(7;) of level k + 1, and the r;’s are some
of the elements of level £ + 2. Let J be the ideal generated by gy and g;.

We will show that all g;,7=2,...,k+ 1, belong to J.
We use the formula (1.4) to calculate

[vq(wl)]gi =giy1+1i—1,k>1>0

To, 1=20
V w i =
Va(en)lg {g ke
Then we have rg = [L,(w2)]go € J. Assume that g;, g;41,7; € J for some k—
1>:>0. Then also Tiyr1 — [Lq(wQ)]giH —g; € J and Ji+o = [Lq(wl)]giﬂ —
r; € J and we are done. O

Let us quickly compare with the calculations used in the proof of Propo-
sition 3.3. The element g; belonging to the weight (k + 1 — i)w; + iwy =
(k + 1)ey + iey has the following determinantal description, cf. (3.10):

:’[Vq(/HLO)] [Vq(i = ,0)}‘
b IVe(R+2,0)] [V(i,0)]

Together with the formula for ¢,

V,(k+1,0)
[vq(k7 1)] = ‘[Vq(k + 2’0>]

we get

gi = [Vo(k +1,0)][Vg (2, 0)] = [Vy(k + 2,0)][Vy(i = 1,0)]
= 90 ([V4(2,0)] = [V (i = L,0)][V,(1, 0)]) + 91 [V (i = 1, 0)].

4.2 Type O

We have the two simple roots aq, as with «; short, such that the set of
positive roots are {aq,as, a1 + az,2a;7 + as}. Then ay = a3 + as and
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Bo = 2a1 + ay are the highest short resp. long roots. If [ is odd we have
level £ =1 — 4 and for [ even k = [/2 — 3. The two fundamental weights
are wy = /2 and we = o, so the fundamental alcove is

{(a,b) e N* | a+2b <k}, [odd
- {{(a,b) eN?|a+b<k}, [even
The characters of the fundamental representations are
ch V,(w) = e®0 1D o=l 4 o(Z10))
ch V,(ws) = e 4 e 4 (00) 4 o(=21) 4 (0.-1)
Proposition 4.2. Let g have type Cy and let | be a positive integer. If | is

even, we assume k = 1/2 —3 > 0. The fusion ideal I; for the fusion ring
F,(g,1) has the following set of 2 generators

L= ([V4(k +1,0)], [Vo(k, D)) -

If | is odd, we assume k =1 —4 > 1. The fusion ideal I; has the following
2 generators

1= (19,0, 550 w2 55,

Proof. We have already seen, in Proposition 3.5, that the two proposed
generators work when [ is even, so consider [ odd. Set n = % and define
elements
gi = [V4(2i,n —14)],0 <7 <mn,
ri = [Ty(1 4 2i,n —1)]
=[V,(1+2i,n—1)]+[V,(1+2i,n—1—-17)],0<i<mn,
si = [Ty(2i,n + 1 —1)]

=[V,2i,n+1—=9)]+[V,(2i,n—1—1)],0 <i<n.
Then the g;’s, the r;’s resp. the s;’s are elements in Ko(7,) of level k 4 1,
k+2resp. k+3. Welet J C Ky(7,) be the ideal generated by the elements
go and g;. We know from (3.4) that I; is generated by all the go, ..., gn, so

we just need to show that they all belong to J.

Calculate by (1.4)
g1 + S0, L= O
[Vy(w2)]gi = ,
gi-1+ 9+ giv1+5, n>i1>0
710’ 7/: 0
T+ i1, n>1>0

[%WMmz{

Vo(w1)]ri = 2¢; + 2gi41 + 8; + si41,m — 1> > 0.
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Then we have ro = [V,(w1)]go € J and sg = [V,(w2)]go — g0 € J. As-
sume that g¢;, giv1,7:,8; € J for some n —1 > ¢ > 0. Then also r;y; =
Vo(w)lgiv1 —ri € J, sip1 = [Vglwi)lrs — 295 — 21 — si € J and
Giv2 = [V(w2)lgit1 — 9i — Sit1 — giy1 € J, and we are done. O

Another case

When we look at the situation above, we can imagine a case that does not
occur for any [, namely if the affine alcove 4; = {(a,b) € N? | a+2b < k} is
determined by the longest short root ag, and k is even. If we consider the
ideal I of Ko(7,) generated by all elements [V (u)], u € PT, of level k +1
together with [V,(0, £+1)]+[V,(0, £)], these are the elements corresponding
to minimal weights in P\ A;. We show that this ideal can be generated
by the 2 elements [V4(1, £)] and [V4(0, % + 1)] + [V4(0, £)]. Let n = % and
define elements

gi = [Vo(1 +2i,n —4)],0 <i <,
1y =[Vq(2i,n+1—14)] +[V,(2i,n—4)],0<i<n
5= [Vl +2i,n+1—0)]+[Vy(1+2i,n—1-14),0<i<n.

Let J C Ky(7,) be the ideal generated by gy and ry. We calculate

V(s = [0 91+ 0 i=0
! ' g1+ 9 +gi1+s, n>1>0
Vo(w)lgi=ri+rig,n>i>0

[Vo(w))]r: = {

2g0 + So, 1=20
2gi—l + 291 +Si-1+58;, n> 1>0

Then we have so = [V (w1)]ro — 290 € J, 11 = [Vg(wi)]go — 1o € J and
g1 = [Vg(w2)]go — go — so € J. Assume that g, giy1,7i41, 8 € J for some
n—1>1> 0. Then also Si+1 = [Vq(wl)]riﬂ — 291 — 2gi+1 —S; € J,
Tivo = [V(w1)]giv1 —rip1 € J and giys = [Vo(w2)]git1 — gis1 — gi —5i41 € J,
and we are done.

4.3 Type G2

We have the two simple roots aq, s, where «aq is short and the set of
positive roots is T = {aq, ag, a1 + g, 201 + g, 30 + A, 31 + 22 }. Then
g = 21 + ag and By = 3aq + 2ap are the highest short resp. long roots. If
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[ is divisible by 3, we have level kK = [/3 — 4, and otherwise | = k — 6. The
fundamental weights are w; = oy and wy = Sy, and the fundamental alcove
is then

4 — {(a,b) e N? | 2a +3b < k}, 3/)I
"\ {(ab) eN? | a+20 <k}, 3l

The characters of the fundamental representations are

ch Vg (wi) = e®0 4 e oD 4 o00) 4 o(=21) 4 o(L=1) 4 o(=10)
ch V,(ws) = €@V 4 @D 1 o0 4 (1D | o@271) | (-32) 4 9,(00)
_|_ 6(37_2) _I_ e(_Qvl) + 6(17_1) + 6(_170) _|_ 6(_371) + 6(07_1)

Proposition 4.3. Let g have type G5 and let | be a positive integer. If | is
divisible by 3, we assume k =1/3—4 > 0. The fusion ideal I; for the fusion
ring Fy(g,1) has the following generators

[TQ(()? 1)]7 [Vq(l, 0) ) k= 0,
[VQ(()? 1)]’ [Vq( 70)]’ k= L,
[T,(0, E2)], [V, (1, 4)], [V4(3, 552)], k even,k > 2
[Va(0, 555, V(2. 559 [Vo(4, 552)], K odd k> 3.

If | is not divisible by 3, we assume k =1—6 > 0. The fusion ideal I; has
the following generators

[V4(1,0)], [V4(0, D], k=1,

[V,4(0, D], [T5(2,0)], k=2,

[V(1, D], [T4(3, 0)], [V (0, 2)], k=4,

[Vo(555.0)1 [Vo(5532,2)], [T,()5H, 1)), k odd,k > 5,
V(552 DL T, (552, 0)], [T, (554, 2)], & even, k > 8.

Proof. We refer to [AS14, Theorem 7.1] for the explicit calculations in the
case where 3 divides [, so assume that it does not. The claim for k € {1, 2,4}
follows immediately, so let k > 5.

Consider first £ odd. If £k =1 mod 3, then £ =1 mod 6, and we set

n = 21 Otherwise k = 5 mod 6, and we set n = %. In both cases,

6
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define elements

9 = [Vo(BL = 3i,24)],0 < i <n,
ri = [T,(52 — 3,1 + 2i)]

= [V (52 — 30,1+ 2i)] + [V, (52 — 30,1+ 20)],0 < i < n,
si = [Ty(*$2 — 3i,2i)]

[V (52— 30,20)] + [V, (552 — 30,1+ 20)],0 < i < n,

t; = [T,(E2 — 30,1+ 2i)]

= [V (5 = 30,1+ 20)] + [V (552 — 36,1+ 20)],0 < i < n,
up = [T,(E2 — 3i,2i)] = [V (E2 — 34,2i)] 4 [V (52 — 34,2i)],0 < i < n,

andif k =1 mod 3, we also define r,, = [V4(0, 52)] and s, = [T,,(2, %51)] =
[Va(2, 58] + [V4(0, 552)]. We let J be the ideal in Ko(7;) generated by
go, g1 and 7. The generators from (3.9) are all the g; and r;’s, and we show

that they all belong to J.

First we calculate

+ ro + So, 1=20
Ve =% 70T |
gitrii+ri+s;, n>i>0
[V(w)]g 91+T0+80+t0, 1=10
2 .
ng1+gl+gz+1+n,1—|—7"i+8i+t,-,1+ti, n>1>0

(Vo(wi)]ri =2¢; +2¢i41 +2ri +8i+ Sip1 +t;, n—1>i>0

[Vg(wa)lri = 290 + 291 + 2ro + 11 + 8o + ug + ug, =0

2 20i +2gi1 +ria+2ri it situitu, n—1>0>0
290+T0+t[)+u0a i=0
2gitriatritsittig+Htitu, n>i>0.

[Vg(wi)]si = {

Note that in the case £k =1 mod 3 we still have

[Vq<wl)]7"n_1 = 2gn—1 + 2971 + 2Tn—1 + Sp—1 + Sp + tn—1,
[Vq wl)]gn =0p+ Th—1+ Th + Sn.
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We see that

gwi)lgo—go—10 € J

w1 81—2g1—T0—T1—81—t0—U1€J.

= [Vg(w1)]
= [Vy(wa)lgo —g1 =10 — 80 € J
s1 = [Vg(w1)]ro —2g0 — 291 — 2rg —sp —to € J
= [Vow)lgr —g1 —ro—s1 € J
ug = [Vg(wi)]so — 290 — 70 —to € J
up = [Vg(w2)]ro — 290 — 291 — 2rg — 11 — So —up € J
= [Vg(w1)]

Now assume that all g;,7;,5s;,t;,u; € J for j <4, where n —1 >4 > 0.
Then also

]

)

19i+1 = Giv1 —1i — Sit1 € J

wa)|ri — 2g; — 2gi+1 —Tie1 =20 = Tip1 — 8 — U € J
)

Si41 — 2Gi41 — Ti — Tig1 — Sig1 — b — Uip1 € J.

We end the inductive argument with g, = [V, (w2)]gn-1—9n-—2—gn-1—"n—2—
Tn1—Sn—1—tn2—1t,_1 € J,and if k =1 mod 3 also s, = [V (w1)]rn—1 —
20n-1—29n—2rp_1—Sp_1—tn—1 € Jand r, = [Vy(w1)]gn—gn+Tn—1—5, € J.

Consider now k even. If k =1 mod 3, then £ = 4 mod 6, and we set

n = %. Otherwise £ = 2 mod 6, and we set n = %. We define new
elements
gi:[vq(% 3i,1421)],0 <i<mn,
= [T,(2 — 3,2i)] = [V, (52 — 34,20)] + [V4(% — 3,20)],0 < i < n,
q\ 2 a\2
[Tq(g 3i, 1+ 21)]
:v k30,14 20)] + [V (52 = 30,1+ 20)],0<i < n,
[Va(3 k
= [T,(H2 — 34,2i)] = [V (52 — 3,20)] + [V (552 — 3,2i)],0 < i < n,
= [T,(52 — 3i,1 + 2i))]
:[Vq(%—?)zl%—%)] [Vo(558 = 3,14 24)],0 < i <n,

and if k¥ = 1 mod 3 then we also define r,41 = [V4(0,%4?)] and s, =

[T,2,51)] = [Vo(2, 5] + [V4(0,%5)]. This time, let J be the ideal

generated by gg,rg and ri. Again we show that all the g;’s and r;’s belong
to J.
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We get similar calculations as before:

[Vo(w)]gi = gi + i + g1+ 85,n >0 >0

[V (w2>]g': go+gl+ro+7’1+80+to+t1, 1=20
! i1+ 9t g +ritriatsitti+tip, n>i>0

290+2T0+80+t0, 1=0
[V(wi)]ri = .

20,1+ 29, +2r;+s; 1+ s +t;, n>1>0

2g0—|—7"0+7"1+280+t0+160, 1=0
[Vq(wg)]n = 292‘71 -+ 2gz +ri_1+ 27"1' + Tir1 —+ 281',1

+28; + t; + w1 + uy, n>1>0

[Vy(wi)]si =2g; + i +rig1 + 8 +ti + tign +us,n >0 > 0.
If k=1 mod 3, then still

[v (Wl)] _2gn 1+29n+2rn+3n 1+sn+tn,
[vq( 1)}971—1 = gn-1 + T'n—1 + Tn + Sn—1-

First we see that

= [Vy(wi)lgo—go =m0 —11 € J
= [V (w1)]ro — 290 — 219 — sp € J
up = [Vg(w2)]ro — 290 — 10 — 11 — 250 —tg € J
= [V (w1)]so — 290 — 10 — 71 — S0 — tg —up € J
= [Vi(w2)]

go—Ggo—To—"T1— 8 —to—t1 €J

Now assume that all g;,7;,5;-1,%j,u;_1 € J for j <4, where n > 7 > 0.
Then also

glw)|ri —2gi1 — 29, —2ri — s — 4 € J
gi—9i—ri—si €J

]
]
Jri —2gi1 —2gi —7Tic1 — 21y — Tig1 — 28i21 — 28 — i —u; € J
glwi)lsi —2g; —ri—rip—si—ti—u; €J

]

9i — Gi-1 = Gi —Ti = Tix1 — i =t —lig1 € J.

If k=1 mod 3 we end the inductive argument with s, = [V, (w1)]r,
2001 — 2gn, — 21 — Sp—1 — by, and 1 = [Vo(w1)]gn — gn — 7n — Sn. O



Chapter 5

Tensor 1deals 1n ’7}1

In this chapter we will generalize the constructions in Section 1.3 to get
structures that might not satisfy all the axioms in Section 1.1, but for
which the methods in Chapter 3 give similar results.

We will first explore suitable subcategories Z of the category of tilting
modules 7, that can replace the role of AV,. We will require that the
Grothendieck group Ko(Z) is a subgroup of Kq(7;) which is also an ideal
with regards to the ring structure. This leads us to the definition of a tensor
ideal in an additive, monoidal category, cf. Section 0.1.

Definition 5.1. A subcategory Z C 7T, is called a tensor ideal if Vi®Vy € T
implies Vi,Vo € Z, and V € Z,Q € T, implies V @ Q € L.

When Z C 7, is a tensor ideal, we may form the quotient category 7,/Z.
The story deviates here from the one in Section 1.3, as this quotient in gen-
eral will not be semisimple and may have an infinite number of isomorphism
classes of indecomposable objects.

5.1 Weight cells in the dominant chamber

Following [Ost01] we define a preorder on PT.

Definition 5.2. Let A\, u € P*. We say A <.  if there exists a Q € T,
such that To(X) is a direct summand of T,(p) ® Q. If both X\ <7. n and
p <7, A, then we say A\ ~7, p, and we call the equivalence classes of ~7,
for the weight cells in PT.

For all \,v € P* we have A + v <7 A, in fact T,(\ + v) is a direct
summand of T, (\) ® T, (v).

65
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The preorder <7. on P* induces a partial order on the set of weight
cells, which we also denote by <7.. Write ¢ <7, cif ¢ <7, ¢ but ¢ # c.
Furthermore, write A <7. ¢ when A belongs to a cell ¢’ with ¢’ <7. c.

One may show directly that (I — 1)p + PT is a single weight cell, cf.
[And04, Proposition 6]. By the above observation, this is the unique min-
imal cell in the partial ordering on the weight cells. Furthermore, the fun-
damental alcove A; is a single weight cell, c¢f. [And04, Proposition 9], and
this is the unique maximal cell in the ordering.

The following is [And04, Proposition §].

Proposition 5.3. Each weight cell in P is a union of lower closures of
alcoves intersected with P.

Characterization of tensor ideals

Given a weight cell ¢ C PT, denote by T,(< ¢) the subcategory of 7, whose
objects are finite direct sums of T;(\) with A <7. c¢. Then 7,(< ¢) is by
construction a tensor ideal in 7,. It is clear that for a collection of weight
cells ¢;, i € J, the subcategory of 7, consisting of finite direct sums of T} (\)
with A <7 ¢; for some ¢ € J is also a tensor ideal in 7;. On the other hand,
all tensor ideals in 7, have this description. As a special case we denote by
T,(< ¢) the tensor ideal obtained from the collection of cells ¢ <7, C.

There is an identification of W, with the alcoves in P, obtained by
matching w € W, with w.A;. Let W;" denote the w € W for which w.4; C
P*. By Proposition 5.3 we have a partition of W,* under this identification.
This partion is not new, as is shown in the following

Proposition 5.4. The weight cells in Pt correspond to the right Kazhdan-
Lusztig cells in W,

This is [Ost97, Theorem 5.5] and the following remark. Here a right
Kazhdan-Lusztig cell is an equivalence class of the equivalence relation ~g
generated by the preorder <g on W; defined in the next section.

The proposition gives us a characterization of all possible tensor ideals
of 7, in terms of right Kazhdan-Lusztig cells. However, the definition of
<g on W, is quite intricate, and a complete decomposition of W, into right
cells has not been done in general. In the next section we review some of
the progress on this problem.

We see that we have generalized the setting from Section 1.3, as N, =
T,(<A;). We have the following generalization of Proposition 3.1:
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Proposition 5.5. Let ¢ € PT be a weight cell. Then the tensor ideal
T,(< ¢) C T, is generated by the set

{T,(N) | A is minimal in Ug<, . ¢ with respect to <}

The proof is formulated in the same way, but note that the generating set
is not necessarily finite.

Comparison with fusion rings

Write R = K(7;), and for a weight cell ¢, write I<, = Ko(7,(< ¢)). As
a Z-module R/I<. has a basis in {[A\] | A € P, A £7. ¢}, where [\] =
[T,(N)] + I<. is the coset represented by the class of T, (\). R/I<. inherits a
multiplicative structure from R, which we encode with regards to the basis
as

We now ask ourselves what can be said about this structure.

Obviously the structure is commutative, and by construction it is asso-
ciative. The involution A — A* may preserve the set I = {\ € P* | A £
¢}, in which case we have N}’f:,m = Ny, for all A\, p,v € I. However, unless
we are in the situation of Section 1.3 where I = A, it will not define a
fusion structure on I: If A € I\ A, and v € A;, then Ny, =0forany u € I,
since we know that 7,(< A;) is a tensor ideal. This means in particular that
N/{\(i\ = 0, and the condition (iii) of Definition 1.1 is not satisfied.

Continue to assume that the involution preserves the set I. In all cases
except g of type A,., D,.(r odd) or Ej this is obvious, as the involution is just
the identity, cf. [Bou02, Chapter VI, Plates I-IX]. We define a Z-bilinear
form on R/I.: For the basis elements {[\] | A € P*, A £7, c} define

([A], (1)) = dim Hom, (T, (), Ty (1)) (5.1)

and extend linearly. Since Homy, (L ® T,71") ~ Homy, (T, L* ® T") for any
L, T,T" € T, we have (zz,y) = (z, z*y) for all z,y,z € R/I,.

If I is a finite set, let B = (b)), bx, = ([A], [1]), be the matrix associ-
ated with the bilinear form. If the determinant of B is non-zero, then the
bilinear form gives an injection of R/l into Homg(R/I<., Z), which is an
isomorphism if the determinant is a unit. We calculate B using the formula

dim Homy, (T, ') = > [T : Ay(N)] [T : V4(N)] (5.2)

AepPt
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which follows from the fact that Ext7. (Ag(A), Vy(u)) is 1-dimensional if
n =0 and A\ = u, and 0 otherwise.

5.2 Kazhdan-Lusztig cells in affine Weyl
groups

We consider the affine Weyl group W, generated by the set .S of reflections
in the walls of the fundamental alcove A;. Let sy denote the reflection in the
upper wall of 4;, i.e., if [ =1, for all @ € ® then sy = s,,.1, and otherwise
So = Sg,,1. Then the set of simple reflections is S = {s1,...,s,,50}. As
mentioned in the previous section, the partition of PT into weight cells
corresponds to the partion of W," into right Kazhdan-Lusztig cells. We
quickly go through the construction of the partitions of W, into subsets
of right, left and two-sided Kazhdan-Lusztig cells for the infinite Coxeter
system (W, S) first defined in [KL79|, but with the notation of [Soe97a].

Let H denote the Hecke algebra of (W}, S) over A = Z[v,v™!], i.e., H =
D, AH,, with multiplication defined by H,H,, = Hy, if [(sw) > l(w)
and H,H,, = Hy, + (v — ') H otherwise. There is an involution on
H given by ¥ = v™! and H, = (H,1)"!, and we call H € H self-dual if
H=H.

We have the classical result, [KL79, Theorem 1.1]:

Theorem 5.6. For all x € W, there exists a unique self-dual element H, €
H such that H, € H, + 3, _ vZ[v|H,. The H, form an A-basis of H.

Definition 5.7. Let <;,<p and <pr be the preorders on W, generated by

x <py< H, appears in HH, for some H € H
v <ry< H, appears in H H for some H € H
x <pry <& H, appears in HﬂyH’ for some H, H € H.

We write x ~p, y if both x <p y andy <, x. This is the equivalence relation
generated by <r, and we call its equivalence classes the left Kazhdan-Lusztig
cells in W;. Similarly, we have the equivalence relations ~r and ~pr on
Wi generated by <gr and <pr and we call their equivalence classes the right
resp. the two-sided Kazhdan-Lusztig cells.

We notice that © <, y < 7" <z y ', so there is a redundancy in the
notation. As previously noted, the partitions of W} into right and two-sided
Kazhdan-Lusztig cells have not been computed in general. As a first general
result, we note |[Lus87, Theorem 2.2|:
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Theorem 5.8. The affine Weyl group W, has only finitely many two-sided
Kazhdan-Lusztig cells.

Though some two-sided cells may consist of finitely many elements, this
result tells us that in general they are infinite. As another result, we note
|[LX88, Theorem 1.2]:

Theorem 5.9. Let A C W, be a two-sided Kazhdan-Lusztig cell. Then the
intersection ANW," is a single right Kazhdan-Lusztig cell.

Then, in order to characterize the weight cells in P, we may either char-
acterize the two-sided Kazhdan-Lusztig cells in W) or the right Kazhdan-
Lusztig cells in ;"

Some examples

Assume that g has type A,.,r > 2. We know that the number of two-
sided Kazhdan-Lusztig cells in W, is finite, but more precisely it is equal
to the number of partitions of r + 1, as is shown in [Shi86, 17.5]. This
is a corollary of a complete characterization of the two-sided cells in W}
through a technical map associating to each affine Weyl group element a
partition of » + 1. In the same book it is also shown that each non-trivial
right Kazhdan-Lusztig cell in W, is an infinite set of elements, cf. [Shi86,
Proposition 19.1.5]. Therefore N,(sl,;1) is the only tensor ideal in T, (sl,;1)
for which the quotient of the respective Grothendieck groups has finite rank.

Assume that g is simple of rank 2. In his paper [Lus85| Lusztig describes
explicitly the right and two-sided Kazhdan-Lusztig cells of W;. The affine
Weyl group is partitioned into unions of two-sided Kazhdan-Lusztig cells
W, =AU BUC for g of type Ay, W, = AU BUC U D for type Cy and
W, =AUBUCUDUF for type G5. In all cases the last set is the trivial
cell {1}, and in the first two cases the remaining sets A, B resp. A, B,C
contain infinitely many elements. For type G5 the sets A, B and C' are
infinite, while the set D is finite. Thus the set D; = D N W, is a finite
right Kazhdan-Lusztig cell. The next section is dedicated to the study of
it.

There are a number of results on partial and complete characterizations
of the right and two-sided Kazhdan-Lusztig cells for affine Weyl groups of
other types, but let us pick just one out. In [Lus83, 3.13| for each simple g of
rank » > 2 a number of graphs are constructed, each corresponding to a left
Kazhdan-Lusztig cell in W;. In case g does not have type A, or C,., one of
these graphs is finite and thus corresponds to a finite left Kazhdan-Lusztig
cell.
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5.3 The D, cell for type G5

In this section we shall consider an example of a non-trivial finite weight
cell in Pt when g has type G,. This is the cell corresponding to the subset
of W; named D; in [Lus85, 11.2], consisting of the elements sq, sos1, So$1 52,
50515281, S0S51525150, S0S1525152, S0S51525159251, S0S1525152515¢- Let D1 denote
this weight cell too, i.e., the union of the lower closures of w.A; intersected
with P for w one of the eight aforementioned elements of W;. Thus the
subcategory T,(< D) of 7, is a tensor ideal, such that the quotient category
has finitely many isomorphism classes of indecomposable objects.

Proposition 5.10. Let g have type Gy, and let | > 6 be an even integer
not divisible by 3. Then the tensor ideal T,(< Dy) in T, is generated by the

set {T,((5 = 1)p), Ty((5 = Dp — wi +wa), T, ((§ = 1)p + 3wy — w)}.
Proof. Define elements

)\i:(é—l)p-Fi(Wz—Wl)yi:Ow--’

N[~

Let Z be the ideal in 7, generated by T,(\o), T,(A1) and T;,(p11). The weights
{Ai,p;} are the minimal weights in the set Uec,. p,c = P*\ (D1 U 4))
with respect to <, so by Proposition 5.5 we just need to show that all the
remaining T, (\;) and T,(x;) belong to Z.

Under the identification of W; with the set of alcoves in P, if w =
Si, --.S; then denote A; ,; = w.A;. In the following we compute the
characters for tilting modules belonging to lower closures of some alcoves in
Pt \ (Dy U A)), specifically the alcoves Agia120, Ao121201 and Agi212010- For
the deduction of these characters we use [Soe97b, Conjecture 7.1| (proven
in [Soe98|) and the following remark.

Let A € A;. We consider first Apj2120, 50 let w = 505152515250. If A € A,
is regular, then

ch T5(w.A) = Xwa + Xwsor + Xwsz. A T XwsosaA-
If A is subregular and fixed by sy, then
ch T, (w.A) = Xw.r + Xwso.A
and if X is fixed by sq, then

ch T, (w.A) = Xwr + XwssA-
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If X is fixed by both s; and sg, then T, (w.\) is simple.
Consider then Agpja1201 and let w = sp815251525051. If A € A; then

ch T4 (w.A) = Xuwx + Xwsi A T Xwsiso.x T Xuwsisos1. 2 T Xuwsisosa.x T Xuws1sosast A-
If X is fixed by s;, then
ch T4 (w.A) = Xw.a + Xwsisor T XwsisosaA-
Finally consider Agi212010 80 let w = $¢$1598152505180. If A € A; then
chTy(w.\) = Xwx + Xwsor T Xwsost A T XwsosisoA T Xuwst A+ Xuwsyso.A-
If X is fixed by sg then
ch T, (w.A) = Xw.a + Xwsosi A T Xuwsi A
and if A is fixed by s; then
ch T, (w.A) = Xwa + Xwsor + Xwsiso.A-

If X is fixed by sp and sy then T, (w.)) is simple.
We show first that all T,(\;),i = 2,...,% — 1, belong to Z. Explicitly
we see that

Tq<)\0 + wl) erl
Tq()\o + CL)Q) el

T,(\) €T (T,

and inductively

T,(N\i +2wy) € Z  (direct summand of T,(\; +w;) ® T,(w) as above)
T,(Niy1 +wo) € T (direct summand of T, (A\i41) @ Ty(w2))
T,(Niys3) €T (direct summand of Ty (A;42) ® T, (wy))

fori:O,...,%—él. Note for 7 = % — 4 that \; + 2wy and \;;q1 + wo lie
on the wall between A012120 and A0121201.

In the same manner we show that all 7}, (u;),i =2,. .., % — 1, belong to
T.

Ty(pi +2w) €T (direct summand of T, (p; + w1) ® Ty(wr))
Ty(ptiv1 +wi) €T (direct summand of T, (p;41) @ T, (w1))
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Ty (i +wi +w2) € T (direct summand of T, (p; + wi) @ Ty (w2))
Ty(piv1 +we) €T (direct summand of T, (11 + 2wq) ® Ty (w1))
Ty(piva) € T (direct summand of T, (1 41) @ Ty(w2))

fori =0,...,5—3 (here o = o). The calculations become complicated
when we hit the Walls below Ap121201 and Agi212010, but in a decomposition
of the tensor product in any of the 5 cases above, all but 1 summand has
already been seen to belong to Z, and consequently the last one (the one in
the left column) does too.

Note the similarity of the first inductive step with the calculations in the
proof of [AS14, Theorem 7.1] and of the second with the proof of Proposition
4.3. They really are the same. U

The restrictions on [ in the proposition are just for convenience. In case
[ is an odd integer not divisible by 3, or in case [ > 12 is divisible by 3,
we have a similar result on the tensor ideal 7,(< D;) being generated by 3
elements.

Now consider R = Ky(7,) and I.p, = Ko(7,(< D;)). Let us calculate the
determinant of the bilinear form (5.1) on R/Ip,. Since Homy, (T3 (), T, (1))
= 0 unless € Wi\, we may assume A\ € A; and p = w.\, where w is one of
the elements 1, sq, S0S1, 505152, S0515251, S051525150, S051525152, S05152515251,
5051592515251 50-

Agssume first A\ € A; is regular. We again calculate the characters of the
indecomposable tilting modules with highest weight in Dy U A; linked to A,
using [Soe97b, Conjecture 7.1|.

ch T, (\) =

ch T, (so. )\) Xso.x T XA

ch T, (3051 ) Xsos1A T Xso.A

ch T;(505152.X) = Xsgs1s2.A T Xsos1.A

ChT (30515231 ) Xsoslsgsl.)\ + Xsoslsg.)\

ch T,(5051525150-A) = Xsosisas150.A T Xsosiszs1.A
chT,(5051525152-X) = Xspsisas152.A T Xsos1s251.2

chT, (303182513231 )\) = Xsps152518251.A + Xsos1525152.\

ch T7,(50515251525150-X) = Xsosisasisasisor T Xsosisasisast A

+ X 505182515250\ + X sps1525182.\
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Using (5.2) the determinant of the principal minor of B corresponding to
the linkage class of A is seen to be:

OO OO OO O =
DO DD DO O N
O OO OO N O
OO OO INEHE OO
OO DN OOO
OO, NEHEHOOOO
el e e M s R an R o]
RN = OO OO OO
=N = OO O oo o

I

[\

Now let A € A; be a subregular weight fixed by the affine reflection s.
There are three distinct weights in D U A; in the linkage class of A\, namely
A, 50515251, S0S152515251.A. We use [Soe97b, Remark 7.2] to calculate the
characters of the related indecomposable tilting modules.

ch T,(X) = xa
ch T;,(5051525150-A) = Xsos1525150.\

ch T},(505152515251-A) = Xsps1s0515251.)

So the tilting modules are all simple, and the determinant of the principal
minor of B corresponding to the linkage class of A is 1.

If A\ € A; is subregular and fixed by s;, there are three weights in
D; U A; in the linkage class of A, namely s1.A, s98152.\, Sps1525152.A. The
indecomposable tilting modules related to these weights are all simple, so
the corresponding subdeterminant is again 1. If X\ is fixed by ss, there are
two weights in D; U A; in the linkage class of A, the related tilting modules
are also simple and the subdeterminant is 1.

Put together, the determinant of B is d = 2/, and we conclude that
the bilinear form (5.1) is non-degenerate but does not give an isomorphism
of R/Ip, with its Z-dual.

However, if we make a change of the base ring to Z[3] = {d",n € N}7'Z,
the bilinear Z[J]-form on R/Ip,[4] gives an isomorphism of R[%]-modules

and then the proof of Proposition 3.11 carries over directly to give us the
following
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Proposition 5.11. Let I C R = Z[X,Y] be an ideal such that R/I is finite
free as a Z-module and there is a non-degenerate bilinear Z-form on R/I.
Let d € Z be the determinant of the matriz associated with the bilinear form
for any basis of R/I. Then [[é] is generated by an R[é]-regular sequence of
length 2.

In the proof it is important to note that the ring Z[é] is a principal ideal
domain so the Quillen-Suslin theorem still holds over R[] ~ Z[2][X, Y]



Chapter 6

Future perspectives

We use in this chapter the notation of Section 1.3. In particular ¢ € C is
a root of unity, and [ denotes the order of ¢°>. Assume that [ is big enough
that A; # (. The Weyl group W is generated by the simple reflections
Si = Sa;, ¢ = 1,...,7 while the affine Weyl group W, is generated by W and
the reflection sy in the upper wall of the fundamental alcove A;, which is
either s, 1 or sg,1 depending on whether all [, = [ or not.

Let D ={0,1,...,r} be a numbering of the nodes in the affine Dynkin
diagram corresponding to the simple generating set {so, s1,...,s.} of W,
and let D = {1,...,r} denote the Dynkin diagram of W. For any nonempty
subset S C D, let Wg = (s; | i € S) be the reflection group generated
by the simple reflections corresponding to S. Let Wgs act on E via the
shifted action. This action preserves P, and we denote it by the usual dot-
notation. Call an element of £ S-singular if it is fixed by some non-trivial
element of Wy, and let Hg C E denote the set of S-singular elements. Let
Cs C E'\ Hg be the unique connected component containing A;. Then Cq
is a fundamental domain for the action of Wy on E.

The subset of the extended Dynkin diagram corresponding to S is the
Dynkin diagram of a (possibly reducible) root system ®g C & whose Weyl
group is Ws. Let ®& denote the positive part of ®g corresponding to Cl,
and let pg = % Zae% a € E. Though pg is not necessarily in P, the action
A= w. (X — pg) + ps preserves P for all w € Ws. With abuse of notation
denote this action by w(\),w € Wg. If 0 ¢ S then Wy is a subgroup of W,
and the actions of the two groups on P are the same.

Note that the shifted action of Wy fixes a face of A;, while the non-
shifted action fixes a face of A;.

The non-shifted action of Wg on P induces an action on Z[P]. For A € P
the element A} = Ewews(—l)l(w)ew(’\) is antisymmetric with regards to

75
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this action. Then the fraction
AYs
—tes (6.1)
Aps®
is a Wg-invariant element of Z[P]. If S = D then W5 = W and (6.1) is
the Weyl character x, € Z[P]". When we identify Z[P]" with the split
Grothendieck group Ko(7,) there is a quotient of Z[P]"" which is identified
with the fusion ring Ko(7;)/Ko(N,).
The following is [Dou09, Proposition 2.4].

Proposition 6.1. Assume that [ is divisible by all d;,i = 1,...,r. There is
a complex of Z[P]" -modules Dscpsi=r_i Z|PVs whose differentials have
components d>T : Z|P]Ws — Z[P|"7 for T = S U {i,}, given by

AVs AV
dS’T ( ) — (_1)5

Atps Atpr

AYs ApT
Here D\ S = {ig,...,i,} is ordered ip < --- <1y as in D. This complez is
acyclic except in degree i = 0 for which it has homology identified with the
fusion ring.

The complex is an interpretation of a twisted Mayer-Vietoris spectral se-
quence for the twisted K-homology of a simple, simply connected Lie group
whose Lie algebra is g, cf. [Dou09, Section 2|. While the mechanics of this
spectral sequence is deeply rooted in equivariant K-theory, the interpreta-
tion is formulated purely in terms of invariants in Z[P] of subgroups of the
affine Weyl group. When we consider only the combinatorial description of
the complex the assumptions on [ seem artificial, which suggests they might
be superfluous.

In this chapter we are interested in giving a representation theoretic
realization of the complex (for any [) satisfying

(i) For each nonempty S C D we want an additive, monoidal category
D, s such that its split Grothendieck group Ko(D, s) is isomorphic to
Z[P]"s as rings.

(ii) The categories D, g should be D, p-module categories, such that the
Z[P]"s become finite free Z[P]"-modules.

(iii) For S C D and T'= S U {j} we want a functor D, ¢ — D, r categori-
fying the differentials d*7 above.

(iv) For S = D we want D, 5 ~ T, to be equivalent as additive, monoidal
categories.
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6.1 Candidate categories

We introduce parabolic subalgebras of the quantum group, following [Pul06].
As a reference to the constructions, we use [CP95|. Alternatively one could
take the proofs in [Jan96, Chapter 8] and generalize them to the root of
unity case.

Let S € D = {1,...,r} be a subset of the Dynkin diagram and let
b~ C ps C g be the parabolic subalgebra associated to it. Let pg = [ D ug
be a Levi decomposition of pg, with [g the Levi factor and ug the unipotent
part. The group Wg C W is the Weyl group of [g, and we let wy g be its
longest element.

Choose a reduced expression wy g = s;, ...Si,,% € S, and extend it to
a reduced expression wy = $;y ... 8;,,, Wo 5. Define elements

51; = Si ...Sitil(Oéit), t = 1,...,N.

Then & = {fy,...,5,} and T\ &L = {B,11,..., On}-

Let T;,s = 1,...,r, denote the Braid group operators on the generic
quantum group U, cf. [CP95, 8.1] or [Jan96, 8.14]. Tt is a direct calculation
to check that the T} preserve the A-form U,4. We use these to define elements
of U, associated to the roots above. Let

ES) =T, ... T, (E"), t=1,...,N,a > 1,

1t
FO =T, .. T, (F9), t=1,...,N,a> 1.

it

Then [CP95, Proposition 9.3.3] or the proof of [Jan96, Theorem 8.24] shows
that the set consisting of the elements

(an) (a1) oy |1 or | Kr (c1) (en)
BgY L EGVEKT {bl} L K? {b} Fy FY (6.2)
V1 Ur

for a;, b;,¢; € Nyo; € {0,1}, is an A-basis of Ua.

Definition 6.2. The integral parabolic subalgebra U4 (ps) associated to pg
is the subspace of Uy spanned by the elements

(an) (a1) oy |81 or | K
ke K] e [
v1 Up

(
b1 b, d

c1) (en)
51 . .. FﬁNN

for ay, b;,cs € Nyo; € {0,1}.

This is an algebra, which is a consequence of the following



78 CHAPTER 6. FUTURE PERSPECTIVES

Lemma 6.3. For1<i<j<n anda,b e N we have

(@) ;p(®) _ (bB5,a8:) () pla) _ (aj) (ai)
Ey By — o EP B — N By Ey (6.3)
geNj7i+1
where ¢, € A is nonzero only if a = (a;, . .. ,aj) has a; < a and a; <b.

Proof. When a = b = 1 this is the Levendorskii-Soibelman relation [L.S91,
Proposition 5.5.2]. The result is proven by induction, first over j — ¢ and
then over a and 0. |

Though the basis in (6.2) depends on the choices of the reduced expres-
sions of wg g and wy, the definition of U(pg) does not.
We conclude that U,(g) is free as a right U,(pg)-module, with an A-basis

(an) (an+1)
EﬁNN ...Eﬁnﬁl

for a; € N.

Definition 6.4. The parabolic quantum group is the specialization U, (ps) =
Ua(ps) ®aC of v to g.

Parabolic modules

We define C, s to be the category of integrable U,(ps)-modules, i.e., it
consists of modules M = @, _p M, such that for all m € M and each

i € S,j €D EZ-(a)m =0 = Fj(a)m for big enough a. Let Fg be the
functor from the category of U,(pg)-modules to C, s which sends a mod-
ule to its maximal integrable submodule. We define an induction functor

H)(S,—):C; — Cqs by
HS(S7 N) = FS(HomBq(U(I(pS)a N))
for N € Cq_. For each A € P we define the induction module
Vas(A) = HJ(S,C)).

Note that V,s(\) # 0 if and only if A € P, and for such \ it has a unique
simple submodule L, g(\). V,s()) is finite-dimensional, and its character

equals
D wew, (—1)!WeOtrs)

Cth,S()\) = Zwews( 1)( )ew(ps)

€ Z[P]"s.
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The antipode on U, restricts to U,(ps) and gives a U,(ps)-structure on
dual modules. We define

Ays(A) = Vg s(—wos(N))"

Then V,s(A) and A, g()\) have the same character, and L, s(\) occurs as
the unique simple quotient of A, g(\).

Let H:(S,—) be the ith right derived functor of H)(S,—). Then the
linkage principle, Theorem 1.5, generalizes to show that for A € Pg,pu €
PN Cg, if Lyg(X) is a composition factor of H] ¢(w.p) for some w € Wy
and ¢ > 0, then A\ T, p. Let W; g be the subgroup of W; generated by all
affine reflections s, ,,,a € ®g,m € Z. Then Corollary 1.6 generalizes to
C,s, and we see that the module V, g(x) is simple when p € 14_1175 N P;,
where Ajg = {A € P |0 < (A ps,a") <l, Va € L} Note that A4 5 is
an infinite set unless S = D.

As another consequence of the corollary, we get a decomposition of C, g
into subcategories C, 5(\), A € A; 5, consisting of modules whose composi-
tion factors have highest weights in W, ¢.A. Similarly, we get translation
functors between them.

We say that a finite-dimensional module 7" € C, ¢ is tilting if it has
both a V,s- and a A, g-filtration. Denote by 7, ¢ the category of tilting
modules. We have all the tools needed to generalize Proposition 1.8, i.e., for
each A\ € P§ we have a unique up to isomorphism indecomposable tilting
module T}, s(\) € 7,5 of highest weight .

Given another subset S C T C D, all of the above applies with S
replaced by T'. Moreover, given a reduced expression wyg = s;, ...S; we
may extend it to a reduced expression wor = s;,, - .. 8;,,,Wo,5 and again to
a reduced expression wy = S; ... S;,,,, Wor- We see that Uy(pr) is free as a
right U,(ps)-module, with basis

(am) (an+t1)
EB"L T Eﬁn#—t

for a; € N. We get a functor H)(T'/S,—) : Cq.5 — Cqr by
Hy(T/S, M) = Fr(Homy, ) (Uy(pr), M))

for M € C, 5. Transitivity of induction gives us V7 (A) ~ H)(T/S, V45()))
for A € P.

We have a restriction functor C, — C, ¢ which makes C, g into a C,-
module category. Furthermore, if V' € C, is finite-dimensional, then by the
tensor identity H)(T/S,V ® M) ~ V @ H)(T/S,M) for M € C,s, this
module structure is compatible with induction.
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Conclusions and problems

Consider the direct sums of Grothendieck groups C* = @gc 5 5=_; Ko(Cys)
and the maps d : C* — C""! given by components d>T : Ko(C,s5) —
Ko(C, 1) for T = SU{i,}, where iy € D\ S = {io,...,i,} is (—1)® times the
map induced by Hg (T'/S,—). This is an acyclic complex of K¢ (C,)-modules.
Ko(Cy.5) has a Z-basis in {[V,s(\)] | A € P4}, and w.r.t. these bases the
components d>7 are given by

A ([Vas(N]) = [Var(V)].

The above satisfies part of our goal but does not completely realize
the complex. We have not defined a parabolic subalgebra U,(ps) C U, for
subsets S C D containing 0, i.e., a subalgebra whose Levi component U,(Is)
has an associated root system ®g, whose simple roots are {—0, o, ..., ®;, },
where 6 is either the highest short or long root. We could take a reduced
expression wy = S; ... s;, and look at the root vectors Eg), Fﬁ(:) associated
to By = siy ... 8, 4 (,). Let Uy(lg) be the span of the elements

(am) (a1) pron [ H1 on [ Kr (c1) (em)
Egm . ERVKD {InL . K? {brL Fg o Fgr
q r

where the §;, run over all roots ®s N ®*. Unfortunately, this is not neces-
sarily an algebra. The problem is that we do not have an analogue of the
Levendorskii-Soibelman relations for subsets of the ordered set {f1, ..., On}
like this.

Another detail is that the categories C, s are abelian, monoidal cate-
gories, while we asked for additive categories. In particular, for S = D,
C,p = C, is the category of integrable U,-modules and not the category
7T, of tilting modules we wished for. As rings though, the Grothendieck
group Ky(C,) and the split Grothendieck group Ko(7;) are both isomorphic
to Z[P]". We cannot use the tilting categories 7, s for the part of D, s, as
there is no reason to expect that the induction functor HY(T/S, ) : Cy.5 —
Cq 1 restricts to a functor 7,5 — T,r.
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