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Abstract

From Crofton’s formula for Minkowski tensors we derive stereological esti-
mators of translation invariant surface tensors of convex bodies in the n-
dimensional Euclidean space. The estimators are based on one-dimensional
linear sections. In a design based setting we suggest three types of estima-
tors. These are based on isotropic uniform random lines, vertical sections, and
non-isotropic random lines, respectively. Further, we derive estimators of the
specific surface tensors associated with a stationary process of convex particles
in the model based setting.

Keywords: Crofton formula, Minkowski tensor, stereology, isotropic random
line, anisotropic random line, vertical section estimator, minimal variance es-
timator, stationary particle process, stereological estimator

1 Introduction

In recent years, there has been an increasing interest in Minkowski tensors as de-
scriptors of morphology and shape of spatial structures of physical systems. For
instance, they have been established as robust and versatile measures of anisotropy
in [6, 25, 24]. In addition to the applications in materials science, [7] indicates that
the Minkowski tensors lead to a putative taxonomy of neuronal cells. From a pure
theoretical point of view, Minkowski tensors are, likewise, interesting. This is il-
lustrated by Alesker’s characterization theorem [1], stating that the basic tensor
valuations (products of the Minkowski tensors and powers of the metric tensor)
span the space of tensor-valued valuations satisfying some natural conditions.

This paper presents estimators of certain Minkowski tensors from measurements
in one-dimensional flat sections of the underlying geometric structure. We restrict
attention to translation invariant Minkowski tensors of convex bodies, more precisely,
to those that are derived from the top order surface area measure; see Section 2 for
a definition. As usual, the estimators are derived from an integral formula, namely
the Crofton formula for Minkowski tensors. We adopt the classical setting where
the sectioning space is affine and integrated with respect to the motion invariant
measure. Rotational Crofton formulae where the sectioning space is a linear subspace
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and the rotation invariant measure on the corresponding Grassmannian is used, are
established in [3]. The latter formulae were the basis for local stereological estimators
of certain Minkowski tensors in [11] (for j ∈ {1, . . . , n − 1}, s, r ∈ {0, 1} and j =
n, s = 0, r ∈ N in the notation of (2.1) and (2.2), below).

Kanatani [12, 13] was apparently the first to use tensorial quantities to detect
and analyse structural anisotropy via basic stereological principles. He expresses the
expected number N(m) of intersections per unit length of a probe with a test line
of given direction m as the cosine transform of the spherical distribution density f
of the surface of the given probe in Rn for n = 2, 3. The relation between N and f is
studied by expanding f into spherical harmonics and by using the fact that these are
eigenfunctions of the cosine transform. In order to express his results independently
of a particular coordinate system, Kanatani uses tensors. For a fixed s, he consid-
ers the vector space Vs of all symmetric tensors spanned by the elementary tensor
products u⊗s of vectors u from the unit sphere Sn−1. Let T̂ denote the deviator part
(or trace-free part) of some symmetric tensor T . The tensors (̂u⊗k), for k ≤ s and
u ∈ Sn−1, then span Vs and the components of (̂u⊗k) with respect to an orthonormal
basis of Rn are spherical harmonics of degree k, when considered as functions of u.
Hence, u 7→ (̂u⊗k) is an eigenfunction of the cosine transform (Kanatani calls it ‘Buf-
fon transform’), which in fact is the underlying integral transform when considering
Crofton integrals with lines, as we shall see below in (3.7). In [14, 15], he suggests to
use these ‘fabric tensors’ to detect surface motions and the anisotropy of the crack
distribution in rock.

General Crofton formulas in Rn with arbitrary dimensional flats and for general
Minkowski tensors (defined in (2.1)) of arbitrary rank are given in [10]. Theorem 3.1
is a special case of one of these results, for translation invariant surface tensors and
one-dimensional sections, that is, sections with lines. In comparison to [10], we get
simplified constants in the case considered and obtain this result by an elementary
independent proof. In contrast to Kanatani’s approach, our proof does not rely
on spherical harmonics. Here we focus on relative Crofton formulas in which the
Minkowski tensors of the sections with lines are calculated relative to the section
lines and not in the ambient space (Crofton formulas of the second type may be
called extrinsic Crofton formulas). A quite general investigation of integral geometric
formulas for translation invariant Minkowski tensors, including extrinsic Crofton
formulas, is provided in [8].

In Theorem 3.1 we prove that the relative Crofton integral for tensors of arbi-
trary even rank s of sections with lines is equal to a linear combination of surface
tensors of rank at most s. From this we deduce by the inversion of a linear system
that any translation invariant surface tensor of even rank s can be expressed as a
Crofton integral. The involved measurement functions then are linear combinations
of relative tensors of rank at most s. This implies that the measurement functions
only depend on the convex body through the Euler characteristic of the intersection
of the convex body and the test line.

Our results do not allow to write surface tensors of odd rank as Crofton integrals
based on sections with lines. This drawback is not a result of our method of proof.
Indeed, apart from the trivial case of tensors of rank one, there does not exist a
translation invariant or a bounded measurement function that expresses a surface
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tensor of odd rank as a Crofton integral; see Theorem 3.6 for a precise statement of
this fact.

In Section 4 the integral formula for surface tensors of even rank is transferred to
stereological formulae in a design based setting. Three types of unbiased estimators
are discussed. Section 4.1 describes an estimator based on isotropic uniform ran-
dom lines. Due to the structure of the measurement function, it suffices to observe
whether the test line hits or misses the convex body in order to estimate the sur-
face tensors. However, the resulting estimators possess some unfortunate statistical
properties. In contrast to the surface tensors of full dimensional convex bodies, the
estimators are not positive definite. For convex bodies, which are not too eccentric
(see (4.8)), this problem is solved by using n orthogonal test lines in combination
with a measurement of the projection function of order n− 1 of the convex body.

In applications it might be inconvenient or even impossible to construct the
isotropic uniform random lines, which are necessary for the use of the estimator
described above. Instead, it might be a possibility to use vertical sections; see Defi-
nition 4.5. A combination of Crofton’s formula and a result of Blaschke-Petkantschin
type allows us to formulate a vertical section estimator. The estimator, which is dis-
cussed in Section 4.2, is based on two-dimensional vertical flats.

The third type of estimator presented in the design based setting is based on
non-isotropic linear sections; see Section 4.3. For a fixed convex body in R2 there
exists a density for the distribution of test line directions in an importance-sampling
approach that leads to minimal variance of the non-isotropic estimator, when we
consider one component of a rank 2 tensor, interpreted as a matrix. In practical
applications, this density is not accessible, as it depends on the convex body, which
is typically unknown. However, there does exist a density independent of the under-
lying convex body yielding an estimator with smaller variance than the estimator
based on isotropic uniform random lines. If all components of the tensor are sought
for, the non-isotropic approach requires three test lines, as two of the four compo-
nents of a rank 2 Minkowski tensor coincide due to symmetry. It should be avoided
to use a density suited for estimating one particular component of the tensor to
estimate any other component, as this would increase variance of the estimator. In
this situation, however, a smaller variance can be obtained by applying an estimator
based on three isotropic random lines (each of which can be used for the estimation
of all components of the tensor).

In Section 5 we turn to a model-based setting. We discuss estimation of the
specific (translation invariant) surface tensors associated with a stationary process
of convex particles; see (5.1) for a definition. In [22] the problem of estimating the
area moment tensor (rank 2) associated with a stationary process of convex particles
via planar sections is discussed. We consider estimators of the specific surface tensors
of arbitrary even rank based on one-dimensional linear sections. Using the Crofton
formula for surface tensors, we derive a rotational Crofton formula for the specific
surface tensors. Further, the specific surface tensor of rank s of a stationary process
of convex particles is expressed as a rotational average of a linear combination of
specific tensors of rank at most s of the sectioned process.
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2 Preliminaries

We work in the n-dimensional Euclidean vector space Rn with inner product 〈 · , · 〉
and induced norm ‖ · ‖. Let Bn := {x ∈ Rn | ‖x‖ ≤ 1} be the unit ball and
Sn−1 := {x ∈ Rn | ‖x‖ = 1} the unit sphere in Rn. By κn and ωn we denote the
volume and the surface area of Bn, respectively. The Borel σ-algebra of a topological
space X is denoted by B(X). Further, let λ denote the n-dimensional Lebesgue
measure on Rn, and for an affine subspace E of Rn, let λE denote the Lebesgue
measure defined on E. The k-dimensional Hausdorff measure is denoted by Hk. For
A ⊆ Rn, let dimA be the dimension of the affine hull of A.

Let Tp be the vector space of symmetric tensors of rank p over Rn. For symmetric
tensors a ∈ Tp1 and b ∈ Tp2 , let ab ∈ Tp1+p2 denote the symmetric tensor product
of a and b. Identifying x ∈ Rn with the rank 1 tensor z 7→ 〈z, x〉, we write xp ∈ Tp
for the p-fold symmetric tensor product of x. The metric tensor Q ∈ T2 is defined
by Q(x, y) = 〈x, y〉 for x, y ∈ Rn, and for a linear subspace L of Rn, we define
Q(L) ∈ T2 by Q(L)(x, y) = 〈pL(x), pL(y)〉, where pL : Rn → L is the orthogonal
projection on L.

As general references on convex geometry and Minkowski tensors, we use [20]
and [10]. Let Kn denote the set of convex bodies (that is, compact, convex sets)
in Rn. In order to define the Minkowski tensors, we introduce the support measures
Λ0(K, ·), . . . ,Λn−1(K, ·) of a non-empty, convex body K ∈ Kn. Let p(K, x) be the
metric projection of x ∈ Rn on a non-empty convex body K, and define u(K, x) :=
x−p(K,x)
‖x−p(K,x)‖ for x /∈ K. For ε > 0 and a Borel set A ∈ B(Rn × Sn−1), the Lebesgue
measure of the local parallel set

Mε(K,A) := {x ∈ (K + εBn) \K | (p(K, x), u(K, x)) ∈ A}

of K is a polynomial in ε, hence

λ(Mε(K,A)) =
n−1∑

k=0

εn−kκn−kΛk(K,A).

This local version of the Steiner formula defines the support measures Λ0(K, ·),
. . . ,Λn−1(K, ·) of a non-empty convex body K ∈ Kn. If K = ∅, we define the
support measures to be the zero measures. The intrinsic volumes V0(K), . . . , Vn−1(K)
of K appear as total masses of the support measures, Vj(K) = Λj(K,Rn × Sn−1)
for j = 0, . . . , n − 1. Furthermore, the area measures S0(K, ·), . . . , Sn−1(K, ·) of
K are rescaled projections of the corresponding support measures on the second
component. More explicitly, they are given by

(
n

j

)
Sj(K,ω) = nκn−jΛj(K,Rn × ω)

for ω ∈ B(Sn−1) and j = 0, . . . , n− 1.
For a non-empty convex body K ∈ Kn, r, s ∈ N0, and j ∈ {0, 1, . . . , n − 1}, we

define the Minkowski tensors as

Φj,r,s(K) :=
ωn−j

r!s!ωn−j+s

∫

Rn×Sn−1

xrus Λj(K, d(x, u)) (2.1)
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and
Φn,r,0(K) :=

1

r!

∫

K

xr λ(dx). (2.2)

The definition of the Minkowski tensors is extended by letting Φj,r,s(K) = 0, if j /∈
{0, 1, . . . , n}, or if r or s is not in N0, or if j = n and s 6= 0. For j = n−1, the tensors
(2.1) are called surface tensors. In the present work, we only consider translation
invariant surface tensors which are obtained for r = 0. In [10] the functions QmΦj,r,s

with m, r, s ∈ N0 and either j ∈ {0, . . . , n− 1} or (j, s) = (n, 0) are called the basic
tensor valuations.

For k ∈ {1, . . . , n}, let Lnk be the set of k-dimensional linear subspaces of Rn, and
let Enk be the set of k-dimensional affine subspaces of Rn. For L ∈ Lnk , we write L⊥
for the orthogonal complement of L. For E ∈ Enk , let π(E) denote the linear subspace
in Lnk which is parallel to E, and we define E⊥ := π(E)⊥. The sets Lnk and Enk are
endowed with their usual topologies and Borel σ-algebras. Let νnk denote the unique
rotation invariant probability measure on Lnk , and let µnk denote the unique motion
invariant measure on Enk normalized so that µnk({E ∈ Enk |E ∩Bn 6= ∅}) = κn−k (see,
e.g., [23]).

If K ∈ Kn is non-empty and contained in an affine subspace E ∈ Enk , for some
k ∈ {1, . . . , n}, then the Minkowski tensors can be evaluated in this subspace. For
a linear subspace L ∈ Lnk , let πL : Sn−1 \ L⊥ → L ∩ Sn−1 be given by

πL(u) :=
pL(u)

‖pL(u)‖ .

Then we define the jth support measure Λ
(E)
j (K, ·) of K relative to E as the image

measure of the restriction of Λj(K, ·) to Rn × (Sn−1 \E⊥) under the mapping Rn ×
(Sn−1 \ E⊥)→ Rn × (π(E) ∩ Sn−1) given by (x, u) 7→ (x, ππ(E)(u)).

For a non-empty convex body K ∈ Kn, contained in an affine subspace E ∈ Enk ,
for some k ∈ {1, . . . , n}, we define

Φ
(E)
j,r,s(K) :=

ωk−j
r!s!ωk−j+s

∫

E×(Sn−1∩π(E))

xrus Λ
(E)
j (K, d(x, u))

for r, s ∈ N0 and j ∈ {0, . . . , k − 1}, and

Φ
(E)
k,r,0(K) :=

1

r!

∫

K

xr λE(dx).

As before, the definition is extended by letting Φ
(E)
j,r,s(K) = 0 for all other choices of

j, r and s, and for K = ∅.
In [10], Crofton integrals of the form

∫

Enk
Φ

(E)
j,r,s(K ∩ E)µnk(dE),

whereK ∈ Kn, r, s ∈ N0 and 0 ≤ j ≤ k ≤ n−1, are expressed as linear combinations
of the basic tensor valuations. When j = k the integral formula becomes

∫

Enk
Φ

(E)
k,r,s(K ∩ E)µnk(dE) =

{
Φn,r,0(K) if s = 0,

0 otherwise,
(2.3)
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see [10, Theorem 2.4]. In the case where j < k, the formulas become lengthy with
coefficients in the linear combinations that are difficult to evaluate, see [10, Theo-
rem 2.5 and 2.6]. In the following, we are interested in using the integral formulas for
the estimation of the surface tensors, and therefore we need more explicit integral
formulas. We only treat the special case where k = 1, that is, we consider integrals
of the form ∫

En1
Φ

(E)
j,r,s(K ∩ E)µn1 (dE).

Since dim(E) = 1, the tensor Φ
(E)
j,r,s(K) is by definition the zero function when j > 1,

so the only non-trivial cases are j = 0 and j = 1. When j = 1 formula (2.3) gives
a simple expression for the integral. In the case where j = 0 and r = 0, we provide
an independent and elementary proof of the integral formula, which also leads to
explicit and fairly simple constants.

3 Linear Crofton formulae for tensors

We start with the main result of this section, which provides a linear Crofton formula
relating an average of tensor valuations defined relative to varying section lines to a
linear combination of surface tensors.

Theorem 3.1. Let K ∈ Kn. If s ∈ N0 is even, then

∫

En1
Φ

(E)
0,0,s(K ∩ E)µn1 (dE) =

2ωn+s+1

πs!ω2
s+1ωn

s
2∑

k=0

c
( s
2

)

k Q
s
2
−kΦn−1,0,2k(K), (3.1)

with constants
c

(m)
k = (−1)k

(
m

k

)
(2k)!ω2k+1

1− 2k
(3.2)

for m ∈ N0 and k = 0, . . . ,m.
For odd s ∈ N0 the Crofton integral on the left-hand side is zero.

Before we give a proof of Theorem 3.1, let us consider the measurement function
Φ

(E)
0,0,s(K∩E) on the left-hand side of (3.1). Let k ∈ {1, . . . , n}. Slightly more general

than in (3.1), we choose s ∈ N0 and E ∈ Enk . Then

Φ
(E)
0,0,s(K ∩ E) =

1

s!ωk+s

∫

Sn−1∩π(E)

usHk−1(du)V0(K ∩ E),

since the surface area measure of order 0 of a non-empty set is up to a constant the
invariant measure on the sphere. From calculations equivalent to [21, (24)-(26)] (or
from a special case of Lemma 4.3 in [10]) we get that

∫

Sn−1∩π(E)

usHk−1(du) =

{
2ωs+k
ωs+1

Q(π(E))
s
2 if s is even,

0 if s is odd.
(3.3)

Hence
Φ

(E)
0,0,s(K ∩ E) =

2

s!ωs+1

·Q(π(E))
s
2V0(K ∩ E), (3.4)
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when s is even, and Φ
(E)
0,0,s(K ∩E) = 0 when s is odd. This implies that the Crofton

integral in (3.1) is zero for odd s, and the tensors Φn−1,0,s(K) are hereby not acces-
sible in this situation. This is even true for more general measurement functions; see
Theorem 3.6. To show Theorem 3.1 we can restrict to even s from now on.

In the proof of Theorem 3.1 we use the following identity for binomial sums.

Lemma 3.2. Let m,n ∈ N0. Then

m∑

j=0

(−1)j

(
2n
2j

)(
n−j
m−j
)

(
n− 1

2
j

) =

(
n
m

)

1− 2m
.

Lemma 3.2 can be proven by using the identity

k∑

j=0

(−1)j

(
2n
2j

)(
n−j
m−j
)

(
n− 1

2
j

) =
(−1)k(2k + 1)

(
2n

2(k+1)

)(
n−k−1
m−k−1

)

(2m− 1)
(
n− 1

2
k+1

) −
(
n
m

)

(2m− 1)
, (3.5)

where n, k ∈ N0, and m ∈ N such that k < m. Identity (3.5) follows by induction
on k.

Proof of Theorem 3.1. Let K ∈ Kn and let s ∈ N0 be even. If n = 1, formula (3.1)
follows from the identity

m∑

j=0

(−1)j

(
m
j

)

1− 2j
=

√
π Γ(m+ 1)

Γ(m+ 1
2
)

(3.6)

with m = s
2
. The left-hand side of (3.6) is a sum of alternating terms of the same

form as the right-hand side of the binomial sum in Lemma 3.2. Using Lemma 3.2
and then changing the order of summation yields (3.6).

Now assume that n ≥ 2. Using (3.4) we can rewrite the integral as
∫

En1
Φ

(E)
0,0,s(K ∩ E)µn1 (dE)

=
2

s!ωs+1

∫

Ln1
Q(L)

s
2

∫

L⊥
V0(K ∩ (L+ x))λL⊥(dx) νn1 (dL)

=
2

s!ωs+1ωn

∫

Sn−1

usVn−1(K | u⊥)Hn−1(du),

by the convexity of K and an invariance argument for the second equality. Cauchy’s
projection formula (see, e.g., [9, (A.43)]) and Fubini’s theorem then imply that

∫

En1
Φ

(E)
0,0,s(K ∩ E)µn1 (dE)

=
1

s!ωs+1ωn

∫

Sn−1

∫

Sn−1

us|〈u, v〉|Hn−1(du)Sn−1(K, dv). (3.7)
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We now fix v ∈ Sn−1 and simplify the inner integral by introducing spherical
coordinates (see, e.g, [19]). Then

∫

Sn−1

us|〈u, v〉|Hn−1(du)

=

∫ 1

−1

∫

Sn−1∩v⊥
(1− t2)

n−3
2 (tv +

√
1− t2w)s|t|Hn−2(dw) dt

=
s∑

j=0

(
s

j

)
vj
∫ 1

−1

(1− t2)
n−3
2 tj
√

1− t2s−j|t| dt
∫

Sn−1∩v⊥
ws−jHn−2(dw).

The integral with respect to t is zero if j is odd. If j is even, then it is equal to the
beta integral

B

(
j + 2

2
,
n+ s− j − 1

2

)
=

2ωn+s+1

ωj+2 ωn+s−j−1

.

Hence, since s is even, we conclude from (3.3) that

∫

Sn−1

us|〈u, v〉|Hn−1(du) = 4ωn+s+1

s
2∑

j=0

(
s

2j

)
v2j 1

ω2j+2 ωs−2j+1

Q(v⊥)
s−2j

2

= 4ωn+s+1

s
2∑

j=0

s
2
−j∑

i=0

(−1)i
(
s

2j

)(
s
2
− j
i

)
1

ω2j+2 ωs−2j+1

Q
s
2
−j−iv2(i+j),

where we have used that Q(v⊥) = Q − v2. Substituting this into (3.7) and by the
definition of Φn−1,0,2(i+j)(K), we obtain that

∫

En1
Φ

(E)
0,0,s(K ∩ E)µn1 (dE) =

4ωn+s+1

s!ωs+1ωn
S, (3.8)

where

S =

s
2∑

j=0

s
2
−j∑

i=0

(−1)i
(
s

2j

)(
s
2
− j
i

)
(2(i+ j))!ω2(i+j)+1

ω2j+2 ωs−2j+1

Q
s
2
−j−iΦn−1,0,2(i+j)(K).

Re-indexing and changing the order of summation, we arrive at

S =
Γ( s

2
+ 1

2
)

4π
s+3
2

s
2∑

k=0

(−1)k(2k)!ω2k+1Q
s
2
−kΦn−1,0,2k(K)

×
k∑

j=0

(−1)j
(
s

2j

)(
s
2
− j

k − j

)(
s−1

2

j

)−1

=
1

2πωs+1

s
2∑

k=0

(−1)k
(
s
2

k

)
(2k)!ω2k+1

1− 2k
Q

s
2
−kΦn−1,0,2k(K),

where we have used Lemma 3.2 with n = s
2
and m = k.
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Setting s = 2 we immediately get the following corollary.

Corollary 3.3. Let K ∈ Kn. Then
∫

En1
Φ

(E)
0,0,2(K ∩ E)µn1 (dE) = an

(
Φn−1,0,2(K) +

1

4π
QVn−1(K)

)
,

where
an =

Γ(n
2
)

2Γ(n+3
2

)
√
π
.

The Crofton formula in Theorem 3.1 expresses the integral of the measurement
function Φ

(E)
0,0,s(K ∩E) as a linear combination of certain surface tensors of K ∈ Kn.

This could, in principle, be used to obtain unbiased stereological estimators of the
linear combinations. However, it is more natural to ask what measurement one
should use in order to obtain Φn−1,0,s(K) as a Crofton-type integral. For even s
the tensor Φn−1,0,s(K) appears in the last term of the sum on the right-hand side
of (3.1). But surface tensors of lower rank appear in the remaining terms of the sum.
Therefore, we need to express the lower rank tensors Φn−1,0,2k(K) for k = 0, . . . , s

2
−1

as integrals. This can be done by using Theorem 3.1 with s = 2k for k = 0, . . . , s
2
−1.

This way, we get s
2

+ 1 linear equations, which give rise to the linear system



C0

∫
En1

Φ
(E)
0,0,0(K ∩ E)µn1 (dE)

C2

∫
En1

Φ
(E)
0,0,2(K ∩ E)µn1 (dE)

...
Cs
∫
En1

Φ
(E)
0,0,s(K ∩ E)µn1 (dE)




= C




Φn−1,0,0(K)
Φn−1,0,2(K)

...
Φn−1,0,s(K)




where

C =




c
(0)
0 0 0 . . . 0

c
(1)
0 Q c

(1)
1 0

...
... . . . 0

c
( s
2

)

0 Q
s
2 c

( s
2

)

1 Q
s
2
−1 . . . c

( s
2

)
s
2
−1Q c

( s
2

)
s
2




and Cj =
πj!ω2

j+1ωn

2ωn+j+1
for j = 0, 2, 4, . . . , s. Our aim is to express Φn−1,0,s(K) as an

integral, hence we have to invert the system. Notice that the constants c(i)
i are non-

zero, which ensures that the system actually is invertible. The system can be inverted
by the matrix

D =




d00 0 0 . . . 0

d10Q d11 0
...

d20Q
2 d21Q d22 0

... . . . 0
d s

2
0Q

s
2 d s

2
1Q

s
2
−1 . . . d s

2
s
2



, (3.9)

where dii = 1

c
(i)
i

for i = 0, . . . , s
2
, and dij = − 1

c
(i)
i

∑i−1
k=j c

(i)
k dkj for i = 1, . . . , s

2
and

j = 0, . . . , i− 1. In particular, we have

Φn−1,0,s(K) =

s
2∑

j=0

d s
2
jQ

s
2
−jC2j

∫

En1
Φ

(E)
0,0,2j(K ∩ E)µn1 (dE). (3.10)
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Notice that only the dimension of the matrix (3.9) depends on s, hence we get the
same integral formulas for the lower rank tensors for different choices of s. Formula
(3.4) and the above considerations give the following ‘inverse’ version of the Crofton’s
formula.

Theorem 3.4. Let K ∈ Kn and let s ∈ N0 be even. Then
∫

En1
Gs(π(E))V0(K ∩ E)µn1 (dE) = Φn−1,0,s(K), (3.11)

where

G2m(L) :=
m∑

j=0

2dmjC2j

(2j)!ω2j+1

Qm−jQ(L)j

for L ∈ Ln1 and m ∈ N0.

It should be remarked that the measurement function in (3.11) is just a linear
combination of the relative tensors of even rank at most s, but we prefer the present
form to indicate the dependence on K more explicitly.

Example 3.5. For s = 4 the matrices are

C =




2 0 0
2Q 8π 0

2Q2 16πQ −64π2

3




and

D =




1
2

0 0

− 1
8π
Q 1

8π
0

− 3
64π2Q

2 3
32π2Q −3π2

64


 . (3.12)

Since C0 = 2πωn
ωn+1

, C2 = 16π3ωn
ωn+3

and C4 = 256π5ωn
3ωn+5

, we have

G4(L) = − ωn
32πωn+1

(
3Q2 − 6(n+ 1)QQ(L) + π4(n+ 1)(n+ 3)Q(L)2

)
,

and
G2(L) =

ωn
4ωn+1

(
(n+ 1)Q(L)−Q

)

for L ∈ Ln1 .

In Theorem 3.4 we only considered the situation, where s is even. It is natural
to ask whether Φn−1,0,s(K) can also be written as a linear Crofton integral when s
is odd. The case s = 1 is trivial, as the tensor Φn−1,0,1(K) = 0 for all K ∈ Kn. If
n = 1, then Φn−1,0,s(K) = 0 for all odd s, since the area measure of order 0 is the
Hausdorff measure on the sphere. Apart from these trivial examples, Φn−1,0,s cannot
be written as a linear Crofton-type integral, when s is odd and the measurement
function satisfies some rather weak assumptions. This is shown in Theorem 3.6.

10



Theorem 3.6. Let n ≥ 2 and let s > 1 be odd. Then there exists neither a trans-
lation invariant nor a bounded measurable measurement function α : Kn → Ts such
that ∫

En1
α(K ∩ E)µn1 (dE) = Φn−1,0,s(K) (3.13)

for all K ∈ Kn.
Proof. Let α : Kn → Ts be a measurable and bounded function that satisfies equa-
tion (3.13). Since µn1 ({E ∈ En1 | E ∩K = ∅}) = ∞ for K ∈ Kn, we have α(∅) = 0.
Now define the averaged function

αr(M) =
1

Vn(rBn)

∫

rBn
α(M + x)λ(dx), M ∈ Kn,

for r > 0. Since α is measurable and bounded, the average function αr is well-defined.
Clearly αr(∅) = 0. Using Fubini’s theorem, the invariance of µn1 and the fact that
Φn−1,0,s is translation invariant, we get that

∫

En1
αr(K ∩ E)µn1 (dE) =

1

Vn(rBn)

∫

rBn
Φn−1,0,s(K + x)λ(dx) = Φn−1,0,s(K).

Let K ∈ Kn be such that K ⊆ Bn. Since K ∩ E is either the empty set or a a line
segment in Bn when E ∈ En1 , there exists a vector zE ∈ Rn with ‖zE‖ ≤ 2 such
that −(K ∩ E) = (K ∩ E) + zE. Let A = {E ∈ En1 | Bn ∩ E 6= ∅}, let B1∆B2

denote the symmetric difference of two sets B1, B2, and assume that |α| ≤ M for
some constant M . Then

|Φn−1,0,s(K)− Φn−1,0,s(−K)| =
∣∣∣∣
∫

A
αr(K ∩ E)− αr(−(K ∩ E))µn1 (dE)

∣∣∣∣

≤ 1

Vn(rBn)

∫

A

∣∣∣∣
∫

rBn
α((K ∩ E) + x)λ(dx)

−
∫

rBn+zE

α((K ∩ E) + x)λ(dx)

∣∣∣∣µn1 (dE)

≤ 1

Vn(rBn)

∫

A

∫

(rBn+zE)∆(rBn)

|α((K ∩ E) + x)|λ(dx)µn1 (dE)

≤ 2M

Vn(rBn)

∫

A
Vn((rBn + zE) \ (rBn))µn1 (dE)

≤ 2M
(r + 2)n − rn

rn
κn−1 −→ 0 as r →∞.

Here we used that (rBn + zE) \ (rBn) ⊆ (r + 2)Bn \ (rBn) and µn1 (A) = κn−1.
Hence, we get Φn−1,0,s(K) = Φn−1,0,s(−K). Since s is odd, we also have that

Φn−1,0,s(K) = −Φn−1,0,s(−K). Therefore Φn−1,0,s(K) = 0, which is not the case for
all K ⊆ Bn, since s > 1. Then, by contradiction, (3.13) cannot be satisfied by a
bounded measurement function, when s > 1 is odd.

Now assume that α is translation invariant and satisfies equation (3.13). As
−(K ∩ E) is a translation of K ∩ E, we have
∫

En1
α(−K ∩ E)µn1 (dE) =

∫

En1
α(−(K ∩ E))µn1 (dE) =

∫

En1
α(K ∩ E)µn1 (dE),

11



implying Φn−1,0,s(−K) = Φn−1,0,s(K) = −Φn−1,0,s(−K), and hereby we obtain that
Φn−1,0,s(K) = 0 for all K ∈ Kn. This is a contradiction as before.

4 Design based estimation

In this section we use the integral formula (3.11) in Theorem 3.4 to derive unbiased
estimators of the surface tensors Φn−1,0,s(K) of K ∈ Kn, when s is even. We assume
throughout this chapter that n ≥ 2. Three different types of estimators based on
1-dimensional linear sections are presented. First, we establish estimators based on
isotropic uniform random lines, then estimators based on random lines in vertical
sections and finally estimators based on non-isotropic uniform random lines.

4.1 Estimation based on isotropic uniform random lines

In this section we construct estimators of Φn−1,0,s(K) based on isotropic uniform
random lines. Let K ∈ Kn. We assume that (the unknown set) K is contained in a
compact reference set A ⊆ Rn, the latter being known. Now let E be an isotropic
uniform random (IUR) line in Rn hitting A, i.e., the distribution of E is given by

P(E ∈ A) = c1(A)

∫

A
1(E ′ ∩ A 6= ∅)µn1 (dE ′) (4.1)

for A ∈ B(En1 ), where c1(A) is the normalizing constant

c1(A) =
(∫

En1
1(E ′ ∩ A 6= ∅)µn1 (dE ′)

)−1

.

By (3.1) with s = 0 the normalizing constant becomes c1(A) = ωn
2κn−1

Vn−1(A)−1,
when A is a convex body. Then Theorem 3.4 implies that

c1(A)−1Gs(π(E))V0(K ∩ E) (4.2)

is an unbiased estimator of Φn−1,0,s(K), when s is even.

Example 4.1. Using the expressions of G2 and G4 in Example ?? we get that

−Vn−1(A)

32π2

(
3Q2 − 6(n+ 1)QQ(L) + π4(n+ 1)(n+ 3)Q(L)2

)
V0(K ∩ E)

is an unbiased estimator of Φn−1,0,4(K), and

Vn−1(A)

4π

(
(n+ 1)Q(π(E))−Q

)
V0(K ∩ E) (4.3)

is an unbiased estimator of Φn−1,0,2(K), when A is a convex body. For n = 3, these
estimators read

−V2(A)

32π2

(
3Q2 − 24QQ(π(E)) + 24π4Q(π(E))2

)
V0(K ∩ E)

and
V2(A)

π

(
Q(π(E))− 1

4
Q
)
V0(K ∩ E). (4.4)
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An investigation of the estimators in Example 4.1 shows that they possess some
unfavourable statistical properties. If K ∩ E = ∅ the estimators are simply zero.
Furthermore, if K ∩ E 6= ∅, the matrix representation of the estimator (4.3) of
Φn−1,0,2(K) is, in contrast to Φn−1,0,2(K), not positive semi-definite. In fact, the
eigenvalues of the matrix representation of (n + 1)Q(π(E)) − Q are n (with multi-
plicity 1) and −1 (with multiplicity n−1). It is not surprising that estimators based
on the measurement of one single line, are not sufficient, when we are estimating
tensors with many unknown parameters. To improve the estimators, they can be
extended in a natural way to use information from N IUR lines for some N ∈ N. In
addition, the integral formula (3.11) can be rewritten in the form

Φn−1,0,s(K) =

∫

Ln1

∫

L⊥
Gs(L)V0(K ∩ (L+ x))λL⊥(dx) νn1 (dL)

=

∫

Ln1
Gs(L)Vn−1(K |L⊥) νn1 (dL), (4.5)

which implies that
1

N

N∑

i=1

Gs(Li)Vn−1(K |L⊥i ) (4.6)

is an unbiased estimator of Φn−1,0,s(K), when L1, . . . LN ∈ Ln1 are N isotropic lines
(through the origin) for an N ∈ N. When K is full-dimensional this estimator never
vanishes. In the case where s = 2 the estimator becomes

1

N

ωn
4ωn+1

N∑

i=1

(
(n+ 1)Q(Li)−Q

)
Vn−1(K |L⊥i ). (4.7)

In stereology it is common practice to use orthogonal test lines. If we set N = n
and let L1, . . . , Ln be isotropic, pairwise orthogonal lines, then the estimator (4.7)
becomes positive definite exactly when

(n+ 1)Vn−1(K |L⊥i ) >
n∑

j=1

Vn−1(K |L⊥j ) (4.8)

for all i = 1, . . . , n. This is a condition on K requiring that K is not too eccentric.
A sufficient condition for (4.8) to hold makes use of the radius R(K) of the smallest
ball containing K and the radius r(K) of the largest ball contained in K. If

r(K)

R(K)
>
(
1− 1

n

) 1
n−1 , (4.9)

then (4.8) is satisfied, and hence the estimator (4.7) with n orthogonal, isotropic lines
is positive definite. In R2 this means that 2r(K) > R(K) is sufficient for a positive
definite estimator (4.7), and in particular for all ellipses for which the length of the
longer main axis does not exceed twice the length of the smaller main axis, (4.7)
yields positive definite estimators. For ellipses, this criterion is also necessary as the
following example shows.
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Example 4.2. Consider the situation where n = 2 and K is an ellipse, K =
{x ∈ R2 | x>Bx ≤ 1}, given by the matrix

B =

(
α−2 0
0 (kα)−2

)
,

where α > 0 and k ∈ (0, 1]. The parameter k determines the eccentricity of K. If
k ∈ (1

2
, 1], and L1 and L2 are orthogonal, isotropic random lines in R2, the estimator

(4.7) becomes positive definite by the above considerations. Now let k ∈ [0, 1/2].
Since n = 2, each pair of orthogonal lines is determined by a constant φ ∈ [0, π

2
) by

letting L1 = u⊥φ and L2 = u⊥φ+π
2
, where uφ = (cos(φ), sin(φ))>. Then

Vn−1(K | L⊥1 ) = 2h(K, uφ) = 2α
√

cos2(φ) + k2 sin2(φ)

and
Vn−1(K | L⊥2 ) = 2α

√
sin2(φ) + k2 cos2(φ).

Condition (4.8) is satisfied if and only if

φ ∈
[
sin−1

(√
1− 4k2

5(1− k2)

)
, cos−1

(√
1− 4k2

5(1− k2)

)]
,

and the probability that the estimator is positive definite, when L1 and L2 are
orthogonal, isotropic lines (corresponding to φ being uniformly distributed on [0, π

2
])

is
2

π

(
cos−1

(√
1− 4k2

5(1− k2)

)
− sin−1

(√
1− 4k2

5(1− k2)

))
,

which converges to 2
π

(
cos−1(

√
1
5
)− sin−1(

√
1
5
)
)
≈ 0.41 as k converges to 0.

In R2 the estimator (4.7) can alternatively be combined with a systematic sam-
pling approach with N isotropic random lines. Let N ∈ N, and let φ0 be uni-
formly distributed on [0, π

N
]. Moreover, let φi = φ0 + i π

N
for i = 1, . . . , N − 1. Then

uφ0 , . . . , uφN−1
are N systematic isotropic uniform random directions in the upper

half of S1, where uφ = (cos(φ), sin(φ))>. As the estimator (4.7) is a tensor of rank 2,
it can be identified with the symmetric 2 × 2 matrix, where the (i, j)’th entry is
the estimator evaluated at (ei, ej), where (e1, e2) is the standard basis of R2. The
estimator becomes

SN(K,φ0) =
1

N

N−1∑

i=0

(
3 cos2(φi)− 1 3 cos(φi) sin(φi)

3 cos(φi) sin(φi) 3 sin2(φi)− 1

)
V1(K |u⊥φi). (4.10)

Example 4.3. To investigate how the estimator SN(K,φ0) performs we estimate the
probability that the estimator is positive definite for three different origin-symmetric
convex bodies in R2; a parallelogram, a rectangle, and an ellipse. Thus let

K1 = conv{(1, ε), (−1, ε), (−1,−ε), (1,−ε)},
K2 = conv{(1, 0), (0, ε), (−1, 0), (0,−ε)}
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Figure 1: The probability that SN (Ki, φ0) is positive definite for i = 1, 2, 3, when φ0 is
uniformly distributed on [0, πN ] plotted against the number of equidistant lines N .

and

K3 = {x ∈ R2 | x>
(

1 0
0 1√

ε

)
x ≤ 1}

with ε = 0.1. The support functions, and hence the intrinsic volumes V1(Ki|u⊥φ ), of
K1, K2 and K3 have simple analytic expressions, and the estimator SN(Ki, φ0) can
be calculated for φ0 ∈ [0, π

N
] and i = 1, 2, 3. The eigenvalues of the estimators can

be calculated numerically, and the probability that the estimators SN(Ki, φ0) are
positive definite, when φ0 is uniformly distributed on [0, π

N
], can hereby be estimated.

For each choice of N , the estimate of the probability is based on 500 equally spread
values of φ0 in [0, π

N
]. The estimate of the probability that SN(Ki, φ0) is positive

definite is plotted against the number of equidistant linesN for i = 1, 2, 3 in Figure 1.
The plots in Figure 1 show that even though we consider rather eccentric shapes,
the number N of lines needed to get a positive definite estimator with probability 1
is in all cases less than 7.

To apply the estimator (4.2) it is only required to observe whether the test line
hits or misses the convex body K. The estimator (4.6) requires more sophisticated
information in terms of the projection function. In the following example the coef-
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ficient of variation of versions of the estimators (4.4) and (4.7) are estimated and
compared in a three-dimensional set-up.

Example 4.4. Let K ′l be the prolate spheroid in R3 with main axis parallel to the
standard basis vectors e1, e2 and e3, and corresponding lengths of semi-axes λ1 =
λ2 = 1 and λ3 = l. For l = 1, . . . , 5, let Kl denote the ellipsoid obtained by rotating
K ′l first around e1 with an angle 3π

16
, and then around e2 with an angle 5π

16
. Note, that

the eccentricity of Kl increases with l. In this example, based on simulations, we
estimate and compare the coefficient of variation (CV) of the developed estimators
of Φ2,0,2(Kl) for l = 1, . . . , 5.

Formula (4.4) provides an unbiased estimator of the tensor Φ2,0,2(Kl) for l =
1, . . . , 5. The estimator is based on one IUR line hitting a reference set A, and can
in a natural way be extended to an estimator based on three orthogonal IUR lines
hitting A. We estimate the variance of both estimators. Let, for l = 1, . . . , 5, the
reference set Al be a ball of radius Rl > 0. The choice of the reference set influences
the variance of the estimator. In order to minimize this effect in the comparison of
the CV’s, the radii of the reference sets are chosen such that the probability that a
test line hits Kl is constant for l = 1, . . . , 5. By formula (4.1) the probability that an
IUR line hitting Al hits Kl is V2(Kl)

V2(Al)
. The radius is chosen, such that this probability

is 1
7
. We further estimate the variance of the projection estimator (4.7) based on one

isotropic line and on three orthogonal isotropic lines.
As Φ2,0,2(Kl) is a tensor of rank 2, it can be identified with the symmetric 3× 3

matrix {Φ2,0,2(Kl)(ei, ej)}3
i,j=1. Thus, in order to estimate Φ2,0,2(Kl), the matrix

{Φ̂2,0,2(Kl)(ei, ej)}3
i,j=1 is calculated. Here, Φ̂2,0,2(Kl) refers to any of the four es-

timators described above. Due to symmetry, there are six different components of
the matrices.

The estimates of the variances are based on 1500-10000 estimates of the tensor,
depending on the choice of the estimator and the eccentricity of Kl. Using the
estimates of the variances, we estimate the absolute value of the CV’s by

ĈV ij =

√
V̂ar(Φ̂2,0,2(Kl)(ei, ej))

|Φ2,0,2(Kl)(ei, ej)|
,

for i, j = 1, 2, 3 and l = 1, . . . , 5. As Kl is an ellipsoid, the tensor Φ2,0,2(Kl) can be
calculated numerically. The CV’s of the four estimators are plotted in Figure 2 for
each of the six different components of the associated matrix. As K1 is a ball, the
off-diagonal elements of the matrix associated with Φ2,0,2(K1) are zero. Thus, the
CV is in this case calculated only for the estimators of the diagonal-elements.

The projection estimators give, as expected, smaller CV’s, than the estimators
based on the Euler characteristic of the intersection between the test lines and the
ellipsoid. For the estimators based on one test line the CV of the projection estimator
is typically around 38% of the corresponding estimator (4.4). For the estimators
based on three orthogonal test lines, the CV of the projection estimator is typically
9% of the estimator (4.4), when l = 2, . . . , 5. Due to the fact that K1 is a ball, the
variance of the projection estimator based on three orthogonal lines is 0, when l = 1.

It is interesting to compare the increase of efficiency when using the estimator
based on three orthogonal test lines instead of three i.i.d. test lines. The CV of an
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estimator based on three i.i.d. test lines is 1√
3
of the CV of the estimator (4.4), (the

“+” signs in Figure 2). The CV, when using three orthogonal test lines, is typically
around 92% of that CV. For l = 2, . . . , 5, the CV’s of the projection estimator based
on three orthogonal lines, are typically 20% of the CV, when using three i.i.d lines,
indicating that spatial random systematic sampling increases precision without extra
workload.

The CV’s of the estimators of the diagonal-elements Φ2,0,2(Kl)(ei, ei) are almost
constant in l. Hence the eccentricity of Kl does not affect the CV’s for these choices
of l. There is a decreasing tendency of the CV’s of the estimators of the off-diagonal
elements. This might be explained by the fact that the true value of Φ2,0,2(Kl)(ei, ej)
is close to zero, when i 6= j and l is small.

The above example shows that only the projection estimator based on three or-
thogonal test lines has a satisfactory precision. For l = 2 the CV’s are approximately
1
3
for the diagonal-elements and 1 for the off-diagonal elements. Further variance re-

duction of the projection estimator can be obtained by using a larger number of
systematic random test directions. For n = 2 this can be effectuated by choosing
equidistant points on the upper half circle; see (4.10). For n = 3 the directions must
be chosen evenly spread; see [18] for details.

If the projections are not available or too costly to obtain, systematic sampling
in the position of the test lines with given orientations can be applied. In R2 this
corresponds to a Steinhaus-type estimation procedure (see e.g. [5]). In R3 the fakir
method described in [17] can be applied.

4.2 Estimation based on vertical sections

In the previous section we constructed an estimator of Φn−1,0,s(K) based on isotropic
uniform random lines. As described in [16], it is sometimes inconvenient or impossible
to use the IUR design in applications. For instance, in biology when analysing skin
tissue, it might be necessary to use sample sections, which are normal to the surface
of the skin, so that the different layers become clearly distinguishable in the sample.
Instead of using IUR lines it is then a possibility to use vertical sections introduced
by Baddeley in [4]. The idea is to fix a direction (the normal of the skin surface), and
only consider flats parallel to this direction. After randomly selecting a flat among
these flats, we want to pick a line in the flat in such a way that this line is an isotropic
uniform random line in Rn. Like in the classical formulae for vertical sections, we
select this line in a non-uniform way according to a Blaschke-Petkantschin formula
(see (4.13)). This idea is used to deduce estimators of Φn−1,0,s(K) from the Crofton
formula (3.11).

When introducing the concept of vertical sections we use the following notation.
For 0 ≤ k ≤ n and L ∈ Lnk , let

LLr =

{
{M ∈ Lnr |M ⊆ L} if 0 ≤ r ≤ k

{M ∈ Lnr | L ⊆M} if k < r ≤ n,

and, similarly, let EEr = {F ∈ Enr | F ⊆ E} for E ∈ Enk and 0 ≤ r ≤ k. Let νLr
denote the unique rotation invariant probability measure on LLr , and let µEr denote
the motion invariant measure on EEr normalized as in [23].
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Figure 2: The estimated coefficients of variation ĈV ij of the estimators of Φ2,0,2(Kl)(ei, ej)
plotted against l for i, j ∈ {1, 2, 3}. The CV of the estimator (4.4) based on one line is
designated by “+”, while the CV of the corresponding estimator based on three lines is
designated by “•”. The CV of the projection estimator is designated by “◦” and “�” for
one and three lines, respectively.
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Let L0 ∈ Ln1 be fixed. This is the vertical axis (the normal of the skin surface in
the example above). Let the reference set A ⊆ Rn be a compact set.

Definition 4.5. Let 1 < k < n. A random k-flat H in Rn is called a vertical
uniform random (VUR) k-flat hitting A if the distribution of H is given by

P (H ∈ A) = c2(A)

∫

LL0
k

∫

A|L⊥
1(L+ x ∈ A)λL⊥(dx) νL0

k (dL)

for A ∈ B(Enk ), where c2(A) > 0 is a normalizing constant.

The distribution of H is concentrated on the set

{E ∈ Enk | E ∩ A 6= ∅, L0 ⊆ π(E)}.
When the reference set A is a convex body, the normalizing constant becomes

c2(A) =

(
n− 1

k − 1

)
κn−1

κk−1κn−k

1

Vn−k(A |L⊥0 )
.

(Note that we do not indicate the dependence of c2(A) on k by our notation.) This
can be shown, e.g., by using the definition of νL0

k together with [23, (13.13)], Crofton’s
formula in the space L⊥0 , and the equality

1A|L⊥(x) = V0((A |L⊥0 ) ∩ (x+ L)) (4.11)

for A ∈ Kn, L ∈ LL0
k and x ∈ L⊥. For later use note that when k = 2 the normalizing

constant becomes
c2(A) =

ωn−1

2κn−2Vn−2(A |L⊥0 )
. (4.12)

To construct an estimator, which is based on a vertical uniform random flat, we
cannot use Theorem 3.4 immediately as in the IUR-case. It is necessary to use a
Blaschke-Petkantschin formula first; see [16, (2.8)]. It states that for a fixed L0 ∈ Ln1
and an integrable function f : En1 → R, we have

∫

En1
f(E)µn1 (dE) =

πωn−1

ωn

∫

LL0
2

∫

M⊥

∫

EM+x
1

f(E) sin(∠(E,L0))n−2

× µM+x
1 (dE)λM⊥(dx) νL0

2 (dM), (4.13)

where ∠(E1, E2) is the (smaller) angle between π(E1) and π(E2) for two lines
E1, E2 ∈ En1 . For K ∈ Kn and even s ∈ N0, equation (4.13) can be applied
coordinate-wise to the mapping E 7→ Φ

(E)
0,0,s(K ∩E) and combined with the Crofton

formula in Theorem 3.1. The result is an integral formula for two-dimensional ver-
tical sections.

Theorem 4.6. Let L0 ∈ Ln1 be fixed. If K ∈ Kn and s ∈ N0 is even, then
∫

LL0
2

∫

M⊥

∫

EM+x
1

Φ
(E)
0,0,s(K ∩ E) sin(∠(E,L0))n−2 µM+x

1 (dE)λM⊥(dx) νL0
2 (dM)

=
2ωn+s+1

s!π2ωn−1ω2
s+1

s
2∑

k=0

c
( s
2

)

k Q
s
2
−kΦn−1,0,2k(K), (4.14)

where the constants c(m)
k are given in Theorem 3.1.For odd s ∈ N0 the integral on

the left-hand side is zero.
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If Theorem 3.1 is replaced by Theorem 3.4 in the above line of arguments, we
obtain an explicit measurement function for vertical sections leading to one single
tensor.

Theorem 4.7. Let L0 ∈ Ln1 be fixed. If K ∈ Kn and s ∈ N0 is even, then

ωn
πωn−1

Φn−1,0,s(K) =

∫

LL0
2

∫

M⊥

∫

EM+x
1

Gs(π(E))V0(K ∩ E)

× sin(∠(E,L0))n−2 µM+x
1 (dE)λM⊥(dx) νL0

2 (dM),

where Gs is given in Theorem 3.4.

Let s ∈ N0 be even and assume that K ∈ Kn is contained in a reference set
A ∈ Kn. Using Theorem 4.7 we are able to construct unbiased estimators of the
tensors Φn−1,0,s(K) of K based on a vertical uniform random 2-flat. If H is an VUR
2-flat hitting A with vertical direction L0 ∈ Ln1 , then it follows from Theorem 4.7
and (4.12) that

Vn−2(A|L⊥0 )

∫

EH1
Gs(π(E))V0(K ∩ E) sin(∠(E,L0))n−2 µH1 (dE) (4.15)

is an unbiased estimator of Φn−1,0,s(K). Hence the surface tensors can be estimated
by a two-step procedure. First, let H be a VUR 2-flat hitting the convex body A
with vertical direction L0. Given H, the integral

∫

EH1
Gs(π(E))V0(K ∩ E) sin(∠(E,L0))n−2 µH1 (dE) (4.16)

is estimated in the following way. Let E ∈ EH1 be an IUR line in H hitting A, i.e.
the distribution of E is given by

P (E ∈ A) = c3(A)

∫

A
1(A ∩ E 6= ∅)µH1 (dE), A ∈ B(EH1 ),

where
c3(A) =

π

2
V1(A ∩H)−1

is the normalizing constant. The integral (4.16) is then estimated unbiasedly by

c3(A)−1Gs(π(E))V0(K ∩ E) sin(∠(E,L0))n−2. (4.17)

Example 4.8. Consider the case s = 2. Let H be a VUR 2-flat hitting A ∈ Kn
with vertical direction L0. Given H, let E be an IUR line in H hitting A. Then

κn−2Vn−2(A |L⊥0 )V1(A ∩H)

ωn+1

(
(n+ 1)Q(π(E))−Q

)
V0(K ∩ E) sin(∠(E,L0))n−2

is an unbiased estimator of Φn−1,0,2(K).

20



Using [23, (13.13)] and an invariance argument, the integral (4.16) can alterna-
tively be expressed by means of the support function of K in the following way

∫

EH1
Gs(π(E))V0(K ∩ E) sin(∠(E,L0))n−2 µH1 (dE)

=
1

ω2

∫

Sn−1∩π(H)

Gs(u
⊥ ∩ π(H)) sin(∠(u⊥ ∩ π(H), L0))n−2

×
∫

[u]

V0(K ∩H ∩ (u⊥ + x))λ[u](dx)H1(du)

=
1

ω2

∫

Sn−1∩π(H)

Gs(u
⊥ ∩ π(H)) cos(∠(u, L0))n−2w(K ∩H, u)H1(du),

where [u] denotes the linear hull of a unit vector u, and

w(M,u) = h(M,u) + h(M,−u)

is the width of M ∈ Kn in direction u. Hence, given H,

Gs(U
⊥ ∩ π(H)) cos(∠(U,L0))n−2w(K ∩H,U) (4.18)

is an unbiased estimator of the integral (4.16) if U is uniform on Sn−1 ∩ π(H). As
in the IUR set-up in Section 4.1 we have two estimators: an estimator (4.17), where
it is only necessary to observe whether the random line E hits or misses K, and the
alternative estimator (4.18), which requires more information. The latter estimator
has a better precision at least when the reference set A is large. Variance reduction
can be obtained by combining the estimators with a systematic sampling approach.

4.3 Estimation based on non-isotropic random lines

In this section we consider estimators based on non-isotropic random lines. It is well-
known from the theory of importance sampling, that variance reduction of estimators
can be obtained by modifying the sampling distribution in a suitable way (see,
e.g., [2]). The estimators in this section are developed with inspiration from this
theory. Let again K ∈ Kn, and let f : Ln1 → [0,∞) be a density with respect to
the invariant measure νn1 on Ln1 such that f is positive νn1 -almost surely. Then by
Theorem 3.4 we have trivially

∫

En1

Gs(π(E))V0(K ∩ E)

f(π(E))
f(π(E))µn1 (dE) = Φn−1,0,s(K). (4.19)

Let A ⊆ Rn be a compact reference set containing K, and let E be an f -weighted
random line in Rn hitting A, that is, the distribution of E is given by

P (E ∈ A) = c4(A)

∫

A
1(E ∩ A 6= ∅)f(π(E))µn1 (dE)

for A ∈ B(En1 ), where

c4(A) =
(∫

En1
1(E ∩ A 6= ∅)f(π(E))µn1 (dE)

)−1
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is a normalizing constant. Then

c4(A)−1Gs(π(E))V0(K ∩ E)

f(π(E))

is an unbiased estimator of Φn−1,0,s(K). Notice that if we let the density f be con-
stant, then this procedure coincides with the IUR design in Section 4.1.

Our aim is to decide, which density f should be used in order to decrease the
variance of the estimator of Φn−1,0,s(K). Furthermore, we want to compare this
variance with the variance of the estimator based on an IUR line. From now on, we
restrict the investigation to the situation where n = 2 and s = 2. Furthermore, we
assume that the reference set A is a ball in R2 of radius R for some R > 0. Then
c4(A) = (2R)−1 independently of f .

Since Φ1,0,2(K) can be identified with a symmetric 2× 2 matrix, we have to esti-
mate three unknown components. We consider the variances of the three estimators
separately. The components of the associated matrix of G2(L) for L ∈ Ln1 is defined
by

gij(L) = G2(L)(ei, ej), (4.20)

for i, j = 1, 2, where (e1, e2) is the standard basis of R2. More explicitly, by Exam-
ple 3.5, the associated matrix of G2(L) of the line L = [u], for u ∈ S1, is

{gij([u])}ij =
3

8

(
u2

1 − 1
3

u1u2

u1u2 u2
2 − 1

3

)
.

Now let
ϕ̂ij(K ∩ E) := 2Rgij(π(E))V0(K ∩ E).

Then
ϕ̂ij(K ∩ E)

f(π(E))
(4.21)

is an unbiased estimator of Φ1,0,2(K)(ei, ej), when E is an f -weighted random line
in R2 hitting A.

For a given K ∈ K2 the weight function f minimizing the variance of the esti-
mators of the form (4.21) can be determined.

Lemma 4.9. For a fixed K ∈ K2 with dimK ≥ 1 and i, j ∈ {1, 2}, the estimator
(4.21) has minimal variance if and only if f = f ∗K holds ν2

1 − a.s., where

f ∗K(L) ∝
√

2RV1(K |L⊥) |gij(L)| (4.22)

is a density with respect to ν2
1 that depends on i, j and K.

Proof. AsK is compact, f ∗K is a well-defined probability density, and since dimK ≥ 1,
the density f ∗K is non-vanishing ν2

1 -almost surely. The second moment of the esti-
mator (4.21) is

Ef
(
ϕ̂ij(K ∩ E)

f(π(E))

)2

= 2R

∫

L21
V1(K |L⊥)

gij(L)2

f(L)
ν2

1(dL), (4.23)
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where Ef denotes expectation with respect to the distribution of an f -weighted
random line in R2 hitting A. The right-hand side of (4.23) is the second moment of
the random variable √

2RV1(K |L⊥) gij(L)

f(L)
,

where the distribution of the random line L has density f with respect to ν2
1 . By

[2, Chapter 5, Theorem 1.2] the second moment of this variable is minimized, when
f is proportional to

√
2RV1(K |L⊥) |gij(L)|. Since the proof of [2, Chapter 5, The-

orem 1.2] follows simply by an application of Jensen’s inequality to the function
t 7→ t2, equality can be characterized due to the strict convexity of this function,
(see, e.g., [9, (B.4)]). Equality holds if and only if

√
2RV1(K|L⊥) |gij(L)| is a con-

stant multiple of f(L) (or equivalently f = f ∗K) almost surely.

The proof of Lemma 4.9 generalizes directly to arbitrary dimension n. As a
consequence of Lemma 4.9, we obtain that for any convex body K ∈ K2, optimal
non-isotropic sampling provides a strictly smaller variance of the estimator (4.21)
than isotropic sampling. Indeed, noting that (4.21) with a constant function f re-
duces to the usual estimator (4.3) (with n = 2, A = RB2) based on IUR lines, this
follows from the fact that f ∗K cannot be constant. If f ∗K was constant almost surely,
then V1(K |u⊥) ∝ |gij([u])|−2 for almost all u ∈ S1. The left-hand side is essentially
bounded, whereas the right-hand side is not. This is a contradiction.

A further consequence of Lemma 4.9 is that there does not exist an estimator
of the form (4.21) independent of K that has uniformly minimal variance for all
K ∈ K2 with dimK ≥ 1. Unfortunately, f ∗K is not accessible, as it depends on K,
which is typically unknown. Even though estimators of the form (4.21) cannot have
uniformly minimal variance for all K ∈ K2 with dimK ≥ 1, we now show that
there is a non-isotropic sampling design which always yields smaller variance than
the isotropic sampling design. Let

f ∗(L) ∝ |gij(L)|

be a density with respect to ν2
1 . As |gij(L)| is bounded and non-vanishing for ν2

1 -
almost all L, f ∗ is well-defined and non-zero ν2

1 -almost everywhere. For convex bodies
of constant width, the density f ∗ coincides with the optimal density f ∗K .

Theorem 4.10. Let K ∈ K2, and let A = RB2 for some R > 0 be such that K ⊆ A.
Then

Varf∗

(
ϕ̂ij(K ∩ E)

f ∗(π(E))

)
< VarIUR

(
ϕ̂ij(K ∩ E)

)
. (4.24)

Proof. Using the fact that both estimators are unbiased, it is sufficient to show that
there is a 0 < λ < 1 with

Ef∗
(
ϕ̂ij(K ∩ E)

f ∗(π(E))

)2

≤ λEIUR
(
ϕ̂ij(K ∩ E)

)2
, (4.25)

for all K ∈ K2. Using (4.23), the left-hand side of this inequality is

2R

∫

L21
|gij(L)| ν2

1(dL)

∫

L21
|gij(L)|V1(K |L⊥) ν2

1(dL)
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and the right-hand side is

2R

∫

L21
gij(L)2 V1(K |L⊥) ν2

1(dL).

Since u 7→ V1(K |u⊥) is the support function of an origin-symmetric zonoid, the
inequality (4.25) holds if

∫ 2π

0

|gij([uφ])| dφ
2π

∫ 2π

0

|gij([uφ])|h(Z, uφ)
dφ

2π

≤ λ

∫ 2π

0

gij([uφ])2h(Z, uφ)
dφ

2π
(4.26)

for any origin-symmetric zonoid Z. Here uφ = (cos(φ), sin(φ))> for φ ∈ [0, 2π]. As
support functions of zonoids can be uniformly approximated by support functions of
zonotopes (see, e.g., [20, Theorem 1.8.14]) and the integrals in (4.26) depend linearly
on these support functions, it is sufficient to show (4.26) for all origin-symmetric
line segments Z of length two. Hence, we may assume that Z is an origin-symmetric
line segment with endpoints ±(cos(γ), sin(γ))>, where γ ∈ [0, π). We now substitute
the support function

h(Z, uφ) = |cos(φ− γ)|
for φ ∈ [0, 2π), into (4.26).

First, we consider the estimation of the first diagonal element of Φ1,0,2(K), that
is, i, j = 1 and gij([uφ]) = 3

8
(cos2(φ)− 1

3
) for φ ∈ [0, 2π]. The integrals in (4.26) then

become

Pf∗(γ) :=
3

8

∫ 2π

0

|cos2(φ)− 1
3
| dφ

2π

3

8

∫ 2π

0

|cos2(φ)− 1
3
||cos(φ− γ)| dφ

2π

and

PIUR(γ) :=
9

64

∫ 2π

0

(
cos2(φ)− 1

3

)2|cos(φ− γ)| dφ
2π
.

Let κ = arccos( 1√
3
). Then

M :=
3

8

∫ 2π

0

|cos2(φ)− 1
3
| dφ

2π
=

√
2 + κ

4π
− 1

16
,

and elementary, but tedious calculations show that

Pf∗(γ) =
M

π

(
2
√

2

3
√

3
cos(γ)− 1

4
cos2(γ)

)
1[0,π

2
−κ](γ)

+
M

π

(
1

4
cos2(γ) +

1

3
√

3
sin(γ)

)
1(π

2
−κ,π

2
](γ)

for γ ∈ [0, π
2
]. Further, Pf∗(γ) = Pf∗(π− γ) for γ ∈ [π

2
, π]. For the IUR estimator we

get that

PIUR(γ) =
1

20π

(
−3

8
cos4(γ) + cos2(γ) + 1

2

)

24



for γ ∈ [0, π
2
], and PIUR(γ) = PIUR(π − γ) for γ ∈ [π

2
, π]. The functions Pf∗ and

PIUR are plotted in Figure 3. Basic calculus for the comparison of these two functions
shows that Pf∗ < PIUR. This implies that Pf∗ ≤ λPIUR, where λ = maxγ∈[0,π]

Pf∗(γ)
PIUR(γ)

is smaller than one as Pf∗ and PIUR are continuous on the compact interval [0, π].
Hereby (4.26) is satisfied for i = j = 1. Interchanging the roles of the coordinate
axes in (4.26) yields the same result for i = j = 2.

We now consider estimation of the off-diagonal element, that is, i = 1, j = 2.
Then the left-hand and the right-hand side of (4.26) become

Qf∗(γ) =
3

8

∫ 2π

0

|cos(φ) sin(φ)| dφ
2π

3

8

∫ 2π

0

|cos(φ) sin(φ)||cos(φ− γ)| dφ
2π

(4.27)

and

QIUR(γ) =
9

64

∫ 2π

0

cos2(φ) sin2(φ)|cos(φ− γ)| dφ
2π

(4.28)

for γ ∈ [0, π]. We have

3

8

∫ 2π

0

|cos(φ) sin(φ)| dφ
2π

=
3

8π
,

and then
Qf∗(γ) =

3

32π2

(
sin(γ) + cos(γ)− sin(γ) cos(γ)

)

for γ ∈ [0, π
2
], and Qf∗(γ) = Qf∗(γ − π

2
) for γ ∈ [π

2
, π]. For γ ∈ [0, π] we further find

that
QIUR(γ) =

3

320π

(
4− 1

2
sin2(2γ)

)
.

The functions QIUR and Qf∗ are plotted in Figure 4. Basic calculus shows that

min
0≤γ≤π

Qf∗ =
3

32π2

(√
2− 1

2

)
, max

0≤γ≤π
Qf∗ =

3

32π2
, (4.29)

and
min

0≤γ≤π
QIUR =

21

640π
, max

0≤γ≤π
QIUR =

3

80π
. (4.30)

Hence
Qf∗(γ) ≤ 3

32π2
≤ λ

21

640π
≤ λQIUR(γ)

for γ ∈ [0, π] with λ = 3
π
< 1. Hereby (4.26) holds for all zonotopes Z and i = 1,

j = 2, and the claim is shown.

If E is an f ∗-weighted random line suited for estimating one particular compo-
nent of Φ1,0,2(K), then E should not be used to estimate any of the other compo-
nents, as this would increase the variance of these estimators considerably. Hence,
if we estimate all of the components of the tensor using the estimator based on f ∗-
weighted lines, we need three lines; one for each component. If we want to compare
this approach with an estimation procedure based on IUR lines, requiring the same
workload, we will use three IUR lines. Note however, that all three IUR lines can
be used to estimate all three components of the tensor. This implies that we should
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Figure 3: The straight line is PIUR, the dashed line is Pf∗ , and the dash-dotted line
is Popt.
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Figure 4: The straight line is QIUR, the dashed line is Qf∗ , and the dash-dotted line
is Qopt.
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actually compare the variance of the estimator based on one f ∗-weighted random
line with the variance of an estimator based on three IUR lines. It turns out that the
estimator based on three independent IUR lines has always smaller variance, than
the estimator based on one f -weighted line, no matter how the density f is chosen.

Theorem 4.11. Let K ∈ K2, and let A = RB2 with some R > 0 be such that
K ⊆ A. Let f be a density with respect to ν2

1 , which is non-zero ν2
1-almost everywhere.

Let E1, E2 and E3 be independent IUR lines in R2 hitting A. Then

Var

(
1

3

3∑

k=1

ϕ̂ij(K ∩ Ek)
)
< Varf

(
ϕ̂ij(K ∩ E)

f(π(E))

)

for i, j ∈ {1, 2}.
Proof. By Theorem 4.10, the variance of the estimator (4.21) is bounded from below
by the variance of the same estimator with f = f ∗K . Hence, it is sufficient to compare
the second moments of

1

3

3∑

k=1

ϕ̂ij(K ∩ Ek)

and (4.21) with f = f ∗K . The latter is

2R

(∫

L21
|gij(L)|

√
V1(K |L⊥) ν2

1(dL)

)2

,

so let

Popt(γ) :=

(
3

8

∫ 2π

0

|cos2(φ)− 1
3
|
√
|cos(φ− γ)| dφ

2π

)2

and

Qopt(γ) :=

(
3

8

∫ 2π

0

|cos(φ) sin(φ)|
√
|cos(φ− γ)| dφ

2π

)2

for γ ∈ [0, π]. Using the notation of the previous proofs, by (4.27), (4.28), (4.29) and
(4.30) we have

Qopt(γ) ≥
(

8πQf∗(γ)

3

)2

≥ 9− 4
√

2

64π2
>

1

80π
≥ 1

3
QIUR(γ)

for γ ∈ [0, π]. Likewise, Popt(γ) ≥
(Pf∗ (γ)

M

)2. Elementary analysis shows that

min
0≤γ≤π

2
−κ

(
Pf∗(γ)

M

)2

=
25

324π2
>

3

160π
= max

0≤γ≤π
2
−κ

1
3
PIUR(γ),

and that (
Pf∗(γ)

M

)2

− 1
3
PIUR(γ) ≥

(
Pf∗(

π
2
)

M

)2

− 1
3
PIUR

(π
2

)
> 0

on [π
2
− κ, π

2
]. Hence Popt > 1

3
PIUR on [0, π], and the assertion is proved.

This leads to the following conclusion: If one single component of the tensor
Φn−1,0,2(K) is to be estimated for unknown K, the estimator (4.21) with f = f ∗ is
recommended, as its variance is strictly smaller than the one from isotropic sampling
(where f is a constant). If all components are sought for, the estimator based on
three IUR lines should be preferred.
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5 Model based estimation

In this section we derive estimators of the specific surface tensors associated with
a stationary process of convex particles based on linear sections. In [22], Schneider
and Schuster treat the similar problem of estimating the area moment tensor (s = 2)
associated with a stationary process of convex particles using planar sections.

Let X be a stationary process of convex particles in Rn with locally finite (and
non-zero) intensity measure, intensity γ > 0 and grain distribution Q on K0 :=
{K ∈ Kn | c(K) = 0}; see, e.g., [23] for further information on this basic model of
stochastic geometry. Here c : Kn \ {∅} → Rn is the center of the circumball of K.
Since X is a stationary process of convex particles, the intrinsic volumes V0, . . . , Vn
are Q-integrable by [23, Theorem 4.1.2]. For j ∈ {0, . . . , n−1} and s ∈ N0 the tensor
valuation Φj,0,s is measurable and translation invariant on Kn, and since, by (2.1),

|Φj,0,s(K)(ei1 , . . . , eis)| ≤
ωn−j

s!ωn−j+s
Vj(K),

it is coordinate-wise Q-integrable. The jth specific (translation invariant) tensor of
rank s can then be defined as

Φj,0,s(X) := γ

∫

K0

Φj,0,s(K)Q(dK) (5.1)

for j ∈ {0, . . . , n− 1} and s ∈ N0. For j = n− 1, the specific tensors are called the
specific surface tensors. Notice that Φn−1,0,2(X) = 1

8π
T (X), where T (X) is the mean

area moment tensor described in [22]. By [23, Theorem 4.1.3] the specific tensors of
X can be represented as

Φj,0,s(X) =
1

λ(B)
E
∑

K∈X
c(K)∈B

Φj,0,s(K), (5.2)

where B ∈ B(Rn) with 0 < λ(B) <∞.
In the following we restrict to j = n−1 and discuss the estimation of Φn−1,0,s(X)

from linear sections of X. We assume from now on that n ≥ 2. For L ∈ Ln1 we let
X ∩L := {K ∩L | K ∈ X,K ∩L 6= ∅} be the stationary process of convex particles
in L induced by X. Let γL and QL denote the intensity and the grain distribution
of X ∩ L, respectively. The tensor valuation Φ

(L)
0,0,s is measurable and QL-integrable

on K(L)
0 := {K ∈ K0 | K ⊆ L}. We can thus define

Φ
(L)

0,0,s(X ∩ L) := γL

∫

K(L)
0

Φ
(L)
0,0,s(K)QL(dK).

This deviates in the special case T (L)
(X ∩L) = 8πΦ

(L)

0,0,2(X ∩L) from the definition
in [22] due to a misprint there. An application of (3.4) yields,

Φ
(L)

0,0,s(X ∩ L) =
2

s!ωs+1

Q(L)
s
2γL (5.3)

for even s, and Φ
(L)

0,0,s(X ∩ L) = 0 for odd s.
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Theorem 5.1. Let X be a stationary process of convex particles in Rn with positive
intensity. If s ∈ N0 is even, then

∫

Ln1
Φ

(L)

0,0,s(X ∩ L) νn1 (dL) =
2ωn+s+1

πs!ω2
s+1ωn

s
2∑

k=0

c
( s
2

)

k Q
s
2
−k Φn−1,0,2k(X), (5.4)

where the constants c( s
2

)

k for k = 0, . . . , s
2
are given in Theorem 3.1.

Proof. Let L ∈ Ln1 , and let γL be the intensity of the stationary process X ∩ L. If
B ⊆ L is a Borel set with λL(B) = 1, then an application of Campbell’s theorem
and Fubini’s theorem yields

γL = E
∑

K∈X
K∩L6=∅

1(c(K ∩ L) ∈ B)

= γ

∫

K0

∫

L⊥
V0(K ∩ (L+ x))λL⊥(dx)Q(dK),

where γ and Q are the intensity and the grain distribution of X. Then, (5.3) implies
that

Φ
(L)

0,0,s(X ∩ L) = γ

∫

K0

∫

L⊥
Φ

(L+z)
0,0,s (K ∩ (L+ z))λL⊥(dz)Q(dK),

and by Fubini’s theorem we get
∫

Ln1
Φ

(L)

0,0,s(X ∩ L) νn1 (dL) = γ

∫

K0

∫

En1
Φ

(E)
0,0,s(K ∩ E)µn1 (dE)Q(dK). (5.5)

Now Theorem 3.1 yields the stated integral formula (5.4).

A combination of equation (5.5) and equation (3.10) immediately gives the fol-
lowing Theorem 5.2, which suggests an estimation procedure of the specific surface
tensor Φn−1,0,s(X) of the stationary particle process X.

Theorem 5.2. Let X be a stationary process of convex particles in Rn with positive
intensity. If s ∈ N0 is even, then

∫

Ln1

s
2∑

j=0

d s
2
jC2jQ

s
2
−jΦ

(L)

0,0,2j(X ∩ L) νn1 (dL) = Φn−1,0,s(X), (5.6)

where d s
2
j and C2j for j = 0, . . . , s

2
are given before Theorem 3.4.

Using (5.3), we can reformulate the integral formula (5.6) in the form
∫

Ln1
Gs(L)γL ν

n
1 (dL) = Φn−1,0,s(X),

where Gs is given in Theorem 3.4.
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Example 5.3. In the case where s = 2 formula (5.6) becomes
∫

Ln1

2π2ωn
ωn+3

Φ
(L)

0,0,2(X ∩ L)− ωn
4ωn+1

QΦ
(L)

0,0,0(X ∩ L) νn1 (dL) = Φn−1,0,2(X).

Up to a normalizing factor 2π in the constant in front of Φ
(L)

0,0,2, this formula coin-
cides with formula (7) in [22], when n = 2. Apparently the normalizing factor got
lost, when Schneider and Schuster used [21, (36)], which is based on the spheri-
cal Lebesgue measure. In [22], Schneider and Schuster use the normalized spherical
Lebesgue measure.
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