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Abstract

Some of the recent developments in the rapidly expanding field of Ambit
Stochastics are here reviewed. After a brief recall of the framework of Ambit
Stochastics three topics are considered: (i) Methods of modelling and inference
for volatility /intermittency processes and fields (ii) Universal laws in turbu-
lence and finance in relation to temporal processes (iii) Stochastic integration
for time changed volatility modulated Levy-driven Volterra processes.
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1 Introduction

Ambit Stochastics is a general framework for the modelling and study of dynamic
processes in space-time. The present paper outlines some of the recent developments
in the area, with particular reference to finance and the statistical theory of turbu-
lence. Two recent papers (|9] and [39]) provide surveys that focus on other sides of
Ambit Stochastics.

A key characteristic of the Ambit Stochastics framework, which distinguishes
this from other approaches, is that beyond the most basic kind of random input it
also specifically incorporates additional, often drastically changing, inputs referred
to as volatility or intermittency.

Such “additional” random fluctuations generally vary, in time and/or in space,
in regard to intensity (activity rate and duration) and amplitude. Typically the
volatility /intermittency may be further classified into continuous and discrete (i.e.
jumps) elements, and long and short term effects. In turbulence the key concept of
energy dissipation is subsumed under that of volatility /intermittency.

The concept of (stochastic) wvolatility/intermittency is of major importance in
many fields of science. Thus volatility /intermittency has a central role in mathemat-
1cal finance and financial econometrics, in turbulence, in rain and cloud studies and
other aspects of environmental science, in relation to nanoscale emitters, magneto-
hydrodynamics, and to liquid miztures of chemicals, and last but not least in the
physics of fusion plasmas (see e.g. the book [30] among many others).

As described here, volatility /intermittency is a relative concept, and its mean-
ing depends on the particular setting under investigation. Once that meaning is
clarified the question is how to assess the volatility /intermittency empirically and
then to describe it in stochastic terms, for incorporation in a suitable probabilistic
model. Important issues concern the modelling of propagating stochastic volatil-
ity /intermittency fields and the question of predictability of volatility /intermittency.

Section 2 briefly recalls some main aspects of Ambit Stochastics that are of
relevance for the dicussions in the subsequent sections. The modelling of volatil-
ity /intermittency and energy dissipation is a main theme in Ambit Stochastics and
several approaches to this are discussed in section 3. A leading principle in the de-
velopment of Ambit Stochastics has been to take the cue from recognised stylised
features — or universality traits — in various scientific areas, particularly turbulence,
as the basis for model building; and in turn to seek new such traits using the models
as tools. We discuss certain universal features observed in finance and turbulence
and indicate ways to reproduces them in section 4. Integration with ambit pro-
cesses/fields as integrators is discussed in section 5.
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Figure 1: A spatio-temporal ambit field. The value Y (x, t) of the field at the point marked
by the black dot is defined through an integral over the corresponding ambit set A(x,t)
marked by the shaded region. The circles of varying sizes indicate the stochastic volatil-
ity /intermittency. By considering the field along the dotted path in space-time an ambit
process is obtained.

2 Ambit Stochastics

In terms of mathematical formulae, in its original form [18] (cf. also [17]) an ambit
field is specified by

V(o) =t [ g€t o)ae ) L ds) + Qo) 2.1)

A(z,t)

where

Qe t) = /D A ELNE ) deds (2.2)

Here t denotes time while x gives the position in d-dimensional Fuclidean space.
Further, A(z,t) and D(z,t) are subsets of R? x R and are termed ambit sets, g and q
are deterministic weight functions, and L denotes a Lévy basis (i.e. an independently
scattered and infinitely divisible random measure). Further, o and y are stochastic
fields representing aspects of the volatility /intermittency. In Ambit Stochastics the
models of the volatility /intermittency fields o and x are usually themselves specified
as ambit fields. We shall refer to o as the amplitude volatility component. Figure 1
shows a sketch of the concepts.

The development of Y along a curve in space-time is termed an ambit process.
As will be exemplified below, ambit processes are not of the semimartingale type,
even in the purely temporal case, i.e. where there is no spatial component x.



In a recent extension the structure (2.1) is generalised to

Y(a,t) = p+ / 9. 6,1, 8)0(, 5) Lo(de ds) + Q(a. 1) (2.3)

Az,t)

where @) is like (2.2) or the exponential thereof, and where 7" is a metatime express-
ing a further volatility /intermittency trait. The relatively new concept of metatime
generalises that of subordination of stochastic processes by time change (as discussed
for instance in [23|) to subordination of random measures by random measures. We
shall not consider this concept and its applications further here but refer to the
discussion given in [10].

Note however that in addition to modelling volatility /intermittency through the
components o, y and 7', in some cases this may be supplemented by probability
mixing or Lévy mixing as discussed in [13].

It might be thought that ambit sets have no role in purely temporal modelling.
However, examples of their use in such contexts will be discussed in section 3.

In many cases it is possible to choose specifications of the volatility /intermittency
elements o, x and T such that these are infinitely divisible or even selfdecomposable,
making the models especially tractable analytically. We recall that the importance
of the concept of selfdecomposability rests primarily on the possibility to represent
selfdecomposable variates as stochastic integrals with respect to Lévy bases, see [35].

So far, the main applications of ambit stochastics has been to turbulence and,
to a lesser degree, to financial econometrics and to bioimaging. An important new
area of applications is to particle transport in fluids.

The paper [26] develops a general theory for integrals

X(x,t) = / h(z,y,t,s) M(dx dz)
RIxR

where h is a predictable stochastic function and M is a dispersive signed random
measure. Central to this is that the authors establish a notion of characteristic triplet
of M, extending that known in the purely temporal case. A major problem solved in
that regard has been to merge the time and space aspects in a general and tractable
fashion. Armed with that notion they determine the conditions for existence of the
integral, analogous to those in [41]| but considerably more complicated to derive and
apply. An important property here is that now predictable integrands are allowed (in
the purely temporal case this was done in [25]). Applications of the theory to Am-
bit Stochastics generally, and in particular to superposition of stochastic volatility
models, is discussed.

Example 2.1. We can briefly indicate the character of some of the points on Ambit
Stochastics made above by considering the following simple model

Y(t) = / g(t — s)o(s) Br(ds) + / g(t — s)o(s)*ds. (2.4)

Here the setting is purely temporal and By is the time change of Brownian motion B
by a chronometer T' (that is, an increasing, cadlag and stochastically continuous pro-
cess ranging from —oo to o0), and the volatility /intermittency process o is assumed

4



stationary. Here ¢ and T represent respectively the amplitude and the intensity of
the volatility /intermittency. If 7" has stationary increments then the process Y is
stationary. Note that (2.4) can be seen as a stationary analogue of the BNS model
introduced by Barndorff-Nielsen and Shephard in [15].

Note that in case T increases by jumps only, the infinitesimal of the process Br
cannot be reexpressed in the form x(s)B(ds), as would be the case if T" was of type
T, = [, ¥(u) du with x = /9.

Further, for the exemplification we take g to be of the gamma type

)\l/

g(s) = ms”’le”\sl(om)(s). (2.5)

Subject to a weak condition on o, the stochastic integral in (2.4) will exist if and
only if ¥ > 1/2 and then Y constitutes a stationary process in time. Moreover, Y
is a semimartingale if and only if v does not lie in one of the intervals (1/2,1) and
(1,3/2). Note also that the sample path behaviour is drastically different between
the two intervals where T' is a pure-jump process, since, as t — 0, g(t) tends to oo
when v € (1/2,1) and to 0 when v € (1,3/2). Further, the sample paths are purely
discontinuous if v € (1/2,1) but purely continuous (of Holder index H = v — 1/2)
when v € (1,3/2).

The cases where v € (1/2,1) have a particular bearing in the context of turbu-
lence, the value v = 5/6 having a special role in relation to the Kolmogorov-Obukhov
theory of statistical turbulence, cf. [4] and [36].

3 Modelling of volatility /intermittency /energy
dissipation

A very general approach to specifying volatility /intermittency fields for inclusion in
an ambit field, as in (2.1), is to take 7 = ¢ as being given by a Lévy-driven Volterra
field, either directly as

T(z,t) = /R2 Rf(m,f,t, s) L(d¢, ds) (3.1)

with f positive and L a Lévy basis (different from L in (2.1),) or in exponentiated
form

(2,1) = exp ( /R | @ L(df,ds)) | (3.2)

When the goal is to have stationary volatility /intermittency fields, such as in mod-
elling homogeneous turbulence, that can be achieved by choosing L to be homoge-
neous and f of translation type. However, the potential in the specifications (3.1)
and (3.2) is much wider, giving ample scope for modelling inhomogeneous fields,
which are by far the most common, particularly in turbulence studies. Inhomogene-
ity can be expressed both by not having f of translation type and by taking the
Lévy basis L inhomogeneous.



In the following we discuss two aspects of the volatility /intermittency modelling
issue. Subsection 3.1 presents a general class of ambit processes, called trawl pro-
cesses, where although they are in principal temporal the construction relies on two
or higher dimensional ambit sets. Trawl processes have proved to be a useful tool
for the modelling of volatility /intermittency and in particular for the modelling of
the energy dissipation as outlined in subsection 3.2. In Subsection 3.4 we outline the
applicability of selfdecomposability to the construction of volatility /intermittency
fields.

3.1 Trawl processes

The simplest non-trivial kind of ambit field is perhaps the trawl process, first in-
troduced in [3]|. In a trawl process, the kernel function and the volatility field are
constant and equal to 1, and so the process is given entirely by the ambit set and
the Lévy basis. Specifically, suppose that L is a homogeneous Lévy basis on R? x R
and that A C R? x R is a Borel subset with finite Lebesgue measure, then we obtain
a trawl process Y by letting A(t) = A+ (0,¢) and

Y(t) = /A ) L(de€ ds) = / 14(€,¢ — 8) L(de ds) = L(A(t)) (3.3)

The process is by construction stationary. Despite their apparent simplicity, trawl
processes possess enough flexibility to be of use. If L' denotes the seed of L, then
the cumulant function of Y is given by

C{CtY(t)} = |A[C{CT L} (3.4)
For the mean, variance, autocovariance and autocorrelation it follows that
E[Y (¢

var(Y (¢
t

~—

] = |A[E[L],

) = | Al var(L’),
= cov(Y(¢),Y(0)) = |[AN A(t)| var(L"),
_ cov(Y(t),Y(0)) _ |AN At
' var(Y(0)) |A|

~—

r

(
p(t

~—

From this we conclude the following. The one-dimensional marginal distribution
is determined entirely in terms of the size (not shape) of the ambit set and the
distribution of the Lévy seed; given any infinitely divisible distribution there exists
trawl processes having this distribution as the one-dimensional marginal; and the
autocorrelation is determined entirely by the size of the overlap of the ambit sets,
that is, the shape of the ambit set A. Thus we can specify the autocorrelation
and marginal distribution independently of each other. It is, for example, easy to
construct a trawl process with the same autocorrelation as the OU process, see [3]
and [10] for more results and details. By using integer-valued Lévy bases, integer-
valued trawl processes are obtained. These processes are studied in detail in [6] and
applied to high frequency stock market data.

We remark, that Y (z,t) = L(A + (z,t)) is an immediate generalisation of trawl
processes to trawl fields. It has the same simple properties as the trawl process.
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Trawl processes can be used to directly model an object of interest, for example,
the exponential of the trawl process has been used to model the energy dissipation,
see next subsection, or they can be used as a component in a composite model, for
example to model the volatility /intermittency in a Brownian semistationary process.

3.2 The energy dissipation

In [34] it has been shown that exponentials of trawl processes are able to repro-
duce the main stylized features of the (surrogate) energy dissipation observed for
a wide range of datasets. Those stylized features are the one-dimensional marginal
distributions, the structure of the correlators and the scaling and self-scaling of the
correlators. There the energy dissipation ¢ is modelled as

e(t) = exp(L(A(1))), (3.5)

where L is a homogeneous Lévy basis on R x R and A(t) = A+ (0,t) for a bounded
set A C R x R. The ambit set A is given as

A={(z,t) [0 <t <T,—f(t) <z < f(B)}, (3.6)

where 7' > 0. For T'> 0, k > 1, and ¢ > 0, the function f is defined as

L— (/1) \ "’
)= ————— <t<T. .
f(¢) (H(kt/m ,  0<t< (3.7)
Finally, the correlator of order (p, q) is defined by
Ele(t)Pe(t + s)?
Cpg(s) = ()l I (3.8)

Efe(t)P|E[e(t + 5)1]

In [34] it is shown that the one-dimensional marginal of the logarithm of the en-
ergy dissipation is well described by a normal inverse Gaussian distribution, i.e.
loge(t) ~ NIG(«, 3, 1t,0), where the shape of these distributions is the same for
all datasets (independent of the so-called Reynolds number). This means that L
should be a normal inverse Gaussian Lévy basis whose parameters are given by the
observed distribution of loge(t). The shape of the ambit set is chosen to reproduce
the correlator ¢y ;. This completely specifies the parameters of (3.5). The model is
able to reproduce the behaviour of the correlators of other orders, including scaling,

Cpq(s) ox sTP, (3.9)
where 7(p, q) is the scaling exponent, and self-scaling,
Cpg(8) O Cyr g (8)TEHT), (3.10)

where 7(p, ¢; P/, ¢') is the self-scaling exponent. Furthermore, self-scaling exponents
are predicted from the shape of the one-point distribution of the energy dissipation
alone.
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Figure 2: Brookhaven turbulence data periods 18 and 25 — RRQV and 95 % confidence
intervals

3.3 Realised relative volatility /intermittency /energy
dissipation

By its very nature, volatility /intermittency is a relative concept, delineating varia-
tion that is relative to a conceived, simpler model. But also in a model for volatil-
ity /intermittency in itself it is relevant to have the relative character in mind, as
will be further discussed below. We refer to this latter aspect as relative volatil-
ity /intermittency and will consider assessment of that by realised relative volatil-
ity/intermittency which is defined interms of quadratic variation. The ultimate
purpose of the concept of relative volatility/intermittency is to assess the volatil-
ity /intermittency or energy dissipation in arbitrary subregions of a region C' of
space-time relative to the total volatility /intermittency /energy dissipation in C. In
the purely temporal setting the realised relative volatility/interrmittency is defined
by
[Ysle/[Yslr

where [Y5]; denotes the realised quadratic variation of the process Y observed with
lag § over a time interval [0,¢]. We refer to this quantity as RRQV (for realised
relative quadratic volatility). An important aspect of the definition of the realised
relative volatility /interrmittency is that its calculation does not require estimation
of v under the gamma specification (2.5) of g.

Convergence in probability and a central limit theorem for the RRQV is es-
tablished in [12|. Figure 2 illustrates its use, for two sections of the “Brookhaven”
dataset, one where the volatility effect was deemed by eye to be very small and one
where it appeared strong. (The “Brookhaven” dataset consist of 20 million one-point
measurements of the longitudinal component of the wind velocity in the atmospheric
boundary layer, 35 meters above ground. The measurements were performed using
a hot-wire anemometer and sampled at 5 kHz. The time series can be assumed to be
stationary. We refer to [27| for further details on the dataset; the dataset is called
no. 3 therein).



3.4 Role of selfdecomposability

If 7 is given by (3.1) it is automatically infinitely divisible, and selfdecomposable
provided L has that property; whereas if 7 is defined by (3.2) it will only in ex-
ceptional cases be infinitely divisible. For a general discussion of selfdecomposable
fields we refer to [14]. See also [35] which provides a survey of when a selfdecom-
posable random variable can be represented as a stochastic integral, like in (3.1).
Representations of that kind allow, in particular, the construction of field-valued
processes of OU or supOU type that may be viewed as propagating, in time, an
initial volatility /intermittency field defined on the spatial component of space-time
for a fixed time, say ¢ = 0. Similarly, suppose that a model has been formulated for
the time-wise development of a stochastic field at a single point in space. One may
then seek to define a field on space-time such that at every other point of space the
time-wise development of the field is stochastically the same as at the original space
point and such that the field is stationary and selfdecomposable.

Example 3.1 (One dimensional turbulence). Let Y denote an ambit field in the
tempo-spatial case where the spatial dimension is 1, and assume that for a prelimi-
nary purely temporal model X of the same turbulent phenomenon a model has been
formulated for the squared amplitude volatility component, say w. It may then be
desirable to devise Y such that the volatility /intermittency field 7 = o is stationary
and infinitely divisible.and such that for every spatial position = the law of 7(x, -) is
identical to that formulated for the temporal setting, i.e. w. If the temporal process
is selfdecomposable then, subject to a further weak condition, such a field can be
constructed.

To sketch how this may proceed, recall first that the classical definition of self-
decomposability of a process X says that all the finite-dimensional marginal distri-
butions of X should be selfdecomposable. Accordingly, due to a result by [42], for
any finite set of time points & = (uq,...,u,) the selfdecomposable vector variable
X (@) = (X(u),...,X(u,)) has a representation

X () = /OOO e ¢ L(d¢,a)

for some n-dimensional Lévy process L( -, u), provided only that the Lévy measure
of X(u) has finite log-moment. We now assume this to be the case and that X is
stationary

Next, for fixed @, let {L(x, @) | z € R}, be the n-dimensional Lévy process having
the property that the law of L(1,4) is equal to the law of X (@). Then the integral

X(z,0) = / e *L(d¢, )
exists and the process { X (z,u) | € R} will be stationary — of Ornstein-Uhlenbeck
type — while for each = the law of X (x,4) will be the same as that of X (u).
However, off hand the Lévy processes I~/( -, ) corresponding to different sets u
of time points may have no dynamic relationship to each other, while the aim is to
obtain a stationary selfdecomposable field X (z,t) such that X (z, - ) has the same



law as X for all z € R. But, arguing along the lines of theorem 3.4 in [11], it is
possible to choose the representative processes Z( -, 1) so that they are all defined
on a single probability space and are consistent among themselves (in analogy to
Kolmogorov’s consistency result); and that establishes the existence of the desired
field X (z,t). Moreover, X( -, -) is selfdecomposable, as is simple to verify.

The same result can be shown more directly by arguing on the general level of
master Lévy measures and the associated Lévy-Ito representations, cf. [14].

Example 3.2. Assume that X has the form

X() = [ gl L) .11
where L is a Lévy process.

It has been shown in [14] that, in this case, provided g is integrable with re-
spect to the Lebesgue measure, as well as to L, and if the Fourier transform of g is
non-vanishing then X, as a process, is selfdecomposable if and only if L is selfde-
composable. When that holds we may, as above, construct a selfdecomposable field
X(x,t) with X(z, - ) ~ X(-) for every z € R and X( -,t) of OU type for every
teR.

As an illustration, suppose that ¢ is the gamma kernel (2.5) with v € (1/2,1).
Then the Fourier transform of ¢ is

9(¢) = (A =i¢/N)™.

and hence, provided that L is such that the integral (3.11) exists, the field X (z, u)
is stationary and selfdecomposable, and has the OU type character described above.

4 Time change and universality in turbulence and
finance

4.1 Distributional Collapse

In [5], O.E. Barndorff-Nielsen, P. Bleesild and J. Schmiegel demonstrate two prop-
erties of the distributions of increments A,X(t) = X (t) — X(t — ¢) of turbulent
velocities. Firstly, the increment distributions are parsimonious, i.e., they are de-
scribed well by a distribution with few parameters, even across distinct experiments.
Specifically it is shown that the four-parameter family of normal inverse Gaussian
distributions (NIG(«, 3, 1, 0)) provides excellent fits across a wide range of lags ¢,

AX ~ NIG(a(l), B(€), u(L), 5(£)). (4.1)

Secondly, the increment distributions are universal, i.e., the distributions are the
same for distinct experiments, if just the scale parameters agree,

Aglxl ~ AgQXQ if and Only if (51(61) = (52(82), (42)
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provided the original velocities (not increments) have been non-dimensionalized by
standardizing to zero mean and unit variance. Motivated by this, the notion of
stochastic equivalence class is introduced.

In [17], the analysis is extended to many more data sets, and the notion of
stochastic equivalence class is extended to

Ap X1 ApXo
91(6)  g2(f2)

where ¢g; and F; are deterministic with F; monotone. The role of g; is to normalize
by the size of the large scales of the process, and the role of F; is to change time
by the small scales of the process. In the context of turbulence is was found that
g:(0) = y/var(X;) and F;(¢) = §;(¢)/+/var(X;).

Finally, in [22], O.E. Barndorff-Nielsen, J. Schmiegel and N. Shephard extend the
analysis from fluid velocities in turbulence to currency and metal returns in finance
and demonstrate that

if and only if Fl(gl) = FQ(KQ), (43)

Ay X1 ~ Ay, Xy if and only if  var(Ay, X;) ~ var(Ag, Xs), (4.4)

where X; denotes the log-price, so increments are log-returns. Now ¢;(¢) = 1 and
F;(0) = var(A,X;).

A conclusion from the cited works is that within the context of turbulence or
finance there exists a one-parameter family of distributions such that for many
distinct experiments and a wide range of lags, the corresponding increments are
distributed according to a member of this family. Moreover, the index into this
family is uniquely determined by the size of the large scale and the size of the small
scales.

4.2 A first look at financial data from SP500

Motivated by all this, we extend the analysis even further to 29 assets from SP500
(AA, AIG, AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, IBM, INTC,
JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PG, SPY, T, UTX, VZ, WMT, XOM).
For each asset, between 7 and 12 years of data is available, but only data from before
the financial crisis is retained in order to simplify this initial analysis. This excludes
approximately 40% of each data set. The data has been provided by A. Lunde
(Aarhus University), see also [31].

Figure 3 shows that the distributions of log-returns across a wide range of lags
ranging from 1 second to approximately 4.5 hours are quite accurately described
by normal inverse Gaussian distributions. This is not surprising given that numer-
ous publications have demonstrated the applicability of the generalised hyperbolic
distribution, in particular the subfamily consisting of the normal inverse Gaussian
distributions, to describe financial datasets. See for example [43, 15, 16, 2, 29]. We
note the transition from a highly peaked distribution towards the Gaussian as the
lag increases.

Next, we see on figure 4 that the distributions at the same lag of the log-returns
for the 29 dataset are quite different, that is, they do not collapse onto the same
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Figure 3: Probability densities on a log-scale for the log-returns of INTC at various
lags ranging from 1 second to 16384 seconds. The dots denote the data and the solid line
denotes the fitted NIG distribution. The log-returns have been multiplied with 100 in order
to un-clutter the labeling of the z-axes.

curve. However, the transition from a highly peaked distribution at small lags to-
wards a Gaussian at large lags hints that a suitable change of time may cause such
a collapse. Motivated by the observations in [22] we therefore consider the variance
of the log-returns as a function of the lag. Figure 5 shows how the variance depends
on the lag. Except at the smallest lags, a clear power law is observed. The behaviour
at the smallest lags is due to market microstructure noise [31]. Nine variances have
been selected to represent most of the variances observed in the 29 datasets. For
each selected variance and each dataset the corresponding lag is computed. We note
that for the smallest lags/variances this is not without difficulty since for some of
the datasets the slope approaches zero.

Finally, figure 6 displays the distributions of log-returns where the lag for each
dataset has been chosen such that the variance is the one specified in each subplot.
The difference between figure 4 and figure 6 is pronounced. While the distributions
in figure 6 do not collapse perfectly onto the same curve for all the chosen variances
we are invariable led to the the preliminary conclusion that also in the case of the
analysed assets from SP500, a one-parameter family of distributions exists such
that all distributions of log-returns are members of this family and such that the
variance is the parameter which indexes into the family. The lack of collapse at
the smaller variances may in part be explained by the difficulty in reading off the
corresponding lags.
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Figure 4: Probability densities on a log-scale for the log-returns of all 29 datasets at
various lags ranging from 1 second to 16384 seconds. The log-returns have been multiplied
with 100 in order to un-clutter the labeling of the z-axes.

The observed parsimony and in particular universality has implications for mod-
elling since any proper model should possess both features. Within the context of
turbulence, BSS-processes have been shown to be able to reproduce many features,
see [37] and the following subsection for a recent example. The extent to which BSS-
processes in general possess universality is still ongoing research [21] but preliminary
results indicate that BSS-processes and in general LSS-process are good candidates
for models where parsimony and universality are desired features.

4.3 Modelling turbulent velocity time series

A specific time-wise version of (2.1), called Brownian semistationary processes has
been proposed in [19, 20| as a model for turbulent velocity time series. It was shown
that BSS processes in combination with continuous cascade models (exponentials of
certain trawl processes) are able to qualitatively capture some main stylized features
of turbulent time series.

Recently this analysis has been extended to a quantitative comparison with tur-
bulent data [37, 34|. More specifically, based on the results for the energy dissipation
oulined in section 3.2, BSS processes have been analyzed and compared in detail to
turbulent velocity time series in [37] by directly estimating the model parameters
from data. Here we briefly summarize this analysis.

Time series of the main component v; of the turbulent velocity field are modelled
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variance vs. lag
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Figure 5: The variance of the log-returns for the 29 datasets as a function of the lag
displayed in a double logarithmic representation.

as a BSS process of the specific form

t

3 g(t —s)o(s) B(ds) + 5/_ g(t —s)o(s)*ds
=: R(t) + 85(t) (4.5)

v(t) =v(t;g,0,0) =/

where ¢ is a non-negative L?(R) function, o is a stationary process independent of
B, [ is a constant and B denotes standard Brownian motion. An argument based
on quadratic variation shows that ¢? can be identified with the surrogate energy
dissipation, 02 = ¢, where ¢ is the process given by (3.5). The kernel g is specified
as a convolution of gamma kernels [32],

g(t) = at”" > Lexp(—Aot)1 Fiy (11, v1 + va, (A2 — A1)E)1(0,00) (2)

with @ > 0, ; > 0 and \; > 0. Here {F} denotes the Kummer confluent hypergeo-
metric function.

The data set analysed consists of one-point time records of the longitudinal
(along the mean flow) velocity component in a gaseous helium jet flow with a Taylor
Reynolds number R, = 985. The same data set is also analyzed in [34] and the
estimated parameters there are used to specify 0 = ¢ in (4.5). The remaining
parameters for the kernel g and the constant 3 can then be estimated from the second
and third order structure function, that is, the second and third order moments of
velocity increments. In [37] it is shown that the second order structure function is
excellently reproduced and that the details of the third order structure function are
well captured. It is important to note that the model is completely specified from
the energy dissipation statistics and the second and third order structure functions.

The estimated model for the velocity is then succesfully compared with other
derived quantites, including higher order structure functions, the distributions of
velocity increments and their evolution as a function of lag, the so-called Kolmogorov
variable, and the energy dissipation as prediced by the model.

14
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Figure 6: Probability densities on a log-scale of log-returns where the lag for each dataset
has been chosen such that the variances of the datasets in each subplot is the same. The
chosen variances are also displayed in figure 5 as horizonal dotted lines. For the smallest
and largest variances, not all dataset are present since for some datasets those variances
are not attained.

5 Stochastic integration for time changed volatility
modulated Lévy-driven Volterra processes

In this section we discuss briefly the concept of integration with respect to purely
temporal ambit processes. More precisely, we present the theory of stochastic inte-
gration with respect to doubly volatility modulated Lévy driven Volterra processes
(DVVP). The theory presented below is an extension of the work of Barndorff-
Nielsen et al. [9], where the authors introduced an integral with respect to volatility
modulated Lévy driven Volterra processes (VMLV). The original integral of [9] has
been further studied in the setting of white noise analysis (see [7]) and in the setting
of Hilbert-valued stochastic processes (see [24]).

In [9] the authors define an integral with respect to VMLV processes, that is,
processes of the form

X(t) = /0 ot )0 () dL(s). (5.1)

where ¢ is a deterministic function, o is a stochastic process embodying the mod-
ulation of the amplitude of volatility and L is either a standard Brownian motion
or a pure-jump, mean-zero, square-integrable Lévy process. The original motiva-
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tion for studying VMLV processes is two-fold. They can be used to model a wide
range of phenomena in a very flexible way and they are analytically tractable. When
introducing DVVP processes, we kept the same ideas in mind as we discuss below.

Before we proceed, let us discuss some of the features of the VMLV integral that
are inherited by the DVVP integral defined in what follows. The integral proposed
in [9] allows for the kernel ¢g to have a singularity at t = s (equivalently, at zero
for the shift-kernel of the form ¢(t,s) = g(t — s)). The VMLV integral extends
previous approaches to integration with respect to Volterra processes in that it allows
for amplitude volatility modulation via the stochastic process o in equation (5.1).
However, when comparing the integral defined in [9] with previously defined integrals
such as [1], one crucial difference (even with ¢ = 1) is the correction term with
Malliavin derivative appearing in the definition. This term causes the expectation
of the integral to be non-zero, as is to be expected since the integrator X is rarely

a semimartingale.
A DVVP is a process of the form

X(t) = / o(t, )0 (s) L(O(s)), (5.2)

where the only new component is 6, a stochastic “time-change” process that can also
be thought of as embodying the modulation of the intensity of the volatility. Thus
a DVVP process is a VMLV process with a time-change applied to the underlying
driving noise. This small difference between equations (5.1) and (5.2) has a great
impact on the modelling flexibility and on the class of driving noises that can be
considered for the Volterra processes. From the modelling perspective, it allows for
a separate modulation of intensity and amplitude of volatility. On the other hand,
the use of Malliavin calculus in the formal derivation of the definition of the integral
with respect to X as in equation (5.1) requires the driving process L to be either
a standard Brownian motion or a pure-jump, mean-zero, square-integrable Lévy
process. The presence of § in equation (5.2) enables us to study much more general
driving noises such as a-stable processes which have no second moment and for
certain « are not even integrable.
We consider integrals of the form

/0 Y (s)dX (s) (5.3)

where X is as in equation (5.2) and Y satisfies certain regularity conditions discussed
later. The definition of the above integral relies on a heuristic derivation which
follows closely the steps taken by the authors of [9] with the necessary modifications
to allow for the time-change in the driver of the integrator. Henceforth we assume
that o is measurable with respect to the o-algebra generated by the underlying driver
L and 6 is independent of the underlying driver L. This allows us to condition on 6
and apply the methods of [9] to obtain a meaningful expression for the integral in
equation (5.3).

Although the driving noise in equations (5.1) and (5.2) can be either a Brownian
motion or a pure-jump, mean-zero, square-integrable Lévy process, in this short
survey we are going to discuss only the case of the Brownian motion. We refer an
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interested reader to [9] for the treatment of integration with respect to Lévy driven
VMLV processes and to [8] for the treatment of integration with respect to Lévy
driven DVVP processes.

5.1 Time-change

Definition 5.1. By time-change on [0,00) we understand any stochastic process 0
with non-decreasing cddlag paths, continuous in probability and such that 6(0) = 0
and lim;_,, 0(t) = 0o a.s..

There are several standard and interesting examples of stochastic time-changes.
First, let us mention subordinators, that is non-decreasing Lévy processes. Canonical
examples of subordinators are the Gamma process, the Inverse Gaussian process
and «/2-stable processes with a € (0,2). A Brownian motion time-changed with
the above leads to the Variance Gamma, the Normal Inverse Gaussian (NIG) and
the a-stable process, respectively.

Another interesting class of time-changes are the so-called absolutely continuous
time-changes. These arise from infinite lifetime Markov processes in the following
way. Suppose that M (t) is an infinite lifetime Markov process and V' : R — [0, 00)
is a deterministic function. Define

Observe that 6 defined above trivially satisfies definition 5.1 and in contrast with
subordinators that are pure-jump processes, an absolutely continuous time-change
has almost surely continuous paths.

Somewhere in between the subordinators and absolutely continuous time-changes
lays yet another interesting class of singular time-changes. As discussed in [16],
0 is a singular time-change if it is a continuous time-change such that %(tt) =0
almost everywhere. A canonical example of a deterministic singular time-change is
the Devil’s staircase (also called the Cantor function). The singular time-change can
have abrupt changes not allowed in the absolutely continuous time-changes but not
as violent as in the case of subordinators.

Before we proceed, we define the generalized inverse of a right continuous non-

decreasing function 6 : [0,7] — [0, 00) as

o-(s) = {inf{t L0(t) > s}, s €[0,6(T)),

T, otherwise.

Now, suppose that B is a Brownian motion and {F? }+c[0,00) 18 its natural right-
continuous filtration augmented by P-null sets. From now on, we assume that 6 and
B are independent and denote by {}}B (6)}te[0,T} the right-continuous filtration gen-
erated by B(6(t)) and augmented by P-null sets. We define in a similar manner the
filtration {F} }ieo.7). In the end, the definition of the integral relies on conditioning,
so we introduce notation for the conditional probability Pa(-) =P(- | F2).

Using the above notation, we have the following formula for the change of vari-
ables in stochastic integrals.
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Lemma 5.2. Suppose that f is an {EB(G)}—adapted cddlag process such that

B ([ i) < oo

T o(T)
/Of(t‘)dBW)): /0 f0=(s)-)dB(s) .

Then

Above, the integral on the left side is an integral with respect to an {]—"tB(e)} martingale
and the one on the right side is with respect to an {FP} martingale.

Proof. See lemma 1.3 of [23]. O

5.2 Malliavin Calculus

We are not going into the details of derivation of the results presented in this sub-
section, nor are we going to be very rigorous in its presentation and we refer the
reader to the excellent monographs by Nualart [38] or Di Nunno et al. [28] for in-
depth treatments of Malliavin calculus. We only intend to present the notation and
the integration by parts formula that is the main tool used in the derivation of the
definition of the integral with respect to DVVP processes.

Suppose that F' € L*(Q). Tt is a well known fact that any such random variable
has a Wiener—Itd chaos expansion, say,

[e.e]

F= S L),

n=0

where I, denotes the n times iterated Wiener integral and f, is a deterministic
function such that f, € L?*(R") with L? denoting the space of square-integrable
symmetric functions.

We denote by D.F' the Malliavin derivative of F'. In terms of the chaos decom-
position we have

D, F = ann—l(fn( 1)),

and F is Malliavin differentiable (belongs to space D 5) if and only if

IDFI = E / (DY dt =3 nllful D2, < 0.

n=0

The operator adjoint to the Malliavin derivative D; is the Skorohod integral
denoted by §. Suppose that Z(t) is a square-integrable stochastic process with the
chaos expansion

Z(t) = Z]n(fn( . ,t)),
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where f(t1, ..., tn,t) is deterministic, square-integrable and symmetric in the first
n variables. Then (with f denoting symmetrization of f)

| 20580 =3 Lath)

provided that

‘ —E ( / Z(t)? dt) = 3 a1l By
n=0

The family of Skorohod integrable processes is denoted by Dom(4).
The fundamental result of Malliavin calculus used in the derivation of the integral
with respect to DVVP is the integration by parts formula that we recall below.

2

/ T 2 8B @)

Theorem 5.3. Suppose that Z € Dom(d), F € D'? and E(F? [;° Z(t)*dt) < oo.
Then

F / T 20 6B(1) = / T FZ) B + / T (D) Z() dt.

5.3 The definition of the integral

The approach that we take in defining the integral with respect to DVVP follows
that of [9] with the additional application of lemma 5.2 and an argument based
on conditional probability. Below we only outline the idea and refer the interested
reader to [8]. The definition of the DVVP integral is derived through a series of
formal steps and starts with the observation that application of lemma 5.2 allows
us to rewrite equation (5.2) as

t o(t)
X(t) = / g(t, $)0(s) dB(0(s)) = / g(t.0-(s)o (0 (s) dB(s).  (5.4)

Observe that on the left side of the above expression ¢ in g(¢, s) is merely a parameter
and takes no part in the integration and 6 is not applied to it on the right side of
equation (5.4).

Now, upon conditioning on @, we can use the tools of Malliavin calculus, as if 0
was deterministic. Henceforth we assume that 6 is a deterministic time-change. The
heuristic derivation of the integral is sketched very briefly below.

First, application of the integration by parts formula yields

/0 Y (s)dX(s) = Y ()X (£) — /0 d};—i“)X(u)du. (5.5)

We will concentrate on the integral on the right side of the above equation as similar
steps are applied to the Y (¢) X (¢) term. Using equation (5.4) and theorem 5.3, we
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have

LAY (u tAy () [0
/Od};i )X(U)du: /0 d);i )/0 g(u,e_(s))o'(e_(s»dB(S)dU

B /Ot /09(“) %1(7)9(“:9_(3))0(9_(3))63(3) du
+/0t /Oe(u) Ds{d};iu)}g(u’e_(s))a(e_(s))deu‘

By stochastic Fubini theorem (see [40], theorem IV.65) and properties of Malliavin
derivative we have

LY (u o) [t "
J, “aieoe | (fms) dZi)9<U»9<s>>du> () 35(6)

e o [ By ) duboto (o)as.

0= (s)

Applying similar procedure to the Y (¢) X (¢) term in equation (5.5), combining the
results and simplifying the result, we obtain the following definition.

Definition 5.4. Suppose that 6 is a stochastic time-change indepdendent of B and

1. (07(s),t) > u > g(u,0(s)) is a right-continuous function of bounded varia-
tion for all s € (0,0(t)) P-a.s.;

2. g(t,07(s)) is well defined for all s € (0,0(t)) P-a.s.;
We define

t

Ka(Y)(t. ) ZY(9(8))g(t>9(8))+/ (Y(u) =Y (07(5))) pg(du,s),  (5.6)

0= (s)
where ,ug( -, 8) is a Lebesque-Stieltjes measure arising from an outer measure given
by
ﬂg([aa b)a S) = g(ba 67(‘9)) - g(aa 67(5))
Suppose also that
3. K(Y)(t,s) is Malliavin differentiable for all s € (0,0(t)) P’-a.s.;

4. 5= KUY)(t,5)0(0(s)) is Skorohod integrable with respect to B on (0,0(t))
P?-a.s.;

5. s+ DAKIY)(t,s)}o(07(s)) is Lebesgue integrable on (0,0(t)) P?-a.s..
Then Y is X -integrable and we define the dX -integral of Y as
¢ o(t)
/ Y(s)dX(s) := / ICg(Y)(t, s)o(07(s)) dB(s)
0 0 5.7)
0(t) (
+/ DS{ICg(Y)(t,s)}U(H*(s)) ds
0

and understood on the space (Q,]-"fw),]P)g).

Remark 5.5. Note that in definition 5.4 conditions 1 and 2 ensure that the operator
KO(Y)(t,s) in equation (5.6) is well-defined and conditions 3-5 ensure that the
integral as in equation (5.7) is well-defined.
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5.4 The properties of the integral

As any widely-accepted integral operator, the integral given in definition 5.4 is linear
and the integral of 1 and 0 are X and 0 respectively. Moreover, the integral is additive
in the domain of integration, that is [ Y (s)dX(s) = [;'Y(s)dX (s)+ [L Y (s) dX (s)
for any 0 < u < t such that all of the integrals above exist.

There is also an integration by parts formula for the integral defined in defini-
tion 5.4. Suppose that Z is a bounded random variable and Y is an X-integrable
stochastic process such that ZY is also X-integrable. Then

/Ut ZY (s)dX(s) = Z /Ot Y (s)dX (s).

Putting together all of the above properties yields that the integral of a step
function

Y(t) = Z 1[ti,t¢+1)(t)£’i7
=0

where 0 =ty < --- <t, =T and & are ]-"O]f)—measurable bounded random variables,
is given by

| y®axe =36t - X0,

Suppose that h(t) is a deterministic dX-integrable function. Then a simple com-
putation yields

t t
| nsaxis) = [ s)ots) asee)
0 0
where id denotes the identity function. Hence, a DVVP-integral of a deterministic
function is again a DVVP process.
Now, suppose that h(t,s) is a deterministic function such that s — h(t,s) is
dX-integrable for almost all t. Then we have that

/0 hit,s)dX (s) = /O K4 (h(t, -))(t, s)o(s) dB(6(s)).

Thus a DVVP-driven Volterra process is itself a DVVP process.

Observe that in the above, the operator lC;d is the same as the operator K,
used in the definition of the VMLV integral in [9]. Let us close this section with
the observation that our integral is exactly the same as the one introduced in of |9

when 0 = id.

5.5 An example regarding wind energy

In [33], a simple Langevin equation is used to model the power p produced by a
wind turbine in response to a stochastic driving wind speed w,

dp(t) = —a(p(t) — f(w(t)))dt + 5 dB(1), (5.8)
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where f(v) is the power the wind turbine would produce if the driving wind speed
was constant and equal to v, B is the standard Brownian motion, and o and ( are
constants. The solution to (5.8) is given by

p(t) :p(O)e_O‘t+/0 e =) f (wy( ds+6/ ot=9) 4B(s).

The constant /5 can be estimated using quadratic variation and it was found in [33] to
be not a constant but a variable depending on the driving wind speed w. In the light
of the above, it is natural to replace 5 dB(s) with S(w(s))dB(s). Thus we obtain
an amplitude volatility modulation. Moreover, since the wind turbine operates in a
turbulent environment, the activity — or intensity — of the noise varies. Therefore
it is natural to propose S(w(s)) dB(6(s)) instead. Hence we obtain a model for the
power curve given by

t t

ae_o‘(t_s)f(w(s))ds—l—/ e =) 3(w(s)) dB(A(s)).

0

plt) = p(0)e + /

On the one hand, a model as the one above could aid the wind energy industry with
better performance assessments. On the other hand, one might use such a model to
learn more about the nature of the intensity modulation in turbulence using wind
turbines as giant measurement devices.
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