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Abstract

When intrinsic volumes and Minkowski tensors of a real world structure are
computed, this is often based on a digital image. The digitization causes some
estimation problems due to the anisotropic nature of the digital grid. Even
the most natural and frequently used algorithms based on counting the lo-
cal pixel/voxel configurations are often biased. In this chapter, we survey the
known results on convergence of these local algorithms with a focus on esti-
mation of intrinsic volumes. Moreover, we present some of the latest attempts
to define convergent algorithms.

1 Introduction

Consider an object X ⊆ Rn. To describe its geometry, we can look at its intrinsic
volumes V0(X), . . . , Vn(X). These include such important characteristics as volume
Vn, surface area 2Vn−1, integrated mean curvature 2π(n− 1)−1Vn−2, and Euler char-
acteristic V0. (See [17] for more details.) The intrinsic volumes are all rotation and
and translation invariant. Non-invariant properties, such as position, orientation,
and elongation, are captured by the Minkowski tensors. The rth Minkowski volume
tensor for r ≥ 0 is an element of (Rn)⊗r given by

Φr,0
n (X) =

1

r!

∫

X

xrdx,

where xr is the r-fold tensor product of x. Moreover, for r, s ≥ 0 and 0 ≤ m ≤ n−1,
there is a Minkowski tensor Φr,s

m (X) ∈ (Rn)⊗(r+s) defined by

Φr,s
m (X) =

1

r!s!

ωn−m
ωn−m+s

∫

Rn×Sn−1

xrusΛm(X; d(x, u)). (1.1)

Here Sn−1 is the unit sphere in Rn and ωn is its surface area. Moreover, Λm(X; ·)
is the m’th generalized curvature measure on Rn × Sn−1, see [17] when X is convex
and [27] for more general set classes. The integrand xrus is the symmetric tensor
product of r copies of x and s copies of u. Intrinsic volumes are special cases of
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the Minkowski tensors since Φ0,0
m (X) = Vm(X). (For more on Minkowski tensors,

see [17].)
As described in [18] and [19], Minkowski tensors are useful tools for physicists

to characterize geometric properties of a material. The tensors are often computed
based on a digital image, for instance from a microscope or a scanner. This causes
several problems. Not only are such images often blurred and noisy, the digitization
itself may also introduce a bias. This is the topic of the present chapter.

A digital image is divided into pixels or voxels and the object is measured inside
each. The pixel (voxel) midpoints form a lattice. Gaining information about the
underlying object can thus be considered a stereological type of problem, but where
the object is only known along a lattice rather than on an affine plane. In stereology,
unbiased estimators for intrinsic volumes and, more generally, Minkowski tensors can
be obtained by randomizing the rotation and translation of the intersection plane. In
image analysis, it is often not possible to rotate the observation lattice. This causes
a rotation bias in many algorithms.

Another problem is that, while the boundary of the object is still visible on lower
dimensional planes, a lattice will most likely not hit any boundary points and the
boundary can behave wildly between the lattice points. This makes it hard to esti-
mate boundary properties. In grey-scale images, the object boundary is represented
by a blurred zone around the true boundary. As we shall see, this makes boundary
estimation easier.

A third problem is that the data amount is often large. Therefore, fast algorithms
are required. The focus of this chapter will therefore be on the development of
algorithms with low computation time.

We are going to review some of the mathematical results on digital estimators
for intrinsic volumes and Minkowski tensors. In Section 2, we consider the ideal
situation where there is no noise or blurring. The emphasis will be on the so-called
local algorithms, which are the most frequently occurring ones, but some global
methods will also be discussed. In Section 3, we consider the situation where the
digital image is blurred.

2 Digital algorithms for black-and-white images

In this section we consider the ideal situation where the digital image is sharp and
noise-free. A mathematical model for such an image is given in Section 2.1. Local
algorithms are defined and discussed in Section 2.2. Other classes of algorithms are
described in Section 2.3.

2.1 Black-and-white images

Let X ⊆ Rn be the object that we are trying to observe. A digital image is divided
into pixels (voxels). If there is no noise or blurring, we can measure exactly whether
or not each pixel midpoint belongs to X. A pixel (voxel) is colored black if its
midpoint lies in X and white otherwise. This is illustrated in Figure 1.

If we let L denote the lattice formed by the pixel (voxel) midpoints, then the
information contained in a black-and-white image corresponds to the set X ∩ L of
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Figure 1: Example of a black-and-white image. Figure a. shows the object together with
the grid of pixel midpoints. Figure b. shows the resulting digital image.

black pixel midpoints. We will assume throughout that X is compact and topologi-
cally regular, i.e., X is the closure of its own interior. This ensures that X does not
have any lower dimensional parts that we are not able to see in the image.

Clearly, there is not enough information in X ∩ L to determine the Minkowski
tensors. But going to a higher resolution will give us more information about X.
This corresponds to scaling L by a small factor a > 0, resulting in the image X ∩ aL.

In most applications, L is the standard lattice Zn or a rotation and translation
of this. However, other cases can occur, for instance the hexagonal lattice in 2D [14].
For this reason, we let L be arbitrary.

2.2 Local algorithms for intrinsic volumes

The most popular type of algorithms for estimating intrinsic volumes and Minkowski
tensors is the class of so-called local algorithms. The reason for the name is that the
algorithm only depends on what the image looks like locally.

The intuition behind is the additivity of Minkowski tensors: By the inclusion-
exclusion formula [17, Eq. (3.4.3)], they can be computed as a sum of contributions
from each k × · · · × k lattice cell depending only on the intersection of X with that
cell. Since the only thing we know about X in each cell is the configuration of black
and white points, we estimate the contribution from each cell by a so-called weight
depending only on the configuration. The Minkowski tensor is then estimated by
counting the number of occurrences of each possible k × · · · × k configuration of
black and white points in the image and taking a weighted sum of configuration
counts.

Since such an algorithm only requires reading through the image once, they are
very fast. This makes local algorithms a popular choice in applications. Moreover,
geometric intuition can give an idea about how to choose the weights.

2.2.1 Definition of local algorithms

To give a precise definition of local algorithms, we first introduce some notation:
Suppose the lattice is given by L = A(Zn + c) where A ∈ Gl(n) and c ∈ [0, 1)n. The
fundamental lattice k-cell of L is Ck

0 := A([0, k)n). The volume of C1
0 is denoted cL.

The set of lattice points in Ck
0 is denoted by Ck

0,0 := Ck
0 ∩L. The translation of Ck

0,0

by z ∈ Rn is denoted by Ck
z,0 := Ck

0,0 + z.
A k × · · · × k configuration is a partition of Ck

0,0 into two disjoint sets B (black
points) and W (white points). We denote the 2k

n possible k× · · ·× k configurations
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Figure 2: The possible 2× 2 configurations in 2D.

by (Bl,Wl) for l = 1, . . . , 2k
n . For instance, up to rotation there are six possible 2×2

configurations in 2D. These are shown in Figure 2.
Let Nl(X ∩ aL) be the number of occurrences of the configuration (Bl,Wl) in

the image, i.e.
Nl(X ∩ aL) =

∑

z∈aL
1{z+aBl⊆X,(z+aWl)∩X=∅}.

We estimate Vm(X) by a weighted sum of these configuration counts:

Definition 1. A local algorithm for the intrinsic volume Vm is an algorithm of the
form

V̂m(X) = am
2k

n∑

l=1

w
(m)
l Nl(X ∩ aL), (2.1)

where w(m)
l can be arbitrary real numbers, referred to as the weights.

Many natural approaches to defining digital estimators result in a local algorithm.
The most simple one is based on approximating X by

X̂ =
⋃

z∈X∩aL
(z + aC1

0), (2.2)

see [13, Section 2.3.1]. Then Vm(X̂) can be used as an estimate for Vm(X). The
intrinsic volumes of X̂ can be computed by a local algorithm. This can easily be
realized by applying the inclusion-exclusion formula to X̂. Local algorithms based
on different reconstructions of X have also been considered, see e.g. [13, 15].

Other approaches are inspired by integral geometry. These take as a starting
point the Steiner formula [12] or a discretization of the Crofton formula [14, 15].
The results are again local algorithms.

2.2.2 Convergence in the design-based setting

To evaluate the quality of an algorithm, it is often tested in a design based setting.
This means that the object X is considered as deterministic, whereas the lattice is
randomized. In this section, we consider what we will call a stationary lattice, that is,
a lattice of the form L = L0 + c, where L0 is a fixed lattice and c ∈ C1

0 is a uniform
random translation vector. In applications, this is often the only randomization
that is possible. A reasonable criterion for an algorithm is unbiased in this setting,
at least asymptotically when the resolution tends to infinity we would like that
lima→0EV̂n(X) = Vm(X).

There is a simple estimator for the volume of X that is unbiased even in finite
resolution:
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Theorem 2. The well-known volume estimator that counts the number of black
lattice points is a local algorithm with k = 1 given by

V̂n(X) = ancL
∑

z∈aL
1{z∈X∩aL}.

This algorithm satisfies
EV̂n(X) = Vn(X).

Note that the algorithm in Theorem 2 is actually computing the volume of the
approximating set X̂ defined in (2.2).

In 2D and 3D, the Euler characteristic V0(X) can also be estimated by V0(X̂).
This requires the following smoothness condition on the boundary:

Definition 3. A set X ⊆ Rn is called r-regular if for every boundary point x ∈ bdX,
there are two balls of radius r containing x whose interiors are completely contained
in X and Rn \X, respectively.

The following theorem is proved in 2D in [16] and in 3D in [3]:

Theorem 4. Let X be an r-regular subset of R2 or R3. Then for a sufficiently small
compared to r,

V0(X̂) = V0(X).

Unfortunately, the estimator Vm(X̂) is not unbiased for 1 ≤ m ≤ n− 1, not even
when a→ 0. This is part of a more general phenomenon. Even when the underlying
set is a convex polytope, the following was proved in [23], see also [8] when k = 2:

Theorem 5. There exists no estimator of the form (2.1) for Vm with m < n that is
asymptotically unbiased for all compact convex polytopes with non-empty interior.

In fact, there is a measure ν on the set Pn0 of compact convex polytopes with
non-empty interior, such that any local algorithm for Vm, m < n, is biased on a set
of polytopes with positive ν-measure. See [23] for details.

Moreover, for 0 ≤ m ≤ n− 2, it can be shown that the worst case bias

sup
X∈Pn

0

∣∣∣∣∣
lima→0 V̂m(X)− Vm(X)

Vm(X)

∣∣∣∣∣

is always at least 100%. For surface area in 3D, i.e. when m = 2 and n = 3, one can
do a bit better. It was shown in [28] that the worst case bias is always at least 4%.
The authors give an explicit algorithm that minimizes the bias.

Theorem 4 showed that under certain smoothness assumptions on the boundary,
estimation of the Euler characteristic is possible. This is not the case in general. The
following was proved in [23]:

Theorem 6. Let m > 0 and m = n − 1 or m = n − 2. There exists no estimator
for Vm of the form (2.1) that is asymptotically unbiased for all r-regular sets.
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To prove these theorems, it is necessary to study the mean EV̂m(X), which
is a linear combination of the mean configuration counts ENl(X ∩ aL). A simple
computation shows that

ENl(X ∩ aL) = E
(∑

z∈aL
1{z+aBl⊆X,(z+aWl)∩X=∅}

)

=
∑

z∈aL0

∫

C1
0

1{z+ac+aBl⊆X,(z+ac+aWl)∩X=∅}dc

= a−n
∫

Rn

1{z+aBl⊆X,(z+aWl)∩X=∅}dz. (2.3)

If X is r-regular and f is a function supported within distance r from bdX, then
the generalized Steiner formula of [7] yields the following formula for the integral

∫

Rn

f(x)dx =
n−1∑

i=0

∫

bdX

∫ r

−r
tif(x+ tu(x))dtµi(dx),

where the µi are signed measures on bdX and u(x) is the outward pointing normal
vector at x ∈ bdX.

If Bl and Wl are both non-empty, then all points z satisfying z + aBl ⊆ X
and (z + aWl) ∩ X = ∅ lie at distance at most ak

√
n from the boundary, so the

generalized Steiner formula can be applied to 1{z+aBl⊆X,(z+aWl)∩X=∅} when a is small.
Thus, to determine the asymptotic behavior of (2.3), one must study the function
1{z+aBl⊆X,(z+aWl)∩X=∅} along the normal lines x+ tu(x). This idea first appeared in
[10] and was extended in [22].

2.2.3 Local algorithms for Minkowski tensors

Local algorithms for Minkowski 2-tensors have been suggested in [18, 19]. Since these
are position dependent, the weights in Definition 1 will generally have to depend on
position, i.e. we must consider algorithms of the form

∑

l

∑

z∈aL
wl(z, a)1{z+aBl⊆X,(z+aWl)∩X=∅},

where wl : Rn × (0,∞)→ (Rn)⊗(r+s) depends on position and resolution.
Estimation of volume tensors is easy, since a Riemann sum

Φ̂r,0
n (X) = ancL

1

r!

∑

z∈X∩aL
zr

yields an unbiased local algorithm.
There are no convergence results in the literature about local algorithms for other

Minkowski tensors than intrinsic volumes, but asymptotic formulas for the mean of
a local algorithm taking position into account could easily be derived (see [5] in
the case of Boolean models). Apart from the most trivial tensors, asymptotically
unbiased local estimators for Minkowski tensors are not expected to exist.
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2.2.4 Isotropic lattices

One could also consider a version of the design based setting where the lattice is
both randomly translated and rotated. That is, we consider the lattice R(L + c)
where the translation vector c ∈ C1

0 and the rotation R ∈ SO(n) are both uniform
random and mutually independent. We say that L is stationary isotropic. In this
setting, asymptotically unbiased estimators do exist [22]:

Theorem 7. If X is r-regular and L is stationary isotropic, then there exist local
algorithms for Vm with m = n, n− 1, n− 2 that are asymptotically unbiased, i.e.

lim
a→0

EV̂m(X) = Vm(X).

Explicit algorithms are given in [22].
If the algorithms are applied to a stationary isotropic Boolean model with a

fixed lattice, a similar result seems to hold: There exists asymptotically unbiased
estimators for Vn, Vn−1, and Vn−2. At least, this has been shown in both 2D [21] and
3D [5]. Again, isotropy is essential.

These results suggest that it is the lack of isotropy of L that causes the bias in
the results of Section 2.2.2.

2.2.5 Variance of the local volume estimator

We consider again the volume estimator given by lattice point counting

V̂n(X) = ancL
∑

z∈aL
1X(z)

from Theorem 2. While this has the correct mean in the design based setting, de-
termining the exact error |V̂n(X) − Vn(X)| is a classical and difficult topic. Even
when X is the unit ball centered at the origin, the optimal bound on the error when
a→ 0 is unknown. This is known as the Gauss circle problem.

Instead, we will consider the variance in the design based setting where L is
stationary and isotropic. To study the variance, we first consider E(V̂n(X)2):

E(V̂n(X)2) = a2nc2LE
(∑

z∈aL
1X(z)

)2

= a2nc2L

∫

SO(n)

∫

C1
0

( ∑

z1∈aRL0

∑

z2∈aR(L0+c)

1X(z2)1X(z2 + z1)
)
dcdR

= ancL

∫

SO(n)

(∑

z1∈L0

∫

Rd

1X(Rz2)1X(R(z2 + az1))dz2

)
dR

= ancL

∫

SO(n)

(∑

z1∈L0

1X ∗ (1X)−(−aRz1)dR
)
,

where g− denotes the function x 7→ g(−x). The Poisson summation formula [20,
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VII, Cor. 1.8] yields:

ancL

∫

SO(n)

(∑

z∈L0

1X ∗ (1X)−(−aRz)
)
dR =

∑

ξ∈L∗
0

∫

SO(n)

F(1X ∗ (1X)−)(a−1Rξ)dR

=
∑

ξ∈L∗
0

∫

SO(n)

|F(1X)(a−1Rξ)|2dR = ω−1n
∑

ξ∈L∗
0

∫

Sn−1

∣∣F(1X)(a−1|ξ|u)
∣∣2du.

Here F denotes the Fourier transform and L∗0 is the so-called dual lattice of L0. We
have used the fact that the Fourier transform of a convolution is a product of Fourier
transforms and that F(g−) is the complex conjugate of F(g). Recalling that

F(1X)(0) =

∫

Rn

1X(x)dx = E(V̂n(X)),

we find

var(V̂n(X)) = E(V̂n(X)2)− E(V̂n(X))2

= ω−1n
∑

ξ∈L∗
0\{0}

∫

Sn−1

∣∣F(1X)(a−1|ξ|u)
∣∣2du. (2.4)

It was shown in [1] that if X is a smooth manifold, then for a−1|ξ| sufficiently
large, ∫

Sn−1

∣∣F(1X)(a−1|ξ|u)
∣∣2du ≤ C(X)ad+1|ξ|−d−1,

where C(X) > 0 is a constant depending on X. It follows that:

Theorem 8. If X is a smooth manifold, then for a sufficiently small

var(V̂n(X)) ≤ ad+1ω−1n C(X)
∑

ξ∈L∗
0\{0}
|ξ|−d−1.

Getting a precise formula for the variance is not possible. When X is smooth and
convex with nowhere vanishing Gauss curvature, there are formulas for the Fourier
coefficients. These show that each term

∫
Sn−1|F(1X)(a−1|ξ|u)|2du oscillates between

0 and 8Vn−1(X)ad+1|ξ|−d−1, see [4]. It is therefore hard to determine the sum (2.4).
If the underlying set is a random set X, it is sometimes possible to obtain precise

formulas for the asymptotic variance. Under suitable conditions on X, it is shown
in [11] that

lim
a→0

a−d−1 var(V̂n(X)) = 4ω−1n EVn−1(X)
∑

ξ∈L∗
0

|ξ|−d−1.

2.3 Other types of algorithms

Despite the negative convergence results, local algorithms are still being used because
of their low computation time. But there are also various attempts in the literature
to define algorithms that take the global structure of the image into account without
loosing too much speed.
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In [9], a semi-local algorithm is suggested for estimation of Euler characteristic.
Assume that X is known to belong to the class Kn0 of compact convex sets with non-
empty interior. Generally, X̂ does not have the same in Euler characteristic as X,
but it is shown in [9] that after throwing away certain connected components of X̂
in a systematic way, it does. The computation time of this algorithm is also linear
in the number of pixels (voxels).

There are also convergent algorithms for the remaining Φr,s
m when X ∈ Kn0 . The

convex hull of X ∩ aL, conv(X ∩ aL), converges to X in the Hausdorff metric when
a→ 0, see [6]. The Minkowski tensors are continuous with respect to the Hausdorff
metric, so

lim
a→0

Φr,s
m (conv(X ∩ aL)) = Φr,s

m (X).

Hence Φr,s
m (conv(X ∩ aL)) can be taken as an estimate for Φr,s

m (X). The optimal
computation time for the convex hull of a set of N points is O(N logN + N bn/2c),
see [2].

The method of convex hulls does obviously not generalize to non-convex sets.
Another approach [6] is based on computing the Voronoi cells of X∩aL. The optimal
computation time for the Voronoi cells of N points is almost as good as for the
convex hull, namely O(N logN +N dn/2e), see [2]. This algorithm applies to all sets
of positive reach:

Definition 9. Let X ⊆ Rn and R ≥ 0. Then XR = {x ∈ Rn | d(x,X) ≤ R} denotes
the parallel set of X. The reach of X, Reach(X), is the supremum over all R ≥ 0
for which every point in XR has a unique nearest point in X. If Reach(X) > 0, then
we say that X has positive reach.

The idea is to define the Voronoi tensor of a set Y ⊆ Rn for each pair r, s ≥ 0 by

Vr,sR (Y ) =

∫

Y R

pY (x)r(x− pY (x))sdx ∈ (Rn)⊗(r+s).

Here pY (x) denotes the point in Y closest to x. This is well-defined for almost all x.
If X has positive reach and R < Reach(X), then the Voronoi tensors satisfy the

following Steiner formula:

Vr,sR (X) = r!s!
d∑

j=0

κj+sR
j+sΦr,s

n−j(X).

This follows from an application of the generalized Steiner formula in [7].
If the Voronoi tensors are known for d+ 1 distinct values R0, . . . , Rd of R, then

we get d+ 1 equations:


Vr,sR0

(X)
...

Vr,sRd
(X)


 = r!s!



κsR

s
0 . . . κs+dR

s+d
0

...
...

κsR
s
d . . . κs+dR

s+d
d







Φr,s
d (X)
...

Φr,s
0 (X)




The matrix is invertible since it is a product of a diagonal matrix and a Vandermonde
matrix, so the system can be solved for the Minkowski tensors.
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The Voronoi tensors of the set X ∩ aL can be computed from the image. If
we take this as an estimate for the Voronoi tensors of X, we obtain the following
estimators for the Minkowski tensors:




Φ̂r,s
d (X)
...

Φ̂r,s
0 (X)


 =

1

r!s!



κsR

s
0 . . . κs+dR

s+d
0

...
...

κsR
s
d . . . κs+dR

s+d
d




−1

Vr,sR0

(X ∩ aL)
...

Vr,sRd
(X ∩ aL)


 (2.5)

The following convergence result for these estimators was proved in [6]:

Theorem 10. Suppose X is a topologically regular set of positive reach and R <
Reach(X). Then

lim
a→0
Vr,sR (X ∩ aL) = Vr,sR (X).

By linearity in (2.5), we obtain

lim
a→0

Φ̂r,s
m (X) = Φr,s

m (X).

The Voronoi tensors of X ∩ aL have a simple expression in terms of the Voronoi
cells

Vx = {y ∈ Rn | ∀z ∈ (X ∩ aL) \ {x} : ‖x− y‖ < ‖z − y‖}.
Namely,

Vr,sR (X ∩ aL) =
∑

x∈X∩aL
xr
∫

Vx∩Bx(R)

(y − x)sdy,

where Bx(R) is the ball around x of radius R. Thus, in order to compute the esti-
mator, one needs to compute the Voronoi cells of X ∩ aL and do an integral over
each of these. This is more computationally involved than the local algorithms, but
there exist relatively fast algorithms to compute Voronoi cells.

3 Grey-scale images

The black-and-white model for digital images introduced in Section 2.2 is often too
idealized for real world images. Due to limitations of the measuring device, the light
from a single point will be spread out over the whole space. We are thus unable
to measure precisely whether or not a point lies in X. Instead, we measure a light
intensity. Associating a grey tone to each light intensity, this results in a grey-scale
image where we see a blurred zone around the boundary of the object.

Blurring may seem like an obstacle to the estimation of intrinsic volumes. The
simplest way to deal with it is to use thresholding, i.e. to choose a threshold value
β and convert all pixels with grey-value larger than β to black and all other pixels
to white. The algorithms for black-and-white images may then be applied to the
thresholded image. One would expect this to introduce an extra bias. At the same
time, a lot of information is thrown away when an image is thresholded. We shall
see below that basing algorithms directly on the grey-values can actually be an
advantage.
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3.1 Models for grey-scale images

Let ρ : Rn → [0,∞) be the point spread function (PSF) that describes how the light
originating from a point at the origin is spread out over Rn. The intensity θX(x)
that can be measured at x ∈ Rn is then an integral of the contributions from all
points in X:

θX(x) =

∫

X

ρ(x− y)dy.

In other words, θX is the convolution of 1X with ρ.
We have assumed that the PSF is independent of the position of the point.

Moreover, we assume that ρ is bounded, continuous, and that
∫
Rn ρ(x)dx = 1. Since

the results below only deal with rotation invariant PSF’s, we will assume throughout
that ρ(x) = ρ(|x|), i.e. the light received from a point depends only on the distance
to the point. More general PSF’s have been considered in [24].

In applications, the PSF is often modeled by the Gaussian ρ(x) = (2π)−d/2e−x
2/2,

which satisfies all the above assumptions.
In a digital grey-scale image, we measure the intensity θX at the midpoint of

each pixel. That is, the information we have is

θX|L : L→ [0, 1].

We also consider the following transformation of ρ:

ρε(x) = ε−nρ(ε−1x).

Small values of ε correspond to little blurring, meaning that the grey-values are
concentrated close to the boundary of X. The intensity function corresponding to
ρε will be denoted by θXε .

3.2 Local algorithms for grey-scale images

Local algorithms for grey-scale images are algorithms based on the local k× · · · × k
configurations of grey-values in the image. A k×· · ·×k configuration of grey-values
is an element of

[0, 1]C
k
0,0 = {{θs}s∈Ck

0,0
| θs ∈ [0, 1]}.

We denote the configuration {θXε (x)}x∈z+aCk
0,0

of grey-values observed on z + aCk
0,0

by θXε (z, a, k). To each configuration we associate a weight. We can think of this as
a function f : [0, 1]C

k
0,0 → R.

Definition 11. A local algorithm for Vm is an algorithm of the form

V̂m(X) = anεm−n
∑

z∈aL
f(θXε (z, a, k)),

where f : [0, 1]C
k
0,0 → R is a measurable function.

The factor an compensates for the growing number of terms in the sum when
a→ 0. The factor εm−n ensures the right degree of homogeneity.

11



3.2.1 Convergence of grey-scale local algorithms

We again test the convergence of the algorithms in the design based setting with
a stationary lattice. We are interested in convergence when ε → 0, i.e. when the
blurring becomes small.

We restrict ourselves to estimators with k = 1. Thus, the weight function is a
function f : [0, 1]→ R and V̂m takes the following simple form

V̂m(X) = anεm−n
∑

z∈aL
f(θXε (z)). (3.1)

The asymptotic behavior of estimators based on larger k × · · · × k configurations is
studied in [24], but the results are harder to interpret in this case, so we omit them
here.

The mean of an estimator of the form (3.1) is again given by a simple formula:

EV̂m(X) = anεm−nE
(∑

z∈aL
f(θXε (z))

)

= anεm−n
∫

C1
0

(∑

z∈aL0

f(θXε (z + ac))
)
dc (3.2)

= εm−nc−1L

∫

Rn

f ◦ θXε (z)dc.

We must study the asymptotic behavior of this integral. To do so, we introduce a
function θ : R→ [0, 1] that will appear in the results below. This is given by

θ(t) =

∫

Rn

1{〈x,u〉≤0}ρ(tu− x)dx,

where u ∈ Sn−1 is a unit vector. By rotation invariance of ρ, θ is independent of u.
The map t 7→ θ(t) is the intensity function of a halfspace perpendicular to u

measured at a point of signed distance t from the boundary of the halfspace. If
we zoom in on the boundary of a sufficiently smooth set, it will look almost like
a halfspace. Therefore, the blurred image will locally look almost like a blurred
halfspace when ε is small. This is the intuitive reason why θ shows up in the limit
ε→ 0.

The theorem is stated under the assumption that X is a gentle set. This is a mild
smoothness condition ensuring that almost every boundary point has a well-defined
tangent space. It is satisfied by all finite unions elements from Kn0 and all sets of
positive reach. See [10] for the precise definition.

We can now state the following convergence result for surface area estimators:

Theorem 12. Let X be a gentle set. Suppose f : [0, 1] → R is continuously differ-
entiable on the interval [β, ω] ⊆ (0, 1) and that f is zero outside [β, ω]. Then

lim
ε→0

EV̂n−1(X) = c1(f, ρ)Vn−1(X),

where
c1(f, ρ) = 2c−1L

∫

R
f ◦ θ(t)dt.

12



If f > 0 on (β, ω), then c1(f, ρ) 6= 0. In this case,

c1(f, ρ)−1V̂n−1(X)

is an asymptotically unbiased estimator for Vn−1(X).

Similarly, there is a result for estimation of integrated mean curvature:

Theorem 13. Let X be an r-regular set and assume that ρ has compact support.
Suppose f : [0, 1] → R is continuously differentiable on [β, 1 − β] ⊂ (0, 1) and zero
outside [β, 1− β]. If f(t) = −f(1− t), then

lim
ε→0

V̂n−2(X) = c2(f, ρ)Vn−2(X).

3.2.2 Some examples

To illustrate the results, we can look at some simple examples of local algorithms
for grey-scale images. The simplest algorithm for surface area is of the form (3.1)
with f = 1[β,1−β], i.e.

V̂n−1(X) = anε−1
∑

z∈aL
1[β,1−β](θ

X
ε (z)).

Up to a factor anε−1, this is the number of pixels with grey-value in the interval
[β, 1−β]. According to Theorem 2, the mean of this estimator is ε−1 times the volume
of the band around bdX with grey-values in [β, 1 − β]. Intuitively, the volume of
this a band should be proportional to εVn−1(X). Indeed, Theorem 12 shows that

lim
a→0

EV̂n−1(X) = c1(β, ρ)Vn−1(X),

where
c1(β, ρ) = 4c−1L θ−1(β).

When ρ is the standard Gaussian PSF, θ is the distribution function of a stan-
dard normal distribution on R, so c1(β, ρ) can be computed directly. If the PSF is
unknown, it may be necessary to determine c1(β, ρ) experimentally.

This algorithm is extremely simple, since it only requires thresholding at two
different levels and computing the difference in the number of black lattice points.
However, other algorithms for surface area could also be worth considering. For
instance, it might be relevant to choose a function that puts more emphasis on
grey-values close to 1/2 since these are expected to lie close to bdX.

For estimation of Vn−2, one can consider the weight function f = 1[β,1/2]−1[1/2,1−β].
The resulting algorithm is given by counting the number of grey-values between β
and 1/2 and subtracting the number of grey-values between 1/2 and 1 − β. For
suitable β, the constant c2(f, ρ) in Theorem 13 will be non-zero and hence we can
divide by it to get an estimator for Vn−2.

13



3.2.3 Variance of local algorithms for grey-scale images

The above convergence results hold in any resolution a. This may seem a bit coun-
terintuitive. If ε is small, which is necessary to obtain good precision, the grey-values
in the interval [β, ω] are concentrated in a very narrow band around bdX. If, at the
same time, the resolution is low, then it is likely that the lattice does not intersect
this band. Thus we expect to see large deviations from the mean. This is captured
by the variance, as shown in [25]:

Theorem 14. Suppose that X is a smooth n-dimensional manifold with boundary
in dimension n > 1 and that ρ and f are smooth functions. Let L be a stationary
isotropic lattice. Then there is a constant C(X, ρ, f) > 0 such that for all a and ε
sufficiently small,

var(V̂n−1(X)) ≤ C(X, ρ, f)anε−1.

The interesting thing here is that the effect of the resolution on the variance is
much larger than the effect of ε. In particular, if a and ε tend to 0 at the same rate,
the variance will also go to zero. So to obtain small variance, it is more important
to have high resolution than little blurring.

A computation similar to the one in Section 2.2.5 with ε−1f ◦ θXε replacing cL1X
shows that

var(V̂n−1(X)) = ε−2ω−1n c−2L

∑

z∈L∗
0\{0}

∫

Sn−1

∣∣F(f ◦ θXε )(a−1|z|u)
∣∣2du.

As in the case of volume estimators, the variance can be studied by considering the
Fourier coefficients in this sum. This is done in [25].

3.3 Minkowski tensors from grey-scale images

As in the black-and-white case, local estimators for Minkowski tensors would have
to take the position of each configuration into account. That is, we must consider
estimators of the form

anε−m
∑

z∈aL
f(z, θXε (z, a, k)),

where f : Rn × [0, 1]C
k
0,0 → (Rn)⊗(r+s). Such estimators were studied in [26] with

the purpose of defining estimators for Minkowski tensors. Under the assumption
that a = ε and X is r-regular, it was shown that all Minkowski tensors of the form
Φr,s
n−1(X) and Φr,0

n−2(X) can be estimated by an asymptotically unbiased algorithm
of this form. This requires that the point spread function is known.

We will not show this in general here but just outline the idea for surface tensors
in 2D. We assume that L is the standard lattice Z2 spanned by the basis vectors e1
and e2. Consider the estimator

Φ̂r,s
n−1(X) = an−1

∑

z∈aZ2

zrf(θXa (z, a, 2)).

Comparing with the definition (1.1), we expect that f should be an estimate for us.

14



a. b.

u
z z + e1

z + e2

Figure 3: a. A blurred halfspace with normal u. The normal vector is determined by how
fast the grey-values change in the horizontal and vertical direction. b. A configuration of
grey-values. To determine u one can look at how the grey-vales change from z to z + e1
and from z to z + e2.

The idea is to estimate the normal direction u by the direction in which the
grey-values decrease fastest. Given a 2 × 2 configuration, we can look at how fast
the grey-values change in the vertical and horizontal direction to get an idea about
the normal direction, see Figure 3.

More precisely, consider a boundary point x with normal vector u and suppose
that a is small. Then in a neighborhood around x, the image will look almost like a
blurred halfspace with normal vector u. In particular, if y lies in this neighborhood,
then the grey-value at y will be approximately θ(〈y−x, u〉) since θ(t) is the grey-value
of a point at signed distance t to the boundary of the halfspace.

If the whole 2 × 2 lattice block z + aC2
0,0 = {z, z + ae1, z + ae2), z + ae1 + ae2}

lies in this neighborhood of x, then

θXa (z) ≈ θ(〈z − x, u〉),
θXa (z + ae1) ≈ θ(〈z + ae1 − x, u〉),
θXa (z + ae2) ≈ θ(〈z + ae2 − x, u〉).

It follows that

θ−1(θXa (z + ae1))− θ−1(θXa (z)) ≈ 〈ae1, u〉 = au1,

θ−1(θXa (z + ae2))− θ−1(θXa (z)) ≈ 〈ae2, u〉 = au2,

where u = (u1, u2). We may use the left hand side to estimate u and estimate us
from this. Note that this requires that θ, which is determined by the point spread
function, is known. The convergence of this algorithm is shown in [26].
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