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Abstract

We investigate the estimation of specific intrinsic volumes of stationary Boolean
models by local digital algorithms; that is, by weighted sums of n × · · · × n
configuration counts. We show that asymptotically unbiased estimators for the
specific surface area or integrated mean curvature do not exist if the dimension
is at least two or three, respectively. For 3-dimensional stationary, isotropic
Boolean models, we derive asymptotically unbiased estimators for the specific
surface area and integrated mean curvature. For a Boolean model with balls
as grains we even obtain an asymptotically unbiased estimator for the specific
Euler characteristic. This solves an open problem from [18].

Keywords: Digital image; local algorithm; Boolean model; specific intrinsic
volume; Miles formulas.

1 Introduction

Let Z ⊆ Rd be a geometric object. We model a black-and-white digital image of Z
as the set Z ∩L where L is some observation lattice. The set Z ∩L can be thought
of as the set of foreground or black pixels (voxels), while L\Z corresponds to the
background or white pixels (voxels). This is illustrated in Figure 1.

Given this information, we want to derive geometric information about Z. Of
particular interest are the intrinsic volumes of Z, including such natural quantities
as volume, surface area, integrated mean curvature, and Euler characteristic. A
variety of algorithms for their estimation has been suggested in the literature, see
e.g. [11, 12, 13, 16, 18]. Many of these algorithms are of local type, depending only
on the local configurations of black and white points occurring in the image. Such
local algorithms are often chosen in practice because they are intuitive and simple to
write down explicitly. Moreover, their computation time is only linear in the number
of voxels, see [16] for more information on implementations.
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Local algorithms have been studied theoretically in the design based setting
where Z is a deterministic set and L is stationary random. With the exception of
volume and Euler characteristic, results show that they are almost always biased
[7, 25, 26], even asymptotically when the resolution goes to infinity.

In this paper we study local algorithms when applied to a random set, more
precisely a Boolean model. Boolean models are the basic models from stochastic
geometry for the description of porous structures, e.g. in physics, material science, or
biology. There exist several monographs that treat Boolean models; [20] contains the
mathematical theory from stochastic geometry, [1] also presents many applications,
and [15] puts an emphasizes on available statistical methods.

We compare the mean estimates of the specific intrinsic volumes of a Boolean
model to the true value. Results from stochastic geometry allow us a more explicit
quantification of the bias than in the deterministic case. The idea was already out-
lined in [18] when Z is a stationary isotropic Boolean model, and the authors use
it to compute the asymptotic bias of a specific 3D algorithm as the grid width goes
to zero. In [23], the approach of [18] is used in 2D not only to compare known al-
gorithms but also to derive general formulas for the bias in high resolution and to
give an optimal algorithm. We are going to generalise this approach to 3D.

We start by considering a stationary, but not necessarily isotropic, Boolean model
and derive formulas for the mean digital estimators up to second order in the grid
width. The foundation for this is an asymptotic formula as the grid width a goes to
zero for the hit-and-miss probabilities

P (aB ⊆ Z, aW ⊆ Rd\Z),

where Z is a stationary Boolean model in Rd with compact convex grains and
B,W ⊆ Rd are finite sets.

The resulting formulas for the mean digital estimators generalise the formulas
of [18] and [23] to non-isotropic grain distributions. They have a resemblance to the
Miles formulas [14] for specific intrinsic volumes, but contain a rotation bias. The
first order asymptotics are similar to the corresponding result in the design based
setting with the difference that the deterministic set is replaced by the Blaschke
body associated with Z. In contrast to this, a new term shows up in the second
order formulas due to the underlying randomness. The formulas lead to the first
main result.

Theorem. Let Z ⊆ Rd be a stationary Boolean model satisfying Condition 3.2.
Then, there exists no asymptotically unbiased estimator for the specific surface area
or integrated mean curvature based on n×· · ·×n-configuration counts if the dimen-
sion is at least two or three, respectively.

Next, we concentrate on Boolean models that are also isotropic. Specializing to
three dimensions and 2× 2× 2-configuration counts, we obtain the following result.

Theorem. Let Z ⊆ R3 be a stationary, isotropic Boolean model satisfying Condi-
tion 3.2. Then, there exist asymptotically unbiased estimators for the specific surface
area and integrated mean curvature based on 2×2×2-configuration counts. Possible
weights are given in Table 5.

2



In the case of a 3D Boolean model where the grains are balls of a random radius
which is almost surely bounded from below, results of [8] allow us a more detailed
analysis. Thus, we can derive third order formulas for the mean estimators. Thereby,
we can describe the asymptotic mean values for the full set of estimators in 3D. In
particular, we obtain an asymptotically unbiased estimator for the specific Euler
characteristic, which solves an open problem from [18].

Theorem. Let Z ⊆ R3 be a Boolean model with balls as grains. Then, there exists
an asymptotically unbiased estimator for the specific Euler characteristic based on
2× 2× 2-configuration counts. Possible weights are given in Table 5.

Applying our results to the algorithms suggested in [18], we can even show that
they all have a bias already in the second order terms. Instead, our algorithms based
on the weights in Table 5 are optimal up to third order.

The paper is structured as follows: We start by collecting some background
material in Section 2. Then we compute asymptotic formulas for the hit-and-miss
probabilities in Section 3. In Section 4, local algorithms are defined formally. Then
the results of Section 3 are used to draw conclusions about the estimators. In Sec-
tion 5 we specialise to the case of isotropic Boolean models. The special case of
Boolean models with balls as grains is studied more deeply in Section 6, leading to
an optimal algorithm given in Subsection 6.2.

Figure 1: Digital image of a Boolean model with balls as grains.

2 Preliminaries

By a Boolean model Z we shall always mean a stationary Boolean model in Rd with
compact convex grains of common distribution Q and intensity γ > 0. That is,

Z =
∞⋃

i=1

(ξi +Ki)

where {ξ1, ξ2, . . . } is a stationary Poisson point process in Rd with intensity γ and
K1, K2, . . . is a sequence of i.i.d. random compact convex subsets (convex bodies) of
Rd with distribution Q independent of {ξ1, ξ2, . . . } and satisfying the integrability
condition ∫

Vd(K ⊕Bd)Q(dK) <∞. (2.1)
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Here Bd is the unit ball in Rd, ⊕ is the Minkowski addition and Vd is the d-
dimensional volume.

The intrinsic volumes are important functionals of convex geometry, see [19].
They are the unique functionals Vq, q = 0, . . . , d on the space of convex bodies
which fulfill the Steiner formula

Vd(K ⊕ εBd) =
d∑

q=0

εd−qκd−qVq(K), (2.2)

where K is a convex body, ε > 0 and κq := πq/2

Γ(1+ q
2

)
is the volume of Bq. In particular

Vd is the volume, 2Vd−1 is the (d − 1)-dimensional surface area, 2π(d − 1)−1Vd−2 is
the integrated mean curvature and V0 is the Euler characteristic.

In stochastic geometry it has proven useful to consider spatial and probabilistic
averages, so called specific intrinsic volumes, see [20]. The specific intrinsic volumes
of Z are defined by

V q(Z) = lim
r→∞

EVq(Z ∩ rA)

Vd(rA)
(2.3)

where Vq, q = 0, . . . , d and A is a compact convex window with non-empty interior.
An alternative description is

V q(Z) = EVq(Z ∩ [0, 1]d)− EVq(Z ∩ ∂+[0, 1]d) (2.4)

where ∂+[0, 1]d = [0, 1]d\[0, 1)d. The effect of both, the limit in (2.3) and the sub-
traction in (2.4), is that the contributions to Vq coming from the boundary of the
window are removed.

We shall mainly be interested in the cases q = d, d− 1, d− 2. Let Vd−1,d−1 denote
the mixed functional of translative integral geometry, c.f. [20, Sections 5.2 and 6.4],
which is defined via the translative integral formula

∫

Rd

Vd−2(K1 ∩ (K2 + x))dx

= Vd(K1)Vd−2(K2) + Vd(K2)Vd−1(K1) + Vd−1,d−1(K1, K2)

for convex bodies K1, K2. By K we denote the typical grain, i.e. the random convex
body with distribution Q. Let K1 and K2 be two independent copies of K. The
specific intrinsic volumes in the cases q = d, d − 1, d − 2 can now be expressed in
terms of mean intrinsic volumes of K and the mean mixed functional of K1 and K2,
namely it holds by [20, Theorem 9.1.5]:

V d(Z) = 1− e−γEVd(K) (2.5)

V d−1(Z) = e−γEVd(K)γEVd−1(K)

V d−2(Z) = e−γEVd(K)
(
γEVd−2(K)− γ2

2
EVd−1,d−1(K1, K2)

)
.

If the grain distribution is isotropic, then

EVd−1,d−1(K1, K2) =
(d− 1)κ2

d−1

dκdκd−2

EVd−1(K)2
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by the principal kinematic formula [9, Theorem 2.2].
In the special case of a stationary Boolean model with isotropic grain distribution

in 3D, the specific intrinsic volumes are given by the Miles formulas [14] or [20,
Theorem 9.14]:

V 3(Z) = 1− e−γEV3(K) (2.6)

V 2(Z) = e−γEV3(K)γEV2(K)

V 1(Z) = e−γEV3(K)
(
γEV1(K)− γ2π

8
EV2(K)2

)

V 0(Z) = e−γEV3(K)
(
γEV0(K)− γ2

2
EV2(K)EV1(K) +

γ3π

48
EV2(K)3

)
.

3 Hit-and-miss probabilities for stationary
Boolean models

In this section we derive the theoretical results for hit-and-miss probabilities which
we will need in later sections for the study of digital algorithms applied to Boolean
models.

Let B,W ⊆ Rd be two finite sets that are not both empty. We consider the
hit-and-miss probabilities

P (aB ⊆ Z, aW ⊆ Rd\Z)

when a > 0 is small. By the inclusion-exclusion principle,

P (B ⊆ Z,W ⊆ Rd\Z) = P (W ⊆ Rd\Z)− P
( ⋃

b∈B
{{b} ∪W ⊆ Rd\Z}

)

= P (W ⊆ Rd\Z) +
∑

∅6=S⊆B
(−1)|S|P (S ∪W ⊆ Rd\Z)

=
∑

S⊆B
(−1)|S|P (S ∪W ⊆ Rd\Z). (3.1)

For a compact set C ⊆ Rd it is well known, see e.g. [20, (9.3) and (9.4)], that

P (aC ⊆ Rd\Z) = e−γEVd(K⊕aČ) (3.2)

where Č = {−c | c ∈ C}.
To describe EVd(K ⊕ aČ) as a→ 0, we need two integrability conditions, which

we formulate here for later reference. To state them, we recall that a compact set
X ⊆ Rd is called ε-regular if for every x ∈ ∂X, there exist two balls Bi, Bo ⊆ Rd of
radius ε such that x ∈ Bi ∩Bo, Bi ⊆ X and int(Bo) ⊆ Rd\X.

Condition 3.1. The grain distribution Q satisfies E diam(K)d−1 < ∞ and there is
an ε > 0 such that the grains contain a.s. a ball of radius ε.

Condition 3.2. The grain distribution Q satisfies E diam(K)d <∞ and there is an
ε > 0 such that the grains are a.s. ε-regular.
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Lemma 3.3. Suppose that C ⊆ Rd is compact and Q satisfies Condition 3.1. Then
there is an M1 > 0 which is independent of a such that for a < 1,

0 ≤ EVd(K ⊕ a conv(C))− EVd(K ⊕ aC) ≤M1a
2.

If Q satisfies Condition 3.2, then there is an M2 > 0 which is independent of a such
that for a < 1,

0 ≤ EVd(K ⊕ a conv(C))− EVd(K ⊕ aC) ≤M2a
3.

Proof. If L is convex with twice differentiable support function and contains a ball
of radius ε, then [6, Lemma 12] shows that there is an M ′

1 > 0 depending only on d
and C such that

0 ≤ Vd(L⊕ a conv(C))− Vd(L⊕ aC) ≤M ′
1

diam(L)d−1 ∨ 1

ε
a2.

By [19, Theorem 3.3.1], an arbitrary compact convex body K can be approximated
by a sequence Ln of convex bodies with smooth support functions. We may assume
that Ln contains a ball of radius ε − 1

n
. The map L 7→ Vd(L ⊕ aC) is continuous

on the space of compact convex sets with interior points, see [6, Lemma 10], so by
continuity of the diameter function, the same inequality holds for L replaced by K.
The assumptions of the lemma allow us to take the mean value.

Similarly, [6, Lemma 17] shows that if L is ε-regular with twice differentiable
support function, then there is an M ′

2 > 0 such that

0 ≤ Vd(L⊕ a conv(C))− Vd(L⊕ aC) ≤M ′
2

diam(L)d ∨ 1

ε3
a3.

If K is ε-regular we may write K = K ′ ⊕ εBd [19, Theorem 3.2.2] where K ′ is also
convex. Approximating K ′ as above yields the claim in this situation as well.

For convex sets C,K ⊆ Rd,

Vd(K ⊕ aČ) =
d∑

m=0

(
d

m

)
amV (Č[m], K[d−m]) (3.3)

with nonnegative numbers V (Č[m], K[d−m]) which are the so-called mixed volumes,
see [19, Theorem 5.1.7]. Equation (3.3) and the integrability condition (2.1) ensures
that EV (Č[m], K[d−m]) <∞ for all m.

Combining this with (3.2) and Lemma 3.3, we obtain:

Proposition 3.4. Let C ⊆ Rd be a non-empty compact set. If the grain distribution
satisfies Condition 3.1, then for a sufficiently small

P (aC ⊆ Rd\Z) = e−γEVd(K)(1− adγEV (conv(Č)[1], K[d− 1])) +O(a2).

If the grain distribution satisfies Condition 3.2, then for a sufficiently small

P (aC ⊆ Rd\Z) = e−γEVd(K) − adγe−γEVd(K)EV (conv(Č)[1], K[d− 1])

− a2e−γEVd(K)

(
d(d− 1)

2
γEV (conv(Č)[2], K[d− 2])

− d2

2
γ2(EV (conv(Č)[1], K[d− 1]))2

)
+O(a3).
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Next we try to obtain a more explicit expression for the mixed volumes in Propo-
sition 3.4. For convex bodies C,K it is well known, see [19, (5.19)], that

V (Č[1], K[d− 1]) =
1

d

∫

Sd−1

h(Č, u)Sd−1(K, du). (3.4)

Here Sd−1(K, · ) is the (d− 1)th surface area measure of K on Sd−1 and h(C, u) =
sup{〈c, u〉, c ∈ C} is the support function of C. This yields:

Proposition 3.5. Let B,W ⊆ Rd be two finite non-empty sets. Suppose that the
grain distribution satisfies Condition 3.1. Then for a sufficiently small,

P (aB ⊆ Z, aW ⊆ Rd\Z)

= aγe−γEVd(K)E

∫

Sd−1

(−h(B ⊕ W̌ , u))+Sd−1(K, du) +O(a2), (3.5)

P (aB ⊆ Z) = 1− e−γEVd(K) + aγe−γEVd(K)E

∫

Sd−1

h(B, u)Sd−1(K, du)

+O(a2).

Proposition 3.5 is also derived in [10, Theorem 4] with a different approach using
geometric measure theory.

Proof. We consider only the first formula. The second one is similar, only simpler.
From (3.1) and Proposition 3.4, we obtain:

P (aB ⊆ Z, aW ⊆ Rd\Z) =
∑

S⊆B
(−1)|S|P (a(S ∪W ) ⊆ Rd\Z)

= e−γEVd(K)
∑

S⊆B
(−1)|S|(1− aγdEV (conv(Š ∪ W̌ )[1], K[d− 1])) +O(a2)

= − aγe−γEVd(K)
∑

S⊆B
(−1)|S|E

∫

Sd−1

h(Š ∪ W̌ , u)Sd−1(K, du) +O(a2).

Consider a fixed u ∈ Sd−1 and let B1 ⊆ B be the set {b ∈ B | −〈b, u〉 > h(W̌ , u)}.
Then we may compute:

∑

S⊆B
(−1)|S|h(Š ∪ W̌ , u)

=
∑

∅6=S⊆B
(−1)|S|max{h(Š, u), h(W̌ , u)}+ h(W̌ , u) (3.6)

=
∑

∅6=S⊆B,S∩B1 6=∅
(−1)|S|h(Š, u) +

∑

∅6=S⊆B\B1

(−1)|S|h(W̌ , u) + h(W̌ , u)

=
∑

∅6=S⊆B
(−1)|S|h(Š, u)−

∑

∅6=S⊆B\B1

(−1)|S|h(Š, u) + h(W̌ , u)1{B=B1}.

Using the inclusion-exclusion principle for maxima

max{x1, . . . , xk} =
∑

∅6=I⊆{1,...,k}
(−1)|I|+1 min{xi, i ∈ I},
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we find that

h(B, u) =
∑

∅6=S⊆B
(−1)|S|h(Š, u).

Thus
∑

∅6=S⊆B
(−1)|S|h(Š, u)−

∑

∅6=S⊆B\B1

(−1)|S|h(Š, u)

= h(B, u)− h(B\B1, u)1{B 6=B1}

= h(B, u)1{B=B1}.

The situation B = B1 is equivalent to h(B, u) < −h(W̌ , u), so (3.6) equals

−(−h(B ⊕ W̌ , u))+.

Remark 3.6. The formula (3.5) resembles the volumes of hit-and-miss transforms in
the design based setting. These are given in [10, Theorem 5] for a deterministic set
X by

Vd(z ∈ Rd | z + aB ⊆ X, z + aW ⊆ Rd\X)

= a

∫

Sd−1

(−h(B ⊕ W̌ , u))+Sd−1(X, du) +O(a2).

In (3.5), X is replaced by the Blaschke body B(Z) associated with Z. This is the
convex body with surface area measure Sd−1(B(Z), · ) = γESd−1(K, · ), i.e. a sort
of average body, see [20, Section 4.6]. Thus, we have

γE

∫

Sd−1

(−h(B ⊕ W̌ , u))+Sd−1(K, du)

=

∫

Sd−1

(−h(B ⊕ W̌ , u))+Sd−1(B(Z), du).

To describe V (Č[2], K[d−2]), we introduce a bit more notation. For ε-regular K,
let u(x) be the uniquely determined outward pointing normal at x ∈ ∂K. The
principal directions and principal curvatures are defined at almost all x ∈ ∂K,
c.f. [2], allowing us to define the second fundamental form IIx. For s ∈ Rd we let
IIx(s) denote IIx(πxs, πxs) where πx : Rd → Tx∂K is the orthogonal projection. For
a compact set P , we let

II−x (P ) = inf{IIx(p) | p ∈ F (P̌ , u(x))}
II+
x (P ) = sup{IIx(p) | p ∈ F (P, u(x))},

where F (P, u) is the support set {p ∈ P | h(P, u) = 〈p, u〉}. Let Hk denote the
k-dimensional Hausdorff measure.

Proposition 3.7. Suppose K ⊆ Rd is a convex ε-regular set and P ⊆ Rd is a convex
polytope with vertex set P0. Then

V (P̌ [2], K[d− 2]) =
1

d(d− 1)

∫

∂K

(h(P̌0, u(x))2 Tr IIx − II−x (P0))Hd−1(dx).
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The proof below is based on [24], but see also [3, Theorem 4.6].

Proof. By (3.3) and Lemma 3.3,

V (P̌ [2], K[d− 2]) =
d2

da2
+

1

d(d− 1)
Vd(K ⊕ aP̌ ) =

d2

da2
+

1

d(d− 1)
Vd(K ⊕ aP̌0)

where d2/da2
+ is the second order right derivative at zero. In [24, Theorem 4.1],

a formula for Vd
(
(K 	 aB̌)\(K ⊕ aW̌ )

)
where 	 is the Minkowski subtraction is

computed. As a special case we have that

d2

da2
+

Vd
(
K\(K ⊕ aP̌0)

)
=

∫

∂K

(
(II−x (P0)− h(P̌0, u)2 Tr IIx)1{h(P̌0,u)<0}

+ (II−x (P0))+1{h(P̌0,u)=0}

)
dHd−1.

By exactly the same line of proof as in [24, Theorem 4.1], one could prove a formula
for Vd

(
(K ⊕ aW̌ )\(K 	 aB̌)

)
. This amounts to switching the roles of t+(aB) and

t−(aW ) in [24, (20)] and replacing the indicator function τB,W by 1 − τB,W . From
there, all arguments of the proof carry over. As a special case, one finds

d2

da2
+

Vd
(
(K ⊕ aP̌0)\K

)
=

∫

∂K

(
(h(P̌0, u)2 Tr IIx − II−x (P0))1{h(P̌0,u)>0}

− (II−x (P0))−1{h(P̌0,u)=0}

)
dHd−1,

and the claim follows.

Writing

Q(K,B,W ) =
1

2

∫

∂K

(
((h(B, u)2 − h(W̌ , u)2) Tr II− II+(B) + II−(W ))

× 1{h(B⊕W̌ ,u)<0} + (II−(W )− II+(B))+1{h(B⊕W̌ ,u)=0}

)
dHd−1

for simplicity, we derive:

Proposition 3.8. Suppose K ⊆ Rd is convex ε-regular and B,W ⊆ Rd are non-
empty finite sets. Then

∑

S⊆B
(−1)|S|V (conv(Š ∪ W̌ )[2], K[d− 2]) = −

(
d

2

)−1

Q(K,B,W ),

∑

∅6=S⊆B
(−1)|S|V (conv(Š)[2], K[d− 2])

= −
(
d

2

)−1 ∫

∂K

(h(B, u(x))2 Tr IIx − II+
x (B))Hd−1(dx).
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Remark 3.9. By Equation (3.1), Proposition 3.4, (3.4) and Proposition 3.8,

d2

da2
+

P (aB ⊆ Z, aW ⊆ Rd\Z) = e−γEVd(K)

(
2γQ(K,B,W )

+
∑

S⊆B
(−1)|S|γ2

(
E

∫

Sd−1

h(Š ∪ W̌ , u)Sd−1(K, du)
)2
)
. (3.7)

The first term is similar to what we see for a deterministic set [24, Theorem 4.1],
whereas the second term is new and must originate from the underlying distribution.
This is, however, desirable, since it corresponds to the second term in the formula
for V d−2(Z) in (2.5). The sum in (3.7) does not seem to reduce to anything simple.
In particular, Table 4 shows that it does not need to vanish if h(B ⊕ W̌ , u) ≥ 0 for
all u ∈ Sd−1, that is, if (B,W ) cannot be separated by a hyperplane. This is very
different from the design based setting where such configurations do not contribute
to the second order formulas. It is a consequence of the fact that we allow grains
to overlap in the Boolean model, otherwise such configurations would not occur for
sufficiently small a.

Proof. We only consider the first equality. The second is shown similarly. By Propo-
sition 3.7 we must consider

∑

S⊆B
(−1)|S|

∫

∂K

(h(Š ∪ W̌ , u(x))2 Tr IIx − II−x (S ∪W ))Hd−1(dx).

The same argument as in the proof of Proposition 3.5, now using the relation

max{x1, . . . , xk}2 =
∑

∅6=I⊆{1,...,k}
(−1)|I|+1 min{xi, i ∈ I}2,

shows that
∑

S⊆B
(−1)|S|+1h(Š ∪ W̌ , u)2 = (h(B, u)2 − h(W̌ , u)2)1{h(B⊕W̌ ,u)<0}.

Fix x ∈ ∂K and let u = u(x). Write B as a disjoint union B1 ∪ · · · ∪ Bk of
non-empty sets such that there are real numbers s1 > · · · > sk with 〈b, u〉 = si for
all b ∈ Bi. Then

∑

S⊆B
(−1)|S|II−x (S ∪W ) = II−x (W ) +

k∑

m=1

m−1∏

i=1

(∑

Si⊆Bi

(−1)|Si|
)

×
∑

∅6=Sm⊆Bm

(−1)|Sm|II−x (Sm ∪W ).

Note that all terms with m > 1 vanish because
∑

S1⊆B1
(−1)|S1| = 0. Hence

∑

S⊆B
(−1)|S|II−x (S ∪W ) =

∑

S⊆B1

(−1)|S|II−x (S ∪W ).
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There are now three possibilities: h(W̌ , u) < −h(B, u), h(W̌ , u) > −h(B, u), and
h(W̌ , u) = −h(B, u).

The first inequality means that F (B̌1 ∪ W̌ , u) = F (B̌1, u). In this case:
∑

S⊆B1

(−1)|S|II−x (S ∪W ) = II−x (W )−
∑

∅6=S⊆B1

(−1)|S|+1II−x (S)

= II−x (W )−max{IIx(b) | b ∈ B1}
= II−x (W )− II+

x (B).

In the second case, F (B̌1 ∪ W̌ , u) = F (W̌ , u). Hence
∑

S⊆B
(−1)|S|II−x (S ∪W ) =

∑

S⊆B1

(−1)|S|II−x (W ) = 0.

For the third case, let B0
1 = {b ∈ B1 | IIx(b) ≤ II−x (W )}. Then

∑

S⊆B1

(−1)|S|II−x (S ∪W )

=
∑

S⊆B1\B0
1

(−1)|S|II−x (W ) +
∑

S∩B0
1 6=∅

(−1)|S|II−x (S)

= II−x (W )1{B1=B0
1} +

∑

∅6=S⊆B1

(−1)|S|II−x (S)−
∑

∅6=S⊆B1\B0
1

(−1)|S|II−x (S)

= II−x (W )1{B1=B0
1} − II+

x (B) + II+
x (B)1{B1 6=B0

1}

= (II−x (W )− II+
x (B))+,

since B1 = B0
1 is equivalent to II+

x (B) ≤ II−x (W ).

In many cases, the expression for Q(K,B,W ) can be simplified, since:

Proof. The set {x ∈ ∂K | h(B ⊕ W̌ , u(x)) = 0} is contained in the union
⋃

b∈B,w∈W
Db,w

where Db,w = {x ∈ ∂K | 〈b− w, u(x)〉 = 0}.
Let b ∈ B and w ∈ W be fixed. The function g : ∂K → R given by g(x) =

〈b−w, u(x)〉 is almost everywhere continuously differentiable, see [2]. A critical point
of g is a point x ∈ ∂K with dgx(v) = 〈b−w, dux(v)〉 = 0 for all v ∈ Tx∂K = u(x)⊥.

If ∂K is C2, the implicit function theorem says that every non-critical point
of g in g−1(0) = Db,w has a neighborhood in which g−1(0) constitutes a (d − 2)-
dimensional C1-manifold. Thus, it follows that the set of non-critical points of g in
Db,w has Hd−1-measure 0.

Suppose that x ∈ Db,w, II−x (W ) = IIx(w), II+
x (B) = IIx(b), and that x is a critical

point of g. Then either b = w or b − w is a principal direction at x with principal
curvature 0. Hence

IIx(b)− IIx(w) = IIx(π(b))− IIx(π(w)) = 0 (3.8)

11



where π is the projection onto (b−w)⊥∩Tx∂K so that π(b) = π(w). Hence II−x (W ) =
II+
x (B).
In the convex case,Db,w is contained in the boundary of the cylinder π(b−w)⊥(K)×

span(b−w), where π(b−w)⊥ : Rd → (b−w)⊥ is the projection. Clearly, any x ∈ Db,w

is either the only point on the line through x parallel to b−w, or b−w is a principal
direction at x with principal curvature 0. Thus we can use Equation (3.8) above to
obtain

Hd−1(Db,w ∩ {II(w) 6= II(b)})

=

∫

π
(b−w)⊥ (Db,w)

∫

span(b−w)

1∂K(x+ y)1{IIx+y(b) 6=IIx+y(w)}dxHd−1(dy)

= 0.

4 Applications to digital images

In this section we introduce our model for digital images and define local algorithms.
We then apply the formulas of Section 3 to determine their mean values when applied
to Boolean models.

4.1 Local algorithms

Let L be a lattice in Rd spanned by linearly independent vectors v1, . . . , vd. We
denote by Cn

0 the n×· · ·×n fundamental cell Cn
0 =

⊕
i[0, nvi) and by Cn

0,0 = Cn
0 ∩L

the set of lattice points lying in this set. Their respective translations by z ∈ Rd are
denoted by Cn

z = z + Cn
0 and Cn

z,0 = z + Cn
0,0.

Let Z be a stationary Boolean model and consider a digital black-and-white
image of Z in a compact convex observation window A. This is modeled as Z∩A∩L.
We change the resolution by multiplying L by a factor a > 0. From the information
Z ∩ A ∩ aL, we want to estimate the specific intrinsic volumes V q(Z). A so-called
local algorithm for this is defined as follows:

Consider the set of n × · · · × n configurations. These are pairs (B,W ) with
B ∪W = Cn

0,0 and B ∩W = ∅. We enumerate the elements of Cn
0,0 in the following

way. For x =
∑d

k=1 λkvk ∈ Cn
0,0 with λk ∈ {0, . . . , n− 1} write x = xi where

i =
d∑

k=1

λkn
k−1.

There are 2n
d possible configurations. We denote these by (Bl,Wl), l = 0, . . . , 2n

d−1,
where

l =
nd−1∑

i=0

2i1{xi∈B}.

12



A local algorithm for V q is an algorithm of the form

V̂q(Z ∩ A) = aq−d
2n

d−1∑

l=0

w
(q)
l

Nl(Z ∩ A ∩ aL)

N(A)
(4.1)

where

Nl(Z ∩ A ∩ aL) =
∑

z∈aL∩(A	aČn
0,0)

1{z + aBl ⊆ Z, z + aWl ⊆ Rd\Z} (4.2)

is the number of occurrences of the configuration (Bl,Wl) inside A. This is weighted
by the weight w(q)

l ∈ R. Moreover, A 	 Čn
0,0 = {x ∈ Rd | x + Cn

0,0 ⊆ A}, and N(A)

denotes the cardinality of aL ∩ (A 	 aČn
0,0), i.e. the total number of configurations

in A.
Recall that in the definition of specific intrinsic volumes (2.3) and (2.4) we remove

the contribution to Vq(Z∩A) coming from the boundary of the observation window.
For this reason, we count in (4.2) only configurations lying completely in the interior
of A.

The mean value of (4.2) is

ENl(Z ∩ A ∩ aL) =
∑

z∈aL∩(A	aČn
0,0)

P (z + aBl ⊆ Z, z + aWl ⊆ Rd\Z)

= N(A)P (aBl ⊆ Z, aWl ⊆ Rd\Z),

and hence

EV̂q(Z ∩ A) = aq−d
2n

d−1∑

l=0

w
(q)
l P (aBl ⊆ Z, aWl ⊆ Rd\Z). (4.3)

4.2 Asymptotic formulas for the mean digital estimators

The formulas of Section 3 yield asymptotic expressions for (4.3) as the grid width a
goes to zero. First we consider estimators for the specific volume V̂d(Z ∩ A).

Theorem 4.1. For any Boolean model,

EV̂d(Z ∩ A) = w
(d)
0 e−γEVd(K) + w

(d)

2nd−1
(1− e−γEVd(K)) +O(a).

In particular, V̂d is asymptotically unbiased iff w
(d)
0 = 0 and w(d)

2nd−1
= 1.

Proof. The result follows from an application of Proposition 3.4 and Proposition 3.5
to (4.3).

Remark 4.2. In fact, it is well known that the estimator based on 1× · · ·× 1 config-
urations with w(d)

0 = 0 and w(d)
1 = 1 is unbiased, even for fixed a. This is the natural

estimator given by counting lattice points in Z∩A. Hence we will not discuss volume
estimation further.
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Next we consider surface estimators.

Theorem 4.3. For any stationary Boolean model satisfying Condition 3.1,

lim
a→0

EV̂d−1(Z ∩ A)

exists if and only if w(d−1)
0 = w

(d−1)

2nd−1
= 0.

In this case,

EV̂d−1(Z∩A) = γe−γEVd(K)

2n
d−2∑

l=1

w
(d−1)
l E

∫

Sd−1

(−h(Bl⊕W̌l, u))+Sd−1(K, du)+O(a).

If Condition 3.2 is satisfied,

EV̂d−1(Z ∩ A)− lim
a→0

EV̂d−1(Z ∩ A) = ae−γEVd(K)

2n
d−2∑

l=1

w
(d−1)
l

(
γEQ(K,Bl,Wl)

+
γ2

2

∑

S⊆Bl

(−1)|S|
(
E

∫

Sd−1

h(Š ∪ W̌l, u)Sd−1(K, du)
)2
)

+O(a2).

Proof. Under Condition 3.1 the result follows by applying Proposition 3.4 and
Proposition 3.5 to (4.3). Under Condition 3.2 we use additionally Remark 3.9.

Finally we consider estimators for the integrated mean curvature.

Theorem 4.4. For any stationary Boolean model satisfying Condition 3.2,

lim
a→0

EV̂d−2(Z ∩ A)

exists if and only if w(d−2)
0 = w

(d−2)

2nd−1
= 0 and

2n
d−2∑

l=1

w
(d−2)
l E

∫

Sd−1

(−h(Bl ⊕ W̌l, u))+Sd−1(K, du) = 0. (4.4)

In this case,

EV̂d−2(Z ∩ A) = e−γEVd(K)

2n
d−2∑

l=1

w
(d−2)
l

(
γEQ(K,Bl,Wl)

+
γ2

2

∑

S⊆Bl

(−1)|S|
(
E

∫

Sd−1

h(Š ∪ W̌l, u)dSd−1(K, du)
)2
)

+O(a).

Proof. The statement is obtained by applying Proposition 3.4, Proposition 3.5 and
Remark 3.9 to (4.3).

We obtain the following corollary.
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Corollary 4.5. There exists no local estimator based on n× · · · × n configurations
for V d−1(Z) if d ≥ 2 or for V d−2(Z) if d ≥ 3 such that it is asymptotically unbiased
for all stationary Boolean models satisfying Condition 3.1 or 3.2, respectively.

Proof. We consider a Boolean model with a fixed grain equal to some convex bodyK0.
By V̂d−1(K0) we mean the digital estimator of Vd−1(K0) in the designed based setting
(i.e. based on a stationary random lattice) with the same weights as in the definition
of V̂d−1(Z∩A). Then Theorem 4.3 and [25, Theorem 4.1] (or originally [10, Theorem
5]) imply

lim
a→0

EV̂d−1(Z ∩ A) = γeγEVd(K0) lim
a→0

EV̂d−1(K0).

By (2.5) the estimator V̂d−1(Z∩A) is asymptotically unbiased if lima→0EV̂d−1(K0) =
Vd−1(K0). This is not the case if we choose K0 as one of the counterexamples in [25,
Theorem 1.4]. Note that the counterexamples are chosen convex in the proof.

In the same way denote by V̂d−2(K0) the digital estimator of Vd−2(K0) in the
design based setting with the same weights as in the definition of V̂d−2(Z ∩ A).
Then, by [25, Theorem 4.2] (originally shown in [24]) it holds

lim
a→0

EV̂d−2(Z ∩ A) = e−γVd(K0)

(
γ lim
a→0

EV̂d−2(K0)

+
γ2

2

2n
d−2∑

l=1

w
(d−2)
l

∑

S⊆Bl

(−1)|S|
(∫

Sd−1

h(Š ∪ W̌l, u)dSd−1(K0, du)
)2
)
.

Comparing the coefficient of γ with the one in the corresponding formula in (2.5)
we obtain that the estimator V̂d−2(Z ∩ A) can only be asymptotically unbiased if
lima→0EV̂d−2(K0) = Vd−2(K0). Again this is not the case if we choose K0 as one of
the counterexamples in [25, Theorem 1.4]. This yields the assertion.

5 Optimal estimators
for isotropic Boolean models

We now specialise to the case where Z is stationary and the grain distribution Q is
rotation invariant.

Theorem 5.1. Let Z be a stationary, isotropic Boolean model. If Condition 3.1 is
satisfied and w(d−1)

0 = w
(d−1)

2nd−1
= 0, then

EV̂d−1(Z ∩ A) = γe−γEVd(K)

2n
d−2∑

l=1

w
(d−1)
l c1(Bl,Wl)EVd−1(K) +O(a),

where c1(Bl,Wl) is a constant. If Condition 3.2, w(d−2)
0 = w

(d−2)

2nd−1
= 0 and (4.4) are
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satisfied, then

EV̂d−2(Z ∩ A) = e−γEVd(K)

2n
d−2∑

l=1

w
(d−2)
l

(
γc2(Bl,Wl)EVd−2(K)

+
γ2

2
c3(Bl,Wl)

(
EVd−1(K)

)2
)

+O(a),

where c2(Bl,Wl) and c3(Bl,Wl) are constants.

Proof. Let l ∈ {1, . . . , 2nd − 2}. Then by Tonelli’s theorem

E

∫

Sd−1

(−h(Bl ⊕ W̌l, u))+Sd−1(K, du)

= E

∫

SO(d)

∫

Sd−1

(−h(Bl ⊕ W̌l, u))+Sd−1(RK, du)dR

= 2EVd−1(K)(dκd)
−1

∫

Sd−1

(−h(Bl ⊕ W̌l, u))+Hd−1(du)

= c1(Bl,Wl)EVd−1(K)

where c1(Bl,Wl) is a constant. By Fubini’s theorem and [24, Section 5]

EQ(K,Bl,Wl) = c2(Bl,Wl)EVd−2(K)

where c2(Bl,Wl) is a constant. Similarly,

∑

S⊆Bl

(−1)|S|
(
E

∫

Sd−1

h(Š ∪ W̌l, u)Sd−1(K, du)
)2

= 4
(
EVd−1(K)

)2
(dκd)

−2
∑

S⊆Bl

(−1)|S|
(∫

Sd−1

h(Š ∪ W̌l, u)Hd−1(du)
)2

= c3(Bl,Wl)
(
EVd−1(K)

)2

where c3(Bl,Wl) is a constant. Inserting this in Theorem 4.3 and 4.4 yields the
assertion.

Comparing Theorem 5.1 with the Miles formulas (2.5) we see that an estimator
for V d−1(Z) or V d−2(Z) is asymptotically unbiased exactly if the weights satisfy a
set of linear equations involving the constants ck(Bl,Wl), k = 1, 2, 3. In 2D these
equations were determined and the full solution was given in [23]. In the following
sections, we determine the constants and the corresponding equations in 3D.

5.1 The 3D situation

For the remainder of this section we specialise to the situation d = 3 and to 2×2×2
configurations on a square grid Z3 ⊆ R3.

Let R be a rigid motion. If RS = S ′ then P (aS ⊆ R3\Z) = P (aS ′ ⊆ R3\Z).
Thus, the isotropy allows us to reduce the number of configurations in the following
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Figure 2: Representatives for the motion equivalence classes ηj , j = 1, . . . , 21 shown in
white.

way. There are 22 motion equivalence classes of subsets of C2
0,0. We denote these

by ηj. Let η22 = {∅} and for j 6= 22 let ηj be the class with the corresponding set of
white points in Figure 2 as representative. Since Z is isotropic, we may as well let
the weights be motion independent, i.e. for all configurations (Bl,Wl) with Wl ∈ ηj
we choose the weight w(q)

l equal to some weight w̃(q)
j depending only on j, see [23]

for a justification. By (4.3) and Proposition 3.5 we must set w̃(q)
22 = 0 for all q < d

in order to obtain convergent algorithms. Thus (4.1) simplifies to

V̂q(Z ∩ A) = aq−d
21∑

j=1

w̃
(q)
j

∑

l:Wl∈ηj

Nl(Z ∩ A ∩ aL)

N(A)
.

Let D ∈ R21×21 be the diagonal matrix with Dii = |ηi|, 1 ≤ i ≤ 21 (see Table 3)
and let (Blj ,Wlj) be a 2× 2× 2 configuration belonging to the equivalence class ηj.
Moreover, let w(q) = (w̃

(q)
1 , . . . , w̃

(q)
21 ) and cq = (cq(Bl1 ,Wl1), . . . , cq(Bl21 ,Wl21)), 1 ≤

q ≤ 3. Then, Theorem 5.1 implies

EV̂2(Z ∩ A) = γe−γEV3(K)w(2)Dc>1 EV2(K) +O(a) (5.1)

and under condition (4.4)

EV̂1(Z ∩ A) = e−γEV3(K)w(1)D
(
γc>2 EV1(K)

+
γ2

2
c>3 (EV2(K))2

)
+O(a). (5.2)

Since the constants ck(Bl,Wl) are independent of the grain distribution and a
Boolean model with balls as grains is a special case of an isotropic Boolean model, it
is enough to consider this situation in order to determine the constants ck(Bl,Wl).
We study this choice in detail in the next section. Furthermore if the typical grain
is a ball with random radius r equation (6.7) which is shown in the next section
implies

EV̂q(Z ∩ A) = aq−3w(q)DQv(a)> +O(aq+1),
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where the matrix Q ∈ R21×8 is defined in (6.6) (see also Table 4) and v(a) ∈ R21

in (6.3). Comparing the summand independent of a with (5.1) respectively (5.2) we
obtain

−Qj
4γ2Er +Qj

5
1
2
γ2π2(Er2)2 = γcj24Er + 1

2
γ2cj34π2(Er2)2

and
−Qj

3γEr
2π = γcj12πEr2.

Thus c1(Blj ,Wlj) = −1
2
Qj

3, c2(Blj ,Wlj) = −1
2
Qj

4 and c3(Blj ,Wlj) = 1
4
Qj

5. For k =
1, 3, ck(Bl,Wl) were also computed directly in [24].

Inserting this in Theorem 5.1 we obtain the following corollary.

Corollary 5.2. Let Z be a stationary, isotropic Boolean model in R3. If Condi-
tion 3.1 is satisfied and w(2)

1 = w
(2)
22 = 0, then

EV̂2(Z ∩ A) = −1
2
w(2)Dγe−γEV3(K)Q3EV2(K) +O(a).

If Condition 3.2 is satisfied, w(1)
1 = w

(1)
22 = 0 and w(1)DQ3 = 0, then

V̂1(Z ∩ A) = w(1)De−γEV3(K)

[
−γ

2
Q4EV1(K) +

γ2

8
Q5(EV2(K))2

]
+O(a).

Now we obtain conditions on optimal weights of local algorithms for the estima-
tion of V 2(Z) and V 1(Z).

Theorem 5.3. Let Z be a stationary, isotropic Boolean model in R3. Let Condi-
tion 3.1 be satisfied. Then, V̂2(Z ∩ A) is an asymptotically unbiased estimator of
V 2(Z) if

w(2)DQ3 = −2 and w
(2)
1 = w

(2)
22 = 0.

Let Condition 3.2 be satisfied. Then V̂1(Z ∩ A) is an asymptotically unbiased esti-
mator of V 1(Z) if

w(1)DQ4 = −2, w(1)DQ5 = −π
and

w(1)DQ3 = w
(1)
1 = w

(1)
22 = 0.

This is satisfied by the weights in Table 5.

Proof. The assertion follows from a comparison of Corollary 5.2 with the Miles
formulas (2.6). The weights in Table 5 fulfill the asserted condition since they fulfill
(6.9) and Q1, . . . , Q8 are the columns of the matrix Q.

The weights w(1) from Table 5 are also optimal based on the results of [24] for the
design based setting where an r-regular set is observed on a randomly translated and
rotated lattice. This follows since w(1)DQ3 = 0 and w(1)

1 = 0 imply the first condition
on the weights in [24, Cor. 5.1 (9)] and hence the convergence of the estimator, and
w(1)DQ4 = −2 implies the second condition of [24, Cor. 5.1 (9)] and hence that
the estimator in the same theorem is unbiased. Thus, the weights in Table 5 are
an optimal choice for isotropic Boolean models in R3 with compact convex grains
satisfying Condition 3.2. But in particular, they are also optimal based on the results
of [24] for the design based setting where an r-regular set is observed on a randomly
translated and rotated lattice.
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6 Optimal algorithms for 3D Boolean models with
balls as grains

We now consider a stationary Boolean model whose grains are a.s. random balls
of radius r ≥ ε for some fixed ε > 0. The choice of balls as grains is also the
situation studied in [18]. In this situation we can show a refined third order version
of Lemma 3.3 with K replaced by a ball using intrinsic power volumes. This third
order expansion will allow us to strengthen the previous results.

6.1 Intrinsic power volumes

The intrinsic power volumes V (m)
j are positive and m-homogeneous functionals on

finite subsets of Rd introduced in [8]. The key ingredient for the refinement of
Lemma 3.3 is the following result of [8, Corollary 6]:

V3(conv(F )⊕ rB3)− V3(F ⊕ rB3)

= πV
(3)

1 (F ) + 2
∞∑

n=1

(2n− 3)!!

2n!!
V

(2n+2)
2 (F )r−(2n−1) (6.1)

which holds whenever F is a finite set satisfying Condition (A) of that paper and r
is sufficiently large. Let F ⊆ C2

0,0 be nonempty. Then F is the vertex set of conv(F )
and no three points in F form a triangle with a strictly obtuse angle. Thus Condition
(A) of [8] is satisfied for F as explained in this paper. Moreover, V (3)

1 is given by the
following formula [8, Equation (17)]:

V
(3)

1 (F ) =
1

12

∑

H∈F1(conv(F ))

γ(conv(F ), H)V1(H)3.

Here F1(conv(F )) is the set of 1-faces in conv(F ) and γ(conv(F ), H) is the exterior
angle, see [8, Equation (3.2)].

Now, for sufficiently large r
a
an application of (6.1) implies

V3(a conv(F )⊕ rB3)− V3(aF ⊕ rB3)

= πV
(3)

1 (aF ) + 2
∞∑

n=1

(2n− 3)!!

2n!!
V

(2n+2)
2 (aF )r−(2n−1)

= a3πV
(3)

1 (F ) + 2
∞∑

n=1

(2n− 3)!!

2n!!
V

(2n+2)
2 (F )a2n+2r−(2n−1).

Since r
a
≥ ε

a
a.s. and all coefficients are positive,

EV3(a conv(F )⊕ rB3)− EV3(aF ⊕ rB3) (6.2)

= a3πV
(3)

1 (F ) + 2
∞∑

n=1

(2n− 3)!!

2n!!
V

(2n+2)
2 (F )a2n+2E(r−(2n−1))
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for sufficiently small a. The formulas for the intrinsic power volumes V (2n+2)
2 are

rather involved, so the above formula is not suitable for general computations. How-
ever, we obtain

EV3(a conv(F )⊕ rB3)− EV3(aF ⊕ rB3)− a3πV
(3)

1 (F ) ∈ O(a4).

Now (3.2), (6.2) and the Steiner formula (2.2) yield

P (aF ⊆ R3\Z) = exp
(
− γ
[

4
3
πEr3 + aV1(convF )Er2π

+ a2V2(convF )2Er + a3
(
V3(convF )− πV (3)

1 (F )
)

+O(a4)
])
.

A development of the exponential function implies the third order expansion

P (aF ⊆ R3\Z) = exp
(
−γ 4

3
πEr3

)(
1− aγπEr2V1(convF )

+ a2γ
2π2(Er2)2

2
V1(convF )2 − a3γ

3π3(Er2)3

6
V1(convF )3

+ a32γ2πErEr2V1(convF )V2(convF )

− a2γ2ErV2(convF )− a3γV3(convF ) + a3γπV
(3)

1 (F )
)
.

Now define

v(a) = e−γ
4
3
πEr3

(
eγ

4
3
πEr3 , 1, −aγEr2π, −a2γ2Er, a2γ

2π2(Er2)2

2
,

− a3γ, a3γ22πErEr2,−a3γ
3

6
π3(Er2)3

)
. (6.3)

For 1 ≤ i ≤ 21 and S ∈ ηi we define pi = P (aS ⊆ R3\Z). Let P i = (P i
1, . . . , P

i
8) be

the vector

P i = (0, 1, V1(convS), V2(convS), V1(convS)2,

V3(convS)− πV (3)
1 (S), V1(convS)V2(convS), V1(convS)3).

Then
pi = P iv(a)T +O(a4). (6.4)

The values needed to compute P i for i 6= 21 are given in Table 3 in the appendix,
see also [18, Table 4] for the first three columns. For Wli ∈ ηi, the configuration
(Bli ,Wli) satisfies by (3.1) and (6.4) the relation

P (aBli ⊆ Z, aWli ⊆ R3\Z) =
21∑

j=1

∑

S⊆Bli

(−1)|S|pj1{Wli
∪S∈ηj}

=
( 21∑

j=1

∑

S⊆Bli

(−1)|S|P j1{Wli
∪S∈ηj}

)
· v(a)T +O(a4)

= Qi · v(a)T +O(a4) (6.5)
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where

Qi = (Qi
1, . . . , Q

i
8) =

21∑

j=1

( ∑

S⊆Bli

(−1)|S|1{Wli
∪S∈ηj}

)
P j. (6.6)

Writing Q =




Q1

...
Q21


 and P =




P 1

...
P 21


, we thus get a matrix M such that

Q = MP

where the entries of M are given by

(M)ij =
∑

S⊆Bli

(−1)|S|1{Wli
∪S∈ηj}.

The matrix M is shown in Table 2 in the appendix. Clearly, Qj
1 = 1{j=1} − 1{j=22}

and Qj
2 = 1{j=22}. The values of (Qj

3, . . . , Q
j
6) are given in the appendix Table 4.

Let w(q) = (w̃
(q)
1 , . . . , w̃

(q)
21 ). By (4.3) and since the configurations of one motion

equivalence class all have the same weight, the mean of a local algorithm is thus
given by

EV̂q(Z ∩ A) = aq−3

21∑

j=1

w̃
(q)
j |{l : Wl ∈ ηj}|P (aBlj ⊆ Z, aWlj ⊆ Rd \ Z).

Now it follows from (6.5) that

EV̂q(Z ∩ A) = aq−3w(q)DQv(a)> +O(aq+1). (6.7)

Note that using V0(rB3) = 1, V1(rB3) = 4r, V2(rB3) = 2πr2 and V3(rB3) =
4
3
πr3, the Miles formulas (2.6) can be written as

V q(Z) = aq−3v(a)bTq ,

where 0 ≤ q ≤ 3 and

b3 = (1,−1, 0, 0, 0, 0, 0, 0) (6.8)
b2 = (0, 0,−2, 0, 0, 0, 0, 0)

b1 = (0, 0, 0,−2,−π, 0, 0, 0)

b0 = (0, 0, 0, 0, 0,−1,−2,−π).

In particular, the best possible local algorithm for V q(Z) based on the compu-
tations of this section would be one that satisfies

w(q)DQ = bq. (6.9)

This can be used to check how well suited an established algorithm is for Boolean
models, as we shall see in the next section.
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6.2 Application to algorithms

In [18, Table 1] a set of weights is suggested based on a discretisation of the Crofton
formula, using an approximation of Z by 4 different adjacency systems. For each
algorithm, we apply the above to compute the left hand side of (6.9). The outcomes
are shown as row vectors in Table 1. These should be compared to the optimal
values bq.

Table 1: Mean of the algorithms suggested in [18]. This should be compared to the true
values (6.8). The values computed in [18] are shown in parenthesis.

V i Adjacency system w(q)DQ

V 2 All 0 0 −2 0 −2.7798 0.5253 −0.0015 −4.0161
V 1 All 0 0 0 −2 −3.6096 0 −3.9733 −11.7843
V 0 (F6,F26) 0 0 0 0 −0.0131 −1 −2.1895 −3.6284

(−0.0130) (−2.19) (3.62)
V 0 (F14.1,F14.1) 0 0 0 0 −0.0399 −1 −2.6286 −4.9038

(−0.0399) (−0.42) (−4.90)
V 0 (F14.2,F14.2) 0 0 0 0 −0.0460 −1 −2.6461 −4.9786

(−0.105) (−0.44) (−5.34)
V 0 (F26,F6) 0 0 0 0 0 −1 −3 −6

(0) (−3) (−6)

The computations of the asymptotic bias are also made in [18] up to second order.
The third order term is approximated by leaving out the unknown contribution
from V

(3)
1 . Surprisingly, we see that these terms do not contribute. The V 2 estimator

is asymptotically unbiased, but there is a bias of order a. The estimator for V 1 is
biased and the estimators for V 0 do not even converge when a → 0 except for one
of them, which instead has a large bias. This was already observed in [18].

We remark here that the constants in Table 1 differ from those in [18, Table 4],
which are again different from those computed in [17, Table 1]. While most of the
numbers agree for three of the algorithms for V 0, they are far off for one of them.
We have not been able to find an explanation for this.

We suggest instead to estimate V q by means of an algorithm that satisfies (6.9)
since this will not only be asymptotically unbiased but in finite resolution the bias
will only be of order O(a3−q+1). A set of weights satisfying (6.9) is given by Table 5.
Of course, adding any solution to the homogeneous system w(q)DQ = 0 yields
another set of weights that may be just as good asymptotically.

Appendix

In this appendix, we collect some tables of values computed in the paper.
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Table 2: The matrix M .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 3 −2 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 3 −1 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 3 0 −3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −4 4 2 0 −4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 −4 3 3 0 −3 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 −4 3 2 1 −2 −2 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 −4 2 2 2 0 −4 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 −4 0 6 0 0 0 −4 0 0 0 0 1 0 0 0 0 0 0 0 0
1 −4 2 3 1 −1 −2 −1 0 0 0 0 0 1 0 0 0 0 0 0 0
−1 5 −3 −6 −1 3 3 4 0 −1 0 0 −1 −3 1 0 0 0 0 0 0
−1 5 −4 −4 −2 3 6 1 0 0 −2 −1 0 −2 0 1 0 0 0 0 0
−1 5 −5 −4 −1 6 3 1 −1 −1 −2 0 0 −1 0 0 1 0 0 0 0
1 −6 6 6 3 −6 −12 −2 0 0 6 3 0 6 0 −6 0 1 0 0 0
1 −6 6 7 2 −8 −8 −4 1 2 4 1 1 6 −2 −2 −2 0 1 0 0
1 −6 7 6 2 −10 −8 −2 2 2 6 1 0 4 0 −2 −4 0 0 1 0
−1 7 −9 −9 −3 15 15 5 −3 −4 −12 −3 −1 −12 3 9 9 −1 −3 −3 1

Table 3: List of Vq(F ) and V
(3)

1 (F ) for F ∈ ηj . Here ξ = arctan(
√

2)
2π .

η V3(F ) V2(F ) V1(F ) 24V
(3)
1 (F ) Djj

η1 1 3 3 3 1
η2

5
6

9
4 +

√
3
4

9
4 + 3

√
2ξ 9

4 + 6
√
2ξ 8

η3
1
2

3
2 +

√
2
2 2 +

√
2
2 2 +

√
2 12

η4
2
3

3
2 +

√
3
2

3
2 + 6

√
2ξ 3

2 + 12
√
2ξ 12

η5
2
3

3
2 +

√
3
2

3
2 + 6

√
2ξ 3

2 + 12
√
2ξ 4

η6
1
3 1 +

√
2
2

3
2 +

√
2
2 +

√
3
6

3
2 +
√
2 +

√
3
2 24

η7
1
3

3
4 +

√
2
2 +

√
3
4

5
4 +

√
2
2 + 3

√
2ξ 5

4 +
√
2 + 6

√
2ξ 24

η8
1
2

3
4 + 3

√
3

4
3
4 + 9

√
2ξ 3

4 + 18
√
2ξ 8

η9 0 1 2 2 6
η10

1
6

3
4 +

√
3
4

3
4 + 3

√
2

2 − 3
√
2ξ 3

4 + 3
√
2− 6

√
2ξ 8

η11
1
6

1
2 +

√
2
2 1 +

√
2
2 +

√
3
3 1 +

√
2 +
√
3 24

η12 0
√
2 1 +

√
2 1 + 2

√
2 6

η13
1
3

√
3 12

√
2ξ 24

√
2ξ 2

η14
1
6

1
4 +

√
2
2 +

√
3
4

3
4 +

√
2
2 +

√
3
6 + 3

√
2ξ 3

4 +
√
2 +

√
3
2 + 6

√
2ξ 24

η15 0
√
3
2

3
√
2

2 3
√
2 8

η16 0
√
2
2

1
2 +

√
2
2 +

√
3
2

1
2 +
√
2 + 3

√
3

2 24
η17 0 1

2 1 +
√
2
2 1 +

√
2 24

η18 0 0
√
3 3

√
3 4

η19 0 0
√
2 2

√
2 12

η20 0 0 1 1 12
η21 0 0 0 0 8
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Table 4: Values of Qji .

j Qj3 Qj4 Qj5 Qj6

1 3 3 9 1− π
8

2 − 3
4 + 3

√
2ξ

√
3−3
4 −0.6186 − 4+π(− 3

4+6
√
2ξ)

24

3 1
2 − 6

√
2ξ +

√
2
2

√
2−
√
3

2 −0.4344 − 4+π( 1
2−12

√
2ξ+
√
2)

24
4 0 0 0.022 03 0
5 0 0 0.022 03 0

6 − 1
4 −

√
2
2 + 3

√
2ξ +

√
3
6

1−2
√
2+
√
3

4 −0.068 55 4−π(− 1
4−
√
2+6
√
2ξ+

√
3

2 )

24
7 0 0 0.0174 0
8 0 0 0 0
9 1− 2

√
3

3 0 −0.5580 − 1
3 − π

24 (1− 2
√
3)

10 3
√
2

2 − 6
√
2ξ −

√
3
2 0 −0.1267 − 4+π(3

√
2−12

√
2ξ− 3

√
3

2 )

24
11 0 0 0.032 45 0
12 0 0 0.013 79 0
13 0 0 0 0
14 0 0 0.004 902 0
15 0 0 0.007 310 0
16 0 0 0.008 850 0

17 − 1
4 −

√
2
2 + 3

√
2ξ +

√
3
6

2
√
2−
√
3−1

4 0.042 84
4−π(− 1

4−
√
2+6
√
2ξ+

√
3

2 )

24
18 0 0 0.003 28 0
19 0 0 0.048 98 0
20 1

2 − 6
√
2ξ +

√
2
2

√
3−
√
2

2 0.074 29 − 4+π( 1
2−12

√
2ξ+
√
2)

24

21 − 3
4 + 3

√
2ξ 3−

√
3

4 0.5730 − 4+π(− 3
4+6
√
2ξ)

24

Table 5: Optimal weights.

ηj w̃
(2)
j w̃

(1)
j w̃

(0)
j

η1 0 0 0
η2 0.1777 0.4789 0.1535
η3 0 0 0
η4 0 0 0
η5 0 0 0
η6 0 0 0
η7 0 0 0
η8 0 0 0
η9 2.2019 −0.3769 −0.3024
η10 0 0 0
η11 4.7430 1.0450 −0.3830
η12 0 0 0
η13 0 0 0
η14 0 0 0
η15 0 0 0
η16 0 0 0
η17 0.5241 0.0111 −1.937
η18 0 0 0
η19 0 0 0
η20 −1.4678 0.5583 0.2587
η21 1.1620 −0.7321 0.0031
η22 0 0 0
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