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Abstract

In this paper, we discuss stereological estimation of mean particle volume ten-
sors in R3 from vertical sections. We consider a particle process of compact
particles that can be represented as a stationary marked point process. Un-
der the assumption that the particle distribution is invariant under rotations
around a fixed axis, called the vertical axis, we show how the mean particle
volume tensors can be estimated consistently (in a probabilistic sense) from
observations in vertical sections through a sample of particles. In a simula-
tion study, the new estimator has a superior behaviour compared to an earlier
estimator based on observations in several optical planes.

1 Introduction

Volume tensors, or more generally Minkowski tensors, have been used with success
for shape and orientation description of spatial structures in material science, see
[3], [5], [11], [12]. An early example from the biosciences is given in [2].

Information about shape and orientation from tensors can fairly easily be deter-
mined if a 3D voxel image of the spatial structure under study is available. However,
for biostructures like cells it is even in conventional microscopy difficult to construct
such voxel images. For such cases, local stereological methods of estimating volume
tensors from observations in planar sections have been developed in [9] and [13].
A particular focus has been on methods of obtaining information on shape and
orientation for particle populations.

In this paper, we give an introduction to these methods and also present a new
estimator that has great potential use in optical microscopy.
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2 The particle model

Let X be a particle process of compact particles in R3. We assume that the process
can be represented as a stationary marked point process

{[x(K);K − x(K)] : K ∈ X}.

Here, x(K) ∈ K is a reference point associated to the particle K ∈ X and the mark
K − x(K) is the particle translated such that its reference point is at the origin o.
We let K0 be a random compact set with distribution equal to the particle mark
distribution Q, say. The random set K0 may be regarded as a randomly chosen
particle or a typical particle with o as its reference point. The intensity of the
marked point process, that is the mean number of reference points per unit volume,
is denoted by λ. For a detailed description of stationary particle processes and the
definition of the mark distribution, see [10, Chapter 3].

Our aim is to estimate the mean particle volume tensors EΦr,0
3 (K0) where the

volume tensor of rank r ∈ N0 of a compact set K is given by

Φr,0
3 (K) =

1

r!

∫

K

xr dx. (2.1)

Here, for x = (x1, x2, x3) ∈ R3, xr is the rank r tensor that can be identified with
an array of elements of the form

(xr)i1i2i3 = xi11 x
i2
2 x

i3
3 for i1, i2, i3 ∈ {0, . . . , r} with i1 + i2 + i3 = r.

We thus identify the r-tensor Φr,0
3 with its coefficients with respect to a suitably

chosen basis. The integration in (2.1) is to be understood elementwise.
The estimation will be based on a sample of particles, collected as those particles

with reference point in a full-dimensional compact sampling window W ,

{K ∈ X : x(K) ∈ W}. (2.2)

For an illustration of the sampling procedure, see Figure 1.

Figure 1: A particle K is sampled if its reference point x(K) belongs to W . Sampled
particles are shown hatched.
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Due to the stationarity of the particle process X, we have for any integrable
function f on compact subsets of R3

E
∑

K∈X,x(K)∈W
f(K − x(K)) = λV3(W )E f(K0),

where V3 denotes volume. If we let N(W ) be the number of sampled particles, it
follows that

E
∑

K∈X,x(K)∈W f(K − x(K))

EN(W )
= E f(K0). (2.3)

In particular if f in (2.3) equals the elements of Φr,0
3 , we find that

∑
K∈X,x(K)∈W Φr,0

3 (K − x(K))

N(W )
(2.4)

is a ratio-unbiased estimator of EΦr,0
3 (K0). The estimator (2.4) is consistent (in a

probabilistic sense) under weak assumptions on the particle process, see [4, Corol-
lary 12.2.V] for the case of an ergodic process in an expanding window regime.

The estimator (2.4) requires that the volume tensor Φr,0
3 can be determined on

the sampled particles. If we do not have direct access to the particles in 3D, we need
to develop stereological methods of estimating the volume tensors of the sampled
particles from planar sections.

Stereological estimators of volume tensors based on observations in vertical slices
have been derived in [9] and [13]. In a model-based setting, these estimators are
valid under the restricted isotropy assumption where the distribution of the typical
particleK0 is invariant under rotations around a lineM in the Grassmannian G(3, 1)
of one-dimensional linear subspaces in R3. The line M is called the vertical axis.

To be more specific, let T = L + tB3 be a vertical slice. Here, L is a plane
through the origin, containing M , and tB3 is a ball centred at o and with radius t,
see Figure 2. Let

Φ̂r,0
3 (K) =

1

r!

∫

K∩T
xrG(t2/|pM⊥(x)|2)−1 dx, (2.5)

where G is the cumulative distribution function of the Beta distribution with param-
eters (1/2, 1/2) and pM⊥ is the orthogonal projection onM⊥. Then, cf. [13, Section 3
and Appendix A (online supporting information)],

EΦ̂r,0
3 (K0) = EΦr,0

3 (K0),

and, combining this identity with (2.3),
∑

K∈X,x(K)∈W Φ̂r,0
3 (K − x(K))

N(W )
(2.6)

is a ratio-unbiased (and consistent) estimator of EΦr,0
3 (K0). This estimator will be

called the slice estimator in the following.
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Figure 2: A vertical slice T of thickness 2t. The central plane L contains the vertical
axis M .

Note that under a restricted isotropy assumption, the mean particle volume
tensors EΦr,0

3 (K0) do not vary freely. For EΦ1,0
3 (K0) and EΦ2,0

3 (K0), we have

EΦ1,0
3 (K0) ∈M, (2.7)

and

EΦ2,0
3 (K0)−

(EΦ1,0
3 (K0))

2

2EΦ0,0
3 (K0)

= B



η 0 0
0 µ 0
0 0 µ


BT , (2.8)

where the first column of the orthogonal matrix B is a unit vector, spanningM ([13,
p. 819]). The slice estimator may be adjusted such that constraints of this type are
fulfilled ([13, p. 821–822]).

3 Stereological estimation from vertical sections

In this section, we will show that, under the restricted isotropy assumption, EΦr,0
3 (K0)

can be estimated from observations only in the central plane L of the slice T . To
the best of our knowledge, this estimator has not been described before.

To show this claim, we assume for simplicity that the vertical axisM is the z-axis
and use cylindrical coordinates to obtain

EΦr,0
3 (K0) =

1

r!
E
∫

K0

xr dx

=
1

r!

∫ ∞

z=−∞

∫ ∞

u=0

∫ 2π

θ=0

P
(
(u cos θ, u sin θ, z) ∈ K0

)

· (u cos θ, u sin θ, z)ru dθ du dz.

Using restricted isotropy, we get

EΦr,0
3 (K0) =

1

r!

∫ ∞

z=−∞

∫ ∞

u=0

P ((u, 0, z) ∈ K0)fr(u, z) du dz, (3.1)
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where fr(u, z) is the rank r tensor

fr(u, z) =

∫ 2π

θ=0

(u cos θ, u sin θ, z)ru dθ

for u > 0 and z ∈ R. The elements of the tensor fr(u, z), u > 0, z ∈ R, are given by

fr(u, z)i1i2i3 =

∫ 2π

0

u(u cos θ)i1(u sin θ)i2zi3 dθ

= ui1+i2+1zi3
∫ 2π

0

(cos θ)i1(sin θ)i2 dθ

= ci1i2u
i1+i2+1zi3 ,

say, for i1, i2, i3 ∈ {0, . . . , r} with
∑3

j=1 ij = r, where

ci1i2 =





2
ωi1+i2+2

ωi1+i2+1

(
(i1+i2)/2
i1/2

)

(
i1+i2
i1

) , for i1, i2 even,

0, otherwise.

Here, ωi is the surface area of the unit sphere in Ri. It follows that

EΦr,0
3 (K0)i1i2i3 = (r + 1)ci1i2E

[
Φr+1,0

2,L (K0 ∩ L+)i1+i2+1,i3

]
, (3.2)

where

L = {(u, 0, z) : u, z ∈ R},
L+ = {(u, 0, z) : u > 0, z ∈ R},

and Φr+1,0
2,L (K0∩L+) is the rank r+1 volume tensor of K0∩L+, considered as subset

of L. Alternatively, one can use the larger set K0 ∩ L and obtain

EΦr,0
3 (K0)i1i2i3 = (r + 1)

ci1i2
2

E
[
Φr+1,0

2,L (K0 ∩ L)i1+i2+1,i3

]
.

If, for a compact set K, we let Φ̃r,0
3 (K) be the rank r tensor with

Φ̃r,0
3 (K)i1i2i3 = (r + 1)

ci1i2
2

Φr+1,0
2,L (K ∩ L)i1+i2+1,i3 ,

we find
EΦ̃r,0

3 (K0) = EΦr,0
3 (K0)

and ∑
K∈X,x(K)∈W Φ̃r,0

3 (K − x(K))

N(W )
(3.3)

is a ratio-unbiased (consistent) estimator of EΦr,0
3 (K0). This estimator will be called

the section estimator.
The section estimator is much simpler to implement in microscopy than the slice

estimator and, furthermore, it has technical advantages. For instance, the estima-
tor is not sensitive to shrinkage in the direction perpendicular to the slice. Both
estimators rely on restricted isotropy, which must be assured in applications. Note,
however, that K0 need not be a body of revolution around the vertical axis, but only
its distribution must be invariant under rotations, fixing this axis, see also Figure 4
below.
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4 The Lévy particle model

We have compared by simulation the statistical behaviour of the section estimator
and the slice estimator under a flexible Lévy particle model ([1], [7], [8]).

Under such a model, the random particle K0 is star-shaped with respect to a
point c0 ∈ R3 and distributed as c0+Z, where Z is modelled as a random deformation
of a fixed particle Z0, say, which is star-shaped relative to the origin o. The random
set Z is also star-shaped with respect to o and therefore uniquely determined by its
radial function R : S2 → [0,∞) relative to o. (Recall that R(u) is the distance from
o to the boundary of Z in direction u ∈ S2.) In the model, the radial function R is
given by

R(u) = r(u)X(u), u ∈ S2,

where r : S2 → [0,∞) is the radial function of the fixed particle Z0 and X : S2 →
[0,∞) is an isotropic non-negative Lévy-based stochastic process on S2 of the form

X(u) =

∫

S2
k(u, v)Y(dv).

Here, k is chosen as the von Mises-Fisher kernel ([6]) and Y is a Gamma Lévy
basis. The parameters of the stochastic process X are chosen such that EV3(K0) =
V3(Z0). This ensures that Z is a random deformation of Z0. For more details, see
[13, Section 6].

The set-up is illustrated in Figure 3. We choose x(K0) = o as the reference
point for K0. If c0 6= o, the reference points of the particles in the resulting particle
process may be non-centrally placed in the particles, as illustrated on the profile to
the right in Figure 3. The restricted isotropy assumption is fulfilled if c0 belongs to
the vertical axis M and Z0 is a solid of revolution around M .

Figure 3: 2D illustration relating to the particle model, used in the simulation study. The
typical particle K0 is distributed as c0 + Z where c0 ∈ R3 and Z is a random deformation
of the ellipse Z0. If c0 6= o, the reference points of the particles in the resulting particle
process may be non-centrally placed in the particles, as illustrated on the profile to the
right.
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5 The simulation study

In this section, we compare by simulation the statistical behaviour of the slice es-
timator and the section estimator. We focus on the quality of the estimators of
EΦr,0

3 (K0) for r = 0, 1, 2.
We use a Lévy particle model, fulfilling the restricted isotropy assumption. The

fixed particle Z0 is chosen as a prolate ellipsoid with its longest axis parallel to the
vertical axis. The mean particle volume tensors EΦr,0

3 (K0), r = 0, 1, 2, determine the
model parameters v = EΦ0,0

3 (K0) = EV3(K0), c0 ∈ M and the lengths a > b of the
semi-axes of the ellipsoid Z0. In the simulation study, we use the volume tensors to
estimate this set of natural model parameters. Since c0 ∈M , c0 = ze, where e spans
M , so the focus is here on estimating z. In Figure 4, five replicated simulations of
K0 are shown from the actual model used in the simulation study together with the
ellipsoid Z0 (left).

Figure 4: Particles simulated under the Lévy particle model as random deformations of a
prolate ellipsoid. The ellipsoid is shown to the left, followed by five random deformations.

For a sample of n particles K01, . . . ,K0n, we have determined for r = 0, 1, 2

1

n

n∑

i=1

Φ̂r,0
3 (K0i) (the slice estimator) (5.1)

and
1

n

n∑

i=1

Φ̃r,0
3 (K0i) (the section estimator). (5.2)

In principle, the slice estimator (2.5) requires measurements in the whole slice T
which typically covers the central half of the particle, as illustrated in Figure 5.
In practice (and in the simulations), the slice is subsampled by a systematic set of
parallel planes. We used three equidistant planes in T , as also shown in Figure 5.
Each plane was subsampled by a systematic set of lines that was alternately parallel
and perpendicular to the vertical axis. The distance between lines in a plane was
chosen such that on the average two lines hit the particle in each plane. For more
details, see [9, Fig. 2].

For the section estimator, K0i∩L was subsampled by a systematic set of parallel
lines in L, perpendicular to M . Again, the distance between lines was chosen such
that on the average two lines hit the particle. With this set-up, the amount of work
involved for the slice estimator is approximately three times that of the section
estimator.

The simulation results for the slice estimator and the section estimator are shown
in Tables 1 and 2, respectively, for the case of n=10, 20, 50 and 100 particles. For a
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Figure 5: 2D illustration of the subsampling of a slice T of thickness 2t. The slice is sub-
sampled by three equidistant planes (shown as stippled lines) with distance 2t/3 between
neighbour planes. The position of the lower plane is determined by U which is uniform
random in the interval [0, 2t/3).

sample of n particles K01, . . . ,K0n, the estimators of v are

v̂ =
1

n

n∑

i=1

Φ̂0,0
3 (K0i), ṽ =

1

n

n∑

i=1

Φ̃0,0
3 (K0i), (5.3)

depending on whether the slice estimator or the section estimator is used.

n 10 20 50 100

v 606.860 (0.151) 606.860 (0.095) 606.860 (0.067) 606.860 (0.047)
z −0.073 (6.162) −0.074 (4.021) −0.074 (2.867) −0.074 (2.034)
a 5.821 (0.082) 5.841 (0.054) 5.848 (0.039) 5.852 (0.028)
b 4.981 (0.068) 4.977 (0.044) 4.976 (0.031) 4.975 (0.022)

Table 1: For the slice estimator, we show the mean (and CV) of the estimated mean
particle volume v, displacement z and semi-axis lengths a > b of the prolate ellipsoid
Z0, determined from estimated mean volume tensors based on n simulated particles in
500 000/n simulations. The true parameter values are v = 606.553, z = −0.073, a = 5.857
and b = 4.972. The parameter values resemble the ones obtained in concrete analyses of
microscopy data. The ellipsoid Z0 is shown to the left in Figure 4 followed by five random
particles from the Lévy particle model, used in the simulation study. Estimation is done
under the assumption of restricted isotropy.

n 10 20 50 100

v 606.333 (0.152) 606.333 (0.096) 606.333 (0.068) 606.333 (0.048)
z −0.069 (7.057) −0.069 (4.560) −0.069 (3.258) −0.069 (2.337)
a 5.797 (0.098) 5.832 (0.064) 5.844 (0.047) 5.850 (0.033)
b 4.992 (0.070) 4.981 (0.044) 4.976 (0.032) 4.974 (0.022)

Table 2: For the section estimator, we show the mean (and CV) of the estimated mean
particle volume v, displacement z and semi-axis lengths a > b of the prolate ellipsoid Z0, de-
termined from estimated mean volume tensors based on n simulated particles in 500 000/n
simulations. The true parameter values are given in the legend to Table 1.

Likewise, the estimators of z become

ẑ =
1
n

∑n
i=1 Φ̂1,0

3 (K0i)
1
n

∑n
i=1 Φ̂0,0

3 (K0i)
· e, z̃ =

1
n

∑n
i=1 Φ̃1,0

3 (K0i)
1
n

∑n
i=1 Φ̃0,0

3 (K0i)
· e, (5.4)
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where e spans the vertical axis M . The estimators of the semi-axis lengths a and b
of the ellipsoid Z0 are non-linear functions of the estimators of mean particle tensors
of rank 0,1 and 2.

A total of 500 000 particles was simulated. These particles are used in Table 1
and 2 to produce 500 000/n samples of n particles. Since the same 500 000 particles
are used for all n and the estimated mean particle volume is a simple average,
according to (5.3), the mean of the estimated mean particle volume v in Table 1
and 2 does not depend on n. The mean of the estimated displacement z is also
virtually constant which shows that for the model used in the simulation study the
bias of the estimators of z in (5.4) is negligable, also for as small n as 10.

Table 1 and 2 show that both the slice estimator and the section estimator
provide estimators of the mean particle volume v and the semi-axis lengths a and
b of the prolate ellipsoid Z0 with CVs less than 10 % if 20 or more particles are
sampled while it is needed to sample more than 100 particles if the very small
displacement z is to be discovered. Comparing the section estimator with n particles
to the slice estimator with n/3 particles (same amount of work), the section estimator
is superior.

6 Non-parametric inference

In the simulation study, we used the estimators of mean particle volume tensors
EΦr,0

3 (K0), r = 0, 1, 2, to estimate the parameters in the simulated Lévy particle
model. In cases where the particle model is not a suitable description of the particle
population under consideration, we may still use the mean particle volume tensors
to obtain information about particle size, position, shape and orientation. Here,
EΦ0,0

3 (K0) = EV3(K0) is, of course, a size parameter (mean particle volume) while
c̄ = EΦ1,0

3 (K0)/EΦ0,0
3 (K0) contains information about the deviation of the centre

of gravity from the reference point of the typical particle. Likewise, we can use
EΦr,0

3 (K0), r = 0, 1, 2, to construct an approximating ellipsoid c̄+ē, say, that contains
information about particle shape and orientation of the typical particle. Here, ē is
a centred ellipsoid, called the Miles ellipsoid. It can be constructed from a spectral
decomposition of

EΦ2,0
3 (K0)−

(EΦ1,0
3 (K0))

2

2EΦ0,0
3 (K0)

.

For more details, see [13, Section 4.2 and 4.3].
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