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Abstract

We consider a continuous, infinitely divisible random field in R¢, d = 1,2, 3,
given as an integral of a kernel function with respect to a Lévy basis with
convolution equivalent Lévy measure. For a large class of such random fields we
compute the asymptotic probability that the excursion set at level z contains
some rotation of an object with fixed radius as  — oo. Our main result is
that the asymptotic probability is equivalent to the right tail of the underlying
Lévy measure.

Keywords: convolution equivalence; excursion set; infinite divisibility; Lévy-
based modelling

1 Introduction

In the present paper we investigate the extremal behaviour of excursion sets for a
field (X;)iep defined by

X, = / (= s M(ds). (L.1)

where M is an infinitely divisible, independently scattered random measure on RY,
f is some kernel function, and B is a compact index set. We will assume that
the Lévy measure of the random measure M has a convolution equivalent right
tail ([5, 6, 10]). In [13]| it was shown under some regularity conditions that the
distribution of sup,.p X; has a similar convolution equivalent tail. In the present
paper we will be interested in the excursion set

Am:{t . Xt>£lf}

Under the additional assumption (2.10) below, we derive the result that the asymp-
totic probability of the excursion set at level x containing some rotation of an object
with a fixed radius r has a tail that is equivalent to the tail of the underlying Lévy
measure. A more precise definition of the event that is studied asymptotically is



found in Section 2 below. Measures with a convolution equivalent tail cover the im-
portant cases of an inverse Gaussian and a normal inverse Gaussian (NIG) basis,
respectively, see [13].

Lévy models as defined in (1.1) provide a flexible and tractable modelling frame-
work that recently has been used for a variety of modelling purposes, including
modelling of turbulent flows ([4]), growth processes ([8]), Cox point processes (|7]),
and brain imaging data ([9]). In [9], a model (1.1) with M following a NIG distribu-
tion was suitable for modelling the neuroscience data under consideration. For such
data it is typically of interest to detect for which ¢ € B a given field obtains values
that are significantly large. The results in the present paper will make it possible to
discuss whether a cluster of t € B with large observations jointly form an extreme
observation.

For Gaussian random fields it is known that the distribution of the supremum
of the field can be approximated by the expected Euler characteristic of an ex-
cursion set (see [3| and references therein). The supremum and excursion sets of a
non—Gaussian field given by integrals with respect to an infinitely divisible random
measure has already been studied, when the random measure has regularly varying
tails. Results for the asymptotic distribution of the supremum are found in [11], and
these results are refined in [1| and [2], where results are obtained on the asymp-
totic joint distribution of the number of critical points of the excursion sets. The
arguments are — as in the present paper — based on finding the Lévy measure of a
dense countable subset of the field. However, the remaining proofs rely heavily on
the assumption of regularly varying tails and can therefore not be translated into
the convolution equivalent framework.

Note that convolution equivalent distributions have heavier tails than Gaussian
distributions and lighter tails than those of regularly varying distributions. The
latter statement follows from the fact that convolution equivalent distributions have
exponential tails while regularly varying distributions have power function tails.

The present paper is organised as follows. In Section 2 we define the random
(1.1) and introduce the necessary assumptions. In Section 3 we show three technical
lemmas concerning the asymptotic behaviour of deterministic fields. These results
will be used in Section 4. In Section 4 we show the main result of the paper. The
proof will be in several steps, utilising that X can be decomposed as X'+ X2, where
X' is a compound Poisson sum and X? has lighter tails than X*. The proofs in this
section will apply techniques that are similar to the proofs in [13].

2 Preliminaries

We shall make the same general assumptions as in [13] except for the additional
assumption (2.10) below. For completeness, we will present all assumptions in the
following. Consider an independently scattered random measure M on R, d =
1,2,3. Then for a sequence of disjoint sets (A,)nen € R? in B(R?) the random
variables (M (A;))nen are independent and satisfy M(UA,) = > M(A,). Assume
furthermore that M (A) is infinitely divisible for all A € B(R?). Then M is called a
Lévy basis, see [4] and references therein.



For a random variable X let C'(\ 1 X) denote its cumulant function log E(e*¥).

We shall assume that the Lévy basis is stationary and isotropic such that for A €
B(R?) the variable M(A) has a Lévy-Khintchine representation given by

C(A i M(A)) = idxamg(A) + $X*0my(A) + / (e™ —1—diduli_y(u)) F(ds, du),

AXR
(2.1)
where my is the Lebesgue measure on (R¢, B(R?)), a € R, § > 0 and F is a measure
on B(R? x R) on the form

F(Ax B)=my(A)p(B). (2.2)
We assume that p has an exponential tail with index § > 0, i.e. for all y € R

p((z —y,00))

ePY as T 0. .
o) N (23)

Furthermore, letting p; be a normalization of the restriction of p to (1,00), we
assume that p; has a convolution equivalent right tail, i.e.

(p1 * p1)((z,0))
p1((z,00))

— 2M as T — 00, (2.4)

where M < co. Here p; * p; denotes the convolution. In fact, M = [ e p;(dy), cf.
[10, Corollary 2.1, (ii)]. Writing p((x, 00)) = L(z)e™"%, it is seen from (2.3) that for
ally e R
Lz —y)
L(x)
For each a,b € R, the limit (2.5) holds uniformly in y € [a,b], cf. [10, p. 408]. We
furthermore assume

— 1 as r — 00. (2.5)

/22 p(dz) < co. (2.6)

Now assume that f : [0,00) — [0,00) is a strictly decreasing kernel function satis-
fying

/ f(ls|)ds < o0, (2.7)

R4
and P
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for a finite, positive constant K;. Assume furthermore that f is differentiable with
/! satisfying

F@I< ot ralla o 2.9)

for a finite, positive constant K5. Finally, let » > 0 be fixed and assume that there
exists g such that f(z) < g(z) for all x > 0 and such that

g(x)=f'(r)(x—7r)+ f(r) for all z € [0, 2r]. (2.10)



Note that this in particular satisfied, if f is concave on [0, 2r]. We will furthermore
choose g on [2r, 00) such that it satisfies (2.7)—(2.9).

Let B be a compact, convex subset of R? with mg(B) > 0 and define the set
BaC,={z+y : ze€ B,y C.(0)}, where C,(0) is the ball with center in 0 and
radius . We consider the family of random variables (X;);epac, defined by

X, - /Rdf(\t—s|)M(ds).

See [13] for existence of the integrals.

Example 2.1 (Gaussian kernel function). Suppose that f(z) = e™°*", ¢ > 0, then
the assumptions (2.7)-(2.9) are satisfied, and f is concave on the interval [0, \/%]
In particular, the assumption (2.10) is satisfied for r < #%

Example 2.2 (Matérn kernel function). Suppose that

1

f(x) = mlml"Kn(Mxl),

where K, is the modified Bessel function of the second kind, index n > %, and A > 0.
It can be shown that the Matérn kernel satisfies the assumptions (2.7)—(2.9). See
[12, Example 2.5] and references therein for details. Furthermore [12, Example 2.5]
provides identities for the derivatives of f from which it can be shown that f is

concave in an interval (0,d) close to 0, when n > % In particular, the assumption
(2.10) will be satisfied.

For s € B let C,(s) be the ball in R? with radius r and center s and let S%~! =
{a € R? : |a| = 1} be the unit sphere. For a € S9! define R, to be the rotation
map that rotates a fixed vector oy € S¢~! into . For convenience, we let ay = 1,
ap = (1,0), ag = (1,0,0) for d = 1,2, 3 respectively.

Let D C C,(0) be a set with radius 7 in the sense that there exists 5 € S?~! such
that {s + r8,s — r8} C D. Furthermore, define D*(s) = R,D + s. Recalling the
definition of the excursion set, A, = {t € B& C, : X; > x}, we will be interested
in the event

{there exists t € B,a € S*! : D*(t) C A,}.

Alternatively, this can be expressed as

{sup sup inf X;>x}.
to€B qegd—1 tED(to)

Example 2.3. A possible choice of D is C,.(0). Here the rotations of D are unneces-
sary. Another choice could be that D = {rag, —rap}. A third possibility is the line
segment connecting the points ray and —ray.

For the study of the extremal behaviour of (X;)iepac,, it will crucial that the
field (X;)er is itself infinitely divisible, with T = (B @ C,) N Q%, where Q¢ are
the rational numbers in RY. For details, see [13] and references therein. The Lévy



measure of (X;)ier is the measure v on (R”, B(R™)) defined by v = F o V=1, where
V:R? x R — RT is given by

Vi(s,z) = (2f(|t = s|))er -

Because of the infinite divisibility of (X;);er, we have the following decomposition,
see e.g. [11],
X=X, + X7,
where the fields (X})ier and (X?);er are independent. The first field, (X})ser, is a
compound Poisson sum
N
th = Z Utna
n=0

where N is Poisson distributed with parameter v(A) < oo and A = {z € RT :
sup;er ¥ > 1}. The fields (U]")er are independent and identically distributed with
common distribution v; = v4/v(A), where v, is the measure on (R”, B(R”)) ob-
tained by restricting v to A. Furthermore (X?)cr is infinitely divisible with a Lévy
measure V¢, the restriction of v to A°.

As argued in [13], all the fields U", X!, and X? have continuous extension to
B @ C,. It should furthermore be noted that each of the fields (U}")iepac, can be
represented by (Z f (|t — S|))tEB@CT, where (Z,S) € [0,00) x R? has distribution F},
that is the restriction of the measure F' to the set

VY A) ={(s,2) e R xR : igYPZfdt —s[)>1}.

3 Asymptotic results for deterministic fields

An important property for the arguments in [13] is that for a continuous field
(yt)teBac, it holds for all s € B that

inf _TTY
teB f([t — s)

as © — 00. For the purpose of this paper we shall need a similar but more involved
result concerning the asymptotic behaviour of

—z+ys — 0

. . T — Y T
inf inf  sup — , 3.1
tUEB OtESd_l tEDO‘(to) f<|t - 8|) f(T‘) ( )

where S9! and D%(t) are as defined in the introduction.

Lemma 3.1. Let (y)iepac, be a continuous field. Then there exists a function
Xs((Ye)teBac, ) such that for each s € B
T — Uy x

inf inf sup -
toeB qeSd-1 teD(tp) f(|t - Sl) f(?”)

+ As((Ye)ieBac,) = 0

as x — 00. If (yt)teBac, s constantly equal to y, then A\s((y)iepac,) = y/f(r) for all
s, and if y is a constant, \s((y + yt)iepac,) = y/f(r) + Xs((4t)ieBac, ). Furthermore,
As((Ye)teBac,) only depends on (y¢)iec, . (s) for any € > 0.
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Proof. Let y* = sup,cpge, and y. = inf,cpge,. Then the expression in (3.1) is
bounded from above by

T — Ys T Ty x — s

SUDy, o Nfrepaqey) (It =) f(r) — fOr)  f(r)  f(r)

Similarly, the expression is bounded from below by —y*/f(r). The result for a con-
stant field () is seen from this, and the result concerning adding a constant to (y;)
follows similarly, when the existence of the limit \;((y;)ieBac,) is established. For
each z > 0 we can choose t, € B and o, € S% ! such that

inf inf  sup S - sup . (3.2)

t0€B a€SI1 e paty) f(|t - 5’) f(?”) teDx (t,) f(’t - 5|) f(?“)

First, we show that ¢, — s. We find

T — inftECr(s) Ye T — Yt T — Yt r—y"
= sup ——— > sup

f(T) B teCr(s) (7”)  teDea(t,) f(|t - 5|) N imfteD%(tm) f(|t - 5|) .

When using that inf;c pee i) f(|t — s|) < f(r) this yields

fv—y* < infiepoa i) f(|t — 5[) <1
x — infiec,(s) i f(r)

such that inf,cpe. () f(|t — s|) = f(r) as  — oo. Since it furthermore holds that
infieper) f([t—s]) < f(r) for all {5 # s and o € S, we can conclude that ¢, — s.
From this we can conclude that A\y((y;)ieBac,) only depends on y, for ¢ close to
Cr(s).

In fact, we need a stronger version of this result. From differentiability of f in r
we have for u > 0

B
fu)  f(r)

for b > 0 and some continuous function ¢ with ¢(0) = 0. Using that f is decreasing
we find for each K > 0 that

=blu—r)+ (u—r)p(u—r) (3.3)

x(ﬁ—%)ﬁ—bKngb(—K/x) for0<u<r—§,
x(ﬁ—%)kbl(+¢(l{/w) foru>r+§.

In particular, we can choose K and xy such that for all x > x

x— 1y x —y* K
=) 70 el
x— 1y T — Vs K
f(\t—s])_fr)>f('r) for\t—s|>7"+;.



With this choice of K we have for x > x( that

f inf L= Yt x
inf in sup -
toEB aeSI—1 4 pa(ty) f(t=sl)  f(r)

(3.4)
™ b oSt eptupn, FOE D) 0D
where H, = {t e R : r — K/z < |t —s| <r+ K/x}. Define
h(l) =sup{|p(u—71)| : r—C0<u<r+/{},

and note that h(¢{) — 0 as { — 0.
We will show the convergence result by contradiction. To obtain this, we assume

that there is a sequence r1 < 1 < 9 < Ty < --- and constants a and ¢ > 0 such
that
Tn — Ut Tn i.n — Yt i'n
sup - <a, sup — >a+e€ (3.5)
tepen(e,) F(It =) f(r) tepan (i) J(It=sl)  f(r)

for all n, where o, = a,,,, &, = @, are the corresponding rotations, and ¢, = t,,,
t, = ts, corresponds two the relevant displacements, chosen according to *(3.2).
By going to subsequences we can assume that |t, — s| is decreasing and that («,,)
is convergent. Let ¢ be chosen such that h(¢) < 1/m, where m € N will be deter-
mined later. Let (3, be the rotation that is needed to rotate D+ (0) into D*"(0):
Rg, D*+1(0) = D (0). Choose 6 > 0 according to the uniform continuity of
(zt)teBac, = (y/f(|t — s|))ieBac, such that |z, — 25| < €/4 if |sy — s1] < 0.
Furthermore, § should be chosen so small that § < ¢/2. Choose & > x( such that
d+ K/z < (. Now choose n such that |t,, — t,+1] < /2, such that |Rg,u —u| < /2
for all w € B @ C,, and such that K/x, + |t, — t,11| < K/Z.

Recall that D**(t,) can be parametrised by {R**t + ¢, : t € D} and that
similarly, D*+(t,,4+1) is parametrised by {R,, ,t +t,41 : t € D}. Choose Dz C D
such that D*(t,) N Hy = {R*"t +t, : t € D;}. By the definition of ¢, we have
that

sup Tn TP Tn <a (3.6)

teDonnH; ([t =sl)  f(r)
Let furthermore D;j‘"“ be the rotation centred in s of D**(t,,) N Hz with an angle 3,:
Dg"t = Ry, (D (t,) N Hz — 5) + 5. Now D3"** has the form {R,,,,t+% : t € D;}
for some #; in fact ¢ = Ry, (t, — s) + s, but that will not be important in the
following. Since for t € D; each R,, ,t+ ¢ € D" is the rotation around s of
R, t + t, € D*(t,) N Hz, we have that the distance to s is unchanged. Since
furthermore, |R,,,,t +t — (Ra,t +t,)| < & for t € D; because of the choice of f3,,

the inequality (3.6) now leads to

Ty — Tn
sup S <a+e€/4,

enin F(E =) F(r)

which can be re-parametrised as

1 1
sup T, = — —z < a—+¢€/d. 3.7
Wy <f<|Ran+lt+t—s|> 7)) ~ st S04 37)



Define in the same way D;""'(t,11) = {Ranit + tay1 ¢ € Dz} as a reduced

&
version of D*+1(t,,1). By the definition of ¢,,, we have similarly

1 1
Sup T _ —n <al
teDs <f(|Ran+1t + tn+1 — 8|) f(r)) nt1tttnt1

and by the uniform continuity of (z,) and the small distance between t,,; and ¢ we
have

1 1
supxn< — >—za i< a+e/d. 3.8
2B Wt =) J)) S S B9
Note that D2"**(t,41) is a translation of DI"*'. We shall parametrise all the inter-
mediate translations by

Du,i‘ = {Ran+1t + ’Y(U) tte Dj}

for u € [0,1]. Here y(u) = & + u(ty41 — f) is a linear parametrisation of the line
segment from ¢ to t,,1. Note that Doz = D" and Dy ;z = D5"" (t,41). Now define
v(u) =

ﬁ for uw € [0, 1], where C, K > 0 are chosen such that z(0) = z,, and
z(1) = x,.1, see Lemma A.1 in the Appendix. Suppose we can show that

1 1
o020 (F s =~ 7) e SOr2 09

for all u € [0, 1]. Then choosing u such that z(u) = 7,, and defining #, = v(u) gives
the inequality

1 1
Sup T : - —z s<ate/2.
teDz (f<|Ran+1t + tn) - S|) f(?”)) R“n+1t+t /

Using the uniform continuity of (z;) again together with a reparametrisation gives

'i.n - yt i'n
sup — <a-+3e/4.
S e s ) /

Note that D*+1(t,,)NHz, C D, ; due to the choices of Z and x,, < Z,,. In combination
with (3.4) this gives the desired contradiction to (3.5).

Thus the proof will be complete, if we can show (3.9). First, we observe that
the cases u = 0 and u = 1 follows from (3.7) and (3.8). The result for a general
u € (0,1) will follow, if we for any given ¢ € D; and all u € [0, 1] can show that

z(u)F(u) <a+Z+¢€/2, (3.10)

where
1 1
B = S/ =) ~ 7o)

2= 2R, t+f and y(u) = Ra,,,t + 7(u). For ease of notation, ¢ is suppressed. To
obtain this, we will use that for all ¢ such that » < |t — s| < r + ¢ it holds that

(b—1/m)(|t —s] —1) < <f(]t1— i f(lr)) <(b+1/m)(|t—s—r), (3.11)
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and for r — ¢ < |t — s| < r it holds that

1 1
b+1/m)(Jt—s|—1r) < ( — ) <b-=1/m)(Jt—s|—7r), (3.12)
f(t=sl)  f(r)
where we have applied (3.3) and that h(¢) < 1/m. Note that the assumptions above
give that ||3(u) — s| — r| < ¢ for all u € [0,1]. Furthermore, note that F(u) > 0 if

and only if |7( )
F(0), F(1) <0, (

In the case (

— s| —r > 0. We shall consider the cases (i): F(0), F(1) > 0, (i):
iti): F(0) <0,F(1) >0, (iv): F(0) > 0, F(1) < 0 separately.
) we find using (3.11) that

(b—1/m)x(u)(|F(u) —s| —r) <a+2Z+e€/d (3.13)

for u = 0, 1. Now let G(u) be the linear interpolation such that G(0) = (|7(0)—s|—r)
and G(1) = (|7(1) —s|—7). Then, since (b—1/m)z(u)G(u) < a+Z+¢€/2 foru =0, 1,
and since u — x(u)G(u) is monotone, Lemma A.1 in the Appendix gives that the
above inequality is satisfied for all u € [0, 1]. Since furthermore, u +— |¥(u) — s| is
seen to be convex, we have that (3.13) is satisfied for all u € [0, 1]. Thus also

b+1/m

(b 1/m)()(3(u) = s = 1) < a2+ e/ — 7

holds for all u. Another reference to (3.11) then gives that

b+1/m

r(u)F(u) < (a+ 2+ 6/4)m :

(3.14)
Now consider the case (i7). Since F(u) < 0 if both F(0) < 0 and F(1) < 0, the
property (3.10) is trivially satisfied, if a4+ Z+4¢/2 > 0. So assume that a+Z+¢/2 < 0.
Then we find similarly using (3.12) that

b—1/m

z(u)F(u) < (a+ 2 + 6/4)m

(3.15)

The case case (ii7) is trivially satisfied, since v — F(u) is increasing. For the case
(vi), it is only of interest to show that x(u)F(u) < a+ Z + €/4 for all u € [0, ug),
where F'(up) = 0. To obtain this, the technique from (i) can be repeated, since here
z(u)F(u) <a+ Z+¢e/4 for u = 0,u.

Now the desired inequality (3.10) can be obtained from (3.14) and (3.15) by
letting m — oo. Note that this can be done uniformly in ¢, since the field (z;) is
bounded. ]

The following lemma describes A, for a particularly simple set D*:
Lemma 3.2. If D*(t) = {t + ar,t — ar} for allt € B and o € S, then

1

)\s = s+ar s—ar
((yt)tGB@Cr) azlsl? . 2f( ) (y + + Yy )



Proof. Define us, = s+ ra for a € S41 and Ustrya = S+ 1y +rafort >0 and
v € 891, The latter parametrises points on the boundary of a ball with radius
r and center in s + ¢y. Note that usp~ 0 = Use and that limy 0 Usiya = Usqa-
Furthermore, |ui, o — s| = [ty + ra| = \/t2 + 12 + 2tr cos Z(a, ), where Z(a,7)
denotes the angle between o and . In the one dimensional case, where d = 1, we
e.g. have Z(1,—1) = m. From differentiability of f in r we can write

‘% (fuus,t,j,a —s) f<1r>) B }{;()2) COS‘“"”‘

L(=fr) ral —r
(o (o +ral =)

+ ¢(|ty + ra| = r)(|ty + ra| — r)) -

—f'(r)
fr)?

where ¢ is continuous with ¢(0) = 0. Using a second order Taylor approximation
around 0 of t — \/t? 4+ r2 + 2tr cos Z(«, ) it is seen that (|ty+ra|—r)/t converges
to cos Z(a, ) uniformly in a,~ as t — 0. Thus for all s € B

i <f(|us,t,7l,a —a) f(lr)) _ff% D cos 2(a w\ -0

as t — 0. Since Yy, , . = Yu,.. uniformly in o,y € S due to uniform continuity
of the (y;)-field, we find that if (¢,) is a sequence decreasing to 0 such that zt, — C
as r — 00, then

cos Z(a, )

Y

sup
'Y7a

T = Yus iy 7,0 z —f’(’/’) Yug.o
) 25~ 7~ (O oo = )| 0
as r — 00. From this we find
su max ( i v )
Sl epnioian \ F([t—s)  F(r)
—f/( ) Yt
-, (OFpR et =s = 5 )| o
as x — 0o. Next we claim that for all o,y € S9! and C > 0
tenll)%x ( _{ ()7;) cos Z(t — s,7) — %)
o —f/(T) Ys+ra —f/(T‘) Ys—ra
= max{C’ [T0E cos Z(a,7y) — ) ,—C 70)? cos Z(a,7y) — ) }
1
Z a:g—? L 2f( )(ys—i-ra + ys 'ra) )

with equality if

1
Qo = argmax{m(ys—&-ra + ys—ra) C Ystra 2 yS—TOé} )

aeSd-1
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and furthermore 7o = ag and Cy = f(r)/(=2f"(7))(Yssra — Ys—ra ). For the proposed
choice of ag, g, Cy it is easily seen that

_f/( ) ys+rao _ _CO —f/(T‘) ysfrao
f(r)? f(r) fr)? flr)

and that the common value equals the desired lower bound. It is furthermore seen
that any other choice of a, v, C can only increase one of the two terms above.

Now let (a,) and (7,) be sequences in S9!, let (t,) be a sequence of positive
numbers, and let (z,) be a sequence increasing to infinity. Then the results above
show that

Co—3

cos Z(ag,v0) — cos Z(ap, v0) —

i >> sup ! (ys—l—ra"f‘ys ra)
f(t=sl)  f(r)) ~ aesa 2f(r)

lim inf max (

n—00 teDI(s+vntn)

and that there is equality if o, = ag, v, = Y and x,t, — Cy with ag, vy, Cy as

proposed above. Combined with Lemma 3.1 this gives the desired result. O
Lemma 3.3. Let n € N and assume for each i = 1,...,n that (y})icpac, has the
form

yi = 2" f(jt — s') forallt e B® C,,
where all z* > 0 and s' € R, Let g be as defined in (2.10). Define for s € R?

#ls) = f(r)lssc, () + Lipecy:-(s) supg(lt = ). (3.16)

Then it holds that

n

sup )\S<< s )tEB@C ) < % lz_: Z'o(s")

seB i—1

and

sup sup inf Zyt < Zz (s

to€B qegd—1 tED(to)

Proof. Assume s' € B @ C,.. For each o € S4! and s € B we find that if min{|s +
ra—s'l, |s—ra—s‘|} = r—§ for some § > 0, then max{|s+ra—s'|, |s—ra—s’|} > r+4.
Using the assumption (2.10) then gives

(gl — 8) + gl +8) = Z /(1) = pl(s).

1, . ; z
_(ys+ra + ysfra) < 5

2

This inequality is clearly also satisfied, if both |s+7a —s'| > r and |s —ra—s'| > r.
If s € (B @ C,)° then for all choices of s € B and a € S%~! it holds that

Do | Y

_(y;—&-roc + y;—ra) S (g(‘S +ro— Sl|) + g(|8 —ra— Sl|)) S 2190(81) .

2
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Recalling that {s + ra, s — ra} C D%(s) combined with Lemma 3.2, it is now seen
that for each s € B

A((X; yi)teB@C) < sup. T(Zysw + Zys o)

1=

> Z 2f sup ys+a7" + y;far) < m Z ZZQO(SZ) :

d—1
OCES i=1

Taking supremum over s € B gives the first statement. For the second statement,
we similarly find for each tq € B and o € S9! that

teggt ) £ Z yt < min { Z yt0+7"0" Z yto m}
S § ( Z yzo+ar + Z ?Jzo_w> S Z ZZQD(SZ) .
=1 i=1

i=1

The result follows by taking supremum over ¢, € B and a € S91. O]

4 The main theorem

In this section, we will derive the main result that is Theorem 4.7 below. For = > 0
we define the following set

Az) = {(y)tepac, : sup sup inf gy, >a}.
toEB aegd—1 t€D (to)

Note that for a random field (Y});epac, with excursion set A, = {t € B & C.
Y; > x} we have

P((Y})ieBac, € A(z)) = P(there exists t € B, € S*' : D%(t) C A,).

The first step will be determining the asymptotic behaviour of excursion sets for a
field U with distribution v;.

Theorem 4.1. Assume that (U;)iepac, has distribution vy and let (y)iepac, be
continuous. Then

P((Ut + Yt)teBac, € A(IF)) . 1
L(z/f(r))exp(=Bz/f(r)) — v(A)

/ exp(BAs((Ye)teBac,)) ds as T — 00
B

(4.1)
Furthermore,
P((Up)iesac, € AMx)) 1
L(z/f(r)) exp(—Bz/f(r)) - V(A>md(B) as x — 00, (4.2)
and
P((Us + t)ieBac, € Ax)) [ exp(BAs((41)iepac,)) ds
P((Ut)teBeaCT € A(ZL‘)) - ma(B) asx —o0o. (4.3)

12



Proof. The results (4.2) and (4.3) are direct consequences of (4.1), so we focus on
the proof of (4.1). We can assume that (y;)icpac, is non—negative: Simply write
x = a’' — xg for a suitable xy such that (zo + ¥;)iepac, is non—negative, and find the
limit of
P((Ut + xo + yt)teB@CT < A(a:’))
L@ /() exp(— B (7))

as ' — oo. We find

P((Uy + yi)ieac, € Ax))
1
= —F({(s,2) eR*x R : sup su inf zf(jt—s|)+y>2
oy ({(s,2) sup sup | nf f(t =) +ye > x})

1 . T— Y
= F({s,z eERYxR : z>inf sup —})
v(A) (5, 2) 0,0 e Dex (¢g) f(t —s|)
1 / ) T — Y . T— Y
= L(lnf sup —) exp ( — finf sup —) ds
v(A) Jp  \toayepagy) (It —s]) t0:0 e pa(r) f (|t — s|)
1 / : r— Y : T — Y
+ — L(mf sup —) exp ( — finf sup —> ds.
V(A) Jranp N yepa) f(IE— s]) t0:0 4 paey) f ([t — 5)

(4.4)

First, we show that the second term in (4.4) is o(L(z/f(r)) exp(—pBz/f(r))). Let
Y* = SUP,epec, Ys- Utilising the fact that L(x)exp(—pfx) is decreasing the second
term is for z > y*

< %A) /Rd\B L(%) exp ( . ﬁ%) ds (4.5)

where we have introduced the notation fy(s) = supy, , inf;cpa,) f(|t —s[). From the
arguments similar to the proof of [13, Theorem 3.1] it can be seen that for all v > 0
there exists zg > 0 and C' > 0 such that

L
L((axx)) < Cele=Dre for all x > xg,a > 1. (4.6)

Note that fo(s) < f(r) for all s € R?\ B due to convexity of B. Combining this
with (2.5), (4.6) and the fact that L(z)exp(—yz) — 0 for all v > 0, gives that
the integrand in (4.5) is o(L(x/f(r)) exp(—Bz/f(r))). If we denote the integrand
of (4.5) by h(s;x), it follows by the dominated convergence theorem that (4.5) is
o(L(z/f(r))exp(—pPx/f(r))) if we can find an integrable function g such that

h(s; )
L(z/f(r)) exp(—pBz/f(r))
Let 0 < v < . Then, using (4.6) and the boundedness of L((x—y*)/f(r))/L(x/f(r)),
we can find a constant C' and zy > y* such that for > xg
h(s;x)
L(z/f(r)) exp(=Bz/f(r))

< Conp /1) exw (~(0-2) (555~ 707 ) 0= 07)) -

<g(s), seR%.

(4.7)
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Now, choose R > 0 such that B & C, C Cg(0) and sup,cp f(|t — s|) < f(r) for all
s ¢ Cr(0). Then, using (2.8), we get for s ¢ Cg(0)
1 1
fo(s) <sup f(|t —s|) < sup f(|t—s|) < sup = )
ole) teB (1t =5 teC(0) (¢ = sl tecr() ([t —s|+1)4  (|s| = R+ 1)

It follows that the function (4.7) is integrable.

The theorem now follows by applying dominated convergence to the first term
of (4.4). From Lemma 3.1 we have for s € B

L(infto’a SUDye po (1) %) exp ( — Binfy, o SUP;cpa i) %)
L(z/f(r)) exp(—Bx/ f(r))
Using again that L(z)exp(—/fz) is decreasing we find for x large

T—Yt

L<inft07a SUD e po (1) f(|t_5|)> exp ( — Binfy, o SUP;e pa 1) %)
L(x/ f(r)) exp(=pz/ f(r))

xp(—B(z —y*)/f(r)) 4 o)
xp(—Bz/f(r))

— BAs((ye)e)

<(C+ l)eﬁy* ,

where C'is chosen such that L((x—y*)/f(r))/L(x/f(r)) < C. The result is integrable
over B. u

The next step will be to extend the result of Theorem 4.1 to the case P((U'+- - -+
U'+1y): € A(x)), where U, i = 1,...,n, are independent with common distribution
vi. Recall that each (U})icpac, can be represented by (Z°f(|t — S°])), 5o, » Where
(Z*,S") has distribution Fj. For this purpose we will need the following lemma and

corollary.
Lemma 4.2. Let (Z,5) be distributed according to Fy. Then,
P(Zp(S) > x) R mq(B & C)
L(z/ f(r)) exp(—=pz/f(r)) v(4)

In particular, we have

Eexp(/f(r)Z¢(S)) < oo.

Proof. Similar to the proof of Theorem 4.1 we can write

P(Z6(S) > z) = ﬁF({(s, DERIXR : 2p(s) > 7))

1

-5 / el g expl=a/ (7)) ds

" ﬁ /B@CT L<supteB ;(|t — s|)> P ( B ﬁsupteB gx(|t — 3|)> ds.

The first term equals L(xz/f(r)) exp(—px/f(r)) times the desired limit. The second
term is o(L(z/f(r))exp(—pBx/f(r)) by a dominated convergence argument, since
sup,ep 9([t — s|) < f(r) for all s € (B @ C,)°. The second result follows from [10,
Corollary 2.1 (ii)]. O
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Corollary 4.3. Let U!,U?, ... be independent and identically distributed with dis-
tribution v;. For all n € N it holds that

Eexp <ﬁ sup )\S((Ut1 +--+ Uf)teB@Q)) < 00

seB

Proof. Since each U’ has the form (Z°f([t — S°])),_p.c » the result follows from

Lemma 3.3 and Lemma 4.2. O

Theorem 4.4. Let U, U?,... be independent and identically distributed with dis-
tribution vy and assume that (Y)iepac, s continuous. For all n € N it holds that
P((U+ -+ U+ ) € Az)) n

- Eeﬁ”\s((Ut1+"'+Uzn_1+yt)t) dS
P((U}): € A(2)) ma(B) /B

as r — O0.

Proof. As in the proof of Theorem 4.1 we can assume that (y;)iepac, is non—negative.
The result is shown by induction over n. For n = 1, the result is shown in Theo-
rem 4.1. Assume now that the theorem is correct for some n € N. Let for convenience
V =U'"+ .-+ U" and recall the representation U} = Z'f(|t — S’|). Then we have

P((Vi + U 4y, € M)

_ p(Z Zip(ST) > 1/2, Z" (S > /2, (Vi + UM + ), € A(:z:))
=1

+ p(zn: Zip(S) < af2, (Vi + UM +y) € A(w))

+P(ZM (8" < @/2, (Vi+ UM + g € A2)). (4.8)

The first term is bounded from above by
P(Z Zip(ST) > x/Q)P(Z”“go(S”“) > 2/2).
i=1

In Lemma 4.2 it was shown that the distribution of each Zp(S?) is convolution
equivalent. Thus both factors are asymptotically equivalent with p; ((z/(2f(r)), o0)),
and then it follows from the proof of [5, Lemma 2| that the product is o((p; *
p1)((x/f(r),00))). In particular, the product above is o(p1((z/f(r),o0))) due to the
convolution equivalence.

The two remaining terms in (4.8) divided by P((U}); € A(z)) can be rewritten
as follows

PUUR + S0y 2 (= 5 + 900 € A®) 1 0
/ : P((UD): € A@)) B 550527 57)
P((Vi+zf(|t = s|) + ye)e € A(x))
*/c P((07); € Ax))

Fd(z,5)). (4.9)
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Here F;®" is the n—fold product measure of F, and it has been used that (V;); can
be represented by (Y7, Z°f(|t — S%])),. Furthermore,

n

C, ={(z"s"...;2" ") Zzicp(si) < z/2}

=1

C, = {(z,5) : 2p(s) < z/2}

Using Theorem 4.1 and the induction assumption, the two integrands of (4.9) times
lc, and 14 respectively, converge to, as  — oo,

]. / n 7 7
Ll gy (e # S (=D pac,)
2,820 8" = e s
fl( ) md(B) B
and
n 1 n—1

Folzns) = / FePA(Ul+U " (s +epacy) g
2{#) ma(B) Jp

respectively. We want to show that (4.9) converges to

/ il s 2 ) BN A( s s ™) o+ / folz,5) Fi(d(2, 5))

B B /Eeﬁ/\s((U§+--~+Ui’+yz)t) ds.
md(B) B

Using Fatou’s lemma, it is enough to find integrable functions g; (2!, s';...; 2" s"; x)

and ¢a(z,s;x) that are upper bounds of the two integrands of (4.9) such that
the two limits gy (21, s%;...; 2", 8") = lim, 00 g1(2%, 8% ... 52", 8™ 2) and go(2,s) =
lim, o0 g2(2, $; ) exist with

/91(21751;---;Z”,S";SU)FI‘@"(d(Zl,Sl;---;Z”,S"))+/ ga(2, 82) F1(d(2, 5))
Cy Cy

(4.10)
converging to the similar integrals with g;(z!,s';...;2" s") and go(z,s). Using
Lemma 3.3 we find that as functions g;(z;x) and go(z', ..., 2"; ) we can use

P(Z'o(SY) >z —y* =Y, 2p(s
gzl st s ) = (Zrp(SY) >z —y" =3, 2'e(s)

P((Uh): € I'(z)) ’

where as previously y* = sup;cgec, ¥, and

_ P Z0(ST) > x — gt — zp(s))
P((Uy): € T'(x)) '

92(2, s3)

Noting that P((U;); € T'(x)) ~ mg(B)/ma(B & C,)P(Z'¢(S') > z) due to Theo-
rem 4.1 and Lemma 4.2, we find that

gzt st 2 s ) = izl st 2t 8"

_ MaBECY) 1)+ Ty #(s)
mq(B)

Y
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and since the distribution of Y | Zp(S") is convolution equivalent, [6, Corol-
lary 2.11] gives

92(27 S5 .I') — 92(27 S)

_maBOGC) /i) ae(s) (B 7He(s) !

md(B)
We observe that
/91<21751;---32n>5n) Fren(d(zt s +/92 z,8) F1(d(z, s))
BoC, n
— M(n 1) PO (Eeﬂ/f(r )Z1p(Sh) ) (4.11)

md(B)

Since the tails of Y | Z'p(S?) and Z'(S) in particular are exponential with index
B/ f(r), we have according to |5, Lemma 2| that (4.10) is asymptotically equal to

PG (ZnHZl (87) > )
P(Z1p(S") > )

which, by another reference to |6, Corollary 2.11], is seen to converge to (4.11). O

For a dominated convergence argument, we need the lemma below.

Lemma 4.5. Let U, U?, ... be independent and identically distributed with distri-
bution vy, and assume that (Z,S) has distribution Fy. There exists a constant K
such that for allm € N and all z > 0

P((U} +--+ U € Ala)) < K"P(Z(S) > ).

Proof. Since Zp(S) has a convolution equivalent tail according to Corollary 4.1 it
follows from [6, Lemma 2.8] that there exists K such that

P(Z Z'p(S") > x) < K"P(Zp(S) > x).

The result now follows directly from Lemma 3.3. m
Recall that we can write the field (X;);er as
X, =X+ X2,

where the field X! is obtained from the fields U', U?, ... and an independent Poisson
distributed variable N with parameter v(A) by

N
=> Ur.
n=1

Theorem 4.6. For cach s € B we have E exp (BA\((X})iepac,)) < 0o and for a
continuous field, (y;)iepac,

lim P((Xl Ty € A(l’)) — / E( s ((X¢ +yt)t€B€BCr)) ds .
z=o0 L(x/ f(r)) exp(=Bz/f(r))  Jp
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Proof. The first result follows from A\,((X})icpac,) < ﬁ SN Zip(S7) and from
Eexp(8/f(r)Z'¢(S')) being finite. For the proof of the limit result, we use that

> l/
P((X; +yo) € =e WY

n=1

TL

TL' "+Uf+yt)t S A(l’))

Utilising Lemma 4.5 and the notation y* = sup;cgqc, ¥, we find

iy (U} + -+ U + ) € Az))
—~ nl P<Z¢(S) > —y¥)

Zs@(S) >z —y) = K'v(A)"

= 4+ UM, € Mz —y))
Z P(Zw(S) > —y)
2

=) —— 2 <
ZoS) >e—y) &= a7
and furthermore, we obtain from Lemma 4.2 and Theorem 4.4 that
. P((U+ -4+ UM+ 1) € A(x))
M PZa(S) > —y)
n 1 n—1
— EePAs (U +FU" Hy)e) (g .
B/ IOV ma(B & C,) /B € 5

with the convention that U} +---+U*"! = 0 if n = 1. Then, dominated convergence
gives

lim P((X! + i) € M2))
z—o0 P(Zp(S) >z — y*)

—v(A a n
_ 0 yoAAr, / PN (U077 ) 4
B

eP/Iw my(B @ C,) - n!
_ V(A) Z e—y(A) ’/(A>n / Eeﬁ)\s((Ug-i-“‘-i-UgL'i‘yt)t) ds
eﬁ/f(”)y*md(B P CT) — n! B
_ V(A) / E<65A5((Utl+“~+UtN+yt)t))
eﬁ/f(r)y*md(B fan) CT) B
_ V(A) / (P00
ePl Iy my(B @ C,)

which with a final reference to Theorem 4.1 and Lemma 4.2 concludes the proof. []

The theorem below is the main result of our paper. In the formulation of the
theorem, we explicitly state the assumptions under which the limit holds.

Theorem 4.7. Under the assumptions (2.1)—(2.6) on M and (2.7)-(2.10) on f,
then it holds that E exp (B, ((X¢)iepac,) < oo and

lim P(SuptoeB SUP,ega-1 INfepa(ry) X¢ > )
@00 L(z/f(r)) exp(—pBz/ f(r))

as x — oo with ty € B arbitrarily chosen, and where Ay, is as defined in Lemma 3.1.

= Fexp (ﬁ/\m«Xt)teB@Cr)md(B)
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Proof. First we note that E exp(7y sup;egee, X7) < oo for all v > 0 according to [13,
Lemma 4.1]. Since furthermore

Ao ((X1)e) < A (X} + Slip XD)i) = Mo ((X))e) + Sgp X2/ f(r)

due to Lemma 3.1, the first statement follows from the first statement in Theo-
rem 4.6. Let m be the distribution of (X?)icpac,. We find that

P((X)): € Aw) / P((X! +y) €A
P((X¢): € M

P((X{): € Az))
with

55))ﬂ(dy)=:h/“f(y;x)ﬂ(dy),

P((X! + )i € Ax))
P((X}): € Az))

fly;x) =
From Theorem 4.6 it is seen that

fB E(eﬁ)‘S((Xt1+yt)teB®Cr)) ds
fly;z) — fly) = fBE(eﬁ/\s((th)teB@cr)) g as T — 00.

If we can show that
[ st~ [ )y (4.12)

as © — 00, then the theorem follows with another reference to Theorem 4.6 and by
recalling that (X;)iepac, is stationary. According to Fatou’s lemma, (4.12) follows
if we can find integrable non-negative functions g(y; x) and g(y) such that

flyso) < gly; ), (4.13)
g(y;x) = g(y) 4.14)
(/m%@wmw—ﬁ/awwmw. (4.15)

For this purpose, let

 P((X}+sup,y) € Alx))
g(y; z) = P((X}); € Ax))

Then, (4.13) is satisfied. Furthermore, using Theorem 4.6 and Lemma 3.1, we find
that (4.14) is fulfilled with g(y) = e#//(swe¥ To prove (4.15), we have that

P(sup,, ., infyepo(y) Xi + sup, X7 > )

/g(y; ) mo(dy) =

P(supy, o infiepagy) X} > )

Note that sup,, , infiepa ) X! has a convolution equivalent tail according to Theo-
rem 4.6 and [10, Lemma 2.4 (i)|. Since F exp(ysup, X?) < oo for all v > 0 we have
from [10, Lemma 2.1| and [10, Lemma 2.4 (ii)] that

P(supy, o, infyepagy) Xi + sup, X7 > )

500 P(sup,, , infie pazy) X} > 1)
— B(exp(3/ () up X2) = [ o) w(d).
It follows that (4.15) is fulfilled. O
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A Appendix

The following simple lemma will be used in Lemma 3.1:

Lemma A.1. Let 0 < x, < x,41 be given. Then there exists constants C, D > 0
such that x : [0,1] — [0, 00) defined by

C

“i=uiD (A1)

z(u)
is strictly increasing with x(0) = z,, and (1) = x,,41. Furthermore, if g(u) = au+0,
then w — x(u)g(u) is monotone on [0, 1].

Proof. Any function on the form (A.1) is clearly strictly increasing on [0, 1]. The con-
stants C', D are found by straightforward manipulations. The last result is obtained
by differentiating u +— z(u)g(u). O
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