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Paper B A. Kousholt and M. Kiderlen, Reconstruction of convex bodies from surface
tensors, Adv. Appl. Math., 76, 1–33, 2016
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tensors, Accepted for publication in Adv. Appl. Math., 2016
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Summary

Minkowski tensors are tensor-valued valuations that generalize notions like surface
area and volume. Recently, Minkowski tensors have been established as robust and
versatile descriptors of shape of spatial structures in applied sciences, see [5, 42, 43].
In this thesis, different aspects of Minkowski tensors of convex bodies are investigated.

From Crofton’s formula for Minkowski tensors we derive stereological estimators
of translation invariant surface tensors of convex bodies. The estimators are based on
one-dimensional linear sections. In a design-based setting, we suggest three types
of estimators. These are based on isotropic uniform random lines, non-isotropic
random lines and vertical sections, respectively. In a model-based setting, we derive
estimators of the specific surface tensors associated with a stationary process of
convex particles.

We investigate how much information about a convex body a finite number
of surface tensors contain. We show that the shape of a convex body is uniquely
determined by a finite number of surface tensors if and only if the convex body
is a polytope with nonempty interior. Further, stability results for surface tensors
and harmonic intrinsic volumes are derived, and reconstruction algorithms that
approximate convex bodies by polytopes are developed. The algorithms are based
on a finite number of exact surface tensors or a finite number of possibly noisy
measurements of harmonic intrinsic volumes. Using the derived stability results,
consistency of the algorithms is established. In the case of noisy measurements,
appropriate assumptions on the variance of the noise variables are required to obtain
consistency. The algorithms are implemented and their feasibility is illustrated by
examples.

As for surface tensors, we investigate how much information about a convex body
can be retrieved from a finite number of its geometric moments, equivalently of
its volume tensors. We give a sufficient condition for a convex body to be uniquely
determined by a finite number of its geometric moments, and we show that among all
convex bodies, those which are uniquely determined by a finite number of moments
form a dense set. Further, we derive a stability result for convex bodies based on
geometric moments. The stability result is improved considerably by using another
set of moments, namely Legendre moments. We present a reconstruction algorithm
that approximates a convex body from a finite number of possibly noisy Legendre
moments. Consistency of the algorithm is established using the derived stability
result for Legendre moments. Again, appropriate assumptions on the variance of the
noise variables are required when the Legendre moments are disrupted by noise.
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Resumé

Minkowski-tensorer er valuationer med værdier i rummet af symmetriske tensorer
over det n-dimensionale euklidiske rum. De generaliserer begreber som overfladea-
real og volumen og er med succes blevet brugt inden for det naturvidenskabelige
område til at beskrive geometrien af rumlige strukturer, [5, 42, 43]. Formålet med den-
ne afhandling er at belyse og undersøge forskellige aspekter af Minkowski-tensorer
af konvekse legemer.

Ved at benytte Croftons formel for Minkowski-tensorer udledes stereologiske esti-
matorer for overfladetensorer. Vi beskriver tre typer designbaserede estimatorer, som
bygger på henholdsvis isotropiske uniforme stokastiske linjer, stokastiske linjer med
foretrukne retninger samt vertikale snit. Endvidere udledes en modelbaseret esti-
mator for specifikke overfladetensorer af en stationær partikelproces med konvekse
partikler.

Herefter undersøges det, hvor megen information endeligt mange overfladetenso-
rer af et konvekst legeme indeholder om legemet. Specielt vises det, at et konvekst
legemes form er entydigt bestemt af endeligt mange overfladetensorer, hvis og kun
hvis legemet er en polytop med indre punkter. Endvidere udledes stabilitetsresultater
for overfladetensorer og harmoniske indre volumener, og der udvikles algoritmer, der
approksimerer et ukendt konvekst legeme med polytoper. Inputtet af algoritmerne er
enten endeligt mange overfladetensorer af det ukendte legeme eller målinger (mulig-
vis behæftet med støj) af endeligt mange harmoniske indre volumener af legemet. Ved
at benytte de udledte stabilitetsresultater sikres det, at algoritmerne er konsistente.
Når målingerne er behæftet med støj, kræves det, at variansen er kontrolleret på
passende vis.

Tilsvarende undersøges det, hvor megen information endeligt mange geometriske
momenter af et konvekst legeme indeholder om legemet. Dette er ækvivalent til at
undersøge informationsmængden i endeligt mange volumentensorer. Vi giver en
betingelse, der sikrer, at et konvekst legeme er entydigt bestemt af endeligt mange
geometriske momenter og viser yderligere, at konvekse legemer, der er entydigt
bestemt af endeligt mange momenter, udgør en tæt delmængde i rummet af konvekse
legemer. Vi udleder stabilitetsresultater for geometriske momenter og forbedrer re-
sultaterne betydeligt ved at erstatte geometriske momenter med Legendre-momenter.
Endeligt udvikles en rekonstruktionsalgoritme baseret på endeligt mange Legendre-
momenter. Algoritmen approksimerer et ukendt konvekst legeme med en polytop og
tillader, at Legendre-momenterne er behæftet med støj. Det vises, at algoritmerne er
konsistente ved at benytte stabilitetsresultatet for Legendre-momenter. Igen kræves
det, at variansen på støjvariablene er passende kontrolleret for at sikre, at algoritmen
er konsistent.

ix





Introduction

The geometry of physical and biological spatial structures often reflects properties
of the material under consideration. Therefore, understanding of the geometry can
give insight into the physical and biological behaviour of the material. Essential
properties of the geometry are summarized by scalar-valued size measurements such
as volume, surface area and Euler characteristic. However, quantifying more com-
plex geometric information such as shape, orientation, elongation and anisotropy
requires descriptors of a different nature. A recently introduced set of tensor-valued
geometric descriptors, namely Minkowski tensors, have received considerable atten-
tion. Minkowski tensors have with success been used to quantify shape information
in materials science, see [6, 42, 43] and the references given there. Applications in
biosciences have also appeared, see [5]. From a theoretical point of view, Minkowski
tensors are also interesting. This is demonstrated by Alesker’s characterization theo-
rem stating that Minkowski tensors multiplied with powers of the metric tensor span
the vector space of isometry covariant, continuous, tensor-valued valuations on the
set of convex bodies, see [2].

The aim of the present thesis is to investigate different aspects of Minkowski ten-
sors. In particular, we study the connection between a convex body and its Minkowski
tensors. We develop estimation procedures for Minkowski tensors in a stereological
setting based on information of the underlying convex body, and conversely, we
explore what information about a convex body can be retrieved from a finite number
of its Minkowski tensors.

This chapter serves as an introduction to Papers A–D that constitute the thesis.
The research questions treated in the papers are presented together with the obtained
results. Further, the results are related to each other and to the existing literature
within the field. The first section provides background material and introduces the
main notions of the thesis. As general references on convex, stochastic and integral
geometry, we refer to the comprehensive monographs [38] and [41].

1 Background

We work in the n-dimensional Euclidean vector space R
n equipped with its usual

inner product 〈 · , · 〉 and norm ‖ · ‖. The volume and the surface area of the unit ball
Bn in R

n are denoted by κn and ωn, respectively. The unit sphere in R
n is denoted

by Sn−1. Further, we let λ denote the Lebesgue measure on R
n, and for k = 0, . . . ,n,

we let Hk denote the k-dimensional Hausdorff measure.
Slightly different variants of the definition of a convex body can be found in the

literature. In [38], a convex body is a nonempty, compact, convex subset of Rn. In [9],
a convex body is further required to have nonempty interior. To ease notation, it is

1



2 Introduction

convenient to use a certain definition depending on the application in mind, and
therefore, the definition of a convex body varies between Papers A–D. In Paper A, a
convex body is a convex and compact subset of Rn. In Papers B and C, we use the
definition from [38], and in Paper D we follow [9]. In this introductory chapter, we
use the definition from Paper A. However, when the results from Papers B–D are
described, a convex body is defined as in the relevant paper.

The set of convex bodies in R
n is denoted by Kn and is closed under Minkowski

addition,
K +L = {x+ y | x ∈ K, y ∈ L}, K,L ∈ Kn,

and scalar multiplication,

αK = {αx | x ∈ K}, α ∈R, K ∈ Kn.

A nonempty convex body K is uniquely determined by its support function hK given
by

hK (u) = sup
x∈K
〈x,u〉

for u ∈ Sn−1. The set of nonempty convex bodies Kn \ {∅} is equipped with the Haus-
dorffmetric δ that can be expressed in terms of support functions,

δ(K,L) = min{α ≥ 0 | K ⊆ L+αBn, L ⊆ K +αBn}
= sup
u∈Sn−1

|hK (u)− hL(u)|

for K,L ∈ Kn. In addition to the Hausdorff metric, we use the L2-metric on Kn \ {∅}.
The L2-distance between K and L is defined as the L2-distance between their support
functions,

δ2(K,L) = ‖hK − hL‖2.

The Hausdorff metric and the L2-metric are equivalent.
For an abelian group G, a function φ : Kn→ G is called a valuation (or additive)

if φ(∅) = 0 and
φ(K ∪L) +φ(K ∩L) = φ(K) +φ(L) (1)

whenever K,L,K ∪L ∈ Kn.

1.1 Intrinsic volumes

Intrinsic volumes are important geometric characteristics of convex bodies. For a
nonempty convex body K , the intrinsic volumes of K can, for instance, be defined
using the Steiner formula that states that the volume of the parallel set K + εBn of K
is a polynomial in ε > 0,

λ(K + εBn) =
n∑
j=0

εn−jκn−jVj (K). (2)

The intrinsic volumes V0(K), . . . ,Vn(K) of K are defined by the coefficients in the
polynomial on the right hand side of (2). The definition is extended letting Vj (∅) = 0
for j = 0, . . . ,n. The Steiner formula (2) was first proved for polytopes and sufficiently
smooth surfaces in R

2 and R
3 by Steiner in [44].
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ε

P

Figure 1: Parallel set P + εB2 of polytope P ⊆R
2 with ε > 0. By the Steiner formula, the area

of the parallel set is πV0(P )ε2 + 2V1(P )ε+V2(P ).

The intrinsic volumes V0, . . . ,Vn summarize geometric features: Vn is the volume,
2Vn−1 is the surface area (on the set of convex bodies with nonempty interior), V1
is proportional to the mean width, and V0 is the Euler characteristic (the Euler
characteristic is trivial on Kn, but its extension to polyconvex sets (finite unions of
convex sets) is an interesting geometric characteristic).

The term ‘intrinsic volumes’ was first used by McMullen in [29] and can be
explained by the fact that the intrinsic volumes of a convex body K depend only on
K and not on the dimension of the ambient space. In particular, the mth intrinsic
volume Vm(K) is the m-dimensional volume of K if K is contained in an affine
subspace E ⊆R

n of dimension m. In the literature, with different normalizations, the
intrinsic volumes are also known as ‘quermaßintegrals’ and ‘Minkowski functionals’.

Via the Steiner formula, the intrinsic volumes inherit several properties from the
volume functional. The intrinsic volumes are continuous, translation and rotation
invariant, real-valued valuations. According to Hadwiger’s characterization theorem,
intrinsic volumes are essentially the only functionals on Kn with these properties
as V0, . . . ,Vn constitute a basis for the vector space of continuous, translation and
rotation invariant, real-valued valuations on Kn, see, e.g., [41].

Due to their properties and to Hadwiger’s characterization theorem, the intrinsic
volumes are natural size descriptors that provide essential and complete information
about invariant geometric features of convex bodies. However, the important func-
tional properties of intrinsic volumes also set a limit to their use as descriptors. For
instance, due to rotation invariance, intrinsic volumes do not capture the orientation
of convex bodies. In order to describe more complex shape information of convex
bodies, the scalar-valued intrinsic volumes are extended to a set of tensor-valued
descriptors, namely Minkowski tensors.

1.2 Minkowski tensors

Let Tp be the vector space of symmetric tensors of rank p over Rn, i.e. the space of
symmetric multilinear functions of p variables in R

n. Due to multilinearity, a tensor
T ∈ Tp can be identified with the array

{T (ei1 , . . . , eip )}ni1,...,ip=1
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of components of T , where (e1, . . . , en) is the standard basis of Rn. For tensors T1 ∈ Tp1

and T2 ∈ Tp2 , the symmetric tensor product T1T2 ∈ Tp1+p2 of T1 and T2 is defined by

T1T2(x1, . . . ,xp1+p2
)

=
1

(p1 + p2)!

∑
σ∈Sp1+p2

T1(xσ (1), . . . ,xσ (p1))T2(xσ (p1+1), . . . ,xσ (p1+p2))

for x1, . . . ,xp1+p2
∈Rn, where Sp1+p2

is the symmetric group on {1, . . . ,p1 +p2}. Identify-
ing R

n with its dual via the inner product, we write xp ∈ Tp for the p-fold symmetric
tensor product of x ∈Rn. The tensor xp can then be identified with the array

{xi1 · · ·xip }
n
i1,...,ip=1.

A tensor-valued function φ : Kn→ T
p is called isometry covariant if the follow-

ing two conditions hold:

1. φ(ρ(K))(x1, . . . ,xp) = φ(K)(ρ−1x1, . . . ,ρ
−1xp) for every ρ in the orthogonal group

O(n), K ∈ Kn and x1, . . . ,xp ∈Rn,

2. φ exhibits polynomial behaviour under translations, i.e.

φ(K + t) =
p∑
j=0

φp−j (K)
tj

j!

for K ∈ Kn, t ∈Rn and suitable functions φp−j : Kn→ T
p−j .

The mathematical investigation of Minkowski tensors was initiated by McMullen
in [30] and continued, among others, by Alesker in [1, 2] and Schneider in [36].
Minkowski tensors are defined using support measures (also called generalized
curvature measures) that arise from a local version of the Steiner formula (2). Let
p(K, · ) : Rn→ K be the metric projection on a nonempty convex body K , i.e. p(K,x) is
the unique nearest point of x ∈Rn in K . Further, define

u(K,x) =
x − p(K,x)
‖x − p(K,x)‖

for x < K . The unit vector u(K,x) is an outer normal of K at the boundary point p(K,x).
For ε > 0 and a Borel set A ⊆R

n × Sn−1, the volume of the local parallel set

Mε(K,A) = {x ∈ (K + εBn) \K | (p(K,x),u(K,x)) ∈ A}

of K is a polynomial in ε of degree at most n− 1, so

λ(Mε(K,A)) =
n−1∑
j=0

εn−jκn−jΛj (K,A). (3)

The coefficients of the polynomial on the right-hand side of this local version of the
Steiner formula define the support measures Λ0(K, · ), . . . ,Λn−1(K, · ) of K . Further,
we define Λj (∅, · ) = 0 for j = 0, . . . ,n− 1.
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ω

S1

β

K

Mε(K,A)

Figure 2: Local parallel set Mε(K,A) of convex body K at A = β ×ω with Borel sets β ⊆ R
2

and ω ⊆ S1.

Letting A = R
n × Sn−1 and comparing (2) and (3), we obtain the intrinsic volumes

as the total mass of the support measures,

Vj (K) = Λj (K,R
n × Sn−1) (4)

for K ∈ Kn and j = 0, . . . ,n− 1.
For a convex polytope P ⊆ R

n, the support measures can be given an intuitive
interpretation as they can be expressed in the form

Λj (P ,A) =
1

ωn−j

∑
F∈Fj (P )

∫
F

∫
N (P ,F)∩Sn−1

1A(x,u)Hn−j−1(du)Hj (dx) (5)

for a Borel set A ∈Rn × Sn−1, where Fj (P ) is the set of j-faces of P , and N (P ,F) is the
normal cone of K at P (consisting of all outer normals of K at P ).

The support measures were introduced by Schneider in [35] and are generaliza-
tions of curvature and area measures. The area measures S0(K, · ), . . . ,Sn−1(K, · ) of a
convex body K are Borel measures on the unit sphere defined as rescaled versions of
the projection of the support measures on their second component. More precisely,

Sj (K,ω) = nκn−j

(
n
j

)−1

Λj (K,R
n ×ω) (6)

for a Borel set ω ⊆ Sn−1 and K ∈ Kn. Top order area measures Sn−1(K, · ), K ∈ Kn are
called surface area measures and play a prominent role in this thesis. For a convex
polytope P ⊆R

n with m ≥ n+ 1 facets, we immediately obtain from (5) and (6) that

Sn−1(P , · ) =
m∑
j=1

αjδuj , (7)
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K

ω

τ(K,ω) S1

Figure 3: The reverse spherical image τ(K,ω) of the convex body K at ω ⊆ S1.

where δu denotes the Dirac measure at u ∈ Sn−1, u1, . . . ,um ∈ Sn−1 are facet normals
of P , and α1, . . .αm > 0 are the corresponding (n − 1)-dimensional volumes of the
facets. The simple structure of surface area measures of polytopes is very important
when deriving uniqueness results and reconstruction algorithms in Papers B and C.
For an arbitrary convex body K with nonempty interior, we have

Sn−1(K,ω) =Hn−1(τ(K,ω))

where τ(K,ω) is the reverse spherical image of K at ω (the set of boundary points of
K with an outer normal in ω), see Figure 3.

Using the support measures, we can now introduce the main notion of this thesis.
For a convex body K ∈ Kn and r, s ∈N0, the Minkowski tensors of K are defined as

Φ
r,s
j (K) =

ωn−j
r!s!ωn−j+s

∫
R
n×Sn−1

xrusΛj (K,d(x,u)) (8)

for j = 0, . . . ,n− 1, and

Φr,0
n (K) =

1
r!

∫
K
xrλ(dx). (9)

For other choices of r, s and j, we define Φr,s
j = 0. In Paper A, we use the notation

Φj,r,s = Φr,s
j . For j = n − 1 and r = 0, the tensors (8) are called surface tensors. The

tensors (9) are called volume tensors. From (4) we obtain that Φ0,0
j = Vj for j = 0, . . . ,n,

so the Minkowski tensors are extensions of the intrinsic volumes.

Example 1. In this example, we describe surface tensors of polytopes and calculate
the surface tensors up to rank 2 of a planar rectangle. Surface tensors of polytopes
have a simple structure due to the simple structure of surface area measures of poly-
topes. Let P ⊆R

2 be a convex polytope with m ≥ n+ 1 facets. Let u1, . . . ,um ∈ Sn−1 be
the facet normals of P , and let α1, . . . ,αm > 0 be the corresponding (n−1)-dimensional
volumes. Then we obtain from (6), (7) and (8) that

Φ
0,s
n−1(P ) =

1
s!ωs+1

∫
Sn−1

us Sn−1(P ,du) =
1

s!ωs+1

m∑
j=1

αju
s
j (10)

for s ∈ N0. Now, let P be a rectangle in R
2 with facet normals ±e1,±e2 and corre-

sponding facet lengths α,β > 0. Then we obtain from (10) that

Φ
0,0
1 (P ) = α + β, Φ

0,1
1 (P ) = 0 and Φ

0,2
1 (P ) =

1
4π

(
α 0
0 β

)
,

where we have identified the surface tensors with their arrays of components.
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The tensor-valued functional Φr,s
j is an isometry covariant, continuous valuation

on Kn. As an analogue to Hadwiger’s characterization theorem, Alesker’s charac-
terization theorem states that every isometry covariant, continuous, tensor-valued
valuation on Kn is a linear combination of so-called basic tensor valuations QmΦr,s

j
with m,r, s ∈N0 and either j ∈ {0, . . . ,n−1} or (j, s) = (n,0), see [2], where Q ∈ T2 is the
metric tensor defined as Q(x,y) = 〈x,y〉 for x,y ∈Rn. In contrast to intrinsic volumes,
the basic tensor valuations are not linearly independent. They are related by the
McMullen relations,

Q
∑
s∈N0

Φ
r−s,s−2
j−r+s = 2π

∑
s∈N0

sΦr−s,s
j−r+s (11)

for r ∈N with r ≥ 2 and j ∈ {0, . . . ,n+r−2}, see, e.g., [38]. These relations are essentially
the only linear dependencies among the valuations, see [21].

Minkowski tensors can be additively extended to polyconvex sets. However, in Pa-
pers A–D, we solely focus on Minkowski tensors of convex bodies. More precisely, we
focus on two subfamilies of Minkowski tensors. Papers A-C deal with the translation
invariant Minkowski tensors Φ0,s

j , j ∈ {0,1,n− 1}, s ∈N0 derived from area measures.
Particular attention is paid to the family of surface tensors. Paper D treats (a scaled
version of) volume tensors.

1.3 Minkowski tensors as shape descriptors

In materials science and also to some extent in biosciences, Minkowski tensors have
been established as a useful tool to characterize geometric features of spatial objects.
In addition to Alesker’s characterization theorem and the fact that Minkowski tensors
are extensions of intrinsic volumes, the importance of Minkowski tensors as shape
descriptors is hinted at by their close relation to prominent descriptors like the centre
of mass,

Φ
1,0
n (K)
Vn(K)

,

and the tensor of inertia,

2(Φ2,0
n (K)−Tr(Φ2,0

n (K))Q),

where Tr(Φ2,0
n (K)) is the trace of Φ2,0

n (K) when considered as an n×n matrix, see [6].
In [24], the volume tensor of rank 2 of a convex body K is used to construct an

ellipsoidal approximation of K . The orientation and elongation of K are summarized
by the ellipsoid. If K is an ellipsoid centred at the origin, then the approximating
ellipsoid is K itself. In a similar way, in [47], the mean particle volume tensor of rank
2 of a particle process is used to construct an ellipsoid, called the Miles ellipsoid,
summarizing shape and elongation of the typical particle.

In the following, we mention a few examples from applied sciences, where
Minkowski tensors successfully have been used as shape descriptors. In materials
science, Minkowski tensors have been established as robust measures of anisotropy
that can be applied to a broad range of spatial structures such as porous and granular
material, see [42, 43]. In the listed papers, the ratios of the largest and the small-
est eigenvalues of Minkowski tensors of rank 2 (when considered as matrices) are
used to quantify anisotropy. In astrophysics, Minkowski tensors have been used to
describe morphology of galaxies in [6]. An example from bioscience is [5], where
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Minkowski tensors are used to describe and distinguish shapes of different types of
two-dimensional neuronal cell networks.

The mentioned examples exclusively use lower rank Minkowski tensors (r + s ≤ 2).
The higher rank tensors have apparently not yet been explored in applied sciences.

2 Stereological estimation of surface tensors

In order to use Minkowski tensors as geometric descriptors, the tensors must be
accessible, but in applications, an object under consideration may only be observable
through linear sections, via a digital image or the like. Therefore, estimators of
Minkowski tensors based on partial information of the underlying object have to be
derived. Several estimation procedures based on digital images have already been
developed, see [42, 43, 45, 17]. If a full digital image of the object is not available,
these estimation procedures are not applicable. If the object, however, is observable
through sections, then stereological estimators can be used instead.

Stereology is a subfield of stochastic geometry and spatial statistics. For general
references, see, e.g., [4, 23, 25]. Stereology deals with estimation of characteristics
of an object from a geometric sample of the object. A sample can, for instance, be
the intersection of the object with a test set (a hyperplane, a full-dimensional set, a
lattice, etc.) or the projection of the object onto a linear subspace.

Methods from stereology are widely used in microscopy. When a three-dimensional
object is observed in a microscope, the microscope image is a two-dimensional sample
of the object. Using stereological methods, characteristics like volume and surface
area of the three-dimensional object can be estimated from measurements in the
two-dimensional sample.

Statistical inference in stereology can be formulated in a model-based or design-
based setting. In a model-based setting, the object of interest is considered random,
while the test set is deterministic. The object of interest is assumed to be ‘spatially
homogeneous’ such that the sample becomes representative for the entire structure.
In a design-based setting, the object of interest is considered deterministic, and the
randomness enters the design by randomized sampling.

In [24], Jensen et al. derive stereological estimators for certain Minkowski tensors
(j ∈ {1, . . . ,n − 1}, r, s ∈ {0,1} and j = n,s = 0, r ∈ N0) of convex bodies in R

n. The
estimators are formulated in a design-based setting and are based on random linear
sections containing a fixed reference point. Using a combination of a design- and
model-based approach, stereological methods are used in [47] and [34] to estimate
mean volume tensors of a particle process of compact particles in R

3, see, e.g., [41]
for details on particle processes. The so-called optical rotator design is used, so the
particles only need to be observable in a central thick slice. In the given applications
in [47] and [34], it is assumed that the distribution of the typical particle of the
process is invariant under rotations that fix a prescribed axis (called the vertical
axis). Under this assumption, an estimator that only requires measurements in the
central plane of a thick slice is developed in [26]. A simulation study indicates that
the estimator in [26] is superior to the estimators described in [47] and [34], even
though it is simpler and therefore easier to implement in microscopy.
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2.1 From integral geometric formulae to stereological applications

In order to establish unbiased stereological estimators, appropriate integral geometric
formulae are required. In [4], it is explained how integral geometric formulae are
used to derive estimators in various designs, see also [25]. To illustrate, we give a
simple example where an unbiased estimator of Vn−1 is obtained from a classical
integral geometric formula, namely the Crofton formula for intrinsic volumes.

In the following, we let Enk denote the set of k-dimensional affine subspaces of Rn,
and let µnk denote the corresponding motion invariant measure normalized as in [41].
The Crofton formula for intrinsic volumes states that∫

Enk
Vj (K ∩E)µnk (dE) = cnkjVn−k+j (K) (12)

for K ∈ Kn, k = 0, . . . ,n− 1, j ≤ k and a known constant cnkj ∈R. When considered as
a function of K , the Crofton integral on the left-hand side of (12) is a continuous,
rotation and translation invariant, real-valued valuation. Therefore, it follows from
Hadwiger’s characterization theorem that the integral is a linear combination of
intrinsic volumes, and since the integral is homogeneous of degree n− k + j, it is then
proportional to Vn−k+j (K). The constant cnkj is determined by inserting K = Bn.

Now, let K ∈ Kn. We assume that K is contained in a known compact reference
set A ⊆R

n, but otherwise K is considered unknown. Let E be an isotropic uniform
random line hitting the reference set A, i.e. the distribution of the random line E is
given by

P(E ∈ A) = c(A)
∫
A
1(A∩E′ , ∅)µn1(dE′)

for a Borel set A ⊆ En1 , where c(A) is a normalizing constant. Since K ⊆ A, we obtain
from (12) with k = 1 and j = 0 that

EV0(K ∩E) = c(A)
∫
En1
V0(K ∩E′)µn1(dE′) = c(A)cn10Vn−1(K),

so (c(A)cn10)−1V0(K ∩ E) is an unbiased estimator of Vn−1(K). Using this estimator,
the intrinsic volume Vn−1(K) of K (and then the surface area of K) can be unbiasedly
estimated when K is observable through one-dimensional linear sections.

2.2 Integral geometric formulae for Minkowski tensors

The work on establishing integral geometric formulae for Minkowski tensors was
initiated by Schneider in [36], where translative kinematic integrals of the form∫

R
n
Φ
r,0
j (K ∩ (L+ x))λ(dx)

were calculated for K,L ∈ Kn and j ∈ {n− 1,n}.
In [39], a complete set of Crofton formulae for Minkowski tensors giving explicit

expressions of integrals of the form∫
Enk

Φ
r,s
j (K ∩E)µnk (dE) (13)
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were derived in dimension two and three. An application of Alesker’s characteriza-
tion theorem implies that the integral (13) is a linear combination of basic tensor
valuations. However, the constants in the combination are very difficult to determine
and due to the McMullen relations (11) not unique. The Crofton formulae in [39] are
therefore derived by direct calculations.

Finally, in [20], a complete set of Crofton formulae for Minkowski tensors were
derived in arbitrary dimension. Further, intrinsic versions of the Crofton formulae
were derived. These formulae give expressions of integrals of the form (13), where the
Minkowski tensor Φr,s

j (K∩E) is replaced by the relative Minkowski tensor Φ (E)
j,r,s(K∩E)

that is calculated with the affine subspace E as ambient space, see [20] or Paper A for
details on relative tensors. In contrast to intrinsic volumes, Minkowski tensors are
not intrinsic as Φr,s

j and Φ (E)
j,r,s differ substantially.

Kinematic and Crofton formulae of translation invariant Minkowski tensors are
also studied by Bernig and Hug in [7] via methods from algebraic integral geome-
try. They simplify the exterior (non-intrinsic) Crofton formulae from [20] and also
establish Crofton formulae for the trace-free part of certain Minkowski tensors.

The stereological estimators in [24] are derived from rotational Crofton formulae
that express Minkowski tensors as rotational averages. These formulae are established
in [3].

2.3 Paper A

In Paper A, we derive stereological estimators of surface tensors based on linear
sections. In contrast to [24], we adopt the classical stereological setting where the
sectioning space is affine, and further, we restrict to the simplest case where it is
one-dimensional (as in the example in Section 2.1). The relevant integral geometric
formula is therefore a Crofton formula with lines.

A Crofton formula with lines is established in [20] as a special case of a formula
that expresses intrinsic Crofton integrals∫

Enk
Φ

(E)
j,r,s(K ∩E)µnk (dE)

for K ∈ Kn and k, j, r, s ∈N0 with 0 ≤ j ≤ k ≤ n−1 as linear combinations of Minkowski
tensors of K . Due to the generality treated in [20], the constants in the derived linear
combinations are very lengthy and hard to evaluate, even in the special case with a
one-dimensional sectioning space. For estimation purposes we need explicit constants,
so we give an independent and elementary proof of the Crofton formula in the special
case k = 1 and j = r = 0 yielding simple expressions for the constants. For K ∈ Kn and
even rank s ∈N0, the integral ∫

En1
Φ

(E)
0,0,s(K ∩E)µn1(dE) (14)

is expressed as a linear combination of surface tensors of even rank at most s of K .
For odd rank s, the integral (14) trivially vanishes as Φ (E)

0,0,s(K ∩E) = 0 for E ∈ En1 , see
Theorem A.3.1.

Proceeding as in Section 2.1, the derived Crofton formula can, in principle, be
used to construct an unbiased estimator for the linear combination of surface tensors
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of different ranks. This is, however, not our aim. Instead, for even s ∈N0, we invert
the linear system

C



Φ
0,0
n−1(K)

Φ
0,2
n−1(K)
...

Φ
0,s
n−1(K)


=



∫
En1

Φ
(E)
0,0,0(K ∩E)µn1(dE)∫

En1
Φ

(E)
0,0,2(K ∩E)µn1(dE)

...∫
En1

Φ
(E)
0,0,s(K ∩E)µn1(dE)


,

where the matrix C is determined by the Crofton formula. In this way, the surface
tensors of even rank s are expressed as Crofton integrals

Φ
0,s
n−1(K) =

∫
En1
α(E,K ∩E)µn1(dE), (15)

where the measurement function α : En1 ×Kn→R is a linear combination of relative
Minkowski tensors of rank at most s of K . In fact, the measurement function only
depends on K through V0(K ∩E), see Theorem A.3.4.

Our results do not express odd rank surface tensors as Crofton integrals with
lines. This drawback is not caused by our method of proof. In fact, apart from the
trivial cases n = 1 and s = 1, there does not exist neither bounded nor translation
invariant measurement functions that express odd rank surface tensors as Crofton
integrals, see Theorem A.3.6. Therefore, a method not based on Crofton integrals
with lines is required to estimate odd rank surface tensors.

In a design-based setting, three different types of estimators based on random
lines are derived from the integral formula (15). For all three types of estimators, it is
sufficient to observe whether a test line hits or misses the convex body K in order to
estimate the surface tensors of K . This follows as the measurement function in (15)
only depends on K through V0(K ∩E), and it makes the estimators very easy to use in
applications. In the following, the three different types of estimators are described.

1. Like the estimator in Secion 2.1, the first type of estimator derived from (15) is
based on isotropic uniform random (IUR) lines. The estimator possesses some
unfortunate statistical properties. This is unsurprising since we are estimating
surface tensors with many unknown components based on the rather weak
information obtained from a measurement in one single line. Several natural
ways to improve the estimator are discussed and compared in Paper A.

2. As described in [25], when analyzing skin tissue in biology, it might be conve-
nient to use test sections orthogonal to the skin surface to make the different
layers of tissue distinguishable in the sample. In this case, a design based on
vertical sections can be applied, see [25] or Paper A for a definition of vertical
sections. The second type of estimator is based on vertical sections and is de-
rived by combining (15) with a Blaschke-Petkantschin formula. As for the first
type of estimator, possible ways to improve the vertical section estimator are
described.

3. The third type of estimator discussed in Paper A is based on non-isotropic
random lines. Such random lines prefer directions given by a directional density,
and we investigate how this density should be chosen in order to minimize
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variance of the estimator. In this design, our investigation mainly focuses on
the estimation of the rank 2 surface tensor of planar convex bodies. For K ∈ K2,
this tensor can be identified with the symmetric 2× 2 matrix{

1
8π

∫
S1
uiuj S1(K,du)

}2

i,j=1
. (16)

For each component and each fixed convex body K ∈ K2 there exists a direc-
tional density that minimizes the variance of the estimator, see Lemma A.4.9.
This density is, unfortunately, not accessible as it depends on K , which is typi-
cally unknown in applications. However, for each component there does exist
a density independent of K yielding an estimator with smaller variance than
the IUR estimator, see Theorem A.4.10. For the three different components
of (16), the suggested densities differ, so it requires three random lines with
different distributions to estimate the entire tensor. Taking this into account,
the IUR design (where each line can be used to estimate all three components)
is superior to the non-isotropic design when the entire tensor is sought for, see
Theorem A.4.11.

Turning to a model-based setting, we briefly discuss estimators of the specific
surface tensors of a stationary process of convex particles in R

n, see Section A.5
for a definition. We derive a rotational Crofton formula for relative specific surface
tensors, and the ‘inverse’ version of this formula expresses specific surface tensors as
rotational Crofton integrals, see Theorem A.5.2, and suggests an estimation procedure
for specific surface tensors of even rank. Like the estimation procedures presented in
the design-based setup, this procedure is based on one-dimensional linear sections.
This work is related to [40], where the mean area moment tensor (specific surface
tensor of rank 2) of a particle process in R

n is estimated based on (n−1)-dimensional
test sections.

In Paper A, we work under the assumption of convexity of the underlying object.
This might seem a rather restrictive assumption, but it appears to be reasonable in a
large number of applications in biology. Although not explicitly stated, many of the
results in Paper A carry over to the larger class of polyconvex sets. In particular, the
estimators (A.4.2), (A.4.6), (A.4.15) and (A.4.21) can be applied to polyconvex sets.
This follows by additivity of the listed estimators and of surface tensors.

In Paper A, we have derived different types of stereological estimators based on
measurements in linear sections. We have treated the simplest case where the test
sections are one-dimensional. This allowed us to give an elementary proof of the
required Crofton formula that yielded accessible constants. Further, this approach
ensured that the measurement functions depend on the underlying body in a simple
way making the estimators easy to use in applications. A natural continuation of
the research presented in Paper A would be to establish estimators based on planar
(or even k-dimensional) test sections. Very recently, in [22], the complicated constants
appearing in the intrinsic Crofton formulae in [20] have been substantially simplified
making the formulae better fitted for estimation purposes. In this way, a first step
towards the development of stereological estimators based on k-dimensional test
sections has already been taken. The next step is to translate the Crofton formulae
into stereological estimators. As in Paper A, it is required to solve a linear system in
order to estimate the individual surface tensors.
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3 Shape from surface tensors

In Paper A, the surface tensors of a convex body are estimated from certain informa-
tion about the convex body. In Papers B and C, a reversed problem is treated. We
investigate how much information about a convex body can be retrieved from its
surface tensors. Results of this research can help to quantify the shape information
contained in one or several tensors. Further, they can also show the limitations of
tensor-valued shape descriptors by exhibiting sets with (a finite number of) identical
tensors but rather different shapes according to some natural criterion.

A convex body K with nonempty interior is uniquely determined up to translation
by its surface area measure, see e.g., [38, Thm. 8.1.1]. Using this and an application
of Stone-Weierstrass’s theorem, it is argued in Paper B that K is likewise determined
up to translation by its surface tensors. When the shape of a convex body is defined
as the equivalence class of all translations of the body, the uniqueness statement can
equivalently be expressed by saying that the shape of K is determined by the surface
tensors of K .

In general, all surface tensors are required to determine the shape of a given
convex body. However, in connection with applications, most likely, only a finite
number of surface tensors will be available, so from a practical point of view, it is
useful to quantify the information that can be retrieved from surface tensors up to a
certain finite rank. This is the starting point of Papers B and C. The main aim of our
research in this area is to establish uniqueness, stability and reconstruction results.
More precisely, we aim to:

1. describe the set of convex bodies whose shapes are uniquely determined by a
finite number of surface tensors,

2. derive an upper bound on the distance between the shapes of two convex bodies
with a finite number of identical surface tensors,

3. develop reconstruction algorithms that approximate the shape of a convex body
from a finite number of surface tensors.

As a measure of distance in shape between two nonempty convex bodies K and L, we
use a translation invariant version of the Hausdorff distance called the translative
Hausdorff distance,

δt(K,L) = inf
x∈Rn

δ(K,L+ x).

We also make use of the translation invariant version of the L2-metric given by

δt2(K,L) = inf
x∈Rn

δ2(K,L+ x).

In Papers B and C, it turns out that a recently introduced set of geometric function-
als on Kn called harmonic intrinsic volumes are very useful when deriving stability
results and reconstruction algorithms. Harmonic intrinsic volumes of a convex body
K ∈ Kn are moments of the area measures of K with respect to an orthonormal
sequence of spherical harmonics. Let Hnm denote the vector space of spherical har-
monics of degree m and let N (n,m) denote the dimension of Hnm. Then the harmonic
intrinsic volumes of K are given by

ψjmk(K) =
∫
Sn−1

Hmk(u)Sj (K,du)
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for j = 0, . . . ,n − 1, m ∈ N0, k = 1, . . . ,N (n,m), where Hm1, . . . ,HmN (n,m) form an or-
thonormal basis of Hnm. Each polynomial on Sn−1 of degree at most d ∈ N0 is a
linear combination of spherical harmonics of degree at most d, see, e.g., [13, Cor.
3.2.6], so for s ∈N0, the tensors Φ0,0

j (K), . . . ,Φ0,s
j (K) are determined by ψjmk(K) for

m = 0, . . . , s and k = 1, . . . ,N (n,m). Obviously, the converse also holds. In Paper B, it is
shown that for n = 2 harmonic intrinsic volumes can be obtained as values of surface
tensors meaning that for j = 0,1, m ∈ N0 and k = 1, . . . ,N (2,m) there exist vectors
v1
jmk , . . . , v

m
jmk ∈R

n such that

ψjmk(K) = Φ
0,m
j (K)(v1

jmk , . . . , v
m
jmk).

Harmonic intrinsic volumes were first introduced in [16] (with a different normal-
ization), where they among other things were used to obtain inversion formulas for
the intensity of a non-isotropic Boolean model. Further, they appear in [7] as compo-
nents of the previously mentioned trace-free tensors. For a detailed introduction to
harmonic intrinsic volumes, see [16], Papers B and Paper C.

Investigations of problems similar to those treated in Papers B and C can be found
in the literature. In [32], a planar convex body is reconstructed from a finite number
of measurements of its support function, and in [11], an origin-symmetric convex
body K ∈ Kn is reconstructed from a finite number of values of its brightness function
bK : Sn−1→R defined as

bK (u) = Vn−1(K | u⊥)

for u ∈ Sn−1, where K | u⊥ is the projection of K onto the orthogonal complement u⊥

of u. The reconstruction problem in [11] is approached in the following way: From
a finite number of given values of the brightness function of an unknown convex
body, the surface area measure of a convex polytope with brightness function values
identical to the specified values are determined by solving a constrained least squares
problem. The polytope is then reconstructed from its area measure using Algorithm
MinkData proposed in [28]. Algorithm MinkData reconstructs a polytope from its
surface area measure by solving a nonlinear optimization problem. In [8], uniqueness
results for lightness functions (generalizations of the brightness function) are derived
and stability versions of the obtained results are discussed.

The mentioned examples [32, 11, 8] are from the mathematical field of geometric
tomography. In this field, information about a geometric object is retrieved from
section or projection data, see [9]. Geometric tomography bears a resemblance to
stereology, but the aim of geometric tomography is to reconstruct the entire object un-
der consideration, whereas the aim of stereology is to estimate certain characteristics
of the object.

The components of surface tensors are moments of the surface area measure of the
underlying convex body, so the problem of reconstructing the shape of a convex body
from its surface tensors is a ‘shape from moments’-problem. In the classical setting,
‘moments’ refers to the moments of the Lebesgue measure restricted to underlying
object, see (17). The literature on this type of problem is vast, and the problem has
applications in, for instance, X-ray tomography, see [31]. We will return to ‘shape
from moments’-problems in Section 4.

In the following subsections, we give a description of the results obtained in
Papers B and C and discuss ideas for future work.
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3.1 Paper B

In Paper B, the described research questions are partly answered. First, we show
that for a convex body K ⊆ R

n and a natural number s there exists a convex poly-
tope P ⊆ R

n such that K and P have identical surface tensors up to rank s, see
Theorem B.4.1. This result is important in connection with the development of re-
construction algorithms. In the context of uniqueness, it is likewise interesting as
the result implies that the shape of a convex body is uniquely determined by a finite
number of surface tensors only if the convex body is a polytope. We further show that
the shape of a convex polytope P with nonempty interior and at most m ≥ n+ 1 facets
is uniquely determined by the surface tensors of P up to rank 2m, see Theorem B.4.3.
When combined, the two results state that the shape of a convex body K is uniquely
determined by a finite number of the surface tensors of K if and only if K is a polytope
with nonempty interior.

In addition to the uniqueness results, we derive stability results for the tensors
(Φ0,s

1 )s, which are surface tensors for n = 2. The first order area measure S1(K, · )
of a convex body K with sufficiently smooth boundary has a density with respect
to the spherical Lebesgue measure. This density involves the support function hK
of K and therefore establishes a connection between hK and the harmonic intrinsic
volumes (ψ1mk(K))mk derived from S1(K, · ). This connection is utilized to derive a
stability result for the harmonic intrinsic volumes (ψ1mk(K))mk . Let so ∈N0, ρ ≥ 0
and K,L ∈ Kn with K,L ⊆ RBn for some R > 0. Now, assume that

N (n,m)∑
k=1

(
ψ1mk(K)−ψ1mk(L)

)2
≤ ρ

for m = 0, . . . so. For 0 < α < 3
2 , the stability result states that

δt2(K,L)2 ≤ c1(n,α,R)
(
(so + 1)(n+ so − 1)

)−α
+ ρM(n)

where c > 0 is a constant depending on n,α and R, and M > 0 is a constant depending
on n, see Theorem B.4.8. The proof of the stability result uses a generalized version of
Wirtinger’s inequality (Corollary B.4.7) involving a higher order spherical expansion.
Due to the relation between harmonic intrinsic volumes and Minkowski tensors, the
stated stability result can be converted into a stability result for the tensors stating
that

δ(K,L) ≤ c2(n,α,R)s
− 2α
n+1

o

for 0 < α < 3
2 , when Φ

0,s
1 (K) = Φ

0,s
1 (L) for s = 0, . . . , so, see Theorem B.4.9. Spherical

harmonics and their properties are important for the proofs leading to the stabil-
ity results. This partly explains the introduction of harmonic intrinsic volumes in
Paper B.

We develop two reconstruction algorithms in Paper B:

1. the first algorithm is based on exact surface tensors up to a certain rank of an
unknown convex body in R

2,

2. the second algorithm is based on measurements disrupted by noise of surface
tensors up to a certain rank of an unknown convex body in R

2.
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The structures of the reconstruction algorithms are similar to the structure of the
algorithm in [11], and the presented algorithms also make use of Algorithm MinkData.
The output of the first algorithm is a polygon with surface tensors identical to the
given surface tensors of the unknown convex body. The existence of such a polygon
follows from the uniqueness result previously described, and its facet normals and
facet lengths are determined by solving a least squares problem. From the facet
normals and lengths, the polygon is constructed using Algorithm MinkData (which
is very simple in the case n = 2).

The stability result for surface tensors ensures that the reconstruction algorithm
is consistent. If Ks is an output of the algorithm based on surface tensors up to rank
s ∈N of an unknown convex body K0 ⊆ R

2, then the shape of Ks converges to the
shape of K0, when s increases. To apply the stability result, the existence of a ball that
contains all reconstructions (Ks)s∈N is required. This condition is easily verified as
the surface area of each reconstruction Ks is identical to the surface area of K0 and
hence bounded.

We recommend using harmonic intrinsic volumes instead of surface tensors
evaluated in the standard basis when only noisy measurements of surface tensors are
available for reconstruction. Therefore, the input of the second algorithm is noisy
measurements of harmonic intrinsic volumes up to a certain degree of an unknown
convex body in R

2. The output is a polygon that fits the given measurements in a
least squares sense. As for the first algorithm, the facet normals and facet lengths of
the polygon are found as a solution to a least squares problem and the polygon is
constructed using Algorithm MinkData. The consistency of the algorithm is obtained
from the stability result for harmonic intrinsic volumes under certain assumptions
on the variance of the noise on the measurements. We use harmonic intrinsic volumes
instead of surface tensors evaluated at the standard basis in order to obtain stronger
consistency results, see the discussion in Section B.6.4 for details.

To illustrate the feasibility of the reconstruction algorithms, they have been
implemented in MatLab and several examples of reconstructions are presented in
the paper, see, e.g., Figures B.3 and B.4.

It is natural to ask if the reconstruction algorithms presented in Paper B can be
extended to an n-dimensional setting. Paper C shows that the least squares approach
can, in fact, be used to find an approximating polytope given finitely many surface
tensors of an unknown convex body in R

n. However, the stability results in Paper B
involve the tensors (Φ0,s

1 )s and results for surface tensors (Φ0,s
n−1)s require fundamen-

tally different method of proof. In the two-dimensional setting, the tensors (Φ0,s
1 )s are

surface tensors, therefore, we restrict to the two-dimensional case in Paper B such
that the stability results ensure consistency of the algorithms. Stability results for
surface tensors will be one of the main contributions of Paper C.

3.2 Paper C

Paper C is a sequel to Paper B, where we treat some of the questions left open by
Paper B. In particular, we establish stability results for surface tensors (Φ0,s

n−1)s and
harmonic intrinsic volumes (ψn−1mk)mk derived from surface area measures, see The-
orems C.4.3 and C.4.5. First an upper bound on the Dudley distance between surface
area measures of convex bodies is derived. The bound is expressed in terms of the
distance between the harmonic intrinsic volumes up to a certain degree of the convex
bodies. Then, using the connection between surface tensors and harmonic intrinsic
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volumes in combination with existing stability results for surface area measures, the
bound on the Dudley distance is converted into a bound of the translative Hausdorff
distance between two convex bodies with identical surface tensors up to a certain
rank. More precisely, let so ∈N, 0 < ε < 1 and let K,L ∈ Kn contain a ball of radius r
and be contained in a ball of radius R for some r,R > 0. Assume that Φ0,s

n−1(K) = Φ
0,s
n−1(L)

for s = 0, . . . , so. Then

δt(K,L) ≤ c3(n,r,R,ε)s
− 1−ε

4n
o

where c3 > 0 is a constant depending on n,r,R and ε.
The reconstruction algorithms developed in Paper B are generalized to an n-

dimensional setting. The generalizations follow the lines of the algorithms in Paper B.
There are, however, certain difficulties to be tackled. For instance, for the reconstruc-
tion algorithm based on noisy measurements the least squares problem might not
have a solution. We therefore extend the domain of the objective function from the
set of surface area measures to the set finite measures on Sn−1 with centroid at the
origin. This ensures the existence of a measure µ that solves the least squares problem.
In order to decide if µ is a surface area measure, we show and use that the first and
second order moments of a Borel measure ν on Sn−1 determine if ν is a surface area
measure, see Lemma C.5.2. If µ is not a surface area measure there does not exist
a polytope that fits the given input measurements in a least squares sense, and the
generalized reconstruction algorithm does not have an output polytope. However,
this situation only occurs when the measurements are too noisy, see Lemma C.6.3.

For each s ∈N0, let Ks denote an output polytope of the reconstruction algorithm
based on surface tensors up to rank s (or measurements of harmonic intrinsic volumes
up to of degree s). In order to apply the stability results to ensure consistency of
the reconstruction algorithms, it is necessary to ensure the existence of radii r,R > 0
(independent of s) such that rBn ⊆ Ks + xs ⊆ RBn for some xs ∈ Rn. In contrast to
the similar problem in Paper B, this is far from trivial when n ≥ 3. It is no longer
sufficient that Ks and K0 have identical surface area. Instead, the existence of the
radii r and R is shown using that Ks and K0 have identical (or sufficiently close) rank
2 surface tensor when s ≥ 2, see Lemma C.5.4. Now, using the stability results, we
obtain consistency of the reconstruction algorithms. The consistency of the algorithm
based on noisy measurements requires that the variances of the noise terms decrease
appropriately with s.

As in Paper B, we illustrate the feasibility of the algorithms by examples. Using
the algorithm based on exact surface tensors, we reconstruct a prolate spheroid
and a pyramid in R

3, see Figures C.1 and C.2. Using the algorithm based on noisy
measurements of harmonic intrinsic volumes, we reconstruct an oblate spheroid in
R

3 under different levels of noise, see Figure C.3.
We strengthen and complete the uniqueness results presented in Paper B by

showing that the shape of a convex polytope P ⊆R
n with at most m ≥ n+ 1 facets is

uniquely determined by the surface tensors of P up to rankm−n+2, see Theorem C.3.2.
Further, for each m ≥ n + 1, we construct a convex polytope that is not uniquely
determined up to translation by its surface tensors up to rank m−n+ 1. This implies
that the rank m−n+ 2 cannot be reduced, and in this sense, the uniqueness result is
optimal.

We conclude this section by giving some forward looking remarks. The optimality
of the exponents in the stability results in Papers B and C are open questions. It
would be interesting to settle these questions either by showing that the derived
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upper bounds are optimal or by improving them. It is generally believed that the
stability result for surface area measures [18, Thm. 3.1] used to derive the stability
result presented in Paper C is not optimal. In this case, the bound in Paper C is,
likewise, not optimal.

The stability results in Papers B and C for surface tensors have been used to ensure
consistency of reconstruction algorithms based on surface tensors. Since we have
established stability results for tensors (Φ0,s

1 )s it is natural to seek a reconstruction
algorithm based on this type of tensor. An idea would be to use the connection
between first order area measures and support functions, see (B.13), combined with
an existing reconstruction algorithm based on support functions, [32, 10].

In future work, it would likewise be natural to attempt establishing stability
results for tensors Φ0,s

j with 1 < j < n − 1 (the case of j = 0 is not interesting, as
S0(K, · ) is the spherical Lebesgue independent of K). Stability results [38, Thm. 8.5.4]
involving area measures Sj (K, · ), j = 2, . . . ,n− 2 might be a helpful tool.

4 Shape from volume tensors

Paper D deviates from Papers A–C as it deals with volume tensors instead of surface
tensors. The paper is, however, closely related to Papers B and C as the research
questions treated in Paper D are similar to the questions investigated in those papers.
The aim of Paper D is to establish uniqueness, stability and reconstruction results
for volume tensors. The obtained results and the used methods are different from
the results and methods in Papers B and C due to the structural differences between
surface and volume tensors. An example hereof is the difference between the unique-
ness results. Polytopes are uniquely determined by a finite number of surface tensors,
whereas convex superlevel sets of polynomials are uniquely determined by a finite
number of volume tensors, see Theorem B.4.3 and Corollary D.3.2.

In the literature, the (geometric) moments of a compact set K ⊆R
n are defined as

µα(K) =
∫
K
xα1

1 · · ·x
αn
n λ(dx) (17)

for a multi-index α = (α1, . . . ,αn) ∈Nn
0. We refer to |α| =

∑n
j=1αj as the order of µα(K).

The moments are rescaled versions of the components of volume tensors. Following
the existing literature in this area, we adopt the notation of moments in Paper D.
In addition to the moments (17), we consider another type of moments, namely
Legendre moments, that are described in the the next section. To distinguish between
the two series of moments, we refer to (17) as geometric moments.

The problem of reconstructing a geometric object from its moments has received
considerable attention in the last decades. We mention a few examples from the rich
literature on moment problems. Using Prony’s method (see, e.g., [15]), Milanfar et
al. in [31] show that the vertices of a simply connected planar m-gon are uniquely
determined by the moments of the m-gon up to order 2m− 3. Further, they present
an algorithm that reconstructs planar convex polygons from noisy measurements
of their moments. In [12], Gravin et al. present an algorithm that reconstructs an
n-dimensional convex polytope from a finite number of its moments. In addition to
the results for polytopes, there are uniqueness results based on moments for sublevel
sets of homogeneous polynomials and so-called quadrature domains, see [27, 14].
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4.1 Paper D

In Paper D, we first establish the following uniqueness result. Let C ⊆R
n be compact

and let p : Rn→ R be a polynomial of degree d ∈N0. Then a convex body K of the
form K = C ∩ {p ≥ 0} is uniquely determined in {L ∈ Kn | L ⊆ C} by its moments up to
order d, see Corollary D.3.2. The proof of this result uses existing uniqueness results
[33] for functionals applied to indicator functions for convex bodies. We then show
that the moments up to second order of a convex body determine an upper bound of
the circumradius of the body. From this fact and the established uniqueness result,
we obtain that the set⋃

m∈N0

{K ∈ Kn | K is uniquely determined by µα(K), |α| ≤m}

is dense in Kn, see Remark D.3.7 and Theorem D.3.8.
For stability and reconstruction, we restrict to planar convex bodies in the unit

square [0,1]2. Inspired by stability results [46] for functions on the unit interval, we
derive stability results for sufficiently smooth functions on the unit square. Via an
approximation argument, this result is applied to differences of indicator functions
for convex bodies contained in the unit square. This yields an upper bound of the
Nikodym distance between two convex bodies in terms of the difference of a finite
number of their geometric moments. The Nikodym distance δN between two convex
bodies K,L ⊆ [0,1]2 is defined as the area of their symmetric difference, i.e.

δN (K,L) = V2((K ∪L) \ (K ∩L)).

It follows from the definition that δN can be expressed as the L2-norm of the difference
1K − 1L of the indicator functions of K and L. This is very convenient in the set-up of
Paper D. The Nikodym distance and the Hausdorff distance are equivalent on the set
of convex bodies contained in the unit square.

For two convex bodies K,L ⊆ [0,1]2 with identical geometric moments up to order
m ∈N, the derived stability result states that

δN (K,L) ≤ c4

m

with some constant c4 > 0, see Theorem D.4.2 and Remark D.4.4. When assuming that
the geometric moments up to order m are close (but not identical), the stability result
is, unfortunately, very poor as the upper bound in this case increases exponentially
in m. However, by introducing another set of moments, namely Legendre moments,
the stability result can be improved considerably. For a convex body K ⊆ [0,1]2, the
Legendre moments of K are defined as

λij (K) =
∫
K
Li(x1)Lj (x2)λ(dx)

for i, j ∈N0, where Li : [0,1]→ R for i ∈N0 are shifted and normalized Legendre
polynomials, see Section D.2.

To obtain reasonable stability results for surface tensors and geometric moments,
these quantities are required to be identical for the two convex bodies in question. By
considering harmonic intrinsic volumes and Legendre moments instead, we obtain
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stability results that allow the difference between these quantities to be non-zero. In
this way, Legendre moments form a counterpart to harmonic intrinsic volumes.

We develop an algorithm that constructs an approximating polygon of a convex
body K ⊆ [0,1]2 from a finite number of exact moments of K . The moments of the
output polygon fit the given moments in a least squares sense, but are typically not
identical to them. Recall that in the case of exact surface tensors, the output polytope
of the reconstruction algorithm has surface tensors identical to the given ones. This
follows from Theorem B.4.1 that states that for any convex body K ∈ Kn and rank
s ∈ N0, there is a polytope P such that K and P have identical surface tensors up
to rank s. In the case of moments, there does not exist a similar result. In fact, any
ellipsoid constitutes a counterexample as ellipsoids are uniquely determined by their
moments up to order 2, see Example D.1. Due to the error on the moments of the
output polygon, only the stability result based on Legendre moments is applicable.
Therefore, we concentrate on reconstruction based on Legendre moments.

For an unknown convex body with a finite number of Legendre moments available,
an approximating polygon that fits the given moments are found as a solution
to a least squares problem. In contrast to surface tensors, Legendre moments of
polygons are not easily parametrized by facet normals and facets lengths, so another
parametrization is used to solve the least squares problem. A convex polygon P ⊆R

2

with m ≥ 3 fixed facet normals u1, . . . ,um ∈ S1 can be described as

P =
m⋂
j=1

{x ∈R2 | 〈x,uj〉 ≤ hj }

for some h1, . . . ,hm ∈ (−∞,∞), and the Legendre moments of P can be expressed as a
polynomial in (h1, . . . ,hm), see Lemma D.6.1. For a fixed set of normals u1, . . . ,um ∈ S1,
the set of vectors (h1, . . . ,hm) describing a convex polygon contained in [0,1]2 and
with facet normals u1, . . . ,um is determined by 5m linear equations, so restricting to
polygons with a prescribed set of facet normals and parametrizing by (h1, . . . ,hm),
the least squares problem for Legendre moments can be solved as a polynomial
optimization problem. The consistency of the algorithm is ensured by the stability
result based on Legendre moments when the number of used Legendre moments
and the number of prescribed facets of the output polygon increase. We also present
a reconstruction algorithm that allows for measurements disrupted by noise of
Legendre moments.

The reconstruction algorithms in Paper D have not yet been implemented, so in
order to explore the performance of the algorithms in practice, this would be the
natural next step.

5 Concluding remarks

Minkowski tensors are important from various points of view and appear in several
different disciplines such as physics, microscopy, stochastic and integral geometry,
convex geometry and valuation theory. The four papers constituting this thesis add
new results to the existing literature on Minkowski tensors. Stereological estimation
procedures for surface tensors have been established, uniqueness and stability results
have been derived for surface and volume tensors, and corresponding reconstruction
algorithms have been developed. Ideas for future work in direct continuation of the
work presented in Papers A–D have already been suggested in the previous sections.
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As described in Section 1.3, Minkowski tensors of lower rank (r + s ≤ 2) have
successfully been established as shape descriptors in applied sciences. The results of
this thesis suggest that higher rank tensors are likewise useful as shape descriptors
as they contain important shape information. This is for instance indicated by the
uniqueness and stability results of Papers B–D and by the reconstruction examples.

The theory and applications of Minkowski tensors are continuously evolving,
and as a final remark, we mention that a natural local version of Minkowski tensors
that generalizes intrinsic volumes, support measures and Minkowski tensors has
recently been introduced in [37]. Local Minkowski tensors take values in the space of
tensor-valued measures and for a convex body K ∈ Kn, they are defined as

φr,sj (K,η) =
ωn−j

r!s!ωn−j+s

∫
η
xrusΛj (K,d(x,u))

for a Borel set η ∈ Rn × Sn−1, r, s ∈N0 and j ∈ {0, . . . ,n− 1}. Classification results for
local Minkowski tensors analogous to Hadwiger’s and Alesker’s characterization
theorems have already been given in [37] for polytopes and in [19] for the general
case. Local Minkowski tensors might constitute a refined tool for applications.
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From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant
surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-
dimensional linear sections. In a design based setting we suggest three types of estimators. These are based
on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we
derive estimators of the specific surface tensors associated with a stationary process of convex particles in the
model based setting.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In recent years, there has been an increasing interest in Minkowski tensors as descriptors of morphology and shape
of spatial structures of physical systems. For instance, they have been established as robust and versatile measures
of anisotropy in [7], [25], [26]. In addition to the applications in materials science, [6] indicates that the Minkowski
tensors lead to a putative taxonomy of neuronal cells. From a pure theoretical point of view, Minkowski tensors
are, likewise, interesting. This is illustrated by Alesker’s characterization theorem [1], stating that the basic tensor
valuations (products of the Minkowski tensors and powers of the metric tensor) span the space of tensor-valued
valuations satisfying some natural conditions.

This paper presents estimators of certain Minkowski tensors from measurements in one-dimensional flat
sections of the underlying geometric structure. We restrict attention to translation invariant Minkowski tensors of
convex bodies, more precisely, to those that are derived from the top order surface area measure; see Section 2
for a definition. As usual, the estimators are derived from an integral geometric formula. Specifically, we use a
Crofton formula for Minkowski tensors. We adopt the classical setting where the sectioning space is affine and
the integration is with respect to the suitably normalized motion invariant measure. Rotational Crofton formulae
where the sectioning space is a linear subspace and the rotation invariant probability measure on the corresponding
Grassmannian is used are established in [3]. The latter formulae were the basis for local stereological estimators
of certain Minkowski tensors in [12] (for j ∈ {1, . . . , n − 1}, s, r ∈ {0, 1} and j = n, s = 0, r ∈ N in the notation
of (2.1) and (2.2) , below).

Kanatani [14], [15] was apparently the first to use tensorial quantities to detect and analyse structural anisotropy
via basic stereological principles. He expresses the expected number N(m) of intersections per unit length of a
probe with a test line of given direction m as the cosine transform of the spherical distribution density f of the
surface of the given probe in Rn for n = 2, 3. The relation between N and f is studied by expanding f into
spherical harmonics and by using the fact that these are eigenfunctions of the cosine transform. In order to express
his results independently of a particular coordinate system, Kanatani uses tensors. For a fixed s, he considers the
vector space Vs of all symmetric tensors spanned by the elementary tensor products u⊗s of vectors u from the unit

∗ Corresponding author: e-mail: kousholt@imf.au.dk
∗∗ e-mail: kiderlen@imf.au.dk
∗∗∗ e-mail: daniel.hug@kit.edu
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sphere Sn−1. Let T̂ denote the deviator part (or trace-free part) of some symmetric tensor T . The tensors (̂u⊗k),

for k ≤ s and u ∈ Sn−1, then span Vs and the components of (̂u⊗k) with respect to an orthonormal basis of Rn are

spherical harmonics of degree k when considered as functions of u. Hence, u �→ (̂u⊗k) is an eigenfunction of the
cosine transform (Kanatani calls it “Buffon transform”), which in fact is the underlying integral transform when
considering Crofton integrals with lines, as we shall see below in (3.7). In [13], [16], he suggests to use these
“fabric tensors” to detect surface motions and the anisotropy of the crack distribution in rock.

General Crofton formulas in Rn with flats of arbitrary dimension and for general Minkowski tensors (defined
in (2.1)) of arbitrary rank are given in [10]. Theorem 3.1 is a special case of one of these results for translation
invariant surface tensors and one-dimensional sections, that is, sections with lines. In comparison to [10], we get
simplified constants in the case considered and obtain this result by an elementary independent proof. In contrast
to Kanatani’s approach, our proof does not rely on spherical harmonics. Here we focus on relative Crofton
formulas in which the Minkowski tensors of the sections with lines are calculated relative to the section lines
and not in the ambient space (Crofton formulas of the second type may be called extrinsic Crofton formulas). A
quite general investigation of integral geometric formulas for translation invariant Minkowski tensors, including
extrinsic Crofton formulas, is provided in [8].

In Theorem 3.1 we prove that the relative Crofton integral for tensors of arbitrary even rank s of sections with
lines is equal to a linear combination of surface tensors of rank at most s. From this we deduce by the inversion of
a linear system that any translation invariant surface tensor of even rank s can be expressed as a Crofton integral.
The involved measurement functions then are linear combinations of relative tensors of rank at most s. This
implies that the measurement functions only depend on the convex body through the Euler characteristic of the
intersection of the convex body and the test line.

Our results do not allow to write surface tensors of odd rank as Crofton integrals based on sections with lines.
This drawback is not a result of our method of proof. Indeed, apart from the trivial case of tensors of rank one,
there does not exist a translation invariant or a bounded measurement function that expresses a surface tensor of
odd rank as a Crofton integral. A precise and slightly more general statement is provided in Theorem 3.6.

In Section 4 the integral formula for surface tensors of even rank is transferred to stereological formulae
in a design based setting. Three types of unbiased estimators are discussed. Section 4.1 describes an estimator
based on isotropic uniform random lines. Due to the structure of the measurement function, it suffices to observe
whether the test line hits or misses the convex body in order to estimate the surface tensors. However, the resulting
estimators possess some unfortunate statistical properties. In contrast to the surface tensors of full dimensional
convex bodies, the estimators are not positive definite. For convex bodies, which are not too eccentric (see (4.8)),
this problem is solved by using n orthogonal test lines in combination with a measurement of the projection
function of order n − 1 of the convex body.

In applications it might be inconvenient or even impossible to construct the isotropic uniform random lines,
which are necessary for the use of the estimator described above. Instead, it might be a possibility to use vertical
sections; see Definition 4.5. A combination of Crofton’s formula and a result of Blaschke-Petkantschin type
allows us to formulate a vertical section estimator. The estimator, which is discussed in Section 4.2, is based on
two-dimensional vertical flats.

The third type of estimator presented in the design based setting is based on non-isotropic linear sections; see
Section 4.3. For a fixed convex body in R2 there exists a density for the distribution of test line directions in an
importance-sampling approach that leads to minimal variance of the non-isotropic estimator, when we consider
one component of a rank 2 tensor, interpreted as a matrix. In practical applications, this density is not accessible,
as it depends on the convex body, which is typically unknown. However, there does exist a density independent
of the underlying convex body yielding an estimator with smaller variance than the estimator based on isotropic
uniform random lines. If all components of the tensor are sought for, the non-isotropic approach requires three test
lines, as two of the four components of a rank 2 Minkowski tensor coincide due to symmetry. It should be avoided
to use a density suited for estimating one particular component of the tensor to estimate any other component, as
this would increase the variance of the estimator. In this situation, however, a smaller variance can be obtained by
applying an estimator based on three isotropic random lines (each of which can be used for the estimation of all
components of the tensor).

In Section 5 we turn to a model-based setting. We discuss the estimation of the specific (translation invariant)
surface tensors associated with a stationary process of convex particles; see (5.1) for a definition. In [23] the
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problem of estimating the area moment tensor (rank 2) associated with a stationary process of convex particles via
planar sections is discussed. We consider estimators of the specific surface tensors of arbitrary even rank based
on one-dimensional linear sections. Using the Crofton formula for surface tensors, we derive a rotational Crofton
formula for the specific surface tensors. Further, the specific surface tensor of rank s of a stationary process of
convex particles is expressed as a rotational average of a linear combination of specific tensors of rank at most s
of the sectioned process.

2 Preliminaries

We work in the n-dimensional Euclidean vector space Rn with inner product 〈. , .〉 and induced norm ‖ · ‖. Let
Bn := {x ∈ Rn | ‖x‖ ≤ 1} be the unit ball and Sn−1 := {x ∈ Rn | ‖x‖ = 1} the unit sphere in Rn . By κn and ωn

we denote the volume and the surface area of Bn , respectively. The Borel σ -algebra of a topological space X is
denoted by B(X). Further, let λ denote the n-dimensional Lebesgue measure on Rn , and for an affine subspace
E of Rn , let λE denote the Lebesgue measure defined on E . The k-dimensional Hausdorff measure is denoted by
Hk . For A ⊆ Rn , let dim A be the dimension of the affine hull of A, and let conv(A) be the convex hull of A.

Let Tp be the vector space of symmetric tensors of rank p over Rn , that is, the space of symmetric mul-
tilinear functions of p variables in Rn . Due to linearity, a tensor T ∈ Tp can be identified with the array
{T (ei1 , . . . , ei p )}n

i1,...,i p=1, where (e1, . . . , en) is the standard basis of Rn . Via this identification Tp is embed-

ded in Rn p
, and the euclidean norm on Rn p

induces a norm ‖ · ‖Tp on Tp. For symmetric tensors a ∈ Tp1 and
b ∈ Tp2 , let ab ∈ Tp1+p2 denote the symmetric tensor product of a and b. We identify x ∈ Rn with the rank 1
tensor z �→ 〈z, x〉 and write x p ∈ Tp for the p-fold symmetric tensor product of x . The metric tensor Q ∈ T2

is defined by Q(x, y) = 〈x, y〉 for x, y ∈ Rn , and for a linear subspace L of Rn , we define Q(L) ∈ T2 by
Q(L)(x, y) = 〈x |L , y|L〉, where x/L is the orthogonal projection of x onto L .

As general references on convex geometry and Minkowski tensors, we use [21] and [10]. Let Kn denote
the set of convex bodies (that is, compact, convex sets) in Rn . We will write h(K , ·) for the support function
of a non-empty convex body K . In order to define the Minkowski tensors, we introduce the support measures
�0(K , ·), . . . , �n−1(K , ·) of a convex body K ∈ Kn . Let p(K , x) be the metric projection of x ∈ Rn on a non-
empty convex body K , and define u(K , x) := x−p(K ,x)

‖x−p(K ,x)‖ for x /∈ K . For ε > 0 and a Borel set A ∈ B
(
Rn × Sn−1

)
,

the Lebesgue measure of the local parallel set

Mε(K , A) := {x ∈ (K + εBn) \ K | (p(K , x), u(K , x)) ∈ A}
of K is a polynomial in ε, hence

λ(Mε(K , A)) =
n−1∑
k=0

εn−kκn−k�k(K , A).

This local version of the Steiner formula defines the support measures �0(K , ·), . . . , �n−1(K , ·) of a non-empty
convex body K ∈ Kn . If K = ∅, we define the support measures to be the zero measures. The intrinsic volumes
V0(K ), . . . , Vn−1(K ) of K appear as total masses of the support measures, Vj (K ) = � j

(
K , Rn × Sn−1

)
for

j = 0, . . . , n − 1. Furthermore, the area measures S0(K , ·), . . . , Sn−1(K , ·) of K are rescaled projections of the
corresponding support measures on the second component. More explicitly, they are given by(

n

j

)
Sj (K , ω) = nκn− j� j (K , Rn × ω)

for ω ∈ B
(
Sn−1

)
and j = 0, . . . , n − 1.

For a convex body K ∈ Kn , r, s ∈ N0, and j ∈ {0, 1, . . . , n − 1}, we define the Minkowski tensors as

� j,r,s(K ) := ωn− j

r !s!ωn− j+s

∫
Rn×Sn−1

xr us � j (K , d(x, u)) (2.1)

and

�n,r,0(K ) := 1

r !

∫
K

xr λ(dx). (2.2)
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The definition of the Minkowski tensors is extended by letting � j,r,s(K ) = 0, if j /∈ {0, 1, . . . , n}, or if r or s is
not in N0, or if j = n and s �= 0. For j = n − 1, the tensors (2.1) are called surface tensors. In the present work,
we only consider translation invariant surface tensors which are obtained for r = 0. In [10] the functions Qm� j,r,s

with m, r, s ∈ N0 and either j ∈ {0, . . . , n − 1} or ( j, s) = (n, 0) are called the basic tensor valuations.
For k ∈ {1, . . . , n}, let Ln

k be the set of k-dimensional linear subspaces of Rn , and let En
k be the set of k-

dimensional affine subspaces of Rn . For L ∈ Ln
k , we write L⊥ for the orthogonal complement of L . For E ∈ En

k ,
we let π(E) denote the linear subspace in Ln

k which is parallel to E , and we define E⊥ := π(E)⊥. The sets Ln
k

and En
k are endowed with their usual topologies and Borel σ -algebras. Let νn

k denote the unique rotation invariant
probability measure on Ln

k , and let μn
k denote the unique motion invariant measure on En

k normalized so that
μn

k ({E ∈ En
k |E ∩ Bn �= ∅}) = κn−k (see, e.g., [24]).

If K ∈ Kn is contained in an affine subspace E ∈ En
k for some k ∈ {1, . . . , n}, then the Minkowski tensors can

be evaluated in this subspace. For a linear subspace L ∈ Ln
k , let πL : Sn−1 \ L⊥ → L ∩ Sn−1 be given by

πL(u) := u|L
‖u|L‖ .

Then we define the j th support measure �
(E)
j (K , ·) of K relative to E as the image measure of the restriction of

� j (K , ·) to Rn × (
Sn−1 \ E⊥) under the mapping Rn × (

Sn−1 \ E⊥) → Rn × (
Sn−1 ∩ π(E)

)
given by (x, u) �→

(x, ππ(E)(u)). The measure �
(E)
j (K , ·) is intrinsic in the sense that its restriction to E × (

Sn−1 ∩ π(E)
)

is the
j th support measure of K calculated with respect to E as the ambient space. The Minkowski tensors of K relative
to E are then defined as

�
(E)
j,r,s(K ) := ωk− j

r !s!ωk− j+s

∫
E×(Sn−1∩π(E))

xr us �
(E)
j (K , d(x, u))

for r, s ∈ N0 and j ∈ {0, . . . , k − 1}, and

�
(E)
k,r,0(K ) := 1

r !

∫
K

xr λE(dx).

As before, the definition is extended by letting �
(E)
j,r,s(K ) = 0 for all other choices of j, r and s.

In [10], Crofton integrals of the form∫
En

k

�
(E)
j,r,s(K ∩ E)μn

k (d E),

where K ∈ Kn , r, s ∈ N0 and 0 ≤ j ≤ k ≤ n − 1, are expressed as linear combinations of the basic tensor
valuations. When j = k the integral formula becomes∫

En
k

�
(E)
k,r,s(K ∩ E)μn

k (d E) =
{
�n,r,0(K ) if s = 0,

0 otherwise,
(2.3)

see [10, Theorem 2.4]. In the case where j < k, the formulas become lengthy with coefficients in the linear
combinations that are difficult to evaluate, see [10, Theorem 2.5 and 2.6]. In the following, we are interested in
using the integral formulas for the estimation of the surface tensors, and therefore we need more explicit integral
formulas. We only treat the special case where k = 1, that is, we consider integrals of the form∫

En
1

�
(E)
j,r,s(K ∩ E)μn

1(d E).

Since dim(E) = 1, the tensor �
(E)
j,r,s(K ) is by definition the zero function when j > 1, so the only non-trivial

cases are j = 0 and j = 1. When j = 1 formula (2.3) gives a simple expression for the integral. In the case where
j = 0 and r = 0, we provide an independent and elementary proof of the integral formula, which also leads to
explicit and fairly simple constants.
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3 Linear Crofton formulae for tensors

We start with the main result of this section, which provides a linear Crofton formula relating an average of tensor
valuations defined relative to varying section lines to a linear combination of surface tensors.

Theorem 3.1 Let K ∈ Kn. If s ∈ N0 is even, then∫
En

1

�
(E)
0,0,s(K ∩ E)μn

1(d E) = 2ωn+s+1

πs!ω2
s+1ωn

s
2∑

k=0

c
( s

2 )

k Q
s
2 −k�n−1,0,2k(K ), (3.1)

with constants

c(m)
k = (−1)k

(
m

k

)
(2k)! ω2k+1

1 − 2k
(3.2)

for m ∈ N0 and k = 0, . . . , m.
For odd s ∈ N0 the Crofton integral on the left-hand side is zero.

Before we give a proof of Theorem 3.1, let us consider the measurement function �
(E)
0,0,s(K ∩ E) on the

left-hand side of (3.1). Let k ∈ {1, . . . , n}. Slightly more general than in (3.1), we choose s ∈ N0 and E ∈ En
k .

Then

�
(E)
0,0,s(K ∩ E) = 1

s!ωk+s

∫
Sn−1∩π(E)

us Hk−1(du) V0(K ∩ E),

since the surface area measure of order 0 of a non-empty set is up to a constant the invariant measure on the
sphere. From calculations equivalent to [22, (24)–(26)] (or from a special case of Lemma 4.3 in [10]) we get that

∫
Sn−1∩π(E)

us Hk−1(du) =
{

2
ωs+k

ωs+1
Q(π(E))

s
2 if s is even,

0 if s is odd.
(3.3)

Hence

�
(E)
0,0,s(K ∩ E) = 2

s!ωs+1
· Q(π(E))

s
2 V0(K ∩ E), (3.4)

when s is even, and �
(E)
0,0,s(K ∩ E) = 0 when s is odd. This implies that the Crofton integral in (3.1) is zero for

odd s, and the tensors �n−1,0,s(K ) are hereby not accessible in this situation. This is even true for more general
measurement functions; see Theorem 3.6. To show Theorem 3.1 we can restrict to even s from now on.

In the proof of Theorem 3.1 we use the following identity for binomial sums.

Lemma 3.2 Let m, n ∈ N0. Then

m∑
j=0

(−1) j

(2n
2 j

)(n− j
m− j

)
(n− 1

2
j

) =
(n

m

)
1 − 2m

.

Lemma 3.2 can be proven by using the identity

k∑
j=0

(−1) j

(2n
2 j

)(n− j
m− j

)
(n− 1

2
j

) =
(−1)k(2k + 1)

( 2n
2(k+1)

)(n−k−1
m−k−1

)
(2m − 1)

(n− 1
2

k+1

) −
(n

m

)
(2m − 1)

, (3.5)

where n, k ∈ N0, and m ∈ N such that k < m. Identity (3.5) follows by induction on k.

P r o o f o f T h e o r e m 3 . 1 Let K ∈ Kn and let s ∈ N0 be even. If n = 1, formula (3.1) follows from the
identity

m∑
j=0

(−1) j

(m
j

)
1 − 2 j

=
√

π �(m + 1)

�(m + 1
2 )

(3.6)
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with m = s
2 . The left-hand side of (3.6) is a sum of alternating terms of the same form as the right-hand side of

the binomial sum in Lemma 3.2. Using Lemma 3.2 and then changing the order of summation yields (3.6).
Now assume that n ≥ 2. Using (3.4) we can rewrite the integral as∫

En
1

�
(E)
0,0,s(K ∩ E)μn

1(d E)

= 2

s!ωs+1

∫
Ln

1

Q(L)
s
2

∫
L⊥

V0(K ∩ (L + x)) λL⊥(dx) νn
1 (d L)

= 2

s!ωs+1ωn

∫
Sn−1

us Vn−1(K | u⊥)Hn−1(du)

by the convexity of K and an invariance argument for the second equality. A projection formula (see [9, (A.45)]
or [21, (5.80)]) and Fubini’s theorem then imply that∫

En
1

�
(E)
0,0,s(K ∩ E)μn

1(d E)

= 1

s!ωs+1ωn

∫
Sn−1

∫
Sn−1

us |〈u, v〉|Hn−1(du) Sn−1(K , dv). (3.7)

We now fix v ∈ Sn−1 and simplify the inner integral by introducing spherical coordinates (see, e.g., [20]).
Then ∫

Sn−1
us |〈u, v〉|Hn−1(du)

=
∫ 1

−1

∫
Sn−1∩v⊥

(1 − t2)
n−3

2 (tv +
√

1 − t2w)s |t |Hn−2(dw) dt

=
s∑

j=0

(
s

j

)
v j
∫ 1

−1
(1 − t2)

n−3
2 t j

√
1 − t2

s− j |t | dt
∫

Sn−1∩v⊥
ws− j Hn−2(dw).

The integral with respect to t is zero if j is odd. If j is even, then it is equal to the beta integral

B

(
j + 2

2
,

n + s − j − 1

2

)
= 2ωn+s+1

ω j+2 ωn+s− j−1
.

Hence, since s is even, we conclude from (3.3) that∫
Sn−1

us |〈u, v〉|Hn−1(du) = 4ωn+s+1

s
2∑

j=0

(
s

2 j

)
v2 j 1

ω2 j+2 ωs−2 j+1
Q(v⊥)

s−2 j
2

= 4ωn+s+1

s
2∑

j=0

s
2 − j∑
i=0

(−1)i

(
s

2 j

)( s
2 − j

i

)
1

ω2 j+2 ωs−2 j+1
Q

s
2 − j−iv2(i+ j),

where we have used that Q(v⊥) = Q − v2. By substitution into (3.7) and the definition of �n−1,0,2(i+ j)(K ), we
obtain that ∫

En
1

�
(E)
0,0,s(K ∩ E)μn

1(d E) = 4ωn+s+1

s!ωs+1ωn
S, (3.8)

where

S =
s
2∑

j=0

s
2 − j∑
i=0

(−1)i

(
s

2 j

)( s
2 − j

i

)
(2(i + j))!ω2(i+ j)+1

ω2 j+2 ωs−2 j+1
Q

s
2 − j−i�n−1,0,2(i+ j)(K ).
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Re-indexing and changing the order of summation, we arrive at

S = �( s
2 + 1

2 )

4π
s+3

2

s
2∑

k=0

(−1)k(2k)!ω2k+1 Q
s
2 −k�n−1,0,2k(K )

k∑
j=0

(−1) j

(
s

2 j

)( s
2 − j

k − j

)( s−1
2

j

)−1

= 1

2πωs+1

s
2∑

k=0

(−1)k

( s
2

k

)
(2k)! ω2k+1

1 − 2k
Q

s
2 −k�n−1,0,2k(K ),

where we have used Lemma 3.2 with n = s
2 and m = k. �

Setting s = 2 we immediately get the following corollary.

Corollary 3.3 Let K ∈ Kn. Then∫
En

1

�
(E)
0,0,2(K ∩ E)μn

1(d E) = an

(
�n−1,0,2(K ) + 1

4π
QVn−1(K )

)
,

where

an = �( n
2 )

2�( n+3
2 )

√
π

.

The Crofton formula in Theorem 3.1 expresses the integral of the measurement function �
(E)
0,0,s(K ∩ E) as

a linear combination of certain surface tensors of K ∈ Kn . This could, in principle, be used to obtain unbiased
stereological estimators of the linear combinations. However, it is more natural to ask what measurement one
should use in order to obtain �n−1,0,s(K ) as a Crofton-type integral. For even s the tensor �n−1,0,s(K ) appears in
the last term of the sum on the right-hand side of (3.1). But surface tensors of lower rank appear in the remaining
terms of the sum. Therefore, we need to express the lower rank tensors �n−1,0,2k(K ) for k = 0, . . . , s

2 − 1 as
integrals. This is done by replacing s in Theorem 3.1 with 2k for k = 0, . . . , s

2 − 1. This way, we get s
2 + 1 linear

equations, which give rise to the linear system⎛⎜⎜⎜⎜⎜⎝
C0
∫
En

1
�

(E)
0,0,0(K ∩ E)μn

1(d E)

C2
∫
En

1
�

(E)
0,0,2(K ∩ E)μn

1(d E)
...

Cs
∫
En

1
�

(E)
0,0,s(K ∩ E)μn

1(d E)

⎞⎟⎟⎟⎟⎟⎠ = C

⎛⎜⎜⎜⎝
�n−1,0,0(K )
�n−1,0,2(K )

...
�n−1,0,s(K )

⎞⎟⎟⎟⎠
where

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c(0)
0 0 0 . . . 0

c(1)
0 Q c(1)

1 0
...

...
. . . 0

c
( s

2 )

0 Q
s
2 c

( s
2 )

1 Q
s
2 −1 . . . c

( s
2 )

s
2 −1 Q c

( s
2 )

s
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and C j = π j!ω2

j+1ωn

2ωn+ j+1
for j = 0, 2, 4, . . . , s. Our aim is to express �n−1,0,s(K ) as an integral, hence we have to

invert the system. Notice that the constants c(i)
i are non-zero, which ensures that the system actually is invertible.

The system can be inverted by the matrix

D =

⎛⎜⎜⎜⎜⎜⎜⎝

d00 0 0 . . . 0

d10 Q d11 0
...

d20 Q2 d21 Q d22 0
...

. . . 0
d s

2 0 Q
s
2 d s

2 1 Q
s
2 −1 . . . d s

2
s
2

⎞⎟⎟⎟⎟⎟⎟⎠, (3.9)
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where dii = 1

c( i)
i

for i = 0, . . . , s
2 , and di j = − 1

c( i)
i

∑i−1
k= j c(i)

k dk j for i = 1, . . . , s
2 and j = 0, . . . , i − 1. In partic-

ular, we have

�n−1,0,s(K ) =
s
2∑

j=0

d s
2 j Q

s
2 − j C2 j

∫
En

1

�
(E)
0,0,2 j (K ∩ E)μn

1(d E). (3.10)

Notice that only the dimension of the matrix (3.9) depends on s, hence we get the same integral formulas for
the lower rank tensors for different choices of s. Formula (3.4) and the above considerations give the following
‘inverse’ version of the Crofton formula stated in Theorem 3.1.

Theorem 3.4 Let K ∈ Kn and let s ∈ N0 be even. Then∫
En

1

Gs(π(E))V0(K ∩ E)μn
1(d E) = �n−1,0,s(K ), (3.11)

where

G2m(L) :=
m∑

j=0

2dmj C2 j

(2 j)! ω2 j+1
Qm− j Q(L) j

for L ∈ Ln
1 and m ∈ N0.

It should be remarked that the measurement function in (3.11) is just a linear combination of the relative tensors
of even rank at most s, but we prefer the present form to indicate the dependence on K more explicitly.

Example 3.5 For s = 4 the matrices are

C =
⎛⎝ 2 0 0

2Q 8π 0
2Q2 16π Q − 64π2

3

⎞⎠
and

D =

⎛⎜⎝
1
2 0 0

− 1
8π

Q 1
8π

0

− 3
64π2 Q2 3

32π2 Q − 3
64π2

⎞⎟⎠. (3.12)

Since C0 = 2πωn
ωn+1

, C2 = 16π3ωn
ωn+3

and C4 = 256π5ωn
3ωn+5

, we have

G4(L) = − ωn

32πωn+1

(
3Q2 − 6(n + 1)Q Q(L) + (n + 1)(n + 3)Q(L)2

)
.

Due to the remark after Equation (3.10), the matrices C and D can be used to calculate G2. We obtain

G2(L) = ωn

4ωn+1

(
(n + 1)Q(L) − Q

)
for L ∈ Ln

1.

In Theorem 3.4 we only considered the situation, where s is even. It is natural to ask whether �n−1,0,s(K ) can
also be written as a linear Crofton integral when s is odd. The case s = 1 is trivial, as the tensor �n−1,0,1(K ) = 0 for
all K ∈ Kn . If n = 1, then �n−1,0,s(K ) = 0 for all odd s, since the area measure of order 0 is the Hausdorff measure
on the sphere. Apart from these trivial examples, �n−1,0,s cannot be written as a linear Crofton-type integral, when
s is odd and the measurement function satisfies some rather weak assumptions. This is shown in Theorem 3.6.
The theorem involves a measurement function α : M → Ts , where M = {(E, K ) ∈ En

1 × Kn | K ⊆ E}. We say
that α is integrable if E �→ α(E, K ∩ E) is measurable and E �→ ‖α(E, K ∩ E)‖Ts is integrable with respect to
μn

1 for all K ∈ Kn . In particular, this condition ensures that∫
En

1

‖α(E,∅)‖Ts μn
1(d E) < ∞. (3.13)
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Let E∗ := {E ∈ En
1 | E ∩ Bn �= ∅}. In addition to the integrability of α, we assume that for any K ∈ Kn with

K ⊆ Bn there is a finite constant CK = C such that∫
E∗

‖α(E + x, (K ∩ E) + x)‖Ts μn
1(d E) ≤ C (3.14)

for all x ∈ Rn .
We call a measurement function α translation invariant, if α(E + z, (K ∩ E) + z) = α(E, K ∩ E) for all K ∈

Kn , E ∈ En
1 and z ∈ Rn . Moreover, α is said to be bounded, if sup{‖α(E, K ∩ E)‖Ts | (E, K ) ∈ En

1 × Kn} < ∞.
Assuming that α is integrable, (3.14) is satisfied, for instance, if α is translation invariant or bounded.

Theorem 3.6 Let n ≥ 2 and let s > 1 be odd. There is no integrable map α : M → Ts such that (3.14) and∫
En

1

α(E, K ∩ E)μn
1(d E) = �n−1,0,s(K ) (3.15)

for all K ∈ Kn are satisfied.

P r o o f . Assume that there exists an integrable map α such that (3.14) and (3.15) are satisfied. Let K ∈ Kn with
K ⊆ Bn and let r > 0. Since (x, E) �→ α(E + x, (K ∩ E) + x) is measurable and K ∩ E = ∅ for E ∈ En

1 \ E∗,∫
r Bn

∫
En

1

‖α(E + x, (K ∩ E) + x)‖Ts μn
1(d E) λ(dx)

≤
∫

r Bn

∫
E∗

‖α(E + x, (K ∩ E) + x)‖Ts μn
1(d E) λ(dx)

+
∫

r Bn

∫
En

1

‖α(E + x,∅)‖Ts μn
1(d E) λ(dx)

≤ CVn(r Bn) + Vn(r Bn)

∫
En

1

‖α(E,∅)‖Ts μn
1(d E) < ∞,

where we used that μn
1 is translation invariant, (3.13) and (3.14). Hence, the map (x, E) �→ α(E + x, (K ∩ E) +

x) is integrable on r Bn × En
1 , which justifies that Fubini’s theorem can be applied in the following.

By Fubini’s theorem, the translation invariance of μn
1, (3.15) and the fact that �n−1,0,s is translation invariant,

we then obtain that

1

Vn(r Bn)

∫
En

1

∫
r Bn

α(E + x, (K ∩ E) + x) λ(dx)μn
1(d E)

= 1

Vn(r Bn)

∫
r Bn

∫
En

1

α(E + x, (K ∩ E) + x)μn
1(d E) λ(dx)

= 1

Vn(r Bn)

∫
r Bn

∫
En

1

α(E, (K + x) ∩ E)μn
1(d E) λ(dx)

= 1

Vn(r Bn)

∫
r Bn

�n−1,0,s(K + x) λ(dx)

= �n−1,0,s(K ).

Then

�n−1,0,s(K ) − �n−1,0,s(−K )

= 1

Vn(r Bn)

(∫
En

1

∫
r Bn

α(E + x, (K ∩ E) + x) λ(dx)μn
1(d E)

−
∫
En

1

∫
r Bn

α(E + x, ((−K ) ∩ E) + x) λ(dx)μn
1(d E)

)
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= 1

Vn(r Bn)

(∫
E∗

∫
r Bn

α(E + x, (K ∩ E) + x) λ(dx)μn
1(d E)

−
∫
E∗

∫
r Bn

α(E + x, ((−K ) ∩ E) + x) λ(dx)μn
1(d E)

)
= 1

Vn(r Bn)

(∫
E∗

∫
r Bn

α(E + x, (K ∩ E) + x) λ(dx)μn
1(d E)

−
∫
E∗

∫
r Bn

α(−E + x,−(K ∩ E) + x) λ(dx)μn
1(d E)

)
,

where we used that E ∈ E∗ if and only if −E ∈ E∗ and the fact that μn
1 is reflection invariant.

For K ∈ Kn with K ⊆ Bn and E ∈ En
1 , the intersection K ∩ E is either the empty set, a singleton or a

line segment in Bn . Hence, there exists a vector zE ∈ Rn with ‖zE‖ ≤ 2 such that −(K ∩ E) = (K ∩ E) + zE

and −E = E + zE . Let B1
B2 denote the symmetric difference of two sets B1, B2 ⊆ Rn . For r > 2 we have
(r Bn + zE)
(r Bn) ⊆ (r + 2)Bn \ (r − 2)Bn , and therefore∥∥∥∥�n−1,0,s(K ) − �n−1,0,s(−K )

∥∥∥∥
Ts

≤ 1

Vn(r Bn)

∫
E∗

∫
(r Bn+zE )
(r Bn)

‖α(E + x, (K ∩ E) + x)‖Ts λ(dx)μn
1(d E)

≤ 1

Vn(r Bn)

∫
E∗

∫
(r+2)Bn\(r−2)Bn

‖α(E + x, (K ∩ E) + x)‖Ts λ(dx)μn
1(d E)

≤ 1

Vn(r Bn)

∫
(r+2)Bn\(r−2)Bn

∫
E∗

‖α(E + x, (K ∩ E) + x)‖Ts μn
1(d E) λ(dx)

≤ C
(r + 2)n − (r − 2)n

rn
−→ 0 as r → ∞.

Hence, we get �n−1,0,s(K ) = �n−1,0,s(−K ). Since s is odd, we also have �n−1,0,s(K ) = −�n−1,0,s(−K ). There-
fore, �n−1,0,s(K ) = 0 for all convex bodies K ⊆ Bn . By translation invariance and homogeneity this implies that
�n−1,0,s(K ) = 0 for all K ∈ Kn . This is not the case, since �n−1,0,s is a member of a basis in the vector space of
translation invariant tensor valuations. See also the special case v = 0 of Lemma 5.3 in [11]. The contradiction
proves the theorem. �

4 Design based estimation

In this section we use the integral formula (3.11) in Theorem 3.4 to derive unbiased estimators of the surface
tensors �n−1,0,s(K ) of K ∈ Kn , when s is even. We assume throughout this chapter that n ≥ 2. Three different
types of estimators based on 1-dimensional linear sections are presented. First, we establish estimators based on
isotropic uniform random lines, then estimators based on random lines in vertical sections and finally estimators
based on non-isotropic uniform random lines.

4.1 Estimation based on isotropic uniform random lines

In this section we construct estimators of �n−1,0,s(K ) based on isotropic uniform random lines. Let K ∈ Kn . We
assume that (the unknown set) K is contained in a compact reference set A ⊆ Rn , the latter being known. Now
let E be an isotropic uniform random (IUR) line in Rn hitting A, i.e., the distribution of E is given by

P(E ∈ A) = c1(A)

∫
A

1(E ′ ∩ A �= ∅)μn
1(d E ′) (4.1)
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for A ∈ B(En
1 ), where c1(A) is the normalizing constant

c1(A) =
(∫

En
1

1(E ′ ∩ A �= ∅)μn
1(d E ′)

)−1

.

By (3.1) with s = 0 the normalizing constant becomes c1(A) = ωn
2κn−1

Vn−1(A)−1, when A is a convex body. Then
Theorem 3.4 implies that

c1(A)−1Gs(π(E))V0(K ∩ E) (4.2)

is an unbiased estimator of �n−1,0,s(K ), when s is even.

Example 4.1 Using the expressions of G2 and G4 in Example 3.5 we get that

− Vn−1(A)

32π2

(
3Q2 − 6(n + 1)Q Q(π(E)) + (n + 1)(n + 3)Q(π(E))2

)
V0(K ∩ E)

is an unbiased estimator of �n−1,0,4(K ), and

Vn−1(A)

4π

(
(n + 1)Q(π(E)) − Q

)
V0(K ∩ E) (4.3)

is an unbiased estimator of �n−1,0,2(K ), when A is a convex body. For n = 3, these estimators read

−3V2(A)

32π2

(
Q2 − 8Q Q(π(E)) + 8Q(π(E))2

)
V0(K ∩ E)

and

V2(A)

π

(
Q(π(E)) − 1

4
Q

)
V0(K ∩ E). (4.4)

An investigation of the estimators in Example 4.1 shows that they possess some unfavourable statistical
properties. With probability 1 − Vn−1(K )

Vn−1( A)
the test line E does not hit K . In this situation the estimators are

simply zero and contain, hereby, no information on the shape of K . Furthermore, if K ∩ E �= ∅, the matrix
representation of the estimator (4.3) of �n−1,0,2(K ) is, in contrast to �n−1,0,2(K ), not positive semi-definite. In
fact, the eigenvalues of the matrix representation of (n + 1)Q(π(E)) − Q are n (with multiplicity 1) and −1
(with multiplicity n − 1). It is not surprising that estimators based on the measurement of one single line, are
not sufficient, when we are estimating tensors with many unknown parameters. To improve the estimators, they
can be extended in a natural way to use information from N IUR lines for some N ∈ N. In addition, the integral
formula (3.11) can be rewritten in the form

�n−1,0,s(K ) =
∫
Ln

1

∫
L⊥

Gs(L)V0(K ∩ (L + x)) λL⊥(dx) νn
1 (d L)

=
∫
Ln

1

Gs(L)Vn−1(K |L⊥) νn
1 (d L), (4.5)

which implies that

1

N

N∑
i=1

Gs(Li )Vn−1(K |L⊥
i ) (4.6)

is an unbiased estimator of �n−1,0,s(K ), when L1, . . . L N ∈ Ln
1 are N isotropic lines (through the origin) for an

N ∈ N. When K is full-dimensional this estimator never vanishes. In the case where s = 2 the estimator becomes

1

N

ωn

4ωn+1

N∑
i=1

(
(n + 1)Q(Li ) − Q

)
Vn−1(K |L⊥

i ). (4.7)
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In stereology it is common practice to use orthogonal test lines. If we set N = n and let L1, . . . , Ln be isotropic,
pairwise orthogonal lines, then the estimator (4.7) becomes positive definite exactly when

(n + 1)Vn−1
(
K |L⊥

i

)
>

n∑
j=1

Vn−1
(
K | L⊥

j

)
(4.8)

for all i = 1, . . . , n. This is a condition on K requiring that K is not too eccentric. A sufficient condition for (4.8)
to hold makes use of the radius R(K ) of the smallest ball containing K and the radius r(K ) of the largest ball
contained in K . If

r(K )

R(K )
>

(
1 − 1

n

) 1
n−1

, (4.9)

then (4.8) is satisfied, and hence the estimator (4.7) with n orthogonal, isotropic lines is positive definite. In R2

this means that 2r(K ) > R(K ) is sufficient for a positive definite estimator (4.7), and in particular for all ellipses
for which the length of the longer main axis does not exceed twice the length of the smaller main axis, (4.7) yields
positive definite estimators. For ellipses, this criterion is also necessary as the following example shows.

Example 4.2 Consider the situation where n = 2 and K is an ellipse, K = {
x ∈ R2 | x� Bx ≤ 1

}
, given by

the matrix

B =
(

α−2 0
0 (kα)−2

)
,

where α > 0 and k ∈ (0, 1]. The parameter k determines the eccentricity of K . If k ∈ (
1
2 , 1

]
, and L1 and L2 are

orthogonal, isotropic random lines in R2, the estimator (4.7) becomes positive definite by the above considerations.
Now let k ∈ (0, 1/2]. Since n = 2, each pair of orthogonal lines is determined by a constant φ ∈ [

0, π
2

)
by letting

L1 = u⊥
φ and L2 = u⊥

φ+ π
2
, where uφ = (cos(φ), sin(φ))�. Then

Vn−1(K | L⊥
1 ) = 2h(K , uφ) = 2α

√
cos2(φ) + k2 sin2(φ)

and

Vn−1(K | L⊥
2 ) = 2α

√
sin2(φ) + k2 cos2(φ).

Condition (4.8) is satisfied if and only if

φ ∈
[

sin−1

(√
1 − 4k2

5(1 − k2)

)
, cos−1

(√
1 − 4k2

5(1 − k2)

)]
,

and the probability that the estimator is positive definite, when L1 and L2 are orthogonal, isotropic lines (corre-
sponding to φ being uniformly distributed on [0, π

2 ]) is

2

π

(
cos−1

(√
1 − 4k2

5(1 − k2)

)
− sin−1

(√
1 − 4k2

5(1 − k2)

))
,

which converges to 2
π

(
cos−1

(√
1
5

)
− sin−1

(√
1
5

))
≈ 0.41 as k converges to 0.

In R2 the estimator (4.7) can alternatively be combined with a systematic sampling approach with N isotropic
random lines. Let N ∈ N, and let φ0 be uniformly distributed on [0, π

N ]. Moreover, let φi = φ0 + i π
N for i =

1, . . . , N − 1. Then uφ0 , . . . , uφN−1 are N systematic isotropic uniform random directions in the upper half of S1,
where uφ = (cos(φ), sin(φ))�. As the estimator (4.7) is a tensor of rank 2, it can be identified with the symmetric
2 × 2 matrix, where the (i, j)’th entry is the estimator evaluated at (ei , e j ), where (e1, e2) is the standard basis of
R2. The estimator becomes

SN (K , φ0) = 1

N

N−1∑
i=0

(
3 cos2(φi ) − 1 3 cos(φi ) sin(φi )

3 cos(φi ) sin(φi ) 3 sin2(φi ) − 1

)
V1
(
K | u⊥

φi

)
. (4.10)
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Fig. 1 The probability that SN (Ki , φ0) is positive definite for i = 1, 2, 3, when φ0 is uniformly distributed on
[0, π

N ] plotted against the number of equidistant lines N .

Example 4.3 To investigate how the estimator SN (K , φ0) performs we estimate the probability that the
estimator is positive definite for three different origin-symmetric convex bodies in R2; a parallelogram, a rectangle,
and an ellipse. Thus let

K1 = conv{(1, ε), (−1, ε), (−1,−ε), (1,−ε)},
K2 = conv{(1, 0), (0, ε), (−1, 0), (0,−ε)}
and

K3 =
{

x ∈ R2 | x�
(

1 0
0 1√

ε

)
x ≤ 1

}
with ε = 0.1. The support functions, and hence the intrinsic volumes V1

(
Ki |u⊥

φ

)
, of K1, K2 and K3 have simple

analytic expressions, and the estimator SN (Ki , φ0) can be calculated for φ0 ∈ [0, π
N ] and i = 1, 2, 3. The eigen-

values of the estimators can be calculated numerically, and the probability that the estimators SN (Ki , φ0) are
positive definite, when φ0 is uniformly distributed on [0, π

N ], can hereby be estimated. For each choice of N , the
estimate of the probability is based on 500 equally spread values of φ0 in [0, π

N ]. The estimate of the probability
that SN (Ki , φ0) is positive definite is plotted against the number of equidistant lines N for i = 1, 2, 3 in Figure 1.
The plots in Figure 1 show that even though we consider rather eccentric shapes, the number N of lines needed
to get a positive definite estimator with probability 1 is in all cases less than 7.
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To apply the estimator (4.2) it is only required to observe whether the test line hits or misses the convex body K .
The estimator (4.6) requires more sophisticated information in terms of the projection function. In the following
example the coefficient of variation of versions of the estimators (4.4) and (4.7) are estimated and compared in a
three-dimensional set-up.

Example 4.4 Let K ′
l be the prolate spheroid in R3 with main axis parallel to the standard basis vectors e1, e2

and e3, and corresponding lengths of semi-axes λ1 = λ2 = 1 and λ3 = l. For l = 1, . . . , 5, let Kl denote the
ellipsoid obtained by rotating K ′

l first around e1 with an angle 3π
16 , and then around e2 with an angle 5π

16 . Note,
that the eccentricity of Kl increases with l. In this example, based on simulations, we estimate and compare the
coefficient of variation (CV) of the developed estimators of �2,0,2(Kl) for l = 1, . . . , 5.

Formula (4.4) provides an unbiased estimator of the tensor �2,0,2(Kl) for l = 1, . . . , 5. The estimator is based
on one IUR line hitting a reference set A, and can in a natural way be extended to an estimator based on three
orthogonal IUR lines hitting A. We estimate the variance of both estimators. Let, for l = 1, . . . , 5, the reference
set Al be a ball of radius Rl > 0. The choice of the reference set influences the variance of the estimator. In order
to minimize this effect in the comparison of the CV’s, the radii of the reference sets are chosen such that the
probability that a test line hits Kl is constant for l = 1, . . . , 5. By formula (4.1) the probability that an IUR line
hitting Al hits Kl is V2(Kl )

V2( Al )
. The radius is chosen, such that this probability is 1

7 . We further estimate the variance
of the projection estimator (4.7) based on one isotropic line and on three orthogonal isotropic lines.

As �2,0,2(Kl) is a tensor of rank 2, it can be identified with the symmetric matrix {�2,0,2(Kl)(ei , e j )}3
i, j=1 of size

3 × 3. Thus, in order to estimate �2,0,2(Kl), the matrix
{
�̂2,0,2(Kl)(ei , e j )

}3
i, j=1 is calculated. Here, �̂2,0,2(Kl)

refers to any of the four estimators described above. Due to symmetry, there are six different components of the
matrices.

The estimates of the variances are based on 1500–10000 estimates of the tensor, depending on the choice of
the estimator and the eccentricity of Kl . Using the estimates of the variances, we estimate the absolute value of
the CV’s by

ĈV i j =
√

V̂ar(�̂2,0,2(Kl)(ei , e j ))

|�2,0,2(Kl)(ei , e j )| ,

for i, j = 1, 2, 3 and l = 1, . . . , 5. As Kl is an ellipsoid, the tensor �2,0,2(Kl) can be calculated numerically. The
CV’s of the four estimators are plotted in Figure 2 for each of the six different components of the associated
matrix. As K1 is a ball, the off-diagonal elements of the matrix associated with �2,0,2(K1) are zero. Thus, the CV
is in this case calculated only for the estimators of the diagonal-elements.

The projection estimators give, as expected, smaller CV’s, than the estimators based on the Euler characteristic
of the intersection between the test lines and the ellipsoid. For the estimators based on one test line the CV of
the projection estimator is typically around 38% of the corresponding estimator (4.4). For the estimators based
on three orthogonal test lines, the CV of the projection estimator is typically 9% of the estimator (4.4), when
l = 2, . . . , 5. Due to the fact that K1 is a ball, the variance of the projection estimator based on three orthogonal
lines is 0, when l = 1.

It is interesting to compare the increase of efficiency when using the estimator based on three orthogonal test
lines instead of three i.i.d. test lines. The CV of an estimator based on three i.i.d. test lines is 1√

3
of the CV

of the estimator (4.4), (the “+” signs in Figure 2). The CV, when using three orthogonal test lines, is typically
around 92% of that CV. For l = 2, . . . , 5, the CV’s of the projection estimator based on three orthogonal lines, are
typically 20% of the CV, when using three i.i.d lines, indicating that spatial random systematic sampling increases
precision without extra workload.

The CV’s of the estimators of the diagonal-elements �2,0,2(Kl)(ei , ei ) are almost constant in l. Hence the
eccentricity of Kl does not affect the CV’s for these choices of l. There is a decreasing tendency of the CV’s of the
estimators of the off-diagonal elements. This might be explained by the fact that the true value of �2,0,2(Kl)(ei , e j )
is close to zero, when i �= j and l is small.

The above example shows that only the projection estimator based on three orthogonal test lines has a
satisfactory precision. For l = 2 the CV’s are approximately 1

3 for the diagonal-elements and 1 for the off-
diagonal elements. Further variance reduction of the projection estimator can be obtained by using a larger
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Fig. 2 The estimated coefficients of variation ĈV i j of the estimators of �2,0,2(Kl)(ei , e j ) plotted against l
for i, j ∈ {1, 2, 3}. The CV of the estimator (4.4) based on one line is designated by “+”, while the CV of
the corresponding estimator based on three lines is designated by “•”. The CV of the projection estimator is
designated by “◦” and “�” for one and three lines, respectively.

number of systematic random test directions. For n = 2 this can be effectuated by choosing equidistant points on
the upper half circle; see (4.10). For n = 3 the directions must be chosen evenly spread; see [19] for details.

If the projections are not available or too costly to obtain, systematic sampling in the position of the test lines
with given orientations can be applied. In R2 this corresponds to a Steinhaus-type estimation procedure (see, e.g.,
[5]). In R3 the fakir method described in [18] can be applied.

4.2 Estimation based on vertical sections

In the previous section we constructed an estimator of �n−1,0,s(K ) based on isotropic uniform random lines. As
described in [17], it is sometimes inconvenient or impossible to use the IUR design in applications. For instance,
in biology when analysing skin tissue, it might be necessary to use sample sections, which are normal to the
surface of the skin, so that the different layers become clearly distinguishable in the sample. Instead of using IUR
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lines it is then a possibility to use vertical sections introduced by Baddeley in [4]. The idea is to fix a direction
(the normal of the skin surface), and only consider flats parallel to this direction. After randomly selecting a flat
among these flats, we want to pick a line in the flat in such a way that this line is an isotropic uniform random
line in Rn . Like in the classical formulae for vertical sections, we select this line in a non-uniform way according
to a Blaschke-Petkantschin formula (see (4.13)). This idea is used to deduce estimators of �n−1,0,s(K ) from the
Crofton formula (3.11).

When introducing the concept of vertical sections we use the following notation. For 0 ≤ k ≤ n and L ∈ Ln
k ,

let

LL
r =

{{M ∈ Ln
r | M ⊆ L} if 0 ≤ r ≤ k,

{M ∈ Ln
r | L ⊆ M} if k < r ≤ n,

and, similarly, let E E
r = {F ∈ En

r | F ⊆ E} for E ∈ En
k and 0 ≤ r ≤ k. Let νL

r denote the unique rotation invariant
probability measure on LL

r , and let μE
r denote the motion invariant measure on E E

r normalized as in [24].
Let L0 ∈ Ln

1 be fixed. This is the vertical axis (the normal of the skin surface in the example above). Let the
reference set A ⊆ Rn be a compact set.

Definition 4.5 Let 1 < k < n. A random k-flat H in Rn is called a vertical uniform random (VUR) k-flat
hitting A if the distribution of H is given by

P(H ∈ A) = c2(A)

∫
LL0

k

∫
A|L⊥

1(L + x ∈ A) λL⊥(dx) ν
L0
k (d L)

for A ∈ B(En
k ), where c2(A) > 0 is a normalizing constant.

The distribution of H is concentrated on the set

{E ∈ En
k | E ∩ A �= ∅, L0 ⊆ π(E)}.

When the reference set A is a convex body, the normalizing constant becomes

c2(A) =
(

n − 1

k − 1

)
κn−1

κk−1κn−k

1

Vn−k(A|L⊥
0 )

.

(Note that we do not indicate the dependence of c2(A) on k by our notation.) This can be shown, e.g., by using
the definition of ν

L0
k together with [24, (13.13)], Crofton’s formula in the space L⊥

0 , and the equality

1A|L⊥(x) = V0
((

A|L⊥
0

) ∩ (x + L)
)

(4.11)

for A ∈ Kn , L ∈ LL0
k and x ∈ L⊥. For later use note that when k = 2 the normalizing constant becomes

c2(A) = ωn−1

2κn−2Vn−2(A|L⊥
0 )

. (4.12)

To construct an estimator, which is based on a vertical uniform random flat, we cannot use Theorem 3.4
immediately as in the IUR-case. It is necessary to use a Blaschke-Petkantschin formula first; see [17, (2.8)]. It
states that for a fixed L0 ∈ Ln

1 and an integrable function f : En
1 → R, we have∫

En
1

f (E)μn
1(d E) = πωn−1

ωn

∫
LL0

2

∫
M⊥

∫
EM+x

1

f (E) sin(∠(E, L0))
n−2

× μM+x
1 (d E) λM⊥(dx) ν

L0
2 (d M), (4.13)

where ∠(E1, E2) is the (smaller) angle between π(E1) and π(E2) for two lines E1, E2 ∈ En
1 . For K ∈ Kn and

even s ∈ N0, Equation (4.13) can be applied coordinate-wise to the mapping E �→ �
(E)
0,0,s(K ∩ E) and combined

with the Crofton formula in Theorem 3.1. The result is an integral formula for two-dimensional vertical sections.

Theorem 4.6 Let L0 ∈ Ln
1 be fixed. If K ∈ Kn and s ∈ N0 is even, then∫

LL0
2

∫
M⊥

∫
EM+x

1

�
(E)
0,0,s(K ∩ E) sin(∠(E, L0))

n−2 μM+x
1 (d E) λM⊥(dx) ν

L0
2 (d M)
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= 2ωn+s+1

s!π2ωn−1ω
2
s+1

s
2∑

k=0

c
( s

2 )

k Q
s
2 −k�n−1,0,2k(K ), (4.14)

where the constants c(m)
k are given in Theorem 3.1. For odd s ∈ N0 the integral on the left-hand side is zero.

If Theorem 3.1 is replaced by Theorem 3.4 in the above line of arguments, we obtain an explicit measurement
function for vertical sections leading to one single tensor.

Theorem 4.7 Let L0 ∈ Ln
1 be fixed. If K ∈ Kn and s ∈ N0 is even, then

ωn

πωn−1
�n−1,0,s(K ) =

∫
LL0

2

∫
M⊥

∫
EM+x

1

Gs(π(E))V0(K ∩ E)

× sin(∠(E, L0))
n−2 μM+x

1 (d E) λM⊥(dx) ν
L0
2 (d M),

where Gs is given in Theorem 3.4.

Let s ∈ N0 be even and assume that K ∈ Kn is contained in a reference set A ∈ Kn . Using Theorem 4.7 we are
able to construct unbiased estimators of the tensors �n−1,0,s(K ) of K based on a vertical uniform random 2-flat.
If H is an VUR 2-flat hitting A with vertical direction L0 ∈ Ln

1, then it follows from Theorem 4.7 and (4.12) that

Vn−2(A|L⊥
0 )

∫
EH

1

Gs(π(E))V0(K ∩ E) sin(∠(E, L0))
n−2 μH

1 (d E) (4.15)

is an unbiased estimator of �n−1,0,s(K ). Hence the surface tensors can be estimated by a two-step procedure.
First, let H be a VUR 2-flat hitting the convex body A with vertical direction L0. Given H, the integral∫

EH
1

Gs(π(E))V0(K ∩ E) sin(∠(E, L0))
n−2 μH

1 (d E) (4.16)

is estimated in the following way. Let E ∈ EH
1 be an IUR line in H hitting A, i.e. the distribution of E is given by

P(E ∈ A) = c3(A)

∫
A

1(A ∩ E �= ∅)μH
1 (d E), A ∈ B

(
EH

1

)
,

where

c3(A) = π

2
V1(A ∩ H)−1

is the normalizing constant. The integral (4.16) is then estimated unbiasedly by

c3(A)−1Gs(π(E))V0(K ∩ E) sin(∠(E, L0))
n−2. (4.17)

Example 4.8 Consider the case s = 2. Let H be a VUR 2-flat hitting A ∈ Kn with vertical direction L0. Given
H , let E be an IUR line in H hitting A. Then

κn−2Vn−2(A|L⊥
0 )V1(A ∩ H)

ωn+1

(
(n + 1)Q(π(E)) − Q

)
V0(K ∩ E) sin(∠(E, L0))

n−2

is an unbiased estimator of �n−1,0,2(K ).

Using [24, (13.13)] and an invariance argument, the integral (4.16) can alternatively be expressed in the
following way∫

EH
1

Gs(π(E))V0(K ∩ E) sin(∠(E, L0))
n−2 μH

1 (d E)

= 1

ω2

∫
Sn−1∩π(H)

Gs(u
⊥ ∩ π(H)) sin(∠(u⊥ ∩ π(H), L0))

n−2

×
∫

[u]

V0(K ∩ H ∩ (u⊥ + x)) λ[u](dx)H1(du)
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= 1

ω2

∫
Sn−1∩π(H)

Gs(u
⊥ ∩ π(H)) cos(∠(u, L0))

n−2w(K ∩ H, u)H1(du),

where [u] denotes the linear hull of a unit vector u and

w(M, u) = h(M, u) + h(M,−u) = max{〈x, u〉 | x ∈ M} − min{〈x, u〉 | x ∈ M}
is the width of M ∈ Kn in direction u if M �= ∅ and zero otherwise. Hence, given H ,

Gs(U
⊥ ∩ π(H)) cos(∠(U, L0))

n−2w(K ∩ H, U) (4.18)

is an unbiased estimator of the integral (4.16) if U is uniform on Sn−1 ∩ π(H). As in the IUR set-up in Section
4.1 we have two estimators: an estimator (4.17), where it is only necessary to observe whether the random line E
hits or misses K , and the alternative estimator (4.18), which requires more information. The latter estimator has
a better precision at least when the reference set A is large. Variance reduction can be obtained by combining the
estimators with a systematic sampling approach.

4.3 Estimation based on non-isotropic random lines

In this section we consider estimators based on non-isotropic random lines. It is well-known from the theory of
importance sampling that variance reduction of estimators can be obtained by modifying the sampling distribution
in a suitable way (see, e.g., [2]). The estimators in this section are developed with inspiration from this theory.
Let again K ∈ Kn , and let f : Ln

1 → [0,∞) be a probability density with respect to the invariant measure νn
1 on

Ln
1 such that f is positive νn

1 -almost surely. Then by Theorem 3.4 we have trivially∫
En

1

Gs(π(E))V0(K ∩ E)

f (π(E))
f (π(E))μn

1(d E) = �n−1,0,s(K ). (4.19)

Let A ⊆ Rn be a compact reference set containing K , and let E be an f -weighted random line in Rn hitting A,
that is, the distribution of E is given by

P(E ∈ A) = c4(A)

∫
A

1(E ∩ A �= ∅) f (π(E))μn
1(d E)

for A ∈ B(En
1 ), where

c4(A) =
(∫

En
1

1(E ∩ A �= ∅) f (π(E))μn
1(d E)

)−1

is a normalizing constant. Then

c4(A)−1Gs(π(E))V0(K ∩ E)

f (π(E))

is an unbiased estimator of �n−1,0,s(K ). Notice that if we let the density f be constant, then this procedure
coincides with the IUR design in Section 4.1.

Our aim is to decide which density f should be used in order to decrease the variance of the estimator of
�n−1,0,s(K ). Furthermore, we want to compare this variance with the variance of the estimator based on an IUR
line. From now on, we restrict the investigation to the situation where n = 2 and s = 2. Furthermore, we assume
that the reference set A is a ball in R2 of radius R for some R > 0. Then c4(A) = (2R)−1 independently of f .

Since �1,0,2(K ) can be identified with a symmetric 2 × 2 matrix, we have to estimate three unknown compo-
nents. We consider the variances of the three estimators separately. The components of the associated matrix of
G2(L) for L ∈ Ln

1 are defined by

gi j (L) = G2(L)(ei , e j ), (4.20)

for i, j = 1, 2, where (e1, e2) is the standard basis of R2. More explicitly, by Example 3.5, the associated matrix
of G2(L) of the line L = [u], for u ∈ S1, is

{gi j([u])}i j = 3

8

(
u2

1 − 1
3 u1u2

u1u2 u2
2 − 1

3

)
.
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Now let

ϕ̂i j (E, K ∩ E) := 2R gi j (π(E))V0(K ∩ E).

Then

ϕ̂i j (E, K ∩ E)

f (π(E))
(4.21)

is an unbiased estimator of �1,0,2(K )(ei , e j ), when E is an f -weighted random line in R2 hitting A.
For a given K ∈ K2 the weight function f minimizing the variance of the estimators of the form (4.21) can be

determined.

Lemma 4.9 For a fixed K ∈ K2 contained in the reference set A with dim K ≥ 1 and i, j ∈ {1, 2}, the estimator
(4.21) has minimal variance if and only if f = f ∗

K holds ν2
1 − a.s., where

f ∗
K (L) ∝

√
2RV1(K |L⊥) |gi j (L)| (4.22)

is a density with respect to ν2
1 that depends on i, j and K .

P r o o f . As K is compact, f ∗
K is a well-defined probability density, and since dim K ≥ 1, the density f ∗

K is
non-vanishing ν2

1 -almost surely. The second moment of the estimator (4.21) is

E f

(
ϕ̂i j (E, K ∩ E)

f (π(E))

)2

= 2R
∫
L2

1

V1(K |L⊥)
gi j (L)2

f (L)
ν2

1(d L), (4.23)

where E f denotes expectation with respect to the distribution of an f -weighted random line in R2 hitting A. The
right-hand side of (4.23) is the second moment of the random variable√

2RV1(K |L⊥) gi j (L)

f (L)
,

where the distribution of the random line L has density f with respect to ν2
1 . By [2, Chapter 5, Theorem 1.2] the

second moment of this variable is minimized, when f is proportional to
√

2RV1(K |L⊥) |gi j(L)|. Since the proof
of [2, Chapter 5, Theorem 1.2] follows simply by an application of Jensen’s inequality to the function t �→ t2,
equality can be characterized due to the strict convexity of this function, (see, e.g., [9, (B.8)]). Equality holds if
and only if

√
2RV1(K |L⊥) |gi j (L)| is a constant multiple of f (L) (or equivalently f = f ∗

K ) almost surely. �
The proof of Lemma 4.9 generalizes directly to arbitrary dimension n. As a consequence of Lemma 4.9, we

obtain that for any convex body K ∈ K2, optimal non-isotropic sampling provides a strictly smaller variance of
the estimator (4.21) than isotropic sampling. Indeed, noting that (4.21) with a constant function f reduces to the
usual estimator (4.3) (with n = 2, A = RB2) based on IUR lines, this follows from the fact that f ∗

K cannot be
constant. If f ∗

K was constant almost surely, then V1(K |u⊥) ∝ |gi j ([u])|−2 for almost all u ∈ S1. The left-hand side
is essentially bounded, whereas the right-hand side is not. This is a contradiction.

A further consequence of Lemma 4.9 is that there does not exist an estimator of the form (4.21) independent
of K that has uniformly minimal variance for all K ∈ K2 with dim K ≥ 1. Unfortunately, f ∗

K is not accessible, as
it depends on K , which is typically unknown. Even though estimators of the form (4.21) cannot have uniformly
minimal variance for all K ∈ K2 with dim K ≥ 1, we now show that there is a non-isotropic sampling design
which always yields smaller variance than the isotropic sampling design. Let

f ∗(L) ∝ |gi j (L)|
be a density with respect to ν2

1 . As |gi j(L)| is bounded and non-vanishing for ν2
1 -almost all L , f ∗ is well-defined

and non-zero ν2
1 -almost everywhere. For convex bodies of constant width, the density f ∗ coincides with the

optimal density f ∗
K .

Theorem 4.10 Let K ∈ K2, and let A = RB2 for some R > 0 be such that K ⊆ A. Then

Var f ∗

(
ϕ̂i j (E, K ∩ E)

f ∗(π(E))

)
< VarIU R

(
ϕ̂i j (E, K ∩ E)

)
. (4.24)
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P r o o f . Using the fact that both estimators are unbiased, it is sufficient to show that there is a 0 < λ < 1
with

E f ∗

(
ϕ̂i j (E, K ∩ E)

f ∗(π(E))

)2

≤ λ EIU R
(
ϕ̂i j (E, K ∩ E)

)2
, (4.25)

for all K ∈ K2. Using (4.23), the left-hand side of this inequality is

2R
∫
L2

1

|gi j (L)| ν2
1(d L)

∫
L2

1

|gi j(L)|V1(K |L⊥) ν2
1(d L)

and the right-hand side is

2R
∫
L2

1

gi j (L)2 V1(K |L⊥) ν2
1(d L).

Since u �→ V1(K |u⊥) is the support function of an origin-symmetric convex body in R2 (see [21, (5.80)]), the
inequality (4.25) holds if∫ 2π

0
|gi j ([uφ ])| dφ

2π

∫ 2π

0
|gi j ([uφ ])| h(Z , uφ)

dφ

2π

≤ λ

∫ 2π

0
gi j ([uφ ])2h(Z , uφ)

dφ

2π
(4.26)

for any origin-symmetric convex body Z ⊂ R2. Here uφ = (cos(φ), sin(φ))� for φ ∈ [0, 2π ]. Since origin-
symmetric convex bodies in R2 can be approximated by sums of origin-symmetric line segments (see, e.g., [21,
Cor. 3.5.7]) and the integrals in (4.26) depend linearly on the support function of Z , it is sufficient to show (4.26)
for all origin-symmetric line segments Z of length two. Hence, we may assume that Z is an origin-symmetric line
segment with endpoints ±(cos(γ ), sin(γ ))�, where γ ∈ [0, π). We now substitute the support function

h(Z , uφ) = | cos(φ − γ )|
for φ ∈ [0, 2π) into (4.26).

First, we consider the estimation of the first diagonal element of �1,0,2(K ), that is, i, j = 1 and gi j ([uφ ]) =
3
8 (cos2(φ) − 1

3 ) for φ ∈ [0, 2π ]. The integrals in (4.26) then become

Pf ∗(γ ) := 3

8

∫ 2π

0

∣∣∣∣cos2(φ) − 1

3

∣∣∣∣ dφ

2π

3

8

∫ 2π

0

∣∣∣∣cos2(φ) − 1

3

∣∣∣∣ | cos(φ − γ )| dφ

2π

and

PIU R(γ ) := 9

64

∫ 2π

0

(
cos2(φ) − 1

3

)2

| cos(φ − γ )| dφ

2π
.

Let κ = arccos( 1√
3
). Then

M := 3

8

∫ 2π

0

∣∣∣∣cos2(φ) − 1

3

∣∣∣∣ dφ

2π
=

√
2 + κ

4π
− 1

16
,

and elementary, but tedious calculations show that

Pf ∗(γ ) = M

π

(
2
√

2

3
√

3
cos(γ ) − 1

4
cos2(γ )

)
1[0, π

2 −κ](γ )

+ M

π

(
1

4
cos2(γ ) + 1

3
√

3
sin(γ )

)
1( π

2 −κ, π
2 ](γ )

for γ ∈ [0, π
2 ]. Further, Pf ∗(γ ) = Pf ∗(π − γ ) for γ ∈ [π

2 , π ]. For the IUR estimator we get that

PIU R(γ ) = 1

20π

(
− 3

8
cos4(γ ) + cos2(γ ) + 1

2

)
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for γ ∈ [0, π
2 ], and PIU R(γ ) = PIU R(π − γ ) for γ ∈ [π

2 , π ]. The functions Pf ∗ and PIU R are plotted in Figure 3.
Basic calculus for the comparison of these two functions shows that Pf ∗ < PIU R . This implies that Pf ∗ ≤ λPIU R ,

where λ = maxγ∈[0,π ]
Pf ∗( γ )

PIU R(γ )
is smaller than 1 as Pf ∗ and PIU R are continuous on the compact interval [0, π ].

Hereby (4.26) is satisfied for i = j = 1. Interchanging the roles of the coordinate axes in (4.26) yields the same
result for i = j = 2.

We now consider estimation of the off-diagonal element, that is, i = 1, j = 2. Then the left-hand and the
right-hand side of (4.26) become

Q f ∗(γ ) := 3

8

∫ 2π

0
| cos(φ) sin(φ)| dφ

2π

3

8

∫ 2π

0
| cos(φ) sin(φ)|| cos(φ − γ )| dφ

2π
(4.27)

and

QIU R(γ ) := 9

64

∫ 2π

0
cos2(φ) sin2(φ)| cos(φ − γ )| dφ

2π
(4.28)

for γ ∈ [0, π ]. We have

3

8

∫ 2π

0
| cos(φ) sin(φ)| dφ

2π
= 3

8π
,

and then

Q f ∗(γ ) = 3

32π2

(
sin(γ ) + cos(γ ) − sin(γ ) cos(γ )

)
for γ ∈ [0, π

2 ], and Q f ∗(γ ) = Q f ∗(γ − π
2 ) for γ ∈ [π

2 , π ]. For γ ∈ [0, π ] we further find that

QIU R(γ ) = 3

320π

(
4 − 1

2
sin2(2γ )

)
.

The functions QIU R and Q f ∗ are plotted in Figure 4. Basic calculus shows that

min
0≤γ≤π

Q f ∗ = 3

32π2

(√
2 − 1

2

)
, max

0≤γ≤π
Q f ∗ = 3

32π2
, (4.29)

and

min
0≤γ≤π

QIU R = 21

640π
, max

0≤γ≤π
QIU R = 3

80π
. (4.30)

Hence

Q f ∗(γ ) ≤ 3

32π2
≤ λ

21

640π
≤ λ QIU R(γ )

for γ ∈ [0, π ] with λ = 3
π

< 1. Hereby (4.26) holds for all origin-symmetric convex bodies Z ⊂ R2 and i =
1, j = 2, and the claim is shown. �

If E is an f ∗-weighted random line suited for estimating one particular component of �1,0,2(K ), then E
should not be used to estimate any of the other components, as this would increase the variance of these estimators
considerably. Hence, if we estimate all of the components of the tensor using the estimator based on f ∗-weighted
lines, we need three lines; one for each component. If we want to compare this approach with an estimation
procedure based on IUR lines, requiring the same workload, we will use three IUR lines. Note however, that all
three IUR lines can be used to estimate all three components of the tensor. This implies that we should actually
compare the variance of the estimator based on one f ∗-weighted random line with the variance of an estimator
based on three IUR lines. It turns out that the estimator based on three independent IUR lines has always smaller
variance, than the estimator based on one f -weighted line, no matter how the density f is chosen.
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Fig. 3 The straight line is PIU R , the dashed line is Pf ∗ , and the dash-dotted line is Popt .

Theorem 4.11 Let K ∈ K2 with dim (K ) ≥ 1. Let A = RB2 with some R > 0 be such that K ⊆ A. Let f
be a density with respect to ν2

1 , which is non-zero ν2
1 -almost everywhere. Let E1, E2 and E3 be independent IUR

lines in R2 hitting A. Then

Var

(
1

3

3∑
k=1

ϕ̂i j (Ek, K ∩ Ek)

)
< Var f

(
ϕ̂i j (E, K ∩ E)

f (π(E))

)
for i, j ∈ {1, 2}.

P r o o f . By Lemma 4.9, the variance of the estimator (4.21) is bounded from below by the variance of the
same estimator with f = f ∗

K . Hence, it is sufficient to compare the second moments of

1

3

3∑
k=1

ϕ̂i j (Ek, K ∩ Ek)

and (4.21) with f = f ∗
K . The latter is

2R

(∫
L2

1

|gi j (L)|
√

V1(K |L⊥) ν2
1(d L)

)2

,

so let

Popt(γ ) :=
(

3

8

∫ 2π

0

∣∣∣∣ cos2(φ) − 1

3

∣∣∣∣√| cos(φ − γ )| dφ

2π

)2

and

Qopt(γ ) :=
(

3

8

∫ 2π

0
| cos(φ) sin(φ)|

√
| cos(φ − γ )| dφ

2π

)2
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Fig. 4 The straight line is QIU R , the dashed line is Q f ∗ , and the dash-dotted line is Qopt .

for γ ∈ [0, π ]. Using the notation of the previous proof, by (4.27), (4.28), (4.29) and (4.30) we have

Qopt(γ ) ≥
(

8π Q f ∗(γ )

3

)2

≥ 9 − 4
√

2

64π2
>

1

80π
≥ 1

3
QIU R(γ )

for γ ∈ [0, π ]. Likewise, Popt(γ ) ≥
(

Pf ∗ (γ )

M

)2

. Elementary analysis shows that

min
0≤γ≤ π

2 −κ

(
Pf ∗(γ )

M

)2

= 25

324π2
>

3

160π
= max

0≤γ≤ π
2 −κ

1

3
PIU R(γ ),

and that

(
Pf ∗(γ )

M

)2

− 1

3
PIU R(γ ) ≥

(
Pf ∗(π

2 )

M

)2

− 1

3
PIU R

(
π

2

)
> 0

on [π
2 − κ, π

2 ]. Hence Popt > 1
3 PIU R on [0, π ], and the assertion is proved. �

This leads to the following conclusion: If one single component of the tensor �n−1,0,2(K ) is to be estimated
for unknown K , the estimator (4.21) with f = f ∗ is recommended, as its variance is strictly smaller than the one
from isotropic sampling (where f is a constant). If all components are sought for, the estimator based on three
IUR lines should be preferred.
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5 Model based estimation

In this section we derive estimators of the specific surface tensors associated with a stationary process of convex
particles based on linear sections. In [23], Schneider and Schuster treat the similar problem of estimating the area
moment tensor (s = 2) associated with a stationary process of convex particles using planar sections.

Let X be a stationary process of convex particles in Rn with locally finite (and non-zero) intensity measure,
intensity γ > 0 and grain distribution Q onK0 := {K ∈ Kn \ ∅ | c(K ) = 0}; see, e.g., [24] for further information
on this basic model of stochastic geometry. Here c : Kn \ {∅} → Rn is the center of the circumball of K . Since
X is a stationary process of convex particles, the intrinsic volumes V0, . . . , Vn are Q-integrable by [24, Theorem
4.1.2]. For j ∈ {0, . . . , n − 1} and s ∈ N0 the tensor valuation � j,0,s is measurable and translation invariant on
Kn , and since, by (2.1),

|� j,0,s(K )(ei1 , . . . , eis )| ≤ ωn− j

s!ωn− j+s
Vj (K ),

it is coordinate-wise Q-integrable. The j th specific (translation invariant) tensor of rank s can then be defined as

� j,0,s(X) := γ

∫
K0

� j,0,s(K ) Q(d K ) (5.1)

for j ∈ {0, . . . , n − 1} and s ∈ N0. For j = n − 1, the specific tensors are called the specific surface tensors.
Notice that �n−1,0,2(X) = 1

8π
T (X), where T (X) is the mean area moment tensor described in [23]. By [24,

Theorem 4.1.3] the specific tensors of X can be represented as

� j,0,s(X) = 1

λ(B)
E

∑
K ∈ X

c(K ) ∈ B

� j,0,s(K ), (5.2)

where B ∈ B(Rn) with 0 < λ(B) < ∞.
We now restrict considerations to j = n − 1 and discuss the estimation of �n−1,0,s(X) from linear sections of X .

We assume from now on that n ≥ 2. For L ∈ Ln
1 we let X ∩ L := {K ∩ L | K ∈ X, K ∩ L �= ∅} be the stationary

process of convex particles in L induced by X . Let γL and QL denote the intensity and the grain distribution of
X ∩ L , respectively. The tensor valuation �

(L)
0,0,s is measurable and QL -integrable on K(L)

0 := {K ∈ K0 | K ⊆ L}.
We can thus define

�
(L)

0,0,s(X ∩ L) := γL

∫
K( L)

0

�
(L)
0,0,s(K ) QL(d K ).

This deviates in the special case T
(L)

(X ∩ L) = 8π �
(L)

0,0,2(X ∩ L) from the definition in [23] due to a misprint
there. An application of (3.4) yields,

�
(L)

0,0,s(X ∩ L) = 2

s!ωs+1
Q(L)

s
2 γL (5.3)

for even s, and �
(L)

0,0,s(X ∩ L) = 0 for odd s.

Theorem 5.1 Let X be a stationary process of convex particles in Rn with positive intensity. If s ∈ N0 is even,
then ∫

Ln
1

�
(L)

0,0,s(X ∩ L) νn
1 (d L) = 2ωn+s+1

πs!ω2
s+1ωn

s
2∑

k=0

c
( s

2 )

k Q
s
2 −k �n−1,0,2k(X), (5.4)

where the constants c
( s

2 )

k for k = 0, . . . , s
2 are given in Theorem 3.1.
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P r o o f . Let L ∈ Ln
1, and let γL be the intensity of the stationary process X ∩ L . If B ⊆ L is a Borel set with

λL(B) = 1, then an application of Campbell’s theorem and Fubini’s theorem yields

γL = E
∑

K ∈ X
K ∩ L �= ∅

1(c(K ∩ L) ∈ B)

= γ

∫
K0

∫
L⊥

V0(K ∩ (L + x)) λL⊥(dx) Q(d K ),

where γ and Q are the intensity and the grain distribution of X . Then, (5.3) implies that

�
(L)

0,0,s(X ∩ L) = γ

∫
K0

∫
L⊥

�
(L+x)
0,0,s (K ∩ (L + x)) λL⊥(dx) Q(d K ),

and by Fubini’s theorem we get∫
Ln

1

�
(L)

0,0,s(X ∩ L) νn
1 (d L) = γ

∫
K0

∫
En

1

�
(E)
0,0,s(K ∩ E)μn

1(d E) Q(d K ). (5.5)

Now Theorem 3.1 yields the stated integral formula (5.4). �
A combination of Equation (5.5) and Equation (3.10) immediately gives the following Theorem 5.2, which

suggests an estimation procedure of the specific surface tensor �n−1,0,s(X) of the stationary particle process X .

Theorem 5.2 Let X be a stationary process of convex particles in Rn with positive intensity. If s ∈ N0 is even,
then ∫

Ln
1

s
2∑

j=0

d s
2 j C2 j Q

s
2 − j�

(L)

0,0,2 j (X ∩ L) νn
1 (d L) = �n−1,0,s(X), (5.6)

where d s
2 j and C2 j for j = 0, . . . , s

2 are given before Theorem 3.4.

Using (5.3), we can reformulate the integral formula (5.6) in the form∫
Ln

1

Gs(L)γL νn
1 (d L) = �n−1,0,s(X),

where Gs is given in Theorem 3.4.

Example 5.3 In the case where s = 2 formula (5.6) becomes∫
Ln

1

2π2ωn

ωn+3
�

(L)

0,0,2(X ∩ L) − ωn

4ωn+1
Q�

(L)

0,0,0(X ∩ L) νn
1 (d L) = �n−1,0,2(X).

Up to a normalizing factor 2π in the constant in front of �
(L)

0,0,2, this formula coincides with formula (7) in [23],
when n = 2. Apparently the normalizing factor got lost, when Schneider and Schuster used [22, (36)], which is
based on the spherical Lebesgue measure. In [23], Schneider and Schuster use the normalized spherical Lebesgue
measure.
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1. Introduction

The problem of determining and reconstructing an unknown geometric object from 
indirect measurements is treated in a number of papers, see, e.g., [6]. In [19], a con-
vex body is reconstructed from measurements of its support function. Measurements 
of the brightness function are used in [7], and in [4] it is shown that a convex body 
can be uniquely determined up to translation from measurements of its lightness func-
tion. Milanfar et al. [17] developed a reconstruction algorithm for planar polygons and 
quadrature domains from moments of the Lebesgue measure restricted to these sets. In 
particular, they showed that a non-degenerate convex polygon in R2 with k vertices is 
uniquely determined by its moments up to order 2k − 3. The reconstruction algorithm 
and the uniqueness result were generalized to convex polytopes in Rn by Gravin et al. 
in [10].

In continuation of the work in this area, we discuss reconstruction of convex bodies 
from a certain type of Minkowski tensors. In recent years, Minkowski tensors have been 
studied intensively. On the applied side, Minkowski tensors have been established as 
robust and versatile descriptors of shape and morphology of spatial patterns of physical 
systems, see e.g., [2,22] and the references given there. The importance of Minkowski 
tensors is further indicated by Alesker’s characterization theorem, see [1], that states 
that products of Minkowski tensors and powers of the metric tensor span the space of 
tensor-valued valuations on convex bodies satisfying some natural conditions.

In the present work, we consider translation invariant Minkowski tensors, Φs
j(K) of 

rank s, which are tensors derived from the jth area measure Sj(K, ·) of a convex body 
K ⊆ Rn, j = 0, . . . , n − 1. For details, see Sections 2 and 3. For a given j = 1, . . . , n − 1, 
the set {Φs

j(K) | s ∈ N0} of all Minkowski tensors determines K up to translation. 
Calling the equivalence class of all translations of K the shape of K, we can say that 
{Φs

j(K) | s ∈ N0} determines the shape of K. When only Minkowski tensors Φs
j(K), 

s ≤ so up to a certain rank so are given, this is, in general, no longer true. We establish 
a stability result (Theorem 4.9) stating that the shapes of two convex bodies are close 
to one another when the two convex bodies have coinciding Minkowski tensors Φs

1(K)
of rank s ≤ so. The proof uses a generalization of Wirtinger’s inequality (Corollary 4.7), 
which is different from existing generalizations in the literature (e.g. [5,8]) as it involves 
a higher order spherical harmonic expansion. We also show (Theorem 4.1) that there 
always exists a convex polytope P with the same surface tensors Φs

n−1(P ) of rank s ≤ so

as a given convex body. The number of facets of P can be bounded by a polynomial of so

of degree n − 1. Using this result, we conclude (Corollary 4.2) that a convex body K is a 
polytope if the shape of K is uniquely determined by a finite number of surface tensors. 
In fact, the shape of a convex body K is uniquely determined by a finite number of its 
surface tensors if and only if K is a polytope (Theorem 4.3).

For actual reconstructions, we restrict considerations to the planar case. We consider 
two cases. Firstly, the case when the exact tensors are given, and secondly, the case 
when certain values of the tensors are measured with noise. Algorithm Surface Tensor
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in Section 5 allows to reconstruct an unknown convex body K0 in R2 based on surface 
tensors Φs

1(K0) up to rank so. The output of the reconstruction procedure is a polygon P

with surface tensors identical to the surface tensors of K0 up to rank so. Theorem 4.1
yields the existence of a polygon with the described property. Due to the bound on 
the number of facets of P and to the simple structure of surface tensors of polygons, 
the reconstruction problem can be solved by first finding the surface area measure of P

using a least squares optimization, and then constructing P with the help of Algorithm 
MinkData in [6]. The consistency of the reconstruction procedure is established using 
the mentioned stability result.

Reconstruction algorithms for dimensions n ≥ 2 could be developed along the same 
lines when surface tensors Φs

n−1(K0), s ≤ so are used as input. However, the methods in 
this paper yield a stability result for Φs

1(K0), s ≤ so, and this is why we only consider 
the case n = 2. The higher dimensional situation will be discussed in future work.

Due to the structure of the stability result (Theorem 4.8), we recommend to use har-
monic intrinsic volumes for reconstructions when only noisy measurements of surface 
tensors are available. The harmonic intrinsic volumes of a convex body in R2 are certain 
values of the surface tensors, and the harmonic intrinsic volumes up to degree so de-
termine the surface tensors up to rank so. Algorithm Harmonic Intrinsic Volumes LSQ
reconstructs an unknown convex body K0 in R2 based on measurements of harmonic 
intrinsic volumes up to degree so, where the measurements are subject to noise. The out-
put of the reconstruction is a polygon with surface tensors best fitting the measurements 
of the harmonic intrinsic volumes of K0 in a least squares sense. As for the procedure for 
reconstruction of convex bodies from exact surface tensors, this reconstruction procedure 
is based on Theorem 4.1 and Algorithm MinkData. The consistency of the reconstruc-
tion algorithm is established using the stability result and requires that the variances of 
all measurements converge to zero sufficiently fast. When only noisy measurements are 
available, we use harmonic intrinsic volumes instead of surface tensors evaluated at the 
standard basis as this allows us to obtain stronger consistency results, see Section 6.4
for details.

The paper is organized as follows: After introducing notations and preliminaries in 
Sections 2 and 3, we present the main theoretical results in Section 4 in Rn, n ≥ 2: The 
existence of a polytope with finitely many surface tensors coinciding with those of a given 
convex body, the uniqueness result for shapes of polytopes, the generalized Wirtinger’s 
inequality, and the derived stability result. In Section 5 Algorithm Surface Tensor and 
its properties are discussed, and Section 6 is devoted to the reconstruction from noisy 
measurements of harmonic intrinsic volumes.

2. Notation and preliminaries

We work in the n-dimensional Euclidean vector space Rn with inner product 〈·, ·〉 and 
induced norm | · |. As usual, Sn−1 is the unit sphere in Rn, and κn and ωn denote the 
volume and the surface area of the unit ball Bn, respectively. The Borel σ-algebra of a 
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topological space X is denoted by B(X). Further, let λ denote the Lebesgue measure 
on Rn. The set L2(Sn−1) of square integrable functions on Sn−1 with respect to the 
spherical Lebesgue measure σ is equipped with the usual inner product 〈·, ·〉2 and the 
associated norm ‖ · ‖.

For a function F on the unit sphere Sn−1, we let F̌ denote the radial extension of F
to Rn \ {o}, that is,

F̌ (x) = F

(
x

|x|

)

for x ∈ Rn \{o}. Let ∇SF denote the restriction of the gradient ∇F̌ of F̌ to Sn−1, when 
the partial derivatives of F̌ exist. If further, F̌ has partial derivatives of second order, 
the Laplace–Beltrami operator ΔSF of F is defined as the restriction of ΔF̌ to Sn−1, 
where Δ denotes the Laplace operator on functions on Rn.

2.1. Spherical harmonics

In the proofs of Lemma 4.6 and Theorem 4.8, spherical harmonics are a key ingredient. 
We use [11] as a general reference on the theory of spherical harmonics. A polynomial p
on Rn is said to be harmonic if it is homogeneous and Δp = 0. A spherical harmonic of 
degree m is the restriction to Sn−1 of a harmonic polynomial of degree m. Let Hn

m be 
the vector space of spherical harmonics of degree m on Sn−1, and let N(n, m) denote the 
dimension of Hn

m. For m ∈ N0, let Hm1, . . . , HmN(n,m) be an orthogonal basis for Hn
m. 

Then the condensed harmonic expansion of a function F ∈ L2(Sn−1) is 
∑∞

m=0 Fm, where 
Fm =

∑N(n,m)
j=1 αmjHmj with

αmj = 〈F,Hmj〉2
‖Hmj‖2 .

We write F ∼ ∑∞
m=0 Fm, when 

∑∞
n=0 Fm is the condensed harmonic expansion of F . 

The condensed harmonic expansion of F is independent of the choice of bases of spherical 
harmonics used to derive it. The spherical harmonics are eigenfunctions of the Laplace–
Beltrami operator as

ΔSHm = −m(m + n − 2)Hm

for Hm ∈ Hn
m. We let γm denote the absolute value of the eigenvalues of ΔS, that is 

γm = m(m + n − 2) for m ∈ N0.
As in [3], the Sobolev space Wα for α ≥ 0 is defined as the space of square integrable 

functions F ∼∑∞
m=0 Fm on the sphere, for which

∞∑

m=0
γα
m‖Fm‖2 < ∞.
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By definition Wα ⊆ L2(Sn−1) for α ≥ 0, and W 0 = L2(Sn−1). For F ∈ Wα, the sum

∞∑

m=0
(γm)α

2 Fm

converges in the L2-sense. The limit is denoted by (−ΔS)α
2 F , and thus

‖(−ΔS)α
2 F‖2 =

∞∑

m=0
γα
m‖Fm‖2. (1)

The notation is explained by the fact that

ΔSF ∼ −
∞∑

m=0
γmFm

for any F ∼∑∞
m=0 Fm that is twice continuously differentiable.

In the two-dimensional setting we have N(2, 0) = 1 and N(2, m) = 2 for m ∈ N, and 
the spherical harmonic expansion is closely related to the classical Fourier expansion. We 
obtain an orthonormal sequence of spherical harmonics constituting a basis of L2(S1)
by letting H01(u1, u2) = (2π)− 1

2 ,

Hm1(u1, u2) = π− 1
2

� m
2 �∑

i=0
(−1)i

(
m

2i

)
um−2i

1 u2i
2 (2)

and

Hm2(u1, u2) = π− 1
2

� m−1
2 �∑

i=0
(−1)i

(
m

2i + 1

)
um−2i−1

1 u2i+1
2 , (3)

for (u1, u2) ∈ S1 and m ∈ N, where �x
 denotes the integer part of x ∈ R. If the 
polynomials in (2) and (3) are considered as polynomials on R2, then due to homogeneity, 
the polynomials can be decomposed into linear factors. More precisely,

Hm1(u1, u2) = π− 1
2 (u1 − ζ1u2) · · · · · (u1 − ζmu2), (4)

where ζj = cos( (2j−1)π
2m )

sin( (2j−1)π
2m )

for j = 1, . . . , m. The lines where Hm1 vanishes (and herewith ζj , 
j = 1, . . . , m) are determined using the fact that

Hm1(cos(ω), sin(ω)) =
√

π cos(mω)

for ω ∈ [0, 2π). Similarly, we can factorize Hm2. In this case, however, the factorization 
depends on the parity of m. This is due to the fact that a term involving um

1 does not 
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appear in Hm2 and that the term involving um
2 only appears, when m is odd. We get 

that

Hm2(u1, u2) =
{

π− 1
2 mu2 (u1 − λ1u2) · · · · (u1 − λm−1u2) if m is even

π− 1
2 (−1)m−1

2 (u2 − ρ1u1) · · · · · (u2 − ρmu1) if m is odd,
(5)

where λj = cos( jπ
m )

sin( jπ
m ) for j = 1, . . . , m − 1 and ρj = sin( (j−1)π

m )
cos( (j−1)π

m )
for j = 1, . . . , m. Here, we 

have used that

Hm2(cos(ω), sin(ω)) =
√

π sin(mω)

for ω ∈ [0, 2π) in order to determine the lines where Hm2 vanishes.

2.2. Convex bodies and area measures

As general reference on convex geometry, we use [20]. Let Kn denote the set of convex 
bodies (that is, compact, convex, non-empty sets) in Rn, and let Kn

n denote the set 
of convex bodies with non-empty interior. We refer to convex polytopes and convex 
polygons as ‘polytopes’ and ‘polygons’, and let Pn

m denote the set of non-empty polytopes 
in Rn with at most m facets, m ∈ {n + 1, n + 2, . . .}. The support function (restricted 
to Sn−1) of a convex body K is denoted by hK . The set of support functions {hK |
K ∈ Kn, K ⊆ RBn} for R > 0 is bounded in Wα for 0 < α < 3

2 , see [16, Prop. 2.1]. The 
set Kn of convex bodies is equipped with the Hausdorff metric δ, which can be expressed 
as the distance of support functions with respect to the supremum norm on Sn−1, i.e.

δ(K,L) = sup
u∈Sn−1

|hK(u) − hL(u)|.

In addition to the Hausdorff metric, we use the L2-metric on Kn. The L2-distance 
between two convex bodies K and L is defined as the L2-distance of their support 
functions, i.e.

δ2(K,L) = ‖hK − hL‖.

The Hausdorff metric and the L2-metric are equivalent and related by inequalities, see 
[11, Prop. 2.3.1]. This is used in Theorem 4.9 to transfer bounds on the L2-distance to 
bounds on the Hausdorff distance between convex bodies satisfying certain conditions.

In the present work, two convex bodies are said to have the same shape if and only 
if they are translates. The position of a convex body has major influence on the above 
described distances, and as a measure of difference in shape only, we consider the trans-
lation invariant versions

δt(K,L) = inf
x∈Rn

δ(K,L + x)
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and

δt
2(K,L) = inf

x∈Rn
δ2(K,L + x).

If the support function hK of a convex body K has condensed harmonic expansion ∑∞
m=0(hK)m, then (hK)1 = 〈s(K), ·〉, where s(K) is the Steiner point of K,

s(K) = 1
κn

∫

Sn−1

hK(u)uσ(du).

For convex bodies K and L, this implies that δt
2(K, L) = δ2(K, L) if and only if K and 

L have coinciding Steiner points, see [11, Prop. 5.1.2].
Let p(K, x) be the metric projection of x ∈ Rn on a convex body K, and define 

u(K, x) := x−p(K,x)
|x−p(K,x)| for x /∈ K. For a Borel set A ∈ B(Rn × Sn−1), the Lebesgue mea-

sure of the local parallel set

Mε(K,A) := {x ∈ (K + εBn) \ K | (p(K,x), u(K,x)) ∈ A}

of K is a polynomial in ε ≥ 0, hence

λ(Mε(K,A)) =
n−1∑

k=0
εn−kκn−kΛk(K,A).

This local version of the Steiner formula defines the support measures Λ0(K, ·),
. . . , Λn−1(K, ·) of a convex body K ∈ Kn. The intrinsic volumes of K appear as to-
tal masses of the support measures, Vj(K) = Λj(K, Rn ×Sn−1) for j = 0, . . . , n −1. The 
area measures S0(K, ·), . . . , Sn−1(K, ·) of K are rescaled projections of the corresponding 
support measures on the second component. More explicitly, they are given by

(
n

j

)
Sj(K,ω) = nκn−jΛj(K,Rn × ω)

for ω ∈ B(Sn−1) and j = 0, . . . , n − 1. The area measure of order n − 1 is called the 
surface area measure, and for K ∈ Kn

n the surface area measure is the (n −1)-dimensional 
Hausdorff measure of the reverse spherical image of K. That is,

Sn−1(K,ω) = Hn−1(τ(K,ω)),

for ω ∈ B(Sn−1), where Hn−1 is the (n −1)-dimensional Hausdorff measure, and τ(K, ω)
is the set of all boundary points of K at which there exists an outer normal vector of K
belonging to ω.
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3. Minkowski tensors and harmonic intrinsic volumes

Let Tp be the vector space of symmetric tensors of rank p over Rn, that is, the space of 
symmetric multilinear functions of p variables in Rn. Due to linearity, a tensor T ∈ Tp can 
be identified with the array {T (ei1 , . . . , eip

)}n
i1,...,ip=1, where (e1, . . . , en) is the standard 

basis of Rn. We refer to the entries of the array as the components of T . For symmetric 
tensors a ∈ Tp1 and b ∈ Tp2 , let ab ∈ Tp1+p2 denote the symmetric tensor product 
of a and b. Identifying x ∈ Rn with the rank 1 tensor z �→ 〈z, x〉, we write xp ∈ Tp

for the p-fold symmetric tensor product of x. The metric tensor Q ∈ T2 is defined by 
Q(x, y) = 〈x, y〉 for x, y ∈ Rn.

For a convex body K ∈ Kn, r, s ∈ N0, and j ∈ {0, 1, . . . , n − 1}, we define the 
Minkowski tensors of K as

Φr,s
j (K) := ωn−j

r!s!ωn−j+s

∫

Rn×Sn−1

xrus Λj(K, d(x, u))

and supplement this definition by

Φr,0
n (K) := 1

r!

∫

K

xr λ(dx).

The tensor functionals Φr,s
j and Φr,0

n are motion covariant valuations on Kn and con-
tinuous with respect to the Hausdorff metric. In [15] the tensor functionals QmΦr,s

j with 
m, r, s ∈ N0 and either j ∈ {0, . . . , n − 1} or (j, s) = (n, 0) are called the basic tensor 
valuations. Due to Alesker’s characterization theorem, every motion covariant, contin-
uous tensor-valued valuation is a linear combination of the basic tensor valuations. For 
further details, see [20] and the references given there.

In the present work, we only consider translation invariant Minkowski tensors, which 
are obtained by letting r = 0. We use the notation

Φs
j(K) = Φ0,s

j (K) =
(
n−1

j

)

s!ωn−j+s

∫

Sn−1

usSj(K, du)

for j ∈ {0, . . . , n − 1} and s ∈ N0. For s ∈ N0, the tensors Φs
n−1(K) derived from the 

surface area measure of a convex body K are called surface tensors of K. For later use, 
we mention that

Φ1
j (K) = 0 (6)

for j = 0, . . . , n − 1 and any K ∈ Kn, which is a special case of [20, Eq. (5.30)]. For 
so ∈ N0, j ∈ {0, . . . , n − 1} and K ∈ Kn, we let

Mso
j (K) = {L ∈ Kn | Φs

j(L) = Φs
j(K), 0 ≤ s ≤ so}.
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As S0(K, ·) = σ independently of K ∈ Kn, we have trivially Mso
0 (K) = Kn. In the 

following, we will only consider these classes for j = 1 and j = n − 1.

Remark 3.1. Let K ∈ Kn be given. By computing the trace of the tensor Φs
j(K), 

j ∈ {0, . . . , n − 1}, s ≥ 2, the rank of the tensor is reduced by 2, and the tensor 
n−j+s−2
2πs(s−1) Φs−2

j (K) is obtained. This follows from the identity

n∑

k=1

∫

Sn−1

ui1 · · ·uis−2 u2
k Sj(K, du) =

∫

Sn−1

ui1 · · ·uis−2 Sj(K, du).

Therefore, the tensors Φs
j(K) and Φs−1

j (K) determine all tensors Φs′
j (K) of rank s′ ≤ s. 

More generally, the moments of order at most s of a measure μ on Sn−1 are determined 
by the moments of μ of order s − 1 and s.

For s ∈ N0 and a convex body K in R2, we let φsj(K) denote the different components 
of the surface tensor Φs

1(K) of rank s. That is,

φsj(K) = 1
s!ωs+1

∫

S1

uj
1u

s−j
2 S1(K, du) (7)

for j = 0, . . . , s. For so ∈ N, Remark 3.1 implies that it is sufficient to require knowledge of 
the 2so +1 different components of Φso−1

1 (K) and Φso
1 (K) in a reconstruction algorithm 

of shape based on surface tensors up to rank so as these components determine the 
surface tensors Φ0

1(K), . . . , Φso
1 (K). This will be used in Section 5.

Instead of using only values of the surface tensors of rank so − 1 and so for the 
reconstruction, another option is to use the value of Φ0

1(K) and two values of each surface 
tensor Φs

1(K) for 1 ≤ s ≤ so. That this information is equivalent to the knowledge of 
Φs

1(K), 0 ≤ s ≤ so, can be seen as follows. Due to the factorization into linear factors 
of the spherical harmonics in (4) and (5), there are vectors (vi

s1)si=1, (vi
s2)si=1 ⊆ R2 for 

s ∈ N such that

ψsj(K) := Φs
1(K)(v1

sj , . . . , v
s
sj) =

∫

S1

Hsj(u)S1(K, du) (8)

for j = 1, 2, where (Hsj) is the orthonormal sequence of spherical harmonics given by (2)
and (3). Further, we have that

ψ01(K) :=
√

2
π

Φ0
1(K) =

∫

S1

H01(u)S1(K, du). (9)

Equations (8) and (9) show that ψsj(K) is a value of Φs
1(K) when s ≥ 1 and that 

ψ01(K) is the value of Φ0
1(K) up to a known constant. Thus trivially, the vector 
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(ψ01(K), ψ11(K), ψ12(K), . . . , ψso1(K), ψso2(K)) is determined by (Φ0
1(K), . . . , Φso

1 (K)). 
The converse is also true, as polynomials on S1 of degree at most so are linear combina-
tions of the spherical harmonics of degree at most so, see [11, Cor. 3.2.6]. It follows that 
the knowledge of the 2so + 1 values ψ01(K), ψs1(K), ψs2(K) for 1 ≤ s ≤ so is sufficient 
for a reconstruction algorithm based on surface tensors up to rank so.

The described values (ψsj(K)) are moments of the surface area measure of K ∈ K2

with respect to an orthonormal sequence of spherical harmonics. In [14] such moments are 
called harmonic intrinsic volumes. In general, the harmonic intrinsic volumes associated 
to a convex body K in Rn are defined as

ψjmk(K) =
∫

Sn−1

Hmk(u)Sj(K, du)

for j = 0, . . . , n − 1, m ∈ N0 and k = 1, . . . , N(n, m). The spherical harmonic Hmk is of 
degree m, and we, therefore, refer to m as the degree of ψjmk. The harmonic intrinsic 
volumes depend on the choice of orthonormal bases for Hn

m for m ∈ N0. For n = 2, we 
use the bases given by (2) and (3). We remark however that

N(n,m)∑

k=1
ψjmk(K)2 and

N(n,m)∑

k=1
ψjmk(K)ψjmk(M),

K, M ∈ Kn, do not depend on the chosen basis of Hn
m due to the addition theorem for 

spherical harmonics [11, Thm. 3.3.3]. In particular condition (14) in Theorem 4.8 does 
not depend on the basis chosen.

As we mainly consider harmonic intrinsic volumes derived from the surface area 
measure, we refer to those as harmonic intrinsic volumes. When referring to harmonic 
intrinsic volumes derived from area measures of lower order, this is explicitly stated. For 
n = 2 and j = 1, we write ψmk = ψ1mk. The notation is consistent with (8) and (9).

As described above, the surface tensors and the harmonic intrinsic volumes of a convex 
body K are closely related. For so ∈ N0, the surface tensors Φ0

n−1(K), . . . , Φso
n−1(K) are 

uniquely determined by ψ(n−1)mk(K) for m = 0, . . . , so and k = 1, . . . , N(n, m), see 
[11, Cor. 3.2.6], and vice versa. Due to the nice properties of spherical harmonics, the 
harmonic intrinsic volumes are beneficial in the establishment of stability results for 
surface tensors.

4. Uniqueness and stability results

The components of the Minkowski tensors Φs
j(K), s ∈ N0 are coinciding with the 

moments of Sj(K, ·) up to known constants. As Sn−1 is compact, an application of Stone–
Weiserstrass’s theorem implies that {Φs

j(K) | s ∈ N0} determines Sj(K, ·). Hence, these 
tensors determine K ∈ Kn

n up to translation when 1 ≤ j ≤ n − 1 by the Aleksandrov–
Fenchel–Jessen theorem [20, Thm. 8.1.1]. Hence, the shape (as defined in Section 2) of 
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a convex body K ∈ Kn
n is uniquely determined by {Φs

j(K) | s ∈ N0}. For n = 2, the 
tensors {Φs

1(K) | s ∈ N0} even determine the shape of K when K is lower-dimensional.
In order to investigate how different the shape of two convex bodies with identical 

surface tensors up to a certain rank can be, we discuss properties of the sets Mso
1 (K)

and Mso
n−1(K) for so ∈ N0 and K ∈ Kn. In Theorem 4.1, it is shown that Mso

n−1(K)
contains a polytope, and in Theorem 4.3 a uniqueness result is established stating that 
M2so

n−1 is the class of translates of K if K is a polytope with non-empty interior and at 
most so facets. In Theorem 4.9, we show that for large so the set Mso

1 (K) contains only 
translations of convex bodies close to K in Hausdorff distance.

In the following, we let ms denote the number of different components of the ten-
sors us−1 and us for s ∈ N and u ∈ Sn−1. Then

ms =
(
s + n − 2

n − 1

)
+
(
s + n − 1

n − 1

)
=
(
2 + n − 1

s

)(s + n − 2
n − 1

)
= O(sn−1)

for fixed n ∈ N as s → ∞. For instance, ms = 2s + 1 for n = 2, and ms = (s + 1)2 for 
n = 3. The number of different components of us−1 and us is identical to the dimension 
of Hn

0 ⊕ Hn
1 ⊕ · · · ⊕ Hn

s , that is, ms =
∑s

m=0 N(n, m).

Theorem 4.1. Let K ∈ Kn and so ∈ N. Then there exists a P ∈ Pn
mso

, such that

Φs
n−1(K) = Φs

n−1(P ) (10)

for 0 ≤ s ≤ so.

The proof of Theorem 4.1 follows the lines of the proof of Lemma 6.9 in [4] (see 
also [23]). For the readers convenience, the proof of Theorem 4.1 is included.

Proof of Theorem 4.1. If the interior of K is empty, then either Sn−1(K, ·) = 0 or 
Sn−1(K, ·) = α(δu + δ−u) for some u ∈ Sn−1 and α > 0. In the first case, let P = {o}. 
In the latter case, let P be a polytope contained in the orthogonal complement u⊥ of u
with surface area α.

We may from now on assume that K ∈ Kn
n. If so = 1, we let P be a polytope with at 

most m1 = n +1 facets with the same surface area as K. Then (10) is satisfied due to (6). 
Now assume so ≥ 2. To prove the claim in this case, we construct a Borel measure μ

on Sn−1 with support containing at most mso
points, satisfying the assumptions of 

Minkowski’s existence theorem, see [20, Thm. 8.2.2], and such that μ has the same 
moments as Sn−1(K, ·) up to order so. Due to homogeneity of the surface area measure 
(and herewith of the surface tensors), we may assume that Sn−1(K, Sn−1) = 1.

Let f1, . . . , fmso
denote the different components of the tensors uso−1 and uso . For a 

Borel probability measure ν on Sn−1, let

Γ(ν) =
( ∫

Sn−1

f1(u) ν(du), . . . ,
∫

Sn−1

fmso
(u) ν(du)

)
.
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Put

M :=
{
Γ(ν) | ν is a Borel probability measure on Sn−1}

and

N :=
{
Γ(δu) | u ∈ Sn−1} = {(f1(u), . . . , fmso

(u)) | u ∈ Sn−1} ,

where δu denotes the Dirac measure at u ∈ Sn−1. As f1, . . . , fmso
are continuous, the 

set N is compact in Rmso , so the convex hull convN of N is compact and, in particular, 
closed. The convex hull convN of N is the image of the set of Borel probability measures 
on Sn−1 with finite support under Γ. Hence, M = convN as every Borel probability 
measure on Sn−1 can be weakly approximated by such measures. This implies that 
Γ(Sn−1(K, ·)) ∈ convN . As Sn−1 is connected and f1, . . . , fmso

are continuous, the set 
N is connected. Then a version of Caratheodory’s theorem due to Fenchel (see [12]
and references given there) yields the existence of unit vectors v1, . . . , vmso

∈ Sn−1 and 
α1, . . . , αmso

≥ 0 with 
∑mso

i=1 αj = 1 such that

Γ(Sn−1(K, ·)) =
mso∑

i=1
αiΓ(δvi

) = Γ(μ), (11)

where μ :=
∑mso

i=1 αiδvi
is a probability measure with support containing at most mso

points. Remark 3.1, (6) and (11) yield that
∫

Sn−1

ui μ(du) =
∫

Sn−1

ui Sn−1(K, du) = 0

for i = 1, . . . , n, hence the centroid of μ is at the origin.
If the support of μ was concentrated on a great subsphere v⊥ ∩Sn−1 of Sn−1 for some 

v ∈ Sn−1, then
∫

Sn−1

〈u, v〉2Sn−1(K, du) =
∫

Sn−1

〈u, v〉2μ(du) = 0

by Remark 3.1 and (11) as so ≥ 2. This would imply that Sn−1(K, ·) is concentrated on 
v⊥ ∩ Sn−1, which is a contradiction as K has interior points. Hence, the measure μ has 
full-dimensional support.

Herewith, μ satisfies the assumptions in Minkowski’s existence theorem, and there is 
a polytope P with interior points such that Sn−1(P, ·) = μ. As the support of Sn−1(P, ·)
contains at most mso

points, the polytope P has at most mso
facets. Due to (11) and Re-

mark 3.1, the measures Sn−1(K, ·) and Sn−1(P, ·) have identical moments up to order so, 
which ensures that equation (10) is satisfied. �
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Corollary 4.2. If K is determined up to translation among all convex bodies in Rn by its 
surface tensors up to rank so then K ∈ Pn

mso
.

On the other hand, a polytope is determined up to translation by finitely many surface 
tensors.

Theorem 4.3. Let m ≥ n + 1 be a natural number. The shape of any P ∈ Pn
m with 

non-empty interior is uniquely determined in Kn by its surface tensors up to rank 2m. 
If n = 2 then the result holds for any P ∈ Pn

m.

Proof. Let P ∈ Pn
m be given. We may assume without loss of generality that P has m

facets. The surface area measure of P is of the form

Sn−1(P, ·) =
m∑

i=1
αiδui

with α1, . . . , αm > 0 and pairwise different u1, . . . , um ∈ Sn−1.
Let K ∈ Kn be a convex body such that Φs

n−1(K) = Φs
n−1(P ) for all s ≤ 2m. We 

first show that suppSn−1(K, ·) ⊆ {±u1, . . . , ±um}. Assume that w /∈ {±u1, . . . , ±um}. 
Then there exists vj ∈ u⊥

j \ w⊥, j = 1, . . . , m. Hence, the polynomial

q1(u) =
m∏

j=1
〈vj , u〉2,

u ∈ Sn−1, vanishes at ±u1, . . . , ±um but not at w. By the assumption on coinciding 
tensors and as q1 has degree 2m, we have

∫

Sn−1

q1(u)Sn−1(K, du) =
∫

Sn−1

q1(u)Sn−1(P, du) =
m∑

i=1
αiq1(ui) = 0.

As q1 ≥ 0, this shows that q1 is zero for Sn−1(K, ·)-almost all u. As q1 is continuous,

suppSn−1(K, ·) ⊆ {u ∈ Sn−1|q1(u) = 0} ⊆ Sn−1 \ {w}.

Hence w /∈ suppSn−1(K, ·) and then suppSn−1(K, ·) ⊆ {±u1, . . . , ±um}. In particular, 
K is a polytope. Its surface area measure is of the form

Sn−1(K, ·) =
m∑

i=1

(
β+

i δui
+ β−

i δ−ui

)

with β+
1 , β−

1 , . . . , β+
m, β−

m ≥ 0, where we may assume β−
i = 0 whenever −ui ∈

{u1, . . . , ui−1, ui+1, . . . , um}.
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Consider now two cases. If −u1 /∈ {u2, . . . , um}, we can find vj ∈ u⊥
j \u⊥

1 , j = 2, . . . , m, 
and thus we have q2(u1) �= 0 �= q3(u1) for

q2(u) =
m∏

j=2
〈vj , u〉2, q3(u) =

⎛
⎝

m−1∏

j=2
〈vj , u〉2

⎞
⎠ 〈vm, u〉.

By the assumption on coinciding tensors, q2 gives the same value when integrated with 
respect to Sn−1(K, ·) and Sn−1(P, ·). The same is true for q3. This gives

β+
1 + β−

1 = α1, β+
1 − β−

1 = α1,

so β+
1 = α1 and β−

1 = 0. If −u1 ∈ {u2, . . . , um} we may without loss of generality assume 
−u1 = u2 /∈ {±u3, . . . , ±um}. In this case, we have β−

1 = β−
2 = 0, and the remaining 

two parameters β+
1 and β+

2 can be determined with arguments similar to the ones above 
using

q2(u) =
m∏

j=3
〈vj , u〉2, q3(u) =

⎛
⎝

m−1∏

j=3
〈vj , u〉2

⎞
⎠ 〈vm, u〉.

These arguments can be applied to any index i showing that Sn−1(K, ·) = Sn−1(P, ·). If 
P has non-empty interior or if n = 2, this implies that P and K are translates. �

Theorem 4.4, below, is a version of Theorem 4.1 for centrally symmetric convex bodies. 
If K ∈ Kn is centrally symmetric its surface area measure is even on Sn−1, and hence 
Φs

n−1(K) = 0 for all odd s. This simplifies the arguments in the proof of Theorem 4.1 as 
outlined in the following. Let so ∈ N be even. Let lso

denote the number of components 
of uso , that is,

lso
=
(
so + n − 1

n − 1

)
.

In particular, lso
= so + 1 for n = 2. Let h1, . . . , hlso

denote the different components 
of uso . Following the proof of Theorem 4.1 with Γ, M and N replaced by

Γs(ν) =

⎛
⎝
∫

Sn−1

h1(u)ν(du), . . . ,
∫

Sn−1

hlso
(u)ν(du)

⎞
⎠ ,

Ms =
{
Γ(ν) | ν is a symmetric Borel probability measure on Sn−1} ,

and

Ns =
{

1
2(Γ(δu) + Γ(δ−u)) | u ∈ Sn−1

}
,
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we obtain an even probability measure μs =
∑lso

j=1 αj(δuj
+ δ−uj

) on Sn−1, such that

Γs(Sn−1(K, ·)) = Γs(μs). (12)

As μs and Sn−1(K, ·) are even, equation (12) implies that Γ(μs) = Γ(Sn−1(K, ·)) with 
the notation from the proof of Theorem 4.1, and the result of Theorem 4.4 follows.

Theorem 4.4. Let K ∈ Kn be centrally symmetric and so ∈ N be even. Then there exists 
an origin-symmetric polytope P ∈ Pn

2lso
, such that

Φs
n−1(K) = Φs

n−1(P )

for 0 ≤ s ≤ so.

Remark 4.5. For later use, we note that the polytope P and the convex body K in 
Theorems 4.1 and 4.4 have identical harmonic intrinsic volumes up to degree so, as they 
have identical surface tensors up to rank so.

The following lemma gives a generalized version of Wirtinger’s inequality, which is 
used in Theorem 4.8 to establish stability estimates for harmonic intrinsic volumes de-
rived from the area measure of order 1.

Recall that F ∼∑∞
m=0 Fm is the condensed harmonic expansion of F ∈ L2(Sn−1).

Lemma 4.6. Let n ≥ 2, s ∈ N and F ∼ ∑∞
m=0 Fm ∈ Wα be given for some α > 0. For 

γm = m(m + n − 2) we have

‖F‖2 ≤ γ−α
s ‖(−ΔS)α

2 F‖2 +
s−1∑

m=0

(
1 − (γmγ−1

s )α
)
‖Fm‖2

with equality if and only if F ∈⊕s
m=0 Hn

m.

Proof. It follows from (1) that

‖F‖2 =
s−1∑

m=0
‖Fm‖2 +

∞∑

m=s

γ−α
m γα

m ‖Fm‖2

≤
s−1∑

m=0
‖Fm‖2 + γ−α

s

∞∑

m=s

γα
m ‖Fm‖2

= γ−α
s ‖(−ΔS)α

2 F‖2 +
s−1∑

m=0
(1 − (γmγ−1

s )α)‖Fm‖2.

Equality holds in the above calculations if and only if F =
∑s

m=0 Fm. �
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Lemma 4.6 immediately yields Corollary 4.7, where the second statement is a gener-
alized version of Wirtinger’s inequality.

Corollary 4.7 (Generalized Wirtinger’s inequality). Let n ≥ 2, s ∈ N and F ∼∑∞
m=0 Fm ∈ Wα be given for some α > 0. Then

(i) ‖F‖2 ≤ γ−α
s ‖(−ΔS)α

2 F‖2 +
∑s−1

m=0 ‖Fm‖2,
(ii) if F0 = · · · = Fs−1 = 0, then ‖F‖2 ≤ γ−α

s ‖(−ΔS)α
2 F‖2.

Equality holds in (i) and/or (ii) if and only if F is a spherical harmonic of degree s.

If F is twice continuously differentiable, then F ∈ W 1 by [11, Cor. 3.2.12]. Hence, 
Corollary 4.7 (ii) with α = 1 can be applied to F if F0 = · · · = Fs−1 = 0. For s ∈ {1, 2}, 
this yields the usual versions of Wirtinger’s inequality of functions on Sn−1, see, e.g., 
[11, Thm. 5.4.1].

A convex body K ∈ Kn
n is said to be of class C2

+ if the boundary of K is a regular 
submanifold of Rn of class C2 with positive Gauss curvature at each point. If n ≥ 2 and 
K is of class C2

+, then the support function hK is twice continuously differentiable (see 
[20, Sec. 2.5]), and the area measure S1(K, ·) of order 1 has density

s1 = hK + 1
n − 1ΔShK (13)

with respect to the spherical Lebesgue measure on Sn−1, see [20, (2.56) and (4.26)]. This 
establishes a connection between the support function of K and the harmonic intrinsic 
volumes of K derived from the area measure of order one. In combination with the 
generalized version of Wirtinger’s inequality, this connection can be used to show the 
stability results in Theorems 4.8 and 4.9.

Theorem 4.8. Let n ≥ 2, so ∈ N0 and ρ ≥ 0. Let K, L ∈ Kn such that K, L ⊆ RBn for 
some R > 0. Assume that

1
(m ∨ 1)3−ε

N(n,m)∑

k=1

(
ψ1mk(K) − ψ1mk(L)

)2 ≤ ρ (14)

for m = 0, . . . , so and some ε > 0. Then

δt
2(K,L)2 ≤ c1

(
(so + 1)(n + so − 1)

)−α + ρM(n, ε) (15)

for 0 < α < 3
2 , where c1 = c1(α, n, R) is a constant depending only on n, α and R, and 

M is a constant depending only on n and ε.

Proof. By [20, Thm. 3.4.1 and subsequent remarks] there exists a sequence (Kj)j∈N of 
convex bodies of class C2

+ converging to K in the Hausdorff metric. For each j ∈ N, the 
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support function hKj
is twice continuously differentiable, as Kj is of class C2

+. Then an 
application of Green’s formula (see, e.g., [11, (1.2.7)]), implies that

〈Hm,ΔShKj
〉2 = 〈ΔSHm, hKj

〉2 = −γm〈Hm, hKj
〉2

for Hm ∈ Hn
m as spherical harmonics are eigenfunctions of the Laplace–Beltrami opera-

tor. Thus, (13) yields that
∫

Sn−1

Hm(u)S1(Kj , du) = αnm〈Hm, hKj
〉2 (16)

for Hm ∈ Hn
m, where αnm = 1 − (n − 1)−1γm. Note that αnm = 0 if and only if m = 1. 

As S1(Kj , ·) converges weakly to S1(K, ·) (see [20, Thm. 4.2.1]), and hKj
converges 

uniformly to hK , equation (16) implies that
∫

Sn−1

Hm(u)S1(K, du) = αn,m〈Hm, hK〉2. (17)

By the same arguments, equation (17) holds with K replaced by L.
Now let F = hK − hL + 〈x, ·〉, where x = s(L) − s(K). Then F1 = 0, and by equa-

tion (17), inequality (14), and the fact that 〈x, ·〉 ∈ Hn
1 we obtain that

so∑

m=0
‖Fm‖2 =

so∑

m=0
m�=1

N(n,m)∑

k=1

( ∫

Sn−1

Hmk(u)F (u)σ(du)
)2

=
so∑

m=0
m�=1

α−2
nm

N(n,m)∑

k=1
(ψ1mk(K) − ψ1mk(L))2 ≤ ρM(n, ε),

where M(n, ε) =
∑∞

m=2
m3−ε

α2
n,m

+ 1 < ∞. For 0 < α < 3
2 , we have that

‖(−ΔS)α
2 F‖ ≤ ‖(−ΔS)α

2 hK−s(K)‖ + ‖(−ΔS)α
2 hL−s(L)‖ ≤ c1(α, n,R)

due to [16, (2.12)]. This implies that F ∈ Wα for 0 < α < 3
2 . Then Corollary 4.7 (i) 

with s replaced by so + 1 can be applied to F , which yields that

‖F‖2 ≤
(
(so + 1)(so + n − 1)

)−α
c1(α, n,R) + ρM(n, ε)

for 0 < α < 3
2 . Then inequality (15) follows, since δt

2(K, L)2 = ‖F‖2. �
The result of Theorem 4.8 can be transferred to a stability result for the Minkowski 

tensors Φs
1 (which are the surface tensors in the two-dimensional setting).
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Theorem 4.9. Let n ≥ 2, so ∈ N0 and let K, L ∈ Kn such that K, L ⊆ RBn for some 
R > 0. If Φs

1(K) = Φs
1(L) for s ∈ {(so − 1) ∨ 0, so}, then

δt
2(K,L) ≤ c1 s−α

o (18)

and

δt(K,L) ≤ c2 s
− 2α

n+1
o (19)

for 0 < α < 3
2 , where c1 = c1(α, n, R) and c2 = c2(α, n, R) are constants depending only 

on α, n and R.

Proof. Inequality (18) follows from Theorem 4.8, since equation (14) is satisfied with 
ρ = 0, as Φs

1(K) = Φs
1(L) for 0 ≤ s ≤ so, see Remark 3.1. Inequality (18) in combination 

with a known connection between the L2-distance and the Hausdorff distance (see, [11, 
Prop. 2.3.1]) yields inequality (19). �
5. Reconstruction of shape from surface tensors

We assume throughout this section that n = 2. In arbitrary dimension n, the surface 
tensors determine the shape of a convex body with interior points. In the two-dimensional 
case, however, the assumption on interior points is redundant, see [20, Thm. 8.3.6]. In 
the attempt to reconstruct shape from surface tensors in R2, it is therefore natural to 
consider K0 ∈ K2. We suppose that the convex body K0 is unknown and that the 
surface tensors Φ0

1(K0), . . . , Φso
1 (K0) are known for some so ∈ N0. By Remark 3.1, this 

is equivalent to assuming that the components φsj(K0) for j = 0, . . . , s of Φs
1(K0) are 

known for s = so − 1, so (if so = 0, only the value of Φ0
1(K0) is assumed to be known).

Section 5.1 presents a reconstruction procedure of the shape of K0 based on the 
components of the surface tensors of rank so−1 and so. The output of the reconstruction 
procedure is a polygon P , where the surface tensors of P are identical to the surface 
tensors of K0 up to rank so. In Section 5.2, we use results from Section 4 to show 
consistency of the reconstruction algorithm developed in Section 5.1.

As described in Section 3, the harmonic intrinsic volumes of K0 up to degree so con-
stitute a set of values of surface tensors that contains the same shape information as 
the components of Φso−1

1 (K0) and Φso
1 (K0). It only requires minor adjustments of the 

reconstruction algorithm to obtain an algorithm based on harmonic intrinsic volumes.

5.1. Reconstruction

Assume that so ≥ 1, and define Dso
: K2 → [0, ∞) as the sum of squared deviations 

of the components of the surface tensors of K to the components of the surface tensors 
of K0 of rank so − 1 and so. That is

Dso
(K) =

so∑

s=so−1

s∑

j=0

(
φsj(K0) − φsj(K)

)2
. (20)
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By Remark 3.1, the surface tensors of a convex body K and the surface tensors of K0 are 
identical up to rank so if and only if Dso

(K) = 0. In order to reconstruct the shape of K0
from the surface tensors, it therefore suffices to find a convex body that minimizes Dso

. 
Due to Theorem 4.1, there exists a P ∈ P2

2so+1 satisfying this condition.
Let δu denote the Dirac measure at u ∈ S1, and let

M = {(α, u) ∈ R2so+1 × (S1)2so+1 | αi ≥ 0,
2so+1∑

i=1
αiui = o}.

Then the surface area measure of a polygon P ∈ P2
2so+1 is of the form

S1(P, ·) =
2so+1∑

i=1
αiδui

,

where (α, u) ∈ M . The vectors u1, . . . , u2so+1 are the facet normals of P , and 
α1, . . . , α2so+1 are the corresponding facet lengths, see [20, (4.24) and (8.15)]. Conversely, 
if a Borel measure ϕ on S1 is of the form

ϕ =
2so+1∑

i=1
αiδui

for some (α, u) ∈ M , then by Minkowski’s existence theorem there is a P ∈ P2
2so+1, such 

that ϕ is the surface area measure of P , see [20, Thm. 8.2.1]. Notice that the assumption 
that ϕ is not concentrated on a great subsphere in Minkowski’s existence theorem can 
be omitted as n = 2, see [20, Thm. 8.3.1]. The minimization of Dso

can now be reduced 
to its minimization on P2

2so+1, and hence to the finite dimensional minimization problem

min
(α,u)∈M

so∑

s=so−1

s∑

j=0

(
φsj(K0) − 1

s!ωs+1

2so+1∑

i=1
αiu

j
i1u

s−j
i2

)2
. (21)

This can be solved numerically.
A solution to the minimization problem (21) is a vector (α, u) ∈ M , which describes 

the surface area measure of a polygon. The reconstruction of the polygon from the surface 
area measure can be executed by means of Algorithm MinkData, see [6, Sec. A.4]. For 
n = 2, the reconstruction algorithm is simple. The vectors α1u1, . . . , α2so+1u2so+1 are 
sorted such that the polar angles are increasing, and hereafter, the vectors are positioned 
successively such that they form the boundary of a polygon P̃ with facets of length αj

parallel to uj for j = 1, . . . , 2so + 1. The output polygon K̂so
of the algorithm is P̃

rotated π
2 around the origin. Then K̂so

minimizes Dso
, and it follows that the convex 

bodies K̂so
and K0 have identical surface tensors up to rank so.

If so = 0, let K̂so
be the line segment [0, φ00(K0)e1], where e1 is the first standard 

basis vector in R2. Then K̂so
is a polygon with 1 facet, and Φ0

1(K0) = Φ0
1(K̂so

).
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The reconstruction algorithm can be summarized as follows.

Algorithm Surface Tensor
Input: A natural number so ∈ N0 and the components of the surface tensors Φso

1 (K0)
and Φ(so−1)∨0

1 (K0) of an unknown convex body K0 ∈ K2.
Task: Construct a polygon K̂so

in R2 with at most 2so + 1 facets such that K̂so
and 

K0 have identical surface tensors up to rank so.
Action: If so = 0, let K̂so

be the line segment [0, φ00(K0)e1]. Otherwise:
Phase I: Find a vector (α, u) ∈ M that minimizes

so∑

s=so−1

s∑

j=0

(
φsj(K0) − 1

s!ωs+1

2so+1∑

i=1
αiu

j
i1u

s−j
i2

)2
,

where φs0(K0), . . . , φss(K0) denote the components of Φs
1(K0).

Phase II: The vector (α, u) describes a polygon K̂so
in R2 with at most 2so + 1

facets. Reconstruct K̂so
from (α, u) using Algorithm MinkData.

It is worth mentioning that certain a priori information on K0 ∈ Kn can be included 
in the reconstruction algorithm by modifying the set M in (21). We give two examples.

Example 5.1. If K0 is known to be centrally symmetric, M can be replaced by

{
(α, u) ∈ R2so+2 × (S1)2so+2 | αj = α(so+1)+j ≥ 0, uj = −u(so+1)+j

}
,

due to Theorem 4.4. This ensures central symmetry of the output polygon K̂so
of the 

reconstruction algorithm.

Example 5.2. If K0 is known to be a polygon with at most m facets, M can be replaced by

M̃ =
{
(α, u) ∈ Rm × (S1)m | αj ≥ 0,

m∑

j=1
αjuj = 0

}
.

The assumption on K0 implies that the optimization of (21) with M replaced by M̃ still 
has a solution with objective function value zero. The uniqueness statement in Theo-
rem 4.3 even implies that the output K̂so

of this modified Algorithm Surface Tensor is 
unique and has the same shape as K0 if so ≥ 2m.

Remark 5.3. If K0 is a polygon with at most m ∈ N facets and known surface tensors 
of rank 2m − 1 and 2m − 2, then an alternative reconstruction procedure similar to 
methods for reconstruction of planar polygons from complex moments described in [17]
and [9] can be applied. We let k ≤ m denote the number of facets of K0, let u1, . . . , uk

denote the facet normals and α1, . . . , αk denote the corresponding facet lengths. The 
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facet normals are identified with complex numbers in the natural way (in particular, 
us denotes complex multiplication and not tensor multiplication in this remark). For 
s = 0, . . . , 2m − 1, we let

τs =
k∑

j=1
αju

s
j = s!ωs+1

s∑

j=0

(
s

j

)
is−jφsj(K0)

and define the Hankel matrix

H =

⎛
⎜⎝

τ0 · · · τm−1
... . . . ...

τm−1 · · · τ2m−2

⎞
⎟⎠ .

As

H = V diag(α1, . . . , αk)V 


where V is the Vandermonde matrix

V =

⎛
⎜⎜⎜⎝

1 · · · 1
u1 · uk
...

...
u2m−1

1 · · · u2m−1
k

⎞
⎟⎟⎟⎠ ∈ C2m×k,

the rank of H is the number k of facets of K0. The facet normals and facet lengths of K0
can be restored from H (or a submatrix of H, if k < m) using Prony’s method, see [17]
or [13]. The shape of the polygon K0 can then be reconstructed from the facet normals 
and facet lengths by means of Algorithm MinkData. The facet normals and facet lengths 
can also be obtained by solving the generalized eigenvalue problem Hx = λH1x where 
H1 is defined as H but its entries start with τ1 and end with τ2m−1, see [9].

5.2. Consistency of the reconstruction algorithm

Algorithm Surface Tensor described in Section 5.1 is consistent. This follows from 
Theorem 5.4.

Theorem 5.4. Let K0 ∈ K2, so ∈ N0 and ε > 0. If Kso
∈ K2 and K0 have identical 

surface tensors up to rank so then

δt(K0,Kso
) ≤ c3 s−1+ε

o

where c3 = c3(K0, ε) only depends on K0 and ε. Hence, if Kso
, so = 0, 1, 2, . . ., is a 

sequence of such bodies then the shape of Kso
converges to the shape of K0.
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Fig. 1. Polygon with six facets.

Fig. 2. Half disc.

Proof. As K0 is compact, there is an R > 0 such that K0 ⊆ RB2. Let so ∈ N0, and let 
x, y ∈ Kso

. The line segment [x, y] with endpoints x and y satisfies

|x − y| = V1([x, y]) ≤ V1(Kso
) = V1(K0) ≤ πR

by monotonicity of the intrinsic volumes on K2, see, e.g., [21]. It follows that there is a 
translate Kso

+ xso
of Kso

which is a subset of πRB2. For each so ∈ N0, Theorem 4.9
with R replaced by πR can now be applied to K0 and Kso

+ xso
, and we obtain that

δt(K0,Kso
) ≤ c2(α, 2, πR)s− 2α

3
o

for 0 < α < 3
2 . This yields the result. �

5.3. Examples of reconstructions

This section consists of two examples where Algorithm Surface Tensor is used to 
reconstruct a polygon (see Fig. 1) and a half disc (see Fig. 2). For each two of the 
convex bodies, the reconstruction is executed for so = 2, 4, 6. The minimization (21) is 
performed by use of the procedure fmincon provided by MatLab. As initial values for 
this procedure, we use regular polygons with 2so + 1 facets. The reconstructions are 
illustrated in Fig. 3 and Fig. 4.
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Fig. 3. Reconstructions of the polygon in Fig. 1 based on surface tensors up to rank so = 2, 4, 6.

Fig. 4. Reconstructions of the half disc in Fig. 2 based on surface tensors up to rank so = 2, 4, 6.

The reconstructions with so = 2 and the corresponding underlying convex bodies have 
identical surface tensors up to rank 2, so the reconstructions have, in particular, the same 
boundary length as the corresponding underlying bodies. Further, the reconstructions 
(in particular, the reconstruction of the polygon) seem to have the same orientation and 
degree of anisotropy as the corresponding underlying convex bodies. This is due to the 
influence of the surface tensor of rank 2. As expected, the reconstructions with so = 4
are more accurate than the reconstructions with so = 2. In the current two examples, 
the Algorithm Surface Tensor provides very precise approximations of the polygon and 
the half disc already for so = 6.

6. Reconstruction of shape from noisy measurements of surface tensors

In Section 5, the reconstruction of shape from surface tensors was treated. In this 
section, we consider the problem of reconstructing shape from noisy measurements of 
surface tensors. As in Section 5, we assume that n = 2. As described in Section 3, the 
harmonic intrinsic volumes up to degree s contain the same shape information of a convex 
body as all surface tensors up to rank s. When only noisy measurements of the surface 
tensors are available, the structure of the stability result Theorem 4.8 proposes to use the 
harmonic intrinsic volumes for the reconstruction in order to obtain consistency of the 
reconstruction algorithm. Therefore, the reconstruction algorithm in this section is based 
on harmonic intrinsic volumes instead of surface tensors evaluated at the standard basis. 
In Section 6.4, we briefly discuss the drawbacks of an algorithm based on measurements 
of surface tensors at the standard basis.
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Let so ∈ N0, and suppose that K0 ∈ K2 is an unknown convex body, where measure-
ments of the harmonic intrinsic volumes up to degree so are known. To include noise, 
the measurements are assumed to be of the form

λsj(K0) = ψsj(K0) + εsj (22)

for j = 1, . . . , N(2, s) and s = 0, . . . , so, where (εsj) are independent random variables 
with zero mean and finite variance. In the following, let

ψs(K) = (ψ01(K), ψ11(K), ψ12(K), . . . , ψs2(K))

and similarly

λs(K) = (λ01(K), λ11(K), λ12(K), . . . , λs2(K))

for s ∈ N0 and K ∈ K2.
Section 6.1 presents a reconstruction algorithm for the shape of K0 based on the 

measurements (22). The output of the reconstruction procedure is a polygon, which fits 
the measurements (22) in a least squares sense. It is natural to consider least squares 
estimation as this is equivalent to maximum likelihood estimation when the noise terms 
(εsj) are independent, identically distributed normal random variables. The consistency 
of the least squares estimator is discussed in Section 6.2.

6.1. Reconstruction from measurements of harmonic intrinsic volumes

Assume that so ≥ 1, and define DH
so

: K2 → [0, ∞) as the sum of squared deviations of 
the harmonic intrinsic volumes of a convex body K to the measurements (22). That is

DH
so

(K) =
so∑

s=0

ns∑

j=1

(
λsj(K0) − ψsj(K)

)2 = |λso
(K0) − ψso

(K)|2,

where ns = N(2, s) for s = 0, . . . , so (n0 = 1 and ns = 2 for s ≥ 1). In order to 
obtain a least squares estimator, the infimum of DH

so
has to be attained. In contrast to 

the situation in Section 5.1, the convex body K0 does not necessarily minimize DH
so

. 
However, Lemma 6.1 ensures the existence of a polygon that minimizes DH

so
.

Lemma 6.1. There exists a P ∈ P2
2so+1 such that

DH
so

(P ) = inf
K∈K2

DH
so

(K). (23)

Furthermore, if K ′, K ′′ ∈ K2 both are solutions of (23) then ψso
(K ′) = ψso

(K ′′), i.e. K ′

and K ′′ have the same surface tensors of rank at most so.
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Proof. Let Mso
= {ψso

(K) | K ∈ K2} ⊆ R2so+1. Due to Minkowski linearity of the area 
measure of order one, see [20, Eq. (8.23)], Mso

is convex.
We now show that Mso

is closed in R2so+1. Let (ψso
(Kn))n∈N be a sequence in Mso

, 
such that ψso

(Kn) → ξ for some ξ ∈ R2so+1. For sufficiently large n we have
√

2
π
V1(Kn) = ψ01(Kn) ≤ |ξ1 − ψ01(Kn)| + |ξ1|

≤ |ξ − ψso
(Kn)| + |ξ| ≤ 1 + |ξ|.

By monotonicity of the intrinsic volumes on K2 (see, e.g, [21]), we have

|x − y| = V1([x, y]) ≤ V1(Kn) ≤
√

π

2 (1 + |ξ|)

for x, y ∈ Kn. This implies that a translate of Kn is a subset of 
√

π
2 (1 + |ξ|)B2 for n

sufficiently large. By continuity of K �→ ψso
(K) (with respect to the Hausdorff metric), 

an application of Blaschke’s selection theorem (see, e.g., [20, Thm. 1.8.7]), yields the 
existence of a subsequence (nl)l∈N and a convex body K ∈ K2 satisfying ψso

(Knl
) →

ψso
(K) for l → ∞. Hence, ξ = ψso

(K) ∈ Mso
, so Mso

is closed. The optimization 
problem

inf
K∈K2

DH
so

(K) = inf
ψ∈Mso

|λso
(K0) − ψ|2

corresponds to finding the metric projection of λso
(K0) to the non-empty closed and 

convex set Mso
. This metric projection ψso

(K ′) ∈ Mso
always exists and is unique; see, 

e.g., [20, Section 1.2]. Note that K ′ ∈ K2 is not uniquely determined here, but any two 
sets K ′, K ′′ ∈ K2 minimizing (23) must satisfy ψso

(K ′) = ψso
(K ′′). By Theorem 4.1

(and Remark 4.5), this ensures the existence of a polygon P with at most 2so + 1 facets 
satisfying (23). �
Remark 6.2. It follows from Lemma 6.1 that the measurements (22) are the exact har-
monic intrinsic volumes of a convex body if and only if

inf
K∈K2

DH
so

(K) = 0.

By Lemma 6.1 and considerations similar to those in Section 5.1, the minimization 
of DH

so
can be reduced to the finite dimensional minimization problem

min
(α,u)∈M

so∑

s=0

ns∑

j=1

(
λsj(K0) −

2so+1∑

i=1
αiHsj(ui)

)2
, (24)

where M is defined as in Section 5.1. This finite minimization problem can be solved 
numerically. The solution to the minimization problem (24) is a vector (α, u) in M
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that describes the surface area measure of a polygon. As described in Section 5.1, the 
MinkData Algorithm can be applied for the reconstruction of this polygon. The least 
squares estimator K̂H

so
of the shape of K0 is defined to be the output polygon of this 

algorithm. Then K̂H
so

minimizes DH
so

, so the harmonic intrinsic volumes of K̂H
so

fit the 
measurements (22) in a least squares sense. For so = 0, the estimator K̂H

so
is defined 

as the line segment [0, 
√

π
2 λ01(K0)e1] if λ01(K0) ≥ 0. Otherwise, K̂H

so
is defined as the 

singleton {0}.
The reconstruction algorithm can be summarized as follows.

Algorithm Harmonic Intrinsic Volume LSQ
Input: A natural number so ∈ N0 and noisy measurements λsj(K0), j = 1, . . . , ns, 

s = 0, . . . , so of the harmonic intrinsic volumes up to degree so of an unknown 
convex body K0 ∈ K2.

Task: Construct a polygon K̂H
so

in R2 with at most 2so+1 facets such that the harmonic 
intrinsic volumes of K̂H

so
fit the measurements of the harmonic intrinsic volumes 

of K0 in a least squares sense.
Action: If so = 0, let K̂H

so
be the line segment (or singleton) [0, (

√
π
2λ01(K0) ∨ 0)e1]. 

Otherwise:
Phase I: Find a vector (α, u) ∈ M that minimizes

so∑

s=0

ns∑

j=1

(
λsj(K0) −

2so+1∑

i=1
αiHsj(ui)

)2
.

Phase II: The vector (α, u) describes a polygon K̂H
so

in R2 with at most 2so + 1
facets. Reconstruct K̂H

so
from (α, u) using the MinkData Algorithm.

As described in Examples 5.1 and 5.2, additional information on the unknown convex 
body K0 can be included in the reconstruction algorithm by modifying the set M in a 
suitable way.

6.2. Consistency of the least squares estimator

So far, we have oppressed the dependence of the noise terms in the notation of DH
so

. 
In the following, for so ∈ N, we write

DH
so

(K,x) = |ψso
(K0) + x − ψso

(K)|2

where K ∈ K2 and x ∈ R2so+1. Further, we let

Kso
(x) = {K ∈ K2 | DH

so
(K,x) = inf

L∈K2
DH

so
(L, x)}.

If εso
= (ε01, ε11, ε12, . . . , εso2) denotes the random vector of noise variables in the mea-

surements (22), then Ks0(εso
) is the random set of solutions to the minimization (23). 
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Due to Lemma 6.1, the set Kso
(εso

) is non-empty for all so ∈ N. We can without loss of 
generality assume that the noise variables are defined on a complete probability space.

In the following, we show that supK∈Kso (εso ) δ
t(K0, K) is measurable. To this end, we 

use the notion of permissible sets, see [18, App. C]. For K ∈ K2 and x ∈ R2so+1, define

f(K,x) = δt(K0,K)1{0}(g(K,x))

where g(K, x) = infL∈K2 DH
so

(L, x) − DH
so

(K, x), and let F = {f(K, ·) | K ∈ K2}. Then

sup
K∈Kso (εso )

δt(K0,K) = sup
K∈K2

f(K, εso
).

As DH
so

is continuous in the first variable and is measurable as a function of two variables, 
the mapping g is measurable as K2 is separable. As δt(K0, ·) is continuous, this implies 
that f is measurable.

Let F2 denote the family of closed subsets of R2 equipped with the Fell topology, 
see, e.g., [21, Chapter 12.2]. Then, F2 is compact and metrizable, and the set of convex 
bodies K2 is an analytic subset of F2 as K2 ∈ B(F2), see, e.g., [21, Thm. 12.2.1, the sub-
sequent remark and Thm. 2.4.2]. Further, the topology on the separable set K2 induced 
by the Fell topology and the topology on K2 induced by the Hausdorff metric coincide, 
see, e.g, [21, Thm. 12.3.4], so the set F is permissible. Due to [18, App. C, p. 197], this 
implies that supK∈K2 f(K, εso

) is measurable.
For so ∈ N, the noise variables ε01, ε11, . . . , εso2 are assumed to be independent with 

zero mean and finite variance bounded by a constant σ2
so

< ∞.

Theorem 6.3. If σ2
so

= O( 1
so

1+ε ) for some ε > 0, then

sup
K∈Kso (εso )

δt(K0,K) → 0

in probability as so → ∞. If σ2
so

= O( 1
so

2+ε ), then the convergence is almost surely.

Proof. Let δ > 0, and let 0 < ρ < δ
2M ∧ 1 where M = M(2, 3) is defined in Theorem 4.8. 

Let so ∈ N, K ∈ Kso
(εso

), and assume first that DH
so

(K0, εso
) < ρ

8 . Then,

max
s=0,...,so

ns∑

j=1

(
ψsj(K0) − ψsj(K)

)2

≤ 4 max
s=0,...,so

ns∑

j=1

(
ε2sj +

(
λsj(K0) − ψsj(K)

)2
)

≤ 8DH
so

(K0, εso
) < ρ.

In particular, (ψ01(K0) − ψ01(K))2 < ρ which implies that

V1(K) <
π

2 + V1(K0) =: R(K0).
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By arguments similar to those in the proof of Theorem 5.4, this implies that there are 
translates of K and K0 contained in RB2. As R is independent of so and K, we obtain 
by Theorem 4.8 that

sup
K∈Kso (εso )

δt
2(K0,K) ≤ c1(1, 2, R)(so + 1)−2 + ρM < δ

for so sufficiently large. Due to the connection between the Hausdorff metric and 
L2-metric, see, e.g., [11, Prop. 2.3.1], we obtain

sup
K∈Kso (εso )

δt(K0,K) < (3Rδ2) 1
3 . (25)

As DH
so

(K0, εso
) =

∑so

s=0
∑ns

j=1 ε2sj , the assumption on the convergence rate, σ2
so

=
O( 1

so
1+ε ) for some ε > 0, implies that DH

so
(K0, εso

) converges to zero in mean and then 
in probability, when so increases. If σ2

so
= O( 1

so
2+ε ), then 

∑∞
so=1 E DH

so
(K0, εso

) < ∞, 
which ensures that DH

so
(K0) convergences to zero almost surely. In combination with 

inequality (25), this yields the convergence results. �
As K̂H

so
∈ Kso

(εso
) for so ∈ N, Theorem 6.3 yields consistency of Algorithm Harmonic 

Intrinsic Volume LSQ.

6.3. Example on reconstruction from harmonic intrinsic volumes

This section is an example where Algorithm Harmonic Intrinsic Volume LSQ is used to 
reconstruct a half disc K0 from noisy measurements of the harmonic intrinsic volumes. 
The reconstruction of the half disc is executed for so = 2, 4, . . . , 12. The noise terms 
(εsj) are independent and normally distributed with zero mean. For the reconstruction 
based on harmonic intrinsic volumes up to degree so, the variance of the noise terms is 
σ2

so
= 1

so
2.1 . Due to Theorem 6.3 this ensures that δt(K0, K̂so

) → 0 almost surely for 
so → ∞. The minimization (24) is carried out by use of the procedure fmincon provided 
by MatLab. As initial values for the minimization procedure, we use regular polygons 
with 2so + 1 facets. The reconstructions are plotted in Fig. 5.

For the reconstruction based on exact surface tensors, the values of Dso
(K0) and 

Dso
(K̂so

) are always zero. This is not the case when the reconstruction is based on 
measurements subject to noise. In Fig. 6, the values of DH

so
(K0) and DH

so
(K̂H

so
) are plotted 

for so = 2, 4, . . . , 12. As K̂H
so

minimizes DH
so

, the value of DH
so

(K̂so
) is smaller than the 

value of DH
so

(K0) for each so. As the variance of the noise terms converges to zero 
sufficiently fast, the values of DH

so
(K0) and hence also the values of DH

so
(K̂H

so
) tend to 

zero, when so increases.
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Fig. 5. Reconstruction of the half disc in Fig. 2 based on measurements of harmonic intrinsic volumes up to 
degree so = 2, 4, 6, 8, 10, 12. The noise variables are normally distributed with zero mean and variance 1

s2.1
o

.

Fig. 6. DH
so

(K0) (‘o’) and DH
so

(K̂H
so

) (‘+’) plotted for so = 2, 4, . . . , 12.

6.4. Reconstruction from measurements of surface tensors at the standard basis

In this section, we briefly discuss reconstruction based on measurements of surface 
tensors evaluated at the standard basis. A reconstruction algorithm based on noisy sur-
face tensors can be developed combining ideas from Section 5.1 and Section 6.1. We 
let K0 ∈ K2 be an unknown convex body and assume that noisy measurements of the 
surface tensors of K0 at the standard basis are available for two consecutive ranks so −1
and so ∈ N. We then consider the minimization problem

min
K∈K2

D̃so
(K) (26)
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with

D̃so
(K) =

so∑

s=so−1

s∑

j=0

(∫

S1

uj
1u

s−j
2 S1(K0, du) + εsj −

∫

S1

uj
1u

s−j
2 S1(K0, du)

)2

for K ∈ K2, where ε(so−1)0, . . . , εsoso
are independent noise terms with zero mean and 

variance bounded by σ2
so

> 0. By arguments as in Lemma 6.1, the minimum (26) is 
attained. Notice, that the constants (s! ωs)−1 for s ∈ {so − 1, so} are omitted in the 
expression of D̃so

, so we in fact consider measurements of rescaled versions of the surface 
tensors (compare with (7) and (20)). We choose to do so, as the constants are artificial 
(they are introduced in order to simplify certain formulas containing Minkowski tensors), 
and further, as the constants are decreasing rapidly, so that the surface tensors vanish 
compared to the noise when so increases. For the reconstruction based on exact surface 
tensors in Section 5, the output polygon of the reconstruction algorithm has surface 
tensors identical to the unknown convex body and is then independent of the presence 
of the constants in the objective function.

By arguments as in Sections 5.1 and 6.1, the minimization problem is reduced to

min
(α,u)∈M

so∑

s=so−1

s∑

j=0

(∫

S1

uj
1u

s−j
2 S1(K0, du) + εsj −

2so+1∑

i=1
αiu

j
i1u

s−j
i2

)2
, (27)

where M is defined as in Section 5.1. A solution to the minimization problem (27)
corresponds to a polygon that minimizes D̃so

. This polygon can be reconstructed using 
Algorithm MinkData.

Using the same procedure as in Theorem 6.3, the stability result Theorem 4.8 can 
be applied to obtain consistency of the above described reconstruction algorithm. Let 
Kso

∈ K2 be a convex body that minimizes D̃so
. Then

(s!ωs+1)2
s∑

j=0
(φsj(K0) − φsj(Kso

))2 ≤ 8D̃so
(K0) (28)

for s ∈ {so − 1, so}. In order to apply the stability result Theorem 4.8, it is required 
to transform the bound (28) into an upper bound on the differences of the harmonic 
intrinsic volumes of K0 and Kso

of each degree up to so, see (14). We now consider only 
the harmonic intrinsic volumes of degree 0. According to Remark 3.1, we have

ψ01(K) =
√

2
π
φ00(K) = (2k)!ω2k+1√

2π

k∑

j=0

(
k

j

)
φ2k,2j(K)

for K ∈ K2 and k ∈ N0, so

(ψ01(K0) − ψ01(Kso
))2 = 1

2π (s!ωs+1)2〈As, φs(K0) − φs(Kso
)〉2
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where s ∈ {so − 1, so} is even, φs(K) = (φs0(K), . . . , φss(K)) and

As =
(( s

2
0

)
, 0,
( s

2
1

)
, 0, . . . ,

( s
2
s
2

))
.

Since we have no detailed information on the vector φs(K0) − φs(Kso
), we apply the 

Cauchy–Schwarz inequality combined with (28) and obtain the bound

(ψ01(K0) − ψ01(Kso
))2 ≤ 4

π
|As|2D̃so

(K0) = 4
π

(
s
s
2

)
D̃so

(K0).

Note that
(

s
s
2

)
2−s

√
s →

√
2
π

as s → ∞. To apply the stability result Theorem 4.8 as in Theorem 6.3, we then (at 
least) have to ensure that

2sos
− 1

2
o D̃so

(K0) → 0

in probability or almost surely for so → ∞. This requires a very restrictive assumption 
(compared to the assumption in Theorem 6.3) on the convergence rate of σ2

so
. Hence, 

the structure of the stability result yields a much weaker consistency result for the 
reconstruction algorithm based on surface tensors at the standard basis, than for the 
algorithm based on harmonic intrinsic volumes. Therefore, we recommend the use of 
harmonic intrinsic volumes when only measurements subject to noise are available.

In the example in Section 6.3, we reconstructed a half disc based on measurements of 
harmonic intrinsic volumes. For comparison, we reconstruct the same half disc from mea-
surements of the surface tensors measured at the standard basis. For the reconstruction 
based on surface tensors of rank so − 1 and so, we let the noise terms ε(so−1)0, . . . , εsoso

be independent and normally distributed with zero mean, and as in the above example, 
we let the variance σ2

so
of the noise terms be σ2

so
= 1

so
2.1 .

In Fig. 7, the reconstructions K̂8, . . . , K̂18 of the half disc based on noisy surface 
tensors of rank so − 1 and so for so = 8, 10, . . . , 18 are plotted. In Fig. 8, the values of 
D̃so

(K̂so
) and D̃so

(K0) are plotted for so = 8, . . . , 18.
The reconstructions K̂H

8 , K̂H
10 and K̂H

12 based on measurements of harmonic intrin-
sic volumes in the example in Section 6.3 are better approximations of the half disc 
than the reconstructions K̂8, K̂10 and K̂12 based on measurements of surface tensors 
in this example. In particular, K̂H

12 is a very accurate reconstruction of the half disc. 
This is not the case for K̂12. When so increases, the reconstructions K̂14, K̂16 and K̂18
become more accurate, but even when the noise terms become very small (see Fig. 8), 
the reconstructions are, as expected, not as precise as K̂H

12.
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Fig. 7. Reconstruction of the half disc in Fig. 2 based on measurements of surface tensors at the standard 
basis of rank so − 1 and so for so = 8, 10, 12, 14, 16, 18. The noise variables are normally distributed with 
zero mean and variance 1

s2.1
o

.

Fig. 8. D̃so
(K0) (‘o’) and D̃so

(K̂so
) (‘+’) plotted for so = 2, 4, . . . , 12.
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Abstract

In this paper, we derive uniqueness and stability results for surface tensors.
Further, we develop two algorithms that reconstruct shape of n-dimensional
convex bodies. One algorithm requires knowledge of a finite number of surface
tensors, whereas the other algorithm is based on noisy measurements of a finite
number of harmonic intrinsic volumes. The derived stability results ensure
consistency of the two algorithms. Examples that illustrate the feasibility of the
algorithms are presented.
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1. Introduction

Recently, Minkowski tensors have succesfully been used as shape descriptors
of spatial structures in materials science, see, e.g., [3, 15, 16]. Surface tensors
are translation invariant Minkowski tensors derived from surface area measures,
and the shape of a convex body K with nonempty interior in Rn is uniquely
determined by the surface tensors of K. In this context, the shape of K is
defined as the equivalence class of all translations of K.

In [10], Kousholt and Kiderlen develop reconstruction algorithms that ap-
proximate the shape of convex bodies in R2 from a finite number of surface
tensors. Two algorithms are described. One algorithm requires knowledge of
exact surface tensors, and one allows for noisy measurements of surface tensors.
For the latter algorithm, it is argued that it is preferable to use harmonic in-
trinsic volumes instead of surface tensors evaluated at the standard basis. The
similar problem of reconstructing a convex body K from its volume tensors
(moments of the Lebesgue measure restricted to K) has received considerable
attention and can be applied in X-ray tomography, see, e.g., [12, 8].

The purpose of this paper is threefold. Firstly, the reconstruction algorithms
developed in [10] are generalized to an n-dimensional setting. Secondly, stabil-
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ity and uniqueness results for surface tensors are established, and the stability
results are used to ensure consistency of the generalized algorithms. Thirdly,
we illustrate the feasibility of the reconstruction algorithms by examples. The
generalizations of the reconstruction algorithms are developed along the same
lines as the algorithms for convex bodies in R2. However, there are several non-
trivial obstacles on the way. In particular, essentially different stability results
are needed to ensure consistency.

The input of the first generalized algorithm is exact surface tensors up to
a certain rank of an unknown convex body in Rn. The output is a polytope
with surface tensors identical to the given surface tensors of the unknown con-
vex body. The input of the second generalized algorithm is (possibly noisy)
measurements of harmonic intrinsic volumes of an unknown convex body in Rn,
and the output is a polytope with harmonic intrinsic volumes that fit the given
measurements in a least squares sense. When n ≥ 3, a convex body that fits
the noisy input measurements of harmonic intrinsic volumes may not exist, and
in this case, the output of the algorithm based on harmonic intrinsic volumes
is a message stating that there is no solution to the given task. However, this
situation only occurs when the measurements are too noisy, see Lemma 6.3.

The consistency of the algorithms described in [10] is established using the
stability result [10, Thm. 4.8] for harmonic intrinsic volumes derived from the
first order area measure. This result can be applied as the first order area mea-
sure and the surface area measure coincide for n = 2. However, for n ≥ 3,
the stability result is not applicable. Therefore, we establish stability results
for surface tensors and for harmonic intrinsic volumes derived from surface area
measures. More precisely, first we derive an upper bound of the Dudley dis-
tance between surface area measures of two convex bodies. This bound is small,
when the distance between the harmonic intrinsic volumes up to degree s of
the convex bodies is small for some large s ∈ N0 (Theorem 4.3). From this
result and a known connection between the Dudley distance and the translative
Hausdorff distance, we obtain that the translative Hausdorff distance between
convex bodies with identical surface tensors up to rank s becomes small, when
s is large (Corollary 4.4). The structures of the two stability result differ. The
first result allows the difference between the harmonic intrinsic volumes to be
nonzero, whereas the latter result requires that the surface tensors are identi-
cal up to a certain rank. This explains the use of harmonic intrinsic volumes
instead of surface tensors when only noisy measurements are available. The
stability result for surface tensors and the fact that the rank 2 surface tensor
of a convex body K determines the radii of a ball containing K and a ball con-
tained in K (Lemma 5.4) ensure consistency of the generalized reconstruction
algorithm based on exact surface tensors (Theorem 5.5). The consistency of the
reconstruction algorithm based on measurements of harmonic intrinsic volumes
is ensured by the stability result for harmonic intrinsic volumes under certain
assumptions on the variance of the noise variables (Theorems 6.4 and 6.5).

The described algorithms and stability results show that a finite number of
surface tensors can be used to approximate the shape of a convex body, but in
general, all surface tensors are required to uniquely determine the shape. How-
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ever, there are convex bodies where a finite number of surface tensors contain
full shape information. More precisely, in [10], it is shown that the shape of a
convex body in Rn with nonempty interior is uniquely determined by a finite
number of surface tensors if only if the convex body is a polytope. Further, the
shape of a polytope with m ≥ n + 1 facets is uniquely determined by surface
tensors up to rank 2m. We strengthen and complete the uniqueness results
from [10] by showing an optimal version of the latter statement, namely that
the shape of a polytope with m ≥ n + 1 facets is uniquely determined by the
surface tensors up to rank m − n + 2. This result is optimal in the sense that
for each m ≥ n + 1 there is a polytope P with m facets and a convex body K
that is not a polytope, such that P and K have identical surface tensors up to
rank m− n+ 1. This implies that the rank m− n+ 2 cannot be reduced.

The paper is organized as follows. General notation, surface tensors and
harmonic intrinsic volumes are introduced in Section 2. The uniqueness results
are derived in Section 3 and are followed by the stability results in Section 4.
The two reconstruction algorithms are described in Sections 5 and 6.

2. Notation and preliminaries

We work in the n-dimensional Euclidean vector space Rn, n ≥ 2 with stan-
dard inner product 〈·, ·〉 and induced norm ‖·‖. The unit sphere in Rn is denoted
by Sn−1, and the surface area and volume of the unit ball Bn in Rn are denoted
by ωn and κn, respectively.

In the following, we give a brief introduction to the concepts of convex bodies,
surface area measures, surface tensors and harmonic intrinsic volumes. For
further details, we refer to [14] and [10]. We let Kn denote the set of convex
bodies (convex, compact and nonempty sets) in Rn, and let Knn be the set of
convex bodies with nonempty interior. Further, Kn(R) is the set of convex
bodies contained in a ball of radius R > 0, and likewise, Kn(r,R) is the set
of convex bodies that contain a ball of radius r > 0 and are contained in a
concentric ball of radius R > r. The set of convex bodies Kn is equipped with
the Hausdorff metric δ. The Hausdorff distance between two convex bodies can
be expressed as the supremum norm of the difference of the support functions
of the convex bodies, i.e.

δ(K,L) = ‖hK − hL‖∞ = sup
u∈Sn−1

|hK(u)− hL(u)|

for K,L ∈ Kn.
In the present work, we call the equivalence class of translations of a convex

body K the shape of K. Hence, two convex bodies are of the same shape exactly
if they are translates. As a measure of distance in shape, we use the translative
Hausdorff distance,

δt(K,L) = inf
x∈Rn

δ(K,L+ x)

for K,L ∈ Kn. The translative Hausdorff distance is a metric on the set of
shapes of convex bodies, see [6, p. 165].
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For a convex body K ∈ Knn, the surface area measure Sn−1(K, ·) of K is
defined as

Sn−1(K,ω) = Hn−1(τ(K,ω))

for a Borel set ω ⊆ Sn−1, where Hn−1 is the (n − 1)-dimensional Hausdorff
measure, and τ(K,ω) is the set of boundary points of K with an outer normal
belonging to ω. In particular, for a convex polytope P with m ≥ n + 1 facets,
the surface area is of the form

Sn−1(P, ·) =

m∑

j=1

αjδuj

where δv is the Dirac measure at v ∈ Sn−1, u1, . . . , um ∈ Sn−1 are the outer
normals of the facets of P , and α1, . . . , αm > 0 are the corresponding (n − 1)-
dimensional volumes of the facets.

For a convex body K ∈ Kn \ Knn there is a unit vector u ∈ Sn−1 and an
x ∈ Rn, such that K is contained in the hyperplane u⊥ + x. The surface area
measure of K is defined as

Sn−1(K, ·) = S(K)(δu + δ−u),

where S(K) is the surface area of K. Notice that Sn−1(K,Sn−1) = S(K) for
K ∈ Knn, and Sn−1(K,Sn−1) = 2S(K) for K ∈ Kn \ Knn.

Minkowski’s existence theorem is a fundamental result stating that a finite
Borel measure µ on Sn−1 is the surface area measure of a convex body K ∈ Knn
if and only if ∫

Sn−1

uµ(du) = 0

and the support of µ is full-dimensional (meaning that the support is not con-
tained in any great subsphere of Sn−1), see, e.g., [14, Thm. 8.2.2]. Another
important result is that the shape of a convex body K ∈ Knn is uniquely deter-
mined by Sn−1(K, ·), see, e.g., [14, Thm. 8.1.1].

Translation invariant Minkowski tensors derived from surface area measures
are called surface tensors. Hence for s ∈ N0 and K ∈ Kn, the surface tensor of
K of rank s is given as

Φsn−1(K) =
1

s!ωs+1

∫

Sn−1

us Sn−1(K, du)

where us : (Rn)s → R is the s-fold symmetric tensor product of u ∈ Sn−1 when
u is identified with the rank 1 tensor v 7→ 〈u, v〉. Since the shape of a convex
body K ∈ Knn is uniquely determined by Sn−1(K, ·), the shape of K is likewise
uniquely determined by the set of surface tensors {Φsn−1(K) | s ∈ N0}, see [10,
Sec. 4, p. 10].

Due to multilinearity, the surface tensor of rank s can be identified with
the array {Φsn−1(K)(ei1 , . . . , eis)}ni1,...,is=1 of components of Φsn−1(K), where
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(e1, . . . , en) is the standard basis of Rn. Notice that for i1, . . . , is ∈ {1, . . . , n},
we have

Φsn−1(K)(ei1 , . . . , eis) =
1

s!ωs+1

∫

Sn−1

ui1 · · ·uis Sn−1(K, du).

Hence, the components of Φsn−1(K) are scaled versions of the moments of
Sn−1(K, ·), where the moments of order s ∈ N0 of a Borel measure µ on Sn−1
are given by ∫

Sn−1

uj11 · · ·ujnn µ(du)

for j1, . . . , jn ∈ {0, . . . , s} with
∑n
k=1 jk = s.

By [10, Remark 3.1], the surface tensors Φ0
n−1(K), . . . ,Φsn−1(K) of K are

uniquely determined by Φs−1n−1(K) and Φsn−1(K) for s ≥ 2. More precisely, if
so ∈ N0 and s ∈ {0, . . . , so} have same parity, then Φsn−1 can be calculated from
Φson−1 by taking the trace consecutively and multiplying with the constant

cs,so =
so!ωso+1

s!ωs+1
. (1)

The trace Tr(T ) of a symmetric tensor T of rank s ≥ 2 is the symmetric tensor
of rank s− 2 given by

Tr(T )(ei1 , . . . , eis−2
) =

n∑

j=1

T (ei1 , . . . , eis−2
, ej , ej)

for i1, . . . , is−2 ∈ {1, . . . , n}.
For s ≥ 2, the tensors Φs−1n−1(K) and Φsn−1(K) have

ms =

(
s+ n− 2

n− 1

)
+

(
s+ n− 1

n− 1

)

components, when we, for j ∈ {s− 1, s}, let the identical components

{Φjn−1(K)(eσ(i1), . . . , eσ(ij)) | σ permutation of {i1, . . . , ij}}

count as one. We use the notation φsn−1(K) for the ms-dimensional vector of
different components of the surface tensors of K of rank s− 1 and s.

To a convex body K ∈ Kn, we further associate the harmonic intrinsic vol-
umes (not to be confused with harmonic quermaß integrals). Harmonic intrinsic
volumes are the moments of Sn−1(K, ·) with respect to an orthonormal sequence
of spherical harmonics (for details on spherical harmonics, see [9]). More pre-
cisely, for k ∈ N0, let Hnk be the vector space of spherical harmonics of degree k
on Sn−1. The dimension of Hnk is denoted by N(n, k), and

∑s
k=0N(n, k) = ms.

We let Hk1, . . . ,HkN(n,k) be an orthonormal basis of Hnk . Then, the harmonic
intrinsic volumes of K of degree k are given by

ψ(n−1)kj(K) =

∫

Sn−1

Hkj(u)Sn−1(K, du)
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for j = 1, . . . , N(n, k). For a convex body K ∈ Kn, we let ψsn−1(K) be the
ms-dimensional vector of harmonic intrinsic volumes of K up to degree s. The
vector ψsn−1(K) only depends onK through the surface area measure Sn−1(K, ·)
of K, and we can write ψsn−1(Sn−1(K, ·)) = ψsn−1(K). Likewise, for an arbitrary
Borel measure µ on Sn−1, we write ψsn−1(µ) for the vector of harmonic intrinsic
volumes of µ up to degree s, that is the vector of moments of µ up to order
s with respect to the given orthonormal basis of spherical harmonics. The
harmonic intrinsic volumes and the surface tensors of a convex body K are
closely related as there is an invertible linear mapping fs : Rms → Rms such
that fs(φsn−1(K)) = ψsn−1(K). This follows as every polynomial p : Sn−1 → R
of degree d can be written as a sum of spherical harmonics p = H1 + · · · + Hd

where Hj ∈ Hnj , see [9, Cor. 3.2.6].

3. Uniqueness results

The shape of a convex body is uniquely determined by a finite number of
surface tensors only if the convex body is a polytope, see [10, Cor. 4.2]. Further,
in [10, Thm. 4.3] it is shown that a polytope in Rn with nonempty interior and
m ≥ n+ 1 facets is uniquely determined up to translation in Kn by its surface
tensors up to rank 2m. In Theorem 3.2, we replace 2m with m− n+ 2, and in
addition, we show that the rank m− n+ 2 cannot be reduced.

We letM denote the cone of finite Borel measures on Sn−1. Further, we let
Pm be the set of convex polytopes in Rn with at most m ≥ n + 1 facets. The
proof of Lemma 3.1 is an improved version of the proof of [10, Thm. 4.3].

Lemma 3.1. Letm ∈ N and µ ∈M have finite support suppµ = {u1, . . . , um} ⊆
Sn−1.

(i) The measure µ is uniquely determined in M by its moments up to order
m.

(ii) If the affine hull aff{u1, . . . , um} of suppµ is Rn, then µ is uniquely de-
termined inM by its moments up to order m− n+ 2.

Proof. We first prove (ii). Since aff{u1, . . . , um} = Rn, we have m ≥ n+ 1 and
the support of µ can be pared down to n + 1 vectors, say u1, . . . , un+1, such
that aff{u1, . . . , un+1} = Rn. For each j = 1, . . . , n+ 1, the affine hull

Aj = aff({u1, . . . , un+1} \ {uj})

is a hyperplane in Rn, so there is a vj ∈ Sn−1 and a βj ∈ R such that

Aj = {x ∈ Rn | 〈x, vj〉 = βj}.

Now define the polynomial

p(u) =

n+1∑

j=1

(〈u, vj〉 − βj)2(1− 〈u, uj〉)(1− 〈u, un+2〉) . . . (1− 〈u, um〉)
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for u ∈ Sn−1. The degree of p is m − n + 2, and p(uj) = 0 for j = 1, . . . ,m.
Let w ∈ Sn−1 \ {u1, . . . , um} and assume that p(w) = 0. Then w ∈ Aj for
j = 1, . . . , n + 1, so in particular w =

∑n
j=1 γjuj where

∑n
j=1 γj = 1. We may

assume that γ1 6= 0. Since w ∈ A1, this implies that u1 is an affine combination
of u2, . . . , un+1, so

A1 = aff{u1, . . . , un+1} = Rn.

This is a contradiction, and we conclude that p(w) > 0.
Now let ν ∈M and assume that µ and ν have identical moments up to order

m− n+ 2. Since the polynomial p is of degree m− n+ 2, we obtain that
∫

Sn−1

p(u) ν(du) =

∫

Sn−1

p(u)µ(du) =

m∑

j=1

αj p(uj) = 0, (2)

where we have used that µ is of the form

µ =

m∑

j=1

αjδuj

for some α1, . . . , αm > 0. Equation (2) yields that p(u) = 0 for ν-almost all
u ∈ Sn−1 as the polynomial p is non-negative. Then, the continuity of p implies
that

supp ν ⊆ {u ∈ Sn−1 | p(u) = 0} = {u1, . . . , um},
so ν is of the form

ν =

m∑

j=1

βjδuj (3)

with βj ≥ 0 for j = 1, . . . ,m.
For i = 1, . . . , n+ 1, define the polynomial

pi(u) = (〈u, vi〉 − βi)2(1− 〈u, un+2〉) . . . (1− 〈u, um〉)

for u ∈ Sn−1. Then pi is of degree m − n + 1 and pi(uj) = 0 for j 6= i.
If pi(ui) = 0, then ui ∈ Ai and we obtain a contradiction as before. Hence
pi(ui) > 0. Due to (3) and the assumption on coinciding moments, we obtain
that

αipi(ui) =

m∑

j=1

αjpi(uj) =

m∑

j=1

βjpi(uj) = βipi(ui). (4)

Since pi(ui) > 0, Equation (4) implies that αi = βi for i = 1, . . . , n+ 1.
For i = n+ 2, . . . ,m, define the polynomial

pi(u) =
p(u)

(1− 〈u, ui〉)

for u ∈ Sn−1. Then pi is of degree m − n + 1 and pi(uj) = 0 for j 6= i. If
pi(ui) = 0, then ui ∈ Aj for j = 1, . . . , n + 1, which is a contradiction. Hence,
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pi(ui) > 0. By arguments as before, we obtain that αi = βi for i = n+2, . . . ,m.
Hence ν = µ, which yields (ii).

The statement (i) can be proved in a similar manner using the polynomials

p(u) =

m∏

j=1

(1− 〈u, uj〉)

and
pi(u) =

p(u)

1− 〈u, ui〉
for u ∈ Sn−1 and i = 1, . . . ,m.

Theorem 3.2. Let m ≥ n + 1. Up to translation, a polytope P ∈ Pm with
nonempty interior is uniquely determined in Kn by its surface tensors up to
rank m− n+ 2. If n = 2, then the result holds for any P ∈ Pm.

The rank m− n+ 2 is optimal as there is a polytope Pm ∈ Pm and a convex
body Km /∈ Pm having identical surface tensors up to rank m− n+ 1.

Proof. Let P ∈ Pm have facet normals u1, . . . , um ∈ Sn−1 and nonempty in-
terior. Then, suppSn−1(P, ·) = {u1, . . . , um} and aff{u1, . . . , um} = Rn, so
Sn−1(P, ·) is uniquely determined in {Sn−1(K, ·) | K ∈ Kn} ⊆ M by its mo-
ments up to order m − n + 2 due to Lemma 3.1 (ii). Since the surface tensors
of P are rescaled versions of the moments of Sn−1(P, ·), the first part of the
statement follows as a convex body in Rn with nonempty interior is uniquely
determined up to translation by its surface area measure. Now assume that
P ⊆ R2 is a polytope in Pm with empty interior. Then P is a line segment
and S1(P, ·) = S(P )(δu + δ−u) for some u ∈ S1. By Lemma 3.1 (i), the surface
area measure of P is uniquely determined by its moments up to second order.
The second part of the statement then follows since any convex body in R2 is
uniquely determined up to translation by its surface area measure.

To show that the rank m − n + 2 cannot be reduced, we first consider the
case n = 2. For m ≥ 3, let Pm be a regular polytope in R2 with outer normals
uj = (cos(j 2πm ), sin(j 2πm )) for j = 0, . . .m − 1 and facet lengths αj = 2π

m for
j = 0, . . . ,m − 1. Then, Pm and the unit disc B2 in R2 have identical surface
tensors up to rank m− 1. This is easily seen by calculating and comparing the
harmonic intrinsic volumes of Pm and B2.

Now, counterexamples in Rn, n ≥ 3 can be constructed inductively. Essen-
tially, if P ′m−1 and K ′m−1 are counterexamples in Rn−1, counterexamples Pm
and Km in Rn are obtained as bounded cones with scaled versions of P ′m−1 and
K ′m−1 as bases. More precisely, for a fixed 0 < α < 1 , define fα : Sn−2 → Sn−1

by fα(u) = (
√

1− α2 u, α) for u ∈ Sn−2, and let

µm = fα(Sn−1(P ′m−1, ·)) + αS(P ′m−1)δ−en

and
νm = fα(Sn−1(K ′m−1, ·)) + αS(K ′m−1)δ−en .
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By Minkowski’s existence theorem, the measures µm and νm are surface area
measures of convex bodies Pm ∈ Pm and Km ∈ Kn, respectively. Direct calcu-
lations show that if P ′m−1 and K ′m−1 have identical surface tensors in Rn−1 up
to rank (m−1)−(n−1)+1 = m−n+1, then Pm and Km have identical surface
tensors in Rn up to the same rank. Thus, we obtain that the rank m− n+ 2 is
optimal in the sense that it cannot be reduced.

Due to the one-to-one correspondence between surface tensors up to rank s
and harmonic intrinsic volumes up to degree s of a convex body, the uniqueness
result in Theorem 3.2 also holds if surface tensors are replaced by harmonic
intrinsic volumes.

4. Stability results

The shape of a convex body K ∈ Knn is uniquely determined by the set
of surface tensors {Φsn−1(K) | s ∈ N0} of K, but as described in the previous
section, only the shape of polytopes are determined by a finite number of surface
tensors. However, for an arbitrary convex body, a finite number of its surface
tensors still contain information about its shape. This statement is quantified
in this section, where we derive an upper bound of the translative Hausdorff
distance between two convex bodies with a finite number of coinciding surface
tensors.

The cone of finite Borel measuresM on Sn−1 is equipped with the Dudley
metric

dD(µ, ν) = sup

{∣∣∣∣
∫

Sn−1

f d(µ− ν)

∣∣∣∣
∣∣∣∣ ‖f‖BL ≤ 1

}

for µ, ν ∈M, where

‖f‖BL = ‖f‖∞ + ‖f‖L and ‖f‖L = sup
u 6=v

|f(u)− f(v)|
‖u− v‖

for any function f : Sn−1 → R. It can be shown that the Dudley metric induces
the weak topology onM (the case of probability measures is treated in [5, Sec.
11.3] and is easily generalized to finite measures on Sn−1) The set of real-valued
functions on Sn−1 with ‖f‖BL < ∞ is denoted by BL(Sn−1). Further, we let
the vector space L2(Sn−1) of square integrable functions on Sn−1 with respect
to the spherical Lebesgue measure σ be equipped with the usual inner product
〈·, ·〉2 and norm ‖·‖2.

As in [1, Chap. 2.8.1], for k ∈ N, we define the operator Πk : L2(Sn−1) →
L2(Sn−1) by

(Πk f)(u) = Ek

∫

Sn−1

(
1 + 〈u, v〉

2

)k
f(v)σ(dv) (5)

for f ∈ L2(Sn−1) where the constant

Ek =
(k + n− 2)!

(4π)
n−1
2 Γ(k + n−1

2 )
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satisfies

Ek

∫

Sn−1

(
1 + 〈u, v〉

2

)k
σ(du) = 1. (6)

As (1 + 〈u, v〉)k is a polynomial in 〈u, v〉 of order k, it follows from the addition
theorem for spherical harmonics (see, e.g., [9, Thm. 3.3.3]) that the function
Πk f for f ∈ L2(Sn−1) can be expressed as a linear combination of spherical
harmonics of degree k or less, see also [1, pp. 61-62]. More precisely, there are
real constants (akj) such that

Πk f =

k∑

j=0

akjPjf, (7)

where Pjf is the projection of f onto the space Hnj of spherical harmonics of
degree j. The constants in the linear combination (7) are given by

akj =
k!(k + n− 2)!

(k − j)!(k + n+ j − 2)!
,

see [1, p. 62]. By [1, Thm. 2.30], the sequence (Πk f)k∈N converges uniformly to
f when k →∞ for any continuous function f : Sn−1 → R. When f ∈ BL(Sn−1),
Lemma 4.1 provides an upper bound for the convergence rate in terms of ‖f‖L
and ‖f‖∞.

Lemma 4.1. Let 0 < ε < 1 and k ∈ N. For f ∈ BL(Sn−1), we have

‖Πk f − f‖∞ ≤ k−
1−ε
2 ‖f‖L + 2ωnEk exp(−1

4
kε)‖f‖∞. (8)

Proof. We proceed as in the proof of [1, Thm. 2.30]. Let f ∈ BL(Sn−1). Using
(5) and (6), we obtain that

|(Πk f)(u)− f(u)| ≤ Ek
∫

Sn−1

(
1 + 〈u, v〉

2

)k
|f(u)− f(v)|σ(dv)

≤ I1(δ, u) + I2(δ, u)

for u ∈ Sn−1 and 0 < δ < 2, where

I1(δ, u) = Ek

∫

{v∈Sn−1:‖u−v‖≤δ}

(
1 + 〈u, v〉

2

)k
|f(u)− f(v)|σ(dv)

and

I2(δ, u) = Ek

∫

{v∈Sn−1:‖u−v‖>δ}

(
1 + 〈u, v〉

2

)k
|f(u)− f(v)|σ(dv).

Since I1(δ, u) ≤ δ‖f‖L and

I2(δ, u) ≤ 2ωnEk

(
1− δ2

4

)k
‖f‖∞,
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we obtain that

|(Πk f)(u)− f(u)| ≤ δ‖f‖L + 2ωnEk

(
1− δ2

4

)k
‖f‖∞. (9)

To derive the upper bound on I2, we have used that 〈u, v〉 = 1 − ‖u−v‖
2

2 for
u, v ∈ Sn−1.

Now let δ = k−
1−ε
2 . From the mean value theorem, we obtain that

ln

(
1− δ2

4

)k
= −1

4
kε

ln(1)− ln(1− 1
4k

ε−1)
1
4k

ε−1 = −1

4
kεξ−1k

for some ξk ∈ [1− 1
4k

ε−1, 1]. Hence,

(
1− δ2

4

)k
≤ exp(−1

4
kε). (10)

Combining (9) and (10) yields the assertion.

Remark 4.2. Stirling’s formula, Γ(x) ∼
√

2πxx−
1
2 e−x for x→∞, implies that

Ek ∼
(
k

4π

)n−1
2

for k → ∞. Hence, the upper bound in (8) converges to zero for k → ∞. The
choice of δ in the proof of Lemma 4.1 is optimal in the sense that if we use
0 < δ ≤ c√

k
with a constant c > 0, then the derived upper bound in (9) does

not converge to zero. This follows as

1 ≥
(

1− δ2

4

)k
≥
(

1− c

4k

)k
→ e−

c
4

for k →∞, when 0 < δ ≤ c√
k
.

For functions f ∈ BL(Sn−1) satisfying ‖f‖BL ≤ 1, Lemma 4.1 yields an
uniform upper bound, only depending on k and the dimension n, of ‖Πk f−f‖∞.
In the following theorem, this is used to derive an upper bound of the Dudley
distance between the surface area measures of two convex bodies where the
harmonic intrinsic volumes up to a certain degree so ∈ N are close in Rmso .

Theorem 4.3. Let K,L ∈ Kn(R) for some R > 0 and let so ∈ N. Let 0 < ε < 1
and δ > 0. If √

ωnmso‖ψson−1(K)− ψson−1(L)‖ ≤ δ (11)

then
dD(Sn−1(K, ·), Sn−1(L, ·)) ≤ c(n,R, ε)s−

1−ε
2

o + δ, (12)

where c > 0 is a constant depending on n,R and ε.

11
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Due to the addition theorem for spherical harmonics, the condition (11) is
independent of the bases of Hnk , k ∈ N that are used to derive the harmonic
intrinsic volumes.

Proof of Theorem 4.3. Let f ∈ BL(Sn−1) satisfy ‖f‖BL ≤ 1 and define the
signed Borel measure ν = Sn−1(K, ·)− Sn−1(L, ·). Then, by (7),

Πso f =

so∑

j=0

asoj

N(n,j)∑

i=0

〈f,Hji〉2Hji,

where |asoj | ≤ 1 and Hj1, . . . ,HjN(n,j) form the orthonormal basis of Hnj used
to derive the harmonic intrinsic volumes of degree j ∈ {0, . . . , so}. Since ‖f‖2 ≤√
ωn‖f‖∞ ≤

√
ωn, we obtain from Cauchy-Schwarz’ inequality and a discrete

version of Jensen’s inequality that

∣∣∣∣
∫

Sn−1

Πso f dν

∣∣∣∣ ≤
√
ωn

so∑

j=0

N(n,j)∑

i=0

∣∣∣∣
∫

Sn−1

Hji dν

∣∣∣∣

≤
(
ωn

( so∑

l=0

N(n, l)

) so∑

j=0

N(n,j)∑

i=0

(∫

Sn−1

Hji dν

)2) 1
2

=
√
ωnmso ‖ψson−1(K)− ψson−1(L)‖.

Hence,
∣∣∣∣
∫

Sn−1

f dν

∣∣∣∣ ≤
∣∣∣∣
∫

Sn−1

Πsof − f dν
∣∣∣∣+

∣∣∣∣
∫

Sn−1

Πso f dν

∣∣∣∣

≤ 2Rn−1ωn(s
ε−1
2

o + 2ωnEso exp(−1

4
sεo)) + δ,

where we used Lemma 4.1 and that max{Sn−1(K,Sn−1), Sn−1(L, Sn−1)} ≤
Rn−1ωn. For k → ∞, the convergence of Ek exp(− 1

4k
ε) to zero is faster than

the convergence of k−
1−ε
2 , see Remark 4.2. This implies the existence of a

constant c only depending on n,R and ε satisfying (12).

Corollary 4.4. Let K,L ∈ Kn(R) for some R > 0 and let so ∈ N0 and 0 <
ε < 1. If Φsn−1(K) = Φsn−1(L) for 0 ≤ s ≤ so, then

dD(Sn−1(K, ·), Sn−1(L, ·)) ≤ c(n,R, ε)s−
1−ε
2

o ,

where c > 0 is a constant depending on n,R and ε.

Proof. The assumption that K and L have coinciding surface tensors up to
rank so implies that ‖ψson−1(K) − ψson−1(L)‖ = 0. The result then follows from
Theorem 4.3 with δ = 0.

12
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The translative Hausdorff distance between two convex bodies in Kn(r,R)
admits an upper bound expressed by the n’th root of the Prokhorov distance be-
tween their surface area measures, see [14, Thm. 8.5.3]. Further, the Prokhorov
distance between two Borel measures on Sn−1 can be bounded in terms of the
square root of the Dudley distance between the measures. Therefore, Corol-
lary 4.4 in combination with [14, Thm. 8.5.3] and [7, Lemma 9.5] yields the
following stability result.

Theorem 4.5. Let K,L ∈ Kn(r,R) for some 0 < r < R and let s ∈ N0 and
0 < ε < 1. If Φsn−1(K) = Φsn−1(L) for 0 ≤ s ≤ so, then

δt(K,L) ≤ c(n, r,R, ε)s−
1−ε
4n

o

for a constant c > 0 depending on n, r,R and ε.

5. Reconstruction of shape from surface tensors

In this section, we derive an algorithm that approximates the shape of
an unknown convex body K ∈ Knn from a finite number of surface tensors
{Φsn−1(K) | 0 ≤ s ≤ so} of K for some so ∈ N. The reconstruction algorithm
is a generalization to higher dimension of Algorithm Surface Tensor in [10] that
reconstructs convex bodies in R2 from surface tensors. The shape of a convex
body K in Rn is uniquely determined by the surface tensors of K, when K has
nonempty interior. For n = 2, the surface tensors of K determine the shape
of K even when K is lower dimensional. Therefore, the algorithm in [10] can
be used to approximate the shape of arbitrary convex bodies in R2, whereas
the algorithm described in this section only allows for convex bodies in Rn with
nonempty interior. A non-trivial difference between the algorithm in the two-
dimensional setting and the generalized algorithm is that in higher dimension, it
is crucial that the first and second order moments of a Borel measure µ on Sn−1
determine if µ is the surface area measure of a convex body. Therefore, this
is shown in Lemma 5.2, where statement (i) is a reformulation of Minkowski’s
existence theorem in terms of moments. The proof of Lemma 5.2 is based on
the following remark.

Remark 5.1. Let µ be a finite Borel measure on the unit sphere Sn−1. Then,
∫

Sn−1

〈z, u〉2µ(du) > 0 (13)

for all z ∈ Sn−1 if and only if the support of µ is full-dimensional. As the
integral in (13) is determined by the second order moments

mij(µ) =

∫

Sn−1

uiuj µ(du)

of µ, these moments determine if the support of µ is full-dimensional. More
precisely, the support of µ is full-dimensional if and only if the matrix of second

13
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order moments M(µ) = {mij(µ)}ni,j=1 is positive definite as

z>M(µ)z =

∫

Sn−1

〈z, u〉2µ(du)

for z ∈ Rn.

Lemma 5.2. Let µ be a finite Borel measure on Sn−1 with µ(Sn−1) > 0.

(i) The measure µ is the surface area measure of a convex body K ∈ Knn, if
and only if the first order moments of µ vanish and the matrix M(µ) of
second order moments of µ is positive definite.

(ii) The measure µ is the surface area measure of a convex body K ∈ Kn \ Knn
if and only if the first order moments of µ vanish and the matrix M(µ)
of second order moments of µ has one positive eigenvalue and n − 1 zero
eigenvalues.

In the case, where (ii) is satisfied, the measure µ is the surface area measure
of every convex body K with surface area 1

2µ(Sn−1) contained in a hyperplane
with normal vector u, where u ∈ Sn−1 is a unit eigenvector of M(µ) correspond-
ing to the positive eigenvalue (u is unique up to sign).

Proof. Remark 5.1 implies that the interior of a convex body K is nonempty if
and only if the matrix of second order moments of Sn−1(K, ·) is positive definite,
so the statement (i) follows from Minkowski’s existence theorem.

If µ is the surface area measure of K ∈ Kn \ Knn, then µ is of the form

µ =
µ(Sn−1)

2
(δu + δ−u)

for some u ∈ Sn−1. Then, the first order moments of µ vanish, and the matrix
M(µ) of second order moments of µ is µ(Sn−1)u2. Hence,M(µ) has one positive
eigenvalue µ(Sn−1) with eigenvector u and n− 1 zero eigenvalues.

If the matrixM(µ) is positive semidefinite with one positive eigenvalue α > 0
and n−1 zero eigenvalues, thenM(µ) = αu2, where u ∈ Sn−1 is a unit eigenvec-
tor (unique up to sign) corresponding to the positive eigenvalue. Assume further
that the first order moments of µ vanish, and define the measure ν = α

2 (δu+δ−u).
Then µ and ν have identical moments up to order 2, and Lemma 3.1 (i) yields
that µ = ν. Therefore, µ is the surface area measure of any convex body K
with surface area α contained in a hyperplane with normal vector u.

5.1. Reconstruction algorithm based on surface tensors
Let K0 ∈ Knn be fixed. We consider K0 as unknown and assume that the

surface tensors Φ0
n−1(K0), . . . ,Φson−1(K0) ofK0 are known up to rank so for some

natural number so ≥ 2. The aim is to construct a convex body with surface
tensors identical to the known surface tensors of K0. We proceed as in [10, Sec.
5.1].

14
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Let

Mso = {(α,u) ∈ Rmso × (Sn−1)mso | αj ≥ 0,

mso∑

j=1

αjuj = 0}, (14)

and consider the minimization problem

min
(α,u)∈Mso

mso∑

j=1

(
φson−1(K0)j −

mso∑

i=1

αigsoj(ui)

)2

, (15)

where the polynomial gsoj : Sn−1 → R is defined such that gsoj(u) is the com-
ponent of the tensor (so!ωso+1)−1uso that corresponds to φson−1(K0)j . Hence,

∫

Sn−1

gsoj(u)Sn−1(K0, du) = φson−1(K0)j

for j = 1, . . . ,mso . Notice, that the objective function in (15) is known, as
the surface tensors Φso−1n−1 (K0) and Φson−1(K0) are assumed to be known. By
[10, Thm. 4.1], there exists a polytope P (not necessarily unique) with at most
mso facets and surface tensors identical to the surface tensors of K0 up to rank
so. Now, let v1, . . . , vmso

∈ Sn−1 be the outer normals of the facets of such
a polytope P and a1, . . . , amso

≥ 0 be the corresponding (n − 1)-dimensional
volumes of the facets. If P has k < mso facets, then ak+1 = · · · = amso

= 0.
Then Sn−1(P, ·) =

∑mso
j=1 ajδvj , and

φson−1(P )j =

mso∑

i=1

aigsoj(vi).

As P and K0 has identical surface tensors up to rank so, this implies that

mso∑

j=1

(
φson−1(K0)j −

mso∑

i=1

aigsoj(vi)

)2

= 0. (16)

Therefore, (a,v) = (a1, . . . , amso
, v1, . . . , vmso

) ∈ Mso is a solution to the mini-
mization problem (15).

Now, let (α,u) ∈ Mso be an arbitrary solution to (15) and define the Borel
measure ϕ =

∑mso
i=1 αiδui on Sn−1. As the minimum value of the objective

function is 0 due to (16), the moments of ϕ and Sn−1(K0, ·) of order so − 1
and so are identical. This implies that the moments of ϕ and Sn−1(K0, ·) of
order 1 and 2 are identical as so ≥ 2, see [10, Remark 3.1]. Then Lemma 5.2 (i)
yields the existence of a polytope Q ∈ Pmso

with nonempty interior such that
Sn−1(Q, ·) = ϕ. The surface tensors of Q are identical to the surface tensors of
K0 up to rank so.

In the two-dimensional setup in [10, Sec. 5.1], every vector in Mso corre-
sponds to the surface area measure of a polytope. In the n-dimensional setting,
this is not the case, as Minkowski’s existence theorem requires that the linear

15
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hull of the vectors α1u1, . . . , αmso
umso

is Rn, when n > 2. However, as the
above considerations show, Lemma 5.2 ensures that every solution vector to the
minimization problem (15), in fact, corresponds to the surface area measure of
a polytope, which is sufficient to obtain a polytope with the required surface
tensors.

The minimization problem (15) can be solved numerically, and a polytope
corresponding to the obtained solution can be constructed using Algorithm
MinkData described in [11], (see also [6, Sec. A.4]). This polytope has sur-
face tensors identical to the surface tensors of K0 up to rank so.

Algorithm Surface Tensor (n-dim).

Input: A natural number so ≥ 2 and surface tensors Φso−1n−1 (K0) and Φson−1(K0)
of an unknown convex body K0 ∈ Knn.

Task: Construct a polytope K̂so in Rn such that K̂so and K0 have identical
surface tensors up to rank so.

Action: Find a vector (α,u) ∈Mso that minimizes

mso∑

j=1

(
φson−1(K0)j −

mso∑

i=1

αigsoj(ui)

)2

.

The vector (α,u) describes a polytope K̂so in Rn with at most mso facets.
Reconstruct K̂so from (α,u) using Algorithm MinkData.

Remark 5.3. Solving the minimization problem (15) numerically might intro-
duce small errors, such that the surface tensors Φso−1n−1 (K̂so) and Φson−1(K̂so) are
only approximations of the surface tensors Φso−1n−1 (K0) and Φson−1(K0). Small
errors in the surface tensors of rank so − 1 and so imply the risk of huge errors
in the surface tensors of rank less than so. This follows from the way the surface
tensors Φsn−1, 0 ≤ s ≤ so are related to the surface tensors Φso−1n−1 and Φson−1 as
described in Section 2, see (1). The main problem is the constant

cs,so =
so!ωso+1

s!ωs+1

that increases rapidly with so for fixed s and therefore might cause huge errors in,
for instance, the surface area of K̂so . The algorithm can be made more robust
to numerical errors by replacing the surface tensors with the scaled versions
(s!ωs+1)−1Φsn−1 of the surface tensors. The two versions of the algorithm are
theoretically equivalent.

5.2. Consistency of the reconstruction algorithm
The output of the algorithm described in the previous section is a polytope

with surface tensors identical to the surface tensors of K0 up to a given rank
so. In this section, we show that for large so the shape of the output polytope
is a good approximation of the shape of K0.
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For each so ≥ 2, let K̂so be an output of the algorithm based on sur-
face tensors up to rank so. Then there exist radii rso , Rso > 0 such that
K̂so ,K0 ∈ Kn(rso , Rso) and by Theorem 4.5, we obtain

δt(K0, K̂so) ≤ c(n, rso , Rso , ε)s
− 1−ε

4n
o

for ε > 0. Notice that c depends on so through rso and Rso , so even though
the factor s−1/(4n)+εo converges to 0 when so increases, we do not immediately
obtain the wanted consistency. To prevent the dependence of c on so, we show
that there exist radii r,R > 0 such that K0, K̂so ∈ Kn(r,R) for each so ≥ 2.

For a convex body K ∈ Kn, the coefficient matrix {Φ2
n−1(K)(ei, ej)}ni,j=1

of Φ2
n−1(K) is a scaled version of the matrix M(Sn−1(K, ·)) of second order

moments of Sn−1(K, ·) defined in Remark 5.1. More precisely,

8π{Φ2
n−1(K)(ei, ej)}ni,j=1 = M(Sn−1(K, ·)).

Therefore, Lemma 5.2 yields that the surface tensor Φ2
n−1(K) determines if K

has nonempty interior. In Lemma 5.4, we show that Φ2
n−1(K) even determines

the radius of a sphere contained in K and the radius of a sphere containing K,
when K has nonempty interior.

For a convex body K ∈ Knn, the coefficient matrix {Φ2
n−1(K)(ei, ej)}ni,j=1

is symmetric and positive definite, and has therefore n positive eigenvalues. In
the following, we let λmin(K) > 0 denote the smallest of these eigenvalues. The
proof of Lemma 5.4 is inspired by the proof of [6, Lemma 4.4.6].

Lemma 5.4. Let K ∈ Knn with centre of mass at the origin. Let

R =
S(K)

4πλmin(K)

(
S(K)

ωn

) 1
n−1

and r =
2πλmin(K)

(n+ 1)(4R)n−2
. (17)

Then rBn ⊆ K ⊆ RBn.
Proof. Let x be a point on the boundary ∂K of K. Then ‖x‖ > 0, so v =
x
‖x‖ ∈ Sn−1 is well-defined. By monotonicity and positive multilinearity of
mixed volumes (see, e.g., [6, (A.16),(A.18)]) and the isoperimetric inequality
(see, e.g., [6, (B.14)]), we obtain that

‖x‖V (K,n− 1; [0, v]) = V (K,n− 1; [0, x]) ≤ Vn(K) ≤
(
S(K)

ωn

) n
n−1

κn, (18)

where V is the mixed volume, Vn is the n-dimensional volume and [a, b] is the
convex hull of {a, b} ⊆ Rn. Further, we have that

V (K,n− 1; [0, v]) =
1

n

∫

Sn−1

h[0,v](u)Sn−1(K, du)

=
1

2n

∫

Sn−1

|〈u, v〉|Sn−1(K, du)

≥ 1

2n

∫

Sn−1

〈u, v〉2 Sn−1(K, du) =
4π

n
Φ2
n−1(K)(v, v),

17

C.5. Reconstruction of shape from surface tensors 107



where we have used [6, (A.11) and (A.12)] and that Sn−1(K, ·) has centroid at
the origin. Hence,

V (K,n− 1; [0, v]) ≥ 4π

n
λmin(K). (19)

Equations (18) and (19) yield that ‖x‖ ≤ R, so K ⊆ RBn.
As the centre of mass of K is at the origin, then [14, p. 320, note 6] and the

references given there yield that

1

n+ 1
w(K,u) ≤ hK(u)

for u ∈ Sn−1, where w(K, ·) is the width function of K. Since

w(K,u) = hK(u) + hK(−u) = hKs
(u)

where Ks = K+(−K), it is sufficient to show that r(n+1)Bn ⊆ Ks in order to
obtain that rBn ⊆ K. Due to origin-symmetry of Ks, we can proceed as in the
proof of [6, Lemma 4.4.6]. Let c = sup{a > 0 | aBn ⊆ Ks} > 0. Then cBn ⊆ Ks

and ∂Ks ∩ ∂cBn 6= ∅. As Ks and cBn are origin-symmetric there are contact
points z,−z ∈ ∂Ks ∩ ∂cBn and common parallel supporting hyperplanes of Ks

and cBn in z and −z. By the first part of this proof, we have Ks ⊆ 2RBn, so
Ks is contained in a n-dimensional box with one edge of length 2c parallel to z
and n− 1 edges of length 4R orthogonal to z. More precisely,

Ks ⊆ {x ∈ Rn | |〈x, z〉| ≤ c} ∩
n⋂

j=2

{x ∈ Rn | |〈x, uj〉| ≤ 2R}

where z and u2, . . . , un ∈ Sn−1 form an orthogonal basis of Rn. This implies
that

Vn−1(Ks | (u2)⊥) ≤ 2c(4R)n−2, (20)

where Ks | (u2)⊥ is the orthogonal projection of Ks onto (u2)⊥. Using [6,
(A.37)] and that Equation (19) holds for any v ∈ Sn−1, we obtain

Vn−1(Ks | (u2)⊥) ≥ Vn−1(K | (u2)⊥)

= nV (K,n− 1; [0, u2]) ≥ 4πλmin(K),

so from (20) it follows that

c ≥ 2πλmin(K)

(4R)n−2
,

which yields that r(n+ 1)Bn ⊆ Ks.

Theorem 5.5. Let K0 ∈ Knn, so ≥ 2 be a natural number and 0 < ε < 1. If
the surface tensors up to rank so of a convex body Kso coincide with the surface
tensors of K0, then

δt(K0,Kso) ≤ c(n, ε,Φ2
n−1(K0))s

− 1−ε
4n

o , (21)
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where c > 0 is a constant depending only on n, ε and Φ2
n−1(K0). Hence, if

(Kso)so∈N is a sequence of convex bodies satisfying Φsn−1(K0) = Φsn−1(Kso) for
0 ≤ s ≤ so, then the shape of Kso converges to the shape of K0 when so →∞.

Proof. When defined as in (17) with K replaced by K0, the radii r and R are
determined by Φ2

n−1(K0), and since Φ2
n−1(K0) = Φ2

n−1(Kso), Lemma 5.2 and
Lemma 5.4 yield that Kso ,K0 ∈ Kn(r,R). Then we obtain the bound (21) from
Theorem 4.5. The constant c does not depend on so, so the stated convergence
result is obtained from (21).

The consistency of Algorithm Surface Tensor (n-dim) follows from Theo-
rem 5.5.

5.3. Examples: Reconstruction of convex bodies in R3

In this section, we give two examples where Algorithm Surface Tensor (n-
dim) is used to reconstruct the shape of a convex body in R3. Following Re-
mark 5.3, the scaled surface tensors s!ωs+1Φs2 have been used in order to make
the reconstructions more robust to numerical errors. In the first example, a
prolate ellipsoid is reconstructed. The reconstructions of the ellipsoid are based
on surface tensors up to rank so = 2, 4, 6, see Figure 1. In the second example,
a pyramid is reconstructed. The reconstructions of the pyramid are executed
with so = 2, 3, 4, see Figure 2.

The minimization problem (15) is solved by means of the fmincon procedure
provided by MatLab, and a polytope corresponding to the solution to (15) is re-
constructed using Algorithm MinkData. This algorithm has been implemented
by Gardner and Milanfar for n ≤ 3, see [6, Sec. A4], and for n = 3 the algorithm
has recently become available on the website www.geometrictomography.com
run by Richard Gardner.

The surface tensor of rank 2 of a convex body contains information of the
main directions and the degree of anisotropy of the convex body. The effect of
this is, in particular, visible in the plots in Figure 1 that show that the three
reconstructions of the ellipsoid are elongated in the direction of the third axis.
As expected, the reconstructions of the ellipsoid and the reconstructions of the
pyramid become more accurate when so increases. The pyramid has 5 facets, so
according to Theorem 3.2, the surface tensors up to rank 4 uniquely determine
the shape of the pyramid. The last plot in Figure 2 shows that the reconstruction
based on surface tensors up to rank 4 is indeed very precise. Deviation from the
pyramid can be ascribed to numerical errors.

6. Reconstruction of shape from harmonic intrinsic volumes

Due to the correspondence between surface tensors and harmonic intrinsic
volumes, a convex body K ∈ Knn is uniquely determined by the set of harmonic
intrinsic volumes {ψ(n−1)sj(K) | s ∈ N0, j = 1, . . . , N(n, s)} of K. In this
section, we derive an algorithm that approximates the shape of an unknown
convex body K0 ∈ Knn from measurements subject to noise of a finite number
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Figure 1: Plots 2, 3 and 4 show reconstructions of the ellipsoid in the first plot. The recon-
structions are based on surface tensors up to rank so = 2, 4, 6.
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Figure 2: Plots 2, 3 and 4 show reconstructions of the pyramid in the first plot. The recon-
structions are based on surface tensors up to rank so = 2, 3, 4.
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of harmonic intrinsic volumes of K0. The reconstruction algorithm we derive
is a generalization to an n-dimensional setting of Algorithm Harmonic Intrinsic
Volume LSQ described in [10].

6.1. Reconstruction algorithm based on measurements of harmonic intrinsic vol-
umes

Let K0 ∈ Knn be an unknown convex body where measurements of the har-
monic intrinsic volumes ofK0 are available up to degree so ≥ 2. Due to noise, the
measurements are of the form ψson−1(K0) + εso , where εso is an mso-dimensional
vector of random variables with zero mean and finite variance. As the harmonic
intrinsic volumes of degree 1 of K0 are known to vanish, these should not be
measured, so we let the corresponding noise variables be 0.

In Section 5, the exact surface tensors of K0 were known. In that situation,
we constructed a convex body with the same surface tensors as K0. In this sec-
tion, only noisy measurements of the harmonic intrinsic volumes are available,
and it is typically no longer possible to construct a convex body with harmonic
intrinsic volumes that fit the measurements exactly. Instead, the aim is to con-
struct a convex body K̂H

so ∈ Kn such that the harmonic intrinsic volumes of K̂H
so

fit the measurements ψson−1(K0)+εso of the harmonic intrinsic volumes ofK0 in a
least squares sense. Hence, K̂H

so should minimize the mappingDso : Kn → [0,∞)
defined as

Dso(K) = ‖ψson−1(K0) + εso − ψson−1(K)‖2

for K ∈ Kn. In the 2-dimensional setup, [10, Lemma 6.1] yields the existence of
a convex body that minimizes Dso . In the n-dimensional setting, however, the
existence of such a convex body can not be ensured. This existence problem
is overcome by extending the domain of Dso such that the mapping attains its
infimum. This extension prevents the existence problem and thus establishes a
natural framework for reconstruction in the n-dimensional setting.

First notice that Dso(K) only depends on K ∈ Kn through Sn−1(K, ·), so
a version Ďso of Dso can be defined on the set {Sn−1(K, ·) | K ∈ Kn} letting
Ďso(Sn−1(K, ·)) = Dso(K) for K ∈ Kn. In the weak topology, the closure of
{Sn−1(K, ·) | K ∈ Kn} ⊆ M is the set

M0 =

{
µ ∈M

∣∣∣∣
∫

Sn−1

uµ(du) = 0

}
,

and the domain of Ďso is extended toM0 by defining

Ďso(µ) = ‖ψson−1(K0) + εso − ψson−1(µ)‖2

for µ ∈M0. Then
inf

K∈Kn
Dso(K) = inf

µ∈M0

Ďso(µ) (22)

since Ďso is continuous onM0.
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The infimum of Ďso is attained on M0, and in addition, it can be shown
that Ďso is minimized by a measure inMmso

, where

Mk =

{
µ ∈M0 | µ =

k∑

j=1

αjδuj
, αj ≥ 0, uj ∈ Sn−1

}

for k ∈ N. This is the content of the following Lemmas 6.1 and 6.2. Due to the
close connection between Dso and Ďso , we write Dso for both versions of the
mapping.

Lemma 6.1. Let µ ∈ M0 and s ∈ N0. Then there exist a measure µs ∈ Mms

such that µ and µs have identical moments up to order s.

The proof of Lemma 6.1 follows the lines of the proof of [10, Thm. 4.1].
The result also holds if M0 and Mms

are replaced by the larger sets M and
{µ ∈M | µ =

∑k
j=1 αjδuj

, αj ≥ 0, uj ∈ Sn−1}, respectively.
Lemma 6.2. There exists a measure µso ∈Mmso

such that

Dso(µso) = inf
µ∈M0

Dso(µ). (23)

If µ1, µ2 ∈ M0 minimize Dso , then µ1 and µ2 have identical moments up to
order so.

Proof. Let H = {ψson−1(µ) | µ ∈M0} ⊆ Rmso . Then

inf
µ∈M0

Dso(µ) = inf
x∈H
‖ψson−1(K0) + εso − x‖2.

Let {ψsn−1(µk)}k∈N be a convergent sequence in H. Then, supk∈N µk(Sn−1) <
∞, since µ(Sn−1) =

√
ωnψ(n−1)01(µ) for µ ∈ M0. Since M0 is closed, this

implies that there exists a subsequence (µkl)l∈N of (µk)k∈N that converges weakly
to a measure µ ∈M0, see [2, Cor. 31.1]. Then ψson−1(µk)→ ψson−1(µ) for k →∞
as spherical harmonics are continuous on Sn−1. Hence, H is closed in Rmso .
Solving the minimization problem

inf
x∈H
‖ψson−1(K0) + εso − x‖2

corresponds to finding the metric projection of ψson−1(K0)+εso on the nonempty,
convex and closed set H. This projection always exists and is unique, see [14,
Sec. 1.2]. Then the existence of a measure µso ∈ Mso that satisfies (23)
follows from Lemma 6.1. The second statement of the lemma follows from the
uniqueness of the projection.

Due to Lemma 6.2 and the structure ofMmso
, the minimization of Dso can

be reduced to the finite minimization problem

inf
(α,u)∈Mso

so∑

s=0

N(n,s)∑

j=1

(
ψ(n−1)sj(K0) + εsj −

mso∑

l=1

αlHsj(ul)
)2
, (24)
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whereMso is defined in (14). In the following, we describe how a minimizer K̂H
so

of Dso can be derived from a solution of (24).
A solution (α,u) ∈ Mso to the minimization problem (24) corresponds to

the measure µα,u =
∑mso
j=0 αjδuj

∈ Mmso
. It follows from Lemma 5.2 that

the measure µα,u is a surface area measure of a convex body in Kn if and
only if µα,u is of the form a(δv + δ−v) for some a ≥ 0 and v ∈ Sn−1 or if
the matrix M(µα,u) of second order moments of µα,u is positive definite. The
assumption on M(µα,u) can alternatively be replaced by the assumption that
α1u1, . . . , αmso

umso
span Rn .

Assume that µα,u = a(δv + δ−v) for some v ∈ Sn−1 and a ≥ 0. If a = 0,
we let K̂H

so be the singleton {0}. If a > 0, we let K̂H
so be a polytope in u⊥ with

surface area a. Now assume that α1u1, . . . , αmso
umso

span Rn. Then µα,u is the
surface area measure of a polytope with nonempty interior. We let K̂H

so be the
output polytope from Algorithm MinkData (see [6, Sec. A.4]) that reconstructs
a polytope with surface area measure µα,u from (α,u). In all three cases, the
surface area measure of K̂H

so is µα,u, so K̂H
so minimizes Dso .

As so ≥ 2, it follows from Lemma 5.2 and the uniqueness statement of
Lemma 6.2 that if µα,u is not a surface area measure of a convex body, then the
same holds for every measure inM0 that minimizes Dso . Hence, the mapping
Dso does not attain its infimum on Kn, and there does not exist a convex body
with harmonic intrinsic volumes that fit the measurements ψson−1(K0) + εso in a
least squares sense. By Lemma 6.3 in Section 6.2, this situation only occurs when
the measurements are too noisy. The reconstruction algorithm is summarized
in the following.

Algorithm Harmonic Intrinsic Volume LSQ (n-dim).

Input: Measurements ψson−1(K0) + εso of the harmonic intrinsic volumes up to
degree so ≥ 2 of an unknown convex body K0 ∈ Knn.

Task: Construct a polytope K̂H
so such that the harmonic intrinsic volumes up to

degree so of K̂H
so fit the measurements ψson−1(K0) + εso in a least squares

sense.

Action: Let (a,v) be a solution to the minimization problem

inf
(α,u)∈Mso

so∑

s=0

N(n,s)∑

j=1

(
ψ(n−1)sj(K0) + εsj −

mso∑

l=1

αlHsj(ul)
)2
.

Case 1: If a = 0, let K̂H
so = {0}.

Case 2: If µa,v = α(δu + δ−u) for some α > 0 and u ∈ Sn−1, let K̂H
so be a

polytope in u⊥ with surface area α.

Case 3: If a1v1, . . . , amso
vmso

span Rn, then µa,v is the surface area mea-
sure of a polytope P ∈ Knn with at most mso facets. Use Algorithm
MinkData to reconstruct P , and let K̂H

so = P .
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Case 4: Otherwise, the solution (a,v) does not correspond to a surface
area measure of a convex body. The output of the algorithm is the
message that there is no solution to the given task.

6.2. Consistency of the reconstruction algorithm
Let (Ω,F ,P) be a complete probability space where the vectors of noise vari-

ables (εso)so≥2 are defined. We assume that the noise variables are independent
with zero mean and that the variance of εsoj is bounded by σ2

so > 0 for so ≥ 2
and j = 1, . . . ,mso . In the following, for so ≥ 2, we write

Dso(·, εso) = ‖ψson−1(K0) + εso − ψson−1(·)‖2

to emphasize the dependence of Dso on εso , and we let rK0
= r

2 and RK0
= 2R,

where r and R are defined as in (17) with K replaced by K0.

Lemma 6.3. There exists a constant cK0
> 0 such that any measure µ ∈ M0

that minimizes Dso(·, εso) is the surface area measure of a convex body Kµ ∈
Kn(rK0

, RK0
) if ‖εso‖ < cK0

.

Proof. If µ ∈M0 minimizes Dso(·, εso), then

‖ψ2
n−1(K0)− ψ2

n−1(µ)‖ ≤ ‖ψson−1(K0) + εso − ψson−1(µ)‖+ ‖εso‖
≤
√
Dso(K0, εso) + ‖εso‖ = 2‖εso‖.

The second order moments of µ depend linearly on ψ2
n−1(µ), and the eigenvalues

of the matrix of second order momentsM(µ) of µ depend continuously onM(µ),
see [17, Prop. 6.2], so for each α > 0,

|λmin(M(Sn−1(K0, ·)))− λmin(M(µ))| < α (25)

if ‖εso‖ is sufficiently small. Here λmin(A) denotes the smallest eigenvalue of a
symmetric matrix A. Due to Lemma 5.2 (i), we have λmin(M(Sn−1(K0, ·))) > 0
as K0 has nonempty interior, so M(µ) is positive definite if ‖εso‖ is sufficiently
small. Then µ is the surface area measure of a convex body Kµ ∈ Knn by
Lemma 5.2. By Lemma 5.4, (25) and the fact that

|S(K0)− S(Kµ)| = √ωn‖ψ0
n−1(K0)− ψ0

n−1(µ)‖ ≤ 2
√
ωn‖εso‖,

we even have that Kµ ∈ Kn(rK0
, RK0

) if ‖εso‖ < cK0
, where cK0

> 0 is chosen
sufficiently small.

We let Kso(εso) be the random set of convex bodies that minimizeDso(·, εso),
i.e.

Kso(εso) =
{
K ∈ Kn | Dso(K, εso) = inf

L∈Kn
Dso(L, εso)

}
.

By Equation (22), the set Kso(εso) is nonempty if and only if Algorithm Har-
monic Intrinsic Volume LSQ (n-dim) has an output polytope. Let the mapping
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g : Kn × Rmso → R be given as g(K,x) = infL∈Kn Dso(L, x) − Dso(K,x) for
K ∈ Kn and x ∈ Rmso , then

{
Kso(εso) 6= ∅

}
=

{
sup
K∈Kn

1{0}(g(K, εso)) = 1

}
⊆ Ω,

and for α ∈ R, we have
{

sup
K∈Kso (εso )

δt(K0,K) ≤ α
}

=

{
sup
K∈Kn

δt(K0,K)1{0}(g(K, εso)) ≤ α
}
∩
{

sup
K∈Kn

1{0}(g(K, εso)) = 1

}
,

where the supremum over the empty set is defined to be ∞. Using the notation
of permissible sets, see [13, App. C] and arguments as in [10, p. 27], we
obtain that supK∈Kn δt(K0,K)1{0}(g(K, εso)) and supK∈Kn 1{0}(g(K, εso)) are
measurable. Then {

sup
K∈Kso (εso )

δt(K0,K) ≤ α
}
∈ F

for α ∈ R, which implies that supK∈Kso (εso )
δt(K0,K) is measurable.

Theorem 6.4. Assume that σ2
so = O(s

−(2n−1+ε)
o ) for some ε > 0. Then

sup
K∈Kso (εso )

δt(K0,K)→ 0

almost surely for so →∞.

Proof. As mso = O(sn−1o ), the assumption on σ2
so yields that

E
∞∑

so=2

mso‖εso‖2 =

∞∑

so=2

mso

mso∑

j=1

Eε2soj ≤
∞∑

so=2

m2
soσ

2
so <∞.

Then
∑∞
so=2mso‖εso‖2 < ∞ almost surely, and it follows that mso‖εso‖2 → 0

almost surely for so →∞.
Now choose cK0

according to Lemma 6.3 and fix a realization such that
mso‖εso‖2 → 0 for so → ∞. Then, there exists an S ∈ N satisfying that√
mso‖εso‖ < cK0 for so > S. In particular, ‖εso‖ < cK0 for so > S, so by

Lemma 6.2 and Lemma 6.3 there is an output polytope of Algorithm Harmonic
Intrinsic Volume LSQ (n-dim). Then, for so > S, the set Kso(εso) is nonempty,
and K ∈ Kn(rK0

, RK0
) for K ∈ Kso(εso). Since

‖ψson−1(K0)− ψson−1(K)‖ ≤ ‖ψson−1(K0) + εso − ψson−1(K)‖+ ‖εso‖
≤
√
Dso(K0, εso) + ‖εso‖ = 2‖εso‖
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for K ∈ Kso(εso), Theorem 4.3 yield that

sup
K∈Kso (εso )

dD(Sn−1(K0, ·), Sn−1(K, ·))

≤ c(n,RK0
,

1

3
)s
− 1

3
o + 2

√
ωnmso‖εso‖ → 0

for so →∞. Hence, [7, Lemma 9.5] and [14, Thm. 8.5.3] imply that

sup
K∈Kso (εso )

δt(K0,K)→ 0

for so →∞.

Theorem 6.5. Assume that σ2
so = O(s

−(2n−2+ε)
o ) for some ε > 0. Then

sup
K∈Kso (εso )

δt(K0,K)→ 0

in probability for so →∞.

Proof. Markov’s inequality and the assumption on σ2
so imply thatmso‖εso‖2 → 0

in probability for so →∞. Then, Theorem 6.5 follows in the same way as The-
orem 6.4.

Theorems 6.4 and 6.5 yield that the reconstruction algorithm gives good
approximations to the shape of K0 for large so under certain assumptions on
the variance of the noise variables. To test how noise affects the reconstructions
for small so, the oblate ellipsoid in the first plot of Figure 3 is reconstructed from
harmonic intrinsic volumes up to degree 6. For k ∈ N0, the dimension of H3

k is
2k + 1, and to derive the harmonic intrinsic volumes, we use the orthonormal
basis of H3

k given by

Hk(2j+1)(u(θ, φ)) = αkj sinj(θ)C
j+ 1

2

k−j (cos(θ)) cos(jφ), 0 ≤ j ≤ k

and

Hk(2j)(u(θ, φ)) = αkj sinj(θ)C
j+ 1

2

k−j (cos(θ)) sin(jφ), 1 ≤ j ≤ k,

where αkj ∈ R is a normalizing constant, Cλl , l ∈ N0, λ > 0 are Gegenbauer
polynomials and u(θ, φ) = (sin(θ) sin(φ), sin(θ) cos(φ), cos(θ)) for 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π, see [4, Sections 1.2 and 1.6.2].

The harmonic intrinsic volumes are subject to an increasing level of noise.
The second plot in Figure 3 is a reconstruction based on exact harmonic intrinsic
volumes, whereas the reconstructions in the third and fourth plot are based
on harmonic intrinsic volumes disrupted by noise. The variance of the noise
variables is σ2

2 = 1 in the third plot and σ2
3 = 4 in the fourth plot. Then the

standard deviations σ2 and σ3 of the noise variables are approximately 5% and
10% of ψ201(K0), respectively. For the three levels of noise, the minimization
problem (24) is solved using the fmincon procedure provided by MatLab and
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Figure 3: Plots 2, 3 and 4 show reconstructions of the ellipsoid in the first plot based on noisy
measurements of harmonic intrinsic volumes up to degree so = 6. In plots 2, 3 and 4, the
variances of the noise variables are 0, 1 and 4.

Algorithm MinkData is applied to reconstruct a polytope corresponding to the
solution.

Plots 2, 3 and 4 in Figure 3 show how the reconstructions deviate increasingly
from the ellipsoid as the variance of the noise variables increases. The recon-
struction based on exact harmonic intrinsic volumes captures essential features
of the ellipsoid. The reconstruction is approximately invariant under rotations
around the third axis and has the same orientation and degree of anisotropy
as the ellipsoid. Despite a noise level corresponding to 5% of ψ201(K0), the
reconstruction in the second plot captures to some extent the same features and
provides a fairly good approximation of the ellipsoid. The reconstruction in the
third plot is comparable to the ellipsoid. However, the effect of noise is clearly
visible.
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Abstract

We investigate how much information about a convex body can be retrieved
from a finite number of its geometric moments. We give a sufficient condition
for a convex body to be uniquely determined by a finite number of its geo-
metric moments, and we show that among all convex bodies, those which are
uniquely determined by a finite number of moments form a dense set. Further,
we derive a stability result for convex bodies based on geometric moments. It
turns out that the stability result is improved considerably by using another
set of moments, namely Legendre moments. We present a reconstruction algo-
rithm that approximates a convex body using a finite number of its Legendre
moments. The consistency of the algorithm is established using the stabil-
ity result for Legendre moments. When only noisy measurements of Legendre
moments are available, the consistency of the algorithm is established under
certain assumptions on the variance of the noise variables.

Keywords: Convex body, geometric moment, Legendre moment, reconstruc-
tion, uniqueness, stability.

1 Introduction

Important characteristics of a compact set K ⊂ Rn are its geometric moments
(sometimes only referred to as moments) where

µα(K) =

∫

K

xαdx

is the geometric moment of order |α| for a multi-index α ∈ Nn
0 , xα := xα1

1 · · ·xαnn and
|α| := α1 + · · · + αn. In the last two decades, the reconstruction of a geometric ob-
ject from its moments has received considerable attention. Milanfar et al. developed
in [17] an inversion algorithm for 2-dimensional polygons and presented a refined
numerically stable version in [7]. Restricting to convex polygons they proved that
every m-gon is uniquely determined by its complex moments up to order 2m − 3.
Recently, Gravin et al. showed in [8] that an n-dimensional convex polygon P with
m vertices is uniquely determined by its moments up to order 2m− n. Apart from
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polytopes, an exact reconstruction from finitely many moments is known to be pos-
sible for so called quadrature domains in the complex plane, see [9]. In continuation
of the work in this area, we investigate how much information can be retrieved from
finitely many geometric moments of an arbitrary convex body in Rn. Recently, a
similar investigation of another set of moments, namely moments of surface area
measures of convex bodies, was carried out in [11].

Using uniqueness results for functionals, see [13] and [20], applied to indicator
functions, we show that if a convex body K is of the form C ∩ {p ≥ 0}, where C
is a compact subset of Rn and p is a polynomial of degree N , then K is uniquely
determined by its geometric moments up to degree N among all convex bodies in C.
Further, any convex body in C can be approximated arbitrarily well in the Hausdorff
distance by a convex body of the form C∩{p ≥ 0}. This result and the fact that the
geometric moments up to order 2 of a convex body K determine an upper bound
on the circumradius of K imply that among all convex bodies, those which are
uniquely determined by finitely many geometric moments form a dense subset, see
Theorem 3.8.

Restricting to convex bodies in the two-dimensional unit square, we derive an
upper bound on the Nikodym distance between two convex bodies given finitely
many of their geometric moments, see Theorem 4.2. The upper bound is derived
using a stability result for absolutely continuous functions on the unit interval,
see [23]. This result is extended to twice continuously differentiable functions on
the two-dimensional unit square and applied to differences of indicator functions via
an approximation argument. The upper bound depends on the number of moments
used and also on the Euclidean distance between the moments of the two convex
bodies. The upper bound decreases when the distance between the moments de-
creases, however, it increases exponentially in the number of moments. The method
used to derive the upper bound of the Nikodym distance suggests that the geomet-
ric moments should be replaced by another set of moments, namely the Legendre
moments, in order to remove the effect of the exponential factor. The Legendre
moments of a convex body are defined like the usual geometric moments, but with
the monomials replaced by products of Legendre polynomials, see Section 2. Using
that these products of Legendre polynomials constitute an orthonormal basis of the
square integrable functions on [0, 1]2 and that the Legendre polynomials satisfy a
certain differential equation, we derive an upper bound of the Nikodym distance
that becomes arbitrarily small when the distance between the Legendre moments
decreases and the number of moments used increases, see Theorem 4.3.

In Section 5, we assume that the first (N+1)2 Legendre moments of an unknown
convex body K are available for some N ∈ N. A polygon with at most m ∈ N ver-
tices is called a least squares estimator of K if the Legendre moments of P fit the
available Legendre moments ofK in a least squares sense. We derive an upper bound
of the Euclidean distance between the Legendre moments of K and the Legendre
moments of an arbitrary least squares estimator P of K. In combination with the
previously described stability result, this yields an upper bound of the Nikodym dis-
tance between K and P (Theorem 5.1). This upper bound of the Nikodym distance
becomes arbitrarily small when N and m increase. For completeness, we further
derive an upper bound for the Nikodym distance between K and a least squares
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estimator based on geometric moments. Due to the structure of the stability results,
this upper bound increases exponentially when the number of available geometric
moments increases.

In Section 6, we derive a reconstruction algorithm for convex bodies. The input
of the algorithm is a finite number of Legendre moments of a convex body K, and
the output of the algorithm is a polygon P with Legendre moments that fit the
available Legendre moments of K in a least squares sense. The output polygon P
has prescribed outer normals, which ensures that P can be found as the solution
to a polynomial optimization problem. The consistency of the reconstruction algo-
rithm is established in Corollary 6.5. In Section 6.3, the reconstruction algorithm is
extended such that it allows for Legendre moments disrupted by noise. To ensure
consistency of the algorithm in this case, the variances of the noise terms should de-
crease appropriately when the number of input moments increases, see Theorem 6.6.

The paper is organized as follows: Preliminaries and notations are introduced
in Section 2. The uniqueness results are presented in Section 3, and the stability
results are derived in Section 4. In Section 5, the least squares estimators based on
geometric moments and Legendre moments are treated. Finally, the reconstruction
algorithm is described and discussed in Section 6.

2 Notation and preliminaries

A convex body is a compact, convex subset of Rn with nonempty interior. The
space of convex bodies contained in Rn is denoted by Kn and is equipped with the
Hausdorff metric δH. On the set {K ∈ K2 | K ⊂ [0, 1]2}, we use the Nikodym metric
δN in addition to the Hausdorff metric. The Nikodym distance of two convex bodies
K,L ⊂ [0, 1]2 is the area of the symmetric difference of K and L, that is

δN(K,L) = V2((K \ L) ∪ (L \K)) = |1K − 1L|2L2([0,1]2),

where |·|L2([0,1]2) is the usual norm on the set L2([0, 1]2) of square integrable functions
on [0, 1]2. On the set {K ∈ K2 | K ⊂ [0, 1]2}, the Hausdorff metric and the Nikodym
metric induce the same topology, see [22]. The support function of a convex body K
is denoted hK , and for K ∈ K2 and θ ∈ [0, 2π), we write hK(θ) := hK((cos θ, sin θ)).

In Section 4, we derive stability results for convex bodies in the unit square. In
this context, it turns out to be natural and useful to introduce Legendre moments in
addition to geometric moments. The shifted and normalized Legendre polynomials
Li : [0, 1]→ R, i ∈ N0, are obtained by applying the Gram-Schmidt orthonormaliza-
tion to 1, x, x2, . . ., and the products of Legendre polynomials

(x1, x2)→ Li(x1)Lj(x2), i, j ∈ N0

form an orthonormal basis of L2([0, 1]2). For a convex body K ⊂ [0, 1]2, we define
the Legendre moments of K as

λij(K) =

∫

K

Li(x1)Lj(x2)d(x1, x2)

for i, j ∈ N0.
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The uniqueness and stability results we establish in Sections 3 and 4 are derived
using uniqueness and stability results [13, 20, 23] for functionals. In the following,
we introduce notation in relation to these results. For a compact set C ⊂ Rn with
nonempty interior, we let L∞(C) denote the space of essentially bounded measurable
functions Φ : C → R. The essential supremum for Φ ∈ L∞(C) in C is denoted by
‖Φ‖∞,C and we define ‖Φ‖1,C :=

∫
C
|Φ(x)|dx. Further, we let

sign(Φ)(x) =

{
1, Φ(x) ≥ 0,

−1, otherwise

for x ∈ Rn.
The signed distance function dC of C is defined as in, e.g., [5, Section 5] or with

opposite signs in [12, Chapter 4.4]. That is

dC(x) :=

{
− infy∈∂C‖x− y‖, x ∈ C,
infy∈∂C‖x− y‖, x ∈ Rn \ C,

where ‖ · ‖ is the Euclidean norm on Rn. Then the ε-parallel set of C is defined as
Cε := {x : dC(x) ≤ ε} for ε ∈ R.

The geometric moments of a function Φ ∈ L∞(C) are given as

µα(Φ) =

∫

C

Φ(x)xαdx

for α ∈ Nn
0 , and the Legendre moments of Ψ ∈ L∞([0, 1]2) are defined as

λij(Ψ) =

∫

[0,1]2

Ψ(x)Li(x1)Lj(x2)d(x1, x2)

for i, j ∈ N0. Notice that µα(K) = µα(1K) for a convex body K ⊂ C, and λij(L) =
λij(1L) for a convex body L ⊂ [0, 1]2.

3 Uniqueness results

In this section, we present uniqueness results for convex bodies based on a finite
number of geometric moments. We show that the convex bodies that are uniquely
determined in Kn by a finite number of geometric moments form a dense subset
of Kn. This result is established using uniqueness results from [13] and [20] for
functionals. The results from [13] and [20] are summarized in Section 3.1 and applied
in Section 3.2 to derive uniqueness results for convex bodies.

3.1 Summary of results from [13] and [20]

Let N ∈ N0, L > 0 and C ⊂ Rn be compact. Further, let m := (mα)|α|≤N , where
mα ∈ R, α ∈ Nn

0 with |α| ≤ N and
∑
|α|≤N m

2
α > 0. A function Φ ∈ L∞(C) with

‖Φ‖∞,C ≤ L is called a solution of the L-moment problem of order N if

µα(Φ) = mα, α ∈ Nn
0 with |α| ≤ N. (3.1)
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In [13], it is shown that the supremum

l(m) := sup
{∥∥∥
∑

|α|≤N
aαx

α
∥∥∥
−1

1,C
: aα ∈ R, α ∈ Nn

0 , |α| ≤ N,
∑

|α|≤N
aαmα = 1

}

is attained. Thus, there exists an ã = (ãα)|α|≤N with
∑
|α|≤N ãαmα = 1 and

l(m) =
∥∥∥
∑

|α|≤N
ãαx

α
∥∥∥
−1

1,C
.

It follows from [13] that the L-moment problem (3.1) has a solution if and only
if L ≥ l(m). Furthermore, (3.1) has a unique solution if and only if L = l(m). If
L = l(m), then the unique solution is Φ = L sign(pm), where pm =

∑
|α|≤N ãαx

α.
For more details and proofs, we refer to [13, Section IX.1-2] and [20]. The one-

dimensional case is proved in [13, Section IX.2, Thm. 2.2] by applying more general
results from [13, Section IX.1] which are obtained in normed linear spaces with
moments defined with respect to arbitrary linear independent functionals instead of
monomials. The specialization of [13, Section IX.1] to the situation considered above
is contained in [20, Section 2]. In particular, Putinar [20] formulates the following
uniqueness result.

Lemma 3.1 ([20, Cor.2.3]). A function Φ ∈ L∞(C) is uniquely determined in {Ψ ∈
L∞(C) : ‖Ψ‖∞,C ≤ ‖Φ‖∞,C} by its geometric moments µα(Φ), α ∈ Nn

0 with |α| ≤ N
if and only if

Φ = ‖Φ‖∞,C sign(p),

where p 6= 0 is a polynomial of degree at most N .

3.2 Consequences for convex bodies

Due to the relation between geometric moments of convex bodies and geometric
moments of indicator functions, we conclude the following from Lemma 3.1.

Corollary 3.2. A convex body K ⊂ C is uniquely determined in {L ∈ Kn : L ⊂ C}
by its geometric moments µα(K), α ∈ Nn

0 with |α| ≤ N if

K = C ∩ {p ≥ 0},

where p 6= 0 is a polynomial of degree at most N .

Proof. If K = C ∩ {p ≥ 0}, then

21K(x)− 1 = sign(p)(x), x ∈ C.

Thus, we obtain from Lemma 3.1 that 21K − 1 is uniquely determined in

{21L − 1 : L ∈ K, L ⊂ C} ⊂ {Ψ ∈ L∞(C) : ‖Ψ‖∞,C ≤ 1}

by its geometric moments µα (21K − 1) = 2µα(K) − µα(C), α ∈ Nn
0 with |α| ≤ N .

This yields the assertion.
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Example 1. An ellipsoid E is determined among all convex bodies by its geometric
moments up to order 2 since E = {x ∈ Rn : p(x) ≥ 0}, where p(x) := R − ‖Tx‖2,
x ∈ Rn with some invertible linear transformation T and some R > 0.

Remark 3.3. Corollary 3.2 gives a sufficient condition for a convex body to be
uniquely determined among convex bodies in a prescribed set by a finite number of
moments. It is not clear if the condition is also necessary.

Remark 3.4. Let m := (mα)|α|≤N be a finite number of geometric moments of
some unknown convex body K ⊂ C. Let m̃α := 2mα − µα(C) and define l(m̃) and
pm̃ as in the previous section. Then it holds that l(m̃) ≤ 1, and if l(m̃) = 1, then
K = C ∩ {pm̃ ≥ 0}.

In Theorems 3.6 and 3.8, we show that the convex bodies which are uniquely
determined among all convex bodies by finitely many geometric moments form a
dense subset of Kn with respect to the Hausdorff metric δH. The ideas of the proofs
are shortly summarized in the following. For a convex body K ⊂ C, a function
f : Rn → R with K = C ∩ {f ≥ 0} is constructed. The function f is approximated
by a polynomial pm of degree m in such a way that Km := C ∩ {pm ≥ 0} is
convex and δH(K,Km) is small. Then, it follows from Corollary 3.2 that Km is
uniquely determined by its geometric moments up to order m among all convex
bodies contained in C. The circumradius of Km admits an upper bound which can
be expressed in terms of the geometric moments µα(Km), |α| ≤ 2 of Km. Therefore,
Km is uniquely determined by its geometric moments up to order m among all
convex bodies if C is large enough.

At first observe that we can assume that K is of class C∞+ , see [21, Thm. 3.4.1]
and the subsequent discussion. Hence, the boundary of K is a regular submanifold
of Rn of class Ck for all k ∈ N0. Further, the principal curvatures of K are strictly
positive. By κi(K, x), 1 ≤ i ≤ n − 1 we denote the principal curvatures of K in
x ∈ ∂K. Since K ∈ C∞+ there exist mK ,MK > 0 such that

κi(K, x) ∈ (mK ,MK), x ∈ ∂K, 1 ≤ i ≤ n− 1.

For ε < M−1
K it follows from the inverse function theorem applied as in [6, Lemma

14.16] that the signed distance function dK of K is a C∞-function in Rn \K−ε. As
in [6, Sec. 14.6] we define for y ∈ ∂K the principal coordinate system at y as the
coordinate system with coordinate axes x1(y), . . . , xn(y), where x1(y), . . . , xn−1(y)
are the principal directions and xn(y) is the inner unit normal vector of K at y.
Then the following lemma is obtained by adapting [6, Lemma 14.17].

Lemma 3.5. Let K ∈ C∞+ , ε < M−1
K , x0 ∈ Rn \K−ε and y0 := argminy∈∂K‖x0−y‖.

Then, with respect to the principal coordinate system at y0, we have

∇dK(x0) = (0, . . . , 0,−1)>

and
(
∂2

∂i∂j
dK(x0)

)n

i,j=1

= diag

(
κ1(K, y0)

1 + κ1(K, y0)dK(x0)
, . . . ,

κn−1(K, y0)

1 + κn−1(K, y0)dK(x0)
, 0

)
.
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By the described approximation argument and Lemma 3.5, we obtain the fol-
lowing result.

Theorem 3.6. Let K,C be convex bodies with K ⊂ intC. For ε > 0 there exists an
m ∈ N and a convex body Km ⊂ C which is uniquely determined by its geometric
moments up to order m among all convex bodies contained in C and fulfils

δH(K,Km) ≤ ε.

Proof. We may assume K ∈ C∞+ , 2ε < M−1
K and Kε ⊂ C. We have K = {f ≥ 0}

for the function f : Rn → R defined by

f(x) :=

{
1, x ∈ K−2ε,
− (dK(x)+2ε)4

16ε4
+ 1, x ∈ Rn \K−2ε.

Observe that f is of class C3(Rn) and

f(x) ∈ [−65/16, 15/16] ⇐⇒ x ∈ (∂K)ε. (3.2)

The Hessian matrix ( ∂2

∂i∂j
f(x))1≤i,j≤n is negative definite for x ∈ (∂K)ε. Namely, let

x0 ∈ (∂K)ε and y0 := argminy∈∂K‖x0 − y‖. Then it follows from Lemma 3.5 that,
with respect to the principal coordinate system at y0,

∂2

∂i∂j
f(x0) =





− (dK(x0)+2ε)3

4ε4
κi(K,y0)

1+κi(K,y0)dK(x0)
, i = j < n,

−3(dK(x0)+2ε)2

4ε4
, i = j = n,

0 i 6= j.

Therefore, the eigenvalues of the Hessian matrix
(
∂2

∂i∂j
f(x)

)
for x ∈ (∂K)ε are all

negative and their absolute values are uniformly bounded from below by

min

{
mK

4ε(1 +MKε)
,

3

4ε2

}
. (3.3)

From [2, Thm. 2], we obtain that for every m ≥ 2 there exists a polynomial pm
of degree m such that

∥∥∥∥
∂|α|

∂α1
1 · · · ∂αnn

(f − pm)

∥∥∥∥
∞,C
≤ c(n,C, f)

1

m3−|α| , α ∈ Nn
0 with |α| ≤ 2, (3.4)

where c(n,C, f) > 0 depends on n, C and max|α|≤3‖ ∂|α|

∂
α1
1 ···∂

αn
n
f‖∞,C .

As the function that maps a symmetric matrix to its eigenvalues is Lipschitz
continuous ([3, Thm. VI.2.1]), equation (3.3) and (3.4) imply that the Hessian matrix
( ∂2

∂i∂j
pm)1≤i,j≤n of pm is negative definite on (∂K)ε if we choose m ≥ 2 sufficiently

large. Thus, by the well-known convexity criterion [21, Thm. 1.5.13], the polynomial
pm is concave on every convex subset of (∂K)ε, and in particular,
(
pm(x), pm(y) ≥ 0 for x, y ∈ (∂K)ε with [x, y] ⊂ (∂K)ε

)
⇒ [x, y] ⊂ Km, (3.5)
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where we define
Km := C ∩ {pm ≥ 0}.

Due to (3.4), we can furthermore assume that

‖f − pm‖C,∞ < 15/16.

Then it follows from (3.2) that pm ≥ 0 on K−ε and pm < 0 on C \ Kε. In other
words, we have K−ε ⊂ Km ⊂ Kε. This implies that δH(K,Km) ≤ ε since ε < M−1

K .
Furthermore, we can show that Km is convex. Let x, y ∈ Km. If x, y ∈ K−ε, then

[x, y] ⊂ K−ε since K−ε is convex and thus [x, y] ⊂ Km. If x ∈ K−ε and y ∈ (∂K)ε,
there is a z ∈ [x, y] such that [x, z] ⊂ K−ε and [z, y] ⊂ (∂K)ε. Hence, it follows
from (3.5) that [x, y] ⊂ Km. If x, y ∈ (∂K)ε and [x, y] ⊂ (∂K)ε, then [x, y] ⊂ Km

because of (3.5). If x, y ∈ (∂K)ε and [x, y] ∩K−ε 6= ∅, there are z1, z2 ∈ [x, y] such
that [x, z1] ⊂ (∂K)ε, [z1, z2] ⊂ K−ε and [z2, y] ⊂ (∂K)ε. Then, it follows again from
the convexity of K−ε and by (3.5) that [x, y] ⊂ Km.

For a convex body K, let s(K) denote the center of mass, Vn(K) the volume,
and R(K) the circumradius of K. Then, we define

K̃ :=
(
Vn(K)

)−1/n(
K − s(K)

)
.

As Vn(K̃) = 1 and s(K̃) = 0, a special case of [18, Lem. 4.1] yields that
(∫

K̃

|〈x, u〉|2dx
)1/2

≥
(

Γ(3)Γ(n)

2eΓ(n+ 3)

)1/2

max{hK̃(u), hK̃(−u)}

for u ∈ Sn−1. Then Cauchy-Schwarz’s inequality implies that

K̃ ⊂ I2(K̃)

(
Γ(3)Γ(n)

2eΓ(n+ 3)

)−1/2
Bn,

where

I2(L) :=

(∫

L

‖x‖2dx
) 1

2

for a convex body L. Since R(K) =
(
Vn(K)

)1/n
R(K̃), we obtain an upper bound

R(K) ≤
(

2eΓ(n+ 3)

Γ(3)Γ(n)

)1/2

Vn(K)1/nI2(K̃) (3.6)

of the circumradius of K.

Remark 3.7. Observe that I2(K̃) can be expressed in terms of the geometric mo-
ments of K up to order 2. More precisely,

I2(K̃) = µ0(K)−
1+n
n

( n∑

i=1

µ0(K)µ2ej(K)− µej(K)2
)1/2

,

where {e1, . . . , en} is the standard basis in Rn.
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The previous considerations allow us to formulate a strengthened version of The-
orem 3.6 for the whole class of convex bodies and not only those contained in a
prescribed compact set.

Theorem 3.8. Let K be a convex body. For ε > 0 there exists an m ∈ N and a
convex body Km which is uniquely determined by its geometric moments up to order
m among all convex bodies and fulfils

δH(K,Km) ≤ ε.

Proof. Without loss of generality we may assume that K ∈ C∞+ and Vn(K−ε) > 0.
Let

c(K, ε) :=

(
eΓ(n+ 3)

Γ(3)Γ(n)

2n+3 ωn
n+ 2

Vn(K−ε)
−1R(Kε)

n+2

)1/2

,

and choose
R > c(K, ε) (3.7)

such that K ⊂ RBn. By Theorem 3.6 there exists an m ∈ N and a convex body
Km ⊂ (3R + ε)Bn which is uniquely determined by its geometric moments up to
order m among all convex bodies contained in (3R + ε)Bn and fulfils

δH(K,Km) ≤ ε. (3.8)

Due to the proof of Theorem 3.6, we can assume that m ≥ 2 and K−ε ⊂ Km ⊂ Kε.
Then, condition (3.7) ensures that Km is uniquely determined among all convex
bodies. Namely, let L be a convex body with

µα(L) = µα(Km), α ∈ Nn
0 , with |α| ≤ m. (3.9)

Then, it follows by Remark 3.7 and a simple calculation that

I2(L̃) = I2(K̃m) ≤ I2(2Vn(Km)−1/nR(Km)Bn)

=

(
2n+2 ωn
n+ 2

Vn(Km)−(2+n)/nR(Km)n+2

)1/2

,

where we have used that K̃m ⊂ 2R(K̃m)Bn as s(K̃m) = 0. Thus, we obtain by (3.6)
that

R(L) ≤
(
eΓ(n+ 3)

Γ(3)Γ(n)

2n+3 ωn
n+ 2

Vn(Km)−1R(Km)n+2

)1/2

≤ c(K, ε).

Assumption (3.9) implies that s(L) = s(Km), so

sup
x∈L
‖x‖ ≤ sup

x∈L
‖x− s(L)‖+ ‖s(Km)‖ ≤ 3R + ε

as Km ⊂ (R+ ε)Bn by (3.8). Thus, L ⊂ (3R+ ε)Bn, so Km = L, and we obtain the
assertion.

Remark 3.9. Due to the one-to-one correspondence between the geometric mo-
ments up to order m and the Legendre moments up to order m of a convex body,
the uniqueness results stated in this section hold if the geometric moments are re-
placed by Legendre moments in the two-dimensional case.
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4 Stability results

In this section, we derive stability results for two-dimensional convex bodies con-
tained in the unit square. We derive an upper bound for the Nikodym distance of
convex bodies where the first (N + 1)2 moments are close in the Euclidean dis-
tance. The stability results are based on more general results for twice continuously
differentiable functions on the unit square.

4.1 Stability results for functions on the unit square

The study in this section uses ideas from [23] (see also [1]), which considers the
problem of recovering a real-valued function u defined on the interval (0, 1) from its
first N + 1 moments µ0(u), . . . , µN(u). In [23], it is shown that if u, v : (0, 1) → R
are absolutely continuous functions satisfying

N∑

k=0

|µk(u)− µk(v)|2 ≤ ε2

and
|u′(x)− v′(x)|2L2(0,1) ≤ E2

for some ε, E > 0, then

|u− v|2L2(0,1) ≤ min{ε2e3.5(n+1) + 1
4
(n+ 1)−2 : n = 0, . . . , N}.

Using the same ideas as [23], we deduce the following corresponding theorem in two
dimensions.

Theorem 4.1. If v, w ∈ C2([0, 1]2) are twice continuously differentiable functions
satisfying

N∑

i,j=0

|µij(v)− µij(w)|2 ≤ ε2

and
1

4

∣∣∣∣
d

dx1
(v − w)

∣∣∣∣
2

L2([0,1]2)

+
1

4

∣∣∣∣
d

dx2
(v − w)

∣∣∣∣
2

L2([0,1]2)

≤ E2

for some ε, E > 0, then

|v − w|2L2([0,1]2) ≤ min{a0(n+ 1)2e7(n+1)ε2 + (n+ 1)−2E2 : n = 0, . . . , N}

where a0 > 0.

Proof. Let hN be the orthogonal projection of u := v−w on the linear hull lin{xi1xj2 :
i, j = 0, . . . , N} with respect to the usual scalar product on L2([0, 1]2). Furthermore,
let

tN := u− hN

10
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be the projection of u on the orthogonal complement of lin{xi1xj2 : i, j = 0, . . . , N}.
Then

hN(x1, x2) =
N∑

i,j=0

λij(u)Li(x1)Lj(x2)

and

tN(x1, x2) =
∞∑

i,j=0
i∨j>N

λij(u)Li(x1)Lj(x2),

where λij(u), i, j ∈ N0 are the Legendre moments of u. For i ∈ N0, the coefficients
of the polynomial Li are denoted by Cij, j = 0, . . . , i, that is

Li(x) =
i∑

j=0

Cijx
j, x ∈ [0, 1].

Then it follows for i, j = 0, . . . , N that

λij(u) =
i∑

k=0

j∑

l=0

CikCjl

∫

[0,1]2

u(x1, x2)x
k
1x

l
2d(x1, x2)

=
i∑

k=0

j∑

l=0

CikCjlµkl(u)

= (CMC>)ij, (4.1)

with

C :=




C00

C10 C11
... . . .

CN0 CN1 . . . CNN


 , and M := (µij(u))i,j=0,...,N .

The Frobenius norm of a square matrix A is defined as |A|F :=
√

tr(A>A), and
since this norm is submultiplicative, see [10, (3.3.4)], we obtain that

|hN |L2([0,1]2) =

√√√√
N∑

i,j=0

λij(u)2 =
√

tr(L>L)

= |L|F = |CMC>|F ≤ |C|F |M |F |C>|F
= |C|2F |M |F (4.2)

where L := (λij(u))i,j=0,...,N . The matrix C>C has N + 1 non-negative eigenvalues,
0 ≤ l0 ≤ l1 ≤ · · · ≤ lN , and C>C = H−1N , where HN is the Hilbert matrix

HN :=

(
1

i+ j + 1

)

i,j=0,...,N

,
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see [23, (22)]. Since ‖HNe1‖ > 1, the Hilbert matrix HN has an eigenvalue larger
than 1, so the smallest eigenvalue l0 of H−1N is smaller than 1. This implies that

|C|2F = tr(C>C) =
N∑

i=0

li ≤ (N + 1)lN ≤ (N + 1)
lN
l0
≈ a0(N + 1)e3.5(N+1) (4.3)

with a constant a0 > 0, where we have used the approximation [23, (8)], see also
[24, p. 111]. From equation (4.2) and (4.3), we obtain that

|hN |L2([0,1]2) ≤ a0(N + 1)e3.5(N+1)

√√√√
N∑

i,j=0

µij(u)2. (4.4)

The shifted Legendre polynomials satisfy the differential equation

− d

dx1
[x1(1− x1)L′i(x1)] = i(i+ 1)Li(x1), x1 ∈ [0, 1], i ∈ N0,

see [23, (25)]. From this differential equation, we obtain by multiplication with
u(x1, x2), integration over [0, 1] with respect to x1 and twofold partial integration
for all x2 ∈ (0, 1) that

−
∫

[0,1]

Li(x1)
d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

]
dx1

= i(i+ 1)

∫

[0,1]

Li(x1)u(x1, x2)dx1.

(4.5)

By multiplication with Lj(x2) and integration with respect to x2, it follows from
(4.5) that

−
∫

[0,1]2
Li(x1)Lj(x2)

d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

]
dx1dx2

= i(i+ 1)

∫

[0,1]2
Li(x1)Lj(x2)u(x1, x2)dx1dx2.

This implies that the Legendre moments of the function

(x1, x2) 7→
d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

]

are equal to −i(i + 1)λij(u), i, j ∈ N0. Thus, we obtain from the theory of Hilbert
spaces and by partial integration that

∞∑

i,j=0

i(i+ 1)λij(u)2 =

∫

[0,1]2

d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

](
−u(x1, x2)

)
d(x1, x2)

=

∫

[0,1]2
x1(1− x1)

(
d

dx1
u(x1, x2)

)2

d(x1, x2)

≤ 1

4

∣∣∣∣
d

dx1
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

. (4.6)
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In the same way, we conclude that
∞∑

i,j=0

j(j + 1)λij(u)2 ≤ 1

4

∣∣∣∣
d

dx2
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

. (4.7)

The inequalities (4.6) and (4.7) imply that

|tN |2L2([0,1]2) =
∞∑

i,j=0
i∨j>N

λij(u)2 ≤
∞∑

i=N+1

∞∑

j=0

λij(u)2 +
∞∑

i=0

∞∑

j=N+1

λij(u)2

≤
∞∑

i,j=0

i(i+ 1)

(N + 1)2
λij(u)2 +

∞∑

i,j=0

j(j + 1)

(N + 1)2
λij(u)2

≤ 1

(N + 1)2

(
1

4

∣∣∣∣
d

dx1
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

+
1

4

∣∣∣∣
d

dx2
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

)
, (4.8)

and as a consequence we obtain that

|v − w|2L2([0,1]2) = |hN |2L2([0,1]2) + |tN |2L2([0,1]2) ≤ a0(N + 1)2e7(N+1)ε2 +
1

(N + 1)2
E2.

4.2 Application to convex bodies

In this section, we approximate the indicator function 1K of a convex body K by
a smooth function and apply the result from the previous section. In this way, we
obtain an estimate for the Nikodym distance of two convex bodies in terms of the
Euclidean distance of their first (N + 1)2 geometric moments.

Theorem 4.2. If K,L ⊂ [0, 1]2 are convex bodies satisfying

N∑

i,j=0

|µij(K)− µij(L)|2 ≤ ε2,

for some ε ≥ 0, then

δN(K,L) ≤ min
{
a0(n+ 1)2e7(n+1)ε2 +

a1
(n+ 1)

: n = 0, . . . , N
}
,

with constants a0, a1 > 0.

Proof. Let u := 1K − 1L. As in the proof of Theorem 4.1, we let hN denote the
orthogonal projection of u on lin{xi1xj2 : i, j = 0, . . . , N} and let tN denote the
projection on the orthogonal complement of lin{xi1xj2 : i, j = 0, . . . , N}. In the proof
of Theorem 4.1, the smoothness of u is not used when the estimate (4.4) is derived.
Therefore, we obtain in the same way that

|hN |L2([0,1]2) ≤ a0(N + 1)e3.5(N+1)

√√√√
N∑

i,j=0

µij(u)2. (4.9)
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Using a mollification, see [16, p. 110], we obtain for every ρ > 0 a differentiable
function u(ρ) : [0, 1]2 → R approximating u in the L1-norm. More precisely, we
choose

u(ρ)(x) := (Jρ ∗ u)(x) =

∫

[0,1]2

Jρ(x− y)u(y)dy, x ∈ [0, 1]2,

where

Jρ =

{
c0ρ
−2e
− ρ2

ρ2−‖x‖2 , for ‖x‖ < ρ

0, for ‖x‖ ≥ ρ

with a constant c0 > 0 chosen such that |Jρ|L1(R2) = 1. Notice that c0 is independent
of ρ and that Jρ ∈ C∞(R2). From the definition of the mollification, we obtain that

‖u− u(ρ)‖∞ ≤ ‖u‖∞ + |Jρ|L1(R2)‖u‖∞ ≤ 2

and

(u− u(ρ))(x) = 0, x ∈ [K−ρ ∪ ([0, 1]2 \Kρ)] ∩ [L−ρ ∪ ([0, 1]2 \ Lρ)],

so

|u− u(ρ)|2L2([0,1]2) ≤ ‖u− u(ρ)‖
2
∞ V2([(Kρ \K) ∪ (K \K−ρ)] ∪ [(Lρ \ L) ∪ (L \ L−ρ)])

≤ 4 [V2(Kρ \K) + V2(K \K−ρ) + V2(Lρ \ L) + V2(L \ L−ρ)]

for ρ ∈ (0, 1). Then, the fact that

V2(K \K−ρ) ≤ V2(Kρ \K),

the Steiner formula, and the monotonicity of the intrinsic volumes imply that

|u− u(ρ)|2L2([0,1]2) ≤ 8[V2(Kρ \K) + V2(Lρ \ L)]

≤ 8[2ρ2π + 2ρ(V1(K) + V1(L))]

≤ (16π + 64)ρ ≤ 112ρ,

where V1 is the intrinsic volume of order 1, so V1(M) is half the boundary length
of a convex body M . For ρ ∈ (0, 1), let t(ρ)N be the orthogonal projection of u(ρ)
on the orthogonal complement of lin{xi1xj2 : i, j = 0, . . . , N}. Then it follows from
Pythagoras’ theorem and (4.8) that

|tN |L2([0,1]2) ≤ |tN − t
(ρ)
N |L2([0,1]2) + |t(ρ)N |L2([0,1]2)

≤ |u− u(ρ)|L2([0,1]2) +
1

N + 1
Eρ

≤ 11
√
ρ+

1

N + 1
Eρ,

where Eρ > 0 is some constant satisfying

1

4

∣∣∣∣
d

dx2
u(ρ)
∣∣∣∣
2

L2([0,1]2)

+
1

4

∣∣∣∣
d

dx1
u(ρ)
∣∣∣∣
2

L2([0,1]2)

≤ E2
ρ . (4.10)
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In order to obtain an expression for a constant Eρ that satisfies (4.10), we at first
observe that

d

dx2
u(ρ)(y) =

d

dx1
u(ρ)(y) = 0, y ∈ [K−ρ ∪ ((0, 1)2 \Kρ)] ∩ [L−ρ ∪ ((0, 1)2 \ Lρ)].

Furthermore,

d

dx1
u(ρ)(x) =

([
d

dx1
Jρ

]
∗ u
)

(x) =

∫

[0,1]2

[
d

dx1
Jρ

]
(x− y)u(y)dy

≤
∫

R2

∣∣∣∣
d

dx1
Jρ(y)

∣∣∣∣dy = ρ−3
∫

R2

∣∣∣∣
[
d

dx1
J1

](
y

ρ

)∣∣∣∣dy

= ρ−1
∫

R2

∣∣∣∣
[
d

dx1
J1

]
(y)

∣∣∣∣dy ≤ c1ρ
−1

for x ∈ R2 and a constant c1 > 0 independent of ρ. It follows that
∣∣∣∣
d

dx1
u(ρ)
∣∣∣∣
2

L2([0,1]2)

≤ c21ρ
−2[V2(Kρ \K) + V2(K \K−ρ) + V2(Lρ \ L) + V2(L \ L−ρ)

]

≤ c21112

4ρ
.

In the same way, we obtain
∣∣∣∣
d

dx2
u(ρ)
∣∣∣∣
2

L2([0,1]2)

≤ c22112

4ρ

for a suitable c2 > 0 independent of ρ. Therefore, we can choose

E2
ρ := c3ρ

−1

for ρ ∈ (0, 1) and some constant c3 > 0 independent of ρ. Letting ρ = (N + 1)−1, we
obtain that

|tN |2L2([0,1]2) ≤
(

11
√
ρ+

1

N + 1

√
c3ρ
−1/2

)2

= 112ρ+ 22
√
c3

1

N + 1
+

c3
(N + 1)2ρ

= (112 + 22
√
c3 + c3)

1

N + 1
,

which leads to the assertion.

The matrix C defined in the proof of Theorem 4.1 is ill-conditioned and intro-
duces an exponential factor in the upper bound for the Nikodym distance derived
in Theorem 4.2. If the geometric moments are replaced by Legendre moments, the
use of the matrix C is avoided and the upper bound can be improved.
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Theorem 4.3. If K,L ⊂ [0, 1]2 are convex bodies satisfying
N∑

i,j=1

|λij(K)− λij(L)|2 ≤ ε2 (4.11)

for some ε ≥ 0, then
δN(K,L) ≤ ε2 +

a1
N + 1

(4.12)

with a constant a1 > 0.

The proof of Theorem 4.3 follows the lines of the proof of Theorem 4.2. Due to
inequality (4.11), the upper bound on the L2-norm of hN in (4.9) can be replaced
by ε. This yields the upper bound (4.12) of the Nikodym distance.

Remark 4.4. If the first (N + 1)2 geometric moments of two convex bodies K,L ⊂
[0, 1]2 are identical, then the first (N + 1)2 Legendre moments of K and L are
identical. In this case, Theorem 4.2 (or Theorem 4.3) implies that δN(K,L) ≤ a1

N+1
.

Remark 4.5. The Nikodym metric δN is extended in the natural way to the set of
convex, compact subsets of the unit square. It then defines a pseudo metric, which we
also denote by δN . As the proofs of Theorems 4.2 and 4.3 do not use that the interior
of the convex bodies are nonempty, the stability results hold for convex, compact
subsets of the unit square and the pseudo metric δN . In the following sections, we
repeatedly consider the distance δN(K,Pk) for a convex body K ⊂ [0, 1]2 and a
sequence of polygons (Pk)k∈N contained in [0, 1]2, see Theorems 5.1, 6.3 and 6.6. If
δN(K,Pk)→ 0 for k →∞, then intPk 6= ∅ for k sufficiently large. This implies that
δN in the expression δN(K,Pk) is a proper metric for k sufficiently large.

5 Least squares estimators based on moments

Let K ⊂ [0, 1]2 be a convex body and assume that its geometric moments µij(K) for
i, j ∈ N0 are given. For m ≥ 3, let P(m) denote the set of convex polygons contained
in [0, 1]2 with at most m vertices. Any polygon P̂m ∈ P(m) satisfying

P̂m = argmin
{ N∑

i,j=0

(µij(K)− µij(P ))2 : P ∈ P(m)
}

is called a least squares estimator of K with respect to the first (N + 1)2 geometric
moments on the space P(m), where N ∈ N0. Likewise, we define a least squares
estimator based on the Legendre moments. Assume that the Legendre moments
λij(K), i, j ∈ N0 of K are given. Then, any polygon Q̂m ∈ P(m) satisfying

Q̂m = argmin
{ N∑

i,j=0

(λij(K)− λij(P ))2 : P ∈ P(m)
}

is called a least squares estimator of K with respect to the first (N + 1)2 Legendre
moments on the space P(m). Since the polygons in P(m) are uniformly bounded,
Blaschke’s selection theorem ensures the existence of least squares estimators P̂m
and Q̂m.
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Theorem 5.1. Let P̂m and Q̂m be least squares estimators of K on the space P(m)

with respect to the first (N + 1)2 geometric moments and the first (N + 1)2 Legendre
moments. Then

δN(P̂m, K) ≤
(
a0(n+ 1)2e7(n+1)

(
1 + 1

2
ln(2n+ 1)

)2 8π3 + 16π

m2
+

a1
(n+ 1)

)

for n = 0, . . . , N and

δN(Q̂m, K) ≤ 8π3 + 16π

m2
+

a1
(N + 1)

.

Proof. Let P ∈ P(m) and define u := 1P − 1K . Using the notation hN , C, L,M and
HN from the proof of Theorem 4.1, we obtain that

√√√√
N∑

i,j=0

(µij(P )− µij(K))2

= |M |F = |C−1L(C−1)>|F ≤ |C−1|
2
F |L|F

≤
(
1 + 1

2
ln(2N + 1)

)
|hN |L2([0,1]2) ≤

(
1 + 1

2
ln(2N + 1)

)
|u|L2([0,1]2)

=
(
1 + 1

2
ln(2N + 1)

)√
δN(K,P ),

where we have used that

|C−1|2F = tr(C−1(C−1)>) = tr(HN)

=
N∑

i=0

1

2i+ 1
≤ 1 +

N∫

0

1

2x+ 1
dx = 1 + 1

2
ln(2N + 1)

by the definition of the Hilbert matrix HN . From [4, p. 730], the monotonicity of
the intrinsic volumes, and the fact that sin(x) ≤ x for x ≥ 0, we obtain that

min
P∈P(m)

δH(K,P ) ≤ V1(K) sin( π
m

)

m(1 + cos( π
m

))
≤ 2π

m2
.

Further, the definition of the Hausdorff distance and the Steiner formula yield that

δN(K,P ) ≤ V2((K + δH(K,P )B2) \K) + V2((P + δH(K,P )B2) \ P )

≤ 8 δH(K,P ) + 2π δH(K,P )2

for P ∈ P(m), so

min
P∈P(m)

δN(K,P ) ≤ 8π3 + 16π

m2
. (5.1)

Therefore,

min
P∈P(m)

N∑

i,j=0

(µij(P )− µij(K))2 ≤
(
1 + 1

2
ln(2N + 1)

)2
min

P∈P(m)
δN(K,P )

≤
(
1 + 1

2
ln(2N + 1)

)2 8π3 + 16π

m2
.
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Then, Theorem 4.2 and Remark 4.5 yields that

δN(P̂m, K) ≤ a0(n+ 1)2e7(n+1)
(
1 + 1

2
ln(2n+ 1)

)2 8π3 + 16π

m2
+

a1
(n+ 1)

for n = 0, . . . , N . For P ∈ P(m), Parseval’s identity yields that

N∑

i,j=0

(λij(K)− λij(P ))2 ≤ |1K − 1P |2L2([0,1]2) = δN(K,P ),

so we obtain from (5.1), Theorem 4.3 and Remark 4.5 that

δN(Q̂m, K) ≤ 8π3 + 16π

m2
+

a1
N + 1

for P ∈ P(m)

In Theorem 5.1, the upper bound on the distance between the convex body K
and the least squares estimator P̂m based on geometric moments decreases polyno-
mially in the number of vertices m, but increases exponentially in the number of
moments N . However, for the least squares estimator Q̂m based on Legendre mo-
ments, the upper bound decreases polynomially in both N and m. Therefore, we
concentrate on reconstruction from Legendre moments in Section 6.

6 Reconstruction based on Legendre moments

In this section, we develop a reconstruction algorithm for a convex body K ⊂ [0, 1]2

based on Legendre moments. To simplify an optimization problem, we approximate
K by a polygon with prescribed outer normals. Thus, the input of the algorithm
is the first (N + 1)2 Legendre moments of K for some N ∈ N0, and the output is
a polygon P ⊂ [0, 1]2 with prescribed outer normals satisfying that the Euclidean
distance between the first (N + 1)2 Legendre moments of P and K is minimal.

6.1 Reconstruction algorithm

Let 0 ≤ θ1 < · · · < θn < 2π, and let ci := cos(θi), si := sin(θi) and ui := [ci, si]
> for

1 ≤ i ≤ n. We assume that

{ n∑

i=1

λiui : λi ≥ 0, 1 ≤ i ≤ n
}

= R2. (6.1)

For h1, . . . , hn ∈ (−∞,∞), let

P (h1, . . . , hn) :=
n⋂

i=1

{x ∈ R2 : 〈x, ui〉 ≤ hi}.
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A vector (h1, . . . , hn) ∈ (−∞,∞)n is called consistent with respect to (θ1, . . . , θn)
if the polygon P (h1, . . . , hn) has support function value hi in the direction ui for
1 ≤ i ≤ n. In [15, p. 1696], it is shown that (h1, . . . , hn) is consistent if and only if

hi−1(si+1ci − ci+1si)− hi(si+1ci−1 − ci+1si−1) + hi+1(sici−1 − cisi−1) ≥ 0

for 1 ≤ i ≤ n, where we define h0 := hn and hn+1 := h1. We let P(θ1, . . . , θn)
denote the set of polygons P (h1, . . . , hn) ⊂ [0, 1]2 where (h1, . . . , hn) ∈ (−∞,∞)n is
consistent with respect to (θ1, . . . , θn).

Now let K ⊂ [0, 1]2 be a convex body. Any polygon P̂N,n ∈ P(θ1, . . . , θn) satis-
fying

P̂N,n = argmin
{ N∑

k,l=0

(λkl(K)− λkl(P ))2 : P ∈ P(θ1, . . . , θn)
}

is called a least squares estimator of K with respect to the first (N+1)2 moments on
the space P(θ1, . . . , θn). As P(θ1, . . . , θn) is closed in the Hausdorff metric, Blaschke’s
selection theorem ensures the existence of a least squares estimator.

In the following, we let the directions 0 ≤ θ1 < · · · < θn < 2π be fixed. We use
the notation si, ci and ui as introduced above and assume that condition (6.1) is
satisfied. When (h1, . . . , hn) ∈ (−∞,∞)n is consistent with respect to (θ1, . . . , θn),
we write

vi := H(ui, hi) ∩H(ui+1, hi+1), 1 ≤ i ≤ n

for the vertices of P (h1, . . . , hn), see Figure 1.

↑

↑↑

↑ ↑

↑
↑

u1

u2

v1
v2

Figure 1: Polygons with normals u1, . . . , un.

In Lemma 6.1, the geometric moments and the Legendre moments of polygons
of the form P (h1, . . . , hn) are expressed by means of (h1, . . . , hn).

Lemma 6.1. Let (h1, . . . , hn) ∈ (−∞,∞)n be consistent with respect to (θ1, . . . , θn).
Then the geometric moments and the Legendre moments of P (h1, . . . , hn) are poly-
nomials in (h1, . . . , hn). More precisely,

µkl(P (h1, . . . , hn)) =
n∑

i=1

k+l+1∑

q1=0

k+l+2−q1∑

q2=0

Mkl(i, q1, q2)h
q1
i h

q2
i+1h

k+l+2−q1−q2
i+2 (6.2)
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↑

↑↑

↑ ↑

↑

↑

u1

u2

v1
v2

0

↑

↑↑

↑ ↑

↑

↑

u1

u2

v1
v2

0

Figure 2: Representation of polygons P (h1, . . . , hn) as difference of the sets A (red and
green) and B (red).

and

λkl(P (h1, . . . , hn)) =
n∑

i=1

k+l∑

s=0

s+1∑

q1=0

s+2−q1∑

q2=0

Lkl(i, s, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2 ,

for k, l ∈ N0 and known real constants Mkl(i, q1, q2) and Lkl(i, s, q1, q2).

Proof. Observe that
P (h1, . . . , hn) = cl(A \B),

where
A :=

⋃

1≤i≤n
hi+1≥0

conv{0, vi, vi+1} and B :=
⋃

1≤i≤n
hi+1<0

conv{0, vi, vi+1}

and v1, . . . , vn are the vertices of P (h1, . . . , hn), see Figure 2. In particular, we have
B ⊂ A, so the moments of P (h1, . . . , hn) are equal to the sum

µkl(P (h1, . . . , hn)) =
n∑

i=1

sign(hi+1)µkl(conv{0, vi, vi+1}). (6.3)

For i = 1, . . . , n, let ui := (−si, ci)>. Then there exist unique ti, ti ∈ R with

vi = hiui + tiui = hi+1ui+1 − tiui+1. (6.4)

This implies that
(
ui, ui+1

)(ti
ti

)
= hi+1ui+1 − hiui,

and thus
(
ti
ti

)
=

1

−sici+1 + cisi+1

(
ci+1 si+1

−ci −si

)(
hi+1ci+1 − hici
hi+1si+1 − hisi

)

=
1

−sici+1 + cisi+1

(
hi+1 − hi(cici+1 + sisi+1)
hi − hi+1(cici+1 + sisi+1)

)
.
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Substituting this expression of (ti, ti)
> into (6.4), the vertex vi can be expressed by

(hi, hi+1) and (ui, ui+1). We obtain that

vi =
1

cisi+1 − sici+1

(
hisi+1 − hi+1si
hi+1ci − hici+1

)
. (6.5)

Now define Ti(x1, x2) :=
(
vi, vi+1

)(x1
x2

)
=

(
vi,1x1 + vi+1,1x2
vi,2x1 + vi+1,2x2

)
. Integration by sub-

stitution then yields that

µkl(conv{0, vi, vi+1})

=

∫

conv{0,vi,vi+1}
xk1x

l
2 d(x1, x2)

=

∫

conv{0,e1,e2}
(vi,1x1 + vi+1,1x2)

k(vi,2x1 + vi+1,2x2)
l

× |vi,1vi+1,2 − vi,2vi+1,1| d(x1, x2).

Using (6.4), the Jacobian determinant of Ti can be expressed as hi+1(ti + ti+1), and
since ti + ti+1 is the length of the facet of P (h1, . . . , hn) bounded by vi and vi+1, it
follows that

sign(vi,1vi+1,2 − vi,2vi+1,1) = sign(hi+1).

This implies that

sign(hi+1)µkl(conv{0, vi, vi+1})

=

∫ 1

0

∫ x2

0

(vi,1x1 + vi+1,1x2)
k(vi,2x1 + vi+1,2x2)

l(vi,1vi+1,2 − vi,2vi+1,1)dx1dx2

=

∫ 1

0

∫ x2

0

k∑

p=0

l∑

q=0

(
k

p

)(
l

q

)
vpi,1v

k−p
i+1,1v

q
i,2v

l−q
i+1,2x

p+q
1 xk+l−p−q2

× (vi,1vi+1,2 − vi,2vi+1,1)dx1dx2

=
k∑

p=0

l∑

q=0

(
k

p

)(
l

q

)
vpi,1v

k−p
i+1,1v

q
i,2v

l−q
i+1,2

× 1

(p+ q + 1)(k + l + 2)
(vi,1vi+1,2 − vi,2vi+1,1)

=
k∑

p=0

l∑

q=0

p+q+1∑

q1=0

k+l+2−q1∑

q2=p+q+1−q1
M̃kl(i, q1, q2)h

q1
i h

q2
i+1h

k+l+2−q1−q2
i+2

=
k+l+1∑

q1=0

k+l+2−q1∑

q2=0

Mkl(i, q1, q2)h
q1
i h

q2
i+1h

k+l+2−q1−q2
i+2 ,

where the constants M̃kl(i, q1, q2) and Mkl(i, q1, q2) can be derived using (6.5). In
combination with (6.3), this yields (6.2). Furthermore, we obtain from formula (4.1)
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for the Legendre moments that

λkl(P (h1, . . . , hn)) =
k∑

p=0

l∑

q=0

CkpClqµpq(P (h1, . . . , hn))

=
k+l∑

s=0

s∧l∑

q=s−k∨0
Ck,s−qClq

n∑

i=1

s+1∑

q1=0

s+2−q1∑

q2=0

Ms−q,q(i, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2

=
n∑

i=1

k+l∑

s=0

s+1∑

q1=0

s+2−q1∑

q2=0

Lkl(i, s, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2 ,

where

Lkl(i, s, q1, q2) :=
s∧l∑

q=s−k∨0
Ck,s−qClqMi,s−q,q(q1, q2).

The structure of P(θ1, . . . , θn) ensures that a least squares estimator can be
reconstructed using polynomial optimization. This follows as Lemma 6.1 yields that
P̂N,n = P (ĥ1, . . . , ĥn) is a least squares estimator of K, where (ĥ1, . . . , ĥn) is the
solution of the polynomial optimization problem

(ĥ1, . . . , ĥn) = argmin{f(h1, . . . , hn) : (h1, . . . , hn) ∈ An} (6.6)

where the objective function f : (−∞,∞)n → [0,∞) is defined by

f(h1, . . . , hn) =
N∑

k,l=0

(
λkl(K)−

n∑

i=1

k+l∑

s=0

s+1∑

q1=0

s+2−q1∑

q2=0

Lkl(i, s, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2

)2

and the feasible set An is the set of vectors (h1, . . . , hn) ∈ (−∞,∞)n which fulfil the
inequalities

0 ≤ hi−1(si+1ci − ci+1si)− hi(si+1ci−1 − ci+1si−1) + hi+1(sici−1 − cisi−1),

0 ≤ 1

cisi+1 − sici+1

(hisi+1 − hi+1si) ≤ 1,

0 ≤ 1

cisi+1 − sici+1

(hi+1ci − hici+1) ≤ 1

for 1 ≤ i ≤ n. Algorithms for solving polynomial optimization problems like (6.6)
have been developed only recently. We mention the software GloptiPoly, see [14],
which is recommended for small-scale problems. Another possible choice for solving
a problem like (6.6) seems to be the software SparsePop, see [25], which is designed
for problems with a special sparse structure.

6.2 Convergence of the reconstruction algorithm

In this section, we use the stability result Theorem 4.3 to show that the output
polygon of the reconstruction algorithm described in the previous section converges
to K in the Nikodym distance when the number n of outer normals of the polygon
and the number N of moments increase.
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Lemma 6.2. Let K ⊂ [0, 1]2 be a convex body, 0 ≤ θ1 < · · · < θn < 2π and
θn+1 = θ1. Assume that condition (6.1) is satisfied. Then

δN
(
P (hK(θ1), . . . , hK(θn)), K

)
≤ 1√

2
V1(K) max

1≤i≤n
tan

(
θi+1 − θi

2

)

≤
√

2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
.

Proof. Choose x1, . . . , xn ∈ ∂K such that (cos(θi), sin(θi))
> is an outer normal of K

in xi. Let
Pin := conv{x1, . . . , xn}.

Note that Pin ⊂ K. Recall that the vertices of P (hK(θ1), . . . , hK(θn)) are denoted by
v1, . . . , vn and let Ti := conv{xi, xi+1, vi}, ci := ‖xi+1− xi‖ and γi := π− (θi+1− θi).
Then, it holds obviously

P (hK(θ1), . . . , hK(θn)) \ intPin =
n⋃

i=1

Ti, (6.7)

see Figure 3. Observe that the area of a triangle where one angle and the length of

↑

↑↑

↑

↑

↑ ↑

ui

ui+1

K

↑

↑↑

↑

↑

↑ ↑

ui

ui+1ci

i

Figure 3: On the left, K and the polytope P (hK(u1), . . . , hK(un)). On the right,
P (hK(u1), . . . , hK(un)) \ Pin coloured in red.

the side opposite to the angle are prescribed is maximal if the remaining angles are
equal. Thus,

V2(Ti) ≤ 1
4
c2i cot(γi/2) = 1

4
c2i tan

(
θi+1 − θi

2

)
. (6.8)

Equations (6.7) and (6.8) imply that

δN
(
P (hK(θ1), . . . , hK(θn)), K

)
≤ V2(P (hK(θ1), . . . , hK(θn)) \ Pin)

≤ 1
4

max
1≤i≤n

tan

(
θi+1 − θi

2

) n∑

i=1

c2i ,

and since c2i /2 ≤ ci/
√

2 and
∑n

i=1 ci = 2V1(Pin), we arrive at

δN
(
P (hK(θ1), . . . , hK(θn)), K

)
≤ 1√

2
V1(Pin) max

1≤i≤n
tan

(
θi+1 − θi

2

)
.
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The monotonicity of intrinsic volumes with respect to set inclusion then yields the
assertion.

Theorem 6.3. Let K ⊂ [0, 1]2 be a convex body, 0 ≤ θ1 < · · · < θn < 2π, θn+1 = θ1
and assume that 0, π

2
, π, 3π

2
∈ {θ1, . . . , θn}. Any least squares estimator P̂N,n of K on

P(θ1, . . . , θn) satisfies that

δN(P̂N,n, K) ≤
√

2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
+

a1
N + 1

,

where a1 > 0 is a constant.

Proof. Since 0, π
2
, π, 3π

2
∈ {θ1, . . . , θn} and K ⊂ [0, 1]2 it follows that

P (hK(θ1), . . . , hK(θn)) ⊂ [0, 1]2

and thus P (hK(θ1), . . . , hK(θn)) ∈ P(θ1, . . . , θn). Then the definition of P̂N,n and
Parseval’s identity yield that

N∑

i,j=0

(λij(K)− λij(P̂N,n))2 ≤
N∑

i,j=0

[λij(K)− λij(P (hK(θ1), . . . , hK(θn)))]2

≤ δN(P (hK(θ1), . . . , hK(θn)), K).

Thus, an application of Lemma 6.2 implies that

N∑

i,j=0

(λij(K)− λij(P̂N,n))2 ≤
√

2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
. (6.9)

Then the result follows from Theorem 4.3 and Remark 4.5.

Remark 6.4. If we choose n = 4m for some m ∈ N and equidistant angles θi :=
2π
(
i−1
n

)
for 1 ≤ i ≤ n, then 0, π

2
, π, 3π

2
∈ {θ1, . . . , θn} and we obtain

√
2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
≈
√

2π

n
≈





0.05, n = 100,

0.005, n = 1000,

0.0025, n = 2000.

In the following, we write θ(1), . . . , θ(n) for a permutation of θi ∈ [0, 2π), 1 ≤ i ≤ n
satisfying θ(1) ≤ · · · ≤ θ(n). From Theorem 6.3, we then obtain Corollary 6.5.

Corollary 6.5. Let K ⊂ [0, 1]2 be a convex body and let (θi)i∈N be a dense sequence
in [0, 2π) such that θi 6= θj for i 6= j and (θ1, θ2, θ3, θ4) = (0, π

2
, π, 3π

2
). For n,N ∈ N,

let P̂N,n be a least squares estimator of K with respect to the (N + 1)2 first Legendre
moments on the space P(θ(1), . . . , θ(n)). Then

δN(K, P̂N,n)→ 0 for n,N →∞.
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6.3 Reconstruction from noisy measurements

The reconstruction algorithm described in Section 6.1 requires knowledge of exact
Legendre moments of a convex body. The reconstruction algorithm can be modified
such that it allows for noisy measurements of Legendre moments. Let N ∈ N0, and
assume that K ⊂ [0, 1]2 is a convex body where measurements of the first (N + 1)2

Legendre moments are known. To include noise, we assume that the measurements
are of the form

λ̃kl(K) = λkl(K) + εNkl (6.10)

for k, l = 0, . . . , N , where εNkl, k, l = 0, . . . , N are random variables with zero means
and finite variances bounded by a constant σ2

N . Let 0 ≤ θ1 < · · · < θn < 2π satisfy
condition (6.1). Any polygon P̃N,n ∈ P(θ1, . . . , θn) satisfying

P̃N,n = argmin
{ N∑

k,l=0

(λ̃kl(K)− λkl(P ))2 : P ∈ P(θ1, . . . , θn)
}

is called a least squares estimator of K with respect to the measurements (6.10) on
the space P(θ1, . . . , θn). As the set P(θ1, . . . , θn) is closed in the Hausdorff metric,
Blaschke’s selection theorem ensures the existence of a least squares estimator.

As in Section 6.1, a least squares estimator can be found using polynomial opti-
mization. Let (h̃1, . . . , h̃n) be a solution to the polynomial optimization problem (6.6)
with the Legendre moments λkl(K) ofK replaced by the measurements λ̃kl(K) of the
Legendre moments in the objective function f . Then P (h̃1, . . . , h̃n) ∈ P(θ1, . . . , θn)
is a least squares estimator of K with respect to the measurements (6.10).

Now, let PN,n(ε) denote the random set of least squares estimators of K with
respect to the measurements (6.10) on the space P(θ1, . . . , θn). When the noise vari-
ables are defined on a complete probability space (Ω,F ,P), it follows by arguments
as in [11, p. 27] (see also [19, App. C]) that supP∈PN,n(ε) δN(K,P ) is (F ,B(R))-
measurable. We can then formulate the following theorem, which ensures consis-
tency of the reconstruction algorithm under certain assumptions on the variances of
the noise variables.

Theorem 6.6. Let (θi)i∈N be a dense sequence in [0, 2π) such that θi 6= θj for i 6= j
and (θ1, θ2, θ3, θ4) = (0, π

2
, π, 3π

2
).

(i) If σ2
N = O( 1

N2+ε ) for some ε > 0, then supP∈PN,n(ε) δN(K,P )→ 0 in mean and
in probability for n,N →∞.

(ii) If σ2
N = O( 1

N3+ε ) for some ε > 0, then supP∈PN,n(ε) δN(K,P )→ 0 almost surely
for n,N →∞.

Proof. Let P ∈ PN,n(ε) and let P̂N,n ∈ P(θ(1), . . . , θ(n)) denote a least squares esti-
mator of K with respect to the exact Legendre moments. By using the inequality
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(x+ y)2 ≤ 2(x2 + y2) for x, y ∈ R and properties of P and P̂N,n, we obtain that

N∑

k,l=0

(λkl(K)− λkl(P ))2 ≤ 2
N∑

k,l=0

(
(λ̃kl(K)− λkl(P ))2 + ε2Nkl

)

≤ 2
N∑

k,l=0

(λ̃kl(K)− λkl(P̂N,n))2 + 2
N∑

k,l=0

ε2Nkl

≤ 4
N∑

k,l=0

(λkl(K)− λkl(P̂N,n))2 + 6
N∑

k,l=0

ε2Nkl.

Using the upper bound (6.9) on
∑N

k,l=0(λkl(K)− λkl(P̂N,n))2 derived in the proof of
Theorem 6.3, we arrive at

N∑

k,l=0

(λkl(K)− λkl(P ))2 ≤ 4
√

2 max
1≤i≤n

∣∣∣∣tan

(
θ(i) − θ(i+1)

2

)∣∣∣∣+ 6
N∑

k,l=0

ε2Nkl,

where θ(1) < · · · < θ(n) is an ordering of θ1, . . . , θn and θ(n+1) := θ1. In the notation,
we suppress that the ordering depends on n. Then it follows from Theorem 4.3 and
Remark 4.5 that

sup
P∈PN,n(ε)

δN(K,P ) ≤ 4
√

2 max
1≤i≤n

∣∣∣∣tan

(
θ(i) − θ(i+1)

2

)∣∣∣∣+ 6
N∑

k,l=0

ε2Nkl +
a1

N + 1
.

The mean of the sum of the squared error terms are bounded by (N + 1)2σ2
N , and

the assumption that σ2
N = O( 1

N2+ε ) ensures that (N + 1)2σ2
N → 0 for N → ∞. As

the sequence (θi)i∈N is dense in [0, 2π), we further have that

max
1≤i≤n

∣∣∣∣tan

(
θ(i) − θ(i+1)

2

)∣∣∣∣→ 0

for n → ∞. Hence, supP∈PN,n(ε) δN(K,P ) → 0 in mean and in probability for
n,N →∞.

If σ2
N = O( 1

N3+ε ), then
∑∞

N=0(N+1)2σ2
N <∞, which ensures that

∑N
k,l=0 ε

2
Nkl → 0

almost surely for N → ∞. Then, supP∈PN,n(ε) δN(K,P ) → 0 almost surely for
N, n→∞.
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