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Summary

One of the standard assumptions in the analysis of survival data is that the individuals
under observation are independent. In many cases this is a very realistic assumption
because of the way the study was designed. In other cases, such as when studying
family aggregation, this assumption is not realistic or even desirable. A simple model
for dependent survival times is via the concept of frailty. The motivation for the
frailty model is that shared unobserved risk factors not included in the model induces
a dependence among a group of related survival times. These unobserved risk factors
are denoted frailties. Groups sharing some risk factors might be a family, a pair of
twins, mice born in the same litter or repeated measurements on one individual.

A particular area where the frailty models have been used is for the twin- and
adoption studies. For the twin- and adoption data, the shared risk factors might
be common genes and common environment. Indeed, one of the main purposes of
these studies is to separate the effect of environment and genes; is the similarity of
the mortality among individuals from the same family due to shared environment
or shared genes? The twin- and adoption studies are well suited for answering this
question. A higher clustering of survival times for monozygotic twins compared to
dizygotic twins is ascribed to a genetic effect and, similarly, a higher clustering of the
adoptee and its biological relatives compared to the adoptive relatives is ascribed to
a genetic effect. The problem of estimating the degree of association between family
members goes back to Galton in the last century.

Semiparametric models arise in situations where we have enough knowledge to
model some features of the data parametrically, but are unwilling to assume anything
about other features. One of the most used semiparametric models in survival analysis
is Cox’s proportional hazard model, where, in the two sample case, the treatment effect
is modelled multiplicatively, i.e. parametrically, whereas the hazard in each group is
left unspecified. The semiparametric frailty models considered here are all extensions
of Cox’s proportional hazard model.

The likelihood method is one of the most important methods for making inference
in statistical models, such as for estimating unknown parameters, constructing confi-
dence regions for the estimand and in hypothesis testing. In parametric models this
method is well understood and it is known that the method enjoys a number of nice
properties, both small sample properties as well as large sample properties. For the
semiparametric frailty models the classical maximum likelihood method fails. This is
due to the model containing an unknown infinite dimensional parameter. A devel-
opment of the method, the nonparametric likelihood method, is in these cases often
used.

The main part of this dissertation deals with investigating whether the nonpara-
metric likelihood method shares the same properties as the classical likelihood method.
A large part of the statistical inference, like finding confidence region and hypothesis
testing, is base on the large sample behaviour of the model. The large sample property
of the nonparametric maximum likelihood estimator in a particular frailty model, the
correlated frailty model, is investigated. The investigation is based on modern empir-



ical process theory. The semiparametric frailty models are examples of a general class
of semiparametric models called transformation models. The extension of the results
derived for the correlated frailty model to other transformation models is discussed.

The last part of the dissertation is joint work with Li Hsu, Lue Ping Zhao and
Hongzhe Li from the Fred Hutchinson Cancer Research Center, Seattle. In this work,
a general class of aggregation models describing correlated survival times within fam-
ilies is proposed and a estimating equation based technique to estimate the relevant
parameters is introduced. One of the aggregation models considered in this work is
the major gene model. If the interest is in the genetic effect on the general mortality
it is often realistic to assume that the effect is a result from a large (infinite) number
of genes, each of infinitesimal effect. In this case frailty models based on a continuous
distribution of the frailty, often the gamma distribution, is natural. Some diseases, e.g.
some cancers, are believed to be controlled by a single or a few genes. In the major
gene model the individuals are assumed to be in Hardy-Weinberg equilibrium and the
Mendel law is used to describe the effect of a number of genes on the clustering of
survival times, resulting in a discrete distribution of the frailty.
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1 Introduction

The frailty model is a multivariate model for survival times where an unobservable
latent variable, a frailty, induces a positive correlation between the survival times.
In this paper we give a review of some of the different frailty models used in survival
analysis. This is done in section 2. A discussion of nonparametric maximum likelihood
estimation and a comparison of some of the martingale methods and empirical process
methods for studying the large sample properties of the nonparametric maximum
likelihood estimator (NPMLE) is presented in section 3 and section 4. Finally, in
Section 5 it is shown that the approach of using the EM-algorithm for calculating the
NPMLE suggested in Gill (1985) and Nielsen et al. (1992) can be extended to general
frailty models for which the Laplace transform of the frailty distribution is known.

2 Frailty models

The notation of frailty was introduced by Vaupel et al. (1979) to model heterogeneity of
survival times. Suppose we observe survival times 77, ..., T;, and that these, conditional
on frailty variables 71, ..., Z,, have hazards

Zia(t) ,

for some baseline hazard «(-). The frailties are assumed to be unobservable random
variables and have to be integrated out of the hazard functions. This type of frailty
models is denoted individual frailty models. By the innovation theorem (Bremaud,
1981), the observed hazard is given by

E(Z|T; > t)odt) -

The first term in the above displayed equation is time dependent and therefore the
observed hazard can be quantitatively different from the conditional hazards. An
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example which nicely illustrates the effect of observing a heterogeneous population
is taken from Vaupel and Yashin (1985): Divorce rate for the entire population of
many countries follows a rise and then a decrease, with the peak at around the 7th
year. This phenomenon is called the 7-year crisis of marriage. Does this imply that
marriages are shakiest after a few year of marriage? This need not be the case. The
effect can also be produced if the entire population consist of two subpopulations;
one population which is “immune” or at low risk to divorce and another for which
the risk is steadily increasing. In the beginning the risk for the entire population will
increase because of the increasing risk in the second subpopulation. After some time
the majority of couples in the high risk group are divorced and the risk for the entire
population decreases.

In this paper the focus will be on the use of frailty to model multivariate survival
times. The motivation for this type of frailty models is that unobservable common
risk factors (covariates) not included in the model induce a correlation among a group
of related survival times. Clayton (1978) was one of the first to use the idea of an un-
observable covariate in the Cox regression model to model association for multivariate
survival times. Groups sharing some risk factor might be a family, a pair of twins, mice
from the same litter or repeated measurements on one individual. A typical application
of frailty models is the twin- and adoption data (see e.g. Nielsen et al., 1992, Yashin et
al., 1995, and Petersen, 1996). For the twin- and adoption data, the shared risk factors
might be common genes and common environment. Indeed, one of the main purposes
of these studies is to separate the effect of environment and genes; is the similarity
of the mortality among individuals from the same family due to shared environment
or shared genes? The twin- and adoption studies are well suited for answering this
question. A higher clustering of survival times for monozygotic twins compared to
dizygotic twins is ascribed to a genetic effect and, similarly, a higher clustering of the
adoptee and its biological relatives compared to the adoptive relatives is ascribed to a
genetic effect.

The frailty is usually modelled as an unobserved random variables acting multi-
plicative on the baseline hazard. The simplest case, the shared frailty model, is where
all individuals in a group share the same value of the frailty. Suppose we observe
survival times T;;, 2 = 1,...,n,j = 1, ..., m, corresponding to the j’th individual in the
7’th group. Then the hazards given frailty variables Zi, ..., Z, are assumed to be of
the form

The most common choice of distribution for 7; is a gamma distribution with mean
one and an unknown variance f. The value # = 0 corresponds to independence and a
high value of # should preferable correspond to a high correlation between the survival
times. There is some tradition in using the gamma distribution as the distribution for
latent variables, e.g. the negative binomial distribution can be thought of as describing
the number of accidents experienced by individuals in a time interval if these are
Poisson distributed with parameter A and A is assumed to be gamma distributed
(Greenwood and Yule, 1920). The choice of the gamma distribution here is made
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mostly for mathematical convenience. Other choices for the distribution of the frailty
have been discussed in a series by Hougaard (1984, 1986, 1987) and Aalen (1992),
among these are the positive stable distribution. A common feature of the different
distributions considered is that the Laplace transform of the distributions are known,
which means that the observed survival function is readily calculated. In Section 5
it is shown that if the Laplace transform of the frailty distribution is known then
estimation by means of the EM-algorithm is, in principle, straightforward.

Under various assumptions on the joint distribution of the survival times and the
censoring times, several authors have shown identifiability of the multivariate survival
function under right censoring (see e.g. Dabrowska, 1988, and Pruitt, 1993). What
remains for the frailty model is from the observed joint survival function to identify
the baseline hazard function and the distribution of the frailty. In the shared frailty
model the joint survival function for a pair of survival times (77, 73) is

S(tl,tQ) = Eexp(—Z{A(t1)+A(t2)})
Lz{A(t1) + A(t2)}

where Lz denotes the Laplace transform of Z and A(t) = fot ads is the integrated
baseline hazard function. Oakes (1989) showed, using the theory of copula models,
that from the observed survival function, a frailty distribution with mean one can be
identified. Another way of explaining this result is to note that from the observed
survival function one can trivially identify

LAAW®} , LA2A()}
One can think of this observable pair as coming from an individual frailty model
Zexp(X)a(t),

where X is a covariate that attains two values; 0 and log 2. The identifiability problem
for this model has been considered by Elbers and Ridder (1982) and Kortram et al.
(1995), and it was shown that frailty distributions with mean one can be identified.
There are, fundamentally, two ways of parametrizing the model; by the conditional
hazards and by the observed hazards. These two approaches are called respectively the
conditional- and the marginal approach. If the frailty is thought of as an unobserved
covariate in the Cox regression model and if the frailty actually were observed then
the conditional hazards are what one would be interested in estimating. With this
point of view it is natural to parametrize with the conditional hazards. On the other
hand, if for the marginal data one would apply a Cox regression model then it is
natural to require that the multivariate model be consistent with the marginal model
and in this case the observed hazards are of interest. The most common approach
is the conditional approach (Clayton, 1978, Nielsen et al., 1992, Yashin et al., 1995),
though the marginal approach is also used (Prentice and Cai, 1992). Of course the
interpretation of the parameters in the two parametrizations are very different.



To illustrate the difference between the two approaches, consider the shared gamma-
frailty model in the bivariate case. The observed joint survival function in the condi-
tional approach is

S(ti, 1) = (1+0{A(t) + A(t)) 0.

Let the integrated hazard function A be fixed. For 6 tending to zero, the observed
survival function tends to exp{—A(t;) — A(t2)}, which corresponds to independence
of the two survival times. The observed survival function is, as a function of 6, easily
seen to be increasing. For # tending to infinity, the observed survival function tends to
one for all ¢1,%,. The reason for this can be found by looking at the observed marginal
hazard function

1
T+ oA

which tends to zero for # tending to infinity for all £. At the same time as the correlation
parameter 6 converges to infinity, the probability of observing failure in all finite
intervals [0, ] converges to zero. If we want the marginal observed survival function

S(t) = {1+0A()} "

to be constant then the integrated hazard should, for 6 converging to infinity, be of
the order

A(t) = 07HS(t) " — 1} & S(t)~°,

which converges to infinity. Now, if we instead parametrized with the marginal in-
tegrated hazard function, I'(t) = —logS(t) = 6 'log{1 + 0A(t)}, then the observed
joint survival function can be written as

S(ty, ts) = (exp{OL(t)} + exp{Ol(ty)} — 1) .

As 6 tends to zero, the observed joint survival function tends to exp{—T'(¢1) — I'(t2)},
corresponding to independence. The survival function is still increasing as a function
of # and for € tending to infinity the observed survival function tends to exp{—I'(¢; V
to)} = S(t; V tg), corresponding to maximal dependency. The advantage of the
marginal approach compared to the conditional approach is that the effect of the
dependence parameter and the effect of the hazard is seperated.

For the marginal approach the estimation of the hazard function and the correlation
parameter becomes almost orthogonal. This was seen in Oakes and Manatunga (1992)
for the share frailty model with positive stable frailty distribution and Weibull marginal
hazards, where they found a small correlation between the estimators of the hazard
parameters and the dependence parameters. In view of the discussion above, we expect
this also to hold for the shared gamma-frailty model.

The difference between the two approaches becomes more apparent when we include
covariates. This can be done by assuming that the conditional hazards follow a Cox
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regression model or that the observed hazards follow a Cox regression model. As a
consequence of the former, it follow from a result of Elbers and Ridder (1982) that for
the model with covariate, frailty distributions with mean one can be identified from
marginal data. For the twin data this means that from data of just one of the twins we
can estimate the correlation between the twins, which of course is nonsense. Therefore
the parameter 6, in the conditional approach, must describe something more than
just the correlation between the individuals. To explain this, consider the marginal
observed hazard function

1
1+ 0exp(B x;)A(t)

exp(B8x;)al(t) -

It is seen that for the marginal distribution, # is a measure of the departure from the
proportional hazard model. This interpretation of the parameter is of course inherited
in the multivariate model. Thus for the multivariate model, # seems to have the role
as both a correlation parameter and a parameter describing the departure from the
proportional hazard model.

For the stable distribution model suggested by Hougaard (1986) the parameter in
the positive stable distribution, v say, cannot be identified from marginal data in the
conditional approach. The is due to the fact that the observed hazards

exp(y8a;) A1) a(t)y -

are also proportional. Clearly, only y3 and A(¢)""'a(t)7y can be identified.

A consequence of the conditional approach was illustrated in Yashin et al. (1995).
When applying the shared gamma-frailty model to the twin data they found a higher
value of # for the monozygotic twins than for the dizygotic twins, as one would expect,
but they also found a steeper integrated hazard for the monozygotic twins compared
to the dizygotic twins. However, monozygotic twins are as individual like dizygotic
twins and have the same mortality. The result is a consequence of parametrizing
by the conditional hazards as described above. This was one of the reasons which
lead Yashin et al. (1995) to split the frailty for the j’th individual in a group into
two component, Z;) = Zy + Z;, where Z; is a common shared component and Z;
is an individual component. For the twin data the frailty Z, describes the common
genes and environment and Z; models possible heterogeneity between individuals after
having accounted for the common genes and the common environment. Yashin et al.
(1995) assume that the frailties Zy, Z; are independent and gamma distributed with
different shape parameters but the same scale parameter. The model is denoted the
correlated frailty model or the litter model. Let 6 and 6* denote the variance of 7
and Zj, respectively. Yashin et al. (1995) argues that the correlation between Z;) and
Z(, i.e. /(6" + 0), is a proper index of the correlation between the survival times.
This index can of course not be identified from the marginal data.

Korsgaard and Andersen (1996) extended the litter model of Yashin et al. (1995) to
study genetic effects. Assuming for a family that the father and mother are unrelated,
additive frailties for the father (F), the mother (M) and one offspring (O) is given by
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Z(F) = Zl + Z2
Z3+ 2y
Z(o) = 1+ 253.

N
5
I

The frailty Z; represent the part of the fathers genome affecting frailty that is transmit-
ted to the offspring, Z5 the corresponding part of the fathers genome not transmitted
to the offspring and so forth. The Z;’s are assumed to be gamma distributed with
shape parameter 77/2 and scale parameter 7, since father and offspring on average only
share half their genes, so the correlation between Z(py and Z() is one half. The model
is further extended in Petersen (1996) to allow for environmental effects.

A natural generalization of the litter model presented by Yashin et al. (1995),
which also contains the genetic model of Korsgaard and Andersen (1996) and the
genetic-environmental model of Petersen (1996), is given by

Z4;) =B, Z, 1)

where Z = (Zy, ..., Z,) are independent gamma distributed random variable with shape
parameter v = (v, ..., 1) and scale parameter n = vy + ... + v, and

(B)) = by = 1 the j’th individual has the £’th component

3k = ik 0 otherwise.

This generalization is also discussed in Petersen (1996). In Appendix A.3 the formulas
for the observed likelihood function and the conditional expectation of the frailty
variable given the observable variables, obtained in Parner (1996a,b), is generalized
to the general setting (1). These formulaes are useful for calculating the NPMLE by
means of the EM-algorithm in the conditional approach.

The parameters in the correlated gamma-frailty model can be identified. This was
shown in Yashin et al. (1994) and in Parner (1996a). In Appendix A.1 the proof of
Parner (1996a) is generalized to more general additive gamma-frailty models. One
might naturally ask if this is the case for all correlated frailty models. The answer to
this question is likely to be negative; the observed joint survival function for a pair of
survival times is, for (Z(1), Z(2)) = (Zo + Z1, Zo + Z5), equal to

S(u,0) = Lz, z0,{Au), A(v)} = Lz, {A(u) + A(v)} Lz, {A(u)} Lz,{A(v)} -

Assume that EZ(;) = 1, that Z;, Z, follow the same distribution and that A is smooth
enough such that the functions u — S(au, bu) can be Taylor expanded on some finite
interval for all a,b € R. Then the observed survival function is determined by its
derivatives at zero. It is straightforward to see that for this system of equations there
are more unknowns than equations. Even though it is not a linear system of equations,
it does indicate that the moments cannot be identified and therefore the distribution
of Zy, Z; neither.
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The model of Korsgaard and Andersen (1996) assumes that the effect of the genes
on mortality result from a sum of a large (infinite) number of loci, each of infinitesimal
effect. The effect of death of a particular decease could also be controlled by a single
or few Mendelian locuses. Such models, denoted major gene models, are described in
Hsu et al. (1997). In the following we present the simplest example of the major gene
model where we study the effect of one gene with two alleles, B and b. Consider again
a family consisting of a father (F'), a mother (M) and one offspring (O). Let p denote
the frequency of the alleles B. Assume that the frequency of the genotypes BB, Bb
and bb are p?, 2p(1—p) and (1—p)2. This can be derived in the following way: Let A,
l=1,2, j=F M,O, denote the alleles of each of the fathers, mothers and offsprings.
We assume that the four alleles of the father and mother are independent and take
values B and b with probability p and (1—p). Further, let A; = (A;1, Aj2), 5 = F, M, 0
and let us for simplicity denote the event {A; = Bb or A; = bB} by {A; = Bb}. Then
A; takes values BB, Bb and bb with probability p?, 2p(1 —p) and (1—p)?, respectively.
We assume that the genotype of the offspring follows a Mendelian transmission, i.e.
(Ao1, Ar) and (Ape, Apr) are independent and the conditional distribution of Ag;
given Ap takes the values B, b with probability

P(AOlzB‘AF:bb) = 0,

and similarly for (Apg, Apr). This specifies the joint distribution of (Ag, Ay, Ao)- Let
Gj = (Gjl;GjQ); where Gjl = 1(AJ = BB) and ng = 1(14] = Ba) For the major
gene model, the frailties for the family are given by Z;) = exp(y'G;), j = F, M, O.

Because of symmetry in the distribution of (Z(x), Z(ar), Z(0)) We have to assume
either (A) 71,72 < 0 or (B) p > 1/2 in order to be able to identify the parameters.
This corresponds well with intuition; the genotype BB denotes either the genotype
with the lowest mortality or the allele B denotes the most common allele. In practice,
both assumptions (A) and (B) are often satisfied. Under the hypothesis y; = 9, the
allele B is dominating in the sense that the mortality of the genotypes BB and Bb are
the same. Another hypothesis of interest is whether the individuals are independent
or not. Assume for the moment that v, = 75 = . The hypothesis p = 1 corresponds
to no mutating gene and the hypothesis v = 0 corresponds to no effect of the mutating
gene. Because we only observe the mortality of the individuals, and not the genes, we
cannot distinguish between the two hypotheses. It is therefore natural to incorporate
some prior knowledge about the parameters. This could be that from experience one
knows that p € [1/2,1 — €] or v € (—o0, —¢], for some € > 0.

In Appendix A.2 it is shown that if either there are covariates in the model or the
baseline hazard function is Weibull then the parameters can be identified. In Appendix
A4 nonparametric maximum likelihood estimation by means of the EM-algorithm is
discussed, assuming conditional independence of all individuals given the genes and
the observed covariates. In practice this approach is feasible for moderate family sizes.

If for the multivariate survival times the primary interest is in the regression pa-
rameter then using the pseudo likelihood function as if the survival times were inde-
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pendent, i.e. the product of the marginal likelihood functions, yields asymptotically
normal estimators (Wei et al., 1989). The derivation of the ordinary likelihood func-
tion is based on conditional independence of the whole family given the genes. If we
only believe this holds locally, e.g. only for one generation up and one generation down
in the family tree, then we can use the following generalization of the method of Wei
et al. (1989): Let Y;;(¢) indicate (by the value one) if the 7’th individual in the j'th
group is a risk at time ¢t— and define Y;;(¢; 8) = Y;;(¢) exp(,@T:nij), where x;; is an
associated covariate. Let N;;(t) indicate if the ¢j'th individual has failure before or
at time ¢ and let \;;(u|G;;) denote the stochastic intensity if the genes actually were
observed, \;;(u|Gi;) = Yi;(u; B) exp(v' Gij)a(u). The log-likelihood function for the
full, partially unobserved, data set is

ii /OT log{ij(u|Gyj)} dNij(u) — /OT Aij(u|Gy) du .

i=1j=1

If we let F¢ denote the information in (N;4,Y;; : j = 1,...,m) up to time u and further
let
Nj(u) = By (ulGig) | F, )

then the observed log-likelihood function can be written

3 /0 “log{A\Z (u)} dNy(u) — /0 "0 (u) du

i=1j=1

Now, let G¥ denote the information from the j’th individual, its parents and the
offsprings in the 7’th group and let AY;(u) = Ey(\i;(u|Gy;)|G,) ). Then the following
pseudo likelihood function

) | Tog (A (@)} dNy(w) = [ A5 (w) du

i=1j=1

yields consistent estimators (Appendix A.5). Maximizing the pseudo log-likelihood
function, however, requires numerical integration. A comparable estimator is proposed
in Hsu et al. (1997).

3 Nonparametric maximum likelihood estimation

Martingale methods have traditionally been one of the main tools when studying
asymptotics in survival analysis. These methods do, however, not generalize to the
frailty models. Murphy (1994, 1995) used modern empirical process theory (see van
der Vaart and Wellner, 1996) to prove asymptotic normality and efficiency for the
nonparametric maximum likelihood estimator (NPMLE) in the shared gamma-frailty
model without covariates. These methods were generalized to the correlated gamma-
frailty model, allowing for covariates, in Parner (1996a,b). In this section we discuss
nonparametric maximum likelihood estimation with starting point taken in the Cox

13



regression model. This allows for comparing the martingale methods with the empirical
process methods. (For details about the martingale methods used in survival analysis
the reader is referred to Andersen et al., 1993.) The semiparametric frailty models
are examples of transformations models. For a transformation model we observe Y =
(Y1, ..., Yy), say, where Y are real and there exists unknown absolutely continuous
transformations ¢; such that Y; = ¢;(7}) and the distribution of (77, ..., T;) given some
possible covariate @ is assumed to follow a parametric model with density po(-; x, &).
The density of Y given @ is then of the form

Po(¢1(Y1), .-, $a(Va); , €) 1 (Y1)...65(Ya) -

(for more details on transformation models see Bickel et al., 1993). Many of the
methods developed in Murphy (1994, 1995) and Parner (1996a,b) apply for the non-
parametric maximum likelihood estimator in transformation models (see e.g. Murphy
et al., 1996¢).

Consider independent, possibly censored survival times 77, ..., T,, with hazard func-
tions

\i(u|e;) = exp(B8 &) a(u) ,

where x; is a covariate vector for the ¢’th individual, 3 is a column vector of regression
parameters and «(-) is the baseline hazard function, i.e. the Cox regression model. As
before we let Y;(¢) indicate if the i’th individual is a risk at time ¢—, define Y;(u; 8) =
Y;(u) exp(B' ;) and let N;(t) indicate if the i’th individual has failure before or at
time ¢. The likelihood function in the Cox regression model is

T T1 (¥ B)a)} > exp(~ [ Yi(us ). ®)

i=1u<T

For fixed 3, it is straightforward to see that the likelihood function tends to infinity
for the integrated hazard function tending to a discrete integrated hazard function
with jumps only at the observed failure times, i.e., where >." | N;(-) jumps. Hence the
maximum likelihood estimator does not exists. This is a general phenomenon for trans-
formation models. If the interest is in the Euclidean parameters, there are in principle
two ways to proceed. The first one is to calculate the efficient score function (Bickel
et al., 1993) and then base inference about the parameter of interest on the efficient
score function. The efficient score function usually cannot be found on explicit form
and has to be approximated, allthough it is possible for the Cox regression model (see
e.g. Bickel et al., 1993). The approximation approach was taking in Maguluri (1993)
for the shared gamma-frailty model for bivariate survival times with possibly differ-
ent marginal survival functions. The second way is to use nonparametric maximum
likelihood estimation (NPMLE). This is nowadays often referred to as semiparamet-
ric maximum likelihood estimation or just maximum likelihood estimation due to its
resemblance to the ordinary maximum likelihood method.
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For the Cox regression model, Cox (1972, 1975) suggested to base inference about
(3 on the partial likelihood function

i (z,"_l exp(B) ))AM(“) | .

i=1u<r L1 Yi(u)exp(B z

and gave a derivation of (3) as a product of conditional probabilities. The integrated
hazard function is usually estimated by the Breslow estimator

/ (21/ u) exp(B m,))ldN.(u),

where B denotes the Cox estimator.

Johansen (1983) gave an explanation for the Cox estimator and the Breslow esti-
mator by means of maximum likelihood estimation. The explanation is based on the
observation that if one assumes that the baseline hazard function is piecewise constant
on intervals of length € and denotes the maximum likelihood estimator of this sub-
model for (3,, Ac), then (3., Ac) tends to the Cox estimator and the Breslow estimator
for € tending to zero. Johansen (1983) constructed a Poisson-extension of the Cox re-
gression model which allowed for general integrated hazard functions. The maximum
likelihood estimator, according to definition of Kiefer and Wolfowitz (1956), was found
to be a discrete integrated hazard functions with jumps only at the observed failure
times and which maximizes the likelihood function

IT T 0 B)AA@) N exp(~ [ vi(us B)aA) (@

i=1u<T

For fixed 3, the likelihood function is maximized by

At / (ZY u) exp(8 wz)>1dN.(u)

and the profile likelihood function for 3 is easily seen to be Cox’s partial likelihood
function. Large sample properties of the Cox estimator and the Breslow estimator was
derived using martingale techniques by Andersen and Gill (1982), among others.
Following the line of Johansen (1983), one could define the NPMLE as the max-
imum likelihood estimator in an extension of the model. However, there are many
extensions of the model which seem reasonable depending on which aspect of the
model one focuses on. All of these extensions need not produce estimators with good
asymptotic properties. Comparing the likelihood function (4) of Johansen (1983) with
the likelihood function (2) one sees that «(u) is replaced by AA(u) and dA(u) in the
absolutely continuous case is replaced by dA(u) in the discrete case. This procedure
is usually taken as a definition of the NPMLE in transformation models. Gill (1989)
gave an explanation for the asymptotic normality and efficiency of the NPMLE in
cases when it is already know that the NPMLE is consistent. In Parner (1996a) the
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NPMLE was motivated by making the connection to a classic method for proving
consistency of the maximum likelihood estimator which goes back to Wald (1949) and
thereby explaining the consistency of the NPMLE. We shall in the following repeat
the argument.

Let P, denote the distribution of a single observation and let P, denote the em-
pirical distribution of the data. If a maximum likelihood estimator, according to the
definition of Kiefer and Wolfowitz (1956), exists, ¥, say, then

aP- dP
/ log —¥ dp, > / log Z% ap, | (5)
du du
where 1 denotes a measure dominating Py and Py,. Assume that for any subsequence

of {n} we can find a further subsequence, {ny}, such that ¢,, — ¥ for some . From
the uniform law of large numbers it then follows that the inequality (5) in the limit is

dP, dP,
log X% gp, > / ] o 4P, . 6

On the other hand, from the positivity of the Kullback-Leibler information we have
dP, dP,
/ log d—/j’ aPy, < [log d—/fO dP,,

with equality if and only if Py = P, (see e.g. Hoffmann-Jgrgensen, 1994, section 8.28).
So if the model is identifiable then (6) implies ¥ = 1)y. Since the limit is independent
of the subsequence we get that QZH — 9. One should note that the argument above
only depends on the log-likelihood difference log(dPy, /du) — log(dPy,/dp). In the
Cox regression model, ¢ = (3, A) where A is an absolutely continuous integrated
hazard function. To define the NPMLE we simply extend the above difference to
allow for a discrete integrated hazard function in as ‘smooth’ a way as possible, and
then define the NPMLE as the value which maximizes the first (extended) term of
the difference. Since the true integrated hazard function is absolutely continuous we
can no longer compare the NPMLE with the true value. Instead we compare the
NPMLE with a sequence converging to the true value, 1, = (8,, An), where A, is
discrete and A, — Agy. If for any subsequence we can find a further subsequence,
{ny}, such that 'Jnk — 1 = (8, A) with A absolutely continuous, and if the extension
is ‘smooth’ enough, then the extended log-likelihood difference still converges to minus
the Kullback-Leibler information

P
/ log % dP% / log & : Y 4p,, . (7)
1

This means that the extension we make should become smaller and smaller as n tends
to infinity. Assuming that the parameters are identifiable we get, in the same way as
above, that 1/7,1 — 1.

For the Cox regression model, assuming A; is absolutely Aj-continuous, the log-
likelihood difference is

2/1 “g;;gjl()}dzv,-j(u)—/o (quA1+/ (u; B)dAs |
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since dA;(u)/dAs(u) = ai(u)/az(u). The expression is also well defined for A;, Ay
discrete with mass only at the observed failure times, because then A; is absolutely As-
continuous with derivative AA;(u)/AAy(u). In this way we extend the log-likelihood
difference to allow for discrete integrated hazard functions. The nonparametric log-
likelihood function for a discrete integrated hazard function is then given by

18 7 r
=3 [ log{¥i(w; B)AAw)} dNi(w) - [ Vi(us B)dA.
i=170 0
Informally, we can write the log-likelihood function as
12 T T
=Y [ log{Yi(w; B)dA(u)} dNi(w) — [ Vi(u; B)aA
ni=Jo 0

where in the first term dA(¢) = «(t) in the absolutely continuous case and dA(t) =
EyY (t; By)ao(u)n x AA(t) in the discrete case. The term EyY (t; 8,)ao(u)n in the
discrete case is used for norming the nonparametric log-likelihood function. In this case
if nAA(t) tends to a(t){EoY (t; By)ao(t)} " as n tends to infinity, the nonparametric
log-likelihood function evaluated at (3, 4) = (8, [ nAAd{n~'N.}) is asymptotically
equal to the true log-likelihood function evaluated at (3, [ adt).

We have demonstrated that if the NPMLE in transformation models stays bounded
then, under some regularity condition, it will be consistent. In the next section it is
argued that it also will be asymptotically normal and efficient. The boundedness
of the NPMLE could of course be obtained by putting a bound on the Euclidean
parameters and for the transformations ¢; assuming that nA¢;(u) is bounded for
all n and u. Certainly it is of interest to consider nonparametric maximum likelihood
estimation also in the unbounded case. Because the nonparametric likelihood function
is an approximation to the real likelihood function, which in some sense is not well
behaved, it is clearly not given in advance that the NPMLE in this case should exists
nor that it stays bounded, even though the former property usually is straightforward
to verify.

The nonparametric likelihood function is not well behaved in all respects. The
individual gamma-frailty model with arbitrary baseline hazard is not identifiable. Still,
Korsgaard and Andersen (1996) claims that the nonparametric profile likelihood for
the variance parameter of the frailty distribution is not a constant function of 6, as
would be expected. Further work is needed to give a satisfactory explanation for this
phenomenon.

Let us return to the shared gamma-frailty model. Murphy (1994, 1995) proved
asymptotic normality and efficiency of the NPMLE in the shared gamma-frailty model,
in the conditional approach, under the assumption that the unknown variance param-
eter 6 is known to lie in a bounded set. Since f is a measure of correlation between
the individuals such a bound may in practice be difficult to find. Following the discus-
sion in Section 2, it is also of interest to consider NPMLE in the marginal approach.
In appendix A.6 it is shown that the NPMLE in the marginal approach and the un-
restricted case stays bounded and hence is asymptotically normal and efficient. By
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reparametrizing in the conditional approach by the observed discrete hazard function
and using some simple algebraic manipulations it turns out that the result also trans-
lates to the NPMLE in the conditional approach; the result of Murphy (1994, 1995)
is valid also in the case where # is allowed to vary freely.

4 Asymptotic normality of the NPMLE

As argued in Gill (1989), the NPMLE will also be the maximum likelihood estimator
(MLE) in any parametric submodel passing through the point given by the NPMLE.
For smooth parametric submodels the MLE solves the likelihood equation. Given
the consistency of the NPMLE, we might try to identify the limiting distribution of
the NPMLE by making a first order Taylor expansion of each of the score functions.
Indeed, this analogue for the proof of the MLE in the finite dimensional case does
identify the limiting distribution of the NPMLE if we choose enough submodels so
that the score functions identify the NPMLE and thereby asymptotically the true
parameter.

Consider submodels of the form € — v, := 9 + €(hg, [; hadA), where hg is a
vector with the same size as 3 and h4 is a function of bounded variation. Define
h = (hg,ha) and let L, denote the logarithm of the likelihood function. The score
operator is defined as

0

Sa(@)(h) = 5 La(¥e) | = g Lo () + Lan(¥)(ha) ,

e=0

where

1 n T T
wa:=5;AXMM—AXMWMA

Lan(¥)(ha) = %jzl/(: ha dN; — /OTY;(,@)hA dA .

This formula is valid for A absolutely continuous, giving the score operator for the
ordinary likelihood function, and for A discrete, giving the score operator for the
nonparametric likelihood function, so we may informally write

S THEE(@) = SE () (8)

It is this relationship which really explains the asymptotic normality and efficiency of
the NPMLE, assuming that the censoring is noninformative about (3, A) (Arjas and
Haara, 1984). Gill (1989) takes (8) as the definition of the NPMLE.

Let S(¢) denote the mean of S;(¢). Suppose that S(v) is Fréchet differentiable at
1 with derivative S,/,O;

Suw@)(B) = S0+ e)(h)

Oe 0
= —{ops(hp)B + 0sa(hg)A +0as(ha)B + oaa(ha)A},

18



where
ops(h)B = hy [ Eo(Y(B) XX )dAo
opath)A = Ry [ B (B)X)dA
oasha)B = [ Ep(¥ (Bo) X)had Ao
oanha)A = [ Bo(Y(B))hadA .

The operator 0 = (0¢,04) = (0¢e + Tag,0ea + 044) is called the Fisher information
operator. Let H4(t) = [J hads. It is useful to think of the Fréchet derivative as being
of the form

Sl =T i == i) (20 ) (B
where
ing(isd) = [ Bo(Y (Bo)(XXT)ip)dAs
isalit) = Eo(Y (B))()X)
iap(t,) = Bo(Y (Bo)(1)X)a(t
iaals,t) = Bo(Y(Bo)(s) s =1} .

One should think of the operators in (9) as generalized matrices with multiplication
for operators A, B, A- B given by

in the discrete case and

A.B:/A@onqﬁ

in the absolutely continuous case. The transpose mapping is defined as A(s,t)" =
A(t, s). Note that the operator i is not symmetric.

Due to (8), the Fréchet derivative is calculated with the true likelihood function.
Suppose that the Fréchet derivative is continuously invertible. For the Cox regression
model the continuous invertibility of the Fréchet derivative is relatively straightforward
to verify. For the correlated gamma-frailty model a general argument which uses the
mixture construction was used in Parner (1996b). The proof of asymptotic normality
is classical in the sence that, by means of empirical process theory, a first order Taylor
expansion establishes the relationship

Vi — o) = =S5 {V/nSu(tho)} + 0p(1) - (10)
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The score operator y/nS, (1) in the Cox regression model can be written as
where Vg, = \/nLg, (o) and

n 7
Vian () = n~ 25" N () — /0 Yi(s; By) dAo(s) .

i=1
It is seen that Vy, is a sum of i.i.d. processes of uniformly bounded variation. The
score operator for general transformation models is of this form. It can be shown
that the asymptotic normality of the score operator is equivalent to the asymptotic
normality of Vy,. For the Cox regression model (Andersen and Gill, 1982) and the
shared gamma-frailty model (Murphy, 1995), V,, can be written as | U,dM,,, where U,
is predictable and M,, is a martingale. In this case V,, is also a martingale. Central
limit theorems for martingales can then be used to verify that V,, is asymptotically
normal. In Parner (1996b, Lemma 2) a central limit theorem for processes of bounded
variation defined on a finite interval was proved. Using that .5.'1;01 is continuous, an
application of the continuous mapping theorem (see e.g. van der Vaart and Wellner,
1996) gives that the NPMLE is asymptotically normal.

The equality (8) implies that the NPMLE is efficient; from (10) it follows that
the NPMLE is an asymptotically linear estimator sequence. Applying (8) and the
argument in van der Vaart (1995, p. 25 line 3-10 from the bottom) we see that the
influence function is contained in the closed linear span of the tangent space and from
Proposition 1 in van der Vaart (1995) it follows that the NPMLE is efficient.

Let € denote the finite-dimensional part of ¢». The asymptotic variance of

9" (VG — )} = Vidgd (€, — &) + [ gad(Ai— A0)}

is given by

g”1<ﬁ$@>:0%w<m$¢>=£b£@+/m%mm%- (1)

For the Cox regression model it is possible to find an explicit expression for the inverse
of the Fisher information operator. In general, as for the correlated gamma-frailty
model, this is not possible. Because all parameters are estimated at a parametric rate,
\/n, one might expect that the asymptotic variance of the NPMLE can be estimated
by the inverse of minus the second derivative of the nonparametric log-likelihood func-
tion with respect to the Euclidean parameters and the jumps of the integrated hazard
function. This result was stated in Gill (1989) in the general case and in Murphy
(1995) for the shared gamma-frailty model. In the Cox regression model the asymp-
totic variance of the NPMLE was found by martingale methods in Andersen and Gill
(1982) and here it is easy to verify that the inverse of minus the second derivative of
the nonparametric log-likelihood function is a consistent estimator for the asymptotic
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variance of the NPMLE. In Parner (1996b) it was proved, for the correlated gamma-
frailty model, that minus the second derivative of the nonparametric log-likelihood
function with respect to € and the jumps of A, evaluated at wn, 3n(wn) say, is in-
vertible with probability tending to one and a consistent estimator of the asymptotic

variance of the g™ {\/n(¢n — 1)} is given by
g(—irjn(wn)ilgd )
where g; = (g¢, {g9(w)}:) and {u;} denotes the failure times.

In practice it is not always necessary to invert the hole matrix j,, to obtain estimates
of the asymptotic variance of the NPMLE of some of the parameters. Consider for
example the shared gamma-frailty and the case where one is interested in estimating
the asymptotic variance of the NPMLE of #. This variance can be used for testing
independence of the individuals. The EM-algorithm, as in Nielsen et al. (1992), is used
to calculate the profile log-likelihood for #. According to the above result, the inverse
of minus the second derivative of the profile log-likelihood is a consistent estimator
of the asymptotic variance of the NPMLE for #. This derivative may in practice
not be calculable. One could take discrete derivatives of the profile log-likelihood
function. All such discrete derivatives, under natural regularity conditions, are shown
to be consistent estimates of the asymptotic variance in Murphy and van der Vaart
(1996b). Finally, one might also use the nonparametric likelihood function to make
likelihood ratio inference. Murphy and van der Vaart (1996a) prove that the likelihood
ratio statistics for the parametric part for semiparametric models have asymptotic x2-
distributions.

Let us return to the Cox regression model to see what we have gained, if anything,
by the empirical process techniques. Let jpn(,B) denote minus the second derivative
of the nonparametric profile log-likelihood function based on the first n observations.
Then j,,(B) converges in probability to a deterministic matrix X for B converging
to B, in probability (for details, see Andersen and Gill, 1982). In Andersen and Gill
(1982), using martingale methods, the asymptotic distribution of the Cox estimator
and the Nelson-Aalen estimator was studied under the assumption that ¥ is positive
definite. In Parner (1996b), using empirical process methods, conditions on the covari-
ates which ensure continuous invertibility of the Fisher information operator o were
identified. If we let o, denote the information operator for Cox’s partial likelihood,
i.e. 0,(hg) = hj %, then the following formula holds

Op = 085 — OBATA40BA -

In the finite-dimensional case the invertibility of o would imply that o, is invertible.
In Parner (1996b) it is shown that for the Cox regression model o, is indeed invertible,
hence X is positive definite.

If the covariates are time independent, the condition which ensures invertibility of
Fishers information operator states that the covariates should not be collinear in the
following sense; if the equality

Po(CTX = C()) =1
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holds for a vector ¢ and a constant ¢y then ¢ = 0. In other words, the condition states
that the covariates are affinely independent. If the covariates are time dependent
and exogenous, i.e. the Cox regression model is assumed conditional on X = x, they
should, as processes, be affinely independent; if the equality

Py(e" X (u) = co(u), u €[0,7]) =1

holds for a vector ¢ and a function ¢y then ¢ = 0. If the covariates are time dependent
and not exogenous a modification of the latter condition is needed. These conditions
on the covariates are natural and cannot be avoided.

In Appendix A.7 another comment on one of the technical conditions in Andersen
and Gill (1982) is given.

5 The EM-algorithm for frailty models

Gill (1985), in a discussion of the paper by Clayton and Cuzick (1985), suggested to
use the EM-algorithm for calculating the NPMLE in the shared gamma-frailty model
in the conditional approach. This approach was further developed in Nielsen et al.
(1992). In this section the approach of Gill (1985) is generalized to shared frailty
models for which the Laplace transform of the frailty is known, as for the gamma
distribution.

Suppose that we observe independent, possibly censored survival times and that
these conditional on a frailty variable Z have hazards given by

Zexp(B'z;)alt) ,j=1,...m, (12)

where x; is a covariate for the j’th individual. Let Yj(¢) be an indicator for the
7’th individual being under observation at time just before ¢, let N;(¢) indicate if the
individual has failure before or at time ¢t and let N = (Ny, ..., N,,) and Y = (Y7, ..., Y,,).
Further, let (N1,Y1,21),...,(N,, Y, Z,) be ii.d. replications of (N,Y, 7).

If we denote by p(-;6) the density of the frailty distribution then the likelihood
function for the full unobservable data set (N1,Y1, Z1),...,(N,, Y, Z,) is

f[ ﬁ { II {ZidAy; ()} eXp(—ZiAij(T))} p(Zi; 0)

1=175=1 \t€[0,7]
= HZ i exp{ ZiNij (1) }p(Z;;0) HH H {dA;( }ANu(t) (13)
1=1j=11t€[0,7]

where Ay;(t) = [} Y;;(u; 8)dA(u) and a dot means summation over the corresponding
index. The observed likelihood function is derived by integrating the Z;’s out of (13).
Integrating over the i’th term in (13) yields

[ 20 exp(-2, /0 Yo (B)dA(Z: 0)dze x T TT {Yalts B>

J=11t€l0,7]

= (—DFLE{A (1)} H [T {Yi(t: B)dA@) Y2,

Jj=1t€[0,7]
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where Lgc)(-) denotes the k’th derivative of the Laplace transform of Z and k = N;.(7).
The logarithm of the full nonparametric likelihood function (13) is

i i /0 “log{Y; (t: B)dA(t)} ANy () — Zihi-(r) + Ni(r) log Z; + log p(Z:;6) .

i=1j=1

Note that the last two terms depend on the parameter # only. For fixed 6, we can ignore
the last two terms in the E-step of the EM-algorithm. The E-step consists therefore
of calculating Ey, [Z;|N;,Y ;] and in the M-step we update (3, A) by calculating the
NPMLE in the Cox regression model

E,pk[ZZ‘NZ,YZ] eXp(IBTCIBZ’j)Oj(t), 1= 1, N, j = ]_, ey, M

If 6 is one-dimensional we can use the EM-algorithm to calculate the profile likelihood
for #. The NPMLE of 6 is then given as the value which maximizes the profile likelihood
and the NPMLE of (8, A) is found by running the EM-algorithm once more for this
value of f. This estimation scheme was suggested in Nielsen et al. (1992) for the shared
gamma frailty model. If 6 is higher dimensional this may not be an efficient way of
calculating the NPMLE. Instead, we could first fix f, then use the EM-algorithm to
calculate the NPMLE for (3, A) for given value of . For this value of (3, A) we
update # by maximizing the observed nonparametric likelihood function. We repeat
this procedure until convergence. This estimation scheme was suggested in Petersen
et al. (1995) for the correlated gamma frailty model.

Let f denote the density of (N;,Y;, Z;). The conditional expectation of Z; given
(N;,Y;) is given by

E[Z]|N;Y;] = /Zi f(Z|N;,Y;)dZ
[ Zi f(N:, Y, Z;) dZ;
J (N, Yy, Z;) dZ;
LEILA. (1)}
-~ L®{A(T)}

with k£ given as above. For twin data, for example, we need only the first three
derivatives of the Laplace transform.

Example 1 The positive stable distribution, as the distribution of the frailty, was
proposed by Hougaard (1984). The Laplace transform of the positive stable distribu-
tion is given by L(t) = exp(—t7), where v € (0,1]. This distribution is interesting
because assuming a proportional hazard model for the conditional hazards then also
the observed hazards are proportional. Furthermore, the result of Elbers and Ridder
(1982) does not apply here for the positive stable distribution because the mean does
not exists. However, as we shall show below, all the conditional expectations given
the observed data do exist and can easily be calculated.

To estimate the parameters, Hougaard et al. (1992) proposed the following esti-
mation procedure. First the observed integrated hazard function and the regression
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parameters are estimated assuming that the individuals are independent. Secondly,
keeping the observed hazard and the regression parameter fixed, the likelihood func-
tion is maximized as a function of . The final step involves a version of Newton’s
algorithm for maximizing the likelihood over all parameters simultaneously. If only the
first two steps are implemented then the estimation procedure is called the two-step
procedure.

Alternatively, the EM-algorithm may be used to calculate the NPMLE. The first
two derivatives of the Laplace transform of the stable distribution is given by

LW t) = - exp(—ﬂ)’yt*’_1
LO@) = exp(—t")y* % — exp(—t")y(y — 1)t" 2

For higher order derivatives the following simple recursion formula can be useful. The
k’th derivative of a product of two functions f, g can be written as

k
(fg)® =% ( ) FO D)
=0

By this formula, the £’th derivative of the Laplace transform can be written on the
form

(k—1)
L®(¢) = (L(t)%logL(t))
- S (M) oo usene,

where
{log L} = a(a—1)...(a — k+ 1)t* 7% .
This algorithm would be easy to implement on a computer.
This approach to the EM-algorithm can be generalized to more general frailty
models than the shared frailty model. However, since identifiability for more general

models other than the correlated gamma-frailty model has not been solved, we shall
not proceed further with this point.
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A Appendix

A.1 Identifiability for the correlated frailty model

In this section we consider the identifiability of the correlated gamma-frailty model,
although the following method could also be used for other correlated frailty models
where the integrated hazard function A is arbitrary and the distribution of Z only
depends on a finite dimensional parameter.

Let kg, k1, ko denote the cumulant transforms of Zy, Z1, Z5. The joint and marginal
survival functions are

Lz, 2 {AW), A(w)} = Lz {A(u) + A(v)}Lz,{A(u)} Lz, {A(v)}
Lz, {AW)} = Lz{A(u)}Lz{A(u)}

and hence (for v = v) the function
Ko{2A(u)} = 2ko{ A(u)} (14)

is known. If either Z) or Z) have moment of order k¥ then we can without loss

of generality assume that A is k-times differentiable. Let mgl),/ig-l) denote the [’th

derivative of kg, ;. Taking derivatives of (14) we derive the following set of equations

26 (0)a(0)? (15)
655 (0)a(0)? + 655 (0)a(0) M (0) (16)

14657 (0)(0)* + 3655 (0)a(0)a™(0) + 262 (0) {3V (0)? + 4 (0)a@(0)}  (17)

and so forth. From the marginal survival function we get

{x6”(0) + &1 (0) }a(0) (18)
{5 (0) + &7 (0)}a(0)% + {x§" (0) + &1 (0) }oV(0) (19)
{k$2(0) + £57(0)}(0)® + 3{x(0) + &\ (0) }a(0)aV) (0) (20)

+{rs”(0) + 5" (0)}a?(0) ,

j =1,2, and so forth. Suppose EZ(;) = 1. From (18) we then find a(0) and from (15)
we find

K(()Q)(O) = —Var(Z) . (21)
Assume Var(Zy) # 0. From (16) we find

k5 (0)
k5 (0)

a(0)2 4+ aM(0) .
and using (19) we therefore know

— &2(0) = £52(0) . (22)




For the correlated gamma-frailty it is sufficient to stop here, but one could in principle
continue the procedure.

Example 2 For the litter frailty model studied in Yashin et al. (1995) we have
(Zay, Z2)) = (Zo + Zy, Zo + Z), where Zy, Z,, Z, are gamma distributed with pa-
rameter (vy,n), (v1,7), (v2,n), respectively, and n = vy + v;. From (21) we find vy /n%.
Assuming that vy # 0, we find from formula (22) that

21/0/773

. 2 2 _ -1
o/ vo/n" —wn/n° =1

and we can identify both 1y and v;. From (18) with j = 2 we can identify v,.

Example 3 Consider the genetic frailty model in Korsgaard and Andersen (1996).
Here we have (Zn), Z(2), Z(3)) = (Z1+ Z3, Zs+ Z4, Z1 + Z3), where Z = (Z4, ..., Z,) are
independent gamma distributed random variables with parameters (v1,7), ..., (v4,7)
and 7 = v;+...+v4. Assume that the shared components have strictly positive variance,
ie., v,v3 # 0. To show that the parameters are identifiable we reparametrize the
model. Let Z = Z/E(Z,+ Z,) and A = E(Z, + Z,) x A. Then (Z,, ..., Z;) are gamma
distributed with parameters (vy,7),...,(v4,7), where ) = E(Zy + Z5) X n = v; + 15
and EZ) = Z, + Z3 = 1. From the observed survival function for first and second
component we can identify vy, 15, v3. Similarly, a reparametrization for the second and
third component identifies v4, which shows that all parameters are identifiable.

Example 4 For the adoption model in Petersen (1996) we have (Z(), Z(2), Z(3)) =
(Zy+ Z3, Z1 + Zo + Zy, Z1 + Zs), where Z, ..., Zs are independent gamma distributed
random variables with parameters (v1,7), ..., (v5,7) and n = v +...+v5. Assume again
that the shared components have strictly positive variance, i.e., o, v3 # 0. Proceeding
as in Example 3, a reparametrization for the first and second component identifies
Vo, V3, V1 + V4 and a reparametrization for the second and third component identifies
V1, Vo + vy, V5. Hence the parameters are identifiable.

A.2 Identifiability for the major gene model

For the identifiability of the observed model we shall treat the case where we have no
covariates in the model and the case where we have covariates in the model separately.
Covariates

Assume that 8’ X ; attains at least two different values other than zero. From the
marginal distribution we can identify

Lz {exp(B" X ;)A()}

on some interval [0,7]. From the result of Kortram et al. (1995) it follows that the
distribution of
Hp :=~v'Gp —log Eyexp(v ' Gr)
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can be identified. Define 7, = v, — log E{exp(y  GFr)}, n2 = 72 — log E{exp(v ' GF)}
and 93 = —log E{exp(y'Gr)}.
Consider case (A). From the marginal distribution of

exp(m) ,p?
exp(Hp) = 4 exp(m) ,2p(1—p) ,
exp(ms) (1 —p)?

we can identify 73 as the largest value and p by its frequency, (1 — p)?. We can further
identify 7; and 7 unless p? = 2p(1 — p) or p = 2/3. In this case it is easily seen that
m and 75 can be identified from the distribution of exp(Hr) + exp(Hp). From 7,
[ =1,2,3, and p we can identify 4, p and A.

In case (B) we can, since p? < 2p(1 — p) and p*> < (1 — p)?, identify 7; and p as
the value with the smallest frequency and its frequency, p?. We can further identify 7,
and 73 unless 2p(1 — p) = (1 — p)? or p = 1/3. In this case 7, and 73 can be identified
from the distribution of exp(Hr) + exp(Hp). Note that under the conditions (A) and
(B) all parameters can be identified from the marginal distribution of Hg

No Covariates

Assume that A is a Weibull integrated hazard, i.e. A(t) = 6t¢ (¢,d > 0). Let H; =
~TG; —log(d). As noted by Honoré (1990)

— _ i 24
€= %E)I&[log{ 10g Lexp(r;)(17)}]/ logt .

Therefore, we can identify the distribution of exp(Hr) and exp(Hr) + exp(Hp). As
shown above this identifies vy, p and .

A.3 NPMLE in the additive gamma-frailty model

Consider the additive frailty model given in (1). If we let p(-) denote the density of
the frailty variable Z then the full unobserved likelihood function is

HH{{Z dA; (£} exp{—Z(;A;(T)}} p(Z; v)

H{BTZ ) exp{—(B] Z)A ()}pZV}HHdA

= j=1t<1

Let n; = Nj(T). For kj = (kjla ---akjp) and Kj = {kj|kjl € {O,bjlnj}, lfj1+...+kjp = nj}

H(B]-TZ)”J’ = J[nZ1 + ... + bjpZ,)"
j=1 j=1
== Z ( k nl k‘ ) (bllzl)kn...(blpzp)klp H(blel + + bijp)nj
k1EK1 11 1p j=2
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= > > ﬁ(buzl)kn...(b,pzp)kw

kieki Enek,!=1

= Y %z

kick, k.cKn

We calculate the contribution of each of the terms [T}_; leC " to the observed likelihood
function

/ﬁ 7y exp{~ 7, i bl (T)}p(Z;v)dZ

Vi

12[ I/l + k. ) n
i D) An+ X5 budj(r) pretha

Therefore the observed likelihood function is given by

I'(v + k) n" £)AN;(®)
Z Z H F Vl {77 + Z ', b]lA }ul—}—k H H dA . (23)

kick, kmeK I=1 j=1t<r

The conditional expectation of Z, becomes a fraction of quantities like the one in
(23); the numerator with one added to k., .

A.4 NPMLE in the major gene model

In this section we shall consider nonparametric maximum likelihood estimation in the
genetic frailty model for a family consisting of a father, a mother and ¢ offspring. The
distribution of the unobservable genes G = (G, G, Go,, -.., Go,) can be factorized
as

P(G) = P(Go,,...,Go,|Gr,Gy)P(Gr)P(Gyy)
q
=1
Under a Mendelian model for the genes, the conditional probabilities P(Go,|Gr, G )
do not depend on the parameter p and hence the founders, i.e. the parents, are

sufficient about p for the complete data. The probability of the parents can be written
as

pi BB {2p(1 — p)}i B (1 — p)*rs®h)
where n;(BB) = 1{G; = (1,0)}, nj(Bb) = 1{G,; = (0,1)} and n;(bb) = 1{G; =
(0,0)} for j = F, M. Let )\;(:|G,) denote the conditional stochastic intensity of the
7’th individual, i.e.,

Xj(ulGj) = Y;(u) exp(y" G;) exp(B X ) (u) ,
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and let N = (Ny,...,N,), Y = (Y1,...,Y,,) denote the associated counting processes,
indicator processes, respectively.

Under conditional independence of the individuals given the unobservable genes,
the complete likelihood for n families (N1, Y1, Gy), ..., (N, Y, G,,), i.i.d. replications
of (N,Y,G), is

ﬁL(Ni,Yi,Gi;lb)

=1

= H H {H Aij(u] Gij) 2N ™) exp(— / z’j(u\Gij)du)} P(Gi).  (24)

t=1j5=1 \u<lt

The observed likelihood is obtained by integrating out the genes, i.e.,

1D LN, Y, G;v) .
=1 Qq,
The nonparametric likelihood function is defined by replacing a(u) by AA(u) and
a(u)du by dA(u) in (24).
We shall use the EM-algorithm for maximizing the nonparametric log-likelihood

function. The logarithm of the nonparametric likelihood function for the complete
data set is

ﬁ:i{ TG%J+:8TXZJ / log AA(u )dNU( )

i=1j=1
~ [ Yo exp(y" Gy + BT Xiy)dA(w) +log P(G)} (25)

In the E-step we calculate
Ya, GiiL(N:i, Y, Gi; )

Ya, LN, Y, Gi; ¢)
Ya, exp(y TGij)L(N;,Y;, Gi; ¢y)
ZG (N’L,YZ:GZ';wk)

PN el nzg(BB)L(Ni,Yi,Gi;iﬁk)

and similarly for the expected frequencies of Bb and bb.
In the M-step, the estimator for p is easily found to be

Y1 Xj=rum 2045 (BB) + 7 (Bb)
2n '
Fixing <, B, we find that (25) is maximized for

ET/)k (Gij|Ni’ YZ) =

E"Pk (exp('y GZ])|N1’ Y, )

7ij(BB) = Ey, (nij(BB)|N:, Y4) =

Pr+1 =

Aecs(158) = [ (30 Buulexplty” G N Y2) exp(B7 X)) - (0]
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The resulting profile log-likelihood function for 4, 3 is given by
YD V(N (v TGy + BT Xy)

i=1j=1
[ 103" 3 By (expr” G N, ¥') exp(87 X ) Yis() Ny )]
h=11=1
The profile log-likelihood function can be maximized f.ex. by a Newton-Raphson al-

gorithm. Determination of the second derivative requires additional evaluation of the
following two conditional expectations

Ey (Gijexp(v'Gy)|Ni, YY) Ey (G exp(y' Gyj)|Ny, Y5)

which can be calculated by formulas similar to the above.

If not all the founders are in the data, e.g. if one of the parents is missing, then
the estimator for p in the M-step cannot be found on closed form and an iterative
algorithm has to be used.

A.5 A pseudo likelihood method

Using the martingale property we can write minus the Kullback-Leibler information
as

5~ B0l log{38 )} aNyu) — [ 3§ v

—Eo] [ Log{X¢ (u; )} dNj(w) + [ A9 (us o) du

Nlusw) (i) .
= S8 (oS~ Gy ~ 0 )

We see that minus the Kullback-Leibler information is non-positive, since log(z) < z+1
for all x > 0, and therefore the Kullback-Leibler information has maximum in ). If
the Kullback-Leibler information is zero then

og Nwsy) A (u9) G (ose i) ot —
Z/ {1 )\guwo) ()\g(u ¢0) )})‘j( ﬂﬁo)d =0,

Py-a.s. Since all quantities involved are left continuous with right hand limit, this
implies that

M) X (u9) }
log 21—~ — (=222 — 1) s X(¢hp;u) =0, 26
o8 2y ~ Gy ~ 0 050 29
for all u €]0,7], Py-a.s. Using that log(z) = = — 1 if and only if z = 1, then (26)
implies that
for all u €]0, 7], Py-a.s. This identifies the joint distribution of e.g. a offspring and its

parents and therefore in the major gene model we have 1) = 1,. Thus, under suitable
regularity conditions, the pseudo likelihood function yields consistent estimators.
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A.6 NPMLE in the shared gamma-frailty model

In this section we consider nonparametric maximum likelihood estimation in the shared
gamma-frailty model where the model is parametrized by the observed hazards; ['(¢) =
0~'log{1 + 0A(t)}, and both T and 6 are allowed to vary freely. We shall show that
if either I'(7) or @ tends to infinity then the nonparametric log-likelihood function
tends to minus infinity as n tends to infinity. This also shows that the NPMLE exists
with a probability tending to one. Finally, we shall treat the case where the model is
parametrized with the conditional hazards.
The log-likelihood function is

%i/oTlog{l—l-QNi.( —)}dN;. (¢ / loglexp{6T"(¢) }dT'(¢)]dN;. (t)

{671 + Ny ()} log 1+/ Vd[exp{6T ()} —1]) . (27)

In the following we consider the discrete case, i.e. dI'(t) = nAl(¢). Let T, denote
the survival times in a group, C; the corresponding right-censoring times, (1), ..., T(m)
the ordered values of 71, ..., Tr,, and C(yy, ..., C) the corresponding censoring times.
Suppose that (Tj;, Cyj, Tj;) C(j) : 7 = 1,...,m) are the survival times and censoring
times associated with (N,],Y j = 1,...,m) and that these are i.i.d. replicates of
(T},C5, Ty, Ciyy - 5 = 1,...,m). We shall need the following two lemmas.

Lemma 1 Let a,; > 0 forn > 1 and i = 1,...,n be given. Suppose b € (0,1) and
define

1 n
= —Zlogam- —bay; .
=1

(a) If "™ S| an; tends to zero then ¢, tends to minus infinity. (b) If n™' " 1 an; is
bounded away from infinity then c, is bounded away from infinity. (c) If n™' X", G
tends to infinity then c, tends to minus infinity.

PROOF. First consider (a). Let € > 0 be given. Write

1 12 12
- Zani = - Zanil{am’ S 6} + — Zanil{am’ 2 6}
niz N ni=

n

1
> log(e) Z Han: > €},
n

hence n=! 3" | 1{a,; > €} tends to zero. Consider
1
— Zlog Api = — Zlog anil{an; < €} + — Zlog anil{an; > €}
iz i=1 ni=1
1 & 1 &
< log(e)= > an < e} +— Z ani — 1)1{an; > €}
ni= n
1 zn 1 n
< lOg(G)E z l{a’nz < 6} + - n Zam .

=1
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Therefore the left hand side in the above displayed equation is asymptotically smaller
than loge. Since this is true for all € > 0 then (a) follows. (b) is proved in a similar
way.

To prove (c), note that there exists a xy > 1 such that logz < bx/2 for z € [xg, 00).
Therefore

n

1& 10 b
ﬁi_zllogam-—bamSlog:vo-l-ﬁzgam-—bamSlogﬂco—%Zam,

=1 i=1

which tends to minus infinity and (c) is verified. O
Lemma 2 The sequence n=' Y1, log(n/i) tends to one.

PROOF. Write

(n)m

Define a,, = n!/n™. It is well-known that (1 + n™!)" tends to e. Because a,y1/a, =
(1+n71)"" tends to e!, the sequence (a,)” = (n!)"" /n is also convergent and has
the same limit, e !, and the result follows. O

3= los(n/i) = log( )

For the last term in (27) we have the following inequality
log(1 + / Y;.djexp{6T} — 1]) > H/T 1{Y;. > 0}dl .
0 0

Therefore the nonparametric log-likelihood function is dominated by

12 T T T
= S (Ni-(7) = 1)* log(1 + 6) — 0 / Udl + / log(nAT)dN;. — / 1{Y;. > 0}dI (28)
n = 0 0 0
where U;(t) = 1{Tip) < t < Ti2), Cicry > Tiny, Ciey > Ti) }-

First consider the case where I'(7) tends to infinity and € is bounded away from
infinity. Split the log-likelihood function up into two terms according to whether
{N;.(1) =0,Y;.(7) > 1} or not. In the first case (28) is dominated by

o(1) - r(ﬂlzf:ll{m.(f) —0,Y,(r) > 1},

n ._

which tends to minus infinity. Now consider the second case. Let s,1 < sp0 < ... < 5pp,
denote the observed failure times based on the first n observations that fall in the
second group. In this case (28) is dominated by

0(1) + % ilog{nAF(sm)} S AT (sy)

i=1
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The fraction p, /n converges to some p € (0,1), Py-a.s. Consider therefore

L S log{puAT(5,0)} — S m~*AT(s,)

n =1 j=1

By Lemma 2, this is equal to

o) + pin i log{(pn — i+ 1)m * AL (s,5)} — ilm_lAF(snj)

=0(1)+ 1 i log{ (pn — i+ 1)m 'AT(8pi)} — (pn — i + 1)m " AT (sn3)

<0(1)-1=0(1).

Hence, in the second case the log-likelihood function stays bounded away from infinity.
This concludes the case where I'(7) tends to infinity and # stays bounded.

We turn to the case where ) tends to infinity. This case can be further divided into
the following two sub-cases; (A) log(0)[0{T'(7) — I'(x)}]~" tends to zero for n tending
to infinity for some zy € (0,7) and (B) log(8)[0{['(7) — T'(x)}]~" stays bounded away
from zero for all zy € (0,7). We shall treat the two cases separately.

First consider case (A), i.e., log(0)[0{T'(7) — I'(zo)}]~! tends to zero for n tending
to infinity for some o € (0, 7). Using that

EQ{U(t)} Z E0P0(T1 <t S TQ,Cl Z T, 02 Z T|Z) >0

for all ¢ € (0, 7], so that we can find a § > 0 for which Eo{U(t)} > § for t € [z, ], we
see that the sum of the first two terms in (28) are asymptotically smaller than

zn:(NZ(T) — 1)t —05{T (1) — T'(xg)} -

Thus the sum of the first two terms in (28) tends to minus infinity. The sum of the
last two terms in (28) is

n

% . f: {/OT log{nAT}dN;; — %/OT 1Y > O}dF} :

i=17=1

Let t,1 < the < ... < tpq, denote the observed failure times based on the first n
observations. The sum of the last two terms in (28) is therefore dominated by

1 & % B
- leog{nAF(tni)} - Zl m AT () -
i= j=

The fraction ¢, /n converges to some g € (0,1), Py-a.s. By a similar argument as above
we can obtain that the sum of the last two terms in (28) stays bounded from infinity.
This finishes case (A).
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Now consider case (B), i.e., log(8)[0{T(7) — I'(x¢)}]~" stays bounded away from
zero for all zy € (0, 7). The log-likelihood function is bounded by

n

%Z—log (0)1{N;-(1) > 1}+/0Tlog(0nAF)dN,~. _/071{1/2-. > 0}dr .

By assumption, for all zy € (0, 7) there exists an € = €(zo) > 0 such that asymptotically
log(0)[0{T(7)=T(z0)}] ™" > €or —logh < —ef{I'(7)—T'(z¢)}. Let 6 = P(N.(1) > 1)/2.
The log-likelihood function is asymptotically bounded by

510 — 6eB{T(r) — T(z9)} + - f; / "og(9nAT)dN;. — / "1{Y;. > 0}dr

< —dlogh — (561 Z OnAT (ty;) + — Ly Zlog{HnAF( i) }

tni € [wOa ]

= 2 — i+ 1)m AT ()

—5log0-|—log(0)l o1

tni E[O,a:o]

Gt Y nAT()+— Y log{OnAT(t)}
n n

tni €[T0,T] tni €[x0,7]

IN

qn

+% Z log{nAT (t,;)} — % Z(qn — i+ 1)m AT (t,)

tni €[0,z0] 1=1

1
gO(l)—élogﬁ-l—log(ﬁ)ﬁ o1

tni€[0,z0]

el Y 0nT(t) + = Y log{0nAT ()}

n
tnie[anT] tnie[zO’T]

where 37, . cio,m0]> 2otns€lwo,r] 1 the sum over all £y, ..., tng, in the interval [z, 7], [0, zo],
respectively. We choose zy small enough such that the first two terms tends to minus
infinity. The last two terms stay bounded away from infinity according to Lemma
1. This concludes case (B). Thus the nonparametric log-likelihood function tends to
minus infinity if either 6 or I'(7) tends to infinity.

Now consider the nonparametric log-likelihood function in the conditional approach

%Z | tog {1+ ONi.(4=)}aNi.(t) + [ log{nAA() AN (1
{07+ Ni(1)Hog(1+ 0 [V (B)dA(®))

We parametrize with the observed hazards T'(t) = 6~ 'log{l + 0A(¢)}, ie., A(t) =
“Hexp{OT(t)} — 1) and AA(t) = exp{AT(¢)}07[1 — exp{—0AT'(¢)}]. Using that
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1 —exp(—z) < x, for z > 0, we find that 7'[1 — exp{—0T'(¢)}] < AI'(¢) and the
nonparametric log-likelihood function is dominated by

% Z /0 "log{1+ 0N (t—)}dN,. (1) + /0 "loglexp {0 (£) yn AT (£) AN, (¢)
{07 4+ Ny (1)} log(1 + /0 Y, (O dexp 0T ()} — 1]) .

This is exactly the nonparametric log-likelihood function in the marginal approach.
Therefore, if # or I'(7) tends to infinity the nonparametric log-likelihood function tends
to minus infinity as n tends to infinity. If both § and I'(7) are bounded then A(7) is
also bounded.

In the regression setting, if both the explanatory variables and the regression pa-
rameters are bounded then the above results generalize easily. For the k-sample case
and in the marginal approach the regression parameters are allowed to vary freely; For
each individual, we let

X = 1{ij belongs to group I}, [ =1,..,k — 1.

Split the nonparametric log-likelihood function up into a sum of & terms according to
the k different values of the covariates. For each of the k terms, applying a similar
argument as above gives that the nonparametric log-likelihood function tends to minus
infinity if either exp(B,)[(7), ..., exp(B;_1)'(7),'(7) tends to zero or positive infinity
or # tends to infinity. From this we conclude that the NPMLE for B, # and [ stay
bounded.

A.7 On a technical condition in Andersen and Gill (1982)

Andersen and Gill (1982) assume that the following integrability condition for the
covariates holds; there exists a neighbourhood around 3, B say, such that

Ey (sup sup Y(t)\X(t)|2exp{,3TX(t)}) < 00.
Beptelor]

In the following we shall prove that the condition is equivalent to

Eq ( sup Y (t) eXp{,BTX(t)}> < 00, (29)

te[0,7]

for all 8 in some neighbourhood of 3,, By say. Indeed, we shall show that from (29)
it follows that there exists a neighbourhood of 3, B’ say, such that

Ey (BUP, tzl[ép]Y(t)\X (D[P exp(B' X (t))> <0 (30)

for all positive integers p.
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Choose ¢ such that the closed cube ¢(8,,d) with centre 3, and side length 26 is
contained in By. For B € ¢(B,, ) we have that

(,Boj +0)X;(t) ,X;(t)>0
B X < { (Boy — O)X,(1) X, (1) <0

and hence

exp{,BTX(t)} < exp{,@JX(t)} ( max exp{(SkZ(—l)o"“Xk(t)}) ,

(061 5---5ad)6{071}®d

where {0,1}®¢ = {0,1} x ... x {0,1} (d times) and d denotes the size of the vector
X (t). We shall call the points in the corner of the cube ¢(8,,0) for B;. Note that By
consists of finitely many points and that from the above displayed inequality it follows
that

sp  exp{BTX(1)} < sup exp{BTX (1) | (31)
IBEC(IBO’(S) IBEBd

Taylor expanding exp(|y|) we derive the following inequality

n
%<ey+ey.

Choose x small such that for b = (0, ...,0,7,0,...,0)" (the j’th element is equal to z)
we have 3 + h € B. Then for all positive integers p

5 (sup YO1X, ()" exp{[fxu)})

te[0,7]

- Ly (sup Y(®)h' X (®) exp{B' X (t>}>

P te[0,7]
< iim (sup Y(0) exp{(B + h)TX(1)} + sup Y(t) exp{(8 - h)TX(t)})
t€[0,7] t€[0,7]
< 0.

Using the simple inequality |a|P = |a? + ... + a3[P/? < dP? T4 | |a;|P we get that

5 (sup Y(t)\X(t)\”eXP{ﬂTX(t)}> < oo, (32)

te[0,7]

for all positive integers p and all 8 € ¢(3,,0). Combining (32) with (31) we see that
(30) holds with B' = ¢(8,,9).
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