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Abstract
An insurance company offers an insurance contract (p,K), consisting of a pre-
mium p and a deductible K. In this paper we consider the problem of choosing
the premium optimally as a function of the deductible. The insurance com-
pany is facing a market of N customers, each characterized by their personal
claim frequency, α, and risk aversion, β. When a customer is offered an insur-
ance contract, she will based on these characteristics choose whether or not to
insure. The decision process of the customer is analyzed in details. Since the
customer characteristics are unknown to the company, it models them as iid
random variables; A1, . . . , AN for the claim frequencies and B1, . . . , BN for the
risk aversions. Depending on the distributions of Ai and Bi, expressions for
the portfolio size n(p;K) ∈ [0, N ] and average claim frequency α(p;K) in the
portfolio are obtained. Knowing these, the company can choose the premium
optimally, mainly by minimizing the ruin probability.

Keywords: microeconomic insurance; customer characteristics; portfolio size;
average claim frequency; ruin theory

1 Introduction.

An insurance company has several instruments for stochastic control at its disposal.
Much studied are dividends, reinsurance and investment, see e.g. (Schmidli, 2007).
The present paper concentrates on premiums and deductibles. These are also obvious
instruments but have been somewhat less studied in the literature as such.

The standard model for the risk reserve Rt at time t is the Cramer-Lundberg
process

Rt = r0 + ct− At,
where r0 is the initial reserve, c is the gross premium rate and (At)t≥0 is a compound
Poisson process with parameters λ and F . More explicitly, At =

∑Nt
i=1 Zi where

(Nt)t≥0 is a Poisson process counting the number of claims until time t and the
Zi’s represents the (positive) claim sizes assumed to be i.i.d. and independent of
(Nt)t≥0, with common distribution F on (0,∞). Let z = E[Zi] and z2 = E[Z2

i ]. The
Cramer-Lundberg process can then be approximated by the diffusion process

dxt = µdt+ σdWt (1.1)
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with µ = c+ λz and σ2 = λz2 as in (Hipp and Taksar, 2010).
We will describe an insurance contract by a premium, p, and a deductible,K. The

purpose, besides loss prevention and retention, of adding a deductible to a contract
is to avoid administrating the numerous number of small claims. The deductible is
therefore chosen to serve this purpose, and the premium will then be considered as
a function of the chosen deductible. We will consider methods of how to find the
premium optimally on a given market. For simplicity, we assume that all (potential)
customers are offered the same insurance contract (p,K). We will also neglect the
market effects by assuming that only one company supplies insurance.

A possible extension is to allow the insurance company to offer different de-
ductibles, and let the premium in the contract be regulated correspondingly. A
simple way of doing so is to say that the market can be divided into disjoint mar-
kets, for example; one with customers demanding a low deductible Kl, one with a
medium deductible Km, and one with a high deductible Kh. So the offered values
of the deductibles are {Kl, Km, Kh} where there is a seperat market for each. It
will then be possible to apply the same approach as considered here to each of the
markets.

There are several types of deductibles. We will consider the very classical fixed
amount deductible. With a fixed amount deductible the claims are truncated, so the
loss for the insurance company in relation to a claim Zi can be described by the
random variable

X(K)
i = (Zi −K)+ =

{
0, if Zi < K,

Zi −K, if Zi ≥ K.

The risk reserve must therefore be modified

Rt = r0 + ct− A(K)
t ,

where A(K)
t is the compound Poisson process with losses X(K)

i . Let xn,(K) denote
the n’th moment of X(K)

i . Notice that z = x(0) and z2 = x2,(0), since the claims are
assumed to be positive. The results here contains thus the no-deductible case.

Assume that the insurance company is facing a market consisting of N poten-
tial customers. Let n(p;K) ∈ [0, N ] denote the number of customers the insurance
company attracts on the market when offering the contract (p,K). Obviously, in-
creasing the premium should lead to a loss of customers, therefore it must be that
∂n(p;K)
∂p

≤ 0. Also, the average customer claim frequency in the portfolio will be
denoted as α(p;K). Raising the premium will make it less attractive to insure for
customers having low claim frequencies rates and so the average claim frequency of
the portfolio increases, i.e. ∂α(p;K)

∂p
≥ 0. This is commonly known as adverse selection.

The gross premium c and the aggregate claim frequency λ will then depend on the
chosen premium, p, and the given deductible, K, as follows

c(p;K) = n(p;K)p and λ(p;K) = n(p;K)α(p;K).

The drift and variance of the diffusion process (1.1) can be modified accordingly

µ(p;K) = n(p;K)p− λ(p;K)x(K) − L = n(p;K)
(
p− α(p;K)x(K)

)
− L,

σ2(p;K) = λ(p;K)x2,(K) = n(p;K)α(p;K)x2,(K).
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In order to avoid trivialities a fixed liability rate L is introduced. Otherwise, if the
insurance chooses p = ∞ no customer will insure, and the reserve will remain con-
stantly at r0 yielding a ruin probability of zero. Let ϕ(r0) denote the ruin probability
as a function of the initial reserve when the reserve is modelled by the diffusion pro-
cess.

For a given deductible, changing the premium will have a double sided effect on
the drift (and profit) of the insurance company. Raising the premium will increase
the earnings per customer, but will also reduce the size of the portfolio and increase
the average claim rate due to adverse selection, and vice versa for decreasing the
premium. In order to say which effect is dominating, a specification of the portfolio
characteristics is needed.

First of all, we need to gain insight into the decision process of a customer. In
this context we introduce a risk aversion parameter β and motivate a method for
incorporating risk aversion. For a microeconomic perspective of insurance, we refer
to (Rees and Wambach, 2008).

In a naive setting the customers would have the same claim rate, implying the
average claim frequency to be constant, α(p;K) = α, and n(p;K) could be chosen
on some ad hoc form. In a more realistic setting a market of potential customers
is non-homogeneous in the sense that they have different characteristics, namely
different α’s and β’s. A customer knows her own claim rate, but the insurer does
not possess this information about the customers. The claim rates are therefore
modelled as iid random variables A1, . . . , AN over the portfolio. Likewise for the risk
aversion parameter, which will be considered as outcomes of the iid random variables
B1, . . . , BN . This results in some less ad hoc forms for the functions α(p;K) and
n(p;K) to characterize the portfolio. Once the portfolio characteristics are known,
the insurance company can use these to choose the premium optimally. The main
optimization problem considered is minimizing the ruin probability, but this only
makes sense in case of a positive drift in the diffusion (1.1). In case of a negative
drift, ruin is certain, so the premium will be chosen to maximize the time to ruin.
For more background on ruin theory, we refer to (Asmussen and Albrecher, 2010).

The ideas here are very similar to the ones considered in Asmussen et al. (2013).
The present paper takes however a different approach to risk aversion and, as said,
incorporates deductibles. Burnecki et al. (2004) also finds the price of an insurance as
a function of the deductible for different types of deductibles, though not exploiting
the aspects of risk aversion. Højgaard (2002) controls the gross premium indirectly by
controlling the safety loading. All in all, the contributions of this paper is threefold;
analysing the customer’s behaviour in Section 2, finding portfolio characteristics in
Section 3, and choosing the optimal premium for the insurance company in Section 4.
For examples and illustrations, see Section 5.

2 Customer’s problem.

A potential customer has to make a decision on whether to insure or not. If the
customer chooses to insure, she must pay a premium p at constant rate, but the
customer can then report claims and get the amount above the threshold K covered.
More specifically, if the customer experience a loss Zi, she will only report it to the
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insurance company if Zi ≥ K in which case she has to pay K herself, otherwise if
Zi < K there is no purpose of reporting it and she will have to cover the entire
loss Zi. On the other hand, if the customer chooses not to insure, she no longer
has to pay p continuously. She will instead have to cover all the uninsured losses by
herself.

For the moment risk aversion is ignored, and the decision is made solely by
comparing the present values of the wealth generated by the two options. Later risk
aversion will be incorporated by pricing the excess uncertainty when not insuring
using the variance premium principle. Let Vi denote the present value of insuring
and Vn of not insuring.

The customer is assumed to have infinite life length, a subjective discount rate d,
and access to a risk free asset with interest rate r in which all her wealth is assumed
to be invested. Also, it is assumed that d > r to ensure finite asset valuation.
Finally, the customer is characterised by initial wealth w0 and claim frequency α.
The problem of the customer is identical every period, and the decision will therefore
not change over time.

We start by finding the present value of not insuring. As said, if the customer
chooses to insure she will have to cover every loss herself. So her wealth will develope
according to

dwt = rwtdt− dAαt , (2.1)

where (Aαt )t≥0 is a compound Poisson process with parameter α and F , representing
the total amount of losses at time t for the potential customer. Notice that (2.1)
is an Ornstein-Uhlenbeck process driven by a Levy process (namely, the compound
Poisson process) and the solution is therefore explicitly known as

wt = exp(rt)
(
w0 −

∫ t

0

exp(−rs)dAαs
)

= exp(rt)
(
w0 −

Nα
t∑

i=1

exp(−rTi)Zi
)
.

The present value of the wealth when not insuring is evaluated as

Vn = E
[∫ ∞

0

exp(−dt)dwt
]
.

Calculations, given in Appendix A, show that this can be reduced to

Vn =
rw0

d− r −
zα

d− r .

If the customer chooses to insure she will have to pay a premium continuously
and cover the parts of the claims below the deductible. Her wealth will then have
the following dynamics,

dwt = (rwt − p)dt− dAα,Kt , (2.2)

where (Aα,Kt )t≥0 is the compound Poisson process representing the total loss associ-
ated with claims until time t for the customer when insuring, that is

Aα,Kt =

Nα
t∑

i=1

min{Zi, K} =

Nα
t∑

i=1

(K1Zi≥K + Zi1Zi<K) .
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Once again, we are looking at an Ornstein-Uhlenbeck process driven by a Levy
process. This can be solved in the same way as seen previously,

wt = exp(rt)
(
w0 −

∫ t

0

exp(−rs)pdt−
∫ t

0

exp(−rs)dAα,Ks
)

= exp(rt)
(
w0 −

p

r

)
+
p

r
− exp(rt)

Nα
t∑

i=1

exp(−rTi)(K1{Zi≥K} + Zi1Zi<K).

The present value of the wealth when insuring will therefore be

Vi = E
[∫ ∞

0

exp(−dt)dwt
]

=
rw0 − p
d− r −

α

d− rE[K1{Zi≥K} + Zi1{Zi<K})].

Since the approach and calculations are very similar to the ones used when find-
ing Vn, details are skipped. We can now state the following.

Corollary 1. Disregarding risk aversion, the customer will insure if and only if
Vi ≥ Vn, which is equivalent to

p ≤ αE[(Zi −K)1{Zi≥K}] = αE[X
(K)
i ] = αx(K)

Hence, a risk neutral customer will insure if the net premium (taking deductibles
into account) exceeds the premium. She has no incentive to pay a loading in order
to avoid the risk.

Of course, in order for insurance to make sense, the customer must have some
degree of risk aversion. We want to find which excess risk the customer is exposed
to when not insuring, and how to price this risk when risk aversion is essential.

First step is to notice that Vn also could have been derived in a more intuitive
way. Recall that all wealth is assumed to be invested in the risk free asset. So wealth
itself has the dynamics dwt = rwtdt of a bank account. When accumulating interest,
this has present value

∫ ∞

0

exp(−dt)dwt =

∫ ∞

0

exp(−(d− r)t)rw0dt =
rw0

d− r . (2.3)

When a non-insured customer has to pay a loss Zi at time Ti, she also loses a possible
interest rate income. So the total loss of paying Zi at time Ti can be calculated using
the formula (2.3) with the discounted loss exp(−rTi)Zi as w0. Hence,

Vn =
rw0

d− r −
r

d− rE
[ ∞∑

i=1

exp(−rTi)Zi
]
.

Note that due to Campbell-Mecke’s formula (see e.g. Van Lieshout (2000) for further
details), this is in fact equal to the expression for Vn found previously. Also, we have
the following alternative characterization of Vi,

Vi =
rw0 − p
d− r −

r

d− rE
[ ∞∑

i=1

exp(−rTi)(K1{Zi≥K} + Zi1{Zi<K})
]
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which could have been explained with a similar intuitive approach using truncated
losses.

The criteria of insuring in Corollary 1 when disregarding risk aversion can then
be expressed as the inequality

p ≤ E
[
r
∞∑

i=1

exp(−rTi)(Zi −K)1{Zi≥K}
]
.

The additional risk the customer is exposed to when not insuring can therefore be
captured by the random variable

S(K) = r
∞∑

i=1

exp(−rTi)(Zi −K)1{Zi≥K} = r
∞∑

i=1

exp(−rTi)X(K)
i .

Next step is to find the maximum premium the risk averse customer is willing to
pay, also called her reservation price for this risk. Inspired by microeconomics one
can let the customer’s preferences be represented by a concave utility function u(·).
Assume that the only risk the customer cares about when pricing is the additional
risk S(K) she is carrying when not insuring. The losses less than or equal to the
deductible is a risk that the customer is also facing, but cannot be insured against,
see Remark 4 for further details. Inspired by (Gerber and Pafum, 1998), the maximal
premium P (K) the customer is willing pay for an insurance of a risk S(K) is the
solution to the equation

E[u(w − S(K))] = u(w − P (K)). (2.4)

So the customer’s reservation price satisfies that she is indifferent between carrying
the risk S(K) and paying the premium P (K).

A possible choice is to let the customer’s preferences be represented by an expo-
nential utility function,

uγ(x) =
1

γ
(1− exp(−γx)),

where γ is a risk aversion parameter. The premium in (2.4) can then be solved
explicitly as

Pexp(K) =
1

γ
log
(
E
[
exp(γS(K))

])
.

This is the same premium as found in (Gerber, 1974) where it is the insurer, not the
insured, pricing a risk. It is commonly known as the exponential premium principle,
and is mostly used by the insurer in the literature.

The object is to obtain an analytic expression for the premium, and this is
extremely complicated (if not impossible without having to make a lot of simplifying
assumptions) to get for Pexp(K). This is mainly due to S(K) being a sum of dependent
random variables caused by the dependence structure in the Ti’s. Thus, the additivity
property that (Gerber, 1974) proves the exponential premium principle possesses
cannot be used. To illustrate this complexity, a simple case example is presented
in Appendix C. In order to obtain a more simple expression, a second order Taylor
approximation is considered,

Pexp(K) ≈ E[S(K)] +
γ

2
Var[S(K)].
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Assessments about the premium will be based on the right hand side hereinafter.
Let β = γ/2 and introduce the notation

Pvar(K) = E[S(K)] + βVar[S(K)]. (2.5)

This the well-known variance premium principle. It expands the net premium prin-
ciple by adding a risk loading that is proportional by a factor β > 0 to the variance
of the risk. So the customer is now further characterized by the risk aversion coeffi-
cient β. Approximating the exponential premium principle by the variance premium
principle is a common approach, see for example (Gerber and Pafum, 1998).

It is indeed possible to find an analytic expression for (2.5). Applying Campbell-
Mecke’s formula, it appears that the expectation term simply is

E[S(K)] = αx(K).

The variance term in (2.5) is calculated using the Total Law of Variance in Ap-
pendix B, giving the result

Var[S(K)] =
rx2,(K)α

2
.

The concluding premium is summarized below.

Corollary 2. Given a deductible K the customer is facing the excess risk S(K) =
r
∑∞

i=1 exp(−rTi)X(K)
i when not insuring and is willing to pay the following price

for an insurance

Pvar(K) = αx(K) + β

(
rx2,(K)α

2

)
=

(
1 + β

rx2,(K)

2x(K)

)
αx(K). (2.6)

In Example 8, the premium (2.6) is calculated explicitly for lognormally dis-
tributed claim sizes.

Remark 3. The approach leads to a fairly classical premium calculation principle,
which in the literature is mostly seen from the insurer’s perspective. This motivates
the use of other already developed premium calculation principles applied from the
customer’s point of view. An example of such is the very similar standard deviation
principle, where the premium depends on the mean and the standard deviation of
the risk in a linear structure,

Pstd(K) = E[S(K)] + β
√
Var[S(K)].

Since we already have expressions for the mean and the variance, we can write this
more explicitly as

Pstd(K) = αx(K) + β

√√√√
(
rx2,(K)α

2

)
.

Another could simply be the pure premium principle with a safety loading depending
on the individual’s risk aversion

Ppure(K) = (1 + ω(β))E[S] = (1 + ω(β))αx(K).

7



The latter gives a simple expression, even though it still has a nice intuitive inter-
pretation. All evaluations in the following will be based on the variance premium
principle. But do note that a similar approach can be used with other premium
calculation principles.

Remark 4. The risk the customer is facing can be split into two. First of these, is
the risk the customer cannot insure. This is the (part of the) losses that customer
must pay regardless of insuring or not, and is the uncertainty that appears in both
Vn and Vi. The monetary value at time 0 can be deduced to

S≤K = r
∞∑

i=1

exp(−rTi)(Zi1{Zi<K} +K1{Zi≥K}).

Second of these, is the additional risk S(K) the customer can buy insurance to cover.
The maximum premium that the customer is willing to pay in (2.4) will be altered
as follows if she takes S≤K into consideration,

E[u(w0 − S≤K − S(K))] = E[u(w − S≤K − P (K))].

Using the exponential utility and solving yields

P (K) =
1

γ
log

(
E[exp(γS≤K + γS(K))]

E[exp(γS≤K)]

)
.

Proceeding to the Taylor approximation

Pexp(K) ≈ E[S(K)] +
γ

2
Var[S(K)]− γCov(S≤K , S(K)),

it appears that in the final pricing formula the assumption about the customer only
caring about pricing the excess risk S(K) regardless of S≤K corresponds mathemat-
ically to assuming that Cov(S≤K , S(K)) ≈ 0. A similar comment is also made in
(Gerber and Pafum, 1998)

3 Portfolio characteristics.

A customer is characterized by her claim frequency α and risk aversion β. As pre-
viously commented, the characteristics are most likely customer-dependent. So the
insurance company consider them as random variables being iid on the market.
The claim frequencies are represented by A1, . . . , AN , and the risk aversions by
B1, . . . , BN . First, we will consider the claim frequency as being random and the
risk aversion as constant. Next, we will reverse it, by modelling the risk aversion
as random, and letting the claim frequency be constant. A third, more advanced,
possibility is of course to let the customer characteristics (α, β) be represented by a
random vectors (A1, B1), . . . , (AN , BN). This complicates the evaluations consider-
ably, and is therefore left open by this paper.

In each case, we derive an expression for the portfolio size and for the average
claim frequency in the portfolio. These expressions will become explicit functions
when assuming a concrete distribution.

8



3.1 Stochastic claim frequencies.

Consider the first case mentioned above, where the risk aversion is constant, and the
claim frequency of the customer is unknown to the insurance company, and therefore
modelled by a random variable denoted by A. As said, we want to find the expected
size and average claim rate of the portfolio.

From the reservation price in (2.6), it follows that a customer with characteristics
(α, β) will insure if the offered insurance contract (p,K) satisfies the inequality

p ≤ αx(K) +
βαr

2
x2,(K).

Since the claim frequency is modelled by a random variable, A, to the insurer, this
translates to the relation

A ≥ 2p

2x(K) + βrx2,(K)
.

The expected portfolio size will then be the probability of this event happening
multiplied by the size of the market, namely

n(p;K) = P
(
A ≥ 2p

2x(K) + βrx2,(K)

)
N.

This is the mean demand curve as a function of the premium and deductible. In the
following it is assumed that N is large and that there is a continuum of customers
such that the deviation from the actual demand curve is negligible.

The average claim frequency rate in the portfolio is the expected claim frequency
given that the customer chooses to insure, i.e.

α(p;K) = E
[
A

∣∣∣∣ A ≥
2p

2x(K) + βrx2,(K)

]
.

3.1.1 Exponentially distributed claim frequencies.

In classical empirical Bayes example of car insurance the claim frequency is assumed
to be Γ(s, b) distributed. In some cases there are empirical evidence of s being close
to one. See e.g. (Bichsel, 1964) for more discussion. This motivates the assumption
of an exponential distribution with parameter b of the claim frequency, A. Offering
the contract (p,K) the customer will then insure with probability

P
(
A ≥ 2p

2x(K) + βrx2,(K)

)
= exp

(
−b 2p

2x(K) + βrx2,(K)

)
.

This yields a portfolio size of

n(p,K) = exp

(
−b 2p

2x(K) + βrx2,(K)

)
N.

The exponential distribution has a memoryless property, which implies E[A|A ≥ a] =
1/b+ a. The expected claim frequency of an insured customer will therefore be

α(p,K) =
2p

2x(K) + βrx2,(K)
+

1

b
.
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This equation reflects adverse selection very clearly since α(p,K) is linearly increas-
ing in p.

Remark 5. If the customer’s reservation price was defined by the pure premium
principle with a factor loading the portfolio characteristics would then be

n(p;K) = P

(
A ≤ p

(1 + ω(β))x(K)

)
N, α(p;K) = E

[
A

∣∣∣∣ A ≤
p

(1 + ω(β))x(K)

]
.

Assuming an exponentially distributed claim frequency, the characteristics become

n(p;K) = exp

(
−b p

(1 + ω(β))x(K)

)
N, α(p;K) =

p

(1 + ω(β))x(K)
+

1

b
.

This is slightly easier to work with, and has the advantage that ω(β) can be chosen
on a simple form.

3.2 Stochastic risk aversions.

Instead of letting a customer being represented by a stochastic claim frequency and
constant risk aversion, we now turn it around. Assume that the customer now has
a constant claim frequency α. This is indeed relevant to consider. For example, ev-
eryone could be equally disposed to disaster caused by nature. Furthermore, assume
that the risk aversion is represented by a random variable B. The criterion (2.6) of
insuring for a given contract (p,K) can then be stated as

B ≥ 2p− 2αx(K)

rx2,(K)α
.

So the portfolio size will be characterized by

n(p) = P

(
B ≥ 2p− 2αx(K)

rx2,(K)α

)
N.

3.2.1 Gamma distributed risk aversions.

Risk aversion is somewhat an abstract concept. It is therefore difficult to suggest
a distribution. Since the Gamma distribution is a popular choice for the claim fre-
quency, we choose to consider the same distribution for the risk aversion. Assuming
that the risk aversion has an Γ(w, ν) distribution, the demand curve will have the
form

n(p) =
Γ(w, ν(2p− 2αx(K))/(rx2,(K)α))

Γ(w)
N.

In case w ≈ 1, the distribution approximately reduces to an exponential distribution
with parameter ν, and the portolio size will then simply be

n(p) = exp

(
−ν 2p− 2αx(K)

rx2,(K)α

)
N.
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4 Ruin probability.

In this section we consider the optimization problem of the insurance company. It
mainly wants to minimize the ruin probability, but as this only makes sense for a
positive drift, the expected time to ruin is considered in case of a negative drift. The
overall aim is to find the optimal premium as a function of the deductible.

When the controlled reserve develops according to a Brownian motion with pos-
itive drift, (Hipp and Taksar, 2010) shows that minimizing the ruin probability is
equivalent to maximizing the following ratio µ/σ between the drift and volatility. In
out setting this means maximizing

µ(p;K)

σ2(p;K)
=
p− α(p;K)x(K)

α(p;K)x2,(K)
− L

n(p;K)α(p;K)x2,(K)
. (4.1)

This also follows from the relation ϕ(r0) = exp(−2r0µ(p, ;K)/σ2(p;K)). If the drift
is negative, then ϕ(r0) = 1.

As previously implied, if the market consists of risk neutral customers, then
the drift of the diffusion process will be negative making ruin certain. In order to
avoid this, it is assumed in the following that there is a sufficiently large degree
of risk aversion among the (potential) customers to satisfy the net profit condition
p > α(p;K)x(K) for some p. Otherwise, there will be no motivation for selling
insurance.

Notice that if p = 0 the insurance company will offer insurance for free, and
so µ(0;K) < 0 for any given K. Furthermore, due to the liability rate, L, the
diffusion will also have a negative drift when the premium becomes very large, since
no customer will then be interested in insuring, hence limp→∞ µ(p;K) < 0. So ruin
will be certain for both p = 0 and p→∞.

Now assume for some K that the premium is zero. What will then happen if the
premium was raised marginally? The insurance company will have nearly the same
amount of customers and therefore also the same amount of claims, but the firm
will get a small revenue collecting premiums. Hence, µ(p,K) will increase. Note, that
this is under the assumption that the effects from portfolio size decrease and adverse
selection are smaller than the effect of raising the premium. Conversely, what if the
premium was so large that no customer is interested in insuring? If the company
lowers the premium such that it receives few customers, then under the condition
of p > α(p,K)x(K) it will obtain revenue to cover at least some of the liability cost.
So µ(p,K) will also increase when lowering the premium for very large values of it.
This tells us intuitively that if there is an optimal premium, then it is not obtained
for p = 0 nor in the limit p→∞, and we thereby avoid trivialities when finding the
optimal premium.

Breviate notation by µp(p,K) = ∂µ(p;K)
∂p

, and similarly for αp(p,K) and np(p,K).
Assume that there is an unique p̃ that maximizes the drift, i.e. satisfies the first order
conditions

µp(p̃;K) = np(p̃;K)
(
p̃− α(p̃;K)x(K)

)
+ n(p̃;K)

(
1− αp(p̃;K)x(K)

)
= 0. (4.2)

11



This is equivalent to saying that p̃ must satisfy

−np(p̃;K)

n(p̃;K)
=

1− αp(p̃;K)x(K)

p̃− α(p̃;K)x(K)
.

The intuitive interpretation is that the relative marginal change in the demand curve
must equal the relative marginal change in average net revenue per customer due to
a change in premium. Two cases then arise:

(i) If µ(p̃;K) > 0, then ϕ(r0) < 1 for all r0 > 0, K̃ > 0 and p in some bounded
open interval I ⊂ (0,∞) containing p̃.

(ii) If µ(p̃;K) ≤ 0, then ϕ(r0) = 1 for all r0 > 0 and p > 0.

Notice that the drift is positive if the net profit per customer is greater than the
liability cost per customer, that is p−α(p;K) > L/n(p;K). This is more strict than
the net profit condition.

Since the current framework is very general, so will the results be. In every
concrete application the existence of an unique solution must be verified. In case i)
an optimization criterion is given and proved in Theorem 6.

Theorem 6. When µ(p̃;K) > 0, the optimal premium minimizing the ruin proba-
bility must be a solution to the equation

1− pαp(p;K)

α(p;K)
+

L

n(p;K)

(
np(p;K)

n(p;K)
+
αp(p;K)

α(p;K)

)
= 0.

Proof. Differentiating (4.1) with respect to the premium,

∂
(
µ(p;K)
σ2(p;K)

)

∂p
=

1− αp(p;K)x(K)

α(p;K)x2,(K)
−
(
p− α(p;K)x(K)

)
αp(p;K)x2,(K)

(
α(p;K)x2,(K)

)2

+
L(np(p;K)α(p;K) + n(p;K)αp(p;K))x2,(K)

(
n(p;K)α(p;K)x2,(K)

)2

=
α(p;K)− αp(p;K)p

α2(p;K)x2,(K)
+
L(np(p;K)α(p;K) + n(p;K)αp(p;K))

n2(p;K)α2(p;K)x2,(K)

yields the first order condition

α(p;K)− αp(p;K)p

α2(p;K)x2,(K)
+
L(np(p;K)α(p;K) + n(p;K)αp(p;K))

n2(p;K)α2(p;K)x2,(K)
= 0.

Reducing we obtain the following optimality criterion

1− αp(p;K)

α(p;K)
p+

L

n(p;K)

(
np(p;K)

n(p;K)
+
αp(p;K)

α(p;K)

)
= 0.

12



In case ii), it no longer makes sense to minimize ruin probability since it is
constantly one. Instead, we suggest to choose the control to maximize the expected
time to ruin, E[τ ], and thereby extend the expected lifetime of the company as much
as possible. This is a non-standard objective function. Since the controlled reserve
is a Brownian motion with drift, we are able to obtain a very simple expression.

Theorem 7. When µ(p̃;K) ≤ 0, then p̃ will optimize the exptected time to ruin.

Proof. Recall that we have a Brownian motion with negative drift

Xt = r0 + µ(p;K)t+ σ(p;K)Bt

and we want to consider the stopping time τ = inf{t ≥ 0 : Xt ≤ 0}. Since (Xt)t≥0
is a continuous process it must be that Xτ = 0. Furthermore, {Xt − µ(p;K)t} is a
martingale with mean r0. This implies

E[Xτ − µ(p;K)τ ] = −µ(p;K)E[τ ] = r0

Hence E[τ ] = −r0/µ(p;K). So the expected time to ruin is maximized when the
drift is maximized. Due to the assumption of an unique p̃ such that the first order
condition (4.2) is satisfied, then this must be the optimal choice.

In Example 9 and 10 the optimal premium is calculated explicitly for the portfolio
characteristics in Section 3.1.1 and 3.2.1, respectively.

5 Examples and Illustrations.

Example 8. Assume that the claim sizes are lognormally distributed, that is Zi ∼
logN (µ, σ2). This has distribution has tail function F (x) = 1−Φ ((log(x)− µ)/σ),
where Φ denotes the standard normal distribution function. The k’th moment is
given by E[Zk

i ] = exp(kµ + k2σ2/2). We seek to find a closed form solution to the
premium Pvar(K). The challenge obviously is x(K) and x2,(K). Altering these yields

x(K) = E[(Zi −K)1{Zi≤K}] = E[(Zi −K) | Zi ≥ K]F (K)

= (E[Zi | Zi ≥ K]−K)F (K),
(5.1)

and

x2,(K) = E[((Zi −K)1{Zi≥K})
2] = E[(Zi −K)21{Zi≤K}]

= E[(Z2
i +K2 − 2ZiK)1{Zi≥K}]

= K2F (K) + E[Z2
i | Zi ≥ K]F (K)− 2KE[Zi | Zi ≥ K]F (K).

(5.2)

In (Benckert and Jung, 1974) it is shown that the k’th moment of the truncated
random variable is

E[Zk
i | Zi ≥ K] = E[Zk

i ]
Φ
(µ+kσ2−log(K)

σ

)

F (K)
.

13



Figure 1: Plot of x(K) (top, blue) and x2,(K) (buttom, red) as functions of K for a
lognormal claim size distribution with µ̂ = 1.6 and σ̂ = 1.99.

From this it follows that in the lognormal case, (5.1) can be written as

x(K) = zΦ

(
µ+ σ2 − log(K)

σ

)
−KF (K),

and (5.2) as

x2,(K) = K2F (K) + z2Φ

(
µ+ 2σ2 − log(K)

σ

)
− 2KzΦ

(
µ+ σ2 − log(K)

σ

)
.

Hence, when the claims are lognormally distributed, the maximal premium that a
customer with characteristics (α, β) is willing to pay for an insurance contract as a
function of the deductible is

P var
β (K) = αKF (K)

(
Kβr

2
− 1

)
+ αzΦ

(
µ+ σ2 − log(K)

σ

)
(1− βrK)

+
βrαz2

2
Φ

(
µ+ 2σ2 − log(K)

σ

)
.

(5.3)

While this is not a straightforward expression, it is computationally easy to evaluate.
Some combined data on claims in fire insurance reported 1958–1969 by Swedish fire
insurance companies is studied in (Benckert and Jung, 1974), where the estimates
µ̂ = 1.6 and σ̂ = 1.99 are obtained. These are used in the following. In Figure 1
x(K) and x2,(K) are plotted as functions of the deductible. Notice in particular the
very different regions of the functions. This implies that the premium the customer
is willing to pay for a given deductible is very sensitive towards changes in the
characterization parameters (α, β) of the customer. The smaller a deductible, the
higher a sensitivity.

In Figure 2 the premium function (5.3) for different combinations of characteris-
tics is illustrated. Here it is also very clear that the function is very sensitive towards
changes in characteristics and most so for small deductibles. Notice the consider-
able change from the combination (α, β) = (1/10, 2) to (α, β) = (1/2, 3) where the
premium gets approximately 7.4 times larger.
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Figure 2: The premium (5.3) as function of K for different values of customer character-
istics. The interest rate is chosen to be 2% and the estimates µ̂ = 1.6 and σ̂ = 1.99 are
used.

Example 9. An insurance company wants to supply fire insurance. It is entering
a market where the customers have unknown, possibly different claim frequencies,
and a constant risk aversion, β. The claim frequencies are once again assumed to
be independent and identically exponentially distributed with parameter b. The
portfolio can thus be characterized as in Section 3.1.1.

First, the insurer needs to see, which region of the premium it is profitable to
even supply insurance. The criteria p− α(p,K)x(K) > 0 translates into

p >
2

βrb

x(K)
2

x2,(K)
+
x(K)

b
. (5.4)

For a given deductibleK, the considered price must exceed this threshold. Otherwise
the insurance company should choose not to supply insurance.

Next, evaluating the drift is of interest. Knowing the portfolio characteristics, it
can be written explicitly as

µ(p;K) = N exp

(
−b 2p

2x(K) + βrx2,(K)

)(
p− 2px(K)

2x(K) + βrx2,(K)
+
x(K)

b

)
− L.

Solving the first order criteria (4.2) yields the solution

p̃(K) =
(2x(K) + βrx2,(K))2

2βbrx2,(K)
=

2

βrb

x(K)
2

x2,(K)
+
βrx2,(K)

2b
+

2x(K)

b
.

Notice that p̃ obviously satisfies being in the region of (5.4). We now seek to find
the conditions under which the drift will be positive. Solving for µ(p̃;K) > 0 yields

L

N
<
βrx2,(K)

2b
exp

(
−2x(K) + βrx2,(K)

βrx2,(K)

)
.

Assuming that this inequality holds, then one must use Theorem 6 to find the
optimal price. The optimality criterion in reduced form is

N

L

2x(K) + βrx2,(K)

2b
= exp

(
2bp

2x(K) + βrx2,(K)

)
2bp

2x(K) + βrx2,(K)
.
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Figure 3: A mesh of the drift µ(p;K) for deductibles and premiums in the range [0, 5000]

This yields the following optimal premium as a function of the deductible,

p∗(K) =
2x(K) + βrx2,(K)

2b
W

(
N

L

2x(K) + βrx2,(K)

2b

)
.

using the Lambert W function. The Lambert W function defined as the (multival-
ued) inverse of the function w 7→ exp(w)w. For more details, see (Corless et al.,
1996). In the case µ(p̃;K) ≤ 0, it follows from Theorem 7 that p̃(K) is the optimal
choice. Note that due to the Lambert W function being increasing for positive val-
ues, then p∗ will be prefered to p̃ if p∗(K) ≥ p̃(K). So for a given deductible, K, it is
preferable for the insurance firm to simply choose the maximum of p∗(K) and p̃(K).

Assume that the insurance company evaluates that the market consists of N =
10 000 house owners considering to buy insurance, and that it calculated the liability
costs to be L = 5000. It also assesses that b = 3 and β = 3. Assume furthermore
that the company has some information about the distribution of the claims, and
based on this it believes that the claims are lognormally distributed according to
the estimates in (Benckert and Jung, 1974). It also knows how to reasonably choose
a deductible K to serve the purpose described in the introduction. The interest rate
applied is 2%.

In the Figure 3 a mesh of the drift is presented. The preliminary analysis of the
drift in Section 4 is very well illustrated in this. The concavity in the premium is
obvious. For all the considered deductibles in the range [0, 5000], the drift will be
positive in p̃(K).

Next, a contour of the ratio µ/σ2 is illustrated in Figure 4. The concavity in
the premium also appears very clearly here. The ratio is at its highest within the
region of approximately K ∈ [0, 220], followed by the regions K ∈ (220, 590] and
then K ∈ (590, 1070]. In Figure 5 the premiums p̃(K), p∗(K) as functions of the
deductible are plotted.

Notice that the model does not take the cost of processing an increasing number
of claims into consideration. The company therefore evaluates that a deductible of
K = 1000 is suitable. This yields the following values

p̃(K) = 474.2, p∗(K) = 2458.1,

Since p∗(1000) > p̃(1000) then p∗ is the optimal premium.
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Figure 4: A contour of the relation µ(p;K)/σ(p;K)2 for deductibles in the range [0, 2000]
and premiums in [1210, 4750].

Figure 5: The premiums p∗(K) and p̃(K) as functions of the deductible K.

Example 10. Assume now that the insurance company beliefs that the claim fre-
quency is constant in the portfolio, but does not possess any information about
the customers’ risk aversion. The risk aversion is therefore modelled by a random
variable, which is assumed to have an exponential distribution with parameter ν.
Portfolio characteristics are then as in Section 3.2.1. The existence criteria of the
insurance company will be p − αx(K) > 0, i.e. the premium must simply be larger
than the net premium. First is to find the solution to (4.2), namely

p̃(K) =
rx2,(K)α

2ν
+ αx(K).

Next, is to find the region of which the drift evaluated in p̃ is positive

L

N
<
rx2,(K)α

2ν
exp(−1).

In this region

p∗(K) =
rx2,(K)α

2ν
log

(
N

L

rx2,(K)α

2ν

)
+ αx(K)

is optimal. Otherwise p̃ is optimal. Again, due to the logarithm being an increas-
ing function, one can simply state that the insurance company should choose the
maximum of p̃ and p∗.

17



Acknowledgments

I would like to express my sincere gratitude to my supervisor Søren Asmussen for
his expertise, support and patience. I would also like to give a very special thanks to
my co-supervisor Bent Jesper Christensen for his time, encouragement and generous
advice. Their help and guidance is much appreciated.

References

Schmidli, H. Stochastic control in insurance; Springer Science &amp; Business Media, 2007.

Hipp, C.; Taksar, M. Optimal non-proportional reinsurance control. Insurance: Mathe-
matics and Economics 2010, 47, 246–254.

Rees, R.; Wambach, A. The microeconomics of insurance; Now Publishers Inc, 2008.

Asmussen, S.; Albrecher, H. Ruin probabilities; Vol. 14, World scientific, 2010.

Asmussen, S.; Christensen, B.J.; Taksar, M. Portfolio size as function of the premium:
modelling and optimization. Stochastics 2013, 85, 575–588.

Burnecki, K.; Nowicka-Zagrajek, J.; Weron, A. Pure risk premiums under deductibles.
A quantitative management in actuarial practice. Technical report, Hugo Steinhaus
Center, Wroclaw University of Technology, 2004.

Højgaard, B. Optimal dynamic premium control in non-life insurance. Maximizing dividend
pay-outs. Scandinavian Actuarial Journal 2002, 2002, 225–245.

Van Lieshout, M. Markov point processes and their applications; World Scientific, 2000.

Gerber, H.U.; Pafum, G. Utility functions: from risk theory to finance. North American
Actuarial Journal 1998, 2, 74–91.

Gerber, H.U. On additive premium calculation principles. Astin Bulletin 1974, 7, 215–222.

Bichsel, F. Erfahrungstarifierung in der Motorfahrzeug-Haftphlichtversicherung. Mitt.
Verein. Schweiz. Versich. Math. 1964, pp. 119–130.

Benckert, L.G.; Jung, J. Statistical models of claim distributions in fire insurance. Astin
Bulletin 1974, 8, 1–25.

Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W
function. Advances in Computational mathematics 1996, 5, 329–359.

18



A Calculations of the present value in Section 2.

The present value of not insuring can be split into three terms

Vn = E
[∫ ∞

0

exp(−dt)dwt
]

= E
[∫ ∞

0

exp(−dt)rwtdt−
∫ ∞

0

exp(−dt)ddAαt

]

= E
[∫ ∞

0

exp(−(d− r)t)r
(
w0 −

Nα
t∑

i=1

exp(−rTi)Zi
)

dt−
∫ ∞

0

exp(−dt)dAαt
]

≡ K1 −K2 −K3.

The three terms are defined and assessed below. The first is easily evaluated as

K1 = E
[∫ ∞

0

exp(−(d− r)t)rw0dt
]

=
rw0

d− r .

The second and third term require a bit more effort. Using Campbell-Mecke’s for-
mula yields

K2 = E
[∫ ∞

0

r exp(−(d− r)t)
( Nα

t∑

i=1

exp(−rTi)Zi
)

dt
]

=

∫ ∞

0

r exp(−(d− r)t)E
[( Nα

t∑

i=1

exp(−rTi)Zi
)

dt
]

= zr

∫ ∞

0

exp(−(d− r)t)
(∫ t

0

exp(−rs)αds
)

dt

= zr

∫ ∞

0

exp(−(d− r)t)(1− exp(−rt))dt

=
zα

d− r −
zα

d
,

K3 = E
[∫ ∞

0

exp(−dt)dAαt
]

= E
[ ∞∑

i=1

exp(−dTi)Zi
]

= zα

∫ ∞

0

exp(−ds)ds =
zα

d
.

So to conclude, the present value of not insuring will be

Vn =
rw0

d− r −
zα

d− r .

B Calculations of the variance in Section 2

The Total Law of Variance states that

Var[S(K)] = Var
[
E[S(K) | F ]

]
+ E

[
Var[S(K) | F ]

]
(B.1)
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where the filtration, F , is the sigma algebra generated by the Ti’s. Consider the first
term of the variance in (B.1). The conditional expectation is easily calculated as

E[S(K) | F ] = E
[
r
∞∑

i=1

exp(−rTi)X(K)
i

∣∣∣ F
]

= rx(K)

∞∑

i=1

exp(−rTi).

The square of a sum is used for finding the variance of this expression

Var
[
rx(K)

∞∑

i=1

exp(−rTi)
]

= r2x(K)
2
(
E
[( ∞∑

i=1

exp(−rTi)
)2]
− E

[ ∞∑

i=1

exp(−rTi)
]2)

= r2x(K)
2
(
E
[ ∞∑

i=1

exp(−r2Ti) +
∞∑

i,j=1 : i 6=j
exp(−rTi) exp(−rTj)

]
−
(α
r

)2)

= r2x(K)
2
(
α

2r
+
(α
r

)2
−
(α
r

)2)
=
rx(K)

2
α

2
.

The square of a sum is also used for finding the conditional variance in the second
term of (B.1),

Var[S(K) | F ]

= r2
(
E
[( ∞∑

i=1

exp(−rTi)X(K)
i

)2 ∣∣∣ F
]
− E

[ ∞∑

i=1

exp(−rTi)X(K)
i

∣∣∣ F
]2)

= r2E
[ ∞∑

i=1

exp(−r2Ti)
(
X

(K)
i

)2

+
∞∑

i,j=1 : i 6=j
exp(−rTi) exp(−rTj)X(K)

i X
(K)
j

∣∣∣∣ F
]

− r2x(K)
2
( ∞∑

i=1

exp(−r2Ti)−
∞∑

i,j=1 : i 6=j
exp(−rTi) exp(−rTj)

)

= r2(x2,(K) − x(K)
2
)
∞∑

i=1

exp(−r2Ti).

Taking the expectation yields

E
[
Var[S(K) | F ]

]
= E

[
r2(x2,(K) − x(K)

2
)
∞∑

i=1

exp(−r2Ti)
]

=
r(x2,(K) − x(K)

2
)α

2
.

Concluding, the variance in (B.1) will be Var[S(K)] = (rx2,(K)α)/2.
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C Illustration of complexity of the exponential
premium in Section 2

To illustrate the complexity of Pexp(K) consider the simple case where K = 0 and
the claim size distribution F is degenerate in 1, i.e. Zi = 1 almost surely. Let

f(t) = E
[
exp
(
βr

∞∑

i=1

exp(−rTi)1{Ti≤t}
)]
.

During a short time interval dt the function f(t) might get an additional term to
the sum (corresponding to a new claim) with probability αdt or f(t) will remain
unchanged with probability 1− αdt, i.e.

f(t+ dt) = f(t)(1− αdt) + f(t) exp(β exp(−rt))αdt.

Letting dt tend to zero an ordinary differential equation appears,

f ′(t) = αf(t)(exp(β exp(−rt))− 1).

This can also be expressed as

log(f(t)) = α

∫ t

0

(exp(β exp(−rs))− 1)ds = αr

∫ −β exp(−rt)

−β

1

u
exp(−u)du− αt

= αr
(∫ ∞

−β

1

u
exp(−u)du−

∫ ∞

−β exp(−rt)

1

u
exp(−u)du

)
− αt

= αr(Ei(β exp(−rt))− Ei(β))− αt,

where Ei(.) denotes the exponential integral

Ei(x) = −
∫ ∞

−x

1

u
exp(−u)du for x > 0.

The exponential integral is known not to have a closed form solution. So even for the
simple case of a claim size distribution an analytic solution to the premium cannot
be obtained.
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