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Abstract

In this thesis we investigate some properties of Complex Chern–Simons theory.

Contrary to the compact situation which was the object of a lot of focus for more

than 20 years, not much was known until few years ago, regarding rigorous computa-

tions of invariants via Chern–Simons theory with complex gauge group. In the recent

years, in parallel to an increased interest from physics, the works of Andersen and

Kashaev, and of Andersen and Gammelgaard opened the way to a rigorous mathe-

matical investigation of such theories. Andersen and Kashaev provided the theory to

compute invariants of knot complements (and actually a more general class of cusped

3 manifolds) starting from the quantization of the Teichmüller space. The work of

Andersen and Gammelgaard provides a general differential geometric setting for the

ideas of Witten [Wit91], regarding techniques to quantize the 2 dimensional part of

Chern–Simons theory with gauge group SL(n,C). In general we are still missing 2+1

functorial interpretation, like the Witten-Reshetikhin-Turaev TQFT for the compact

theory. In this thesis we try to have a closer look to some of the most elementary

aspects of these constructions. We focused particularly in computing and studying

explicit expressions for the simplest examples of knot invariants and mapping class

group representations. We first construct invariants of hyperbolic knots, showing

their relation with some new representations of Quantum Teichmller Theory. Then

we focus in a couple of examples. The study of the asymptotic behavior of such

knot invariants requires a generalization of the theory of Andersen and Kashaev to

a non obviously unitary one, the existence of which was claimed again by Witten

in [Wit91]. In this setting some parallel with other previously known invariants is

discussed. Afterwards we follow the approach of Andersen and Gammelgaard in the

example of a genus 1 surface, and study the mapping class group representations that

this quantum theory defines. We give explicit formulas for the representations and

show how the representations from Chern–Simons theory with gauge group SU(2)

appear in these.

Dansk Résumé

I denne afhandling undersøger vi nogle egenskaber ved kompleks Chern–Simons

teori. I modsætning til den kompakte situation, der var genstand for megen fokus

i mere end 20 år, var der indtil for f̊a år siden ikke meget kendt om rigoristiske

beregninger af invarianter via Chern - Simons teori med kompleks gauge gruppe. I

de seneste år, sideløbende med en øget interesse fra fysik, har resultater af Ander-

sen og Kashaev, og Andersen og Gammelgaard åbnet vejen for en streng matema-

tisk undersøgelse af s̊adanne teorier. Andersen og Kashaev grundlagde teorien til at

beregne invarianter af knude komplementer (og faktisk ogs̊a en mere generel klasse af

”cusped” 3 mangfoldigheder) med udgangspunkt i kvantisering af Teichmüller rum-

met. Resultater af Andersen og Gammelgaard giver en generel differential geometrisk

baggrundsramme for ideer af Witten [Wit91], om teknikker til at kvantisere den 2 di-

mensionelle del af Chern–Simons teori med gauge gruppe SL(n,C). Generelt set man-

gler stadig den 2+1 funktorielle tolkning, som kendes fra Witten-Reshetikhin-Turaev

TQFT’en for den kompakte teori. I denne afhandling forsøger vi at f̊a et nærmere

kig p̊a nogle af de mest elementære aspekter af disse konstruktioner. Vi fokuserede

især p̊a beregning af eksplicitte udtryk for de simpleste eksempler p̊a knude invari-

anter og afbildningsklassegruppe repræsentationer. Vi konstruerer først invarianter
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af hyperbolske knuder, og beskriver deres relation til nogle nye repræsentationer af

Quantum Teichmller Theory. Dernæst ser vi nærmere p̊a en række eksempler.

Studiet af den asymptotiske opførsel af s̊adanne knude invarianter krævede en

generalisering af Andersens og Kashaevs teori til en ikke triviel unitær teori, hvis ek-

sistens blev formodet af Witten i [Wit91]. I lyset af dette diskuteres nogle paraleller

med andre tidligere kendte invarianter. Bagefter benytter vi Andersens og Gammel-

gaards tilgang i eksemplet med en genus 1 flade, og studerer de afbildningsklasseg-

ruppe repræsentationer, som denne kvanteteori definerer. Vi giver eksplicitte formler

for repræsentationerne og viser, hvordan repræsentationer fra Chern–Simons teori

med gauge gruppe SU(2) optræder i disse.
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Introduction

Topological Quantum Field Theories in dimension 2 + 1 were axiomatized in

[Ati88], [Wit88] and [Seg04]. Further, in his seminal paper [Wit89], Witten intro-

duced the study of quantum Chern-Simons theory with non-abelian, compact gauge

group G. For G = SU(n), to any positive integer k and couple (M,L), where M is a

3-manifold and L ⊂M is a link embedded Witten associates a number, claimed to be

a topological invariant. The process he used, usually called path integral, was mathe-

matically ill-defined and it is still so at the time of writing this thesis. Nevertheless it

is of crucial importance in modern physics and Witten was able to use it to show that

such topological invariant, for n = 2 and M = S3, corresponds to the colored Jones

polynomials of the link L. As the Lagrangian of the theory is the Chern–Simons

functional, which is a topological invariant, quantum Chern–Simons theory should

indeed be a TQFT. A mathematical construction of the theory via combinatorial

means followed shortly after from Reshetikhin and Turaev [RT90, RT91, Tur10].

This so called Witten-Reshetikhin-Turaev TQFT is based on the finite dimensional

representation theory of the quantum group Uq(sl(2,C)), where q is a root of unity.

Careful choice of q with respect to k leads this TQFT to analogous results to the

ones expected from quantum Chern–Simons theory. A similar rigorous approach, but

entirely topological using skein theory, was showed in [BHMV92, BHMV95, Bla00].

Recently Andersen and Ueno showed, in a series of four papers [AU07b, AU07a,

AU12, AU], that The Witten-Reshetikhin-Turaev TQFT is the same as the TQFT

coming from Conformal Field Theory [TUY89, BK00] as was also proposed to be the

case in Witten’s original paper [Wit89]. Witten further suggested in the same paper

that the geometric quantazation of moduli space of flat SU(n) connections should

be related to this theory and he developed this approach further in his joint paper

with Axelrod and Della Pietra [ADPW91]. Following shortly after, Hitchin gave a

rigorous account of this work in [Hit90]. For a purely differential geometric account

of the construction of this connection see [And12, AG11, AGL12]. By combining the

work of Laszlo [Las98] with the above mentioned works of Andersen and Ueno, it has

now been confirmed that one can use the geometric quantization of the moduli space

of flat connections as an alternative construction of the Witten-Reshetikhin-Turaev

TQFT. In the paper [Wit91] Witten also proposed a way to construct the mapping

class groups representations of quantum Chern-Simons theory for the non-compact

gauge group SL(n,C). This theory received less attention and it is much less devel-

oped. This thesis is indeed in the direction of understanding some aspects of it, as

we will explain later. First we recall some of the relevant literature. In the physics

literature, the complex quantum Chern-Simons theory has been discussed from a

path integral point of view in a number of papers [Dim13, DGG14, DGLZ09, DG13,

GM08, Guk05, Hik01, Hik07, Wit11, BNW91, Dim14] (see also references in these).
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From a mathematical standpoint the problem of extending the quantization pro-

gram of moduli spaces of flat connections to the non-compact group cases has been

tackled into at least two different ways. One approach is to first consider the mod-

uli space of flat PSL(2,R) connections over a surface, which is not connected, but

has an important connected component, namely the Teichmüller space. This space

is of primary interest in many areas of mathematics, and is fundamental in low

dimensional topology. The quantization program of the Teichmüller space was inde-

pendently carried out, for punctured surfaces, by Kashaev [Kas98] and Chekhov and

Fock [FC99]. Both the approaches are based on two ingredients, Penner coordinates

for the Decorated Teichmüller space [Pen87],[Pen12], and Faddeev’s Quantum Dilog-

arithm [Fad95],[FK94]. Quantum Teichmüller theory was further extended from a

2-dimensional theory to a (2 + 1)-dimensional theory by Andersen and Kashaev in

[AK14b] and [AK13]. In particular Andersen and Kashaev were able to construct

knots and links invariants together with some cobordism aspects of the axiomatized

definition of TQFT. Usually it is referred as Teichmüller TQFT. Later in the work

[AK14a] the same authors extended their previous constructions to a theory with

an extra parameter, a positive odd integer N . In the same work they also gave

evidences that this theory produces invariants for the level N , PSL(2, C) quantum

Chern–Simons theory. This theory is similar in the formalism (but not in the nature)

to the one developed in the physics literature by Dimofte [Dim14].

A different approach is to follow the original quantization program proposed by Wit-

ten [Wit91]. This was done in a mathematical formalism by Andersen and Gammel-

gaard [AG14]. In this setting the quantization of SL(2,C) moduli spaces is possible

for closed and punctured surfaces, however no 2 + 1–dimensional interpretation is

developed as of now.

In this thesis we review both the approaches to complex Chern–Simons theory and

we try to exploit some aspects of them. First we try to put together the theory

presented in [AK14a] with the constructions of [AK14b] and [Kas98]. In subsection

3.1.2, following Kashaev’s approach to quantize the Teichmüller space, we define a

formal quantization dependent on a continuous parameter b, constrained to have

Re b > 0 and Im(b)(1 − |b|) = 0, together with an odd positive level N . In section

3.2, we show with arguments extrapolated from [AK14a], that the quantization of

the moduli space PSL(2, C) flat connections of a 4–punctured sphere is equal to

the formal (b, N)–quantization of its Teichmüller space. The main ingredient to see

this equivalence is the level N Weil-Gel’fand-Zak transform and it is expressed in

Proposition 43. Afterwards we extend this construction to a level N Teichmüller

TQFT strictly following the presentation for level 1 in [AK14b]. The Theorem 52

updates the functor from [AK14b] to this setting. It is interesting that the theory,

for N > 1, has different unitary properties if b is real or unitary. Namely if b > 0 and

N > 1, the canonical inner product do not make the theory unitary, see Definition

26 for details. This particular setting was not considered in the literature as far as

we know. The phenomenon is parallel to what Witten noticed in [Wit91] that there

are two possible unitary complex theories, one obvious and one exotic, depending

on the nature of the quantization parameter. In particular, for knot invariant, the

semi–classical limit b→ 0 is possible only in the exotic theory.

Another part of this work regards Witten’s approach to quantize the SL(2,C) moduli

space of a genus 1 surface Σ with no punctures. Following the lines of [Wit91] and

[AG14] we quantize the moduli space of flat SL(2,C) connections on Σ, and compute

2



the explicit description of the quantum representations of the mapping class group

of Σ. These are a family of infinite dimensional representations parameterized by a

continuous unitary parameter b, with Re b > 0, and a positive integer k ≥ 1, see

Theorems 67 and 73 for their explicit expression. In particular we show a tensor

product decomposition of the representations, with one factor equal to the represen-

tations obtained via SU(2) quantum Chern Simons theory at level k−2, see Remark

5.2.4. Again the Weil-Gel’fand-Zak Transform is the main technical tool used to

simplify the explicit descriptions. Another central objects in the quantization is the

Hitchin–Witten connection and the parallel transport associated to it, that we de-

scribe explicitly in this baby example of genus 1.

Summary

In Chapter 1 we list some more or less standard preliminary material of gen-

eral interest throughout the thesis, such as geometric quantization and Teichmüller

theory. In Section 1.2, we present the level–N Weil-Gel’fand-Zak transform and its

general properties. Its applications will be transversal to the rest of the thesis.

In Section 1.3 we present Penner’s λ–lengths coordinates for the the Teichmüller

space, Kashaev’s ratio coordinates which are a generalizations of Penner’s one and

some of their symplectic properties. A description of change of coordinates and

action of the mapping class group in terms of decorated Ptolemy groupoid is also

provided. Finally we describe the complexification of such coordinates as a way to

describe the PSL(2, C) moduli spaces.

In Chapter 2 we recall some basics on Faddeev’s quantum dilogarithm Φb, together

with the more recent level N dilogarithm, Db : R × Z/NZ −→ C, introduced in

[AK14a], that we describe here in more details, showing analogous properties to the

ones known for Φb, together with a different behavior in Proposition 20 which mir-

rors the different unitary properties of the theory at level N > 1.

In Chapter 3 the formal quantization of the Teichmüller space is carried out with

representations in L2(R×Z/NZ), thanks to the dilogarithm Db. In particular we de-

fine a tetrahedral operator acting on L2(R×Z/NZ), which provides representations

for the Ptolemy groupoid. In Section 3.2, we show that such formal quantization is

compatible with the quantization of the moduli space of PSL(2, C) flat connections

for the 4–punctured sphere.

In Chapter 4 we upgrade the construction of the previous chapter to a level N Te-

ichmüller TQFT. Following [AK14b] and [AK13] a charged version of the tetrahedral

operator is introduced. In this way it is possible to compute partition functions of

cusped 3 dimensional objects that admits an ideal triangulation with ideal tetrahe-

dra and some extra admissibility condition. Hyperbolic knot complements are among

them and we show a couple of examples together with some asymptotic property in

the exotic unitary setting, i.e. when b > 0 and b → 0. In the figure–eight knot we

remark the appearance in this limit of another knot invariant, of similar nature, the

Baseilhac–Benedetti invariant from [BB07], see subsection 4.4.4.

Chapter 5 Is divided in two sections. The first is a general recall of classical and

complex Chern–Simons theory, the quantization of them, and motivations for the

Hichin and Hitchin–Witten connections. For the purposes of this thesis this sec-

tion only serves to put the second one in a bigger and more general framework of

3



research. In the second section, we describe the quantization of complex quantum

Chern–Simons thoery in genus 1 from the scratch, giving all the details and com-

putations. From this we compute the representations of the mapping class group

explicitly as integral operators.
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Chapter 1

Preliminaries

1.1 Geometric Quantization

Let (M,ω) be a fixed manifold M with symplectic 2 form ω ∈ Ω2(M,R) fixed

for the rest of this section. We are going to summarize the process of geometric

quantization following the two step approach of doing a so called pre-quantization

first, and then concluding the process with the choice of a polarization. A general

reference is [Woo92].

The first step consist in finding a pre-quantum line bundle

Definition 1. A pre-quantum line bundle (L,∇, (·, ·)) consists in an Hermitian line

bundle L → M , (·, ·) being the Hermitian structure, together with a compatible

connection ∇ on the bundle such that the curvature satisfies

F∇ = −iω. (1.1)

M is said pre-quantizable if a pre-quantum line bundle exists.

If this is possible to be found, we can assign to every observables f ∈ C∞(M,R)

a pre-quantum operator

f̂ = −i∇Xf + f (1.2)

where Xf is the Hamiltonian vector field associated to f , i.e. the vector field satis-

fying

ω(Xf , ·) = −df

and get the commutator

[f̂ , ĝ] = −i{̂f, g} (1.3)

where {·, ·} is the Poisson bracket induced by ω.

Now we ask ourselves when is it M pre-quantizable. It is well known that given a

line bundle L with connection ∇, then the cohomology class of the curvature satisfies

i

2π
[F∇] = c1(L) ∈ H2(M,Z)

where c1(L) is the Chern class of the line bundle. It follows that having ∇ satisfying

(1.1), imposes the condition on ω[ ω
2π

]
∈ H2(M,Z). (1.4)

5



This condition turns out to be both necessary and sufficient for the existence of a

pre-quantization.

Regarding the (non)-uniqueness of the pre-quantization we remark that inequivalent

choices of ∇ satisfying (1.1) are precisely parametrized by H1(M,U(1)). See [Woo92]

for a detailed discussion.

Example 1.1.1 (Canonical (pre-)Quantization). Fix a positive real ~ > 0. Suppose

M = R2n and ω = 2π~−1
∑n
j=1 dqj ∧ dpj . Then [ω] = 0 ∈ H2(R2,Z) = {0}, so the

trivial line bundle L = M ×C is the only possible one. We fix the gauge representa-

tive of the pre-quantum connection as ∇ = d + 2πi~−1
∑n
j=1 pjdqj satisfying (1.1).

The Hermitian structure is the canonical one on R2n. The pre-Quantum operators

associated to the coordinate functions are

p̂j = − ~
2πi

∂

∂qj
q̂j =

~
2πi

∂

∂pj
+ qj

Example 1.1.2 (Torus). Consider the torus M = T× T = R/Z× R/Z ' C/Z2. A

line bundle L → M can be pulled back via π : R2 −→ R2/Z2 to a trivializable line

bundle ϕ : π∗L ∼→ R2×C. More precisely, for every p ∈ R2, the trivialization ϕ gives

an identification of the fiber

ϕp : (π∗L)p
∼→ C.

Since the line bundle L is defined in the quotient, for every λ ∈ Z2 we should have

(π∗L)p+λ = (π∗L)p ,

so the composition ϕp ◦ϕ−1
p+λ : C→ C is a well defined change of trivialization of the

line bundle L. Being an isomorphism of the complex plane it reduces to multiplying

by a complex number eλ(p) named multiplier. The consistency condition that a

choice of multipliers e have to satisfy is the following

eλ(p)eλ′(p+ λ) = eλ′(p)eλ(p+ λ′) (1.5)

The hermitian lines bundles over M are classified by their first Chern class c1(L) ∈
H2(M,Z) ' Z, and they satisfy the properties

c1(L ⊗ L′) = c1(L) + c1(L′), c1(L∗) = −c1(L).

It follows that once we know the line bundle so that c1(L) = 1, we can generate all

the other via these group properties.

Fact 1. Let (x, y) coordinates over R2 and ω = dx ∧ dy ∈ Ω2(R2/Z2,R). The line

bundle L →M with multipliers

e(1,0)(x, y) = eπiy e(0,1)(x, y) = e−πix

has Chern class c1(L) = [ω] = 1 ∈ H2(M,Z)

Any section ψ ∈ C∞(M,L) can be pulled back to s = π∗ψ ∈ C∞(R2, π∗L), which

correspond to the space of quasi periodic functions satisfying

s(x+ 1, y) = e(1,0)(x, y)s(x, y) s(x, y + 1) = e(0,1)(x, y)s(x, y)

We will carry out the quantization in this example in many details at several places

in this thesis and with different techniques.

6



1.1.1 Polarizations and Quantization

Given a pre-quantum line bundle (L,∇, (·, ·)) for (M,ω), the natural Hilbert space

to consider is L2(M,L) where the square integrability is with respect to the following

inner product

〈ψ, φ〉 ≡
∫
M

(ψ, φ)
ωn

n!
. (1.6)

However this space turns out to be wrong for the simplest applications in physics,

as the ’states’ should depends on half the number of variables. This can be obtained

by choosing a polarization in M and considering only sections covariantly constant

in the directions that it determines. Precisely

Definition 2. A complex Lagrangian Polarization on (M,ω) is a distribution P in

TCM satisfying

1. ω(X,Y ) = 0 for all X and Y ∈ P (P is Lagrangian),

2. [X,Y ] ∈ P for all X and Y ∈ P (P is Involutive)

3. dim(Px ∩ P x ∩ TxM) is constant for all x ∈M .

A polarization is said real if P = P .

Usually, with a polarization at hand, the Hilbert space of the quantization becomes

H ≡ {ψ ∈ L2(M,L) : ∇Xψ = 0 ∀X ∈ P}. (1.7)

Example 1.1.3 (Canonical Quantization). Recall example 1.1.1. Let us conclude

it with a particular choice of polarization, i.e. P = Span〈 ∂∂pj , j = 0, . . . n〉. The

Hilbert space is H ' L2(R), while the quantum operator reduce to the Schrodinger

representation

p̂j = − ~
2πi

∂

∂qj
q̂j = qj (1.8)

1.2 Weil-Gel’fand-Zak Transform

Let S(R) be the space of Scwartz functions over the reals, k be a positive integer.

The space L2(R)⊗Ck has an L2 inner product defined by equation (A.8) in Appendix

A.2. Let Lk be the line bundle over the real 2–torus T × T with sections identified

with quasi-periodic functions on R2 satisfying

s(u+ 1, v) = eπivs(u, v) s(u, v + 1) = e−πius(u, v). (1.9)

On C∞(T× T,Lk) consider the following inner product

〈ψ, φ〉 =

∫
[0,1]2

ψ(u, v)φ(u, v)dudu (1.10)

We now present the so-called level k Weil-Gel’fand-Zak transform, introduced in

[AK14a]. The level 1 transform is well known and detailed treatment can be found,

for example, [Ner11].

Proposition 2. We have an isomorphism

W (k) : S(R)⊗ Ck −→ C∞(T× T,Lk)
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given by

W (k)(f)(u, v) =
1√
k
e−kπiuv

k−1∑
j=0

∑
m∈Z

fj

(
u+

m

k

)
e−2πimve−2πi jmk , (1.11)

with inverse

W
(k)

(s)(x, j) =
1√
k

k−1∑
l=0

e2πi ljk

∫ 1

0

s

(
x− l

k
, v

)
eπik(x+ l

k )vdv.

It satisfies the following unitarity property

〈W (k)(f),W (k)(g)〉 = 〈f, g〉.

Proof. Let f ∈ S(R) ⊗ Ck. We want to prove that W (k)(f) ∈ C∞(T × T,Lk). It is

very simple to see that W (k)(f) satisfies equations (1.9) using the explicit definition

of W (k). We now proceed to show that W (k)(f) is of class C∞. Suppose k = 1 for

simplicity, as the general case follows analogously. For every p, q ∈ Z≥0

∂p

∂up
∂q

∂vq
W (1)(f)(u, v) =

∑
m∈Z

∂p

∂up
(
f(u+m)e−πiuv−πimv(−πi)q (uq + (2m)q)

)

Since ∂puu
qf(u) ∈ S(R) the series in m converges uniformly. Conversely, let s ∈

C∞(T×T,L), (again we suppose k = 1 for simplicity) and consider W
(1)

(s)(x). The

function h(x, v) ≡ s(x, v)eπixv is 1–periodic in v. For N ∈ Z>0, the derivative

∂p

∂xp
W

(1)
(s)(x+N) =

∫ 1

0

∂ph

∂xp
(x, v)e2πiNvdv

which is the N -th coefficient of the Fourier series of ∂ph
∂xp as 1–periodic function of v

and so it rapidly decrease as N → ±∞. We now consider

(x+N)qW
(1)

(s)(x+N) =

q∑
j=0

(
q

j

)
xq−j

∫ 1

0

N jh(x+N, v)dv

=

q∑
j=0

(
q

j

)
xq−j

∫ 1

0

h(x, v)N je2πiNvdv

=

q∑
j=0

(
q

j

)
xq−j

(2πi)j

∫ 1

0

h(x, v)
∂j

∂vj
(
e2πiNv

)
dv

=

q∑
j=0

(
q

j

)
xq−j

(−2πi)j

∫ 1

0

e2πiNv ∂
j

∂vj
(h(x, v)) dv

the last being a finite sum of N -th Fourier coefficients for q distinct functions ∂jh
∂vj ,

j = 0, . . . q. So it rapidly decrease as well. This concludes the proof that W
(1)

(s) ∈
S(R).
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Now we compute the composition of the two inverse formulas.

W (k)(W
(k)
s)(u, v) =

1√
k
e−kπiuv

k−1∑
j=0

∑
m∈Z

W
(k)

(s)
(
u+

m

k
, j
)
e−2πimve−2πi jmk

=
1

k
e−kπiuv

k−1∑
l, j=0

∑
m∈Z

e2πi ljk

∫ 1

0

s

(
u− l −m

k
, ṽ

)
eπik(u+ l+m

k )ṽdṽe−2πimve−2πi jmk

=
1

k
e−kπiuv

k−1∑
r, l=0

∑
q∈Z

∫ 1

0

s

(
u− l − r

k
, ṽ

)
eπik(u+2q+ l+r

k )ṽdṽ

× e−2πi(kq+r)v
k−1∑
j=0

e2πi
j(l−r)
k , (where m = qk + r, 0 ≤ r < k )

=
1

k
e−kπiuv

k−1∑
r=0

∑
q∈Z

∫ 1

0

s(u, ṽ)eπik(u+ 2
k (q+r))ṽdṽ

× e−2πi(kq+r)vδ(r − l)k

= e−kπiuv
∑
m∈Z

e−2πimv

∫ 1

0

s(u, ṽ)eπikuṽe2πimṽdṽ

= e−kπiuvs(u, v)eπikuv = s(u, v)

where the sum over m is computed as a Fourier series in [0, 1] of the 1-periodic

function ψ(ṽ) ≡ s(u, ṽ)eπiuṽ. We now verify the unitary property

〈W (k)(f),W (k)(g)〉 =

=
1

k

∫ 1

0

∫ 1

0

k−1∑
j1, j2=0

∑
m1,m2∈Z

f
(
x+

m1

k
, j1

)
g
(
x+

m2

k
, j2

)
e−2πiy(m1−m2)dydx

× e 2πi
k (j2m2−j1m1)

=
1

k

∫ 1

0

k−1∑
j1, j2=0

∑
m1,m2∈Z

f
(
x+

m1

k
, j1

)
g
(
x+

m2

k
, j2

)
dx e

2πi
k (j2m2−j1m1)

×
∫ 1

0

e−2πiy(m1−m2)dy

=
1

k

∫ 1

0

k−1∑
j1, j2=0

∑
m1,m2∈Z

f
(
x+

m1

k
, j1

)
g
(
x+

m2

k
, j2

)
dx

× e 2πi
k (j2m2−j1m1)δ(m1 −m2)

=
1

k

∑
m∈Z

∫ 1

0

k−1∑
j1=0

f
(
x+

m

k
, j1

)
e−

2πi
k mj1

k−1∑
j2=0

g
(
x+

m

k
, j2

)
e

2πi
k mj2dx

=
∑
q∈Z

∫ q+1

q

k−1∑
r=0

F−1
k (f)

(
x+

r

k
, r
)

F−1
k (g)

(
x+

r

k
, r
)

dx, (m ≡ qk + r)

=

∫ +∞

−∞

k−1∑
r=0

f
(
x+

r

k
, r
)

g
(
x+

r

k
, r
)

dx

=

∫ +∞

−∞

k−1∑
r=0

f (x, r) g (x, r)dx

Proposition 3. W (k) extend to an isometry from L2(R)⊗ Ck to L2(T× T,Lk).
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Proof. W (k) and its inverse are defined in open dense subspaces of the relevant

Hilbert spaces. Moreover it is unitary with respect to the respective L2-norms. So

it will send L2–convergent sequences in S(R) ⊗ Ck to L2–convergent sequences in

C∞(T × T,Lk). This permits to extend the transforms W (k) and W
(k)

in the L2–

completions of the two spaces.

1.3 Teichmüller Theory

1.3.1 Teichmüller Theory

In this section we establish some basic facts about (Decorated) Teichmüller The-

ory. Most of the content here is standard and can be found e.g. in [Pen12] and

[FM12]. Let Σg,s be a topological surface of genus g with s punctures. Broadly

speaking the Teichmüller space Tg,s ≡ T (Σ) is the space of all the complex struc-

tures admitted by Σ up to isotopy. However the first half of this thesis deals with

cases where χ(S) ≡ 2 − 2g + s is negative. In this case there is a remarkable phe-

nomena that makes the definition of Teichmüller space equivalent to the one given

as space of all hyperbolic metric structures up to isotopy. In the last Chapter 5, we

will look closer to the special non hyperbolic case of g = 1, and s = 0.

Suppose now χ(S) ≡ 2− 2g+ s < 0. Let H be the space of all the possible complete

hyperbolic Riemannian structures on Σg,s and let Diff+(Σg,s) be the space of the

orientation preserving diffeomorphisms of Σg,s. Define also Diff+
0 (Σg,s) to be the

connected component of Diff+(Σg,s) containing the identity map.

We call the space Mg,s := H/Diff+(Σg,s) the Riemann moduli space of Σg,s. The

space

Tg,s := H/Diff+
0 (Σg,s)

is called Teichmüller space of Σg,s while the group

MCGg,s := Diff+(Σg,s)/Diff+
0 (Σg,s)

is called Mapping Class Group of Σg,s.

It follows thatMg,s = Tg,s/MCGg,s and the study of the action of the Mapping Class

Group on the Teichmüller space become of great interest in order to understand the

topology of the Riemann moduli space.

There is an equivalent definition of Teichmüller space relevant for our purpose. Let

Homdfp(π1(Σg,s),PSL(2,R)) be the space of group representations of π1(Σg,s) into

PSL(2,R) that are discrete, faithful and that send peripheral homotopy class in

π1(Σg,s) to parabolic elements of PSL(2,R) (an homotopy class is peripheral if it

represents a curve around a puncture). We have the following isomorphism:

Tg,s ∼= Homdfp(π1(Σg,s),PSL(2,R))/PSL(2,R)

where PSL(2,R) acts by conjugation.

From this point of view Γ ∈ Tg,s is the conjugacy class of a representation of π1(Σg,s)

satisfying some properties. The image of such a representation is called a Fuchsian

group. The following properties of the Tichmuller space are well known

Theorem 4. The Teichmüller Space Tg,s is homeomorphic to R6g−6+2s.

For details about Teichmüller theory and generally hyperbolic geometry see, for

example [FM12] [Pen12] and [BP92]. From now to the end of this Section we will

concentrate on the punctured case , i.e. s > 0.
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Definition 3. A decorated hyperbolic structure Γ̃ on Σg,s is a conjugacy class of

Fuchsian group Γ together with an s-tuple of horocycles, one for each puncture.

The space of all the decorated hyperbolic structures T̃g,s is called Decorated Te-

ichmüller Space. The specification of the hrocycles reduces to the specification of

a positive real number for each of them (heuristically, its hyperbolic length on the

surface) so we get

dim T̃g,s = 6g − 6 + 3s. (1.12)

We want to put coordinates in this space. Let first define a combinatorial data

on the topological surface, over which the coordinates will be defined.

Definition 4. An ideal arc α is the homotopy class relative to the endpoints of the

embedding of a path in Σg,s, such that the endpoints are punctures of the surface.

An ideal triangle is a triangle with the vertices removed, such that the edges are

ideal arcs.

An ideal triangulation τ of Σg,s is a collection of disjoint ideal arcs such that Σg,s \ τ
is a collection of the interior of ideal triangles. The set of all the ideal triangulation

of Σg,s will be denoted by ∆ = ∆(Σg,s).

Given an ideal triangulation τ , ∆j(τ) will denote the set of its j-dimensional cells.

Fix a decorated hyperbolic structure Γ̃ for Σg,s. Consider two punctures p1 and p2

on Σg,s and the two horocycles h1 and h2 associated with them. Let γ be a geodesic

representative of an ideal arc α between p1 and p2. The signed hyperbolic distance

between h1 and h2 along γ is well defined as follows: look at the universal cover H2

of Σg,s, then γ will lift to a geodesic line γ̃ between the two ideal points in S1 = ∂H2

corresponding to p1 and p2, and h1 and h2 will lift to horocycles h̃1 and h̃2 in H2

tangent to them. Let δ be the signed geodesic distance between γ̃ ∩ h̃1 and γ̃ ∩ h̃2

(take the sign positive if h̃1 ∩ h̃2 = ∅, negative otherwise).

Definition 5. In the situation above we can define the lambda length of α as

λ(α, Γ̃) :=
√
eδ.

Now we can find coordinates on T̃g,s in terms of the lambda lengths.

Theorem 5 (Penner [Pen87]). Let τ be an ideal triangulation of Σg,s, with s ≥ 1

and 2g − 2 + s > 0. Then the natural mapping

Λτ : T̃g,s −→ R∆1(τ)
>0 , Γ̃ 7→ (α 7→ λ(α, Γ̃)).

is a real analytic homeomorphism.

With these coordinates we can explicitly see an action of Rs>0 on T̃g,s which gives

the projection T̃g,s −→ Tg,s, namely if α ∈ τ is an ideal arc between the punctures p

and q and f ∈ Rs>0, then the action in coordinates is as follows

λ(α, f · Γ̃) = f(p)f(q)λ(α, Γ̃). (1.13)

Lemma 6 (Ptolemy Relation). Consider an ideal quadrilateral with lambda lengths

of the sides a, b, c and d in this cyclic order. Then there are two different ways to

choose a diagonal. Let e and f be the lambda lengths of the two possible diagonals.

Then the following relation holds:

ac+ bd = ef . (1.14)
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The move that exchange the diagonal in a quadrilateral is called diagonal ex-

change.

Fact 7 (Whithehead’s Classical Fact). Two ideal triangulations are related by a finite

sequence of diagonal exchanges.

Lemma 6 gives the change of coordinates between Λτ (T̃g,s) and Λτ ′(T̃g,s).
The Teichmüller space Tg,s has a natural symplectic structure given by the Weil

Petersson form. For a geometric description of it we refer to [Wol83]. When pulled

back to T̃g,s it has a remarkably simple expression. Let τ be an ideal triangulation of

Σg,s, let ∆2(τ) the set of ideal triangles in τ , then the pull back of the Weil Petersson

symplectic form on T̃g,s is the following Penner 2-form

ωP =
∑

t∈∆2(τ)

da ∧ db

ab
+

db ∧ dc

bc
+

dc ∧ da

ca
(1.15)

where a, b and c are the lambda lengths of the three sides of t, in the cyclic order

defined by the orientation on Σg,s.

For more details on the Decorated Teichmüller Space see the book [Pen12].

1.3.2 Coordinates for the PSL(2,C) Moduli Spaces

In this section we want to describe how Complexified Lambda Lengths can be

used to describe local coordinates on the space

M≡ Homp,i(π1(Σg,s), PSL(2, C))/PSL(2, C), (1.16)

where the action is by conjugation, the p stays for peripheral and the i for irreducible,

i.e. M is the space of irreducible representations of π1(Σg,s) up to conjugation with

holonomy around punctures conjugate to a parabolic element of PSL(2,C). We will

need to give a construction analogous to the decoration on the Teichmüller space to

define coordinates. In this section we strictly follow the description given by Kashaev

in [Kas05] for the coordinates of the PSL(2,R) moduli space, adapting to the complex

case. The topic is also treated in the more general and systematic language of cluster

coordinates in [FG06].

We have a fixed surface Σg,s of genus g with s punctures. Let Σ be its closure and

let κ ≡ −χ(Σ) = 2g − 2 + s > 0. In this section by unipotent subgroup we mean

a one parameter subgroup U of PSL(2, C) generated by parabolic elements, i.e. a

subgroup conjugated to the following one

U =

{(
1 λ

0 1

)
, λ ∈ C

}
. (1.17)

Fix the conjugacy class of such U as above in (1.17). The normalizer of U will be

the Borel subgroup N(U) = B of upper triangular matrices and the one parameter

group T = B/U is identified with diagonal matrices. Let N(T )/T 3 θ =

(
0 1

−1 0

)
which satisfies θ2 = 1 in PSL(2, C). We have the Bruhat decomposition

PSL(2, C) = BθB tB,

where the union is disjoint.
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Definition 6. Let a and b be two paths starting at the same point x ∈ Σ and ending

respectively at the punctures P and Q. Let m ∈M be a fixed flat connection.

(i) We define the homotopy class l(a) of the loop based at x that goes along a, then

makes a small loop around P and then closes along a−1.

(ii) We say that the homotopy class relative to the endpoints of a−1b is m-admissible

if l(a) and l(b) belong to distinct unipotent subgroups (of parabolic elements) of

PSL(2,C).

(iii) For any ideal triangulation τ of Σ, define Mτ as the set of flat connections

m ∈M such that τ is m-admissible.

The following theorem was proved in [Kas05]. Let ∆ = ∆(Σ) be the set of ideal

triangulations of Σ.

Theorem 8. {Mτ}τ∈∆(Σg,s) is a covering of M.

In this section we want to give a description of a set of coordinates for M which

are an analogous of Penner coordinates for the Teichmüller space.

Definition 7 (Graph Connection). Let Γ be a graph. Let G be a Lie Group. A flat

graph G-connection is the assignment of an element ge ∈ G to every edge e in Γ such

that g−1
e = ge, where e is the reversely oriented edge corresponding to e

Two flat graph G connections (ge)e and (he)e are equivalent if there exists a kv ∈ G
for every vertex v of Γ such that ge = k−1

v hekw for every edge e connecting the

vertices v and w.

Given a graph Γ ⊂ Σg,s embedded into a surface, a flat graphG connection h on Γ and

a (gauge equivalene class of) flat connection m on Σg,s we say that h represents m if

there is a representative of m inducing a parallel transport operator on Γ equivalent,

as graph connection, to h.

Remark 1.3.1. If Σg,s retracts to an homotopically equivalent graph Γ supporting a

flat graph G connection AΓ, then AΓ defines a flat G connection over Σg,s.

Let A = A(Σg,s) be the set homotopy class of ideal arcs of Σ ≡ Σg,s relative to

the endpoints. Let Σ̂ ⊂ Σ be the complement of a set of s disjoint disks, each centred

at one puncture. Then

∂Σ =
⋃
P

L(P ),

where P varies among the punctures of Σ and L(P ) is diffeomorphic to a circle.

Let α ⊆ A be a collection of ideal arcs. We define the graph Γ(α) = {(e, p(e), q(e))}e∈α
where e connects the two punctures Pe and Qe, p(e) ∈ L(Pe) and q(e) ∈ L(Qe) are

chosen as follows. For any two distinct homotopy class of ideal arcs e and f ∈ α,

there exist paths a ∈ e and b ∈ f so that a ∩ Σ̂ goes from p(e) to q(e), b ∩ Σ̂ goes

from p(f) to q(f) and |a ∩ b| is minimal as a and b vary in their respective homotopy

classes of ideal arcs. The set {(p(e), q(e))}e∈α will be the set of vertices of Γ(α) and

there will be two types of edges: the one defined by ideal arcs e ∈ α that we will call

long edges, and the one which are paths in ∂Σ̂ that we call short edges.

Given α ⊆ A we can defineM(α) as the set of m ∈M such that α is a maximal set

of m–admissible ideal arcs. Then

M =
⋃
α

M(α) (1.18)

Mτ =
⋃

α⊇∆1(τ)

M(α). (1.19)

13



Proposition 9. There exist a principal Cs–bundle π : M̃ −→M and, for every ideal

triangulation τ of Σ, a function φτ : C∆1(τ)
6=0 −→ C 6=0 such that:

(i) For every ideal triangulation τ , π−1(Mτ ) ' C∆1(τ)
6=0 \ φ−1

τ (0).

(ii) The structure group action on π−1(Mτ ) is as follows:

Cτ6=0 × Cs6=0 3 (f, g) 7→ f · g ∈ C∆1(τ)
6=0

Where f · g(e) := f(e)g(P )g(Q) for every ideal arc e ∈ τ running between the ideal

vertices P and Q.

(iii)Suppose that two ideal triangulations τ and τ ′ are related by one diagonal ex-

change e 7→ e′ inside the quadrilateral with ideal edges a, b, c and d. Suppose that

m ∈Mτ and f ∈ C∆1(τ)
6=0 \ φ−1

τ (0) such that

f(a)f(b)

f(c)f(d)
+ 1 6= 0, (1.20)

then there exists f ′ ∈ C∆1(τ ′)
6=0 \φ−1

τ ′ (0) corresponding to the same element of π−1(m)

as f such that f(x) = f ′(x) for every x 6= e, e′ and

f ′(e′)f(e) = f(a)f(c) + f(b)f(d). (1.21)

Proof. Let α ⊂ A. We want to construct a fiber bundle π : M̃(α) −→ M(α) for

each α and then combine them to a global fiber bundle π : M̃ −→M in analogy to

the Decorated Teichmüller space. Let m ∈M(α), the fiber π−1(m) is defined as the

space of equivalence classes of flat graph-connections on Γ(α) representing m and

such that all short edges have assigned unipotent elements, while long edges have

assigned θT elements.

Let h be an Γ(α) flat graph cnnection representing m. Since α is m–admissible, the

h-holonomies around the boundary components of Σ̂ based at respective vertices in

the components it selves are all is some unipotent subgroups. We can replace h by an

equivalent flat graph connection were all this holonomies are in the same unipotent

subgroup U ⊂ G. This makes the parallel transport operators along single short

edges to be in B = N(U). Now the m-admissibility conditions for the long edges,

implies that parallel transport along them has to conjugate the holonomy around a

puncture to a different unipotent subgroup (or it will be the same of the puncture

at the other end). This together with the Bruhat decomposition gives that parallel

transports along long edges has to be in BθB. Up to conjugation with elements in B,

we can make them be elements of θT (indeed, as Möbius transformations, elements

of BθB are characterised by not preserving ∞, and conjugating by elements in B

preserves this property). We can still gauge transform by T valued functions at the

vertices of the graph, so to restrict the parallel transport along short edges to be in

U . We are left with some freedom in the equivalence relation given by the choice

of a T valued function on the vertices of Γ(α) which is constant on vertices in the

same boundary component. This argument shows that π−1(m) has the structure of

a T s-torsor.

Now we look at an ideal triangle t in τ with ideal vertices {v0, v1, v2} and sides

ei respectively, opposite to vi for i = 0, 1, 2. Restricted to Σ̂, t will represents an

hexagon with short edges fi, i = 0, 1, 2 opposite to the long edges ei. We now know

that parallel transport along the long edge ei will have the form

(
0 λ−1

i

−λi 0

)
,

λi ∈ C 6=0 while parallel transport along short edges will be of the form

(
1 ui

0 1

)
,
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Figure 1.1: An ideal Triangle cut by short edges.

ui ∈ C. Since the parallel transport along the the whole hexagon has to be the

identity, explicit computation gives condition

ui =
λi
λjλk

{i, j, k} = {0, 1, 2}. (1.22)

This permits to conclude that for every α ⊇ ∆1(τ) the parallel transport in Γ(α) is

completely determined by parallel transport in Γ(τ), since each time we add a long

edge to Γ(τ) one of its opposite short edge and the two long edges around it will

determine its parallel transport.

Moreover the formula gives a way to associate to each h ∈ π−1(Mτ ) a value in the set

C∆1(τ)
6=0 . However one should be careful that the parallel transport along short edges

compose to unipotent parabolic elements as holonomies around punctures. This can

be state as follows. Given f ∈ Cτ6=0 consider for any ideal triangle t of τ having Pi,

i = 0, 1, 2 as ideal vertices the numbers

utPi(f) =
f(ei)

f(ej)f(ek)

where ei is the ideal edge opposite to Pi. Define the following function

φτ (f) = ΠP∈∆0(τ)φτ , P (f), φτ , P (f) =
∑

∆3(τ)3t3P

utP (f) (1.23)

Then φτ (f) = 0 if and only if there is a puncture with non parabolic holonomy.

This permits to conclude that π−1(Mτ ) ' C∆1(τ)
6=0 \ φ−1

τ (0).

Finally we come back to the action of T s ' Cs6=0 on π−1(Mτ ). Let f ∈ C∆1(τ)
6=0 \φ−1

τ (0)

and g ∈ Cs6=0. For every ideal arc e ∈ τ from the ideal verticex P to the ideal vertex

Q we have associated a matrix F (e) =

(
0 f(e)−1

−f(e) 0

)
∈ θT , and two matrices

G(P ) =

(
g(P ) 0

0 g(P )−1

)
∈ T and G(Q) =

(
g(Q) 0

0 g(Q)−1

)
∈ T . The action

for every such arc e is of the type G(P )F (e)G(Q)−1, which in coordinates reads as

f · g(e) = f(e)g(P )g(Q).

Now consider two ideal triangulations τ and τ ′ related by a unique diagonal

exchange from the side e to e′ inside the quadrilateral q ⊂ τ ∩τ ′ with ideal boundary

made of the four ideal arcs a, b, c and d. Suppose that e cuts the quadrilateral in the

two triangle {a, b, e} and {e, c, d}. Suppose now that there exists m ∈Mτ ∩Mτ ′ and

let f ∈ C∆1(τ)
6=0 \ φ−1

τ (0) and f ′ ∈ C∆1(τ ′)
6=0 \ φ−1

τ ′ (0) both corresponding to the same

element in π−1(m). Computing the parallel transport operators along Γ(τ) ∩ Γ(τ ′)

gives the same values for f and f ′ along every edge except e and e′. Now compute
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Figure 1.2: Diagonal exchange.

the parallel transport along one of the short edges of Γ(τ ′) opposite to e′ gives

u′ =
f ′(e′)

f ′(b)f ′(c)
=

f ′(e′)

f(b)f(c)
.

On the other side the two short edges of Γ(τ) opposite to a and d give a combined

parallel transport

u =
f(a)

f(b)f(e)
+

f(d)

f(c)f(e)

Since f and f ′ represents the same element one has u = u′, which can be rewritten

as

f ′(e′)f(e) = f(a)f(b) + f(c)f(d). (1.24)

It is simple to see from this that a necessary condition for m ∈ Mτ to be also in

Mτ ′ is that
f(a)f(b)

f(c)f(d)
+ 1 6= 0.

This is also sufficient by construction.

We will call the spaces ΛC(τ) := π−1(Mτ ) spaces of complexified lambda length

coordinates in analogy with Penner coordinates for the Teichmüller space.

1.3.3 Ratio Coordinates

We are going to introduce the ratio coordinates, following the work of Kashaev

[Kas98]. Ratio coordinates are a generalization of real Penner’s lambda lengths.

Later in section 1.3.5 we will discuss their complexification.

Definition 8. A decorated ideal triangulation of Σg,s is an ideal triangulation τ up

to isotopy relative to the punctures, together with the choice distinguished corner in

each ideal triangle and a bijective ordering map

τ : {1, . . . , s} 3 j 7→ τ j ∈ ∆2(τ).

We denote the set of all decorated ideal triangulation as ∆̇ = ∆̇(Σg,s).

When we say that τ is a decorated ideal triangulation we mean that τ is the

set of decorated ideal triangles in the triangulation. For the remaining part of this

subsection a decorated ideal triangulation τ of Σg,s is considered fixed.

Let the Ratio coordinates space be defined as R(τ) ∼= Rτ>0 × Rτ>0. There is

an action of P(Rs>0) on R(τ), in any decorate ideal triangle of ratio coordinates
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x = (x1, x2) and ideal vertices va, vb and vc, the last one being the distinguished

one, we have

f · x =

(
f(vc)

f(vb)
x1,

f(vc)

f(va)
x2

)
, ∀f ∈ P(Rs>0) (1.25)

We can map Λ(τ) into it via ρ : Λ(τ) −→ R(τ) which, for any triangle in τ , sends

the three lambda lengths a, b and c to the couple ( bc ,
a
c ) where we are supposing

the distinguished corner to be the one opposite to the edge of length c and the

cyclic ordering a, b, c to be induced by the orientation on the surface. The map is

compatible with the action of Rs>0 on Λ(τ) (1.13). Explicitly

ρ(f · λ) = f · ρ(λ) for every λ ∈ Λ(τ), f ∈ Rs>0. (1.26)

This makes ρ a principal bundle morphism between Λ(τ) and R(τ). Moreover there

is a symplectic structure

ωR =
∑
x∈τ

dx1

x1
∧ dx2

x2

which pulls back to the Penner form: ωP = ρ∗ωR.

Remark 1.3.2. We can endow the sets Λ(τ) and R(τ) with a multiplicative group

structure defined by component–wise multiplication. This is artificial but ρ is an

homomorphism with respect to this structure and has kernel equal to the constant

functions in Λ(τ)

Given an homology class of a closed curve γ in Σg,s we want to define the holonomy

Hol(x, γ) of such class, with respect to the ratio coordinates x ∈ R(τ). First of all

choose a representative for γ such that, for every ideal triangle t, γ∩t is either empty

or a simple arc which intersect ∂t in exactly two distinct points in two distinct edges.

In this way γ decomposes in a finite number of oriented arcs γi, each contained in

one ideal triangle. We define Hol(x, γ) :=
∏
i u(γi), where u is defined as follows.

For every i, let γi be the oriented arc from the point p to the point q laying inside

the triangle with ratio coordinates (x1, x2) and with edges labeled a, b, c with the

distinguished corner opposite to c. Then u(γi) is defined as

u(γi) =


x2 if p ∈ a and q ∈ c
x1 if p ∈ b and q ∈ c
x2/x1 if p ∈ a and q ∈ b

(1.27)

and u(−γi) := u(γi)
−1. Notice that Hol(x, ∂R) = 1, for every region R ⊆ Σg,s with

no punctures in its interior.

We also define a moment map µτ : R(τ) −→ H1(Σg,s,R) by the rule

〈µτ (x); γ〉 = log Hol(x, γ).

Notice that the bracket 〈µτ ; ·〉 is linear in the second argument and only depends on

the homology class. In particular we remark that

µτ (x) = 0 ⇐⇒ x = ρ(λ) for some λ ∈ Λ(τ)

The statement can be easily seen noticing that the map u(γ) for homologically non

trivial γ gives exactly the obstruction to construct lambda length on the triangles

involved by γ. Doing this for all the loops around punctures is sufficient to involve

all the ideal triangles.

Moreover µτ is a group homomorphism with respect to the group structure of Remark

1.3.2. Recall that H1(Σg,s,R) support an intersection form ◦.
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Proposition 10. The Poisson bracket induced by ωR is given by the intersection

form ◦ in H1(Σg,s,R), i.e.

1

2
{〈µτ ; γ1〉, 〈µτ ; γ2〉} = γ1 ◦ γ2.

Proof. The proof is an in-coordinate verification, that can be carried out deforming

γ1 and γ2 so that they intersect only in points looking as follows

and recalling that every ideal triangle define a distinct symplectic leaf with respect

to ωR.

Let vi, i = 1,. . . ,s be the punctures on the surface Σg,s, and le γvi be the homology

class of curve around a puncture, oriented counterclockwise w.r.t. the orientation of

Σg,s. For any f ∈ P(Rs>0) define ξf :=
∑s
i=1 γvi log f(vi) ∈ H1(Σg,s,R). This defines

a group homomorphism P(Rs>0) −→ H1(Σg,s,R).

Proposition 11. For every f ∈ P(Rs>0) the Hamiltonian vector field X〈µτ ;ξf 〉 of

〈µτ ; ξf 〉 ∈ C∞(R(τ)) corresponds to the vector field induced by the infinitesimal

action of f ∈ P(Rs>0) on R(τ), i.e. if Vf ∈ Lie(P(Rs>0)) is such that exp(Vf )·x = f ·x,

then
d

dt

∣∣∣∣
t=0

(exp(tVf ) · x) = X〈µτ ;ξf 〉|x, ∀x ∈ R(τ)

Proposition 11 says that the action of f ∈ P(Rs>0) on R(τ) is Hamiltonian being

Hf := 〈µτ ; ξf 〉 the Hamiltonian for the infinitesimal action associated to f . Explicitly

it gives an identification between Lie(P(Rs>0)) and the subspace

span{γvi : vi is a puncture} ⊆ H1(Σg,s,R),

moreover the association Vf 7→ Hf is trivially an Lie algebra homomorphism, being

the bracket on the right trivial due to Proposition 10, and Lie(P(Rs>0)) abelian.

In the end we have the following exact sequence of group homomorphisms:

1 −−−−→ R>0
i−−−−→ Λτ (T̃g,s)

ρ−−−−→ R(τ)
µτ−−−−→ H1(Σg,s,R) −−−−→ 0,

where i(a) ∈ Λτ (T̃g,s) is the structure with lambda length equal to a in all the

edges, 1 stand for the trivial multiplicative group while 0 for the trivial additive

group.

In particular

Tg,s ∼= T̃g,s/Rs>0
∼= µ−1

τ (0)/P(Rs>0),

where the quotient is an Hamiltonian reduction.

The space R(τ) was introduced by Kashaev in [Kas98].

1.3.4 Ptolemy Groupoid Representations

One of the main interests in quantizing moduli spaces is the consequent con-

struction of representations of (central extensions of) the mapping class group of the

surfaces. Quantum Teichmüller theory produce instead representations of a bigger

object called (decorated) Ptolemy Groupoid that we are going to introduce now.

Recall that, given a group G acting freely on a set X, we can define an associated

groupoid G as follows. The objects of G are G-orbits in X while morphisms are
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G-orbits in X × X with respect to the diagonal action. Then for any x ∈ X we

can consider the object [x] and for any pair (x, y) ∈ X × X we can consider the

morphism [x, y]. When [y] = [u] there will be a g ∈ G so that gu = y and we

can define the composition [x, y][u, v] = [x, gv]. The unit for [x] is given by [x, x].

If the action of G is transitive, we would get an actual group. We will abbreviate

[x1, x2][x2, x3] · · · [xn−1, xn] with [x1, x2, . . . , xn].

We define the decorated Ptolemy groupoid G(Σg,s) of a punctured surface Σg,s fol-

lowing the above recipe. The set we consider is the set ∆̇ of decorated triangulations

τ of Σg,s. The group free action is the one of the mapping class group MCGg,s on

∆̇. This action is not transitive, meaning that not all pairs of decorated ideal trian-

gulations can be related by a mapping class group element. However in the language

of groupoids we can still describe generators and relations for the morphism groups.

For τ ∈ ∆̇ there are three kind of generators [τ, τσ], [τ, ρiτ ] and [τ, ωi,jτ ], where τσ is

obtained by applying the permutation σ ∈ S|τ | to the ordering of triangles in τ , ρiτ is

obtained by changing the distinguished corner in the triangle τ̄i ∈ τ as in Figure 1.3,

and ωi,j is obtained by applying a decorated diagonal exchange to the quadrilateral

made of the two decorated ideal triangles τ̄i and τ̄j as in Figure 1.4.

�
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@r r r∗

i
ρi−→

Figure 1.3: Transformation ρi.
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ωij−→

Figure 1.4: Transformation ωij .

The relations are usually grouped in two sets, the first being:

[τ, τα, (τα)β ] = [τ, ταβ ], α, β ∈ Sτ , (1.28)

[τ, ρiτ, ρiρiτ, ρiρiρiτ ] = id[τ ], (1.29)

[τ, ωi,jτ, ωi,kωi,jτ, ωj,kωi,kωi,jτ ] = [τ, ωj,kτ, ωi,jωj,kτ ] (1.30)

[τ, ωi,jτ, ρiωi,jτ, ωj,iρiωi,jτ ] = [τ, τ (i,j), ρjτ
(i,j), ρiρjτ

(i,j)] (1.31)

The first two relations are obvious, the third is called the Pentagon Relation and it

is explained in Figure 1.5 while the fourth is explained in Figure 1.6.

The second set of relations, are commutation relations.

[τ, ρiτ, ρiτ
σ] = [τ, τσ, ρσ−1(i)τ

σ], (1.32)

[τ, ωi,jτ, (ωi,jτ)σ] = [τ, τσ, ωσ−1(i)σ−1(j)τ
σ], (1.33)

[τ, ρjτ, ρjρiτ ] = [τ, ρiτ, ρiρjτ ], (1.34)

[τ, ρiτ, ωj,kρiτ ] = [τ, ωj,kτ, ρiωj,kτ ], i /∈ {j, k}, (1.35)

[τ, ωi,jτ, ωk,lωi,jτ ] = [τ, ωk,lτ, ωi,jωk,lτ ], {i, j} ∩ {k, l} = ∅, (1.36)

The fact that the one we listed are all the possible transformations is Whitehead’s

Classical Fact 7 in the context of decorated triangulations.
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Figure 1.6: Inversion relation (1.31).

Recall that in the previous subsection we associated to every decorated ideal

triangulation τ ∈ ∆̇ the coordinate spaceR(τ). Now we want to describe the action of

G(Σg,s) as morphisms between these spaces. The morphisms [τ, τσ] act by permuting

the coordinates in R(τ). The morphism [τ, ρiτ ] acts as the identity on any pair

x = (x1, x2) corresponding to ideal triangles different from τ̄i and as (x1, x2) = x 7→
y = (x2

x1
, 1
x1

) for the pair of coordinates corresponding to τ̄i. Finally the action of

[τ, ωi,jτ ] is the identity on τ̄k for k 6= i, j while letting x = (x1, x2) and y = (y1, y2)

be the coordinates corresponding to the triangles τ̄i and τ̄j respectively, and letting

u = (u1, u2) and v = (v1, v2) be the coordinates of the triangles ωi,jτ i and ωi,jτ j ,

then we have u = x • y and v = x ∗ y where

x • y := (x1y1, x1y2 + x2) (1.37)

x ∗ y := (
y1x2

x1y2 + x2
,

y2

x1y2 + x2
).

Let ∆̃ be the set of pairs (τ,R(τ)), τ ∈ ∆̇, and recall that R(τ) carries a sym-

plectic structure and an action of P(Rs>0).

Proposition 12. The action of G(Σg,s) on ∆̃ is compatible with the action of

P(Rs>0), and preserves the symplectic structure ωR.

This means that we can consider the space R(Σg,s) defined as the quotient of

∆̃ by the action of G(Σg,s). This space of coordinates is now independent from

the triangulation. For more details on the (decorated or not) Ptolemy groupoid see

[Pen12],[FK14],[Kas12][Kas01].
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1.3.5 Complexified Ratio Coordinates

In a similar way to the previous section, one can use the description in Proposition

9 of the spaces ΛC(τ), together with a non decorated version of G(Σg,s) to describe

the moduli space M of flat irreducible PSL(2,C) connections in terms of a (C∗)s

gauge action on the complexified decorated Teichmüller space T̃ C
g,s defined as the

quotient of the set of couples (τ,ΛC(τ)) by the Ptolemy Groupoid [AK14a].

There exists a complex analogue of R(Σg,s), presented in [AK14a], which proceed

analogously to define complexified ratio coordinates starting from the complexified

lambda coordinates ΛC(τ) we defined in Section 1.3.2.

Fix a surface Σg,s, with a decorated ideal triangulation τ . We can define space of

complex ratio coordinates RC(τ) as the space (C∗)∆2(τ) × (C∗)∆2(τ) with the action

of P((C∗)s) defined in direct analogy with (1.25). Define ∆̃C to be the set of pairs

(τ,RC(τ)). The Ptolemy Groupoid gives us again a way to get a space RC(Σg,s)

identifying different couples of ∆̃C. We remark that in this process of identifications

we need to use equations (1.37) to relate different ideal triangulations and such

equations could produce a division by 0 when we use complex number. However this

happen only in a closed algebraic subspace of RC(τ) so the change of coordinates is

well defined on an open dense subset. This phenomenon was explicated for complex

lambda coordinates in Proposition 9 in equation (1.20). We can moreover map

ρC : T̃ C
g,s −→ RC(Σg,s) as we did with the real coordinates mapping (a, b, c) 7→ ( bc ,

a
c )

for a triangle of lambda lengths a, b, and c and decoration opposite to c (this map

has to be thought as the quotient map of the maps defined in coordinates in each

ΛC(τ) for every decorated ideal triangulation). The exactly same expression of the

2-forms ωP and ωR, gives here complex valued 2-forms in ΛC and RC(τ) respectively.

These forms are G(Σg,s)–invariant so they define well posed two forms on T̃ C
g,s and

RC(Σg,s) respectively, again related by pull-back ρ∗CωR = ωP .

We can define a combinatorial map δC : RC(Σg,s) −→ H1(Σg,s,C 6=0) by the formula

〈δC(x), γ〉 =
∏
i u(γi), where u is analogously defined to the real case, in each RC(τ),

see equation (1.27). We have an exact sequence of group homomorphisms like (1.3.3):

1 −−−−→ C∗ i−−−−→ T̃ C
g,s

ρC−−−−→ RC(Σg,s)
δC−−−−→ H1(Σg,s,C∗) −−−−→ 1.

Here we lose the symplectic reduction interpretation, however we still have an inter-

pretation of the PSL(2, C) moduli space M as a gauge group action over RC(Σg,s).

A choice of a decorated ideal triangulation still gives us an explicit simple formula

for the symplectic form ωR. Moreover we can still describe the action of the mapping

class group explicitly in terms of decorated Ptolemy groupoid.

Example 1.3.1 (Four punctured sphere). Consider the sphere with 4 punctures

{v0, v1, v2, v3}. Choose the ideal triangulation where all the vertices are trivalent.

A point in T̃ ≡ T̃0,4 is given by a 6-upla x ≡ (xij)0≤i<j≤3 of lambda lengths. We

quotient by the gauge group R4
>0 acting as R4

>0 3 f · x = (fifjxij)0≤i<j≤3. With the

choice

f =

(
(
x01x02

x12
)

1
2 , (x01f0)−1, (x02f0)−1, (x03f0)−1

)
(1.38)

we have

f · x =

(
1, 1, 1, 1,

x13

x12
,
x23

x12

)
(1.39)

We remark that this choice of gauge is compatible with the map ρ to R(τ) for

some appropriate choice of decoration. Under this gauge the Teichmüller space T is

parametrized by two positive real number (y1, y2) ∈ R>0 × R>0 and the symplectic
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form ωP takes the form

ωP =
dy2

y2
∧ dy1

y1
(1.40)

Thanks to Proposition 9 all the coordinates described above remain valid, substitut-

ing R>0 with C∗, for the moduli spaceM of flat PSL(2,C) connections, except that

the so obtained parametrization and the formula (1.40) are valid only in an open

dense subset C∗ × C∗ of M.
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Chapter 2

Quantum Dilogarithm

2.1 Quantum Dilogarithm

In this section we introduce several instances of a special function, the quantum

dilogarithm. It was first introduced in the works of Faddeev [Fad95] and Kashaev

and Faddeev [FK94]. We recall the properties of the so called Faddeev’s quantum

dilogarithm in Section 2.2. Standard references for the quantum dilogarithm are

[Vol05], [FKV01] and the original work [FK94]. Recently, Andersen and Kashaev

[AK14a] introduced al levelN quantum dilogarithm as a function on AN ≡ R×Z/NZ,

which corresponds to Faddeev’s quantum dilogarithm when N = 1. In Section 2.3

we introduce this level N dilogarithm and we prove some of its properties, going by

analogy to the level 1.

2.2 Faddeev’s Quantum Dilogarithm

In this section we recall the properties of Faddeev’ quantum dilogarithm. A

general reference for the following statements is [FKV01], see also the thesis [Nis14]

for some more detailed proofs.

Definition 9 (q-Pochammer Symbol). Let x, q ∈ C, such that |q| < 1. Define the

q-Pochammer Symbol of x as

(x;q)∞ :=

∞∏
i=0

(1− xqi)

The convergence of the infinite product is guaranteed by the hypothesis |q| < 1,

so we can substitute the complex number x with a formal variable. In particular it

can be proved that (see [FK94])

Theorem 13. Let X, Y be two variables satisfying XY = qY X. Then the following

five-term relation holds true

(Y ;q)∞ (X;q)∞ = (X;q)∞ (−Y X;q)∞ (Y ;q)∞ . (2.1)

Definition 10 (Faddeev’s Quantum Dilogarithm [Fad95]). Let z,b ∈ C be such that

Re b 6= 0, | Im(z)| < | Im(cb)|, where cb := i(b + b−1)/2. Let C ⊂ C, C = R+ i0 be a

contour equal to the the real line outside a neighborhood of the origin that avoid the
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singularity in 0 going in the upper half plane. The Faddeev’s quantum dilogarithm

is defined to be

Φb(z) = exp

(∫
C

e−2izwdw

4 sinh(wb) sinh(wb−1)w

)
. (2.2)

It is evident that Φb is invariant under the following changes of parameter

b ↔ b−1 ↔ −b, (2.3)

so that our choice of b can be restricted to the first quadrant

Re b > 0, Im b ≥ 0 (2.4)

which implies

Im(b2) ≥ 0 (2.5)

Lemma 14. Suppose that Im(b2) > 0. Define the constants q := eiπb2

and q̃ :=

e−iπb−2

. Then the following equality holds true:

Φb(z) =

(
e2π(z+cb)b;q2

)
∞(

e2π(z−cb)b−1 ;q̃2
)
∞

Proposition 15. The Faddevv’s quantum dilogarithm satisfies the following two

functional equations

Φb(z − ib±1/2) = Φb(z + ib±1/2)(1 + e2πb±1z) (2.6)

Φb(z)Φb(−z) = ζ−1
inv e

iπz2 (2.7)

where ζinv = eiπ(1+2c2b)/6

Theorem 16 (Pentagon Relation). Let p and q be two self-adjoint operators on

L2(R) satisfying the Heisenberg relation [p, q] = 1
2πi . Then, Φb(p) and Φb(q) are well

defined by use of the spectral theorem and the following five terms relation holds

Φb(p)Φb(q) = Φb(q)Φb(p+ q)Φb(p). (2.8)

Before we look at the asymptotic behavior of Φb let us recall the classical dilog-

arithm function, defined on |z| < 1 by

Li2(z) =
∑
n≥1

zn

n2
(2.9)

and recall that it admits analytic continuation to C \ [1,∞] through the following

integral formula

Li2(z) = −
∫ z

0

log(1− u)

u
du. (2.10)

Proposition 17. For b→ 0 and fixed x, one has the following asymptotic expansion

log Φb

( x

2πb

)
=

∞∑
n=0

(2πib2)2n−1 B2n

(2n)!

∂2n

∂x2n
Li2(−ex) (2.11)

where B2n(1/2) is the evaluation at 1
2 of the Bernoulli polynomial.

24



Lemma 18.

Φb(z)

∣∣∣∣
|z|→∞

≈


1 | arg z| > π

2 + arg b

ζ−1
inve

iπz2 | arg z| < π
2 − arg b

(q̄2;q̄2)∞
Θ(ib−1z;−b−2) | arg z − π

2 | < arg b
Θ(ibz;b2)
(q2;q2)∞

| arg z + π
2 | < arg b

(2.12)

where

Θ(z; τ) ≡
∑
n∈Z

eiπτn
2+2πizn, Im τ > 0

Faddeev’s quantum dilogarithm has a lot of other interesting properties and ap-

plications, see for example [Fad95],[FK94] and [Vol05].

2.3 Quantum Dilogarithm on AN ≡ R× (Z/NZ)

Let N ≥ 1 be a positive odd integer. Consider AN ≡ R× (Z/NZ), which has the

structure of a Locally Compact Abelian Group, with the normalized Haar measure

d(x, n) defined as ∫
AN

f(x, n)d(x, n) :=
1√
N

∑
n∈Z/NZ

∫
R
f(x, n)dx

where f : AN −→ C is an integrable function. Let b ∈ C be such that Re(b) > 0 and

Im(b) ≥ 0 and define cb := i(b + b−1)/2. Then, following [AK14a], we can define a

quantum dilogarithm over AN as follows

Db(x, n) :=

N−1∏
j=0

Φb

(
x√
N

+ (1−N−1)cb − ib−1 j

N
− ib

{
j + n

N

})
(2.13)

where {p} is the fractional part of p, and Φb is the Faddeev’s quantum dilogarithm.

Of course for N = 1 we have just Φb(x). The function Db was introduced in [AK14a]

only for |b| = 1. In this thesis we review the constructions in [AK14a] also for b ∈ R.

We will state and prove some properties of this quantum dilogarithm. Most of them

are not in the literature but are just extensions of known properties of Faddeev’s

quantum dilogarithm Φb.

Lemma 19 (Inversion Relation [AK14a]).

Db(x, n)Db(−x,−n) = eπix
2

e−πin(n+N)/Nζ−1
N, inv,

where

ζN, inv = eπi(N+2c2bN
−1)/6. (2.14)

Unitarity properties are different in the two situations |b| = 1 or b ∈ R.

Lemma 20 (Unitarity).

Db(x, n) = Db(x̄, n)−1 if |b| = 1, (2.15)

Db(x, n) = Db(x̄,−n)−1 if b ∈ R>0. (2.16)
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Proof. First we remark that from the definition it is simple to see

Φb(x) = Φb (x̄) when Im(b)(1− |b|) = 0. (2.17)

Suppose now b ∈ R>0. Then

Db(x, n) =

=

N−1∏
j=0

Φb

(
x√
N

+ (1−N−1)cb − ib−1
j

N
− ib

{
j + n

N

})

=

N−1∏
j=0

Φb

(
x√
N

+ (1−N−1)cb − ib−1
j

N
− ib

{
j + n

N

})−1

=

N−1∏
j=0

Φb

(
x̄√
N
− (1−N−1)cb + ib−1 j

N
+ ib

{
j + n

N

})−1

=

N−1∏
j=0

Φb

(
x̄√
N

+ ib−1

(
j

N
− 1

2

N − 1

N

)
+ ib

({
j + n

N

}
− 1

2

N − 1

N

))−1

We can now write j as N − 1− j′ for 0 ≤ j′ ≤ N − 1. Notice that {−α} = 1− {α}
for any α > 0. If j′ − n ≥ 0 we get{

j + n

N

}
− 1

2

N − 1

N
=

{
N − 1− j′ + n

N

}
− 1

2

N − 1

N

= 1−
{

1 + j′ − n
N

}
− 1

2

N − 1

N

=
N − 1

N
−
{
j′ − n
N

}
− 1

2

N − 1

N

=
1

2

N − 1

N
−
{
j′ − n
N

}
,

while, if j′ − n < 0, then N − 1 ≥ n− j′ − 1 ≥ 0 and{
j + n

N

}
− 1

2

N − 1

N
=

{
N − 1− j′ + n

N

}
− 1

2

N − 1

N

=

{
−1− j′ + n

N

}
− 1

2

N − 1

N

=
n− j′

N
− 1

N
− 1

2

N − 1

N

= 1−
{
N − n+ j′

N

}
− 1

N
− 1

2

N − 1

N

=
1

2

N − 1

N
−
{
j′ − n
N

}
.

In the end we can write

Db(x, n) =

N−1∏
j′=0

Φb

(
x̄√
N

+ib−1

(
−j
′

N
+

1

2

N − 1

N

)
+ib

(
−
{
j′ − n
N

}
+

1

2

N − 1

N

))−1

=

N−1∏
j′=0

Φb

(
x̄√
N

+ (1−N−1)cb − ib−1 j
′

N
− ib

{
j′ − n
N

})−1

= Db(x̄,−n)−1

The case |b| = 1 is similar.
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Remark 2.3.1. One can see that

Db(x,−n) = Db−1(x, n) (2.18)

just by the definition 2.13 for Db−1 and carefully substituting j+n 7→ j′. In particular

the unitarity for b > 0 can be re-expressed as

Db(x, n) = (Db−1(x, n))
−1

(2.19)

Lemma 21 (Faddeev’s difference equations). Let

χ±(x, n) ≡ e2π b±1
√
N
x
e±

2πin
N , (2.20)

for every x, b ∈ C, Im(b) 6= 0 n, N ∈ Z we have

Db

(
x+ i

b±1

√
N
,n± 1

)
= Db (x, n)

(
1 + χ±(x, n)e−πi

N−1
N eπi

b±2

N

)−1

(2.21)

Db

(
x− i b±1

√
N
,n∓ 1

)
= Db(x, n)

(
1 + χ±(x, n)eπi

N−1
N e−πi

b±2

N

)
(2.22)

Proof.

Db

(
x+ i

b√
N
,n+ 1

)
=

=

N−1∏
j=0

Φb

(
x√
N

+ i
b

N
+ (1−N−1)cb − ib−1 j

N
− ib{j + n+ 1

N
}
)

For the factors such that j+n+1 6= 0 mod N one simply has { j+n+1
N } = { j+nN }+

1
N ,

so they simplify back to Φb

(
x√
N

+ (1−N−1)cb − ib−1 j
N − ib{

j+n
N }

)
. For j = N −

n− 1 one has, using equation (2.6)

Φb

(
x√
N

+ (1−N−1)cb − ib−1N − n− 1

N
+ i

b

N

)
= Φb

(
x√
N

+ (1−N−1)cb − ib−1N − n− 1

N
− ibN − 1

N
+ ib

)
= Φb

(
x√
N

+ (1−N−1)cb − ib−1N − n− 1

N
− ibN − 1

N

)
×
(

1 + e
2πb

(
x√
N

+N−1
N cb−ib−1 N−n−1

N −ibN−1
N

)
eπib

2

)−1

= Φb

(
x√
N

+ (1−N−1)cb − ib−1N − n− 1

N
− ibN − 1

N

)
×
(

1 + χ+(x, n)e−πi
N−1
N eπi

b2

N

)−1

.

Putting all together we get the first equation. Next we do the one in the opposite

spectrum

Db

(
x−i b−1

√
N
,n+1

)
=

N−1∏
j=0

Φb

(
x√
N
−ib

−1

N
+(1−N−1)cb − ib−1 j

N
− ib{j + n+ 1

N
}
)

=

N∏
j′=1

Φb

(
x√
N
−ib

−1

N
+(1−N−1)cb−ib−1 j

′

N
+i

b−1

N
−ib{j

′ + n

N
}
)
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For the factors such that j′ < N there is nothing needed. For j′ = N one has

Φb

(
x√
N

+ (1−N−1)cb − ib−1 − ib{ n
N
}
)

= Φb

(
x√
N

+ (1−N−1)cb − ib{
n

N
}
)(

1 + e
2πb−1

(
x√
N

+N−1
N cb−ib nN

)
e−πib

−2

)
= Φb

(
x√
N

+ (1−N−1)cb − ib{
n

N
}
)(

1 + χ−(x, n)eπi
N−1
N e−πi

b−2

N

)
.

The other cases are similar.

Proposition 22. If Im(b) > 0 and Re(b) > 0 we have

Db(x, n) =

(
χ+(x+ cb√

N
, n);q2ω

)
∞(

χ−(x− cb√
N
, n);q̃2ω

)
∞

(2.23)

where q = eiπ
b2

N , q̃ = e−πi
b−2

N , ω = e
2πi
N and χ±(x, n) = e

2π b±1
√
N
x
e±

2πin
N .

Proof.

Db(x, n) =

N−1∏
j=0

Φb

(
x√
N

+ (1−N−1)cb − ib−1 j

N
− ib{j + n

N
}
)

=

N−1∏
j=0

(
e

2π
(

x√
N

+(1−N−1)cb−ib−1 j
N−ib{

j+n
N }+cb

)
b
;e2πib2

)
∞(

e
2π

(
x√
N

+(1−N−1)cb−ib−1 j
N−ib{

j+n
N }−cb

)
b−1

;e−2πib−2

)
∞

=

∏N−1
k=0

(
e

2π
(

x√
N
− cbN +ib

)
b
ωnq−2kω−k;e2πib2

)
∞∏N−1

j=0

(
e

2π
(

x√
N
− cbN

)
b−1

ω−nq̃2jωj ;e−2πib−2

)
∞

(k := j + n mod N)

=

∏N−1
k=0

(
e

2π
(

x√
N

+
cb
N

)
b
q−2ωωnq2(N−k)ωN−k;e2πib2

)
∞(

e
2π

(
x√
N
− cbN

)
b−1

ω−n;e−2πi b
−2

N ω

)
∞

=

∏N−1
m=0

(
e

2π
(

x√
N

+
cb
N

)
b
ωnq2mωm;e2πib2

)
∞(

e
2π

(
x√
N
− cbN

)
b−1

ω−n;q̃2ω

)
∞

(m = N − k − 1),

=

(
e

2π
(

x√
N

+
cb
N

)
b
;q2ω

)
∞(

e
2π

(
x√
N
− cbN

)
b−1

ω−n;q̃2ω

)
∞

Proposition 23. The quantum dilogarithm Db(x, n), for Im(b) > 0 has polesx = cb√
N

+ ib−1
√
N
l + i b√

N
m

n = m− l mod N
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and zeros x = − cb√
N
− ib−1
√
N
l − i b√

N
m

n = l −m mod N

for l,m ∈ Z>0. Moreover its residue at (xl,m, nl,m) =
(
cb√
N

+ ib−1
√
N
l + i b√

N
m,m− l

)
is √

N

2πb−1

(
q2ω;q2ω

)
∞

(q̃2ω;q̃2ω)∞

(−q̃2ω)l(q̃2ω)l(l−1)/2

(q2ω;q2ω)m (q̃2ω;q̃2ω)l
(2.24)

Proof. The set of zeros and poles are simply deduced from Proposition 22. For the

residue we use the formula Res
[
g(x)
h(x) , x0

]
= g(x0)

h′(x0) when h′(x0), g(x0) 6= 0.

Res [Db, (xl,m, nl,m)] = Db(xl,m, nl,m)

(
1− χ−(xl,m − cb/

√
N,m− l)q̃2lωl

)
∂
∂x

(
1− χ−(x− cb/

√
N,m− l)q̃2lωl

)
|x=xl,m

=

√
N

2πb−1

(
e2π(2cb+ib−1l+ibm) b

N e2πim−lN ;q2ω
)
∞∏∞

j=0

(
1− e2π(ib−1l+ibm) b−1

N ωm−lq̃2jωj
) (j 6= l)

=

√
N

2πb−1

(
q2ωq2mωm;q2ω

)
∞

(q̃2ω;q̃2ω)∞
(
q̃−2lω−l;q̃2ω

)
l

=

√
N

2πb−1

(
q2ω;q2ω

)
∞

(q̃2ω;q̃2ω)∞

(−q̃2ω)l(q̃2ω)l(l−1)/2

(q2ω;q2ω)m (q̃2ω;q̃2ω)l

where in the last step we used the following properties of the q-Pochammer symbol

1

(q−l;q)l
=

(−q)lq
l(l−1)

2

(q;q)l
; (aqm;q)∞ =

(a;q)∞
(a;q)m

(2.25)

The following Summation Formula is known for N = 1, i.e. for Φb, and can be

found in [FKV01] for example. Here we show that the proof works the same way for

N > 1.

Theorem 24 (Summation Formula). Suppose Im(b) > 0 and N odd, and let u, v,

w ∈ C and a, b, c ∈ Z/NZ satisfy

Im

(
v +

cb√
N

)
> 0, Im

(
−u+

cb√
N

)
> 0, Im(v − u) < Im(w) < 0. (2.26)

Define

Ψ(u, v, w, a, b, c) ≡
∫
AN

Db(x+ u, a+ d)

Db(x+ v, b+ d)
e2πiwxe−2πi cdN d(x, d) (2.27)

Then we have

Ψ(u, v, w, a, b, c)

=ζ0
Db

(
v − u− w + cb√

N
, b− a− c

)
Db

(
−w − cb√

N
,−c

)
Db

(
v − u+ cb√

N
, b− a

)e2πiw
(
cb√
N
−u

)
ωac

=ζ−1
0

Db

(
w + cb√

N
, c
)

Db

(
−v + u− cb√

N
,−b+ a

)
Db

(
−v + u+ w − cb√

N
,−b+ a+ c

) e
2πiw

(
− cb√

N
−v

)
ωbc

where ζ0 = e−πi(N−4c2bN
−1)/12.
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Proof. Fix d for a moment. The poles of Db(x+u,a+d)
Db(x+v,b+d) e

2πiwxe−2πi cdN are grouped in

two sets

xl,m,k = −u+
cb√
N

+i
b−1

√
N

(lN+k)+i
b√
N

(mN+k+a+d) l,m ∈ Z≥0, k ∈ Z/NZ

(2.28)

and

yl,m,k = −v− cb√
N
−i b−1

√
N

(lN+k+b+d)−i b√
N

(mN+k) l,m ∈ Z≥0, k ∈ Z/NZ

(2.29)

The first two inequalities in (2.26) guarantee that this two sets lie in distinct compo-

nents of C \ R. The other inequalities provide sufficient conditions for the absolute

convergence of the integral. Indeed, from relations (2.12) we can see that

lim
x→∞

Db(x, n) = ζ−Ninv e
−πix2

eπiQ(n)

for some quadratic function Q, while

lim
x→−∞

Db(x, n) = 1.

It follows that, for x→∞,∣∣∣∣Db(x+ u, a+ d)

Db(x+ v, b+ d)
e2πiwxe−2πi cdN

∣∣∣∣ ∼ ∣∣∣e−2πx(Imu−Im v+Imw)
∣∣∣→ 0

as Im(u− v + w) > 0. Similarly , for x→ −∞,∣∣∣∣Db(x+ u, a+ d)

Db(x+ v, b+ d)
e2πiwxe−2πi cdN

∣∣∣∣ ∼ ∣∣∣e−2πx(Imw)
∣∣∣→ 0

as Imw < 0. We will now compute the sum of the residues in of the integrand in the

first set and use it to get an explicit formula for the integral. First we remark that

the totality of the poles can be counted as follows⋃
d∈Z/NZ

{(xl,m,k, d) ∈ C× Z/NZ : l,m ∈ Z≥0, k ∈ Z/NZ}

= {(xl,m, dl,m) ∈ C× Z/NZ : l,m ∈ Z≥0} =: P

where xl,m = −u+ cb√
N

+ ib−1
√
N
l+ i b√

N
m and dl,m = m− l− a mod N . Proposition

23 gives

Res [Db(x+ u, a+ d); x = xl,m, d = dl,m] = γ
(−q̃2ω)l(q̃2ω)l(l−1)/2

(q2ω;q2ω)m (q̃2ω;q̃2ω)l

where

γ =

√
N

2πb−1

(
q2ω;q2ω

)
∞

(q̃2ω;q̃2ω)∞
, q = eπi

b2

N , q̃ = e−πi
b−2

N . (2.30)

Fix the notation Z± := e
π(v−u) b±√

N ω±(b−a). We can compute

Db(v + xl,m, b+ dl,m) =

(
e

2π(v−u) b√
N q2ωq2mωmωb−a;q2ω

)
∞(

e
2π(v−u) b−1

√
N q̃−2lω−lωb−a;q̃2ω

)
∞

=

(
Z+q2ω;q2ω

)
∞

(Z−(q̃ω)−l;q̃2ω)∞ (Z+q2ω;q2ω)m
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=

(
Z+q2ω;q2ω

)
∞

(Z+q2ω;q2ω)m

1

(Z−(q̃2ω)−l;q̃2ω)l (Z
−;q̃2ω)∞

=

(
Z+q2ω;q2ω

)
∞

(Z+q2ω;q2ω)m

(−q̃2ω(Z−)−1)l(q̃2ω)
l(l−1)

2

(Z−;q̃2ω)∞ ((Z−)−1q̃2ω;q̃2ω)l

= Db(v − u+
cb√
N
, b− a)

(−q̃2ω(Z−)−1)l(q̃2ω)
l(l−1)

2

(Z+q2ω;q2ω)m ((Z−)−1q̃2ω;q̃2ω)l

where we used the relation

1

(aq−l;q)l
=

(−qa−1)lql(l−1)/2

(qa−1;q)l
. (2.31)

Putting everything together we have

Res [Ψ; x = xl,m, d = dl,m] =

γ

(
Db

(
v − u+

cb√
N
, b− a

))−1

e
2πiw

(
cb√
N
−u

)
ωac

(
Z+q2ω;q2ω

)
m

(q2ω;q2ω)m

×
(
e
−2π b√

N
w
ω−c

)m ((Z−)−1q̃2ω;q̃2ω
)
l

(q̃2ω;q̃2ω)l

(
e

2π b−1
√
N

(v−u−w)
ωb−a−c

)l
To compute

2πi

∞∑
l=0

∞∑
m=0

Res [Ψ; x = xl,m, d = dl,m] (2.32)

we can use the q-Binomial theorem

∞∑
n=0

(a;q)n
(q;q)n

xn =
(ax;q)∞
(x;q)∞

(2.33)

and get

γ0

Db(v − u− w + cb√
N
, b− a− c)

Db(−w − cb√
N
,−c)Db(v − u+ cb√

N
, b− a)

e
2πiw(

cb√
N
−u)

ωac (2.34)

where γ0 ≡ 2πiγ. This is the right hand side of the Summation Formula, except

that we need a more explicit determination of γ0 then the one in (2.30). We proceed

as follows. In the limit where u→ cb√
N

and a = 0 we have just proved the following

formula∫
AN

Db(x+ cb√
N
, d)

Db(x+ v, d+ b)
e2πiwxωcdd(x, d) = γ0

Db(v − w, b− c)
Db(−w − cb√

N
,−c)Db(v, b)

(2.35)

After the change (w, c) 7→ (−w,−c) we can rewrite the left hand side as∫
AN

Db(x− v − w, d− b− c)Db(−x+ w,−d+ c)e−πix
2

eπid(d+N)/Nd(x, d)

× eπiw
2

e2πivwe−πic(c+d)/Nωbcζ−1
N,inv

where ζN,inv = eπi(N+2c2bN
−1)/6. At the same time we can rewrite the right hand

side as

γ0
Db(−v,−b)

Db(w − cb√
N
,−c)Db(−w − v,−b− c)

e−πiw
2

e−2πivweπic(c+d)/Nωbc
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changing variables (y, k) ≡ (v + w, b+ c) we get the equation∫
AN

Db(x− y, d− k)Db(−x+ w,−d+ c)e−πix
2

eπid(d+N)/Nd(x, d) =

= ζN,invγ0
Db(w − y, c− k)

Db(−w − cb√
N
,−c)Db(−y,−k)

Now letting y →∞ and w → −∞ we get a limit formula involving the constant γ∫
AN

e−πix
2

eπid(d+N)/Nd(x, d) = ζN,invγ0 (2.36)

We remark that

N−1∑
d=0

eπid(d+N)/N =

N−1∑
d=0

eπid
2(1+N)/N =

N−1∑
d=0

e2πid2(k+1)/N (2.37)

where N = 2K + 1 and can be evaluated, using Gauss summation formula C.12, to

be

εN

(
k + 1

N

)√
N

where
(
a
N

)
is the Legendre symbol and εN =

1, if N = 1 mod 4

i, if N = 3 mod 4

Noticing that k + 1 is the inverse of 2 mod N , we can solve the Legendre symbol

using known results about
(

2
N

)
and get an explicit expression for the finite sum

e
7
4πi(N−1)

√
N.

We can also write ∫
R
e−πix

2

dx = e
7
4πi (2.38)

to finally have

γ0 = e−πi(N−4c2bN
−1)/12. (2.39)

Remark 2.3.2. The Summation Formula is proved under the assumption Im(b) > 0.

However both sides of the formula are well defined for b ∈ R, and the formula holds

true in the limit Im b 7→ 0 by analytic continuation.

Remark 2.3.3. Assumptions (2.26) even though sufficient are not optimal. Indeed

they guarantee the theorem to hold true when the integration is performed along the

real line, however we can deform the integration contour as long as

|arg(iz)| < π − arg b z being one of

{
w, v − u− w, u− v − 2

cb√
N

}
(2.40)

We introduce here a bracket notation for Fourier coefficients and Gaussian expo-

nentials in AN , following the notation introduced in [AK14a].

〈(x, n), (y,m)〉 ≡ e2πixye−2πinm/N 〈(x, n)〉 ≡ eπix
2

e−πin(n+N)/N (2.41)

For (x, n) and (y,m) in AN . Recall the following notation for the Fourier Transform

F(f)(x, n) =

∫ +∞

−∞
f(y, n)e2πixydy FN (f)(x, n) =

1√
N

N−1∑
m=0

f(x,m)e2πimn/N

So that we have

F−1
N ◦ F(f)(x, n) =

∫
AN

f(y,m)〈(x, n), (y,m)〉d(y,m) (2.42)
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Proposition 25 (Fourier Transformation Formula, [AK14a]). For N odd we have∫
AN

Db(x, n)〈(x, n); (w, c)〉d(x, n) =
e

2πiw
cb√
N

Db

(
−w − cb√

N
,−k

)e−πi(N−4c2bN
−1)/12

= Db

(
w +

cb√
N
, c

)
〈(w, c)〉eπi(N−4c2bN

−1)/12∫
AN

(Db(x, n))−1〈(x, n); (w, c)〉d(x, n) =
〈(w, c)〉

Db

(
−w − cb√

N
,−k

)e−πi(N−4c2bN
−1)/12

= Db

(
w +

cb√
N
, c

)
e
−2πiw

cb√
N eπi(N−4c2bN

−1)/12

Proof. Just apply the Summation Formula to the limits

lim
v→−∞

Ψ(0, v, w, 0, 0, c)

lim
u→−∞

Ψ(u, 0, w, 0, 0, c)

We remark that the Fourier integrals here are only conditional convergent, as we

take Ψ to a limit point.

Proposition 26 (Integral Pentagon Relation). Let D̃b(x, n) ≡ FN ◦ F−1(Db)(x, n).

We have the following integral relation

〈(x, n); (y,m)〉D̃b(x, n)D̃b(y,m)

=

∫
AN

D̃b(x− z, n− k)D̃b(z, k)D̃b(y − z,m− k)〈(z, k)〉d(z, k)

Proof. Multiplying both sides by 〈(u, j); (y,m)〉 and integrating both sides in d(y,m)

we get the equivalent equation

D̃b(x, n)Db(x− u, n− j)

= Db(−u,−j)
∫
AN

D̃b(x− z, n− k)D̃b(z, k)〈(z, k)〉〈(u, j); (z, k)〉.

Using the Fourier Transformation Formulas from Proposition 25 this can be rewritten

as

Db (x− u, n− j)

Db

(
x− cb√

N
, n
)

Db (−u,−j)
e−πi(N−4c2bN

−1)/12

=

∫
AN

Db

(
z + cb√

N
, k
)

Db

(
x+ z − cb√

N
, n+ k

)e2πiz
(
u− cb√

N

)
e−2πi jkN d(z, k)

= Ψ

(
cb√
N
, x− cb√

N
, u− cb√

N
, 0, n, j

)
which is an instance of the Summation Formula Theorem 24.

Proposition 27. We have the following behaviour when b > 0, b→ 0 and x, n, N

are fixed

Db(
x

2πb
, n) = Exp

(
Li2(−ex

√
N )

2πib2N

)
φx(n)(1 +O(b2)) (2.43)

where φx(n) is defined by

φx(n+ 1) = φx(n) (1−ex/
√
Nωn+1

2 )

(1+ex
√
N )1/N

φx(0) = (1 + ex
√
N )−

N−1
2N

∏N−1
j=0 (1− exN

− 1
2 ωj+

1
2 )

j
N

whenever N is odd.
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Remark 2.3.4. The function φx on the finite set Z/NZ is a cyclic quantum dilog-

arithm [FK94],[Kas98], [Kas94]. Precisely 1
φx

corresponds to the function Ψλ from

Proposition 10 on [Kas98] with λ = ex/
√
N .

Proof. First we want to prove the following expansion for Φb, let α, β be any two

numbers

Φb(
x+ 2πib2α+ 2πiβ

2πb
) = Exp

{
Li2(−ex+2πiβ)

2πib2

}
(1+ex+2πiβ)−α(1+O(b2)) (2.44)

Indeed, let x′ := x+ 2πiβ, thanks to Proposition 17 we have

log Φb(
x′ + 2πib2α

2πb
) = e2πib2α ∂

∂x log Φb(
x′

2πb
)

=

∞∑
l=0

(2πiα)l

l!

∂l

∂xl

∞∑
n=0

(2πib2)2n−1 B2n( 1
2 )

(2n)!

∂2n

∂x2n
Li2(−ex

′
)

=

∞∑
m=0

(2πib2)m−1

bm2 c∑
n=0

αm−2n B2n( 1
2 )

(2n)!(m− 2n)!

 ∂m

∂xm
Li2(−ex

′
)

The summand for m = 0 is then

1

2πib2
Li2(−ex

′
)

while for m = 1

α
∂

∂x
Li2(−ex

′
) = −α log(1 + ex

′
)

so the equation (2.44) is proved.

Now we come back to Db

Db

( x

2πb
, n
)

=

N−1∏
j=0

Φb

(
1

2πb

(
x/
√
N + 2πib2rj/N + 2πisj/N

))

where rj = N−1
2 − j and sj = N−1

2 −N{ j+nN }. Using approximation (2.44) we get

N−1∏
j=0

Exp

(
Li2(−e

x√
N

+2πisj/N )

2πib2

)(
1 + e

x√
N

+2πisj/N
)− rjN

(1 +O(b2)) (2.45)

We can proceed to compute

log

N−1∏
j=0

Exp

(
Li2(−e

x√
N

+2πisj/N )

2πib2

)
=

N−1∑
j=0

Li2(−e
x√
N

+2πisj/N )

2πib2

=
1

2πib2

N−1∑
j=0

∞∑
k=1

(−1)k

k2
e
xk√
N e2πiksj/N

=
1

2πib2

∞∑
k=1

(−1)k

k2
e
xk√
N eπik

N−1
N

N−1∑
j=0

ωk(j+n)

=
1

2πib2N

∑
k=Nk0,k0∈Z>0

(−1)k0

k2
0

exk0
√
N+

+
1

2πib2

∑
k 6=Nk0

(−1)k

k2
e
xk√
N e2πikN−1

N δ(N − 1)

=
1

2πib2N

∞∑
k0=1

(−1)k0

k2
0

exk0
√
N
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=
1

2πib2N
Li2(−ex

√
N )

We are left to study the product

φx(n) :=

N−1∏
j=0

(
1 + e

x√
N

+2πisj/N
)− rjN

=

N−1∏
j=0

(
1 + e

x√
N eπi(N−1)/Nωj+n

)−N−1
2N

N−1∏
j=0

(
1 + e

x√
N eπi(N−1)/Nωj+n

) j
N

we have
N−1∏
j=0

(
1 + e

x√
N eπi(N−1)/Nωj+n

)−N−1
2N

= (1 + ex
√
N )−

N−1
2N

thanks to the general decomposition
∏N−1
j=0 (1 + yωj) = (1 + yN ), whenever N is

odd. Computing φx(0) is now straightforward and we are left to verify the recursive

property of φx

(φx(n+ 1))N = (1 + ex
√
N )−

N−1
2N

N−1∏
j=0

(
1 + e

x√
N eπi

N−1
N ωj+1+n

)j
= (1 + ex

√
N )−

N−1
2N

N∏
j=1

(
1 + e

x√
N eπi

N−1
N ωj+n

)j−1

= (1 + ex
√
N )−

N−1
2N

∏N
j=1

(
1 + e

x√
N eπi

N−1
N ωj+n

)j
∏N
j=1

(
1 + e

x√
N eπi

N−1
N ωj+n

)
= (φx(n))N

(
1 + e

x√
N eπi

N−1
N ωn

)N
∏N
j=1

(
1 + e

x√
N eπi

N−1
N ωj+n

)
= (φx(n))N

(
1− e

x√
N ωn+ 1

2

)N
(1 + ex

√
N )

The Hilbert space L2(AN ) is naturally isomorphic to the tensor product L2(R)⊗
L2(Z/NZ) ∼= L2(R)⊗CN (see Appendix A.2). Let p and q two self-adjoint operators

on L2(R) satisfying

[p, q] =
1

2πi
(2.46)

and let X and Y unitary operators satisfying

Y X = e2πi/NXY , XN = Y N = 1, (2.47)

together with the cross relations

[p, X] = [p, Y ] = [q, X] = [q, Y ] = 0. (2.48)

Equations (2.47) imply that X and Y will have finite and the same spectrum, and

this will be a subset of the set TN of all N -th complex roots of unity. Let

LN : TN −→ Z/NZ

be the natural group isomorphism. We can define LN (A), by the spectral theorem,

for any operator A of order N , such that it formally satisfies

A = e2πiLN (A)/N .
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This permits to formally compute [LN (X),LN (Y )] = (N−1)N
2πi from (2.47), which

strictly does not have any meaning but, by Baker-Campbell-Hausdorff, gives the

relation

XY = −e2πi(LN (X)+LN (Y ))/Ne−πi/N .

In particular this means that −eπi/NXY is of order N and

LN (−e−πi/NXY ) = LN (X) + LN (Y ). (2.49)

We can define, for any function f : AN −→ C the operator function 6f(x, A) ≡
f(x,LN (A)) for any commuting pair of operators x and A, where the former is self

adjoint and the latter is of order N (again, we are using the spectral theorem here).

We have, for x and A as above

6f(x, A) =

∫
AN

f̃(y,m)e2πiyxA−md(y,m) (2.50)

where

f̃(x, n) =

∫
AN

f(y,m)〈(y,m); (x, n)〉d(y,m) = FN ◦ F−1(f)(x, n) (2.51)

The following Pentagon Identity for Db was first proved in [AK14a], where a pro-

jective ambiguity was undetermined and |b| = 1. Here we show the same equation

without projective ambiguity and for any b (with Re b > 0).

Lemma 28 (Pentagon Equation). Let p,q, X and Y be as above, then the following

five-term relation holds

/Db(p, X)/Db(q, Y ) = /Db(q, Y )/Db(p + q,−eπi/NXY )/Db(p, X). (2.52)

Proof. This is equivalent to the Integral Pentagon equation of Proposition 26. To

see this we need to use equation (2.50) an all the five terms. Then we compare the

coefficients of e2πiyqY me2πixpX−n and get exactly the integral pentagon equation.

An alternative proof follows from the q-Pochammer presentation of Db from Propo-

sition 22. Indeed with the notation there

χ±
(

q± cb√
N
,LN (Y )

)
χ±
(

p± cb√
N
,LN (X)

)
=

= e2πib±2/Ne2πi/Nχ±
(

p± cb√
N
,LN (X)

)
χ±
(

q± cb√
N
,LN (Y )

)
and

χ±
(

q± cb√
N
,LN (Y )

)
χ∓
(

p∓ cb√
N
,LN (X)

)
=

= χ∓
(

p∓ cb√
N
,LN (X)

)
χ±
(

q± cb√
N
,LN (Y )

)
.

The first implies that we are in the hypothesis of Theorem 13, while the second

implies that we can consider independently the nominator and denominator of the

q-Pochammer presentation of Db. Then one notice that

− χ±
(

p± cb√
N
,LN (X)

)
χ±
(

q± cb√
N
,LN (Y )

)
=

= −e2π b±2
√
N

(
p+q±2

cb√
N

)
e(2πb±1)2[p,q]/(2N)X±1Y ±1

= −e2π b±2
√
N

(
p+q± cb√

N

)
eπib

±1(b+b−1)/Ne−πib
±2/NX±1Y ±1
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= e
2π b±2
√
N

(
p+q± cb√

N

)
(−eπi/N )X±1Y ±1

= χ±
(

p + q± cb√
N
,LN (X) + LN (Y )

)
.

For Im b > 0 the pentagon equation for Db then follows from Theorem 13 (and the

inverse of the relation there) together with Proposition 22. By analytic continuation

from the one just proved, one get the pentagon equation for Im b = 0.

2.3.1 Charges

We are going to define a charged version of the dilogarithm. This charges will

assume geometrical meaning in the construction of the partition function, however

they already satisfy the purpose of turning all the conditional convergent integral

relations of the the dilogarithm Db (e.g. Proposition 26 and 25) into absolutely

convergent integrals .

Let a, b and c three real positive numbers such that a+ b+ c = 1√
N

. We define the

charged quantum dilogarithm

ψa,c(x, n) :=
e−2πicbax

Db(x− cb(a+ c), n)
(2.53)

From the Fourier transformation formula, Proposition 25, and the inversion formula

in Lemma 19 we can deduce the following transformation formulas for ψa,c (recall

notation (2.51) for inverse Fourier transform)

Lemma 29. Suppose Im(b)(1− |b|) = 0, then

ψ̃a,c(x, k) = ψc,b(x, k)〈x, k〉e−πic
2
ba(a+2c)ζ0 (2.54)

ψa,c(x, k) = ψc,a(−x, εk)〈x, k〉eπc
2
b(a+c)2ζN,inv (2.55)

ψ̃a,c(x, k) = ψb,c(−x, εk)e−2πic2babζ0 (2.56)

where ζ0 = e−πi(N−4c2bN
−1)/12 and ζN,inv = ζ2

0e
−πic2b/N and ε = +1 if b > 0 or

ε = −1 if |b| = 1.

Remark 2.3.5. The hypothesis on positivity of a, b and c assure that ψ̃a,c is absolutely

convergent, as a simple computation using Proposition 17 can show.

Proof. Recall the Fourier transformation formula for Db

D̃b(x, n) = Db(−x+
cb√
N
,−n)〈x, n〉ζ−1

0 =
e
−2πix

cb√
N

Db(x− cb√
N
, n)

ζ0
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We use it to compute the following

(ψ̃a,c)(x, k) =

∫
AN

ψa,c(y,m)〈(x, k); (y,m)〉d(y,m)

=

∫
AN

〈(y,m);−(x+ cba, k)〉
Db(y − cb(a+ c),m)

d(y,m)

=

∫
AN

〈(y,m);−(x+ cba, k)〉
Db(y,m)

d(y,m)〈(cb(a+ c), 0);−(x+ cba, k)〉

=

∫
AN

〈(y + cb√
N
, 0);−( cb√

N
, 0)〉

Db(y,m)
〈(y,m);−(x+ cb(a− 1√

N
), k)〉d(y,m)×

× 〈(cb(a+ c), 0);−(x+ cba, 0)〉e2πi
c2b
N

=

∫
AN

D̃b(y +
cb√
N
,m)〈(y,m);−(x− cb(b+ c), k)〉d(y,m)×

× 〈(cb(a+ c), 0);−(x+ cba, 0)〉e2πi
c2b
N ζ−1

0

=

∫
AN

D̃b(y,m)〈(y,m);−(x− cb(b+ c), k)〉d(y,m)×

× 〈( cb√
N
, 0); (x− cb(b+ c), 0)〉〈(cb(a+ c), 0);−(x+ cba, 0)〉e2πi

c2b
N ζ−1

0

= Db(−x+ cb(b+ c),−k)〈(x, k); (cbb, 0)〉×

× 〈( c2b√
N
, 0); (b+ c, 0)〉−1〈(cb(a+ c)a, 0); (cb, 0)〉−1e2πi

c2b
N ζ−1

0

=
〈(x− cb(b+ c), k)〉
Db(x− cb(b+ c), k)

〈(x, k); (cbb, 0)〉×

× 〈( c2b√
N
, 0); (b+ c, 0)〉−1〈(cb(a+ c)a, 0); (cb, 0)〉−1eπi

c2b
N ζ0

= ψc,b(x, k)〈x, k〉e−πic
2
ba(a+2c)ζ0

For the second one suppose b > 0. We have

ψa,c(x, k) = 〈(−cbx, 0); (a, 0)〉Db(x+ cb(a+ c),−k)

=
〈(−cbx, 0); (a, 0)〉〈(x+ cb(a+ c),−k)〉

Db(−x− cb(a+ c), k)
ζN,inv

=
〈(−cbx, 0); (a, 0)〉〈(x, k); (cb(a+ c), 0)〉

Db(−x− cb(a+ c), k)
〈(x, k)〉〈(cb(a+ c), 0)〉ζN,inv

= ψc,a(−x, k)〈x, k〉eπc
2
b(a+c)2ζN,inv

The case |b| = 1 is similar. The third one is just a combination of the previous

two.

Theorem 30 (Charged Pentagon Equation). Let aj, cj > 0 such that 1√
N
−aj−cj >

0 for j = 0, 1, 2, 3 or 4. Define ψj ≡ ψaj ,bj . Suppose the following relations hold

true

a1 = a0 + a2 a3 = a2 + a4 c1 = c0 + a4 c3 = a0 + c4 c2 = c1 + c3.

(2.57)

and consider the operators on L2(AN ) defined to satisfy (2.46 -2.47). We have the

following charged pentagon relation

ψ1(q,LN (X))ψ3(p,LN (Y ))ξ(a, c) = (2.58)

= ψ4(p,LN (X))ψ2(p + q,LN (X) + LN (Y ))ψ0(q,LN (Y ))

where ξ(a, c) = e2πic2b(a0a2+a0a4+a2a4)eπic
2
ba

2
2 .
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Proof. For brevity let us write

p̂ = (p,LN (X)) q̂ = (q,LN (Y ))

Recall that the pentagon equation (2.52) can be rewritten as

Ψb(q̂)Ψb(p̂) = Ψb(p̂)Ψb(p̂+ q̂)Ψb(q̂) (2.59)

where Ψb(x, n) ≡ 1
Db(x,n) . The left hand side of (2.58) can be rewritten as

e−2πicba1qΨb(q̂cb(a1 + c1))e−2πicba3pΨb(p̂− cb(a3 + c3)) =

=e−2πicba1qe−2πicba3pΨb(q̂ − cb(a1 + c1 − a3))Ψb(p̂− cb(a3 + c3))

On the right hand side we get

e−2πicba4pΨb(p̂− cb(a4 + c4))e−2πicba2(p+q)×

× Ψb(p̂+ q̂ − cb(a2 + c2))e−2πicba0qΨb(q̂ − cb(a0 + c0))

= e−2πicba4pe−2πicba2(p+q)e−2πicba0q×

×Ψb(p̂−cb(a4+c4+a2+a0))Ψb(p̂+ q̂ − cb(a2+c2+a0))Ψb(q̂ − cb(a0+c0))

= e−2πicba4pe−2πicba2(p+q)e−2πicba0q×

× Ψb(q̂ − cb(a0 + c0))Ψb(p̂− cb(a4 + c4 + a2 + a0))

where in the last step we used the Pentagon relation (2.59) and the last three equa-

tions of (2.57). The two remaining equations give

Ψb(q̂ − cb(a0 + c0))Ψb(p̂− cb(a4 + c4 + a2 + a0)) =

= Ψb(q̂ − cb(a1 + c1 − a3))Ψb(p̂− cb(a3 + c3)).

Finally we take care of the exponentials

e−2πicba4pe−2πicba2(p+q)e−2πicba0q

= e−2πicba2((p+q)−cba4)e−2πicba0(q−cba4)e−2πicba4p

= e−2πicba0qe−2πicba2((p+q)−cba0)e−2πicba4pe2πc2ba4(a2+a0)

= e−2πicbq(a0+a2)eπicba
2
2e−2πicb(a2+a4)pe2πic2b(a0a2+a0a4+a2a0)

= e−2πicba1qe−2πicba3pξ(a, c).
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Chapter 3

Quantum Teichmüller Theory

3.1 Quantization of R(Σg,s)

In this section we are going to quantize the space R(Σg,s) following [Kas98]. Re-

call that R(τ) explicitly depends on the triangulation τ , and R(Σg,s) was defined

as the quotient of all the couples (R(τ), τ) by the action of the decorated Ptolemy

groupoid G(Σg,s). For any fixed τ the quantization ofR(τ) is just the canonical quan-

tization in exponential coordinates of the space RM>0 × RM>0, where M = 2g − 2 + s,

with simplectic form ωτ =
∑M−1
j=0 d log uj ∧d log vj . Formally, following the expecta-

tions from the canonical quantization of R2M , we can quantize R(τ) associating to

it an algebra of operator

X (τ) generated by {ûj , v̂j} , where 0 ≤ j < M , subject tot the relations

ûj v̂l = qδ(j−l)v̂lûj ûj ûl = ûlûj v̂j v̂l = v̂lv̂j

where q ∈ C∗. Here by algebra given as sets of generators and relations, we mean the

associative algebra of non commutative fractions of non commutative polynomials

generated such given of generators.

In order to obtain a quantization of R(Σg,s) (i.e. triangulation independent) we have

to look at the action of the G(Σg,s) generators on coordinates and translate it into

an action on the algebras X (τ). Precisely consider the set of the couples (τ,X (τ))

and let the generators [τ, τσ], [τ, ρiτ ] and [τ, ωi,jτ ] act on them. The action on the

operator algebras is as follows. The elements [τ, τσ] just permutes the indexes of the

generators according to the permutation σ. The change of decoration [τ, ρiτ ] acts

trivially on the operators (ûj , v̂j) such that j 6= i and as follows on (ûi, v̂i)

(ûi, v̂i) 7→ (q−1/2v̂iû
−1
i , û−1

i ). (3.1)

The most interesting generator [τ, ωi,jτ ], is again trivial in the triangles not involved

in the diagonal exchange while maps the two couples of operators (ûi, v̂i) and (ûj , v̂j)

to the two new couples (following formulas (1.37))

(ûi, v̂i) • (ûj , v̂j) ≡ (ûiûj , ûiv̂j + v̂i) (3.2)

(ûi, v̂i) ∗ (ûj , v̂j) ≡ (ûj v̂i(ûiv̂j + v̂i)
−1, v̂j(ûiv̂j + v̂i)

−1). (3.3)

The quantization X (Σg,s) of R(Σg,s) will then be the the quotient of the couples

(τ,X (τ)) by the generators above. This is all completely abstract. In order to get

an actual quantization we need to provide a representation of X (Σg,s) as endomor-

phisms of some vector space H. In the original paper [Kas98], Kashaev proposed
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representations on the vector spaces L2(R) and L2(Z/NZ) ' CN for N odd. The

former was used to construct the Andersen Kashaev invariants in [AK14b], while

the latter are related to the colored Jones polynomials ([Kas94], [MM01]) and the

Volume Conjecture [Kas97]. In the more recent work [AK14a] a representation on

the vector space L2(AN ) ≡ L2(R × Z/NZ) ' L2(R) ⊗ CN was implicitly proposed,

or at least all the basics elements to construct it were presented. After Recalling

the quantization at level N = 1 (i.e. representations in L2(R)) we will describe the

representations in L2(AN ). Further, in Section 3.2, we will show how L2(AN ) rep-

resentations of Quantum Teichmüller Theory can be related to Complex Quantum

Chern Simons Theory. Later in Chapter 4 we will extend this representations to a 3

dimensional theory, following the construction of the Teichmulle TQFT by Andersen

and Kashaev at level N = 1 [AK14b].

3.1.1 L2(R) Representations

To each decorated ideal triangle τ j ∈ τ we associate the Hilbert space L2(R).

Then the Hilbert space associated to R(τ) will be H = L2(R)⊗M ∼= L2(RM ) where

M = 2g − 2 + s is the number of triangles in τ . For any j = 0, . . . ,M let pj and qj

be the two canonical Heisenberg operators acting on H as follows

qj(f)(x) = xjf(x), pj(f)(x) =
1

2πi

∂

∂xj
(f)(x), ∀x ∈ RM , f ∈ H. (3.4)

We have the following canonical commutation relations

[pk, pj ] = [qk, qj ] = 0, [pk, qj ] =
δk,j
2πi

.

Let b ∈ C be such that Re(b) > 0, Im(b) ≥ 0. Recall that ωR =
∑

dx
x ∧

dy
y =∑

d(log x)∧ d(log y), so we need to consider exponentiated operators. Since the two

operators pj and qj are self-adjoint, unbounded, and with spectrum R the following

operators, thanks to the spectral theorem, will be well defined

uj = e2πbqj , vj = e2πbpj . (3.5)

satisfying the Weil commutation relations

ujvk = e2πib2δj,kvkuj , [uj , uk] = [vj , vk] = 0. (3.6)

To each τ j ∈ τ consider the couple of operators wj = (uj , vj). Following the

formulas (1.37) we define the following operations

w1 • w2 := (u1u2, u1v2 + v1) (3.7)

w1 ∗ w2 :=

(
v1u2

u1v2 + v1
,

v2

u1v2 + v1

)
.

Theorem 31 (Kashaev, R. [Kas98]). Let ψ : C −→ C be a solution of the functional

equation

ψ(z + ib/2) = ψ(z − ib/2)(1 + e2πbz) (3.8)

Then the operator

T = T12 := e2πip1q2ψ(q1 + p2 − q2) = ψ(q1 − p1 + p2)e2πip1q2 (3.9)

defines a linear operator on L2(R2) satisfying

Tq1 = (q1 + q2)T (3.10)
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T(p1 + p2) = p2T (3.11)

T(p1 + q2) = (p1 + q2)T (3.12)

Te2πbp1 = (e2πb(q1+p2) + e2πbp1)T (3.13)

which will imply, in particular

w1 • w2T = Tw1, w1 ∗ w2T = Tw2. (3.14)

Proof. Using commutation rules from Lemma 88 we can prove

Tq1 = ψ(q1 − p1 + p2)e2πip1q2q1

= ψ(q1 − p1 + p2)q1e
2πip1q2 + ψ(q1 − p1 + p2)q2e

2πip1q2

= (q1 + q2)T− 1

2πi
ψ′(q1 − p1 + p2) +

1

2πi
ψ′(q1 − p1 + p2)

= (q1 + q2)T.

T(p1 + q2) = ψ(q1 − p1 + p2)e2πip1q2(p1 + q2)

= ψ(q1 − p1 + p2)(p1 + x+ 2)e2πip1q2

= (p1 + q2)ψ(q1 − p1 + p2)e2πip1q2

+
1

2πi
(−ψ′(q1 − p1 + p2) + ψ′(q1 − p1 + p2))e2πip1q2

= (p1 + q2)ψ(q1 − p1 + p2)e2πip1q2

= (p1 + q2)T

T(p1 + p2) = ψ(q1 − p1 + p2)e2πip1q2(p1 + p2)

= ψ(q1 − p1 + p2)(p1 + p2)e2πip1q2 − ψ(q1 − p1 + p2)p1e
2πip1q2

= (p1 + p2)T− p1T +
1

2πi
(ψ′(q1 − p1 + p2)− ψ(q1 − p1 + p2))e2πip1q2

= p2T

Te2πbp1 = ψ(q1 − p1 + p2)e2πip1q2e2πbp1

= ψ(q1 − p1 + p2)e2πbp1e2πip1q2

= e2πbp1ψ(q1 − p1 + p2 −
b

i
)e2πip1q2

= e2πbp1(1 + e2πb(q1−p1+p2+ ib
2 ))ψ(q1 − p1 + p2)e2πip1q2

= (e2πbp1 + e2πb(q1+p2− ib2 + ib
2 ))ψ(q1 − p1 + p2)e2πip1q2

= (e2πbp1 + e2πb(q1+p2))T

The equation (3.8) was used only in the last computation, where we also used the

Baker-Cambell-Hausdorff Formula.

Thanks to Faddeev’s difference equation (2.6), the choice ψ = 1/Φb satisfies (3.8).

Proposition 32. Let

A ≡ e3πiq2eπi(p+q)2 . (3.15)

It satisfies

Ap = −qA Aq = (p− q)A. (3.16)

In particular

A(u, v) = (vu−1e−πib
2

, u−1) (3.17)
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Proof.

Ap = e3πiq2eπi(p+q)2p (3.18)

= e3πiq2 (p + [p + q, p] 2πi(p + q)) eπi(p+q)2 (3.19)

= −qA (3.20)

Aq = e3πiq2eπi(p+q)2q (3.21)

= e3πiq2 (q + 2πi [p + q, q] (p + q)) eπi(p+q)2 (3.22)

= ((p + 2q) + 6πi [q, 2q + p] q) e3πiq2eπi(p+q)2 (3.23)

= ((p + 2q)− 3q) e3πiq2eπi(p+q)2 (3.24)

3.1.2 L2(AN) Representations

For conventions and notation on the space L2(AN ) see Appendix A.2. Recall N

odd positive integer. For every i = 0, . . . ,M let pi, qi be self adjoint operator in

L2(R) and Xi, Yi unitary operators in L2(Z/NZ) ' CN such that, for ω = e
2πi
N we

have

[pi, qj ] =
δij
2πi

, YiXj = ωδijXjYi, XN
i = Y Ni = 1. (3.25)

Fix b ∈ C, such that Re b > 0. We can define the operators

ui = e
2π b√

N
qiYi u∗i = e

2π b−1
√
N

qiY −1
i (3.26)

vi = e
2π b√

N
piXi v∗i = e

2π b−1
√
N

piX−1
i (3.27)

satisfying

uivj = qδijvjui u∗i v∗j = q̃δijv∗ju∗i (3.28)

uiv
∗
j = v∗jui u∗i vj = vju

∗
i (3.29)

q = e2πi b
2

N ω q̃ = e2πi b
−2

N ω (3.30)

The Quantum algebra X (τ) is generated by the uj , vj for j = 0, . . .M , and has

a ∗–algebra structure when extended to include u∗j and v∗j . We remark that the ∗
operator we are using here is the standard hermitian conjugation only if |b| = 1.

Explicitly let Xj , Yj , pj , qj , j = 1, 2 be operators acting on H := L2(A2
N ) as follow

pjf(x,m) =
1

2πi

∂

∂xj
f(x,m), qjf(x,m) = xjf(x,m) (3.31)

X1f(x,m) = f(x, (m1 + 1,m2)), X2f(x,m) = f(x, (m1,m2 + 1)) (3.32)

Yjf(x,m) = ωmj , (3.33)

where m = (m1,m2) ∈ Z2
N , x = (x1, x2) ∈ R2 and ω = e2πi/N .

These operators satisfy conditions (3.25). Let ψb(x, n) ≡ 1
Db(x,n) and consider the

operators:

S12 ≡
N−1∑
j,k=0

ωjkY j2 X
k
1 (3.34)

D12 ≡ e2πiq2p1S12 (3.35)

Ψ12 ≡ /Ψb(q1 + p2 − q2,−e−
πi
N Y1X2Y2) (3.36)

T12 ≡ D12Ψ12 (3.37)

One has
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Lemma 33 (Tetrahedral Equations).

T12u1 = u1u2T12 (3.38)

T12v1v2 = v2T12 (3.39)

T12v1u2 = v1u2T12 (3.40)

T12v1 = (u1v2 + v1)T12 (3.41)

T12T13T23 = T23T12 (3.42)

Remark 3.1.1. If we define T̃12 = D12Ψ̃12 where

Ψ̃ ≡ /Ψb−1(q1 + p2 − q2,−e−
πi
N Y 1X2Y2) (3.43)

then T̃ satisfies equations (3.38 – 3.42) with ui and vi substituted by u∗i and v∗i .

However from Remark 2.3.1 we know that Ψb−1(x, n) = Ψb(x,−n), and(
−e−πiN Y1X2Y2

)−1

= −eπiN Y 1Y2X2 = −e−πiN Y 1X2Y2

so that

T̃ = T.

Proof. It is simple to check that

Ψ12u1 = u1Ψ12

Ψ12v1v2 = v1v2Ψ12

Ψ12v1u2 = v1u2Ψ12

D12u1 = u1u2D12

D12v1v2 = v2D12

D12v1u2 = v1u2D12

which can be put together to give the first three equations. Define the function

E(x, n) = e
2π b√

N
x
e

2πi
N n Using Faddeev’s difference equation, and shortening ξ :=

eπi
N−1
N eπi

b2

N , we compute

Ψ12v1 = /Ψb(q1 + p2 − q2,−e−
πi
N Y1X2Y 2)e

2π b√
N

p1X1

= e
2π b√

N
p1X1 /Ψb(q1 + p2 − q2 + i

b√
N
,−ωe−πiN Y1X2Y 2)

= e
2π b√

N
p1X1(1 + /E(q1 + p2 − q2,−e−

πi
N Y1X2Y 2)ξ)Ψ12,

together with

D12v1 = v1D12

and then

v1D12(1 + /E(q1 + p2 − q2,−e−
πi
N Y1X2Y 2)ξ)

=v1S12(1 + /E(q1 + p2 − q2 + 2πiq2[p1, q1] + 2πip1[q2, p2],−e−πiN Y1X2Y 2)ξ)e2πip1q2

=v1(1 + /E(q1 + p2 − p1,−ωe−
πi
N Y1X2Y 2Y2X1)ξ)D12

=v1(1 + /E(q1 + p2 − p1,−e
πi
N Y1X2X1)ξ)D12

=v1(1 + e
2π b√

N
(q1−p1)

(−eπiN )Y1X1v2ξ)D12

=(v1 + v1v1u1v2e
( 2πb√

N
)2[p1,q2]/2

(−eπiN )ωξ)D12

=(v1 + u1v2)D12,
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All together these computations give us the fourth equation.

For the last equation (3.42) we start remarking that the pentagon equation for /Db

translate in the following pentagon equation for /Ψb

/Ψb(q, Y )/Ψb(p, X) = /Ψb(p, X)/Ψb(p+ q,−eπiN XY )/Ψb(q, Y ) (3.44)

and that Dlk satisfy the last equation himself, indeed notice that

S13S23 =
∑
j,k,l,m

ωjkωlmY j+l3 Xk
1X

m
2

=
∑
p,k,m

ωpkY p3 X
k
1X

m
2

∑
l

ωl(m−k)

=
∑
p,k

ωpkY p3 X
k
1X

k
2 ,

then

D12D13D23 =

= e2πiq3p1e2πiq2p1e2πiq3p2
∑
j,l

ωjlY j2 X
l
1

∑
p,k

ωpkY p3 X
k
1X

k
2

= e2πiq3p1e−2πiq3p1e2πiq3p2e2πiq2p1
∑
j,l,p,k

ωjlωpkωjkY p3 X
k
2X

k
1Y

j
2 X

l
1

= e2πiq3p2e2πiq2p1
∑
p,k

ωpkY p3 X
k
2

∑
j,l

ωj(l+k)Y j2 X
l+k
1

= D23D12.

Now observe that

Ψ13D23 = /Ψb(q1 + p3 − q3,−e−
πi
N Y1X3Y 3)e2πiq3p2S23

= e2πiq3p2S23 /Ψb(q1 + p2 − q3 + p3,−e−
πi
N Y1X3Y 3X2)

and that

Ψ12D13D23 = D13D23Ψ12

which can now be put together

T12T13T23 = D12Ψ12D13Ψ13D23Ψ23

= D12D13D23Ψ12 /Ψb(q1 + p2 − q3 + p3,−e−
πi
N Y1X3Y 3X2)Ψ23

= D23D12Ψ12 /Ψb(q1 + p2 − q3 + p3,−e−
πi
N Y1X3Y 3X2)Ψ23

It then remain to prove that

Ψ12 /Ψb(q1 + p2 − q3 + p3,−e−
πi
N Y1X3Y 3X2)Ψ23 = Ψ23Ψ12 (3.45)

which can be deduced from the pentagon equation (3.44).

Proposition 34. Let wi ≡ (ui, vi) and w∗i = (u∗i , v
∗
i ). Then we have

w1 • w2T12 = T12w1, w1 ∗ w2T12 = T12w2, (3.46)

w∗1 • w∗2T12 = T12w∗1, w∗1 ∗ w∗2T12 = T12w∗2. (3.47)

Proposition 35. Let

AN ≡
N−1∑
j=0

〈j〉
3
Y 3j

N−1∑
l=0

〈l〉(−e−πi/NY X)l (3.48)
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where 〈n〉 = e−πin(n+N)/N and Y and X are as above. Let A defined as in Proposition

32. Define A = A ◦ AN . Then

A(u, v) = (q−1/2vu−1, u−1) A(u∗, v∗) = (q̃−1/2v∗(u∗)−1, (u∗)−1) (3.49)

where q and q̃ are defined by equation (3.30).

Proof.

N−1∑
l=0

〈l〉
(
−e−πi/N

)l
(Y X)lX =

N−1∑
l=0

〈l〉
(
−e−πi/N

)l
(Y X)lY −1Y X

= Y −1
N−1∑
l=0

〈l〉
(
−e−πi/N

)l
(Y X)l+1ωl

= Y −1
N−1∑
l=0

〈l + 1〉ωl
(
−e−πi/N

)l+1

(Y X)l+1ωl

= Y −1
N−1∑
l=0

〈l + 1〉
(
−e−πi/N

)l+1

(Y X)l+1

So that ANX = Y −1AN . Now consider

N−1∑
l=0

〈l〉
(
−e−πi/N

)l
(Y X)lY = Y

N−1∑
l=0

〈l〉
(
−e−πi/N

)l
(Y X)lωl

= Y 2X

N−1∑
l=0

〈l〉
(
−e−πi/N

)l
(Y X)l−1ωl

= Y 2X

N−1∑
l=0

〈l − 1〉ωl
(
−e−πi/N

)l+1

(Y X)l−1ωl

= Y 2Xω

N−1∑
l=0

〈l − 1〉
(
−e−πi/NY X

)l−1

and also

N−1∑
j=0

〈j〉
3
Y 3jY 2Xω = XY −1

N−1∑
j=0

〈j〉
3
Y 3(j+1)ω3j+1

= XY −1
N−1∑
j=0

〈j + 1〉
3
Y 3(j+1)ω3j(−e−πi/N )3ω3j+1

= XY −1(−e−πi/N )

N−1∑
j=0

〈j + 1〉
3
Y 3(j+1)

so that we have ANY = ω(N−1)/2XY −1AN . The rest of the statement follows from

Proposition 32.

3.2 Quantization of the Model Space for Complex

Chern-Simons Theory

In this Section we want to quantize the space C∗×C∗ with the complex differential

form

ωC =
dx ∧ dy

xy
.
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We think of it as a model space for Complex Chern-Simons Theory because it is an

open dense of the PSL(2,C) moduli space of flat connections on a four punctured

sphere, with unipotent holonomy around the punctures. Moreover its quotient by S2

is the moduli space of semi–simple SL(2,C) flat connections of a genus 1 surface. We

will look at this second case closer further in this thesis. For now we are interested

in the first interpretation: tetrahedral operators are supposedly related to states in

the quantization of the four punctured sphere. Since we want to construct knot in-

variants starting from tetrahedral ideal triangulations this is the space we need to

quantize. We will propose two different approach to quantize this space: the first

following Dimofte [Dim14], via Bohr-Sommerfeld quantization, that will give us an

operator algebra similar to the one coming from L2(AN )-representations in quan-

tum Teichmüller Theory. The second following the ideas in Andersen and Kashaev

[AK14a] using a real polarization with contractible leaves. We will further show that

an appropriately chosen Weil-Gel’fand-Zak Transform relates this two quantization.

To use this transform to relates the Andersen–Kashaev invariants to complex Chern–

Simons Theory was already proposed in [AK14a]. However the relation between the

two approaches was not as tight as here.

3.2.1 Pre–Quantization

Let t = N + is ∈ C∗ be the quantization constant, for N ∈ R and s ∈ R t iR.

Denote also t̃ = N − is. Fix b ∈ C such that s = −iN 1−b2

1+b2 and Re b > 0. This

substitution, for s ∈ iR, is only possible when −N < is < N . Notice that

s ∈ R ⇐⇒ |b| = 1 and b 6= ±i, s ∈ iR ⇐⇒ Im b = 0 (3.50)

Indeed

s ∈ iR =⇒ 1− b2

1 + b2
∈ R =⇒ (1− b2)(1 + b

2
) = (1 + b2)(1− b

2
) =⇒ b2 = b

2

The last statement together with Re b > 0 implies b ∈ R. The opposite implication

is trivial. For the other situation

|b| = 1 =⇒ 1− b2

1 + b2
=

b− b

b + b
=
−i Im b

Re b
s ∈ R

s ∈ R =⇒ 1− b2

1 + b2
∈ iR =⇒ (−1 + b2)(1 + b

2
) = (1 + b2)(1− b

2
)

=⇒
∣∣b2
∣∣2 = 1 =⇒ |b| = 1

We also remark the following useful expressions

t =
2N

1 + b2
t̃ =

2N

1 + b−2
(3.51)

Consider the covering maps

ζ± : R2 −→ C∗ (3.52)

(z, n) 7→ exp
(
2πb±1z ± 2πin

)
and consequently

π± : R2 × R2 −→ C∗ × C∗, π± = (ζ±, ζ±) (3.53)

such that

C∗ × C∗ 3 (x, y) = π+((z, n), (w,m)), (3.54)
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C∗ × C∗ 3 (x̃, ỹ) = π−((z, n), (w,m)) for ((z, n), (w,m)) ∈ R2 × R2.

We remark that

ζ+(z, n) = ζ−(z, n) ⇐⇒ |b| = 1 (3.55)

in this case π− = π+ and x̃ = x, ỹ = y. In this sense x, y x̃ and ỹ are natural coor-

dinate functions to quantize in C∗×C∗. If b ∈ R they are still coordinates functions

for the underlying real manifold, but we lose the complex conjugate interpretation.

We will work the quantization in the cover R2 × R2 of the space. Define the form

ωt ≡
t

4π
(π+)∗(ωC) +

t̃

4π
(π−)∗(ωC) (3.56)

Lemma 36.

ωt = 2πN(dz ∧ dw − dn ∧ dm). (3.57)

In particular it is a real symplectic 2 form on R2 × R2, independent of b.

Proof.

(π±)∗(ωC) =
dζ±(z, n)

ζ±(z, n)
∧ dζ±(w,m)

ζ±(w,m)

= d
(
2πb±1z ± 2πin

)
∧ d

(
2πb±1w ± 2πim

)
= 4π2b±2dz ∧ dw ± 4π2b±1(dz ∧ dm− dw ∧ dn)− 4π2dn ∧ dm

We can then compute

ωt = 2πN

(
1

1 + b2
+

1

1 + b−2

)
dz ∧ dw+

2πiN

(
b

1 + b2
− b−1

1 + b−2

)
(dz ∧ dm− dw ∧ dn) +

− 2πN

(
1

1 + b2
+

1

1 + b−2

)
dn ∧ dm

= 2πN(dz ∧ dw − dn ∧ dm).

Over R2 × R2 we take the trivial line bundle L̃ = R2 × R2 × C. On the N -th

tensor power of this line bundle L̃N we consider the connection

∇(t) ≡ d− iαt (3.58)

where

αt ≡
t

4π
α+
C +

t̃

4π
α−C , (3.59)

α±C ≡ 2π2(b±1z ± in)d(b±1w ± im)− 2π2(b±1w ± im)d(b±1z ± in) (3.60)

Computations similar to the one in Lemma 36 give

αt = πN(zdw − wdz − ndm+mdn). (3.61)

It is clear, then, that

dα±C = (π±)∗(ωC), which implies (3.62)

F∇(t) = −iωt. (3.63)
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Further, on R2 ×R2 we have an action of Z× Z compatible with the projection π+,

i.e.

(Z× Z)×
(
R2 × R2

)
−→ R2 × R2 (3.64)

(λ1, λ2) · ((z, n), (w,m)) 7→ ((z, n+ λ1), (w,m+ λ2))

(3.65)

that satisfies

π±((z, n+ λ1), (w,m+ λ2)) = π±((z, n), (w,m)) (3.66)

This action can be lifted to an action L̃N in such a way that the quotient bundle

LN ≡ L̃N /(Z)2 → R4/Z2 has first chern class c1(LN ) = 1
2π [ωt] (ωt is evidently Z2–

invariant). Such condition give the requirement (which is in fact the pre-quantum

condition) 1
2π [ωt] ∈ H2((R2 × R2)/(Z2), Z) which boils down to the requirement

N ∈ Z. Explicitly the action of Z×Z on L̃N is given by the following two multipliers

e(1,0) = e−πNim e(0,1) = eπNin (3.67)

that means that we consider the space of sections

(C∞(R4, L̃N ))Z
2

(3.68)

of Z2–invariant, smooth sections of L̃N Explicitly

s ∈ (C∞(R4, L̃N ))Z
2

if and only if s ∈ C∞(R4, L̃N ) and satisfies

s((z, n+ 1), (w,m)) = e−πiNms((z, n), (w,m)), (3.69)

s((z, n), (w,m+ 1)) = eπiNns((z, n), (w,m)) (3.70)

Lemma 37.

∇(t)s ∈ (C∞(R4, L̃N ))Z
2

, for any s ∈ (C∞(R4, L̃N ))Z
2

Proof.

∇(t)
m s((z, n+ 1), (w,m)) =

∂

∂m
s((z, n+ 1), (w,m))

+ πiN(n+ 1)s((z, n+ 1), (w,m))

= e−πiNm
∂s

∂m
((z, n), (w,m))

+ πiN(n+ 1− 1)e−πiNms((z, n), (w,m))

= e−πiNm∇(t)
m s((z, n), (w,m))

∇(t)
n s((z, n+ 1), (w,m)) = e−πiNm∇(t)

n s((z, n), (w,m))

∇(t)
z s((z, n+ 1), (w,m)) = e−πiNm∇(t)

z s((z, n), (w,m))

∇(t)
w s((z, n+ 1), (w,m)) = e−πiNm∇(t)

w s((z, n), (w,m))

and computations for (m+ 1) are analogous.

The following Hermitian structure on L̃N is Z2–invariant and parallel with respect

to ∇(t).

s · s′(p) ≡ s(p)s′(p), for any p ∈ R2 × R2 (3.71)

Being parallel here means that

d(s · s′) = (∇(t)s) · s′ + s · (∇(t)s′), (3.72)
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and this is a simple consequence of αt being a real 1-form. It follows that the following

is a well defined inner product in the completion of
((

L2 ∩C∞
)

(R4, L̃N )
)Z2

(s,s′) ≡
∫
R

dz

∫
R

dw

(∫ 1

0

dn

∫ 1

0

dm s · s′
)

(3.73)

Lemma 38. We have the following Hamiltonian vector field for the coordinates

functions on R2 × R2

Xz =
1

2πN

∂

∂w
Xw = − 1

2πN

∂

∂z

Xn = − 1

2πN

∂

∂m
Xm =

1

2πN

∂

∂n

Proof. This is an immediate verification of the definition

ωt (Xf , Y ) = −df [Y ]

Lemma 39 (Pre–Quantum operators). The following are the pre–quantum operators

for the coordinate functions or R2 × R2

ẑ =
−i

2πN
∇(t)
w + z ŵ =

i

2πN
∇(t)
z + w

n̂ =
i

2πN
∇(t)
m + n m̂ =

−i
2πN

∇(t)
n +m

and they satisfy the following canonical commuting relations

[ẑ, ŵ] =
1

2πiN
[n̂, m̂] = − 1

2πiN
(3.74)

[ẑ, n̂] = [ẑ, m̂] = [ŵ, n̂] = [ŵ, m̂] = 0 (3.75)

Proof. The definition of pre–Quantum operator, for f a real smooth function is

generally

f̂ = −i∇Xf + f (3.76)

where nabla is the pre–Quantum connection in the pre–Quantum line bundle. The

commuting relations should be fixed by our choices however we verify them just in

case [
∇(t)
w ,∇(t)

z

]
= [∂w, πiNw] + [−πiNz, ∂z] = 2πiN

[ẑ, ŵ] =
1

(2πN)2

[
∇(t)
w ,∇(t)

z

]
− i

2πN

([
∇(t)
w , w

]
−
[
z, ∇(t)

z

])
=

i

2πN
− i

πN
=

1

2πiN

The other one is similar, while the trivial one are actually obvious.

The Hermitian line bundle LN →
(
R2 × R2/Z2

)
together with the connection

∇(t) define a pre–Quantization of the theory. In order to finish the quantization

program we need to choose a Lagrangian polarization. We will choose two different

real polarizations in the following two subsections and then show how to relates the

two different results
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3.2.2 Bohr-Sommerfeld Quantization

Let us consider the following real Lagrangian polarization

P ≡ SpanR

{
∂

∂w
,
∂

∂m

}
. (3.77)

The space R2 × R2 as an Z2–invariant decomposition into two distinct symplectic

leaves

M1 ≡ {n = m = 0}, M2 ≡ {z = w = 0} (3.78)

The symplectic form ωt = 2πN(dz ∧ dw− dn∧ dm) decompose accordingly into two

symplectic spaces and the Lagrangian polarization P decomposes into two distinct

Lagrangian Polarizations. Therefore we can compute the quantization H(N) of R2×
R2/Z2 as the tensor product of two distinct quantizationsH(N)(M1)⊗

(
H(N)(M2)

)Z2

.

For M1 we are in the situation of a canonical quantization of R2. Indeed we are

considering sections{
ψ ≡ ψ(z, w) ∈ C∞(R2) such that ∇(t)

w ψ ≡ 0
}

(3.79)

which, restricted to the transversal {w = 0} reduces to simply C∞(R). Since we will

like to have an Hilbert space, we just take the square integrable functions, and then

the completion of them

H(N)(M1) = L2(R).

The pre–Quantum operators that act non trivially on M1 become

ẑ = z ŵ =
i

2πN

∂

∂z
(3.80)

Things are more complicated for M2, and we are not going to give full details

about this type of quantization, referring instead to the relevant literature (see, for

example [Śni80, MP15, Ham10, Wei91]) and showing the main phenomena. The

action of Z2 is not trivial here and the quotient is M2/Z2 = T×T, T being the unit

circle. The line bundle LN restricts to a non trivial line bundle over T×T determined

by the multipliers (3.67). Define the sheaf J as follows, for any open U ⊆ T×T the

space J (U) is the space of local sections s ∈ C∞(U,LN ), that are polarized, meaning

∇(t)
m s = 0. By H∗(T× T, J ) we mean the usual sheaf cohomology (see for example

[BT82]). The space H(N)(M2)Z
2

, if defined to be the the space of global polarized

sections s ∈ C∞(T × T,LN ) = H0(T × T,J ) would be empty. One, instead, define

the quantization in terms of the whole cohomology

H(N)(T× T) ≡
2⊕
j=0

Hj(T× T, J ). (3.81)

We are not going to discuss the relation between this definition and usual one, how-

ever we just remark that for our simple situation, results from definition (3.81) are

well known and equivalent to results coming from Kahler quantization (see [Wei91]).

Let us define another one more concept

Definition 11. Let P be a Lagrangian real polarization for the symplectic manifold

M such that the leaf space B is smooth, and let π : M −→ B be the associated

projection. Let L→M be a pre–quantum line bundle. We say that the point b ∈ B
is Bohr-Sommerfeld for P if π−1(b) admits a covariant constant section of L|π−1(b).

Let BS ⊂ B denotes the set of Bohr-Sommerfeld points.
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Then the following theorem of Sniatycki (see [Wei91] for an analogous statement)

solve our situation

Proposition 40 (Sniatycki, [Śni80]). (i) H0(T× T, J ) = H2((T× T, J )) = {0}
(ii) dimH1(T× T, J ) = #BS = N

We will just prove the following Lemma to be able to count the Bohr-Sommerfeld

points

Lemma 41. There are no global section s ∈ C∞(T × T,LN ) such that ∇(t)
m s = 0.

There are exactly N Bohr-Sommerfeld points bj, each of them supporting a one

dimensional vector space Sj ' C of covariantly constant sections,

Sj ≡ SpanC
{
δ(n− j/N)e−πiNmn

}
(3.82)

Proof. The differential equation ∇(t)
m s = 0, on M2, is explicitly

∂

∂m
s(n,m) = −πiNn s(n,m) or equivalently (3.83)

s(n,m) = λe−πiNnm, for some λ ∈ C. (3.84)

Globally this can not be a section, being λe−πiNn(m+1) 6= eπiNnλe−πiNnm.

Fixing n = n0, we seek solutions to

e−πiNn0(m+1) = eπiNn0e−πiNn0m (3.85)

and this does happen exactly when n0 = j/N for j = 0, . . . , N − 1.

We have seen that H(N)(M2)Z
2 '

⊕N−1
j=0 Sj . The distributional description of

the generators can be used to give an heuristic understanding of how the operators

(defined in agreement to (3.52 - 3.53) )

X ≡ exp(2πin̂) Y ≡ exp(2πim̂) (3.86)

acts on this space. This is formal and we are not addressing the well definiteness of

the action on distributional sections. We have, after polarizing,

X = exp(2πin) Y = exp

(
1

N

∂

∂n
+ πim

)
, (3.87)

and we let them act on generators ej ≡ δ(n− j/N)e−πiNmn, j = 0, . . . , N − 1

Y ep = eπimδ(n+
1

N
− p

N
)e−πiNm(n+1/N) = δ(n− p− 1

N
)e−πiNmn = ep−1 (3.88)

Xep = e2πip/Nδ(n− p/N)e−πiNmn = e2πip/Nep. (3.89)

Putting everything together we gave the quantization of C∗×C∗ with complex sym-

plectic form ωC = dx
x ∧

dy
y as the vector space

H(N) = L2(R)⊗ CN ' L2(AN ) (3.90)

The algebra of quantized observables is generated by the following 4 operators

x̂ = e2πbzX ˆ̃x = e2πb−1zX−1 (3.91)

ŷ = ei
b
N

∂
∂z Y ˆ̃y = ei

b−1

N
∂
∂z Y −1 (3.92)
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which act on H(N) as follows, for any f ≡ f(z) ∈ L2(R), and ep ∈ CN as above

x̂ (f(z)⊗ ep) = e2πbze2πip/Nf(z)⊗ ep (3.93)

ˆ̃x (f(z)⊗ ep) = e2πb−1ze−2πip/Nf(z)⊗ ep (3.94)

ŷ (f(z)⊗ ep) = f(z + i
b

N
)⊗ ep−1 (3.95)

ˆ̃y (f(z)⊗ ep) = f(z + i
b−1

N
)⊗ ep+1 (3.96)

If we identify CN ' L2(ZN ) we may think of ep(l) ≡ δ(p− l) where the δ is defined

modulo N . Then the operators will act on f ∈ L2(AN ) as

x̂f(z, l) = e2πbze2πil/N f(z, l) ˆ̃xf(z, l) = e2πb−1ze−2πil/N f(z, l) (3.97)

ŷf(z, l) = f(z + i
b

N
, l + 1) ˆ̃yf(z, l) = f(z + i

b−1

N
, l − 1) (3.98)

These above are analogous to the formulas on [Dim14]. We can see that

ŷx̂ = qx̂ŷ ˆ̃y ˆ̃x = q̃ ˆ̃xˆ̃y (3.99)

q = e2πi(1+b2)/N = e
4πi
t q̃ = e2πi(1+bpar−2)/N = e

4πi
t̃ (3.100)

The relation between the algebra of observables we got here and the algebra of

observables from Quantum Teichmüller Theory when represented in L2(AN ) is now

evident. Explicitly recall the operators u = u(b) and v = v(b) from equations (3.25 –

3.33), and recall that they depend on on a parameter b as well. Define the rescaling

operator

O√N : L2(AN ) −→ L2(AN )

(z, n) 7→ (
√
Nz, n) (3.101)

then we have

ˆ̃x = O√N ◦ u(b−1) ◦ O−1√
N

ˆ̃y−1 = O√N ◦ v(b−1) ◦ O−1√
N

(3.102)

x̂ = O√N ◦ u∗(b−1) ◦ O−1√
N

ŷ−1 = O√N ◦ v∗(b−1) ◦ O−1√
N

(3.103)

The inner product (·, ·) from (3.73), once restricted becomes

(f ⊗ ep, g ⊗ eq) =

∫
R
f(z)g(z)dz

∫
T

dm

∫
T

dnδ(n− p/N)δ(n− q/N)e−πiNmneπiNmn

=

∫
R
f(z)g(z)dzδp,q

In terms of functions f, g ∈ L2(AN ) the above formula take the simple expression

(f, g) =

N−1∑
j=0

∫
R

f(x, j)g(x, j)dx (3.104)

as we have in equation (A.8).

3.2.3 Real Polarization with Simply Connected Leaves

Consider the following complex coordinates on R2 × R2 ' C× C,

u = 2πbz + 2πin ũ = 2πb−1z − 2πin (3.105)
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v = 2πbw + 2πim ṽ = 2πb−1w − 2πim. (3.106)

The corresponding pre–quantum operators are

û = −i b

N
∇(t)
w −

1

N
∇(t)
m + 2πbz + 2πin

v̂ = i
b

N
∇(t)
z +

1

N
∇(t)
n + 2πbw + 2πim

ˆ̃u = −ib
−1

N
∇(t)
w +

1

N
∇(t)
m + 2πb−1z − 2πin

ˆ̃v = i
b−1

N
∇(t)
z −

1

N
∇(t)
n + 2πb−1w − 2πim

(3.107)

Choose the following real polarization

P̃ ≡ SpanR

{
∂

∂w
+

∂

∂n
,
∂

∂z
− ∂

∂m

}
(3.108)

and notice that it is Lagrangian

ωt

(
∂

∂z
− ∂

∂m
,
∂

∂w
+

∂

∂n

)
= ωt

(
∂

∂z
,
∂

∂w

)
+ ωt

(
− ∂

∂m
,
∂

∂n

)
= 2πN

(
dz ∧ dw

(
∂

∂z
,
∂

∂w

)
− dn ∧ dm

(
− ∂

∂m
,
∂

∂n

))
= 2πN(1− 1) = 0

The leaves of this polarization are all contractible after the action of Z2 on R2×R2,

so we do have polarized global sections. In particular the space T ⊂ R2 × R2

T ≡ {z = w = 0} (3.109)

is a transversal for the polarization. For any ψ ∈ (C∞(R4, L̃N ))Z
2

polarized by P̃,

the following two differential equations will determine ψ ≡ ψ((z, n), (w,m)) by its

value in (n,m)

∇(t)
w ψ = −∇(t)

n ψ ∇(t)
z ψ = ∇(t)

m ψ. (3.110)

The space T/Z2 is again T× T, and the line bundle LN will restrict to a non trivial

line bundle over T × T that we shall call LN again. The quantum space that we

obtain is then

Ĥ(N) ≡ C∞
(
T× T,LN

)
(3.111)

The inner product structure (·, ·) restricts to

(ψ, φ) =

∫ 1

0

∫ 1

0

ψφ dndm (3.112)

that is the standard inner product on the completion L2
(
T× T,LN

)
. Finally the

quantum operators acts on polarized sections as

eû = exp

(
i

b

N
∇(t)
n −

1

N
∇(t)
m + 2πin

)
(3.113)

ev̂ = exp

(
i

b

N
∇(t)
m +

1

N
∇(t)
n + 2πim

)
(3.114)

e
ˆ̃u = exp

(
i
b−1

N
∇(t)
n +

1

N
∇(t)
m − 2πin

)
(3.115)

e
ˆ̃v = exp

(
i
b−1

N
∇(t)
z −

1

N
∇(t)
n − 2πim

)
(3.116)

Now we are going to connect the two quantizations
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Theorem 42. Recall the line bundle LN . The following map Z(N) : S(AN ) −→
C∞(T× T,LN ) is a an isomorphism

Z(N)(f)(n,m) =
1√
N
eπiNmn

∑
p∈Z

N−1∑
l=0

f
(
n+

p

N
, l
)
e2πimpe2πilp/N (3.117)

which preserves the inner product (·, ·), i.e.(
Z(N)f, Z(N)g

)
= (f, g)

and so extends to an isometry between L2(AN ) and L2(T× T,LN ).

Proof. We have proved an almost identical statement in Section 1.2. The difference

is due to the line bundle L here being dual to the one used there.

Proposition 43. We have

Z(N) ◦X ◦ (Z(N))−1 = exp

(
− 1

N
∇(t)
n − 2πim

)
Z(N) ◦ Y ◦ (Z(N))−1 = exp

(
− 1

N
∇(t)
m + 2πin

)
Z(N) ◦ e2πb±1ẑ ◦ (Z(N))−1 = exp

(
−ib

±1

N
∇(t)
m

)
Z(N) ◦ e2πb±1ŵ ◦ (Z(N))−1 = exp

(
i
b±1

N
∇(t)
n

)
In particular

Z(N) ◦ x̂ ◦ (Z(N))−1 = e−v̂ Z(N) ◦ ŷ ◦ (Z(N))−1 = eû

Z(N) ◦ ˆ̃x ◦ (Z(N))−1 = e−
ˆ̃v Z(N) ◦ ˆ̃y ◦ (Z(N))−1 = e

ˆ̃u

Proof. For any f ∈ L2(AN ) we have

Z(N) ◦X(f)(n,m) =
1√
N
eπiNmn

∑
p∈Z

N−1∑
l=0

f
(
n+

p

N
, l
)
e2πimpe2πil(p+1)/N

=
1√
N
eπiNm(n− 1

N )
∑
p∈Z

N−1∑
l=0

f

(
n− 1

N
+
p+ 1

N
, l

)
× e2πim(p+1)e2πil(p+1)/Ne−πim

= e−πimZ(N)(f)(n− 1/N,m)

Z(N) ◦ Y (f)(n,m) =
1√
N
eπiNmn

∑
p∈Z

N−1∑
l=0

f
(
n+

p

N
, l + 1

)
e2πimpe2πilp/N

=
1√
N
eπiN(m−1/N)n

∑
p∈Z

N−1∑
l=0

f
(
n+

p

N
, l + 1

)
e2πi(m−1/N)p

e2πi(l+1)p/Neπin

= eπinZ(N)(f)(n,m− 1/N)
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Z(N) ◦
(
e2πbẑ

)
(f)(n,m) =

1√
N
eπiNmn

∑
p∈Z

N−1∑
l=0

f
(
n+

p

N
, l
)

e2πb(n+p/N)e2πimpe2πilp/N

=
1√
N
eπiN(m−ib/N)n

∑
p∈Z

N−1∑
l=0

f
(
n+

p

N
, l
)

e2πi(m−ib/N)pe2πilp/Neπbn

= eπbnZ(N)(f)(n,m− ib/N)

Z(N) ◦
(
e2πbŵ

)
(f)(n,m) =

1√
N
eπiNmn

∑
p∈Z

N−1∑
l=0

f

(
n+ i

b

N
+

p

N
, l

)
e2πimpe2πilp/N

=
1√
N
eπiNm(n+ib/N)

∑
p∈Z

N−1∑
l=0

f

(
n+ i

b

N
+

p

N
, l

)
e2πimpe2πilp/Neπbm

= eπbmZ(N)(f)(n+ ib/N,m)

All together we have showed that two possible quantizations for the model space

of complex Chern-Simons theory are the same, both as Hilbert spaces and as quan-

tum algebras. First this makes up for the heuristic argument regarding the Bohr–

Sommerfeld quantization in Section 3.2.2. Second, since the two quantizations are

equivalent to the L2(AN ) representations of the quantum algebra defined from Quan-

tum Teichmüller Theory, we have a strict connection between them and Complex

Quantum Chern–Simons Theory on a 4-punctured sphere. In the following Chapter

4 we will extend the L2(AN ) representations to knots invariants following the recipe

given by Andersen and Kashaev in [AK14b]. The previous discussion on the differ-

ent quantizations serves to link such invariants to Complex Quantum Chern–Simons

Theory.
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Chapter 4

Andersen–Kashaev’s

Teichmüller TQFT at Level N

In this Chapter we construct the Teichmüller TQFT at level N for every N ≥ 1

odd. This construction was presented in [AK14b] for level 1 and it emerges as an ex-

tension of L2(R) representations on Quantum Teichmüller Theory to 3–dimensional

ideal triangulations. In a similar way the older work [Kas94] could be seen as an ex-

tension of L2(Z/NZ) representations (see [Kas98]) to knot invariants. Here, following

strictly [AK14b], and using theory mostly developed in [AK14a], we extend L2(AN )

representations 3.1.2 to three dimensional ideal triangulations, getting in particular

knot invariants. Many of the things we will say are implicit in the work [AK14a],

however the behavior of the theory when b ∈ R and N > 1, was not considered

before. This setting is important for two reasons: first, asymptotic expressions for

b → 0 are not possible when |b| = 1. We study them in the examples in section

4.4.4, where we update a conjecture presented in [AK14b] for N = 1. Secondly,

b ∈ R should correspond to the exotic unitary setting that Witten conjecture exists

in [Wit91] when the quantum parameter s is purely imaginary. For the rest of the

chapter, b ∈ C is a fixed parameter such that Re b > 0 and Im b(|b| − 1) = 0. N is

an odd positive integer. In the first two Sections we will describe the source and the

target categoroid for the Teichmüller Functor F
(N)
b . The existence and properties of

such functor are stated at Theorem 52 at page 72. In the last Section 4.4 we com-

pute two examples of knot invariant, together with the asymptotic analysis of them

and we state a conjecture for general hyperbolic knot. In particular equation (4.58)

shows the appearance of an instance of the Baseilhac–Benedetti invariant [BB07] in

the asymptotic expession for the hyperbolic knot 41.

4.1 Angle Structures on 3-Manifolds

In this section we are going to describe shaped triangulated pseudo 3-manifolds,

which are the combinatorial data underlying the Andersen-Kashaev construction

of their invariant. Following strictly [AK14b] we will describe the categoroid of

admissible oriented triangulated pseudo 3-manifolds, where the words admissible

and categoroid go together because admissibility is what will obstruct us to have a

full category. See Appendix C.2 for a definition of categoroid.

Definition 12 (Oriented Triangulated Pseudo 3-manifold). An Oriented Triangu-
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lated Pseudo 3-manifold X is a finite collection of 3-simpleces (tetrahedra) with

totally ordered vertices together with a collections of gluing homeomorphisms be-

tween some pairs of codimension 1 faces, so that every face is in, at most, one of such

pairs. By gluing homeomorphism we mean a vertex order preserving, orientation

reversing, affine homeomorphism between the two faces.

The quotient space by the glueing homeomorphism has the structure of CW-complex

with oriented edges.

For i ∈ {0, 1, 2, 3} we denote by ∆i(X) the collection of i-dimensional simpleces

in X and, for i > j, we denote

∆j
i (X) = {(a, b)|a ∈ ∆i(X), b ∈ ∆j(a)}.

We have projection maps

φi,j : ∆j
i (X) −→ ∆i(X), φi,j : ∆j

i (X) −→ ∆j(X),

and boundary maps

∂i : ∆j(X) −→ ∆j−1(X), ∂i[v0, . . . , vj ] 7→ [v0, . . . , vi−1, vi+1, . . . , vj ]

where [v0, . . . , vj ] is the j-simplex with vertices v0, . . . , vj and i ≤ j.

Definition 13 (Shape Structure). Let X be an oriented triangulated pseudo 3-

manifold. A Shape Structure is a map

αX : ∆1
3(X) −→ R>0,

so that, in every tetrahedron, the sum of the values of αX along three incident edges

is π.

The value of the map αX in an edge e inside a tetrahedron T is called dihedral angle

of T at e. If we allow αX to take values in R we will have a Generalized Shape

Structure.

The set of shape structures supported byX is denoted S(X). The space of generalized

shape structures is denoted by S̃(X). X together with αX is called Shaped Pseudo

3-manifold.

Remark 4.1.1 (Ideal Tetrahedron). A shape structure on a simplicial tetrahedron T

as above define an embedding of T \∆0(T ) in the hyperbolic 3–space H3 that extends

to a map of T to H3. Namely we send the four vertices (v0, v1, v2, v3) to the four

points (∞, 0, 1, z) ∈ CP1 ' ∂H3, where

z =
sinαT ([v0, v2])

sinαT ([v0, v3])
exp (iαT ([v0, v1])) .

This four points in ∂H3 extend to a unique ideal tetrahedron in H3, by taking the

geodesic convex hull, that has dihedral angles defined by αT .

Remark 4.1.2. In every tetrahedron, its orientation induces a cyclic ordering of any

three edges meeting in a vertex. Such cyclic ordering descends to a cyclic ordering of

the pairs of opposite edges of the whole tetrahedron. Moreover, it follows from the

definition that opposite edges share the same dihedral angle. So it is well defined the

cyclic order preserving projection p : ∆1
3(X) −→ ∆

1/p
3 (X) which identifies opposite

edges. αX descends to a map from ∆
1/p
3 (X) and we can consider the following

skew-symmetric functions

εa,b ∈ {0, 1}, εa,b = −εb,a, a, b ∈ ∆
1/p
3 (X),
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defined to be εa,b = 0 if the underlying tetrahedra are distinct, and εa,b = +1 if the

underlying tetrahedra coincides and b cyclically follows a in the order induced on

∆
1/p
3 (X).

Definition 14. To any shaped pseudo 3-manifold X, we associate a Weight function

ωX : ∆1(X) −→ R>0, ωX(e) =
∑

a∈(φ3,1)−1(e)

αX(a).

An edge e in X is called balanced if e is internal and ωX(e) = 2π. A shape structure

is fully balanced if all its edges are balanced.

The shape structures of closed fully balanced 3-manifolds are called Angle Struc-

tures in the literature. For more details on them and their geometric admissibility

see [Lac00] and [LT08].

Definition 15. A leveled (generalised) shaped pseudo 3-manifold is a pair (X, lX)

consisting of a (generalized) shaped pseudo 3-manifold X and a real number lX ∈ R,

called the level. The set of all leveled (generalised) shaped pseudo 3-manifolds is

denoted as LS(X) (resp. L̃S(X)).

There is a gauge action of R∆1(X) on L̃S(X).

Definition 16. Let (X, lX) and (Y, lY ) be two (generalized) leveled shaped pseudo

3-manifolds. They are said to be gauge equivalent if there exists a an isomorphism

h : X −→ Y of the underlying cellular structures, and function g : ∆1(X) −→ R
such that

∆1(∂X) ⊂ g−1{0},

αY (h(a)) = αX(a) + π
∑

b∈∆1
3(X)

εp(a),p(b)g(φ3,1(b)), ∀a ∈ ∆1
3(X), and

lY = lX +
∑

e∈∆1(X)

g(e)
∑

a∈(φ3,1)−1(e)

(
1

3
− αX(a)

π
).

Remark 4.1.3. If we consider g(a) = δe(a) the Kronecker’s delta for an internal edge

e, we compute the gauge action as follows. Let h : X −→ X be the identity. There is

a finite number k of tetrahedra Ti sharing the edge e, together with other two pairs

of opposite edges {ai, ãi} and {ci, c̃i} so that (p(ai), p(e), p(ci)) is cyclically ordered

for all i = 1, . . . , k. Then

εp(ai),p(e) = 1 = −εp(ci),p(e)

and

αY (ai) = αX(ai) + 2π, i = 1, . . . k

αY (ci) = αX(ci)− 2π, i = 1, . . . k

αY (f) = αX(f), ai 6= f 6= ci.

We remark that ωX = ωY ◦ h.

Definition 17. Let (αX , lX) and (αX′ , lX′) be two (generalized) leveled shape struc-

tures of the oriented pseudo 3-manifold X. They are said based gauge equivalent if

they are gauge equivalent as in Definition 16 and the isomorphism h : X −→ X is

the identity.
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Based gauge equivalence is an equivalence relation in the sets S(X), LS(X), S̃(X),

L̃S(X) and the quotient sets are denoted (resp.) Sr(X), LSr(X), S̃r(X), L̃Sr(X).

We remark that Sr(X) is an open convex (possibly empty) subset of the space S̃r(X).

We will return to existence of shape structures later. Let us concentrate on S̃(X) for

now. Let

Ω̃X : S̃(X) −→ R∆1(X)

be the map which sends the shape structure αX to the corresponding weight function

ωX . This map is gauge invariant, so it descends to a map

Ω̃X,r : S̃r(X) −→ R∆1(X)

For fixed a ∈ ∆
1/p
3 (X) we can think of αa := αX(a) as an element of C∞

(
S̃(X)

)
.

Definition 18 ([NZ85]). The Neumann-Zagier symplectic structure on S̃(X) is the

unique symplectic structure which induces the Poisson bracket {·, ·} satisfying

{αa, αb} = εa,b

for all a, b ∈ ∆
1/p
3 (X).

Remark 4.1.4. If we take X = T a tetrahedron, then S̃(T ) ∼= R2 as affine symplectic

spaces. Indeed on S̃(T ) = {(a, b, c) ∈ R3|a + b + c = π} the symplectic structure

ω = dαa ∧ dαb induces the desired Poisson bracket. It is clear that this make S̃(T )

into an affine copy of R2 with the standard symplectic structure.

For a general triangulated pseudo 3-manifold we have a symplectic decomposition

S̃(X) =
∏

T∈∆3(X)

S̃(T ).

Theorem 44 ([AK14b]). The gauge action of R∆1(X) on S̃(X) is symplectic and

Ω̃X is a moment map for this action. It follows that S̃r(X) = S̃(X)/R∆1(X) is a

Poisson manifold with symplectic leaves corresponding to the fibers of Ω̃X,r.

Let N0(X) be a sufficiently small neighbourhood of ∆0(X), then ∂N0(X) is a

surface which inherits a triangulation from X, with a shape structure, if X has a

shape structure. Notice that this surface can have boundary if ∂X 6= ∅.

Theorem 45 ([AK14b]). The map

Ω̃X,r : S̃r(X) −→ R∆1(X)

is an affine H1(∂N0(X),R)-bundle. The Poisson structure of S̃r(X) coincide with

the one induced by the H1(∂N0(X),R)-bundle structure.

If h : X −→ Y is an isomorphisms of cellular structure, the induced morphism

h∗ : S̃r(Y ) −→ S̃r(X) is compatible with all this structures, i.e. it is a Poisson affine

bundle morphism which fiberwise coincide with the naturally induced group morphism

h∗ : H1(∂N0(Y ),R) −→ H1(∂N0(X),R). Moreover h∗ maps Sr(Y ) to Sr(X).

Definition 19 (Shaped 3−2 Pachner moves). Let X be a shaped pseudo 3 manifold

and let e be a balanced internal edge in it, shared exactly by three distinct tetrahedra

t1, t2 and t3 with dihedral angles in e exactly α1, α2 and α3. Then the triangulated

pseudo 3-manifold Xe obtained by removing the edge e, and substituting the three

tetrahedra t1, t2 and t3 with other two new tetrahedra t4 and t5 glued along one

face, is topologically the same space as X. In order to have the same weights of X
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Figure 4.1: A 3−−2 Pachner move.

on Xe, the dihedral angles of t4 and t5 are uniquely determined by the ones of t1, t2

and t3 as follows

α4 = β2 + γ1 α5 = β1 + γ2

β4 = β1 + γ3 β5 = β3 + γ1

γ4 = β3 + γ2 γ5 = β2 + γ3.

(4.1)

where (αi, βi, γi) are the dihedral angles of ti. In this situation we say that Xe is

obtained from X by a shaped 3− 2 Pachner move.

We remark that the linear system, together with e being balanced, guaranties the

positivity of the dihedral angles of t4 and t5 provided the positivity for t1, t2 and

t3 but it does not provide any guarantees on the converse, i.e. the positivity of a

shaped 2 − 3 Pachner moves. However, two different solutions for the angles for t1,

t2 and t3 from the same starting angles for t4 and t5 are always gauge equivalent.

The system (4.1) define a map P e : S(X) −→ S(Xe), that extends to a map

P̃ e : S̃(X) −→ S̃(Xe).

For a balanced edge e, the latter restricts to the map

P̃r : Ω̃X,r(e)
−1(2π) −→ S̃r(Xe),

and it can be noticed that P̃r(Ω̃X,r(e)
−1(2π) ∩ Sr(x)) ⊂ Sr(Y ).

We also say that a leveled shaped pseudo 3-manifold (X, lX) is obtained from

(Y, lY ) by a leveled shaped 3-2 Pachner move if, for some balanced e ∈ ∆1(X),

Y = Xe as above and

lY = lX +
1

12π

∑
a∈(φ3,1)−1(e)

∑
b∈∆1

3(X)

εp(a),p(b)αX(b).

Definition 20. A (leveled) shaped pseudo 3-manifold X is called a Pachner refine-

ment of a (leveled) shaped pseudo 3-manifold Y if there exists a finite sequence of

(leveled) shaped pseudo 3-manifolds

X = X1, X2, . . . , Xn = Y

such that for any i ∈ {1, . . . , n− 1}, Xi+1 is obtained from Xi by a (leveled) shaped

3 − 2 Pachner move. Two (leveled) shaped pseudo 3-manifolds X and Y are called

equivalent if there exist gauge equivalent (leveled) shaped pseudo 3-manifolds X ′ and

Y ′ which are respective Pachner refinements of X and Y .
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Theorem 46 ([AK14b]). Suppose that a (leveled) shaped pseudo 3-manifold Y is

obtained from a (leveled) shaped pseudo 3-manifold X by a (leveled) shaped 3 − 2

Pachner move. Then the map P̃r is a Poisson isomorphism. (P̃r is covered by an

affine R-bundle isomorphism from L̃Sr(X)|Ω̃X,r(e)−1(2π) to L̃Sr(Y ).)

As we said, technical reasons that we will discuss later impose the Category of

triangulated 2 + 1 cobordisms discussed so far to be restricted to a sub-categoroid.

This means that we will remove some morphisms as the following definition imposes.

Definition 21 (Admissibility). An oriented triangulated pseudo 3-manifold is called

admissible if

Sr(X) 6= ∅,

and

H2(X −∆0(X),Z) = 0.

Definition 22. Two (leveled) admissible shaped pseudo 3-manifolds X and Y are

said admissibly equivalent if there exists a gauge equivalence h′ : X ′ −→ Y ′ of

(leveled) shaped 3-manifolds X ′ and Y ′ which are respective Pachner refinements of

X and Y such that ∆1(X ′) = ∆1(X) ∪ DX and ∆1(Y ′) = ∆1(Y ) ∪ DY and the

following holds[
h(Sr(X) ∩ Ω̃X′,r(DX)−1(2π))

]
∩
[
Ω̃Y ′,r(DY )−1(2π)

]
6= ∅.

The following is a consequence of Theorems 45 and 46.

Theorem 47 ([AK14b]). Suppose two (leveled) shaped pseudo 3-manifolds X and

Y are equivalent. Then there exist D ⊂ ∆1(X) and D′ ⊂ ∆1(Y ) and a bijection

i : ∆1(X)−D → ∆1(Y )−D′

and a Poisson isomorphism

R : Ω̃X,r(D)−1(2π)→ Ω̃Y,r(D
′)−1(2π),

which is covered by an affine R-bundle isomorphism from L̃Sr(X)|Ω̃X,r(D)−1(2π) to

L̃Sr(Y )Ω̃X,r(D′)−1(2π) and such that we get the following commutative diagram

Ω̃X,r(D)−1(2π)
R−−−−→ Ω̃Y,r(D

′)−1(2π)yproj ◦ Ω̃X,r

yproj ◦ Ω̃Y,r

R∆1(X)−D i∗−−−−→ R∆1(Y )−D′ .

Moreover, if X and Y are admissible and admissibly equivalent, the isomorphism R

takes an open convex subset U of Sr(X)∩Ω̃X,r(D)−1(2π) onto an open convex subset

U ′ of Sr(Y ) ∩ Ω̃Y,r(D)−1(2π).

We remark that in the previous notation D = ∆1(X) ∩ h−1(DY ) and D′ =

∆1(Y ) ∩ h(DX).

For a tetrahedron T = [v0, v1, v2, v3] in R3 with ordered vertices v0, v1, v2, v3, we

define its sign

sign(T ) = sign(det(v1 − v0, v2 − v0, v3 − v0)),
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as well as the signs of its faces

sign(∂iT ) = (−1)i sign(T ), for i ∈ {0, . . . , 3}.

For a pseudo 3-manifold X, the signs of faces of the tetrahedra of X induce a sign

function on the faces of the boundary of X, signX : ∆2(∂X) → {±1}, which per-

mits to split the boundary of X into two components, ∂X = ∂+X ∪ ∂−X, where

∆2(∂±X) = sign−1
X (±1). Notice that |∆2(∂+X)| = |∆2(∂−X)|.

Definition 23 (Cobordism Categoroid). The category B is the category that has

triangulated surfaces as objects,equivalence classes of (leveled) shaped pseudo 3-

manifolds X as morphisms such that X ∈ HomB(∂−X, ∂+X) and composition given

by glueing along boundary components, through edge orientation preserving and face

orientation reversing CW-homeomorphisms.

The Categoroid Ba is the subcategoroid of B whose morphisms are restricted to be

admissible equivalence classes of admissible (leveled) shaped pseudo 3-manifolds. In

particular composition is possible only if the gluing gives an (leveled) admissible

pseudo 3-manifold.

Remark 4.1.5. Admissible Shaped Pseudo 3-Manifolds in the real world.

Even though we will discuss the whole Andersen Kashaev construction of the Te-

ichmüller TQFT Functor in the general setting of cobordism categoroid, the two

main products we want to put our hands on are mapping class group representations

and invariants of links and 3-manifolds. For the former we already have a descrip-

tion in term of Quantum Teichmüller Theory and Ptolemy Groupoid. The latter is

what we want to construct here. We interpret Triangulated Pseudo 3-manifolds X as

ideal triangulations of the (non closed) manifold X \∆0(X). This interpretation is

enlighten in Remark 4.1.1. We should ask ourself when a cusped 3-manifold (cusped

means non compact with finite volume here) admits a positive fully balanced shape

structure. This requirement is weaker the asking for a full geometric structure on

the manifold, and in our language this can be expressed by the fact that we did not

required a precise gauge to be fixed. The problem of finding positive or generalized

angle structures has been studied in [LT08], where necessary and sufficient condi-

tions for their existence are given. In the work [HRS12] it is proved, among other

things, that a particular class of manifolds M supporting positive shape structures

are complements in S3 of hyperbolic links. However the admissibility conditions

kicks in here and further restrict us to just complements of hyperbolic knots. So,

at the least, we know that the Andersen Kashaev construction will work on com-

plement of hyperbolic knots, and that are the examples we will look a bit closer in

this thesis. Now we should clarify the equivalence relation in Ba, in the context of

knot complements. Combinatorially speaking, any two ideal triangulations of a knot

complement are related by finite sequences of 3–2 or 2–3 Pachner moves. This is true

because on ideal triangulations, creation and destruction of vertices is forbidden. On

the other hand it is not known (at least to the author) that any such sequence of

moves can be realised as a sequence of shaped Pachner moves. For sure we know that

3–2 shaped Pachner moves are well defined in the category Ba as we remarked when

we defined them, and if a shaped Pachner 2–3 move is possible in some particular

case, than it is an equivalence in the category Ba. So the knot invariants that we

will define starting from Ba are not guaranteed to be topological invariants. There is

however another construction of the Andersen–Kashaev invariant [AK13], that avoid
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this problem with analytic continuation properties of the partition function. The

equivalence of the two constructions is still conjectural though.

There are other things that we can try in Ba other then complements of hyperbolic

knots. For example the authors in [AK14b] managed to define an invariant for the

(non hyperbolic) trefoil knot. But these are usually singular and we have nothing of

interesting to add about them. Again in [AK14b] is suggested another way to define

knot invariants, by taking one vertex Hamiltonian triangulations of knots, that is,

one vertex triangulations of S3 (or a general manifold M) where the knot is repre-

sented by a unique edge with a degenerating shape structure, meaning that we take

a limit on the shapes, sending all the weights to be balanced except the weight of the

knot that is sent to 0. The partition function is actually divergent but a residue can

be computed as an invariant. We will show this in a couple of examples in Section

4.4.

4.2 The target Categoroid DN
Recall al the relevant things regarding tempered distributions and the space

S(AN ) from Appendix A. In this Chapter, as in most of this thesis, N is an odd

positive integer and b ∈ C is fixed to satisfy Re(b) > 0 and Im b(1− |b|) = 0.

Definition 24. The categoroid DN has as objects finite sets and for two finite sets

n,m the set of morphisms from n to m is

HomDN (n,m) = S ′(AntmN ) ' S ′(Rntm)⊗ S((Z/NZ)
ntm

).

Definition 25. For A ⊗ AN ∈ HomDN (n,m) and B ⊗ BN ∈ HomDN (m, l), such

that A and B satisfy condition (A.3) and π∗n,m(A)π∗m,l(B) continuously extends to

S(Rntmtl)m, we define

(A⊗AN ) ◦ (B ⊗BN ) = (πn,l)∗(π
∗
n,m(A)π∗m,l(B))⊗ANBN ∈ HomDN (n, l).

Where the product ANBN is just a matrix product.

We will frequently use the following notation in what follows: for any a ∈ AN , a =

(x, n) ∈ R×Z/NZ we will consider the b–dependent operator ε ≡ ε(b) : AN −→ AN
as

ε(x, n) ≡

{
(x, n) if |b| = 1,

(x,−n) if b ∈ R
(4.2)

For any A ∈ L(S(Rn),S ′(Rm)), we have unique adjoint A∗ ∈ L(S(Rm),S ′(Rn))

defined by the formula

A∗(f)(g) = f̄(A(ḡ))

for all f ∈ S(Rm) and all g ∈ S(Rn).

Definition 26 (?b structure). Consider b ∈ C fixed as above and N ∈ Z>0 odd.

Let AN ∈ Hom(S((Z/NZ)
m

),S((Z/NZ)
n
). Recall the involution ε on Z/NZ form

equation (4.2). Define A?bN as

〈j1, . . . jm|A?bN |p1, . . . , pn〉 = 〈εp1, . . . , εpn|AN |εj1, . . . εjm〉 (4.3)

We can finally define the ∗b operator as

(A⊗AN )
∗b = A∗ ⊗A?bN (4.4)
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4.3 Tetrahedral Partition Function

Recall the operators from Section 3.1.2, Xj , Yj , pj , qj , j = 1, 2 acting on

H := S(A2
N ) as follow

pjf(x,m) =
1

2πi

∂

∂xj
f(x,m) qjf(x,m) = xjf(x,m)

X1f(x,m) = f(x, (m1 + 1,m2)) X2f(x,m) = f(x, (m1,m2 + 1))

Yjf(x,m) = ωmj ,

where m = (m1,m2) ∈ Z2
N , x = (x1, x2) ∈ R2 and ω = e2πi/N .

These operators satisfy conditions (3.25), i.e. for ω = e
2πi
N we have

[pi, qj ] =
δij
2πi

, YiXj = ωδijXjYi, XN
i = Y Ni = 1. (4.5)

we can further define the operators ui = e
2π b√

N
qiYi and vi = e

2π b√
N

piXi satisfying

uivj = e2πi b
2

N ωvjui (4.6)

Define the Charged Tetrahedral Operator as follows

Definition 27. Let a, b, c > 0 such that a + b + c = 1√
N

. Recall the Tetrahedral

operator T defined in (3.37). Define the charged tetrahedral operator T(a, c) as

follows

T(a, c) ≡ e−πi
c2b√
N

(
2(a−c)+ 1√

N

)
/6
e2πicb(cq2−aq1)T12e

−2πicb(ap2+cq2) (4.7)

Lemma 48. We have

T(a, c) = e
−πi c

2
b√
N

(
2(a−c)+ 1√

N

)
/6
eπic

2
ba(a+c)D12/ψa,c(q1+p2−q2,−e−

πi
N Y1X2Y2) (4.8)

were ψa,c(x, n) is the charged quantum dilogarithm from (2.53)

Proof.

T(a, c) = e2πicb(cq2−aq1)e2πiq2p1S12 /Ψb(q1 + p2 − q2,−e−
πi
N Y1X2Y2)e−2πicb(ap2+cq2)

= e2πicb(cq2−aq1)e2πiq2p1e−2πicbap2e−2πicbcq2S12×

× /Ψb(q1 + p2 − q2 − cb(a+ c),−e−πiN Y1X2Y2)e−πic
2
bac

= e2πiq2p1S12e
2πicbcq2e−2πicbaq1e2πicbaq2e−2πicbap2e−2πicbcq2×

× /Ψb(q1 + p2 − q2 − cb(a+ c),−e−πiN Y1X2Y2)e−πic
2
bac

= e2πiq2p1S12e
2πicbcq2e−2πicbcq2e−2πicba(q1−q2+p2)eπic

2
ba

2

×

× /Ψb(q1 + p2 − q2 − cb(a+ c),−e−πiN Y1X2Y2)e−πic
2
bac

= D12/ψa,c(q1 + p2 − q2,−e−
πi
N Y1X2Y2)eπic

2
ba(a+c)

Extra Notation Recall the notation for Fourier coefficients and Gaussian expo-

nentials in AN . For a = (x, n) and b = (y,m) in AN we write

〈a, b〉 ≡ e2πixye−2πinm/N 〈a〉 ≡ eπix
2

e−πin(n+N)/N
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For a = (x, n) ∈ AN , define δ(a) ≡ δ(x)δ(n) where δ(x) is Dirac’s delta distribution

while δ(n) is the Kronecker delta δ0,n between 0 and n mod N . Define

f̃(x, n) ≡ F2k ◦ F−1(f)(x, n) =
1√
N

k−1∑
m=0

∫ +∞

−∞
f(y,m)〈(x, n), (y,m)〉dy,

to denote the Fourier transform, as well the following notation

ϕa,c(x, n) ≡ ψa,c(x,−n). (4.9)

Denote, for x, y ∈ R and z ∈ AN

ν(x) ≡ e−πi
c2b√
N

(
2x+ 1√

N

)
/6

νx,y = ν(x− y)eπic
2
bx(x+y) (4.10)

Equations from Lemma 29 can be upgraded to

νa,cϕ̃a,c(z) = νc,bϕc,b(z)〈z〉e−πiN/12 (4.11)

νa,cϕa,c(z) = νc,aϕc,a(−εz)〈z〉e−πiN/6 (4.12)

νa,cϕ̃a,c(z) = νb,cϕb,c(−εz)e−πiN/12 (4.13)

Where ε was defined in (4.2).

Proposition 49 (Charged Tetrahedral Pentagon equation). Let aj, cj > 0 such that
1√
N
− aj − cj > 0 for j = 0, 1, 2, 3 or 4 satisfying the following relations hold true

a1 = a0 + a2 a3 = a2 + a4 c1 = c0 + a4 c3 = a0 + c4 c2 = c1 + c3.

(4.14)

Then we have

T12(a4, c4)T1,3(a2, c2)T23(a0, c0) = µT23(a1, c1)T12(a3, c3) (4.15)

wehere

µ = expπi
c2b

6
√
N

(
2(c0 + a2 + c4)− 1√

N

)
Proof. The Charged Pentagon Equation (2.58) provides the equation

Ψ12(a4, c4)Ψ1,3(a2, c2)Ψ23(a0, c0) = ξΨ23(a1, c1)Ψ12(a3, c3) (4.16)

where

Ψjl(a, c) ≡ /ψa,c(q+pl − ql,−e−
πi
N YjXlYl) (4.17)

ξ = e
2πi

c2b√
N

(a0a2+a0a4+a2a4)
e
πi

c2b√
N
a22 (4.18)

Following step by step the proof of the (un-charged) tetrahedral pentagon equation

(3.42), together with the expression for T(a, c) from Lemma 48, we get a proof for

(4.15) induced by the relation (4.16), up to a constant factor µ that we are going to

determine. First notice

µ =
ν(a4 − c4)ν(a2 − c2)ν(a0 − c0)

ν(a1 − c1)ν(a3 − c3)
eπic

2
bθ

where

θ = a0(a0 + 2a2 + c0) + a4(a4 + 2a2 + c4) + 2a2
2 + 2a0a4 + a2c2+
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− a1(a1 + c1)− a3(a3 + c3) (using (4.14))

= a0(a0 + 2a2 + c0) + a4(a4 + 2a2 + c4) + 2a2
2 + 2a0a4 + a2c2+

−a0(a0+a2+a4+c0)−a4(a2+a4+a0+c4)−a2(2a0+2a2+2a4+c0+c4)

= a2(c2 − a0 − c0 − c4 − a4) = 0

while

ν(a4 − c4)ν(a2 − c2)ν(a0 − c0)

ν(a1 − c1)ν(a3 − c3)
= ν (−c0 − a2 − c4)

We are now able to provide an integral kernel description for the charged tetra-

hedral operator. We use the Dirac Bra-Ket notation to denote integral kernels, see

Appendix A.1.

Proposition 50. Let T(a, c) ≡ (T(a, c))∗b .

〈a0, a2|T12(a, c) |a1, a3〉

= ν(a− c)eπic
2
ba(a+c)〈a3 − a2, a0〉〈a3 − a2〉δ(a0 + a2 − a1)ϕ̃a,c(a3 − a2)

〈a0, a2|T(a, c)|a1, a3〉

= ν(b−c)eπic
2
bb(b+c)e−πiN/12〈a3−a2, a1〉〈a3−a2〉δ(a1+a3−a0)ϕb,c(a3−a2)

Proof. The constant part dependent on the charges in the kernel formula is evident

from Lemma 48 so we will ignore it below.

〈a0, a2|T12(a, c)|a1, a3〉

= 〈a0, a2|D12/ψa,c(q1 + p2 − q2,−e−πi/NY1X2Y 2)|a1, a3〉

= 〈a0 + a2, a2|/ψa,c(q1 + p2 − q2,−e−πi/NY1X2Y 2)|a1, a3〉

=

∫
AN
〈a0 + a2, a2|e2πiy(q1+p2−q2)(−1)ke−πik

2/NY −k1 X−k2 Y k2 |a1, a3〉

× ψ̃a,c(y, k)d(y, k)

=

∫
AN
〈a0 + a2, a2|e2πiyq1Y

k

1 |a1〉〈a2|e2πiy(p2−q2)(−1)ke−πik
2/NX

k

2Y
k
2 |a3〉

× ψ̃a,c(y, k)d(y, k)

Now compute separately:

〈a0 + a2|e2πiyq1Y
k

1 |a1〉

= e2πiy(x0+x2)ωk(n0+n2)δ(x0 + x2 − x1)δ(n0 + n2 − n1)

= 〈(y,−k), a0 + a2〉δ(a0 + a2 − a1)

and

〈a2|e2πiy(p2−q2)(−1)ke−πik
2/NX

k

2Y
k
2 |a3〉

= 〈(y, k)〉〈a2 + (y,−k), (y,−k)〉−1δ((y,−k)− a3 + a2)

putting back into the integral we get
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∫
AN
〈(y, k)〉〈a2 + (y,−k), (y,−k)〉−1〈(y,−k), a0 + a2〉δ((y,−k)− a3 + a2)×

× δ(a0 + a2 − a1)ψ̃a,c(x3 − x2, n2 − n3)d(y, k)

= 〈a3 − a2〉〈a3, a3 − a2〉−1〈a3 − a2, a0 + a2〉×

× δ(a0 + a2 − a1)ψ̃a,c(x3 − x2, n2 − n3)

=
〈a3〉〈a2〉
〈a3, a2〉

〈a3, a2〉
〈a3〉2

〈a3, a2〉
〈a2〉2

〈a3 − a2, a0〉×

× δ(a0 + a2 − a1)ψ̃a,c(x3 − x2, n2 − n3)

= 〈a3 − a2, a0〉〈a3 − a2〉δ(a0 + a2 − a1) ˜ψa,c(x3 − x2, n2 − n3)

For a negative tetrahedron we have

〈a0, a2|T(a, c)|a1, a3〉 = 〈a0, a2|T(a, c)∗b |a1, a3〉

= 〈εa1, εa3|T(a, c)|εa0, εa2〉

= ν(a− c)−1e−πic
2
ba(a+c)〈a3 − a2, a1〉〈a3 − a2〉×

× δ(a1 + a3 − a0)ϕ̃a,c(ε(a2 − a3))

= ν(a− c)−1e−πic
2
ba(a+c)e−πi(N−4c2bN

−1)/12e−2πic2bab×

× 〈a3 − a2, a1〉〈a3 − a2〉δ(a1 + a3 − a0)ϕb,c(−ε2(a2 − a3))

= ν(b− c)eπic
2
bb(b+c)e−πiN/12×

× 〈a3 − a2, a1〉〈a3 − a2〉δ(a1 + a3 − a0)ϕb,c(a3 − a2)

The appearance of ε is due to the non-unitarity of the theory for b > 0 and

N > 1.

Let A and B two operators on L2(AN ) defined via their integral kernel

〈a1, a2|A〉 = δ(a1 + a2)〈a1〉eπiN/12 〈a1, a2|B〉 = 〈a1 − a2〉 (4.19)

〈A|a1, a2〉 = 〈εa1, εa2|A〉 〈B|a1, a2〉 = 〈εa1, εa2|B〉 (4.20)

Lemma 51 (Fundamental Lemma). We have the following three relations∫
A2
N

〈A|v, s〉〈x, s|T(a, c)|u, t〉〈t, y|A〉dsdt = 〈x, y|T(a, b)〈u, v〉 (4.21)∫
A2
N

〈A|u, s〉〈s, x|T(a, c)|v, t〉〈t, y|B〉dsdt = 〈x, y|T(b, c)〈u, v〉 (4.22)∫
A2
N

〈B|u, s〉〈s, y|T(a, c)|t, v〉〈t, x|B〉dsdt = 〈x, y|T(a, b)〈u, v〉 (4.23)

Proof. First:∫
A2
N

〈A|v, s〉〈x, s|T(a, c)|u, t〉〈t, y|A〉dsdt

= ν(a− c)eπic
2
ba(a+c)

∫
A2
N

〈t− s, x〉〈t− s〉δ(x+ s− u)δ(t+ y)δ(v + s)×

× 〈t〉〈v〉ϕ̃a,c(t− s)dsdt

= ν(a− c)eπic
2
ba(a+c)

∫
A2
N

〈v − y, x〉〈v − y〉δ(x− v − u)〈y〉〈v〉ϕ̃a,c(v − y)dsdt

= ν(a− c)eπic
2
ba(a+c)e−πic

2
ba(a+2c)e−πi(N−4c2bN

−1)/12ϕc,b(v − y)δ(x− v − u)×

× 〈v − y〉〈v − y〉〈v − y, u+ v〉〈y〉〈v〉

= ν(c− b)eπic
2
bc(c+cb)e−πiN/12ϕc,b(v − y)δ(x− v − u)〈v − y, u〉〈v − y〉.
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Second:∫
A2
N

〈A|u, s〉〈s, x|T(a, c)|v, t〉〈t, y|B〉dsdt

= e−πiN/12〈u〉
∫
A2
N

〈−u, x|T(a, c)|v, t〉〈t− y〉dsdt

= ν(a− c)eπic
2
ba(a+c)e−πiN/12

∫
AN

ϕ̃a,c(t− x)δ(u+ v − x)×

× 〈u〉〈u, t− x〉〈t− x〉〈t− y〉dt t 7→ t+ x

= ν(a− c)eπic
2
ba(a+c)e−πiN/12

∫
AN

ϕ̃a,c(t)δ(u+ v − x)×

× 〈u〉〈u, t〉〈t〉〈t+ x− y〉dt

= ν(a− c)eπic
2
ba(a+c)e−πiN/12δ(u+ v − x)〈u〉〈x− y〉×

×
∫
AN

ϕ̃a,c(t)〈u, t〉〈t, x− y〉dt

= ν(a− c)eπic
2
ba(a+c)e−πiN/12δ(u+ v − x)〈u〉〈x− y〉×

×
∫
AN

ϕ̃a,c(t)〈t, v − y〉dt

= ν(a− c)eπic
2
ba(a+c)e−πiN/12δ(u+ v − x)〈u〉〈x− y〉ϕa,c(v − y)

= ν(a− c)eπic
2
ba(a+c)e−πiN/12δ(u+ v − x)〈u, v − y〉〈v − y〉ϕa,c(v − y).

Third:∫
A2
N

〈B|s, y〉〈u, s|T(a, c)|t, v〉〈t, x|B〉dsdt

= ν(a− c)eπic
2
ba(a+c)ϕ̃a,c(v − y)〈v − y〉

∫
AN
〈B|u, s〉〈s, v − y〉〈s+ y, x|B〉ds

= ν(a− c)eπic
2
ba(a+c)ϕ̃a,c(v − y)〈v − y〉

∫
AN
〈u− s〉〈s, v − y〉〈s+ y − x〉ds

= ν(a− c)eπic
2
ba(a+c)ϕ̃a,c(v − y)〈v − y〉〈y − x〉〈u〉

∫
AN
〈s, v − x+ u〉ds

= ν(c− b)eπic
2
bc(c+b)ϕc,b(v − y)〈y − x〉〈u〉δ(v − x+ u)

= ν(c− b)eπic
2
bc(c+b)ϕc,b(v − y)〈v − y〉〈v − y, u〉δ(v − x+ u)

4.3.1 TQFT Rules, Tetrahedral Symmetries and Gauge In-

variance

We consider oriented surfaces with cellular structure such that all 2-cells are

either bigons or triangles. Not all the edge orientations will be admitted: we forbid

triangles cyclically oriented. For the bigons, we consider only the essential ones, the

others being contractible to an edge. These essential bigons are precisely the ones

with cellular structure isomorphic to the unit disk with vertices ±1 ∈ C and edges

{e1 = eπit; e2 = −eπit, for t ∈ [0, 1]} or {e1 = −e−πit; e2 = e−πit, for t ∈ [0, 1]}.
Given such an ideally triangulated surface Σ we will associate a copy of C to any

bigon and a copy of S ′(AN ) to any triangle. Globally we associate to the surface the

space S ′(A∆2(Σ)
N ). To a shaped tetrahedron T with ordered vertices {v0, v1, v2, v3}

we associate the partition function Z
(N)
b (T ) through the Nuclear Theorem (A.6) as
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a ket distribution

〈x| ˜
Z

(N)
b (T )〉 =

{
〈a0, a2|T(c(v0v1), c(v0v3))|a1, a3〉 if sign(T ) = 1;

〈a1, a3|T(c(v0v1), c(v0v3))|a0, a2〉 if sign(T ) = −1.
(4.24)

where

AN 3 ai := a(∂iT ), i ∈ {0, 1, 2, 3}

and

c :=
1

π
√
N
αT : ∆1(T )→ R>0.

Having allowed bigons on triangulations of surfaces, we get cones on triangulations

of cobordisms. From the 2 classes of bigons described above we have 4 isotopy classes

of cellular structures of cones over them, described in the following as embedded in

R3 ' C×R. The bigon is identified with the unit disc embedded in C. The apex of

the cone will be the point (0, 1) ∈ C× R. The 1-cells will be either

{e1
0±(t) = (±eiπt, 0), e1

1±(t) = (±(1− t), t)}

or

{e1
0±(t) = (∓e−iπt, 0), e1

1±(t) = (±(1− t), t)}

or

{e1
0±(t) = (±eiπt, 0), e1

1±(t) = (±t, 1− t)}

or

{e1
0±(t) = (∓e−iπt, 0), e1

1±(t) = (±t, 1− t)}.

We name these types of cones A+, A−, B+ and B− respectively. We need TQFT rules

for the gluing of this cones. We just need to look at their gluing over a tetrahedra.

We assign a partition function to the cones as follows

〈a1, a2|
˜

Z
(N)
b (A±)〉 = δ(a1 + a2)〈a1〉±1e±πiN/12, 〈a1, a2|

˜
Z

(N)
b (B±)〉 = 〈a1 − a2〉±1.

(4.25)

Tetrahedral symmetries are generated by permutation of the ordered vertices. Indeed

the group of tetrahedral symmetries is identified with the symmetric group S4 and is

generated by three transpositions. The three equations of the Fundamental Lemma

51 gain an interpretation as glueing of cones on the faces of a tetrahedron through

definitions (4.25). These three glueing generates all the symmetries of a tetrahedron,

and through this interpretation, the Fundamental Lemma assure that the partition

function Z
(N)
b satisfies all the tetrahedral symmetries. For a general approach to

tetrahedral partition functions and symmetries see [GKT12].

We can now formulate the main Theorem for the Teichmüller TQFT. This theo-

rem was proved by Andersen and Kashaev for the case N = 1, and any b in [AK14b].

The statement that we have here is for every N odd, and it is not present as such in

the literature.

Theorem 52 (Teichmüller TQFT, Andersen and Kashaev). For any b ∈ C∗ such

that Im b(|b| − 1) = 0 and Re b > 0, and for any N ∈ Z>0 odd there exists a unique

∗b-functor F
(N)
b : Ba → DN such that F

(N)
b (A) = ∆2(A), ∀A ∈ ObBa, and for any

admissible leveled shaped pseudo 3-manifold (X, lX), the associated morphism in DN
takes the form

F
(N)
b (X, lX) = Z

(N)
b (X)e−πi

lXc
2
b

N ∈ S ′
(
A∆2(∂X)
N

)
, (4.26)

where Z
(N)
b is defined in (4.24) for a tetrahedron.
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Here ∗b-functor means that F (X∗) = F (X)∗b , where X∗ is the oppositely ori-

ented pseudo 3-manifold to X.

We still need to address the the gauge invariance and the convergence of the

partition functions under glueings. We won’t discuss the convergence here because

it follows directly from the convergence in the case level N = 1, which was addressed

in [AK14b]. For the gauge invariance consider the suspension of an n-gone SPn

naturally triangulated into n tetrahedra sharing the only internal edge e. Every

gauge transformation can be decomposed in a sequence of gauges involving only one

edge e, and every such guage transformation can be understood in the example of the

suspension. Suppose all the tetrahedra to be positive, and having vertex order such

that the two last two vertices are the endpoints of the internal common edge. After

enumerating the tetrahedra in cyclic order, let ai, ci be the two shape parameter of

Ti, i = 0, . . . , n, and a = (a0, . . . , an), c = (c0, . . . , cn). Notice that
√
Nπai is the

dihedral angle corresponding to the edge e. So a gauge corresponding to e will affect

the partition function of SPN

Z
(N)
b (SPN )(a, c) := Tr0(T01(a1, c1)T02(a2, c2) · · ·T0n(an, cn))

shifting c of an amount λ = (λ, . . . , λ). One can show from the definitions and the

discussion above, that

T(a, c+ λ) = e−2πicbλp1T(a, c)e2πicbλp1e
πic2b

(
1√
N
−6a

)
λ/3

which, after tracing, leads to the following Proposition

Proposition 53. [AK14b]

Z
(N)
b (SPN )(a, c + λ) = Z

(N)
b (SPN )(a, c)e

πic2b

(
n√
N
−6Qe

)
λ/3

where

Qe = a1 + a2 + . . . an

4.4 Knot Invariants: Computations and Conjec-

tures

Notation In the examples we are going to use the following notation for quantum

dilogarithms

ϕb(x, n) ≡ Db(x,−n) (4.27)

moreover we will often abuse of notation in favor of readability in the following ways.

For z = (x, n) ∈ AN the writing e2πicbzα will be sometimes used in place of e2πicbxα.

Moreover sums of the types z + cba will always mean (x+ cba, n) . In the examples

we encode an oriented triangulated pseudo 3-manifold X into a diagram where a

tetrahedron T is represented by an element

where the vertical segments, ordered from left to right, correspond to the faces

∂0T, ∂1T, ∂2T, ∂3T respectively. When we glue tetrahedron along faces, we illustrate

this by joining the corresponding vertical segments.
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4.4.1 Figure–Eight Knot 41

Let X be represented by the diagram

(4.28)

Choosing an orientation, it consists of one positive tetrahedron T+ and one negative

tetrahedron T− with four identifications

∂2i+jT+ ' ∂2−2i+jT−, i, j ∈ {0, 1}.

Combinatorially, we have ∆0(X) = {∗}, ∆1(X) = {e0, e1}, ∆2(X) = {f0, f1, f2, f3},
and ∆3(X) = {T+, T−} with the boundary maps

f2i+j = ∂2i+jT+ = ∂2−2i+jT−, i, j ∈ {0, 1},

∂ifj =

{
e0, if j − i ∈ {0, 1};
e1, otherwise,

∂iej = ∗, i, j ∈ {0, 1}.

The topological space X \{∗} is homeomorphic to the complement of the figure–eight

knot, and indeed X \{∗} is an ideal triangulation of such cuspidal manifold. The set

∆3,1(X) consists of elements (T±, ej,k) for 0 ≤ j < k ≤ 3. We fix a shape structure

αX : ∆3,1(X)→ R>0

by the formulae

αX(T±, e0,1) = π
√
Na±, αX(T±, e0,2) = π

√
Nb±, αX(T±, e0,3) = π

√
Nc±,

where a± + b± + c± = 1√
N

. The weight function

ωX : ∆1(X)→ R>0

takes the values

ωX(e0) =
√
Nπ(2a+ + c+ + 2b− + c−) =: 2πw, ωX(e1) = 2π(2− w).

As the figure–eight knot is hyperbolic, the completely balanced case w = 1 is acces-

sible directly. We can state the balancing condition w = 1 as

2b+ + c+ = 2b− + c−. (4.29)

The kernel representations for the operators T(a+, c+) and T(a−, c−) are as fol-

lows. Let zj ∈ AN , j = 0, 1, 2, 3

〈z0, z2|T(a+, c+)|z1, z3〉 (4.30)

= νa+,c+〈z3 − z2, z0〉〈z3 − z2〉δ(z0 + z2 − z1)ϕ̃a+,c+(z3 − z2)

〈z3, z1|T(a+, c−)|z2, z0〉 = 〈εz2, εz0|T(a+, c−)|εz3, εz1〉 (4.31)

= νa−,c−〈z0 − z1, z2〉〈z1 − z0〉δ(z0 + z2 − z3)ϕ̃a−,c−(εz1 − εz0)

The Andersen–Kashaev invariant at level N for the complement of the figure–

eight knot is then

Z
(N)
b (X) =

∫
A4
N

〈z0, z2|T(a+, c+)|z1, z3〉〈z3, z1|T(a+, c−)|z2, z0〉dz0dz1dz2dz3
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=

∫
A4
N

νc+,b+νc−,b−ϕc+,b+(z3 − z2)ϕc−,b−(εz1 − εz0)δ(z0 + z2 − z1)×

× δ(z0 + z2 − z3)〈z3 − z2, z0〉〈z0 − z1, z2〉dz0dz1dz2dz3

=

∫
A3
N

νc+,b+νc−,b−ϕc+,b+(z1 − z2)ϕc−,b−(εz1 − εz0)δ(z0 + z2 − z1)×

× 〈z1 − z2, z0〉〈z0 − z1, z2〉dz0dz1dz2

=

∫
A2
N

νc+,b+νc−,b−ϕc+,b+(z0)ϕc−,b−(εz2)〈z0, z0〉〈−z2, z2〉dz0dz2

=

∫
AN

νc+,b+ϕc+,b+(z0)〈z0, z0〉dz0

∫
AN

νc−,b−ϕc−,b−(εz2)〈z2, z2〉dz2

= σc+,b+σc−,b−

We can compute

σc±,b± = νc±,b±

∫
AN

e−2πicbzc±

ϕb(z − cb(b± + c±))
〈z〉2dz

= ν′c±,b±

∫
AN+di

e4πicbz(2b±+c±)

ϕb(z)
〈z〉2dz

where

ν′c±,b± = νc±,b±e
4πic2b(c±b±−b2±) (4.32)

and the domain of integration AN + di = (R + di)× Z/NZ) remarks that we have

shifted the real integral to a contour integral in the complex plane, and d ∈ R is such

that the integral converges absolutely. We sometimes omit the contour shift in the

computations but we try to put it in the results. Defining

λ ≡ 2b+ + c+ = 2b− + c−

we have

Z
(N)
b (X) = ν′c+,b+ν

′
c−,b−

∫
A2
N

e4πicbλ(z0+z2)

ϕb(z0)ϕb(εz2)
〈z0〉2〈z2〉2dz0dz2

= ν′c+,b+ν
′
c−,b−

∫
A2
N

ϕb(z2)

ϕb(z0)
e4πicbλ(z0+z2)〈z0〉2〈z2〉2dz0dz2

= ν′c+,b+ν
′
c−,b−

∫
A2
N

ϕb(z2 − z0)

ϕb(z0)
e4πicbλz2〈z0, z2〉2〈z2〉2dz0dz2

that has the structure

Z
(N)
b (X) = eiφ

∫
AN+i0

χ
(N)
41

(x, λ)dx, (4.33)

χ
(N)
41

(x, λ) = χ
(N)
41

(x)e4πicbλx, χ
(N)
41

(x) =

∫
AN−i0

ϕb(x− y)

ϕb(y)
〈x, y〉2〈x〉2dy

(4.34)

where φ is some constant quadratic combination of dihedral angles.

4.4.2 The Complement of the Knot 52

Let X be the closed SOTP 3-manifold represented by the diagram
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This triangulation has only one vertex ∗ and X \{∗} is topologically the complement

of the knot 52. We denote T1, T2, T3 the left, right, and top tetrahedra respectively.

We choose the orientation so that all of them are positive. Balancing all the edges

correspond to require the following equations to be true

2a3 = a1 + c2, b3 = c1 + b2. (4.35)

The three integral kernels reads

〈z, w|T(a1, c1)|u, x〉 =

= νa1,c1〈x− w, z〉〈x− w〉δ(z + w − u)ϕ̃a1,c1(x− w)

〈x, v|T(a2, c2)|y, w〉 =

= νa2,c2〈w − v, x〉〈w − v〉δ(x+ v − y)ϕ̃a2,c2(w − v)

〈y, u|T(a3, c3)|v, z〉 =

= νa3,c3〈z − u, y〉〈z − u〉δ(y + u− v)ϕ̃a3,c3(z − u)

The three delta functions will give us the following substitutions inside the integrals

v = y − x u = −x w = −x− z

We can write

Z
(N)
b (X) =

∫
AN

fX(x)dx, (4.36)

and compute

fX(x) = νa1,c1νa2,c2νa3,c3

∫
A2
N

ϕ̃a1,c1(2x+ z)ϕ̃a2,c2(−z − y)ϕ̃a3,c3(z + x)

× 〈2x+ z, z〉〈−z − y, x〉〈z + x, y〉〈2x+ z〉〈z + y〉〈z + x〉dzdy

= e−πiN/4νc1,b1νc2,b2νc3,b3

∫
A2
N

ϕc1,b1(2x+ z)ϕc2,b2(−z − y)ϕc3,b3(z + x)

× 〈2x+ z, z〉〈−z − y, x〉〈z + x, y〉dydz

Shifting z 7→ z − x we get

fX(x) = e−πiN/4νc1,b1νc2,b2νc3,b3

∫
A2
N

ϕc1,b1(x+ z)ϕc2,b2(x− z − y)ϕc3,b3(z)

× 〈x+ z, z − x〉〈x− z − y, x〉〈z, y〉dydz

and then y 7→ −y + x− z

fX(x) = e−πiN/4νc1,b1νc2,b2νc3,b3

∫
A2
N

ϕc1,b1(x+ z)ϕc2,b2(y)ϕc3,b3(z)

× 〈x+ z, z − x〉〈y, x〉〈z, x− z − y〉dydz

= e−πiN/4νc1,b1νc2,b2νc3,b3

∫
A2
N

ϕc1,b1(x+ z)ϕc2,b2(y)ϕc3,b3(z)〈x− y, z − x〉dydz

= e−πiN/4νc1,b1νc2,b2νc3,b3

∫
AN

ϕc1,b1(x+ z)ϕ̃c2,b2(z − x)ϕc3,b3(z)〈x, z − x〉dz

= e−πiN/3νc1,b1νb2,a2νc3,b3

∫
AN
ϕc1,b1(x+z)ϕb2,a2(z−x)ϕc3,b3(z)〈z−x〉〈x, z−x〉dz

= e−πiN/3νc1,b1νb2,a2νc3,b3

∫
AN

ϕc1,b1(x+ z)ϕb2,a2(z − x)ϕc3,b3(z)〈z〉〈x〉dz
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we now make the complex shift z 7→ z + cb(c3 + b3) and get (we omit the constant

factor in front for a moment, for clarity reasons)

fX(x) =

∫
AN

〈x〉〈z + cb(c3 + b3)〉e−2πi(z+cb(c3+b3))c3

ϕb(z + x− cb(c1 + b1 − c3 − b3))ϕb(z)ϕb(z − x− cb(a2 + b2 − c3 − b3))
×

× e−2πicb(x+z+cb(c3+b3))c1e−2πicb(z−x+cb(c3+b3))b2dz

From the balancing equations (4.35) we get the following

c1 + b1 − c3 − b3 =
1√
N
− a1 − c3 − b3 =

1√
N

+ c2 − 2a3 − c3 − b3

= c2 − a3

b2 + a2 − c3 − b3 =
1√
N
− c2 −

1√
N

+ a3 = a3 − c2,

that together with a change of variable x′ = x− cb(c2 − a3) gives

fX(x) =

∫
AN

〈x′ + cb(c2 − a3)〉〈z + cb(c3 + b3)〉e−2πizc3

ϕb(z + x′)ϕb(z)ϕb(z − x′)
×

× e−2πicb(x′+z)c1e−2πicb(z−x′)b2dz

Finally, reincorporating the constants as

µ = e−πiN/3νc1,b1νb2,a2νc3,b3e
−2πic2b(c3(c3+b3)+b2(c2+b2)+c1(c1+b1).

we have

fX(x) = µ

∫
AN

〈x′〉〈z〉
ϕb(z + x′)ϕb(z)ϕb(z − x′)

×

× e−2πix′cb(c1−b2+c2−a3)e−2πizcb(c1−b3+b2)dz

= µ

∫
AN

〈x′〉〈z〉
ϕb(z + x′)ϕb(z)ϕb(z − x′)

×

× e−2πix′cb(c1−b2+c2−a3)dz

So, after fixing λ = −c1 + b2 − c2 + a3 we can express

Z
(N)
b (X) =

∫
AN+i0

χ
(N)
52

(x, λ)dx, χ
(N)
52

(x, λ) = χ
(N)
52

(x)e2πicbλx (4.37)

χ
(N)
52

(x) =

∫
AN−i0

〈x〉〈z〉
ϕb(z + x)ϕb(z)ϕb(z − x)

dz (4.38)

4.4.3 H-Triangulations

In this section we will look at one vertex H-triangulations of knots. Computation

wise they are simple to deduce from the ideal triangulations (at least in the two

examples at hand). The following small computation will be useful

Let T0 consists of one tetrahedron with one face identification

Choosing a positive orientation we have

〈x|Z(N)
b (T0)|y〉 =

∫
AN
〈z, x|T(a0, c0)|z, y〉dz
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= νa0,c0 ϕ̃a0,c0(y)〈y〉δ(x)

∫
AN
〈y, z〉dz

= νa0,c0 ϕ̃a0,c0(0)δ(y)δ(x) = e−πN/12νc0,b0
δ(y)δ(x)

ϕb(cba0 − cb/
√
N)

The choice of T0 negatively oriented gives

〈x|Z(N)
b (T0)|y〉 = e−πN/12νb,c

δ(y)δ(x)

ϕb(cba0 − cb/
√
N)

Now let X be an H–Triangulation for the figure–eight knot, i.e. let X be given

by the diagram

where the figure-eight knot is represented by the edge of the central tetrahedron

connecting the maximal and the next to maximal vertices. Choosing positive central

tetrahedron (T0), the left tetrahedron (T+) will be positive and the right one (T−)

negative.The shape structure, in the limit a0 → 0 satisfies 2b+ + c+ = 2b−+ c− =: λ

The partition function takes the form

Z
(N)
b (X) =

∫
A5
N

〈z0, z2|T(a+, c+)|x, z3〉〈x|Z(N)
b (T0)|x′〉

〈z3, x
′|T(a+, c−)|z2, z0〉dz0dz2dz3dxdx′

= e−πN/12νc0,b0
δ(x′)

ϕb(cba0 − cb/
√
N)∫

A3
N

〈z0, z2|T(a+, c+)|x, z3〉〈z3, x|T(a+, c−)|z2, z0〉δ(x)dz0dz2dz3dx

=
e−πN/12νc0,b0

ϕb(cba0 − cb/
√
N)

∫
A3
N

νc+,b+νc−,b−ϕc+,b+(−z2)ϕc−,b−(−εz0)

× 〈−z2, z0〉〈z0, z2〉δ(z0 + z2)dz0dz2

=
e−πN/12νc0,b0

ϕb(cba0 − cb/
√
N)

∫
A3
N

νc+,b+νc−,b−ϕc+,b+(z)ϕc−,b−(−εz)dz

=
e−πN/12νc0,b0

ϕb(cba0 − cb/
√
N)

νc+,b+νc−,b−

×
∫
A3
N

ϕb(−z + cb(c− + b−))

ϕb(z − cb(c+ + b+))
e2πicbzc−e−2πicbzc+dz

=
e−πN/12νc0,b0

ϕb(cba0 − cb/
√
N)

νc+,b+νc−,b−

×
∫
A3
N

ϕb(cb(b+ − b−)− z)
ϕb(z)

e2πicb(z+cb(c++b+))(c−−c+)dz

=
e−πN/12νc0,b0

ϕb(cba0 − cb/
√
N)

νc+,b+νc−,b−e
2πic2b(c++b+))(c−−c+)

×
∫
A3
N

ϕb(cb(b+ − b−)− z)
ϕb(z)

e4πicbz(b+−b−)dz

= e2πic2b(c++b+))(c−−c+) e−πN/12νc0,b0
ϕb(cba0 − cb/

√
N)

νc+,b+νc−,b−χ
(N)
41

(cb(b+ − b−))

Notice that in the limit a0 → 0 we have b+ = b−, so re-normalizing to remove the

singularity we can write

lim
a0→0

ϕb(cba0 − cb/
√
N)Z

(N)
b (X) =

e−πiN/12

ν(c0)
χ

(N)
41

(0) (4.39)
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Similarly let X be represented by the diagram

that is, the H–triangulation for the 52 knot. We denote T0, T1, T2, T3 the central,

left, right, and top tetrahedra respectively and we choose the orientation so that the

central tetrahedron T0 is negative then all other tetrahedra are positive. The edge

representing the knot 52 connects the last two edges of T0, so that the weight on the

knot is given by 2πa0. In the limit a0 → 0, all edges, except for the knot, become

balanced under the conditions

a1 = c2 = a3, b3 = c1 + b2,

which in particular imply (4.35). It is really simple to see that the insertion of

the partition function for T0, i.e.

〈x|Z(N)
b (T0)|x′〉

into the expression of the function fX(x) defined in equation (4.36) produces

Z
(N)
b (X) =

e−πiN/12

ϕb(cba− cb
√
N)

νb0,c0fX(0) (4.40)

= Θ
e−πiN/12

ϕb(cba− cb
√
N)

χ
(N)
52

(cb(a1 − a3)) (4.41)

For some constant phase factor Θ

4.4.4 Asymptotic’s of χ
(N)
41

(0)

In this section we want to study the asymptotic behavior of the invariant of the

figure–8 knot

χ
(N)
41

(0) =

∫
AN

Db(−x,−k)Db(x,−k)d(x, k)

=
1

2πb
√
N

∑
k∈Z/NZ

∫
R−id

Db

(
−x
2πb

,−k
)

Db

( x

2πb
,−k

)
dx

when b → 0. The analysis uses techniques similar to the one presented in [AK14b]

for N = 1, however higher level gives new informations that we will show here.

The integration in the complex plane is a contour integral, where d ∈ R is so that

the integral is absolutely convergent. Since b ∈ R>0 we have∣∣∣∣Db(
−x
2πb

,−k)Db(
x

2πb
,−k)

∣∣∣∣ ≈ eb−1|Re x| Im x

as x → ±∞, which requires d to be strictly positive. By means of the asymptotic

formula for the quantum dilogarithm (2.43) we have

χ
(N)
41

(0) =
1

2πb
√
N

∑
k∈Z/NZ

∫
R−id

Exp

[
Li2(−e−

√
Nx)− Li2(−e

√
Nx)

2πib2N

]
× φ−x(k)φx(k)(1 +O(b2))dx
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We want to apply the steepest descent method to this integral to get an asymptotic

formula for b→ 0. First we show the computation for the exact integral,

1

2πb
√
N

∑
k∈Z/NZ

∫
R−id

Exp

[
Li2(−e−

√
Nx)− Li2(−e

√
Nx)

2πib2N

]
φ−x(k)φx(k)dx (4.42)

and then we will argue that the former one can be approximated by the latter when

b→ 0.

Let h(x) := Li2(−e−
√
Nx)− Li2(−e

√
Nx). Its critical points are solutions toh′(x) = 0

h′′(x) 6= 0

are S = {± 2
3
πi√
N

+ 2πik√
N

: k ∈ Z}. We can compute Imh at its critical points:

Imh

(
±2

3

πi√
N

+
2πik√
N

)
= ±4Λ(

π

6
) (4.43)

where Λ is the Lobachevsky’s function

Λ(α) = −
∫ α

0

log |2 sinϕ|dϕ (4.44)

and we used the following equations for the computation (see [Kir95] for all this

expressions)

Λ(2θ) = 2
(

Λ(θ)− Λ(
π

2
− θ)

)
(4.45)

Re Li2(reiα) = −1

2

∫ r

0

log(1− 2x cos(α) + x2)

x
dx (4.46)

Im Li2(reiα) = β log r + Λ(α) + Λ(β) + Λ(α+ β) (4.47)

where

β = β(r, α) = arctan

(
r sinα

1− cosα

)
(4.48)

We remark here the well known fact that 4Λ(π6 ) = Vol(41), where by Vol(41) we

mean the hyperbolic volume of knot complement S3 \ (41).

Fix C 3 x0 = − 2
3
πi√
N

, which is accessible from the original contour without passing

through other critical points, and consider the contour

C = {z ∈ C : Re(h(z)) = Re(h(x0)), Im(h(z)) ≤ Im(h(x0))}

Using the following properties for the dilogarithm

lim
Re(z)→∞

Li2(−ez) = −z
2

2
(4.49)

Li2(−ez)+Li2(−e−z) = −1

2
z2− π

2

6
for z ∈ C\{Re(z) = 0, |Im(z)| > π} (4.50)

one can see that the contour C is asymptotic to Re(z) + Im(z) = 0 for Re(z) → ∞
and to Re(z)− Im(z) = 0 for Re(z)→ −∞. Moreover the same computation shows

lim
Re(z)→±∞

Im(h(z)) = lim
Re(z)→±∞

±Re(z) Im(z) = −∞ (4.51)

All together we have found a contour C where integral (4.42 )can be computed with

the steepest descent method (see [Won01]), giving as the following approximation

for b→ 0

e
h(x0)

2πib2N

g41

(
− 2

3
πi√
N

)
√
iN−1h′′(x0)

(1 +O(b2) (4.52)
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where

g41
(x) :=

1√
N

N−1∑
k=0

φ−x(k)φx(k).

We now go back to χ
(N)
41

(0), and we write it as the following integral

χ
(N)
41

(0) =
1

2πb
√
N

∑
k∈Z/NZ

∫
R−id

fb(x, k)d(x, k) (4.53)

where

fb(x, k) = Db

(
−x
2πb

,−k
)

Db

( x

2πb
,−k

)
. (4.54)

Then consider the contour

Cb = {z ∈ C : arg fb(z) = arg fb(zb), |fb(z)| = |fb(zb)|} (4.55)

where zb is defined as the solution to

∂

∂x
log fb(x) = 0 (4.56)

which minimize the absolute value of fb. Using the asymptotic formula for fb it is

simple to show that the contours Cb approximates C as b→ 0 as well the points zb’s

will converge to x0. So, in the limit b → 0, integral (4.53) is approximated by the

integral (4.42), for which we already have an asymptotic formula. We have proved

the following

χ
(N)
41

(0) = e
h(x0)

2πib2N

g41

(
− 2

3
πi√
N

)
√
iN−1h′′(x0)

(1 +O(b2)), (4.57)

As we remarked above Imh(x0) = −Vol(41).

Next we look at the number g41

(
− 2

3
πi√
N

)
which is a topological invariant of the knot

in the formula above.

√
Ng41

(
−2

3

πi√
N

)
=

N∑
k=1

φ 2
3
πi√
N

(k)φ− 2
3
πi√
N

(k)

= φ 2
3
πi√
N

(1)φ− 2
3
πi√
N

(1)

N∑
k=1

k−1∏
j=1

∣∣∣1− e− 1
3
πi
N e

−2πij
N

∣∣∣2∣∣∣1 + e
2
3πi
∣∣∣ 2
N

= φ 2
3
πi√
N

(1)φ− 2
3
πi√
N

(1)
N−1∑
k=0

k∏
j=1

∣∣∣1− e− 1
3
πi
N e

−2πij
N

∣∣∣2∣∣∣1 + e
2
3πi
∣∣∣ 2
N

= φ 2
3
πi√
N

(1)φ− 2
3
πi√
N

(1)

N−1∑
k=0

k∏
j=1

∣∣∣1− e− 1
3
πi
N e

−2πij
N

∣∣∣2∣∣eπi/3∣∣ 2
N

= φ 2
3
πi√
N

(1)φ− 2
3
πi√
N

(1)

N−1∑
k=0

k∏
j=1

∣∣∣1− e 1
3
πi
N e

2πij
N

∣∣∣2

= φ 2
3
πi√
N

(1)φ− 2
3
πi√
N

(1)

∣∣∣1− eπi3 ∣∣∣2∣∣∣1− e πi3N

∣∣∣2
N−1∑
k=0

k∏
j=1

1∣∣∣1− e 1
3
−πi
N e

2πij
N

∣∣∣2
= φ 2

3
πi√
N

(1)φ− 2
3
πi√
N

(1)
1∣∣∣1− e πi3N

∣∣∣2
N−1∑
k=0

k∏
j=1

1∣∣∣1− e 1
3
−πi
N e

2πij
N

∣∣∣2
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=

∣∣∣∣∣∣
N−1∏
j=1

(
1− e− πi

3N e−
2πij
N

) j
N

∣∣∣∣∣∣
N−1∑
k=0

k∏
j=1

1∣∣∣1− e 1
3
−πi
N e

2πij
N

∣∣∣2
The last expression makes possible the following remark

g41

(
−2

3

πi√
N

)
= γNH0

N (ρcomp) (4.58)

where H0
N (ρcomp) is the Baseilhac–Benedetti invariant for the figure–eight knot found

in [BB07], computed at the conjugate of the complete hyperbolic structure (meaning

that the holonomies of the structure are all complex conjugated) and γN is a global

rescaling

γN =

∣∣∣∣∣∣
N−1∏
j=1

(
1− e−

2πij
N

) j
N

∣∣∣∣∣∣ (4.59)

Remark 4.4.1. The very same steps of the previous asymptotic computation for

χ
(N)
41

(0) can be applied to χ
(N)
52

(0) up to the point of having an expression

χ
(N)
52

(0) = e
φ(x52

)

2πib2N
) g51 (x52)√

iN−1h′′52
(x52

)
(1 +O(b2)), (4.60)

where x52
is the only critical point in the complex plane that contributes to the

steepest descent and

g51
(x) =

1√
N

N−1∑
j=0

φ−x(j)φx(j)φ−x(j). (4.61)

The fact that Imφ(x52
) = −Vol(52), can be seen directly, see for example [AK14b].

However this situation is already too much complicated to come up with some rela-

tions with other theories. The obvious guess is to look for the Baseilhac–Benedetti

invariant, but no explicitly computed examples, other then 41, of such invariant are

known to the author of this thesis.

The following conjecture was originally stated in [AK14b] for N = 1. Here we

restate it in the updated setting. See remark 4.4.2 for some less cautious conjecture.

Conjecture 54 ([AK14b]). Let M be a closed oriented compact 3-manifold. For

any hyperbolic knot K ⊂ M , there exist a two paramters (b, N) family of smooth

functions J
(b,N)
M,K (x, j) on R× Z/NZ which has the following properties.

1. For any fully balanced shaped ideal triangulation X of the complement of K in

M , there exist a gauge invariant real linear combination of dihedral angles λ, a

(gauge non-invariant) real quadratic polynomial of dihedral angles φ such that

Z
(N)
b (X) = eic

2
bφ

1√
N

N−1∑
j=0

∫
R
J

(b,N)
M,K (x, j)eicbxλdx

2. For any one vertex shaped H-triangulation Y of the pair (M,K) there exists a

real quadratic polynomial of dihedral angles ϕ such that

lim
ωY→τ

Db

(
cb
ωY (K)− π
π
√
N

, 0

)
Z

(N)
b (Y ) = eic

2
bϕ−iπN12 J

(b,N)
M,K (0, 0),

where τ : ∆1(Y )→ R takes the value 0 on the knot K and the value 2π on all

other edges.
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3. The hyperbolic volume of the complement of K in M is recovered as the follow-

ing limit:

lim
b→0

2πb2N log |J (b,N)
M,K (0, 0)| = −Vol(M \K)

Remark 4.4.2. We have proved this extended conjecture for the knots (S3, 41) and

(S3, 52), see formulas (4.58), (4.60) and (4.61). Moreover we gave a more explicit

expansion, showing the appearance of an extra interesting therm gK , and showed a

precise relation between g41 and a known invariant of hyperbolic knots, defined by

Baseilhac–Benedetti in [BB07], see equation (4.58). We could have been less cautious

and extend the conjecture declaring the appearance og g(M,K) to be general, and

it to be proportional to the Baseilhac–Benedetti invariant. However we feel that

there are not enough evidence to state it as general conjecture. We finally remark

that the Baseilhac–Benedetti invariants are considered to be a generalization of the

Kashaev invariants, in the sense that they depend also to choice of a flat PSL(2, C)

connection. The level N Andersen–Kashaev invariant could be interpreted as further

quantization of this choice (meaning that we are quantizing also over the space of all

possible PSL(2,R) flat connections). From this point of view, it is not unbelievable

that the BB–invariant at the complete hyperbolic structure appear in the classical

limit of the AK–invariant. The fact that appears as complex conjugate structure

could be due to some different choice in the many conventions one needs to make

along the process.

83



84



Chapter 5

Genus 1 SL(2,C)
Chern-Simons Theory

The main purpose of this Chapter is to compute the representations of the Map-

ping Class Group of a genus 1 surface defined via complex quantum Chern–Simons

theory, as suggested in [Wit91], and [AG14]. These are admittedly not interesting

per se, as the mapping class group of a genus 1 surface is well known to be linear

and isomorphic to SL(2,Z), however we hope this could be a first step to get an idea

on what representations in higher genus look like. Indeed it is a general problem to

find out if higher genus mapping class group are linear, and Chern–Simons theory

already provided an asymptotic positive answer [And06].

On the other hand studying mapping class group representations is one of the first

steps in order to get an interpretation of complex Chern–Simons theory similar to

the modular functor formulation for compact Chern–Simons theory. This is still far

from being accomplished.

In Section 5.1 we recall the construction for complex and compact Chern–Simons

theory and their quantizations following the description and ideas in [AG14]and

[Wit91].

In Section 5.2 we do all the constructions in elementary details in genus 1. This

second section does not really need the previous one if not as motivation to use

certain definitions, and many arguments are treated more elementarily then in the

general setting as the genus 1 is indeed more simple. Some of the discussion follows

ideas in [Wit91], but the computation of the mapping class group was not given

there, while we are able to do so, thanks to an explicit description provided by the

Weil-Gel’fand-Zak Transorm, see Section 1.2

5.1 The Hitchin–Witten Connection and Complex

Chern–Simons Theory

In this section we want to recall the general setting of (Complex) Chern-Simons

Theory, together with the main results and open problems related to its quantization.

Most of the material here is taken from [ADPW91], [Wit91], [Fre95] and, mostly,

[AG14].
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5.1.1 Moduli Spaces of Flat Connections

Fix n ≥ 2. Let G be the compact Lie group SU(n), and its complexification

GC = SL(n,C). Denote with g (resp. gC) the Lie algebra of G (resp. GC). Namely let

g = su(n) be the Lie algebra of traceless skew-Hermitian matrices and gC = sl(n,C)

be the Lie algebra of traceless matrices. Let 〈·, ·〉 : gC × gC → R be an invariant

inner product on gC. In the setting we are discussing, after normalization, we can

fix 〈A,B〉 ≡ − 1
8π2 Tr(AB). Fix an integer number g ≥ 2 denoting the genus of a

closed surface Σ, and fix a point p ∈ Σ. Denote by Σp the surface punctured at p.

Let d ∈ Z/nZ. Consider the following two moduli spaces of representations.

M ≡ Homd(π1(Σp), G)/ ∼ (5.1)

MC ≡ Hom+
d (π1(Σp), GC)/ ∼ (5.2)

where the d means that we are mapping the representative of a small loop γ around

the puncture p to the group element e2πid/nId. The + in the definition of MC

indicates that only reductive representations are considered. The subspaces M ′ ⊂
M ′C, i.e. the restriction ofM andMC to the irreducible representations, are embedded

one into the other. We have a gauge theoretic description of the spaces M and MC,

thanks to the Holonomy Theorem 86. Let P (resp. PC) denote a trivial principal

G (resp. GC) bundle over Σp. Fix ad ∈ g such that exp(2πad) = e2πid/nId and

denote by F (resp. F+
C ) the space of flat connections on P (resp. reductive flat

connections on PC) which have expression addθ near the puncture p, where θ is some

fixed local angular coordinate centered in the puncture p. Let G (resp. GC) be the

group of gauge transformations of P (resp. PC), which restricts to the identity near

the puncture p. We have

M = F/G (5.3)

MC = F+
C /GC. (5.4)

With some cautious choice of gauge transformations and connections allowed near

the puncture, see [DW97], M ′ and M ′C have the structure of smooth manifolds. The

tangent spaces to M ′ and M ′C at an irreducible flat connection [A], are

T[A]M
′ = H1 (Σp, g,dA) T[A]M

′
C = H1

c (Σp, gC,dA) (5.5)

where the differential dA is defined by dAα = dα + [A ∧ α] and H∗c is the homology

of differential forms with compact support.

5.1.2 Atiyah–Bott Symplectic Form and Pre–Quantization

Fix a complex number t = k + is ∈ C∗, where k, s ∈ R. Consider the following

2-form on M ′C

ωC([A], [B]) ≡ 4π

∫
Σ

〈A ∧B〉 = − 1

2π

∫
Σp

Tr(A ∧B) (5.6)

for all A, B ∈ Ω(Σp, gC). We will discuss the quantization of MC with respect to the

following real symplectic form

ωt ≡
t

2
ωC +

t

2
ωC. (5.7)

The same expression as in (5.6), on M ′ instead of M ′C, gives a real 2-form ω. The

analogous of formula (5.7) gives the symplectic form ωk = kω on M ′.

86



To construct the Chern–Simons line bundle first we introduce the Chern–Simons

3-form. Consider the cylinder Σp × [0, 1] and the projection π : Σp × [0, 1] −→ Σp.

Denote with Ã ≡ π∗A the pull–back 1–form and, for every g ∈ G (resp. GC), let

g̃ : Σp × [0, 1] −→ G (resp. GC) be an homotopy from the identically trivial gauge

map on Σp to the gauge transformation g (homotopies are required to keep identity

values near the puncture p fixed). We define the Chern–Simons 3-form

α(Ã) ≡ 〈Ã ∧ FÃ〉 −
1

6
〈Ã ∧

[
Ã ∧ Ã

]
〉 (5.8)

where FÃ is the curvature of Ã.

Lemma 55. Let θ ∈ Ω1(G, g) (or Ω1(GC, gC)) be the Maurer–Cartan form, and

define θg̃ ≡ g̃∗θ. Recall the pull-back formula for a connection Ãg̃ = g̃−1Ãg̃ + θg̃.

The Chern–Simons form α satisfies the following relations

dα(Ã) = 〈FÃ ∧ FÃ〉 (5.9)

g̃∗α(Ã) = α(Ãg̃) = α(Ã) + d〈g̃−1Ãg̃ ∧ θg̃〉 −
1

6
〈θg̃ ∧ [θg̃ ∧ θg̃]〉 (5.10)

Remark 5.1.1. With our choice of g and gC, the form θg̃ is explicitly g̃−1dg̃.

In the complex theory (i.e. when we use gC valued forms) we will need to take a

real form from (5.8) as we did in (5.7) for ωC

αt(Ã) ≡ t

2
α(Ã) +

t

2
α(Ã). (5.11)

Again in the real setting αt = kα. We define the Chern–Simons cocycle as follows

Θt(A, g) ≡ exp

(
2πi

∫
Σ×[0,1]

αt(Ã
g̃)− αt(Ã)

)
(5.12)

Remark 5.1.2. Thanks to (5.10) we have∫
Σ×[0,1]

α(Ãg̃)− α(Ã) =

=

∫
Σ×[0,1]

d〈g̃−1Ãg̃ ∧ θg̃〉 −
1

6
〈θg̃ ∧ [θg̃ ∧ θg̃]〉

=

∫
Σ

〈g−1Ag ∧ θg〉 −
1

6

∫
Σ×[0,1]

〈θg̃ ∧ [θg̃ ∧ θg̃]〉

So, if we define

c(A, g) ≡
∫

Σ

〈g−1Ag ∧ θg〉 −
1

6

∫
Σ×[0,1]

〈θg̃ ∧ [θg̃ ∧ θg̃]〉, (5.13)

we have

Θt(A, g) = exp 2πi

(
t

2
c(A, g) +

t

2
c(A, g)

)
(5.14)

By analogy with previous notation, in the real theory we write

Θk(A, g) ≡ exp 2πikc(A, g). (5.15)

Lemma 56 (Cocycle Condition).

Θt(A, gh) = Θt(A
g, h)Θt(A, g) (5.16)
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Define the trivial line bundle L̃ → F (resp. L̃C → F+
C ). Using the cocycle Θk

(resp. Θt) we can lift the action of G (resp. GC) to L̃ (resp. L̃C), as

(A, z) · g ≡ (Ag,Θt(A, g)z) . (5.17)

This action defines an Hermitian line bundle Lk (resp. Lt) over M ′ (resp. M ′C).

Next we need a pre-quantum connection ∇(t) on this bundle. This is given by the

following formulas

∇(t) ≡ d− iβt, βt ∈ Ω1(F+
C , L̃

t) (5.18)

βt(A
′) ≡ 2π

∫
Σ

t〈A ∧A′〉+ t〈A ∧A′〉, ∀A′ ∈ TAF+
C (5.19)

The definition of ∇(k) on Lk is the straightforward analogous of the definitions above,

which follows when s = 0. Finally we have

F∇(t) = −iωt F∇(k) = −ikω (5.20)

In both the situations, the pre-quantization condition produces the constraint k ∈
Z. So we have finished the description of the pre-quantum line bundle with pre-

quantum connection. In the next subsection we will describe how one could choose

polarizations in the two cases.

5.1.3 Polarizations

For general reference to the complex geometry involved in the following discussion

we refer to [Wel08]. We are not going into many details here, as we won’t use the

general results we present in our detailed discussion of the genus 1. Instead we will

compute everything from scratches in that setting. At this point the discussion for

the real and complex theory becomes different.

Let us start with Lk → M ′. Choose a complex structure σ ∈ T on the surface.

Here T is the Teichmüller space of the surface Σ which parametrizes its complex

structures. σ defines an Hodge star operator ∗ : Ω1(Σ) → Ω1(Σ) as follows. Let gσ

be the metric induced over Σ. For every α, β ∈ Ω1(Σ,C) define ∗α via the formula

∗α ∧ β = 〈α, β〉σdvol (5.21)

where 〈·, ·〉σ is an inner product in T ∗Σ induced by gσ, and dvol is the volume form.

In general, we have

∗2 = −1

Define

Jσ : TM ′ −→ TM ′

Jσ = −∗ (5.22)

where we recall the identification of tangent spaces (5.5) so that an appropriately

extended ∗ is a well defined complex structure on TM ′. In this way one has a

family of complex structures J over M ′, parametrized by the Teichmüller space T ,

which can be all shown to satisfy the hypothesis of a Lagrangian polarization for M ′.

Taking H(k)
σ as the space of holomorphic sections of the line bundle with respect to

Jσ one organizes this in a vector bundle

P(k) × T −→ T (5.23)
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where P(k) = C∞(M ′,Lk). It is a result of [ADPW91] and [Hit90] that this vector

bundle admits a connection, usually referred as Hitchin connection, preserving the

sub-bundle
(
H(k)
σ , σ

)
→ T and that is projectively flat (see also [And12] for a gen-

eralized setting). In this way one can define a unique quantum space of states H(k)

up to scalar factor multiplication, identifying the different H(k)
σ by parallel transport

through Hitchin connection.

We now switch our attention to Lt → M ′C. The Hodge ∗ can be used to define a

complex structure Jσ on T[A]M
′
C in the same way as before. On the other hand

T[A]M
′
C = H1

c (Σp, gC,dA) has another complex structure I induced by the natural

complex structure of gC. We don’t want to define a complex polarization, but a real

one here. We use ∗ to decompose the cohomology into its (1, 0) and (0, 1) parts, i.e.

H1
c (Σp, gC,dA) = H(1,0)

c (Σp, gC,dA)⊕H(0,1)
c (Σp, gC,dA) (5.24)

This decomposition follows from usual theory of Riemann surfaces and it depends

on the choice of σ. One can take the space H(1,0)
c (Σp, gC,dA) as real Lagrangian

polarization. Such space at unitary (real) A is transversal to H1 (Σp, g,dA) being 0

the only real 1-form of type (1, 0). So the polarized sections of Lt are determined by

their value at M ′. So we can define H(t)
σ ≡ C∞(M ′,Lt). Such identification however

depends again on the σ ∈ T so we shall proceed to consider the infinite rank vector

bundle

C∞c (M ′C,Lt)× T −→ T . (5.25)

and its subbundle

C∞(M ′,Lt)× T −→ T . (5.26)

The first time these polarizations and bundle were considered was in [Wit91]. Wit-

ten, in the same work, proved with some infinite dimensional differential geometry

arguments that there is an projectively flat connection on (5.25) preserving polarized

sections. Such result was later proved in a finite dimensional differential geometry

setting in [AG14]. As in the compact case we can use the parallel transport defined

by this connection to identify different fibers (C∞(M ′,Lt), σ) together. We refer to

such connection as Hitchin–Witten connection, and we will construct it in genus 1

later.

5.1.4 Mapping Class Group Representations

The Mapping Class Group MCG(Σ) = Diff+(Σ)/Diff+
0 (Σ), acts naturally on

π1(Σ) by push froward. This induces an action by pull–backs on Hom(π1(Σ), G). In

particular we have a right action by pull-back of the mapping class group on M ′ and

M ′C. Similarly MCG(Σ) acts on the right of T (Σ) via pull backs.

The action on M ′ and M ′C can be lifted to an action on Lk and Lt respectively, as,

for every γ ∈ MCG,

Θt(γ
∗A, g ◦ γ) = Θt(A, g). (5.27)

Globally this produces an action of the mapping class group on the vector bundle

(5.23), so that γ will map

γ̃ : H(k)
σ −→ H(k)

γ∗σ.

In order to have representations of the mapping class group on H(k) we need to

parallel transport the sections in H(k)
γ∗σ back to H(k)

σ . And this is possible thanks to
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the Hitchin connection. Similar considerations can be done in relation to the bundle

(5.26). In the next Section we will look in details of this second situation for the case

of a genus 1 surface. We will produce explicit descriptions of the representation into

such scenario.

5.2 Genus 1

5.2.1 Moduli spaces

From now to the end of the section Σ is a fixed topological surface of genus 1

identified with the quotient R2/Z2. The fundamental group of Σ is well known to be

π1(Σ, x0) = Z× Z, (5.28)

We want to describe the following two spaces

M ≡ Hom (π1(Σ), SU(2)) /SU(2)

MC ≡ Hom+ (π1(Σ), SL(2, C)) /SL(2, C)

where the actions of the groups is by conjugation, and the + stays for semi-simple

representations. Let A and B be the two generators for π1(Σ) = Z×Z. Let [ρ] ∈M .

Up to conjugation we can suppose ρ(A) ∈ U(1). Since ρ(A)ρ(B) = ρ(B)ρ(A), if

ρ(A) 6= ±Id, it follows that ρ(B) ∈U(1) as well. If ρ(A) = ±Id, then the conjugation

action of SU(2) can be used to bring ρ(B) ∈ U(1). We can still conjugate by the

element R ∈SU(2) represented by the matrix

R =

(
0 −1

1 0

)
R−1

(
λ 0

0 λ−1

)
R =

(
λ−1 0

0 λ

)
. (5.29)

We have just showed that

M = (T× T) /S2 (5.30)

where S2 denotes the group of order 2, S2 = {R, Id} and T ≡ U(1). When we move

from M to MC the main ingredient of the analysis, the commutativity of π1(Σ),

remains and the discussion follows similarly. Let [η] ∈ MC. Up to conjugation η(A)

is either diagonal, or parabolic

η(A) =

(
λA 0

0 λ−1
A

)
or η(A) =

(
1 σA

0 1

)
.

In the first case, η(A)η(B) = η(B)η(A) implies that η(B) is diagonal as well. In the

second case we get η(B) to be in the same unipotent subgroup of η(A). This second

case produces non semi-simple representations so we won’t consider them. We have

the following identification

MC = (C∗ × C∗) /S2 (5.31)

where the action of S2 is as in (5.29).

Remark 5.2.1. There is a natural inclusion of M ⊂MC. Obviously T×T ⊂ C∗×C∗.
The action by conjugation of S2 has 4 fixed points on C∗×C∗, namely (1, 1), (1,−1),

(−1, 1) and (−1,−1), which are all unitary points, and is a double cover on the rest

which preserves unitarity.
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Let (x, y) ∈ R2 be local coordinates on Σ under the identification Σ = R2/Z2.

The gauge theoretic description of MC (and M) is as follows. Consider the space

WC of sl(2,C) valued connections on Σ, i.e.

WC 3 A = A1dx+A2dy, A1, A2 ∈ C∞(Σ, sl(2,C)).

Consider the subspace AC ⊆ WC of connections

A = 2πiuTdx+ 2πivTdy, u, v ∈ C, T ≡

(
1 0

0 −1

)
(5.32)

which are flat and constantly C–valued. Every such A ∈ AC has holonomies(
e2πiu 0

0 e−2πiu

)
,

(
e2πiv 0

0 e−2πiv

)
, (5.33)

which are representatives for elements of MC. Since every [ρ] ∈MC can be described

in this way, we have an identification of its double cover

AC/Z2 ' C∗ × C∗ (5.34)

In coordinates (u, v) the action of (λ1, λ2) ∈ Z2 is by translations,

(u, v) · (λ1, λ2) = (u+ λ1, v + λ2) (5.35)

while the action of S2 lifts to AC as

(u, v) ·R = (−u,−v). (5.36)

The same kind of description can be given for M by considering the quotient of the

space A

A 3 A = 2πiu′Tdx+ 2πiv′Tdy, u′, v′ ∈ R, T ≡

(
1 0

0 −1

)
(5.37)

by analogous actions as in (5.35) and (5.36).

The coordinates (u, v) on AC are complex, so if we want to treat it as a smooth

manifold we need to use also their complex conjugate. That means we look at both

A = 2πiuTdx+ 2πivTdy A = −2πiuTdx− 2πivTdy (5.38)

The Teichmüller space for Σ is identified with the upper half space [FM12]

H ≡ {σ ∈ C, such that Imσ > 0} . (5.39)

Let us briefly recall this identification. A rank 2 lattice Λ ⊂ C is an additive subgroup

isomorphic to Z2. We say that the lattice Λ is marked if it comes with an explicit

choice of isomorphism with Z2 or, equivalently, an ordered set of two generators.

The quotient space C/Λ is genus one surface with a complex structure induced by

the standard one on C. On the other hand every genus 1 surface Σ = R2/Z2 with

a complex structure can be endowed with a metric compatible with the complex

structure so that the covering R2 → Σ is metric. In particular this gives R2 a

complex structure, i.e. an isomorphism R2 ' C and we take as lattice Λ the group

of deck transformations. It can be shown that two marked lattices Λ and Λ′ induce

two isotopic complex structures if and only if they are related by a finite sequence
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of euclidean isometries or homotheties of R2. A way to choose a representative for

equivalence classes of marked lattices is to fix the first generator of the lattice to be

the number 1 ∈ C and constrains the second generator σ ∈ C to have Imσ > 0.

This way of associating complex structures can be expressed in the following way.

Consider the map

ψσ : R2 −→ C

(x, y) 7→ x+ σy,

the map descend to a map ψσ : R2/Z2 → C/Λσ where Λσ = SpanZ〈1, σ〉 ⊂ C. Then

the complex structure to Σ is obtained by pull-back via ψσ.

However for our purposes it is more convenient to use the following alternative map

to pull back complex structures

φσ : R2 −→ C

(x, y) 7→ x− σ−1y, (5.40)

that is, we are parameterizing complex structures with a biholomorphic copy of H,

obtained via the biholomorphism σ 7→ −σ−1.

In this way the complex coordinate w̃ = x − σ−1y is holomorphic on the surface,

as well any other complex rescaling. Indeed multiplying holomorphic coordinates by

complex numbers is equivalent by applying rotations and homotheties to the lattice

Λ−σ−1 , which produces isotopic complex structures.

For σ ∈ H, we let

w =
1

σ − σ
(y − σx)

be our choice of holomorphic coordinate on Σ, obtained as w = σ
σ−σ w̃. We have the

following relations

dx = dw + dw dy = (σdw + σdw) (5.41)

and an induced splitting of coordinates on AC

A = AwTdw +AwTdw, A = AwTdw +AwTdw, (5.42)

Aw ≡ 2πi(u+ σv), Aw ≡ 2πi(u+ σv), (5.43)

Aw ≡ −2πi(u+ σv), Aw ≡ −2πi(u+ σv), (5.44)

and vector fields

∂

∂Aw
=

1

2πi(σ − σ)

(
−σ ∂

∂u
+

∂

∂v

)
,

∂

∂Aw
=

1

2πi(σ − σ)

(
−σ ∂

∂u
+

∂

∂v

)
, (5.45)

∂

∂Aw
=

−1

2πi(σ − σ)

(
−σ ∂

∂u
+

∂

∂v

)
,

∂

∂Aw
=

−1

2πi(σ − σ)

(
−σ ∂

∂u
+

∂

∂v

)
. (5.46)

Writing u = u′+ iu′′ and v = v′+ iv′′, with u′, u′′, v′, v′′ ∈ R, we get another splitting

A = P + iQ (5.47)

= 2πi (u′dx+ v′dy)− 2π (u′′dx+ v′′dy) (5.48)

that shows that P and Q are unitary connections in A and we can combine the two

splittings to get

Aw = (Pw + iQw) Aw = (Pw + iQw) (5.49)
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Aw = −(Pw − iQw) Aw = −(Pw − iQw) (5.50)

and respective formulas for vector fields

∂

∂Aw
=

1

2

(
∂

∂Pw
− i ∂

∂Qw

)
∂

∂Aw
=

1

2

(
∂

∂Pw
− i ∂

∂Qw

)
(5.51)

∂

∂Aw
= −1

2

(
∂

∂Pw
+ i

∂

∂Qw

)
∂

∂Aw
= −1

2

(
∂

∂Pw
+ i

∂

∂Qw

)
(5.52)

(5.53)

where

Pw = 2πi(u′ + σv′) Pw = 2πi(u′ + σv′) (5.54)

Qw = 2πi(u′′ + σv′′) Qw = 2πi(u′′ + σv′′) (5.55)

Let t = k + is, and t = k − is, k ∈ R, s ∈ R be fixed from now on. The Atiyah-

Bott symplectic form, defined following (5.6), has the following explicit expressions

in coordinates

ωC = 4πdu ∧ dv (5.56)

=
1

π(σ − σ)
dAw ∧ dAw

=
1

π(σ − σ)
d(Pw + iQw) ∧ d(Pw + iQw)

ωt ≡
1

2
(tωC + tωC), (5.57)

while on M we have

ωk = 4πkdu′ ∧ dv′ (5.58)

5.2.2 Pre-Quantization

Consider the following three gauge transformations in C∞(Σ,SL(2,C))

gu(x, y) ≡ e2πiTx gv(x, y) ≡ e2πiTy gR(x, y) ≡ R, (5.59)

acting as follows on A(u, v) = 2πiuTdx+ 2πivTdy ∈ AC

Agu(u, v) = A(u+ 1, v) Agv (u, v) = A(u, v + 1) AgR = −A. (5.60)

We want to compute c(A, g) for the above g’s following (5.13). It is simple to see

that 〈θg̃ ∧ [θg̃ ∧ θg̃]〉 = 0 for all the three gauge transformations above.

We then have

c(A, gu) =

∫
Σ

〈g−1
u Agu ∧ g−1

u dgu〉

=

∫
Σ

〈A ∧ 2πiTdx〉

=
−1

8π2

∫
Σ

Tr((2πi)2vT 2)dy ∧ dx

= −v

c(A, gv) = u

c(A, gR) = 0
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from which we can define the following cocycles

Θt(A, gu) = e−2πi(kv′−sv′′) Θt(A, gv) = e2πi(ku′−su′′) Θt(A, gR) = 1. (5.61)

Let L̃ → AC be the trivial complex line bundle. Using the cocycles from (5.61) we

can lift the actions of Z2 and S2 to L̃

(u, v, ζ) · (1, 0) = (u+ 1, v, e−2πi(kv′−sv′′)ζ) (5.62)

(u, v, ζ) · (0, 1) = (u, v + 1, e+2πi(ku′−su′′)ζ) (5.63)

(u, v, ζ) ·R = (−u,−v, ζ). (5.64)

This action induces a line bundle Lt → MC. Following formula (5.18) define the

connection 1-form βC on Lt, given, for every Ã = 2πiT (ũdx+ ṽdy) ∈ TAMC, by

βC(Ã) = 2π

∫
Σ

〈A ∧ Ã〉 (5.65)

= − 1

4π

∫
Σ

Tr(A ∧ Ã) (5.66)

= − (2πi)2

4π

∫
Σ

2(uṽ − vũ)dx ∧ dy (5.67)

= 2π(uṽ − vũ) (5.68)

so that

βC = 2π(udv − vdu), (5.69)

dβC = ωC (5.70)

and the level t connection becomes

∇ ≡ d− iβt (5.71)

βt ≡
1

2
(tβC + t̃βC) (5.72)

F∇ = −iωt. (5.73)

The integral condition [ωt]
2π ∈ H2(MC,Z), reduces to require k ∈ Z. Then (L,∇) is

the Chern-Simons pre-quantum line bundle for (MC, ωt). The pre quantum Hilbert

space is given by the smooth sections

P(t) = C∞(MC,Lt) (5.74)

that are in correspondence to quasi-periodic functions ψ ∈ C∞(C2) such that

ψ(u+ 1, v) = e2πi(kv′−sv′′)ψ(u, v) (5.75)

ψ(u, v + 1) = e−2πi(ku′−su′′)ψ(u, v) (5.76)

ψ(−u,−v) = ψ(u, v) (5.77)

This is equivalently, and more conveniently, described as the space of S2 invariant

section of the line bundle L̃2t → C∗ × C∗, where L̃2t is the pull-back bundle of

Lt through the projection π : C∗ × C∗ → MC. It has first Chern class c1(L̃2t) =

[π∗ωt]/2π ∈ H2(C∗ × C∗,Z). For k = 1 the class c1(L̃2+2is) is the double of a

generator for H2(C∗ × C∗,Z). We write

P(t) = C∞(C∗ × C∗, L̃2t)S2 . (5.78)
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From now on, as in other part of this thesis, we use the following notation. For any

coordinate z we write

∇z = ∇ ∂
∂z

∂z =
∂

∂z
(5.79)

Lemma 57. The connection ∇ preserves P(t)

Proof.

∇v′ψ(u+ 1, v) = ∂v′ψ(u+ 1, v)− iβt [∂v′ ] (u+ 1, v)ψ(u+ 1, v)

= ∂v′ψ(u+ 1, v)− iβt [∂v′ ] (u, v)ψ(u+ 1, v)− 2πikψ(u+ 1, v)

= e2πi(kv′−sv′′) (∂v′ψ(u, v)− iβt [∂v′ ] (u, v)ψ(u, v))

+ 2πikψ(u+ 1, v)− 2πikψ(u+ 1, v)

= e2πi(kv′−sv′′)∇v′ψ(u, v)

∇v′′ψ(u+ 1, v) = ∂v′′ψ(u+ 1, v)− iβt [∂v′′ ] (u+ 1, v)ψ(u+ 1, v)

= ∂v′′ψ(u+ 1, v)− iβt [∂v′′ ] (u, v)ψ(u+ 1, v) + 2πisψ(u+ 1, v)

= e2πi(kv′−sv′′) (∂v′′ψ(u, v)− iβt [∂v′′ ] (u, v)ψ(u, v))

− 2πisψ(u+ 1, v) + 2πisψ(u+ 1, v)

= e2πi(kv′−sv′′)∇v′′ψ(u, v)

The others are similar.

A very close description gives the pre-quantum vector space for the level k, SU(2)

Chern–Simons theory, that is the quantization of (M,ωk), where ωk is k times the

Atiyah-Bott symplectic form ω = 4πdu′∧dv′. The pre–quantum space will be P(k) =

C∞(M, Lk) which can be described, after fixing u′ and v′ real local coordinates on

T× T as in (5.37), as the space of quasi periodic functions ψ ∈ C∞(R2) such that

ψ(u′ + 1, v′) = e2πikv′ψ(u′, v′)

ψ(u′, v′ + 1) = e−2πiku′ψ(u′, v′)

ψ(−u′,−v′) = ψ(u′, v′).

As before it is more convenient the description of P(k) as S2 invariant sections

P(k) = C∞(T× T, L̃2k)S2 (5.80)

where L̃2k it is the pull-back line bundle of Lk through π : T× T→M .

Actually every ψ ∈ P(t) defines some ψ′ ∈ P(k) when restricted to the unitary

connections through the inclusion M ⊆MC.

5.2.3 Hitchin–Witten Connection

In order to go from a pre-quantization to a quantization we choose the following

σ–dependent real polarization

Pσ = spanR〈
∂

∂Aw
,

∂

∂Aw
〉 (5.81)

That means that we are restricting to the Hilbert space

H(k)
σ = {ψ ∈ P(t) : ∇Awψ = ∇Awψ = 0} (5.82)
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Definition 28. An Hitchin-Witten Connection is a connection ∇ on the vector

bundle

P(t) ×H→ H,

such that ∇ preserves the subbundle

Ĥ(k) =
{(
H(k)
σ , σ

)
: σ ∈ H

}
⊂ P(t) ×H→ H. (5.83)

The definition for ∇ reduces to verify two equations

∇Aw∇ψ = 0 ∇Aw∇ψ = 0 (5.84)

whenever ∇Awψ = ∇Awψ = 0.

Suppose

∇ = d + Udσ + Ũdσ U , Ũ ∈ C∞
(
H,End(P(k))

)
(5.85)

Computing[
∂

∂Aw
,
∂

∂σ

]
=

1

σ − σ
∂

∂Aw

[
∂

∂Aw
,
∂

∂σ

]
=

1

σ − σ
∂

∂Aw
(5.86)[

∂

∂Aw
,
∂

∂σ

]
=

1

σ − σ
∂

∂Aw

[
∂

∂Aw
,
∂

∂σ

]
=

1

σ − σ
∂

∂Aw
(5.87)

equations (5.84) are equivalent to

∇AwU = − 1

σ − σ
∇Aw ∇Aw Ũ = 0 (5.88)

∇Aw Ũ = − 1

σ − σ
∇Aw ∇AwU = 0 (5.89)

Proposition 58. The two operators

U =
π

it
∇2
Aw Ũ =

π

it̃
∇2
Aw

(5.90)

satisfy equations (5.88 – 5.89).

Proof.

∇Aw∇2
Awψ = ∇2

Aw∇Awψ + 2 [∇Aw ,∇Aw ]∇Aw (5.91)

= −2iωt

(
∂

∂Aw
,
∂

∂Aw

)
∇Aw (5.92)

=
it

π(σ − σ)
∇Aw (5.93)

∇Aw∇2
Aw
ψ = ∇2

Aw
∇Awψ + 2

[
∇Aw ,∇Aw

]
∇Aw (5.94)

= −2iωt

(
∂

∂Aw
,
∂

∂Aw

)
∇Aw = 0 (5.95)

the other equations are analogous.

The conditions for ψ to be a polarized section can be rewritten as

∇Qwψ = −i∇Pwψ ∇Qwψ = i∇Pwψ (5.96)

The subspace

Tσ = {Qw = Qw = 0} ⊂ AC (5.97)
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is a transversal for this polarization and equations (5.96) determine ψ from its re-

striction to Tσ being the leafs contractible and Lt trivializable along the fibers.

We get an identification between the space H(k)
σ and the pre-quantum space of SU(2)

Chern-Simons Theory P(k). Indeed one can easily see see that Tσ = {u′′ = v′′ = 0}
and is therefore independent on σ and its quotient under the Z2 action coincides

with T× T.

The quantum space for the theory H(k) will be the one obtained by identification

of the different H(k)
σ . As we said this will be isomorphic to the SU(2) pre-quantum

space, i.e.

H(k) ' C∞
(
T× T, L̃2k

)S2
(5.98)

The inner product structure we put on it is the one induced by the following on S2

invariant sections

〈φ, ψ〉 =
1

2π

∫
T×T

φψω̃, p ∈ T× T, φ,ψ ∈ C∞(T× T, L̃2k) (5.99)

where ω̃ = π∗ω/2, π : T× T → M is the projection and ω is the Atiyah Bott form.

To get an actual Hilbert space one should consider the metric completion of H(k).

Recall the local expression for the pre-quantum connection restricted to M

∇ = d− 2πik(u′dv′ − v′du′) (5.100)

Renaming

z =
1

2πi
Pw = (u′ + σv′) z =

1

2πi
Pw = (u′ + σv′) (5.101)

the Hitchin-Witten connection has the following expression

∇ = d +
i

2π2t
∇2
zdσ +

i

2π2t
∇2
zdσ (5.102)

Proposition 59. Suppose s ∈ R, φ, ψ ∈ H(k) and 〈·,·〉 : H(k) × H(k) → C as in

(5.99). We have

d(〈φ,ψ〉) = 〈∇φ,ψ〉+ 〈φ,∇ψ〉

Proof. By integration by parts one shows

〈φ,∇zψ〉 = −〈∇zφ, ψ〉 〈φ,∇zψ〉 = −〈∇zφ, ψ〉. (5.103)

It follows that

〈φ,
i

2π2t
∇2
zψ〉 = 〈 −i

2π2t
∇2
zφ, ψ〉 (5.104)

Now we have

〈∇φ, ψ〉 = 〈dφ, ψ〉+ 〈 i

2π2t
∇2
zφ, ψ〉dσ + 〈 i

2π2t
∇2
zφ, ψ〉dσ (5.105)

= 〈dφ, ψ〉+ 〈φ,− i

2π2t
∇2
zψ〉dσ + 〈φ,− i

2π2t
∇2
zψ〉dσ (5.106)

and analogously

〈φ,∇ψ〉 = 〈φ, dψ〉+ 〈φ, i

2π2t
∇2
zψ〉dσ + 〈φ, i

2π2t
∇2
zψ〉dσ (5.107)

= 〈φ, dψ〉 − 〈φ,− i

2π2t
∇2
zψ〉dσ − 〈φ,−

i

2π2t
∇2
zψ〉dσ (5.108)

Summing up this two equations we get exactly

d(〈φ,ψ〉) = 〈∇φ,ψ〉+ 〈φ,∇ψ〉.
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Let us define a new operator

∆σ =
i

2π
(σ − σ)∇z∇z (5.109)

which is dependent on the complex number σ. We are going to establish some prop-

erty of the different differential operators we introduced, with the aim of computing

parallel sections for the Hitchin–Witten connection. The following basic relations

will be useful in the computations (deduced from equations (5.101) )

∂

∂z
=

1

σ − σ

(
−σ ∂

∂u′
+

∂

∂v′

)
∂

∂z
=

1

σ − σ

(
−σ ∂

∂u′
+

∂

∂v′

)

Lemma 60. On H(k) ×H

[∇v′ ,∇u′ ] = 4πik, (5.110)

[∇z,∇z] =
4πik

σ − σ
, (5.111)

[∂σ,∇z] = − [∂σ,∇z] =
−1

σ − σ
∇z, (5.112)

[∂σ,∇z] = − [∂σ,∇z] =
−1

σ − σ
∇z (5.113)

[∂σ, ∆σ] =
i

2π
∇2
z, (5.114)

[∂σ, ∆σ] = − i

2π
∇2
z, (5.115)[

∆σ,∇2
z

]
= 4k∇2

z, (5.116)[
∆σ,∇2

z

]
= −4k∇2

z (5.117)

[∂σ,∇u′ ] = [∂σ,∇v′ ] = [∂σ,∇u′ ] = [∂σ,∇v′ ] = 0 (5.118)

Proof.

[∇v′ ,∇u′ ] = −iωk (∂v′ , ∂u′)

= −4πikdu′ ∧ dv′ (∂v′ , ∂u′) = 4πik

[∇z,∇z] =
−1

(σ − σ)2
(−σ [∇u′ ,∇v′ ] + σ [∇u′ ,∇v′ ])

= − 1

(σ − σ)
[∇u′ ,∇v′ ] =

4πik

σ − σ

[∂σ,∇z] =

[
∂σ,

−σ
σ − σ

∇u′
]

+

[
∂σ,

1

σ − σ
∇v′
]

=
1

(σ − σ)2
(σ∇u′ −∇v′)

= − 1

(σ − σ)
∇z

[∂σ,∇z] =

[
∂σ,

−σ
σ − σ

∇u′
]

+

[
∂σ,

1

σ − σ
∇v′
]

= − σ

(σ − σ)2
∇u′ +

1

(σ − σ)2
∇v′

=
1

(σ − σ)
∇z
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[∂σ, ∆σ] =
i

2π
∇z∇z +

i

2π
(σ − σ) [∂σ,∇z∇z]

=
i

2π
∇z∇z +

i

2π
(σ − σ) ([∂σ,∇z]∇z +∇z [∂σ,∇z])

=
i

2π
∇z∇z +

i

2π
(σ − σ)

(
− 1

(σ − σ)
∇z∇z +

1

(σ − σ)
∇z∇z

)
=

1

2π
∇2
z[

∆σ,∇2
z

]
= i

σ − σ
2π

(
∇z
[
∇z,∇2

z

]
+
[
∇z,∇2

z

]
∇z
)

= i
σ − σ

2π
∇z (∇z [∇z,∇z] + [∇z,∇z]∇z)

= i
σ − σ

2π

(
−8πik

σ − σ

)
∇2
z

= 4k∇2
z

The missing equations are either specular to the one proved or completely trivial. We

remark that we used equation (C.10) to compute the second order commutators.

Proposition 61. The genus 1 Hitchin Witten connection ∇ is flat

Proof. We need to compute

F∇ = ∇∂σ∇∂σ
−∇∂σ

∇∂σ (5.119)

=
[
U , Ũ

]
+
[
∂σ, Ũ

]
− [∂σ,U ] (5.120)

Using

[∂σ,∇z] =
−1

σ − σ
∇z, [∂σ,∇z] =

1

σ − σ
∇z, [∇z,∇z] =

4πik

σ − σ
. (5.121)

we can compute [
∇2
z,∇2

z

]
= 2 [∇z,∇z] (∇z∇z +∇z∇z) (5.122)[

∂σ,∇2
z

]
=
−1

σ − σ
(∇z∇z +∇z∇z) (5.123)[

∂σ,∇2
z

]
=

1

σ − σ
(∇z∇z +∇z∇z) (5.124)

Putting everything together we get

F∇ =
−1

16π2tt̃

[
∇2
z,∇2

z

]
+

i

4πt̃

[
∂σ,∇2

z

]
− i

4πt

[
∂σ,∇2

z

]
(5.125)

=

(
−2ik + it+ it̃

4πtt̃(σ − σ)

)
(∇z∇z +∇z∇z) (5.126)

= 0 (5.127)

As noticed by Witten in [Wit91], Lemma 90 together with Lemma 60 gives us

the following conjugation rule

e−r∆σ ◦ d ◦ er∆σ = ∇ (5.128)

where r is chosen so that

e−4kr = −k − is
k + is

. (5.129)

In particular, equation (5.128) implies
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Proposition 62 ([Wit91]). For every smooth section C∞
(
T× T, L̃(2k)

)S2
indepen-

dent on the complex structure of M , the section

e−r∆σψ

of the vector bundle Ĥ(k) (defined in (5.83)) is parallel with respect to ∇.

This permits to define a parallel transport operator Pσ0, σ1
in the bundle Ĥ(k)

from the fiber over σ1 ∈ H to the one over σ0. We have

Pσ0,σ1
ψσ1

= e−r∆σ0 er∆σ1ψσ1 . (5.130)

An explicit expression is possible but we need to use the Weil-Gel’fand-Zak Trans-

form. Recall Proposition 2 and the transform W (2k) defined there. We need to use

the level 2k WGZ transform instead of level k because the line bundle over the torus

that we have is L̃2k and this has degree 2k.

In our setting we have the isomorphism

W (2k) : S(R× Z2k) −→ C∞(T× T, L̃2k)

Recall that H(k) = C∞
(
T× T, L̃2k

)S2
where S2 = {id,R} with R(s)(u′, v′) =

s(−u′,−v′). Let R̂(f) = f(−x, 2k − j), for f ∈ S(R× Z2k). We have

R̂(f)(x, j) = W
(2k) ◦R ◦W (2k)(f). (5.131)

Therefore there is a well defined action of S2 on S(R) ⊗ C2k, compatible with the

WGZ transform W (2k), so that we have an induced unitary isomorphism

W (2k) :
(
S(R)⊗ C(2k)

)S2
−→ H(k). (5.132)

Proof of Equation (5.131)

R ◦W (2k)(f)(u′, v′) = W (2k)(f)(−u′,−v′)

= e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

f
(
−u′ + m

2k
, l
)
e2πimv′e−2πilm/(2k)

= e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

f
(
−u′ − m

2k
, l
)
e−2πimv′e2πilm/(2k)

= e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

f
(
−u′ − m

2k
, 2k − l

)
e−2πimv′e−2πi(2k−l)m/(2k)

= W (2k) ◦ R̂(f)(u′, v′)

�

Let us define the following operator

Dσ : S(R)⊗ C2k −→ S(R)⊗ C2k

f(x, j) 7→ 1

σ − σ

(
σ

d

dx
+ 2πi2kx

)
f(x, j) (5.133)

Remark 5.2.2. The operators Dσ is Hermitian anti-adjoint to Dσ with respect to the

hermitian product (A.8).
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We can read the connection ∇ from equation (5.100) over S(R)⊗ C2k. Let

∇̂X = W
(2k) ◦ ∇X ◦W (2k)

for any X ∈ C∞(T× T, T (T× T))

Lemma 63. Let u′ and v′ be local coordinates on T×T, let σ ∈ H, and let z = u′+σv′

be an holomorphic coordinate on T× T as above. Let f ∈ S(A2k). We have

∇̂u′ f(x, j) =
d

dx
f(x, j) (5.134)

∇̂v′ f(x, j) = −2πi2kxf(x, j) (5.135)

∇̂zf(x, j) = Dσf(x, j) (5.136)

∇̂zf(x, j) = Dσf(x, j) (5.137)

∆̂σ = W
(2k) ◦∆σ ◦W (2k) =

i

2π
(σ − σ)DσDσ (5.138)

∇̂ = W
(2k) ◦∇ ◦W (2k) = d +

i

2πt
D2
σ +

i

4πt
D2
σ (5.139)

Proof.

∇u′W (2k)(f)(u′, v′) =

(
∂

∂u′
+ 2πikv′

)
W (2k)(f)(u′, v′)

= (−2πikv′) e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

f
(
u′ +

m

2k
, l
)
e−2πimv′e−2πilm/(2k)+

+ e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

df

du′

(
u′ +

m

2k
, l
)
e−2πimv′e−2πilm/(2k)+

+ 2πikv′W (2k)(f)(u′, v′)

= e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

df

du′

(
u′ +

m

2k
, l
)
e−2πimv′e−2πilm/(2k)

= W (2k)(f̃ ′)(u′, v′)

where f ′(x, n) = df
dx (x, n).

∇v′W (2k)(f)(u′, v′) =

(
∂

∂v′
− 2πiku′

)
W (2k)(f)(u′, v′)

= (−2πiku′ − 2πim) e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

f
(
u′ +

m

2k
, l
)
e−2πimv′e−2πilm/(2k)+

− 2πiku′W (2k)(f)(u′, v′)

= e−2πiku′v′
∑
m∈Z

2k−1∑
l=0

(
−2πi2k

(
u′ +

m

2k

)
f
(
u′ +

m

2k
, l
))

e−2πimv′e−2πilm/(2k)

= W (2k)(̃f)(u′, v′)

where f̃(x, l) = −2πi2kxf(x, l). The following two are combinations of the two above

together with the definition of z. For ∆̂σ we have

∆̂σ =
i

2π
(σ − σ) ∇̂z∇̂z =

i

2π
(σ − σ)DσDσ

The last one for ∇̂ follows in the same way.
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From the expression for ∇̂ and ∆̂σ we can see that their action on S(R)⊗C2k is

the identity in the second factor of the tensor product. In the next Proposition we

consider the operator ∆σ as an operator on S(R).

Proposition 64. We have the following factorization

∆̂σ =
i

2π

σσ

σ − σ
ÂσÂσ (5.140)

where

Âσ =

(
d

dx
+

1

σ
2πi2kx

)
. (5.141)[

Âσ, Âσ

]
= 2πi2k

σ − σ
σσ

(5.142)

The set

Bσ =
{
Ânσv(x, σ) ∈ S(R) : n ∈ Z≥0, v(x, σ) := e−2πikx2/σ

}
is a complete set of eigenvectors for ∆̂σ with corresponding eigenvalues

∆̂σÂ
n
σv(x, σ) = 2knÂnσv(x, σ).

Remark 5.2.3. Define

α ≡ σ − σ
σσ

2πik > 0 β ≡ 2πik

σ
(5.143)

Then, in the notation of Appendix B

vn(x, σ) = ψn,β = Hn,α(x)v(x, σ). (5.144)

In particular this means that the vn’s, for σ fixed, are an orthogonal basis for L2(R)

in the sense of Hilbert basis. See Appendix B.

Proof of Proposition 64. Equations (5.140), (5.141) and (5.142) follow from equa-

tion (5.138) and definition (5.133). We can immediately see that

Âσϕ(x) = 0 ⇐⇒ ϕ′(x) = −2πi2k

σ
xϕ(x)

⇐⇒ ϕ(x) = λe−2πikx2/σ, for any λ ∈ C

So we have shown the first eigenfuction

∆̂σv(x, σ) = 0,

Now

ÂσÂσÂ
n
σv(x, σ) = Âσ

(
Ân−1
σ Âσ +

[
Âσ, Ân−1

σ

])
Âσv(x, σ)

= Âσ

(
Ân−1
σ Âσ − (n− 1)

[
Âσ, Âσ

]
Ân−2
σ

)
Âσv(x, σ)

=
(
ÂnσÂσÂσ − (n− 1)

[
Âσ, Âσ

]
Ânσ

)
v(x, σ)

=
(
ÂnσÂσÂσ + Ânσ

[
Âσ, Âσ

]
− (n− 1)

[
Âσ, Âσ

]
Ânσ

)
v(x, σ)

=
(
Ânσ

[
Âσ, Âσ

]
− (n− 1)

[
Âσ, Âσ

]
Ânσ

)
v(x, σ)

=
[
Âσ, Âσ

]
(−1− (n− 1)) Ânσv(x, σ)

= −2πi2k
σ − σ
σσ

nÂnσv(x, σ)
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For computational reasons it is convenient to change the parametrization of the

parameter t in an analogous way as we did in Chapters 3 and 4. Choose b ∈ C such

that |b| = 1, Re(b) > 0 and

is = k
1− b2

1 + b2
, (5.145)

then, from (5.129), we have (after choosing
√
−1 = i)

e−4kr = −b2 e−2kr = ib (5.146)

From Proposition 64 we see that ∆σ = 2kNσ where Nσ has spectrum equal to Z≥0.

So, its exponential can be written as

e−r∆σ = e−2krNσ = (ib)Nσ . (5.147)

Finding an explicit expression for e−r∆̂ψ = f can be solved trying to compute a

kernel kσ,b as follows

f(x, σ,b) =

∫
R
kσ,b(x, y)ψ(y)dy. (5.148)

Having an Hilbert bases for L2(R) diagonalizing ∆σ we can use the decomposition

of the identity (B.9) to rewrite the kernel as

kσ,b(x, y) =
∑
n≥0

(ib)n

〈vn, vn〉
vn(x, σ)vn(y, σ) (5.149)

Since Re(−b2) = 1 − 2(Re b)2 < 1, we can apply Mehler Formula (B.5) to get the

following explicit kernel

Lemma 65. For ib = e−2kr we have

e−r∆σψ(x) =

√
α

π

1√
1 + b2

∫
R

exp

(
α

2ibxy + b2(x2 + y2)

1 + b2

)
v(x, σ)v(y, σ)ψ(y)dy

(5.150)

where

α =
σ − σ
σσ

2πik, v(x, σ) = e−2πikx2/σ.

Proof. This is just a direct application of Mehler formula (B.5) to the orthonormal

decomposition (5.149) using notation from Remark 5.2.3.

5.2.4 Mapping Class Group Action

The Mapping Class Group Γ ≡ MCG(Σ) of a genus one surface is isomorphic

to SL(2,Z). We briefly recall the identification, see [FM12] for a more detailed

description. In genus 1 the first homology group H1(Σ,Z) is ismorphic to the π1(Σ),

so given a diffeomorphism φ ∈ Diff+ its isotopy class [φ] ∈ Γ acts on H1(Σ,Z) via the

induced morphism φ∗ and this action of Γ is well defined and faithfull, meaning that

φ∗ = ψ∗ if and only if [φ] = [ψ]. The fact that H1(Σ,Z) ' Z2 gives that Γ ≤ GL(2,Z).

The determinant on GL(2,Z) is either plus or minus 1, and the hypothesis on the

diffeomorphism φ to be orientation preserving restrict the mapping class group to

act as SL(2,Z) on the homology. The precise isomorphism SL(2,Z) ' Γ depends on
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the precise identification H1(Σ,Z) ' Z2. In the following we will always confuse the

two isomorphic groups π1(Σ) ' H1(Σ,Z). Let us consider the following generators

of Γ

S =

(
0 −1

1 0

)
T =

(
1 1

0 1

)
,

which satisfy the full set of relations

S2 = (ST )3 S4 = id,

and act on a fixed basis {A,B} of H1(Σ,Z) ' Z2. Under the identification Σ '
R2/H1(Σ,Z) we can find representatives for S and T in Diff+(Σ) (which we will call

S and T again) acting as follows on coordinates (x, y) ∈ R2.

S(x, y) = (−y, x) T (x, y) = (x+ y, y). (5.151)

The action of S and T on A can also be computed in coordinates (u′, v′) from the

action in homology. The representation ρ ∈ Hom(π1(Σ),SU(2)) is determined by its

holonomies, that is by its values ρ(A) and ρ(B). So

S∗ρ(A) = ρ(S(A)) = ρ(B), S∗ρ(B) = ρ(S(B)) = ρ(−A) (5.152)

T ∗ρ(A) = ρ(T (A)) = ρ(A) T ∗ρ(B) = ρ(T (B)) = ρ(A) + ρ(B). (5.153)

Up to conjugation we can parametrize ρ(A) = e2πiTu′ and ρ(B) = e2πiTv′ , so the

action on (u′, v′) coordinates for A is as follows

S∗(u′, v′) = (v′,−u′), T ∗(u′, v′) = (u′, v′ + u′). (5.154)

The action of γ ∈ Γ lifts trivially to the trivial line bundle L̃ → A,

γ∗(A, ζ) = (γ∗A, ζ).

Let us verify equation (5.27) for the gauge transformation gu′ (recall its definition

from (5.59)).

Θk(S∗A(u′, v′), gu′ ◦ S) = Θk(A(v′,−u′), g−1
v′ )

= e−2πikv′ = Θk(A(u′, v′), gu′)

Θk(T ∗A(u′, v′), gu′ ◦ T ) = Θk(A(u′, u′ + v′), gu′ ◦ gv′)

= Θk(A(u′ + 1, u′ + v′), gv′)Θk(A(u′, u′ + v′), gu′)

= e2πik(u′+1)e−2πik(u′+v′)

= e−2πikv′ = Θk(A(u′, v′), gu′).

The verification for gv′ is similar. This permits to descend the action of Γ from L̃ to

Lk →M and then get the following action

γ ∈ Γ maps to γ̃ : H(k) → H(k). (5.155)

This is not sufficient to define a complex quantum representation of Γ, indeed an

identification of the SL(2,C) quantum Hilbert space with H(k) depends on a choice

of complex structure σ. Such a choice is not invariant under the action of Γ, indeed

γ ∈ Γ acts on H via Möbius transformations. Nevertheless we can compute S̃ and T̃

as follows

S̃ψ(u′, v′) = ψ(v′,−u′) T̃ψ(u′, v′) = ψ(u′, v′ + u′). (5.156)
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We remark that (S̃ψ) and T̃ψ are sections of the line bundle L̃2k → T2 (recall the

description on equation (5.80)) and satisfy[
R, S̃

]
=
[
R, T̃

]
= 0

Lemma 66.

(S̃T̃ )3 = S̃2 S̃4 = id .

A straightforward computation will verify these two formulas. We call this ac-

tion the pre-Quantum representation ρk of Γ, and it is obtained trivially identi-

fying all the spaces H(k)
σ with C∞(M,Lk). What we are seeking, however, are

the quantum representations ηt which arise when we take into account the full ac-

tion of Γ on the bundle H(k) × H composed with Hitchin-Witten parallel transport

Pσ0,σ1
:
(
H(k), σ1

)
→
(
H(k), σ0

)
. That is we first consider the pre-quantum action

ρk(φ) = φ̃ :
(
H(k), σ

)
→
(
H(k), φ∗σ

)
(5.157)

and then compose it with the parallel transport, to get a representation on
(
H(k), σ

)
ηt(φ) ≡ Pσ,φ∗σ ◦ ρk(φ) :

(
H(k), σ

)
→
(
H(k), σ

)
(5.158)

Let us describe the action of γ ∈ Γ on H(k)×H. In the first factor γ acts on the left

as described in (5.156). In the half plane H, γ acts on the left by pull-back via γ−1.

Recall the map φσ from (5.40), which defines the complex structure parametrized by

σ on Σ. Then the complex structure γ∗σ is defined as the one such that φγ∗σ and

φσ ◦ γ−1 defines the same complex structures. We recall that this is the case if the

two maps are proportional by a complex number. We can compute

φσ ◦ S−1(x, y) = φσ(y,−x)

= y + σ−1x

= σ−1(x+ σy) = σ−1φ−σ−1(x, y)

φσ ◦ T−1(x, y) = φσ(x− y, y)

= x− y − σ−1y

= x− (
1 + σ

σ
)y = φ σ

1+σ
(x, y).

Finally we can write

S∗σ = − 1

σ
T∗σ =

σ

σ + 1
. (5.159)

5.2.5 pre-Quantum Representations

Before we study the quantum representations ηt let us concentrate more on the

pre-quantum action (5.155). We define the following auxiliary operators on S(R)⊗
C2k

F2k(f)(x, j) =
1√
2k

2k−1∑
l=0

fl(x)e2πilj/2k G2k(f)(x, j) = eπij
2/2kf(x, j) (5.160)

F2k(f)(x, j) =

∫
R
fj(y)e4πikxy G2k(f)(x, j) = e2πikx2

(f)(x, j). (5.161)
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Let us discuss the S2 action on S(R)⊗S(Z2k) in more details. Consider the following

elements of S(Z2k)

ej := (δj + δ2k−j) j = 0, . . . , k (5.162)

ẽj := (δj − δ2k−j) j = 1, . . . , k − 1 (5.163)

satisfying

ej(2k − l) = ej(l) ẽj(2k − l) = −ẽj(l). (5.164)

We have the following decomposition

S(Z2k) = Ck+1 ⊕ C̃k−1 (5.165)

Ck+1 = span0≤j≤k{ej} C̃k−1 = span0<j<k{ẽj} (5.166)

Consider also the decomposition of S(R) = Seven(R) ⊕ Sodd(R) into even and odd

functions. We then have(
S(R)⊗ C2k

)S2
= (Seven(R)⊗ Ck+1)⊕

(
Sodd(R)⊗ C̃k−1

)
(5.167)

We will work out the expression of the action (5.156) on
(
S(R)⊗ C(2k)

)S2
, using the

WGZ transform. Define

ρ̂k(S) = (W (2k) ◦ F2k)−1 ◦ S̃ ◦ (W (2k) ◦ F2k) (5.168)

ρ̂k(T ) = (W (2k) ◦ F2k)−1 ◦ T̃ ◦ (W (2k) ◦ F2k) (5.169)

The extra conjugation by the discrete Fourier transform F2k is a technicality that

will simplify the exposition, as we will see soon. We remark here that
[
∇̂,F2k

]
=[

∆̂σ,F2k

]
= 0, so this extra conjugation do not interfere with the parallel transport.

Moreover we remark that
[
F2k, R̂

]
= 0.

In this subsection we want to prove the following result.

Theorem 67 (pre-Quantum Representations). The pre-Quantum representation ρ̂k

splits into the direct sum of two representations, induced by the decomposition (5.167)

ρ̂k = (ρ̂′k,0 ⊗ ρ̂′′k,0)⊕ (ρ̂′k,1 ⊗ ρ̂′′k,1)

where

ρ̂′k,0(S)(f)(x) = −i
√

2k

∫
R
f(y) cos(4πkxy)dy ρ̂′k(T )(f)(x) = eπi/4e−2πikx2

f(x),

ρ̂′k,1(S)(f)(x) =
√

2k

∫
R
f(y) sin(4πkxy)dy ρ̂′k(T )(f)(x) = eπi/4e−2πikx2

f(x),

ρ̂′′k,0(S)(ej) = i

√
2

k

k∑
p=0

cos
πpj

k
ep ρ̂′′k,0(T )(ej) = e−πi/4e

πi
2k j

2

ej ,

ρ̂′′k,1(S)(ẽj) =

√
2

k

k−1∑
p=1

sin
πpj

k
ẽp ρ̂′′k,1(T )(ẽj) = e−πi/4e

πi
2k j

2

ẽj .

Remark 5.2.4. Consider ρ̂′k = ρ̂′k,0 ⊕ 1ρ̂′k,1. Define the operator

Oaf(x) = f(ax), for any a ∈ R>0, and f ∈ S(R),
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For every γ ∈ Γ we have

ρ̂′k(γ) = O√2k ◦ ρ̂
′
1(γ) ◦ O 1√

2k
(5.170)

The representation ρ̂′′k,1, up to some phase, is the same representation computed for

quantum SU(2) Chern-Simons theory at level k in [Wei91], using a real polariza-

tion. In the work [Jef92] the same representation (with the same phases of ours)

are computed with a level shift of 2, i.e. our level k + 2 representations correspond

to the one for level r in [Jef92]. This level shift agrees with the different nature of

the quantization in genus 1 for the complex and the unitary theories. As noted in

[ADPW91] the level shift is needed in the unitary theory in order to make techniques

valid in genus 1 generalize in higher genus. In the complex theory such tweak is not

needed.

Let

Ŝ = W
(2k) ◦ S̃ ◦W (2k) and T̂ = W

(2k) ◦ T̃ ◦W (2k) (5.171)

we can compute the explicit actions as

Proposition 68.

Ŝ(f)(x, j) =
√

2k F−1
2k ◦ F2k(f)(x, j), (5.172)

T̂ (f)(x, j) = eπi/4G−1
2k ◦ G

−1
2k ◦ F2k ◦ G−1

2k (f)(x, j). (5.173)

Proof. First we compute that

S̃ ◦W (2k)(f)(x, y) = W (2k)(f)(−y, x)

= e2πikxy
2k−1∑
r=0

∑
m∈Z

f
(
y +

m

2k

)
e2πimxe−2πimr2k

hence we have that

W
(2k) ◦ S̃ ◦W (2k)(f)(u, j) =

=
1√
2k

2k−1∑
l=0

e2πi lj2k

∫ 1

0

(
S̃ ◦W (2k)

)
(f)(u− l

2k
, v)e2πik(u+ l

k )vdv

=
1

2k

2k−1∑
l, r=0

∑
m∈Z

e2πi lj2k

∫ 1

0

e2πik(u− l
2k )vf

(
v +

m

2k
, r
)
e2πik(u+ l

2k )vdv

× e2πim(u− l
2k )e−2πimr2k

=
1

2k

2k−1∑
p, r=0

∑
q∈Z

∫ 1

0

e2πikuvf
(
v + q +

p

2k
, r
)
e2πikuvdv e2πi(2kq+p)u

× e−2πi pr2k

2k−1∑
l=0

e2πi
l(j−p)

2k (m = 2kq + p, 0 ≤ p < 2k)

=

2k−1∑
r=0

e−2πi jr2k
∑
q∈Z

∫ 1

0

e2πi2ku(v+q+ j
2k )f

(
v + q +

j

2k
, r

)
dv

=

2k−1∑
r=0

e−2πi jr2k
∑
q∈Z

∫ q+ j
2k+1

q+ j
2k

f (v, r) e2πi2kuvdv
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=

2k−1∑
r=0

e−2πi jr2k

∫ +∞

−∞
f (v, r) e2πi2kuvdv.

For the T̂ operator we get that

T̃ ◦W (2k)(f)(x, y) = W (2k)(f)(x, y + x)

= e−2πik(x+y)x
2k−1∑
r=0

∑
m∈Z

f
(
x+

m

2k

)
e−2πim(x+y)e−2πimr2k

so we have that

W
(2k) ◦ T̃ ◦W (2k)(f)(u, j) =

=
1√
2k

2k−1∑
l=0

e2πi lj2k

∫ 1

0

(
T̃ ◦W (2k)

)
(f)

(
u− l

2k
, v

)
e2πik(u+ l

k )vdv

=
1

2k

2k−1∑
r, l=0

∑
m∈Z

e2πi lj2k

∫ 1

0

e−2πik(u− l
2k )(u− l

2k+v)f

(
u− l

2k
+
m

2k
, r

)
× e−2πim(v+u− l

2k )e−2πimr2k e2πik(u+ l
2k )vdv

=
1

2k

2k−1∑
r, l=0

∑
m∈Z

e2πi lj2k e−2πik(u− l
2k )(u− l

2k )f

(
u− l

2k
+
m

2k
, r

)

× e−2πim(u− l
2k )e−2πimr2k

∫ 1

0

e2πik(2 l
2k−2 m2k )vdv

=
1

2k

2k−1∑
r, l=0

∑
m∈Z

e2πi lj2k e−2πik(u− l
2k )

2

f

(
u− l

2k
+
m

2k
, r

)
× e−2πim(u− l

2k )e−2πimr2k δ(l −m)

=
1

2k

2k−1∑
r, l=0

e2πi lj2k e−2πik(u− l
2k )

2

f (u, r) e−2πil(u− l
2k )e−2πi lr2k

=
1

2k
e−2πiku2

2k−1∑
r, l=0

eπi
l2

2k e2πi lj2k e−2πi lr2k f (u, r)

=
eπi/4

2k
e−2πiku2

2k−1∑
r=0

e−πi(j−r)
2/2kf (u, r) (see Prop. 92)

=
eπi/4

2k
e−2πiku2

e−πij
2/2k

2k−1∑
r=0

e2πijr/2ke−πir
2/2kf (u, r) .

Lemma 69. It is simple to use the finite convolution theorem to see that

ζ2k(S)(x, j) ≡ F−1
2k ◦ Ŝ ◦ F2k(f)(x, j) =

√
2k F−1

2k ◦ F2k(f)(x, j)

ζ2k(T )(x, j) ≡ F−1
2k ◦ T̂ ◦ F2k(f)(x, j) = G−1

2k ◦ G2k(f)(x, j)

Proof. First, we noticed that

G−1
2k ◦ F2k ◦ G−1

2k (x)(j) = e−
πij2

2k

2k−1∑
p=0

e−
πip2

2k x(p) e2πi pj2k

=

2k−1∑
p=0

e−πi
(p−j)2

2k x(p)
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= (g2k ∗ x)(j)

where g2k(j) ≡ e−πi
j2

2k and ∗ is the finite convolution (y∗x)(j) =
∑2k−1
p=0 y(p− j)x(p).

By the convolution theorem

F2k(x · y) = F2k(x) ∗ F2k(y), (5.174)

where (x · y)(j) ≡ x(j)y(j). So we can write

F−1
2k ◦ G−1

2k ◦ F2k ◦ G−1
2k ◦ F2k(x)(j) = F−1

2k (g2k ∗ F2k(x)) (j)

= F−1
2k (g2k) · x(j)

We then evaluate the Gauss sum

F−1
2k (g2k)(j) =

1√
2k

2k−1∑
p=0

e−πi
p2

2k e−2πi pj2k

= e−πi/4eπi
j2

2k

Noticing that [G2k, F2k] = [G2k, G2k] = 0 we have showed that

ζ2k(T ) ≡ F−1
2k ◦ T̂ ◦ F2k(f)(x, j)

= eπi/4 F−1
2k ◦ G−1

2k ◦ G
−1
2k ◦ F2k ◦ G−1

2k ◦ F2k(f)(x, j)

= eπi/4 G−1
2k

(
F−1

2k (g2k) · f
)

(x, j)

= G−1
2k ◦ G2kf(x, j)

Computations for ζ2k(S) are trivial, indeed

ζ2k(S)(x, j) ≡ F−1
2k ◦ Ŝ ◦ F2k(f)(x, j)

=
√

2k F−1
2k ◦ F−1

2k ◦ F2k ◦ F2k(f)(x, j)

=
√

2k F−1
2k ◦ F2k(f)(x, j)

as [F2k, F2k] = 0.

Proposition 70. The operators ζ2k(S) and ζ2k(T ) have a tensor product decompo-

sition on S(R)⊗ C2k as

ζ2k(S) = ζ2k(S)′ ⊗ ζ2k(S)′′ ≡
√

2kF2k ⊗ F−1
2k (5.175)

ζ2k(T ) = ζ2k(T )′ ⊗ ζ2k(T )′′ ≡ G−1
2k ⊗ G2k. (5.176)

The following two operators generates a representation of SL(2,Z) on C2k.

ζ2k(S)′′ = iF−1
2k ζ2k(T )′′ = e−

πi
4 G2k (5.177)

while the following two generates a representation of SL(2,Z) on S(R)

ζ2k(S)′ = −i
√

2kF2k ζ2k(T )′ = e
πi
4 G−1

2k . (5.178)

Proof. Let δj ∈ C2k be the j-th unit vector, that is δj(l) = δj,l where δj,l is the

Kronecker delta mod 2k.

iF−1
2k (δj)(l) =

i√
2k
e−2πi lj2k
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iF−1
2k ◦ iF

−1
2k (δj)(l) = − 1

2k

2k−1∑
p=0

e−πi
pl
2k e−2πi pj2k

= −δj(−l)(
iF−1

2k

)4
(δj)(l) = δj(l)

iF−1
2k ◦ e

−πi/4G2k(δj)(l) =
eπi/4√

2k

2k−1∑
p=0

eπip
2/2ke−2πipl/2kδj(p)

=
eπi/4√

2k
eπij

2/2ke−2πijl/2k

(
iF−1

2k ◦ e
−πi/4G2k

)2

(δj)(l) =
eπi/2√

2k

2k−1∑
p=0

eπip
2/2ke−2πipl/2kF−1

2k ◦ G2k(δj)(p)

=
eπi/2

2k

2k−1∑
p=0

eπip
2/2ke−2πipl/2keπij

2/2ke−2πijp/2k

=
eπi/2

2k
eπij

2/2k
2k−1∑
p=0

e
πip
2k (p−2(l+j))

=
eπi/2√

2k
eπij

2/2ke
πi
8k (2k−4(l+j)2)

=
e3πi/4

√
2k

e−πil
2/2ke−2πijl/2k

(
iF−1

2k ◦ e
πi/4G2k

)3

(δj)(l) =
e3πi/4

√
2k

2k−1∑
p=0

eπip
2/2ke−2πipl/2k

(
F−1

2k ◦ G2k

)2
(δj)(p)

=
e4πi/4

2k

2k−1∑
p=0

eπip
2/2ke−πip

2/2ke−2πipl/2ke−2πipj/2k

= −δj(−l)

For F2k and G2k we will use the Bra-Ket notation to compute their kernels see

Appendix A.1. We see immediately that

〈x|F2k|y〉 = e4πikxy 〈x|G−1
2k |y〉 = e−2πikx2

δ(x− y) (5.179)

We can therefore compute

〈x|F2
2k|y〉 =

∫
R
〈x|F2k|z〉〈z|F2k|y〉dz

=

∫
R
e4πikz(x+y)dz =

1

2k
δ(x+ y)

〈x|F2kG−1
2k |y〉 =

∫
R
〈x|F2k|z〉〈z|G−1

2k |y〉dz

= e4πikxye−2πiky2

〈x|
(
F2kG−1

2k

)2 |y〉 =

∫
R
〈x|F2kG−1

2k |z〉〈z|F2kG−1
2k |y〉dz

=

∫
R
e4πikz(x+y)e−2πikz2dze−2πiky2

=
1√
2ki

e2πikx2

e4πikxy
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〈x|
(
F2kG−1

2k

)3 |y〉 =

∫
R
〈x|F2kG−1

2k |z〉〈z|
(
F2kG−1

2k

)2 |y〉dz
=

1√
2ik

∫
R
e4πikz(x+y)dz

= e−πi/4(2k)−
3
2 δ(x+ y)

Recall the following basis elements of C2k

ej := (δj + δ2k−j) j = 0, . . . , k (5.180)

ẽj := (δj − δ2k−j) j = 1, . . . , k − 1 (5.181)

They satisfy

〈ej , el〉 = δj, l, 〈ẽj , ẽl〉 = δj, l, (5.182)

〈ẽj , el〉 = 〈ej , ẽl〉 = 0, (5.183)

where

〈x, y〉 =
1

2

2k−1∑
p=0

xpyp x, y ∈ C2k. (5.184)

Indeed

〈ẽj , ẽl〉 =
1

2

2k−1∑
p=0

(δj(p)− δ2k−j(p)) (δl(p)− δ2k−l(p))

=
1

2
(δj,l + δ2k−j,2k−l − δj,2k−l − δ2k−j,l)

= δj,l being 1 ≤ j, l ≤ k − 1

〈ej , ẽl〉 =
1

2

2k−1∑
p=0

(δj(p) + δ2k−j(p)) (δl(p)− δ2k−l(p))

=
1

2

2k−1∑
p=0

(δl(p)δj(p) + δl(p)δ2k−j(p)− δ2k−l(p)δj(p)− δ2k−l(p)δ2k−j(p))

=
1

2
(δj,l − δ2k−j,2k−l + δ2k−j,l − δj,2k−l) = 0

Recall also the induced splitting

C2k = Ck+1 ⊕ C̃k−1 (5.185)

Ck+1 = span0≤j≤k{ej} C̃k−1 = span0<j<k{ẽj} (5.186)

We can compute

Lemma 71.

〈ej ,F2kel〉 =
2√
2k

cos
πlj

k
〈ẽj ,F2kẽl〉 =

2i√
2k

sin
πlj

k
(5.187)

〈ej ,G2kel〉 = e
πi
2k j

2

δj, l 〈ẽj ,G2kẽl〉 = e
πi
2k j

2

δj, l (5.188)

〈ej ,G2kẽl〉 = 〈ej ,F2ẽl〉 = 0. (5.189)
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Proof.

〈ẽl, F2kẽl〉 =
1

2
√

2k

2k−1∑
p=0

ẽl(p)

2k−1∑
q=0

ẽj(q)e
2πi pq2k

=
1

2
√

2k

2k−1∑
q, p=0

(δl(p)− δ2k−l(p)) (δj(q)− δ2k−j(q)) e2πi pq2k

=
1

2
√

2k

2k−1∑
q, p=0

(δl(p)δj(q) + δ2k−l(p)δ2k−j(q)− δl(p)δ2k−j(q)− δ2k−l(p)δj(q)) e2πi pq2k

=
1√
2k

(
e2πi lj2k − e−2πi lj2k

)
=

2i√
2k

sinπlj/k

〈ẽl, G2kẽj〉 =
1

2

2k−1∑
p=0

ẽl(p)e
πip2

2k ẽj(p)

=
1

2

2k−1∑
p=0

(δl(p)− δ2k−l(p)) e
πip2

2k (δj(p)− δ2k−j(p))

=
1

2
e
πij2

2k (δl,j + δ2k−l,2k−j)−
1

2
e
πij2

2k (δl,2k−j + δ2k−l,j)

= e
πij2

2k δj,l being 1 ≤ j, l ≤ k − 1

〈ẽl,F2kej〉 =
1

2
√

2k

2k−1∑
p=0

ẽl(p)

2k−1∑
q=0

ej(q)e
2πi pq2k

=
1

2
√

2k

2k−1∑
q, p=0

(δl(p)− δ2k−l(p)) (δj(q) + δ2k−j(q)) e
2πi pq2k

=
1

2
√

2k

2k−1∑
q, p=0

(δl(p)δj(q) + δl(p)δ2k−j(q)− δ2k−l(p)δj(q)− δ2k−l(p)δ2k−j(q)) e2πi pq2k

=
1

2
√

2k

(
e2πi lj2k + e−2πi lj2k − e−2πi lj2k − e2πi lj2k

)
= 0.

The remaining are similar to the above.

Proof of Theorem 67 Lemma 71 together with Proposition 70 provides a proof of

Theorem 67. Indeed we have all the representations explicated over S(R)⊗C(2k) as

we called it ζ2k and we showed its compatibility with the tensor product in Proposi-

tion 70. All of the operators involved preserves odd and even decomposition of S(R),

in particular the Fourier transform decomposes into Cosine and Sine transform. Sim-

ilarly Lemma 71 gives the decomposition of the finite operators into invariant and

anti-invariant parts. We can reconstruct ρ̂k as follows

ρ̂′′k(S) ≡ ζ2k(S)′′ ρ̂′′k(T ) ≡ ζ2k(T )′′

ρ̂′k(S) ≡ ζ2k(S)′ ρ̂′k(T ) ≡ ζ2k(T )′

then the restriction to even and respectively odd functions makes the decompositions

ρ̂′k = ρ̂′k,0 ⊕ ρ̂′k,1 ρ̂′′k = ρ̂′′k,0 ⊕ ρ̂′′k,1 (5.190)

�
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5.2.6 Quantum Representations

Given γ ∈ Γ a its pre-quantum action on H(k) was defined in (5.156), however

when we look at the action on the whole bundle H(k) × H → H, γ acts on H as

described in (5.159). We will then need to compose γ̃ with the parallel transport

Pσ,γ∗σ of the pre-quantum action with the Hitchin-Witten connection from γ∗σ back

to σ. By the results in Proposition 62 we have

Pσ0,σ1
ψσ1

= e−r∆σ0 er∆σ1ψσ1
. (5.191)

Theorem 72. The operators

ηt(S) = e−r∆σ0 ◦ er∆S∗σ0 ◦ S̃ ηt(T ) = e−r∆σ0 ◦ er∆T∗σ0 ◦ T̃

generates a representation of Γ, that we call quantum representation.

Actually, as we did for the pre-quantum representations ρk, we will study the

WGZ–conjugated representations

η̂t(S) = (W (2k) ◦ F2k)−1 ◦ ηt(S) ◦ (W (2k) ◦ F2k) (5.192)

η̂t(T ) = (W (2k) ◦ F2k)−1 ◦ ηt(T ) ◦ (W (2k) ◦ F2k). (5.193)

The main theorem for this subsection

Theorem 73 (Quantum Representations). Let b ∈ C such that Re(b) > 0, and

t = 2k
1+b2 . The Quantum representation η̂t splits into the direct sum of two represen-

tations, induced by the decomposition (5.167)

η̂t = (η̂′t,0 ⊗ ρ̂′′k,0)⊕ (η̂′t,1 ⊗ ρ̂′′k,1).

The representation η̂t is conjugate to ρ̂k.

η̂′t = e−r∆̂σ ◦ ρ̂′k ◦ er∆̂σ , η̂t = e−r∆̂σ ◦ ρ̂k ◦ er∆̂σ .

For the particular choice of complex structure σ = ib the representations take the

following explicit integral form

η̂′t,0(S)(f)(x) = −i
√

2k e2πk(b−b)x2

∫
R
f(y) cos(4πkyx)e−2πk(b−b)y2dy,

η̂′t,1(S)(f)(x) =
√

2k e2πk(b−b)x2

∫
R
f(y) sin(4πikyx)e−2πk(b−b)y2dy,

η̂′t,0(T )(f)(x) = η̂′t,1(T )(f)(x) = eπi/4
√

2k

i
e2πk(b−b)x2

∫
R
f(y)e2πik(x−y)2e−2πk(b−b)y2dy.

Remark 5.2.5. From equation (5.129) we can see that

lim
s→∞

e−2kr = ±1.

It follows that e−r∆̂σ = e−2kN̂σ → (±1)N̂σ and the last operator is constant when

restricted to the either even or odd elements vn of the Hilbert basis (recall it from

Remark 5.2.3). So we can see that the conjugation from the previous Theorem

trivialize in the limit s→∞, giving back the pre-quantum representations ρ̂k.

Let σ0, σ1 ∈ H and recall the spectral analysis of ∆̂σ0
and ∆̂σ1

from Proposition

64 and subsequent Remark 5.2.3. The first eigenvectors are related by the relation

v(x, σ1) = Qσ1,σ0
v(x, σ0), Qσ1,σ0

= e
−2πikx2

(
1
σ1
− 1
σ0

)
(5.194)
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In general, defined the n-th eigenvectors for the the two operators as

vn(x, σ0) = Ânσ0
v(x, σ0) vn(x, σ1) = Ânσ1

v(x, σ1)

then the base change is as follows

vn(x, σ1) = Ânσ1
Qσ1,σ0

Â−nσ0
vn(x, σ0) (5.195)

If we look at the particular case when

σ1 = T∗σ0 =
σ0

1 + σ0
,

the relations simplify as follows

QT∗σ0, σ0
= e−2πikx2

= G−1
2k ÂT∗σ0

=
(
Âσ0
− 4πikx

)
(5.196)

which give

Bσ0
= {(Hn,αv)(x, σ0), such that n ∈ Z≥0} (5.197)

BT∗σ0
=
{
G−1

2k (Hn,αv)(x, σ0), such that n ∈ Z≥0

}
(5.198)

where Hn,α(x) is defined in Appendix B and

α =
σ − σ
σσ

2πik v(x, σ0) = e−2πkix2/σ0 . (5.199)

In particular

G−1
2k Bσ0

= BT∗σ0
(5.200)

and the parallel transport operator

P̂σ0, T∗σ0
= e−r∆̂σ0 ◦ er∆̂T∗σ0

satisfies

P̂σ0, T∗σ0
= e−r∆̂σ0 ◦ G−1

2k ◦ e
r∆̂σ0 ◦ G2k. (5.201)

Since ∆̂σ acts trivially on the second factor of the tensor S(R)⊗C2k it is not restrictive

to discuss the parallel transport of the representation ρ̂′k first. Recall that it is the

direct sum of the odd and even representations on S(R) as said in equation (5.190).

From Theorem 67 we have

η̂′t(T ) = P̂σ0, T∗σ0
◦ ρ̂′k(T ) (5.202)

= eπi/4e−r∆̂σ0 ◦ G−1
2k ◦ e

r∆̂σ0 ◦ G2k ◦ G−1
2k (5.203)

= eπi/4e−r∆̂σ0 ◦ G−1
2k ◦ e

r∆̂σ0 (5.204)

= e−r∆̂σ0 ◦ ρ̂′k(T ) ◦ er∆̂σ0 (5.205)

Let now analyze the parallel transport of ρ̂′k(S) = −i
√

2kF2k. We have

S∗σ = −σ−1.

Let us remark some commutation properties of F2k. First it is simple to see

d

dx
◦ F2k = F2k ◦ (4πikx̂) (4πikx̂) ◦ F2k = −F2k ◦

d

dx
(5.206)
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where x̂f(x) = xf(x) (it is well known the analogous for the Fourier Transform).

Recall from (5.133) and (5.138)

∆̂σ =
i

2π
(σ − σ)DσDσ

and

Dσ =
1

σ − σ

(
σ

d

dx
+ 2πi2kx̂

)
We have

Dσ ◦ F2k =
1

σ
F2k ◦D−σ−1

indeed

Dσ ◦ F2k =
1

σ − σ

(
σ

d

dx
+ 2πi2kx̂

)
◦ F2k

= F2k ◦
1

σ − σ

(
σ2πi2kx̂− d

dx

)
= F2k ◦

σ

σ − σ

(
−σ−1 d

dx
+ 2πi2kx̂

)
= F2k ◦ σ−1 σσ

σ − σ

(
−σ−1 d

dx
+ 2πi2kx̂

)
= F2k ◦ σ−1 1

−σ−1 + σ−1

(
−σ−1 d

dx
+ 2πi2kx̂

)
= F2k ◦ σ−1D−σ−1

It follows that

∆̂σ ◦ F2k = F2k ◦
i

2π

(σ − σ)

σσ
D−σ−1D−σ−1 = F2k ◦ ∆̂−σ−1 (5.207)

So we can write

η̂′t(S) = P̂σ0, S∗σ0 ◦ ρ̂′(S)

= −i
√

2k e−r∆̂σ0 ◦ e
r∆̂
−σ−1

0 ◦ F2k

= −i
√

2k e−r∆̂σ0 ◦ F2k ◦ er∆̂σ0

= e−r∆̂σ0 ◦ ρ̂′k(S) ◦ er∆̂σ0

What we did so far can be phrased as

Proposition 74. The representations η̂′t is conjugate to the representation ρ̂′k via

the operator e−r∆̂σ0 , i.e.

η̂′t(γ) = e−r∆̂σ0 ◦ ρ̂′k(γ) ◦ er∆̂σ0 , ∀γ ∈ Γ.

So we reduced the two parallel transport we need to understand the operator

er∆̂σ0 for a specific σ0. Indeed once we write explicit representations for a specific

σ0 we do already know that the other are isomorphic, related by conjugation via

parallel transport operator. The next Lemma will choose a a particularly simple σ0.

Lemma 75. Suppose that σ = ib. Then, for every ψ ∈ L2(R),

e−r∆̂ibψ(x) =
√

2kb e2πk(b−b)x2

F2k(ψ)(x) (5.208)

Proof. First we remark that Re b > 0 =⇒ Imσ > 0. From Lemma 65 we have

e−r∆ibψ(x) =

√
α

π

1√
1 + b2

∫
R

exp

(
α

2ibxy + b2(x2 + y2)

1 + b2

)
v(x, ib)v(y, ib)ψ(y)dy

(5.209)
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where

α =
−ib− ib
i2bb

2πik = 2πk(b + b), v(x, ib) = e−2πikx2/(ib) = e−2πkbx2

.

Notice that b+b
1+b2 = 1

b = b. The coefficient of the exponential of x2 is

2πkb− 2πkb = 2πk(b− b),

the coefficient of y2 is

2πkb− 2πkb = 0

and the one for xy is 4πik. So the integral writes

e−r∆ibψ(x) =

√
2k(b + b)

1√
1 + b2

∫
R
e2πk(b−b)x2

e4πikxyψ(y)dy (5.210)

=
√

2kb e2πk(b−b)x2

F2k(ψ)(x) (5.211)

Lemma 76. The ∆ operator is mapping class group invariant, i. e. let γ̂ be the pre

quantum operator acting on S(R)⊗ C2k induced by γ ∈ Γ, we have

γ̂∆̂σψ = ∆̂γ∗σγ̂ψ, ψ ∈ S(R)⊗ C2k. (5.212)

In particular the parallel transport is Mapping Class Group invariant.

Proof. This is no new, as it is known that the Hitchin-Witten connection is mapping

class group invariant. However we verify it explicitly here. First recall that the ∆̂

operator acts trivially on the second factor of the tensor decomposition of S(R)⊗C2k.

So we forget about it and think only of equation 5.212 as on S(R). For the Ŝ =

−i
√

2kF2k operator, equation (5.207) is equivalent to (5.212). For the T̂ = eπi/4G−1
2k

operator, from the eigenfunctions properties we saw in (5.200), we have

∆̂T∗σ ◦ T̂ = G−1
2k ◦ ∆̂σ ◦ G2k ◦ T̂ = eπi/4G−1

2k ◦ ∆̂σ = T̂ ◦ ∆̂σ.

Proof of Theorem 73

The finite action on C2k was already computed in Lemma 71 and the parallel trans-

port is identical in such tensor factor so there is nothing going on.

Proposition 74 gives first half of Theorem 73. We define the following operators for

simplifying the notation in the proof

Oaφ(x) ≡ φ(ax) Nbψ(x) = e2πk(b−b)x2

ψ(x). (5.213)

Then we have

F2k = O2k ◦ F =
1

2k
F ◦ O1/2k (5.214)

where F is the Fourier Transform. Fixing b and consequently choosing σ = ib we

have

e−r∆̂ib =
√

2kbNb ◦ F2k =
√

2kbNb ◦ O2k ◦ F (5.215)
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The quantum representation of S takes the form

η̂′t(S) = −i
√

2k e−r∆̂ib ◦ F2k ◦ er∆̂ib

= −i
√

2k e−r∆̂ib ◦ F2k ◦
(
e−r∆̂ib

)−1

= −i
√

2k
√

2kbNb ◦ F2k ◦ F2k ◦
(√

2kbNb ◦ F2k

)−1

= −i
√

2kNb ◦ F2k ◦ N−1
b

This concludes the proof for the operator S. For the operator T , notice that

O2k ◦ G−1
2k ψ(x) = e−2πik(x/2k)2ψ(x/2k) = G−1

1/2k ◦ O2kψ(x) (5.216)

so we have that the quantum representation of T takes the form

η̂′t(T ) = eπi/4e−r∆̂σ0 ◦ G−1
2k ◦

(
er∆̂σ0

)−1

= eπi/4Nb ◦ F ◦ O1/2k ◦ G−1
2k ◦ O2k ◦ F−1 ◦ N−1

b

= eπi/4Nb ◦ F ◦ G−1
1/2k ◦ F

−1 ◦ N−1
b

The inner operator F ◦ G−1
1/2k ◦ F

−1 acts on a function ψ ∈ S(R) as

F
(
g1/2k(x) · F−1(ψ)(x)

)
, (5.217)

where g1/2k(x) = e−πix
2/2k is a function multiplied. By the convolution theorem the

operation in (5.217) is the convolution of ψ with the function F(g1/2k). To get the

explicit expression we need compute the Fresnel Integral∫
R
e−πix

2/2ke2πixydy (5.218)

which is not absolute convergent but an explicit formula as conditional convergent

integral (or improper integral) is possible∫
R
e−πix

2/2ke2πixydy =

√
2k

i
e2kπiy2 . (5.219)

This concludes the proof of Theorem 73. �

Proposition 77. The space H(k) =
(
S(R)⊗ C2k

)S2
decomposes into eigenspaces for

the Laplace operator ∆̂σ, that is

H(k) =
⊕
n≥0

Eig2kn(∆̂σ) (5.220)

induced by the decomposition on S(R) =
⊕

n≥0 span{vn(x, σ)}. The dimension of

the eigenspaces is given by

dim Eig2kn(∆̂σ) = k + (−1)n, (5.221)

and the decomposition is mapping class group invariant, i.e.

γ̂
(

Eig2kn(∆̂σ)
)

= Eig2kn(∆̂γ∗σ) for any γ ∈ Γ (5.222)

Proof. The direct sum decomposition follows from Proposition 64 and the decompo-

sition (5.167). Indeed

Eig2kn(∆̂σ) =

{
vn(x, σ)⊗ Ck+1 if n even

vn(x, σ)⊗ C̃k−1 if n odd
(5.223)

Equation (5.222) follows from equation (5.212).
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Remark 5.2.6 (The Representation η̂′t). The integral presentation at σ = ib of the

representation η̂′t = η̂′t,0⊕η̂′t,1 permits us to verify the relations between its generators

directly computing their kernels. Up to conjugating everything by exp±2πk(b− b)

we have

〈x|η̂′t(S)|y〉 = −i
√

2ke4πikxy 〈x|η̂′t(T )|y〉 = eπi/4
√

2k

i
e2πik(x−y)2 (5.224)

So we can easily compute

〈x| (η̂′t(S))
2 |y〉 = −δ(x+ y) (5.225)

〈x|η̂′t(S) η̂′t(T )|y〉 =

∫
R
〈x|η̂′t(S)|z〉〈z|η̂′t(T )|y〉dz (5.226)

=
−i√
i
eπi/4 2k e2πiky2

∫
R
e4πikz(x−y)e2πikz2dz (5.227)

= −ieπi/4
√

2ke−2πikx2

e4πikxy (5.228)

〈x| (η̂′t(S) η̂′t(T ))
2 |y〉 =

∫
R
〈x|η̂′t(S) η̂′t(T )|z〉〈z|η̂′t(S) η̂′t(T )|y〉dz (5.229)

= −i2ke−2πikx2

∫
R
e4πikz(x+y)e−2πikz2dz (5.230)

= −
√

2ike2πiky2e4πikxy (5.231)

〈x| (η̂′t(S) η̂′t(T ))
3 |y〉 =

∫
R
〈x| (η̂′t(S) η̂′t(T ))

2 |z〉〈z|η̂′t(S) η̂′t(T )|y〉dz (5.232)

= 2ki
√
ieπi/4

∫
R
e4πikz(x+y)dz (5.233)

= −2k
δ(x+ y)

2k
(5.234)

An interesting presentation we get is the following on Gaussian Wavelets

Theorem 78 (Wavelet Presentation). Define the three complex parameter wavelet

fa,c,d(x) = exp(2πk(b− b)x2) exp(−2πika(x− c)2 − 2πikd) ∈ S(R) (5.235)

for Im(a) < 0. Define even and odd wavelets as ψ+(a, c, d) = fa,c,d + fa,−c,d and

ψ−(a, c, d) = fa,c,d − fa,−c,d respectively. The projective representation η̂′t sends this

two families of wavelets to them selves, acting on ψ±(a, c, d) as follows

η̂′t(S) : ψ±(a, c, d) 7→ −i(ia)−
1
2ψ±

(
−1

a
,−ac, d+ ac2

)
η̂′t(T ) : ψ±(a, c, d) 7→ eπi/4(1− a)−

1
2ψ±

(
−a
a− 1

, c, d

)
Proof of Theorem 78 For semplicity suppose d = 0 and b = 1. Due to our

definition of fa,c,d this two hypothesis can be made without loss of generality, indeed

we can always conjugate both operators η̂′t(S) and η̂′t(T ) by exp−2πk(b− b)x2 to

get to the b = 1 situation

η̂′t(S)(fa,c,0) = −i
√

2k

∫
R
e−2πika(y−c)2e4πikyxdy

= −i
√

2ke−2πikac2
∫
R
e−2πikay2e4πiky(ac+x)dy

= − i√
ia
e−2πikac2e2πik

(x+ac)2

a

η̂′t(T )(fa,c,0) = eπi/4
√

2k

i

∫
R
e−2πika(y−c)2e2πik(x−y)2dy
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= eπi/4
√

2k

i
e2πikx2

e−2πikac2
∫
R
e−2πiky2(a−1)e4πiky(ac−x)dy

= eπi/4
√

2k

i

√
1

2ik(a− 1)
e2πikx2

e−2πikac2e2πik
(ac−x)2
(a−1)

= eπi/4
√

2k

i

√
i

2k(1− a)
e2πikx2(1+ 1

a−1 )e−4πikx ac
a−1 e−2πikac2(1− a

a−1 )

= eπi/4
1√

1− a
e2πik a

a−1 (x2−2xc+c2)

= eπi/4
1√

1− a
e−2πik a

1−a (x−c)2

�
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Appendix A

Tempered Distributions

Standard references for the topics of this Appendix are [Hör90, Hör69] and [RS80,

RS75].

Definition 29. The Schwartz space S(Rn) is the space of all the functions φ ∈
C∞(Rn,C) such that

||φ||α,β := sup
x∈Rn

|xβ∂αφ(x)| <∞

for all multi-indeces α, β.

The space of Tempered Distributions S ′(Rn) is the space of linear functionals on

S(Rn) which are continuous with respect to all these seminorms.

Both these spaces are stable under the action of the Fourier transform operator

F . Let Zn be the sero section set of T ∗(Rn).

Definition 30. For a temperate distribution u ∈ S ′(Rn), we define its Wave Front

Set to be the following subset of the cotangent bundle of Rn

WF(u) = {(x, ξ) ∈ T ∗(Rn)− ZRn | ξ ∈ Σx(u)}

where

Σx(u) = ∩φ∈C∞x (Rn)Σ(φu).

Here

C∞x (Rn) = {φ ∈ C∞0 (Rn)|φ(x) 6= 0}

and Σ(v) are all η ∈ Rn − {0} having no conic neighborhood V such that

|v̂(ξ)| ≤ CN (1 + |ξ|)−N , N ∈ Z>0, ξ ∈ V.

Lemma 79. Suppose u is a bounded density on a C∞ sub-manifold Y of Rn, then

u ∈ S ′(Rn) and

WF(u) = {(x, ξ) ∈ T ∗(Rn)|x ∈ Suppu, ξ 6= 0 and ξ(TxY ) = 0}.

In particular if Suppu = Y , then we see that WF(u) is the co-normal bundle of

Y .

Definition 31. Let u and v be temperate distributions on Rn. Then we define

WF(u)⊕WF(v) = {(x, ξ1 + ξ2) ∈ T ∗(Rn)|(x, ξ1) ∈WF(u), (x, ξ2) ∈WF(v)}.
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Theorem 80. Let u and v be temperate distributions on Rn. If

WF(u)⊕WF(v) ∩ Zn = ∅,

then the product of u and v exists and uv ∈ S ′(Rn).

Definition 32. We denote by S(Rn)m the set of all φ ∈ C∞(Rn) such that

sup
x∈Rn

|xβ∂α(φ)(x)| <∞

for all multi-indices α and β such that if αi = 0 then βi = 0 for n − m < i ≤ n.

We define S ′(Rn)m to be the continuous dual of S(Rn)m with respect to these semi-

norms.

We observe that if π : Rn −→ Rn−m is the projection onto the first n − m

coordinates, then π∗(S(Rn−m)) ⊂ S(Rn)m. This means we have a well defined push

forward map

π∗ : S ′(Rn)m −→ S ′(Rn−m).

Proposition 81. Suppose Y is a linear subspace in Rn, u a density on Y with

exponential decay in all directions in Y . Suppose π : Rn −→ Rm is a projection for

some m < n. Then u ∈ S ′(Rn)m and π∗(u) is a density on π(Y ) with exponential

decay in all directions of the subspace π(Y ) ⊂ Rm.

Tempered distributions can be thought of as functions of growth at most poly-

nomial, thanks to the following theorem:

Theorem 82. Let T ∈ S ′(Rn), then T = ∂βg for some polynomially bounded con-

tinuous function g and some multi-index β. That is, for f ∈ S(Rn),

T (f) =

∫
Rn

(−1)|β|g(x)(∂βf)(x)dx

In particular it is possible to show that S(Rn) ⊂ S ′(Rn), where S(Rn) 3 f 7→
Tf ∈ S ′(Rn) with Tf (g) =

∫
Rn f(x)g(x)dx.

Denoting by L(S(Rn),S ′(Rm)) the space of continuous linear maps from S(Rn)

to S ′(Rm), we remark that we have an isomorphism

·̃ : L(S(Rn),S ′(Rm))→ S ′(Rntm) (A.1)

determined by the formula

ϕ(f)(g) = ϕ̃(f ⊗ g) (A.2)

for all ϕ ∈ L(S(Rn),S ′(Rm)), f ∈ S(Rn), and g ∈ S(Rm). This is the content of the

Nuclear theorem, see e.g. [RS80]. Since we can not freely multiply distributions we

end up with a categoroid instead of a category. The partially defined composition in

this categroid is defined as follows. Let n,m, l be three finite sets and A ∈ S ′(Rntm)

and B ∈ S ′(Rmtl). We have pull back maps

π∗n,m : S ′(Rntm)→ S ′(Rntmtl) and π∗m,l : S ′(Rmtl)→ S ′(Rntmtl).

By what we summarised above, the product

π∗n,m(A)π∗m,l(B) ∈ S ′(Rntmtl)

is well defined provided the wave front sets of π∗n,m(A) and π∗m,l(B) satisfy the con-

dition

(WF(π∗n,m(A))⊕WF(π∗m,l(B))) ∩ Zntmtl = ∅ (A.3)
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If we now further assume that π∗n,m(A)π∗m,l(B) continuously extends to S(Rntmtl)m,

then we obtain a well defined element

(πn,l)∗(π
∗
n,m(A)π∗m,l(B)) ∈ S ′(Rntl).

A.1 Bra-Ket Notation

We often use the Bra-Ket notation to make computations with distributions. For

ϕ ∈ S ′(Rn) a density and x ∈ Rn we will write

〈x|ϕ〉 := ϕ(x),

with distributional meaning

ϕ(f) =

∫
Rn
〈x|ϕ〉f(x)dx =

∫
Rn
ϕ(x)f(x)dx.

In particular if ϕ ∈ S(Rn) ⊂ S ′(Rn), then

〈x|ϕ〉 = ϕ(x) = δx(ϕ)

We extend the notation defining

|y〉 ≡ |δy〉

so that formally 〈x|y〉 = δ(x− y). Let T : S(Rn) −→ S(Rn) be a linear operator and

ψ ∈ S(Rn). The integral kernel of the operator T, if it exists, is a distribution kT

such that

T(ψ)(x) =

∫
Rn
kT(x, y)ψ(y)dy (A.4)

Working with Schwartz functions, the nuclear theorem expressed by formula (A.2)

guarantees that the kernel kT exists and that it is a tempered distribution. We will

usually write the kernel from equation (A.4), in Bra-Ket notation as follows

T(ψ)(x) =

∫
Rn
〈x|T|y〉ψ(y)dy (A.5)

and the nuclear theorem morphism (A.2) can be read as

〈x|T|y〉 = 〈x, y|T̃ 〉. (A.6)

A.2 L2(AN) and S(AN)

The space L2(AN ) ≡ L2(R×Z/NZ) is the main block to construct Hilbert spaces

in this thesis. By definition it is the space of functions f : AN −→ C such that∫
AN
|f(a)|2 da ≡ 1√

N

N−1∑
n=0

∫
R
|f(x, n)|2 dx <∞ (A.7)

with standard inner product

〈f, g〉 ≡ 1√
N

N−1∑
n=0

∫
R

f(x, n)g(x, n)d(x, n) (A.8)

Finite square integrable sequences are just a finite dimensional vector space

L2(Z/NZ) ' CN ,
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with a preferred basis given by mod N Kronecker delta functions

δj(n) ≡

{
1 if j = n mod N

0 otherwise
(A.9)

There is a natural isomorphism

L2(R)⊗ L2(Z/NZ) ' L2(AN ) (A.10)

defined by

f ⊗ δj (a) = f(x)δj(n), for a = (x, n) ∈ AN (A.11)

with inverse

AN 3 f 7→
N−1∑
j=0

f(·, j)⊗ δj ∈ L2(R)⊗ L2(Z/NZ) (A.12)

Everything just said holds true substituting L2 with S, with the isomorphism S(AN ) '
S(R)⊗CN and even tempered distributions, defined as linear continuous functionals

over S(AN ), are simply S ′(R) ⊗ CN . All the Bra-Ket notation extends trivially to

S(AN ), including the nuclear theorem (A.6), substituting all the integrals over R
with integrals over AN .

We can define LN (A), by the spectral theorem, for any operator A of order N ,

such that it formally satisfies

A = e2πiLN (A)/N .

We can define, for any function f : AN −→ C the operator function 6f(x, A) ≡
f(x,LN (A)) for any commuting pair of operators x and A, where the former is self

adjoint and the latter is of order N . We have, for x and A as above

6f(x, A) =

∫
AN

f̃(y,m)e2πiyxA−md(y,m) (A.13)

where

f̃(x, n) =

∫
AN

f(y,m)〈(y,m); (x, n)〉d(y,m). (A.14)
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Appendix B

Hermite Polynomials

Let α > 0 fixed. We define the n-th Hermite polynomial with weight α as

Hn,α(x) = (−1)neαx
2 dn

dxn
e−αx

2

. (B.1)

They are the following rescaling of physicists Hermite polynomials Hn

Hn,α(x) = α
n
2Hn(

√
αx) (B.2)

and satisfy degHn,α(x) = n. Define also the following inner product,

〈f, g〉α =

∫
R
f(x)g(x)e−αx

2

dx (B.3)

which give Hilbert space structure to L2(R, e−αx2

dx), the space of functions satisfying∫
R
|f(x)| e−αx

2

dx <∞. (B.4)

The Hermite polynomials with weight α satisfy the following relations

〈Hn,α, Hm,α〉α =

√
π

α
(2α)n(n!)δn,m (othogonality)

Hn+1,α(x) = 2αxHn,α(x)−H ′n,α (differential relation)

e−α(t2−2tx) =
∑
n≥0

Hn,α(x)
tn

n!
(generating function)

xn =
n!

(2α)n

bn2 c∑
m=0

1

m!(n− 2m)!
Hn−2m,α(x) (monomial expression)

Hn,α(−x) = (−1)nHn,α(x) (parity)

(〈f,Hn,α〉 = 0, ∀n ≥ 0) =⇒ f = 0, for every f ∈ L2(R, e−αx
2

dx) (completeness)

and the following Mehler Formula∑
n≥0

wn

〈Hn,α, Hn,α〉α
Hn,α(x)Hn,α(y) =

√
α

π

1√
1− w2

exp

(
α

2xyw − w2(x2 + y2)

1− w2

)
if Re(w2) < 1

(B.5)
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Proof. Orthogonality

Suppose m < n.

〈Hn,α, Hm,α〉α =

∫
R
(−1)neαx

2 dn

dxn

(
e−αx

2
)
Hm,α(x)e−αx

2

dx

= (−1)n
∫
R

dn

dxn

(
e−αx

2
)
Hm,α(x)dx

=

∫
R
e−αx

2 dn

dxn
Hm,α(x)dx = 0

Suppose now n = m. We have dn

dxnHn,α = n! dn

dxn |x=0Hn,α = (2α2)nn!. We have

〈Hn,α, Hn,α〉α =

∫
R
e−αx

2 dn

dxn
Hm,α(x)dx

= (2α)nn!

∫
R
e−αx

2

dx = (2α)nn!

√
π

α
.

Differential Relation

Hn+1,α(x) = (−1)n+1eαx
2 dn+1

dxn+1
e−αx

2

= (−1)n+1eαx
2

(
(−1)n

d

dx
Hn,α(x)e−αx

2

)
= (−1)eαx

2
(
H ′n,α(x)e−αx

2

− 2αxHn,α(x)e−αx
2
)

= 2αxHn,α(x)−H ′n,α(x)

Generating Function

e−α(x−t)2 =
∑
n≥0

tn

n!

dn

dtn

∣∣∣∣
t=0

e−α(x−t)2

=
∑
n≥0

tn

n!
(−1)n

dn

dun

∣∣∣∣
u=x

e−αu
2

= e−αx
2 ∑
n≥0

tn

n!
Hn,α(x)

Completeness

Consider the function F : C −→ C

F (z) ≡
∫
R
f(x)e−α(x2−2xz)dx (B.6)

associated to f ∈ L2(R, e−αx2

dx). The function F (z) is holomorphic, indeed we have

the following series expansion

F (z) =

∫
R
f(x)e−α(x2−2xz)dx

=

∫
R
f(x)e−αx

2 ∑
n≥0

(2zxα)n

n!
dx

=
∑
n≥0

2nznαn
∫
R

xn

n!
f(x)e−αx

2

dx

and the integrand xn

n! f(x)e−αx
2

is in L2(R,dx).
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The derivatives in 0 can be evaluated directly

dn

dzn

∣∣∣∣
z=0

F (z) =

∫
R
f(x)

dn

dzn

∣∣∣∣
z=0

e−α(x2−2xz)dx

=

∫
R
f(x)(2αx)ne−αx

2

dx

= (2α)n〈f, xn〉α.

If we start from the assumption

〈f, xn〉 = 0, ∀n ≥ 0

which is equivalent to the assumption

〈f,Hn,α〉 = 0, ∀n ≥ 0

we just showed that we will have

F (n)(0) = 0, ∀n ≥ 0

which, by analyticity is equivalent to

F (z) ≡ 0

However, for t ∈ R

F (2πit/α) =

∫
R
f(x)e−αx

2

e2πixtdx

and this is the Fourier transform of the function f(x)e−αx
2

. In order to this to be

identically 0 for any t, f has to be identically 0.

Mehler Formula

From the Gaussian integral

e−αx
2

=

√
α

π

∫
R
e−π

2y2/αe2πixydy (B.7)

we can compute an integral formula for Hn,α

Hn,α(x) = (−1)neαx
2 dn

dxn
e−αx

2

= (−1)n
√
π

α
eαx

2 dn

dxn

∫
R
e−π

2y2/αe2πixydy

=

√
π

α

∫
R

(−2πiy)neαx
2

e−π
2y2/αe2πixydy

=

√
π

α

∫
R

(−2πiy)ne−(πy−iαx)2/αdy
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Now we can compute expression (B.5) (recall the hypothesis Rew2 < 1)

∑
n≥0

wn

〈Hn,α, Hn,α〉α
Hn,α(x)Hn,α(y)

=

√
π

α

∫
R2

e−(πη−iαy)2/αe−(πξ−iαx)2/α
∑
n≥0

(2π)2n(−ξηw)n

(2α)nn!
dηdξ

=

√
π

α

∫
R2

e−(πη−iαy)2/αe−(πξ−iαx)2/αe−2π2ξηw/αdηdξ

=

√
π

α

∫
R
e−(πη−iαy)2/αe−2πiηwxeπ

2η2w2/α

∫
R
e−(πξ−iαx+πηw)2/αdξdη

=

∫
R
e−(πη−iαy)2/αe−2πiηwxeπ

2η2w2/αdη

= eαy
2

∫
R
e−π

2η2(1−w2)/αe2πiη(y−wx)dη

= eαy
2

√
α

π

1√
1− w2

e
−α (y−wx)2

1−w2

=

√
α

π

1√
1− w2

e
α

2αwxy−αw2(x2+y2)

1−w2

For every β ∈ C such that β + β = α we can choose an Hilbert basis Bβ =

{Ψn,β}n≥0 for the inner product space L2(R,dx), setting

Ψn,β(x) ≡ Hn,α(x)e−βx
2

. (B.8)

From the Completeness and Orthogonality properties of the Hermite polynomials we

get the following decomposition of the identity, for any f ∈ L2(R,dx)

∫
R

∑
n≥0

Ψn,β(x)Ψn,β(y)

〈Ψn,β ,Ψn,β〉
f(y)dy =

∫
R
δ(x− y)f(y)dy (B.9)

Two different choices β and β′ are related by a unitary transformation

Ψn,β′ = Qβ′,βΨn,β Qβ′,βϕ(x) = e−(β′−β)x2

ϕ(x) (B.10)

Suppose that β ∈ R, that is β = α/2. Introduce the operator

Fα/2π(ϕ)(x) ≡
∫
R
eαixyϕ(y)dy (B.11)

Lemma 83. √
α

2π
Fα/2π(Ψn,α/2) = inΨn,α/2

Proof. Consider the generating function Θα(x, t) = e−α(t2−2tx). We have√
α

2π
Fα/2π(e−αx

2/2Θα(x, t)) =
∑
n≥0

tn

n!

√
α

2π
Fα/2π(Ψn,α/2)(x)
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On the other hand we can compute directly

Fα/2π(e−αx
2/2Θα(x, t)) = e−αt

2

∫
R
eαixye−αy

2/2e2αtydy

= e−αt
2

√
2π

α

∫
R
eαy(ix+2t)e−αy

2/2dy

= e−αt
2

√
2π

α
eα(ix+2t)2/2

=

√
2π

α
e−αx

2/2e−α((it)2−2itx)

=

√
2π

α
e−αx

2/2Θα(x, t)

=
∑
n≥0

in
tn

n!

√
2π

α
Ψn,α/2(x)
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Appendix C

Miscellanea

C.1 Principal Bundles, Flat Connections and Holon-

omy Representations

Let G be a Lie group, and let g be the Lie algebra of G. The Maurer Cartan form

θ ∈ Ω1(G, g) is defined as θ(v) = (dlg−1)v, for every v ∈ TgG, where lg : G −→ G is

the left multiplication lg(h) = gh. The map Adg : g→ g is the adjoint representation,

that is the differential of the map Ψg : G→ G, h 7→ ghg−1.

Definition 33. Let B be a differentiable manifold and G be a Lie group. A Principal

G-bundle over B is a manifold P satisfying the following properties

1. There is a right action of G over P such that B is the quotient under this action

and the projection π : P −→ P/G is smooth.

2. For every b ∈ B there is an open neighborhood U ⊆ B of b such that π−1(U) '
U ×G via an equivariant diffeomorphism.

Definition 34. A principal bundle homomorphism between two principal G-bundles

P and P ′ is a G-equivariant bundle homomorphism. If P ′ = P it is called a gauge

transformation of the bundle. We denote by G the group of gauge transformations

of P .

Remark C.1.1. To every G-equivariant map u : P −→ G, p 7→ up ∈ G we associate

a gauge transformation ϕ : P −→ P via the rule ϕ(p) = p · up. This association is a

bijection. Here G-equvariance of u is with respect to the right action u · g = g−1ug.

Let π : P −→ B a fixed principal G-bundle for the rest of this subsection. We say

that a vector field V ∈ TP is vertical if dπ(V ) = 0 and, for every p ∈ P , we define

the vertical tangent subspace Vp as ker(dπ)p.

Consider the two maps ip : G −→ P , ip(g) = p · g and rg : P −→ P , rg(p) = p · g.

Let e ∈ G be the unit element. For every X ∈ TeG ' g we can define X∗ ∈ TP as

the vector field given at every p by the push forward X∗p ≡ (dip)eX. All such X∗

are vertical.

The concept of being horizontal is not canonical from the bundle, as it is to be

vertical. We need an extra object named connection

Definition 35. A connection on the principal G-bundle P is a g-valued 1-form

A ∈ Ω1(P, g) such that
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1. A(X∗) = X, for all X ∈ g.

2. r∗g(A) = Adg−1A, i.e. A is G–equivariant

The space of connections on P is denoted A.

We define the horizontal tangent subspace at p ∈ P as Hp ≡ ker(Ap). It follows

that TpP = Vp ⊕ Hp. Let A′ a g-valued k-form, i.e. A′ ∈ Ωk(P, g). A′ is said to

be G-equivariant if r∗gA
′ = Adg−1A′ for every g ∈ G. We denote with Ωk(P, g)G the

subspace of Ωk(P, g) of G-equivariant forms.

Definition 36. The curvature of a connection A on P is the 2-form FA ∈ Ω2(P, g)G

defined by the formula

FA = dA+
1

2
[A ∧A]

A connection is called flat if FA = 0. The space of flat connections on P is denoted

F .

The gauge group G acts on A on the right and preserves F . The action is as

follows. to the gauge map ϕ : P → P there is associated a map gϕ : P → G (see

remark C.1.1). Let θϕ = g∗ϕθ be the pull-back of the Maurer–Cartan form. Then,

for every a ∈ A
ϕ∗A = Adg−1

ϕ
A+ θϕ (C.1)

while the curvature pulls-back via gauge transformations as

ϕ∗FA = Adg−1
ϕ
A. (C.2)

As notation, we sometimes write Agϕ in place of ϕ∗A.

Lemma 84. Let α : [0, 1] −→ B be a smooth curve on B. Let p0 ∈ π−1(α(0)) and

fix a connection A on P . Then there exists an horizontal lift of α, that is a smooth

curve β : [0, 1] −→ P such that β(0) = p0, dπ(β̇) = α̇ and A(β̇) = 0.

If α[0, 1] −→ B is a loop, i.e. α(0) = α(1) = x0 ∈ B, then β(0) and β(1) ∈
π−1(x0). So there exists a g ∈ G such that β(0) · g = β(1). This is called the

holonomy of A along α with respect to p0. Denoting g = HolA,p0(α) we get an

holonomy map

HolA,p0 : Loop(B, x0) −→ G (C.3)

Turns out that this association behaves very well. First let us define the moduli space

of flat connection

M = F/G (C.4)

as the set of gauge equivalence classes of flat connections on P .

Proposition 85. Let A be a flat connection on P , and assume that B is connected.

Let x0 ∈ B and let p0 ∈ π−1(x0). Let α be a loop in B based at x0. Up to conjugation

in G, the association

A 7→ HolA,p0(α)

is independent of the base point x0, the choice of lift p0, the gauge tranformation

class of the connection A, and the homotopy class of α. In other words, we have a

well-defined map

Hol : M −→ Hom(π1(B), G)/ ∼
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where ∼ is the equivalence relation given by the action of G on the right of Hom(π1(B), G)

by conjugation.

Definition 37. A flat principal G-bundle is a pair (P,A) where P is a principal

G-bundle and A is a flat connection on it. Two flat principal G-bundles (P,A)

and (P ′, A′) are gauge equivalent if there is an isomorphism of principal G-bundles

ϕ : P → P ′ such that ϕ∗P ′ = P . Denote the set of equivalence classes of flat

principal G-bundles [(P,A)] as M.

Theorem 86. The map

M−→ Hom(π1(B), G)/ ∼

[(P,A)] 7→ HolA (C.5)

is a bijection

Remark C.1.2. In this thesis the Lie groups G that we use are always matrix groups.

In this situation some of the operations we described take a more explicit formulation.

In particular let ϕ a gauge transformation with associated gϕ ∈ C∞(P,G), and A a

flat connection, then the pull-back is explicitly

Agϕ = g−1
ϕ Agϕ + g−1

ϕ dgϕ (C.6)

where all the multiplications are standard matrix multiplications.

Moreover we will restrict ourselves to have only trivial bundles P ' B ×G. As our

base manifolds B will be always 2 or 3 dimensional, this is not so restrictive, indeed

Lemma 87. [Fre95] If G is simply connected then every principal G-bundle over

a manifold of dimension lesser or equal then 3 admits a global section, hence is

trivializable.

C.1.1 SU(2), SL(2,C) and Möbius Transformations

In this subsection we will list some useful properties of the Lie groups we use

most often in this thesis.

The group SU(2) is the group of 2 × 2 matrices X such that X†X = XX† = Id,

where X† is the conjugate transpose of X.

The conjugacy class of X ∈ SU(2) is determined by its eigenvalues, since X can be

diagonalized in SU(2) to a matrix in U(1). They are determined by the characteristic

polynomial, which, in SU(2), is determined by the trace. So, up to conjugation, every

X can by written as

X =

(
eiθ 0

0 e−iθ

)
, and has Tr(X) = 2 cos(θ).

The map Tr gives a bijection [−2, 2] ' SU(2)/ ∼. The fiber Tr−1(t) is diffeomorphic

to S2, the unit sphere, for every t 6= ±2, whereas for t = ±2 the fiber is just one

matrix, respectively ±Id.

Globally SU(2) is diffeomorphic to S3 and is in particular simply connected.

The Lie algebra su(2), by definition the tangent space to SU(2) at the identity, is

described as the space of 2× 2 traceless, anti-Hermitian matrices.

The group SL(2,C) is the group of 2× 2 complex valued matrices with determinant

1. Its quotient

PSL(2, C) = SL(2,C)/{±Id}
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is called group of Möbius transformations. It naturally acts on the Riemann sphere

CP1 ' C ∪ {∞} as (
a b

c d

)
· z ≡ az + b

cz + d
, z ∈ CP1 (C.7)

Given three points z0, z1 and z2 ∈ CP1 a Möbius transformation µ is completely

determined by its values on such three points. Conversely given three values w0,

w1 and w2 ∈ CP1 there exists exactly one µ ∈ PSL(2, C) such that µ(zi) = wi for

i = 0, 1, 2. In particular it is common to choose 0, 1 and ∞ as special points on CP1

and say that a Möbius µ is determined by its values at them.

Elements µ ∈ PSL(2, C) are usually classified in terms of of conjugacy classes or

squared trace. Given µ ∈ PSL(2, C) there are exactly two matrices A,A′ ∈ SL(2,C)

in its equivalence class. They satisfies (Tr(A))2 = (Tr(A′))2 so the squared trace Tr2

is well defined in PSL(2, C).

Two transformations µ and µ′ ∈ PSL(2, C) different from the identity, are conju-

gated if and only if they have the same squared trace Tr2(µ) = Tr(µ′).

There is some standard terminology here that we will use sometimes:

(i) µ is said parabolic if Tr2(µ) = 4, µ 6= Id.

(ii) µ is said elliptic if Tr2(µ) < 4.

(iii) µ is said loxodromic if Tr2(µ) ∈ C \ [0, 4].

Loxodromic transformations with positive real squared trace are usually called hy-

perbolic. This classification can be reformulated in terms of fixed points on CP1:

(i) µ is parabolic if has exactly one fixed point.

(ii) µ is said elliptic if it has no fixed points.

(iii) µ is said loxodromic if it has precisely two fixed points.

All the parabolic transformations are conjugate each other and, in particular, can

be conjugated to the element associated to the matrix

(
1 1

0 1

)
, which is so that

it preserves the point ∞ ∈ CP1.

The description of SL(2,C) follows from the one we gave for PSL(2, C), as double

cover of it. A conjugacy class in PSL(2, C) lifts to two distinct conjugacy classes

in SL(2,C). Topologically SL(2,C) is simply connected while PSL(2, C) has funda-

mental group Z/2Z.

C.2 Categroids

We need a notion which is slightly more general than categories to define the

Teichmüller TQFT functor.

Definition 38. [AK14b]

A Categroid C consist of a family of objects Obj(C) and for any pair of objects A,B

from Obj(C) a set MorC(A,B) such that the following holds

A For any three objectsA,B,C there is a subsetKCA,B,C ⊂ MorC(A,B)×MorC(B,C),

called the composable morphisms and a composition map

◦ : KCA,B,C → MorC(A,C).

such that composition of composable morphisms is associative.
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B For any object A we have an identity morphism 1A ∈ MorC(A,A) which is com-

posable with any morphism f ∈ MorC(A,B) or g ∈ MorC(B,A) and we have

the equation

1A ◦ f = f , and g ◦ 1A = g.

C.3 Operator Identities

Lemma 88. Let x, y and z be three operators such that [x, y] = z and [z, x] = 0. Let

f a power series. Then we have

f(x)y = yf(x) + zf ′(x) (C.8)

exf(y) = f(y + z)ex, (C.9)

whenever all the expressions involved make sense in the relevant operator algebra.

Proof. Let

f(x) =

∞∑
j=0

ajx
j .

Then

[f(x), y] =
∑
j

aj [x
j , y]

=
∑
j

aj

j−1∑
k=0

xk[x, y]xj−k−1

=
∑
j

ajjzx
j−1

= zf ′(x)

which proves the first equation. For the second one

exyl = yexyl−1 + zexyl−1

= (y + z)exyl−1

= (y + z)lex.

So

exf(y) = ex
∞∑
j=0

ajy
j

=

∞∑
j=0

aj(y + z)jex

= f(y + z)ex

Lemma 89. Let A, B and C three elements non commuting elements of an associa-

tive algebra, and [·, ·] the commutator induced by the algebra structure. The following

identity is true

[A,BC] = B [A,C] + [A,B]C (C.10)
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Proof.

[A,BC] = (ABC −BCA) = BAC + [A,B]C −BAC −B [C,A]

= B [A,C] + [A,B]C

Lemma 90. Let x, y and z be three elements of a Lie algebra satisfying the relations

[x,y] = z and [y, z] = az with a central. Suppose that the formal exponential ey =∑
k≥0

yk

k! is well defined. Then we have

[x, ey] =
z

a

(
ey+a − ey

)
Proof. First we prove the following equation by induction

ynz =

n∑
j=0

(
n

j

)
ajzyn−j

For n = 0 it is trivial. Suppose the equation valid for some n, the n + 1 expression

on the left hand side becomes

yn+1z = yn(zy + [y, z]) = yn(zy + az)

=

n∑
j=0

(
n

j

)
ajzyn−jy + a

n∑
j=0

(
n

j

)
ajzyn−j

=

n∑
j=0

(
n

j

)
ajzyn+1−j +

n+1∑
j=1

(
n

j − 1

)
ajzyn+1−j

=

n+1∑
j=0

(
n+ 1

j

)
ajzyn+1−j

Next we prove the main statement

[x, ey] =
∑
k≥0

1

k!

[
x, yk

]
=
∑
k≥0

1

k!

k−1∑
n=0

yn [x, y] yk−n−1

=
∑
k≥0

1

k!

k−1∑
n=0

ynzyk−n−1

=
∑
k≥0

1

k!

k−1∑
n=0

n∑
j=0

(
n

j

)
ajzyn−jyk−n−1

=
∑
k≥0

1

k!
z

k−1∑
n=0

(a+ y)nyk−n−1

=
∑
k≥0

1

k!
z((a+ y)k − yk)(y + α− y)−1

=
z

α

∑
k≥0

1

k!
(a+ y)k −

∑
k≥0

1

k!
yk
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C.4 Quadratic Gauss Sum

The topic that we briefly recall here can be looked up on [BEW98].

Theorem 91 (Gauss Quadratic Sum). Let
(
n
k

)
be the Legendre–Jacobi Symbol, and

define. for m ∈ N

εm =

{
1 if m ≡ 1 mod 4

i if m ≡ 3 mod 4
(C.11)

the Gauss Quadratic Sum can be evaluated as follows

k−1∑
n=0

e2πian
2

k =


0 if k ≡ 2 mod 4

εk
√
k
(
a
k

)
if k odd

(1 + i)
√
k
(
k
a

)
ε−1
a if a odd and k ≡ 0 mod 4

(C.12)

We have the following small application by completing squares

Proposition 92. Suppose k, b ∈ Z, k ≥ 1

1√
2k

2k−1∑
n=0

eπi(n
2+2bn)/2k = eπi(2k−4b2)/8k

Proof.

1√
2k
e−πi(2k−4b2)/8k

2k−1∑
n=0

eπi(n
2+2bn)/2k = e−πi/4

1√
2k

2k−1∑
n=0

e
πi
2k (n2+2bn+b2)

= e−πi/4
1√
2k

2k−1∑
n=0

e
πi
2k (n+b)2

= e−πi/4
1√
2k

(
2k−1∑
n=b

e
πi
2kn

2

+

2k+b−1∑
n=2k

e
πi
2kn

2

)

= e−πi/4
1√
2k

(
2k−1∑
n=b

e
πi
2kn

2

+

b−1∑
n=0

e
πi
2kn

2

e2πine2πik

)

= e−πi/4
1√
2k

(
2k−1∑
n=0

e
πi
2kn

2

)
= 1

Where the last equality follows from the following computations

2k−1∑
n=0

e
πi
2kn

2

=

4k−1∑
n=0

e
2πi
4k n

2

−
4k−1∑
n=2k

e
2πi
4k n

2

=

4k−1∑
n=0

e
2πi
4k n

2

−
2k−1∑
n=0

e
πi
2kn

2

(C.13)

=⇒
2k−1∑
n=0

e
πi
2kn

2

=

√
4k

2
(1 + i) =

√
k

(
1√
k

+
i√
k

)
=
√

2keπi/4 (C.14)
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