
RECONSTRUCTION
OF TOPOLOGY

AND GEOMETRY
FROM DIGITISATIONS

PhD Thesis by
Sabrina Tang Christensen

Reconstruction of Topology and Geometry from Digitisations

PhD thesis by Sabrina Tang Christensen
Department of Mathematics, Aarhus University,
Centre for Stochastic Geometry and Advanced Bioimaging,
Ny Munkegade 118, 8000 Aarhus C, Denmark

Supervised by Andrew A. du Plessis

Submitted 9 August 2016

Cover art: DesignZone, Daniela Mayer, daniela@designzone.info

ENGLISHRÉSUMÉ

Elucidation of the relation between real world objects
and their digitisations is an inherent challenge of im-
age analysis. This thesis addresses the reconstruction
of topological as well as geometrical features of sets
in Euclidean 3-space respectively the Euclidean plane

from binary images.
The first problem, the reconstruction of topology in dimension

three, is approached using combinatorics of voxel reconstructions in
combination with differential topology results. An improved digital
reconstruction based on binary images of objects with sufficiently
smooth boundary is proposed. It is shown that this reconstruction is
ambient isotopic to the underlying object provided the resolution of
the digitisation be sufficiently high and under certain assumptions
on the classical voxel reconstruction. The exact lower bound on the
resolution, related to the curvature of the boundary of the object, is
given, and it is argued that this is the best possible bound for which
topological equivalence is guaranteed. Making no restrictions on the
classical reconstruction, similar results can be proved for slightly
stronger assumptions on the resolution. It is conjectured that the
lower of the bounds on the resolution also suffices in this setting.

For the reconstruction of geometry in dimension two, a practical
approach employing digital algorithms is selected. The geometry of
real world objects can be described by Minkowski tensors. It has been
shown that these tensors can be approximated by digital algorithms,
provided that the underlying object has positive reach and that a
binary image of the object is available. Two such algorithms are
implemented. Their suggested convergence properties are confirmed
in practice via simulations on test sets, and recommendations for
input arguments of the algorithms are given. Simulations imply that
the accuracy of the estimators is directly related to the resolution
of the digitisation, and, further, that an increase in complexity of
the object necessitates higher resolutions. Finally, a third algorithm,
combining and thus exploiting the most advantageous qualities of
both aforementioned algorithms, is proposed.

DANSKRESUMÉ

Belysningen af forholdet mellem objekter i den virke-
lige verden og deres digitaliseringer er en iboende
udfordring i billedanalyse. Denne afhandling angår
rekonstruktion af såvel topologiske som geometriske
egenskaber ved mængder i euklidisk 3-rum henholds-

vis det euklidiske plan ud fra binære billeder.
Det første problem, rekonstruktion af topologi i dimension tre,

gribes an ved hjælp af kombinatorik af vokselrekonstruktioner kom-
bineret med resultater inden for differentialtopologi. En forbedret
digital rekonstruktion baseret på binære billeder af objekter med
tilpas glat rand fremsættes. Det bevises, at denne rekonstruktion
er ambient isotop til det underliggende objekt, forudsat opløsningen
af digitaliseringen er tilpas høj og under visse antagelser om den
klassiske vokselrekonstruktion. Den præcise nedre grænse for opløs-
ningen, relateret til krumningen af objektets rand, gives, og der ar-
gumenteres for, at dette er den bedst mulige grænse, hvis topologisk
ækvivalens skal kunne garanteres. Lignende resultater uden begræn-
sninger på den klassiske rekonstruktion kan bevises for stærkere an-
tagelser om opløsningen. Det formodes, at den mindste af grænserne
for opløsningen også er tilstrækkelig i dette tilfælde.

Til rekonstruktion af geometri i dimension to vælges en praktisk
tilgang, som anvender digitale algoritmer. Geometrien af objekter i
den virkelige verden kan beskrives ved Minkowski-tensorer. Det er
blevet påvist, at disse tensorer kan approksimeres med digitale algo-
ritmer, forudsat det underliggende objekt har positiv rækkevidde, og
at et binært billede af objektet er tilgængeligt. To sådanne algoritmer
implementeres. Deres teoretiske konvergensegenskaber bekræftes i
praksis via simuleringer på testmængder, og der gives anbefalinger
til input-argumenter for algoritmerne. Simuleringer indikerer, at nøj-
agtigheden af estimatorerne er direkte forbundet med opløsningen af
digitaliseringen, og endvidere at forøgelse af objektets kompleksitet
fordrer højere opløsninger. Endelig fremsættes en tredje algoritme,
som kombinerer og dermed udnytter de mest fordelagtige kvaliteter
ved begge førnævnte algoritmer.

PREFACE

The present PhD thesis consists of three chapters. In Chapter 1, an intro-
duction to digital reconstruction is given and some of the key definitions
of the thesis are presented. Chapter 2 is joint work between the author
and main supervisor, Andrew du Plessis∗,†. Here, a digital reconstruction
is proposed for the class of r-regular objects in dimension three, and we

show that the reconstruction is topologically equivalent to the reconstructed object in
the sense that there exists an ambient isotopy between the two. Chapter 3 concerns the
reconstruction of geometry in dimension two via Minkowski tensors of sets with positive
reach. Estimators of the Minkowski tensors can be computed via two algorithms which
have been implemented in MATLAB. This work is a collaboration between the author
and co-supervisor Markus Kiderlen∗,‡.

The three chapters, which constitute the main body of the thesis, are followed by four
appendices. These appendices contain additional theory and technical details not included
in the main text, in order to further readability.

The research of the thesis has been presented in the following contexts:

◦ 13th International Workshop on Real and Complex Singularities, São Carlos, Brazil,
July–August 2014;

◦ Visit to Gerd Schröder-Turk at Universität Erlangen-Nürnberg, Erlangen, Germany,
October 2014;

◦ Ninth Internal CSGB Workshop, Middelfart, Denmark, November 2014;

◦ Visit to Herbert Edelsbrunner at IST Austria, Klosterneuburg, Austria, January
2015;

◦ Workshop on Integral Geometry and Valuation Theory, Zürich, Switzerland, June
2015;

◦ Eleventh Internal CSGB Workshop, Højbjerg, Denmark, November 2015;

◦ Workshop on Stochastic Geometry, Stereology and their Applications, Sønderborg,
Denmark, June 2016.

The author recommends that this thesis be read as a PDF file and not in a printed version
due to the large number of highly detailed figures and the intricate reference system: All 2D
figures and plots are made in vector graphics (by use of Inkscape respectively PGFPlots),
and the reader may prefer to zoom in to discover further details. 3D images are created
using Sketchup Make and exported as PNG files and therefore do not contain the same level
of detail, but the reader may still find it useful to have a closer look than the one available
in the printed version. References, highlighted in maroon, are hyperlinks, which will direct
the reader to: entries in the bibliography, illustrations of certain concepts introduced in
the thesis, definitions, theorems, and so forth.

∗ Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University
Web: www.CSGB.dk

† Associate professor Andrew du Plessis, matadp@math.au.dk
‡ Associate professor Markus Kiderlen, kiderlen@math.au.dk

ix

http://csgb.dk/

ACKNOWLEDGEMENTS

The author’s PhD studies were financed in part by Centre for Stochastic
Geometry and Advanced Bioimaging (CSGB), funded by the Villum
Foundation; in part by Aarhus University.

I should like to thank my main supervisor, Andrew du Plessis, for be-
ing patient with me through the years and offering guidance in my work,

and Markus Kiderlen for nudging me in the direction of the more applied topic of imple-
mentation of algorithms and for co-supervising the project.

Thanks to Anne Marie Svane for sharing her great knowledge of Minkowski tensors,
and to both her and Astrid Kousholt for sharing office space and lunch breaks with me
the last couple of years.

I owe a great thanks to Lars ‘daleif’ Madsen for helping me to achieve the highly
customised layout of this thesis, and I do apologise for being so very demanding in this
regard.

My family has been exceedingly supportive and helpful, especially during the final stages
of my PhD studies. I could not have managed the combination of writing my thesis,
renovating our newly purchased home, and applying for a job without their unconditional
support.

A very special thanks goes out to Sean Geggie for supporting me through all my
endeavours, not just the ones related to my PhD studies; for encouraging and taking
care of me.

‘Transversal’ is a noun; the adjective is ‘transverse’.

– J. H. C. Whitehead, 1959

Transversal [adjective]: (Of a line) cutting systems of lines.

– Oxford Dictionaries

I will leave the definitions to the Mathematicians.

– Sabrina Tang Christensen, 2016

xi

http://www.oxforddictionaries.com/definition/english/transversal

CONTENTS

English résumé . v
Dansk resumé . vii
Preface . ix
Acknowledgements . xi

1 Introduction 1

2 Digital reconstruction of r-regular surfaces 7
2.1 The voxel reconstruction . 7
2.2 Components of the voxel reconstruction 9
2.3 Topology of reconstructions . 11

2.3.1 Quasi-manifold properties . 11
2.3.2 Wedged reconstruction of r-regular surfaces 12
2.3.3 Topological equivalence . 14

2.4 Components of the wedged reconstruction 16
2.5 The vector field ξ . 18

2.5.1 A first suggestion for a vector field 18
2.5.2 Smoothing and transversality . 19
2.5.3 Definition of the vector field . 21

2.6 Discussion . 22

3 Comparison of two global algorithms for Minkowski tensor estimation 25
3.1 Minkowski tensors . 25
3.2 Minkowski tensor estimation from n+ 1 parallel sets 26

3.2.1 The Voronoi tensor measures . 26
3.2.2 Estimators of Minkowski tensors from digitisations 27
3.2.3 Implementation in dimension two 28

3.3 Minkowski tensor estimation from n parallel sets 30
3.4 Simulations . 31

3.4.1 Choices of radii . 32
3.4.2 Influence of resolution on the quality of estimators 37

3.5 Discussion . 40

Appendix A Supporting results of chapter two 43
A.1 Definitions and basic results . 43
A.2 Some geometry of r-regular sets . 47
A.3 Configurations of points and regularity in R3 51
A.4 Quasi-manifold properties . 60

Appendix B Technical arguments of Chapter 2 63
B.1 Definition of the wedged reconstruction 63
B.2 The smoothed reconstruction . 65

B.2.1 Loci and annuli . 65
B.2.2 Smoothing of the loci and annuli 66
B.2.3 Smoothing of the centre discs . 68
B.2.4 Smoothing of wedges . 69

B.3 Construction of the vector field . 70
B.3.1 Cubic dilation . 70
B.3.2 A direction field on the cubic dilation 70

xiii

xiv Contents

Appendix C Test sets: Tensors and digitisations 75
C.1 Calculation of tensors . 75

C.1.1 The disc . 76
C.1.2 The annulus . 78
C.1.3 The complement of a Boolean model 80

C.2 Digitisation of the test sets . 81

Appendix D Documentation of Minktensor2D 85
D.1 Worked example: Minktensor2D . 85
D.2 Documentation of the programme . 86

D.2.1 Structure of the .m-files . 86
D.2.2 Lattice distance as unity . 87
D.2.3 Optimising computations of Voronoi cells 88
D.2.4 Calculation of the Voronoi tensor measures 89

D.3 MATLAB-code for Minktensor2D . 92

Bibliography . 107
Index . 111

One

INTRODUCTION

In image analysis, one seeks to extract information about a real world object
given only a discrete representation of it – a digitisation. Its wide range of
applications can be found in fields such as Biology [4, 9], Physics [21],
and Materials Sciences [34, 35]. In his book [30] from 1982, Pavlidis proves
that pixel and cellular reconstructions of regular objects in dimension two

fully capture the topology, provided that the resolution of the digitisation be sufficiently
high. In 2007, Stelldinger et al. sought to prove a similar result on topological as well as
geometric properties of voxel reconstructions in the three-dimensional case for a class of
objects with smooth boundary [38].

Another way of approaching the reconstruction of geometry is through Minkowski
tensors, which are tensor valued generalisations of the Minkowski functionals; see for
instance the excellent book [32] by Schneider for a review. The Minkowski tensors capture
the entire geometry of an object, and in [19], algorithms for the computation of estimators
of the Minkowski tensors from finite point samples, e.g. digitisations, of sets with positive
reach are presented. Moreover, these estimators converge to the Minkowski tensors of the
digitised object as the resolution tends to infinity.

In order to give an introduction to the work presented in this thesis, we give now the
key definitions that we will be using throughout. We equip Euclidean n-space Rn with
the standard inner product 〈 · , · 〉 and induced norm | · |. Letting Z denote the integers,
a (cubic) lattice dL ⊂ Rn is any rotated, translated version of dZn, where d > 0 is called
the lattice distance. An element l ∈ dL is called a sampling point. We adopt a basic
digitisation model of a bounded set A ⊂ Rn by considering the set

A0 = A ∩ dL

of all lattice points in A. Another way to describe the process in which A0 is obtained is
to say that we sample A with dL or, equivalently, that A0 = A ∩ dL is a point sample
of A. In signal processing, A0 is interpreted as the result of an ideal sampler. The discrete
set A0 is called the digitisation of A by dL, and d−1 is called the resolution of the
digitisation. Figures 1.1(a) and (b) illustrate the digitisation process.

The Voronoi cell of x ∈ A0 with respect to the digitisation A0 is defined as

VA0
(x) = {y ∈ Rn | |y − x| ≤ |y − z| for all z ∈ L}.

A Voronoi cell of a sampling point x ∈ A0 is called a Voronoi cell of A0. The Voronoi cells
of A0 have pairwise disjoint interiors, and their (finite) union coincides with Rn. Similarly,
we may choose to consider Voronoi cells with respect to a lattice dL (a locally finite set),

VdL(l) = {y ∈ Rn | |y − l| ≤ |y − z| for all z ∈ dL},(1.1)

where l ∈ dL. When the lattice dL is understood, we shall write V(l) = VdL(l) for brevity.
For l ∈ dL, the set V(l) is an n-dimensional hypercube in Rn with side length d and

centre l. For lattices dL in R2, V(l) can be interpreted as the pixel of l ∈ dL and in
dimension 3 the voxel.

A
d

dL

(a)

A0

(b)

VdL(A)

(c)

Figure 1.1
We sample a set A in
R2 with a lattice dL
(a) in order to obtain
the digitisation A0 (b)
and the black (pixel)
reconstruction VdL(A)

with resolution d−1 (c).

1

2 Introduction

A0 y

VA0 (y)

x

VA0
(x)

(a)

dL

y

VdL(y)

x

VdL(x)

(b)

Figure 1.2
Comparison in dimen-
sion two of Voronoi cells
with respect to a digit-
isation A0 ⊂ dL (a)
and with respect to a
lattice dL (b). Here, y
is an inner point of A0

whereas x is not.

Clearly, VA0
(x) is a hypercube of side length d if and only if the 2n neighbours of x

in the axis directions of dL are all elements of A0. In this case, VA0
(x) = VdL(x), and we

say that x is an inner point of A0. In the Euclidean plane R2, x is an inner point if its
usual four-neighbours are in A0; see Figure 1.2 for an illustration.

Definition. The (digital Voronoi) reconstruction of A by dL is the unionDefinition 1.1

VdL(A) =
⋃
l∈A0

VdL(l)

of Voronoi cells with respect to dL of all sampling points in the digitisation A0 = A∩ dL.

It is thus the collection of sampling points intersecting A that constitutes the digitisa-
tion and their corresponding Voronoi cells with respect to dL that constitute the recon-
struction. We shall simply write VdL(A) = V when A and dL are understood. In dimension
two (respectively three), V is called the pixel (voxel) reconstruction of A. The pixel
reconstruction is also called the Gauss-digitisation [22]. An example of the reconstruction
process of Definition 1.1 in dimension two is illustrated in Figure 1.1.

Definition. Given a digital reconstruction V , a voxel V(l) ⊂ V is called a black voxel.Definition 1.2
A voxel V(l) 6⊂ V is called a white voxel.

The reconstruction V is thus the union of black voxels, as shown in Figure 1.1(c),
and we refer to V = VdL(A) also as the black-and-white reconstruction of A ⊂ Rn.
Another possibility is to consider greyscale images, where one assigns an intensity ranging
from 0 to 1 to each sampling point of the lattice, depending on the overlap of the object
A with the Voronoi cell of the sampling point: Black voxels satisfy V(l) ⊂ A; white voxels
V(l) ∩ A = ∅. Such images are considered for instance in [39]. Working with greyscale
images introduces a new level of challenges, and we shall not consider them here.

The question now is what can be deduced about the topology and geometry of A when we
only have access to its digitisation A∩dL. The answer depends not only on the resolution
of the digitisation but also on the properties of the set A. Sets with positive reach, first
introduced by Federer in [13], are shown in [19] to be of special interest with regard to
the derivation of geometric properties from digitisations.

For a set A ⊂ Rn, let δA : Rn → R be the distance function on Rn defined by

δA(x) = inf{|x− a| | a ∈ A},(1.2)

i.e. δA(x) is the distance from x ∈ Rn to A. A nearest point to x in A is a point y ∈ A
such that |x− y| = δA(x). Let

Unp(A) = {x ∈ Rn | x has a unique nearest point in A}.(1.3)

For r ≥ 0, write

Ar = {x ∈ Rn | δA(x) ≤ r}(1.4)

for the r-parallel set of A. Let pA : Unp(A)→ A be themetric projection, which maps
a point x ∈ Unp(A) to its unique nearest point pA(x) in A. Clearly pA is well-defined.

Introduction 3

Definition. The reach of a set A ⊂ Rn, denoted by Reach(A), is the supremum overDefinition 1.3
all r such that Ar ⊂ Unp(A). If Reach(A) > 0, A is a set with positive reach.

In other words, the reach of A is the supremum over all r ≥ 0 such that for all x ∈ Rn
satisfying δA(x) < r, there exists a unique point a ∈ A nearest x. The class of sets with
positive reach contains all convex sets, and certain non-convex sets are included as well
as we shall see in Example 1.6. A set has infinite reach if and only if it is convex; the non-
trivial implication is given by Motzkin’s theorem; see for instance [32, Theorem 1.2.4].
Our work in Chapter 3 revolves around sets with positive reach.

Closely related to the notion of reach are those of medial axis and exoskeleton. Denote
by ∂A the boundary of A ⊂ Rn. For a set A ⊂ Rn, the medial axis, Ma(A), of A is
the set of points in Rn which do not have a unique nearest point on ∂A. The medial
axis is sometimes also referred to as the topological skeleton of the set. We remark that
Ma(A) is not the complement of Unp(A) defined in (1.3), since every point a ∈ A has
itself as unique nearest point in A and thus belongs to Unp(A), but a point in A may
belong to Ma(A), e.g. the ellipse in R2 has medial axis the line segment connecting its foci.
The complement of Unp(A) ⊂ Rn, on the other hand, is called the exoskeleton of A and
is denoted by Exo(A). The exoskeleton coincides with the intersection of the medial axis
and the complement AC of A. Let Bnr (x) = {y ∈ Rn | |x−y| ≤ r} denote the closed ball in
Rn with radius r > 0 and centre x ∈ Rn. The boundary of the unit ball Bn1 (0) centred at
0 ∈ Rn is the unit sphere Sn−1 = {y ∈ Rn | |y| = 1} ⊂ Rn. We write Br for a closed ball
of radius r when we do not need to specify the centre, and the dimension is understood.
Note that x ∈ Rn belongs to Exo(A) if and only if Bns (x) with radius s = δA(x) has more
than one point of intersection with cl(A).

It would be natural to require that the resolution of a digitisation guarantee that no
(connected) components of the digitised object go undetected by sampling. This is not
in general ensured for sets with positive reach due to the possible existence of lower
dimensional parts. We could circumvent this problem by requiring that our objects be
topologically regular, which means that they are equal to the closure of their interior. In this
case, letting int(A) = A \ ∂A denote the interior of A and cl(A) = A ∪ ∂A the closure,
Reach(A) = Reach(int(A)) = Reach(cl(A)). Topological regularity will be preconditioned
in Chapter 3. Another possibility, and the one we shall make use of in Chapter 2, is to
consider r-regular sets. We will give two equivalent definitions of r-regularity.

Definition. A closed set A ⊂ Rn is r-regular for r ∈ (0,∞) if one of the followingDefinition 1.4
equivalent statements applies:

(i) At any point x ∈ ∂A, there exist two closed balls Br ⊂ A and B′r ⊂ cl(AC) with
radius r such that Br ∩B′r = {x};

(ii) The sets A and cl(AC) are equal to unions of closed balls with radius r.

Notice that given any r′ such that 0 < r′ ≤ r, A is also r′-regular. That the two
statements of Definition 1.4 are equivalent is formulated as Proposition A.1, and the proof,
due to du Plessis, is presented in Section A.1 of Appendix A.

Example. If A ⊂ Rn is r-regular, A has reach at least r and, in fact, so does cl(AC).Example 1.5
For consider any point y ∈ Rn with s = δ∂A(y) < r, i.e. y is an element of the interior of
at least one of the r-parallel sets Ar or (AC)r; see (1.2) for the definition of δ∂A and (1.4)
for the definition of r-parallel sets. Let x ∈ ∂A be a nearest point on ∂A to y. Then there
exist Br ⊂ A and B′r ⊂ cl(AC) such that Br ∩ B′r = {x}, and y is an element of one of
these balls. Then the ball Bs(y) is contained in either Br or B′r, and Bs(y)∩∂A = {x}, so x
is the unique nearest point on ∂A to y. Taking supremum over s < r yields the result.

Example. From Definition 1.4(i), it is clear that the ball Br is itself r-regular. FurtherExample 1.6
examples and counter-examples of sets with positive reach and regularity are given in
Figure 1.3 for four objects in R3.

A torus T 3 ⊂ R3 is constructed by identifying opposite sides of a rectangle as shown
in Figure 1.4. Let one pair of sides have length a and the other b, see Figure 1.4(a), and
assume that a ≥ b. Identify first the sides of length a. We then obtain an open cylinder of
length a; see Figure 1.4(b). Finally, we identify the sides with length b, which are now rings;
see Figure 1.4(c). This yields a torus T 3. We can fit a ball of circumference b inside T 3.

4 Introduction

(a) (b) (c) (d)

Figure 1.3
The non-convex solid
torus in (a) has positive
reach r > 0 and is r′-
regular for some r′ ≤ r;
the convex solid cone
in (b) has infinite reach
but is not r-regular; the
non-convex solid partial
cone in (c) has reach
0, and the smoothed
non-convex solid partial
cone in (d) has pos-
itive reach but is not
r-regular.

Such a ball has radius r = b/(2π). The radius of a circle with circumference a is a/(2π).
The radius of the hole in the torus is r′ = a/(2π)− b/(2π) = (a− b)/(2π). Consider now
the solid version T 3 of T 3. By Definition 1.3, Reach(T 3) = r′, and Definition 1.4 states
that for r′′ = min{r, r′}, T 3 is r′′-regular.

A solid cone is convex, and all convex sets have infinite, and thus positive, reach.
It is not r-regular for any r > 0 since we cannot approximate the top of the cone with
an r-ball, or, equivalently, the complement of the solid cone does not have positive reach
since the medial axis, coinciding with the central axis of the cone, intersects the top
of the cone. If we intersect the solid cone with a cube which has one edge coinciding
with the central axis of the cone as shown in Figure 1.3(c), we obtain a non-convex set,
a partial cone, which does not have positive reach. The dashed line in the figure indicates
the medial axis or, equivalently, the exoskeleton. If we round off the edges of the partial
cone and cut off the top, we obtain a solid object with finite reach; see Figure 1.3(d).

The notion of r-regularity was introduced independently by Pavlidis [30, Definition 7.4]
and Serra [36, Definition p. 144]. In our definition, r-regular sets are compact. This con-
vention is line with the definition of Serra, and it means that if A ⊂ Rn is an r-regular set,
the same applies to the closure of its complement, cl(AC). In [38, Definition 1], Stelldinger
et al. define r-regularity as a property related to the boundary of a set; they only make
assumptions on the interiors of the sets which it bounds. Incidentally, Stelldinger and
Köthe also assume compactness in [37, Definition 3].

Initially inspired by [38], the author and main supervisor, Andrew du Plessis, began work
on an improved voxel reconstruction of r-regular sets in dimension three with the aim
of reconstructing geometric properties. Reconstruction of the geometry proved extremely
challenging, so focus was moved instead to the reconstruction of topology. This work is
presented in Chapter 2 and ultimately resulted in Theorem 2.14 which states that, given a
sufficiently high resolution, the improved voxel reconstruction introduced in Definition 2.13
is homeomorphic as well as ambient isotopic to the underlying object. This is a stronger
version of [38, Theorem 16] with an improved restriction on the resolution equal to just
half of that required in [38]. The research presented in Chapter 2 has not been published
prior to the submission of this thesis, but a paper is in preparation [7].

Concurrently with the above-mentioned work in dimension three, Hug, Kiderlen, and
Svane were preparing the paper [19] which concerns the reconstruction of geometry of sets
with positive reach in Rn, for n any positive integer, via computation of Minkowski tensors.
Estimators of the Minkowski tensors of finite point samples, e.g. digitisations, are obtained
by solving systems of linear equations. The estimators converge as the resolution tends
to infinity to the Minkowski tensors of the original object; the algorithms are said to be
multigrid convergent. Due to obvious similarities to our original goal of reconstructing geo-
metry, Markus Kiderlen invited the author to partake in their project by implementing

a

a

b b

(a) (b) (c)

Figure 1.4
The torus is obtained
by identifying opposite
sides of a rectangle
as indicated by the
arrows in (a): First, we
identify two sides to
obtain an open cylinder
as illustrated in (b);
then we identify the
two remaining sides
to obtain a torus as
illustrated in (c).

Introduction 5

algorithms in MATLAB in dimension two. Chapter 3 contains a revised version of our
electronic preprint [8] on this research including the theory of the paper [19], the imple-
mentations of the suggested algorithms in dimension two, and results from simulations
using these programmes on data sets.

Chapters 2 and 3 can be read independently and both make use of the concepts related
to digitisation introduced above. Appendix A is a copy of the notes [11] by du Plessis,
containing results utilised by Chapter 2, followed by a proof of one of the key results
on which the research in Chapter 2 is based. Appendix B serves to expand on certain
concepts that, for the sake of readability, are introduced less rigorously in Chapter 2.
Similarly, Appendix C contains computations of tensors not enclosed in Chapter 3. Finally,
Appendix D presents documentation of the MATLAB-code for the programme Mink-
tensor2D derived from Chapter 3.

The notation of the appendices builds on that introduced in the three main chapters.
The intention is for the reader to first savour the general picture, which is corroborated
mainly by figures and examples, from the three main chapters of the thesis and thereupon
consult the appendices for the full mathematical details.

Two

DIGITALRECONSTRUCTIONOF
r-REGULARSURFACES

The structure of this chapter is as follows: In Section 2.1, we motivate the
choice of r-regular sets as our focus by stating a theorem on 1:1 correspond-
ence between the components of r-regular sets and their reconstructions
given a sufficiently fine resolution. The possible configurations of black and
white voxels of reconstructions are then illustrated. Section 2.2 contains

the proof of the theorem on 1:1 correspondence by a series of results concerning the re-
construction. In Section 2.3, the notion of quasi-manifolds is defined, and we show that
for slightly finer resolutions than that required in Section 2.1, reconstructions of r-regular
sets are quasi-manifolds. This reduces the number of possible voxel configurations, which
leads to the definition of the wedged reconstruction. The main theorem of this chapter
now states that the wedged reconstruction is homeomorphic, indeed ambient isotopic,
to the r-regular set. The proof is outlined and is shown to depend on the construction
of a smoothed reconstruction and a vector field transverse to its boundary. Section 2.4
extends the 1:1 correspondence of components of object and reconstruction to the wedged
reconstruction. Finally, in Section 2.5, the smoothed reconstruction and the vector field
needed to prove the main theorem are constructed.

2.1 THEVOXELRECONSTRUCTION

Previous work on the two-dimensional problem of reconstructing topology, e.g. [30], [36],
suggests that the particular class of r-regular sets is of special interest. The r-regular sets
in dimension three are the focus of [38] which first inspired the work presented in this
chapter. Definition 1.4 of r-regular sets is stated in full generality, but in this chapter,
we shall consider r-regular sets in R3 exclusively.

In [38], Stelldinger et al. consider r-regular sets and their voxel reconstructions in-
troduced in Definition 1.1. Two sets in R3 are called r-homeomorphic if there exists a
homeomorphism f between them such that |f(x)−x| ≤ r for all x ∈ R3. [38, Theorem 16]
then states that, under certain assumptions on a voxel reconstruction V of an r-regular
set A, V and A are r-homeomorphic. Their results are discussed in Section A.2. In this
chapter, we continue the work in [38] with a focus on r-regular sets for the reconstruction
of topology in dimension three, as we wish to show a stronger version of [38, Theorem 16],
namely Theorem 2.14, to be stated in Subsection 2.3.2.

The choice of r-regular sets as our focus should be motivated by the following theorem,
which is a rephrasing of [37, Theorem 1].

Theorem. If d
√

3/2 < r, there is a 1:1 correspondence between components of anTheorem 2.1
r-regular set A ⊂ R3 and components of its voxel reconstruction V = VdL(A) by a lat-
tice dL.

The diameter of the voxels V(l) defined in (1.1) of the lattice dL is d
√

3, so Theorem 2.1
states that as long as half the diameter of the lattice is strictly smaller than r, the compo-
nents of the r-regular set and those of the voxel reconstruction are in 1:1 correspondence.

We require that the resolution of the digitisation guarantee that no components of the
digitised object go undetected by sampling. For r < d

√
3/2, the r-regular ball B3

r has
diameter smaller than that of a d-lattice, which means that the sampling points of the
lattice may not intersect B3

r . This would result in an empty reconstruction; see Figure 2.1.
Hence for d even slightly bigger than the bound given in Theorem 2.1, i.e. for a lattice
even slightly coarser, the result will not hold, so d

√
3/2 is the best possible lower bound

on r if sampling is to detect all components. We shall see in the next section, however,
that this 1:1 correspondence between components does not necessarily imply equivalence
of topology between a set and its reconstruction. We will prove Theorem 2.1 in Section 2.2.

7

8 Digital reconstruction of r-regular surfaces

Figure 2.1
For small resolutions,
sampling may not de-
tect an object. The
ball in this figure can
have either no digitisa-
tion (left) avoiding all
sampling points or one
black voxel as its di-
gitisation (right) when
it intersects the cor-
responding sampling
point.

Convention. For the remainder of this chapter, we let A ⊂ R3 be an r-regular set. WeConvention
denote by V the voxel reconstruction of A with respect to a lattice dL, and r is assumed
to be greater than d

√
3/2.

We will now take a closer look at the composition of V . Assume for now that no
sampling points l ∈ dL lie on ∂A. We shall see later that this is in fact not a restriction.

An example of a voxel reconstruction of the r-regular ball Br is shown in Figure 2.2.
A voxel reconstruction V consists of a number of vertices, edges, and faces, referred
to here also as the k-cells of V for k = 0, 1, 2 respectively, namely those of the black
voxels V(l) ⊂ V .

Definition. The k-cells of V which are contained in ∂V are called the boundary cellsDefinition 2.2
of V : the boundary vertices, edges, and faces respectively for k = 0, 1, 2.

A black and a white voxel as defined in Definition 1.2 may have a number of common k-
cells; the boundary cells of V . In other words, the boundary of V is the common boundary
of the union of black voxels and the union of white voxels, so boundary cells are both black
and white. The reconstruction V is thus the union of black voxels, and the union of white
voxels is equal to V C ∪ ∂V .

Definition. Two voxels are called k-cell adjacent if they share a k-cell for k = 0, 1, 2Definition 2.3
and adjacent if they share any k-cells. If two voxels are adjacent but not face-adjacent,
their common cells are called critical cells.

The boundary ∂V should be a first approximation to ∂A. Consider a union K in R3

of 2-by-2-by-2 voxels of a lattice dL. All eight voxels have a common 0-cell, the centre
of K. There are now 28 = 256 distinct ways to assign a black or a white colour to each
voxel in K. These can be reduced to just 14 unique choices [24], up to rotational and
reflectional symmetry and complementarity (replacing white voxels with black voxels and
vice versa), which we will refer to as the possible voxel configurations. The 14 voxel
configurations are depicted as diagrams in Figure 2.3. In the figure, each configuration is
assigned a number (n), 1 ≤ n ≤ 14, and is henceforth referred to simply as (n) if specified
individually. We have chosen to illustrate those configurations which contain the smallest
number of black voxels over their complementary configurations, since we will later present
them as three-dimensional voxel images built from black and white voxels. These are more
easily interpreted when fewer black voxels are included.

Figure 2.2
The black voxels con-
stitute a voxel recon-
struction of the blue
ball.

Components of the voxel reconstruction 9

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14)

Figure 2.3
Diagrams of the 14 dis-
tinct configurations of
black and white voxels
up to rotational and
reflectional symmetry
and complementarity.
The balls represent the
sampling points of the
eight voxels and their
colour that of the cor-
responding voxel.

2.2 COMPONENTSOFTHEVOXELRECONSTRUCTION
We return now to the proof of Theorem 2.1. Our proof follows that of [37, Theorem 1] to
a great extent but is simplified since we treat only the three-dimensional case.

For a topological space X, we introduce the set C(X) of non-empty components of X,
and we use the convention that C = C(A). Let d

√
3/2 < s < r and set

X	(s) = X	 = {x ∈ X | δ∂X(x) > s};(2.1)

the set of points x ∈ X with distance greater than s to the boundary of X, where δ∂X
is the function defined by (1.2). In Mathematical Morphology, X	 is called the s-erosion
of X. Erosion of X by s corresponds to removing all points from X which are contained
in a closed ball Bs with centre on ∂X;

X	 = X \
⋃

x∈∂X

Bs(x).(2.2)

Now let A′ ∈ C be a non-empty component of A and let B denote the set of sampling
points in dL whose voxels intersect A′	,

B =
{
l ∈ dL

∣∣V(l) ∩A′	 6= ∅
}
.(2.3)

Lemma. Let A′ ∈ C and let B be defined as in (2.3). Then the intersections A′∩dL andLemma 2.4
A′ ∩B are non-empty.

Proof. Since A is r-regular, so is the component A′, so A′ contains a closed ball Br(x) for
some x ∈ R3. Since s < r, x is an element of A′	 defined in (2.2), implying that A′	 is
non-empty. We let l ∈ dL denote the sampling point satisfying x ∈ V(l). If there is more
than one such sampling point, l is chosen arbitrarily. By (2.3), l is then an element of B,
and it satisfies |x− l| ≤ d

√
3/2 < s. A sampling point l which is closer than s to a point

in the s-erosion of A′ is also an element of A′. Hence l ∈ A′ ∩ dL and l ∈ A′ ∩B. �

As a consequence of Lemma 2.4, sampling of A with dL detects all components of A.

Lemma. Any pair of voxels V(l) and V(l′) with l, l′ ∈ B is connected by a chain ofLemma 2.5
face-adjacent voxels whose sampling points are also in B.

Proof. Since A′ is r-regular and s < r, A′	 is a non-empty open connected set. This
means the sets int(V(l)) ∩ A′	 and int(V(l′)) ∩ A′	 are non-empty, so we choose points
b in the former and b′ in the latter. The set A′	 is path-connected since it is an open
connected set in Euclidean 3-space. We can thus find a path j : [0, 1] → A′	 such that
j(0) = b and j(1) = b′. Without loss of generality, we may assume that j is smooth and,

10 Digital reconstruction of r-regular surfaces

by transversality, that it intersects voxel boundaries only in the interior of the 2-cells of
the voxels. The path j enters and leaves any voxel via the compact 2-cells a finite number
of times. We define an ordering on the voxels as follows: Let V(l) or V(l′) be the first
voxel V1 which j enters, and let the other one be the last voxel Vn for some n ∈ N. The
second voxel, V2, is the one which j enters after leaving V1 the last time. Iteratively, Vk is
the voxel which j enters after leaving Vk+1 the last time. The iteration terminates once j
enters Vn the first time. This order defines a chain of face-adjacent voxels, and since j is
contained in A′	, the corresponding sampling points are elements of B. �

Lemma. For A′ ∈ C, each sampling point in A′ ∩ dL′ is either an element of B orLemma 2.6
connected to one such by a chain of face-adjacent voxels with sampling points in A′.

Proof. Let l ∈ dL be an element of A′. If δ∂A′(l) is greater than r, l is an element of A′	
because s < r, and hence l ∈ B. If not, consider any ball Br(o) ⊂ A′ tangent to ∂A′
and containing l, where o ∈ R3. Such a ball exists due to r-regularity of A′ and because
δ∂A′(l) ≤ r. Clearly δ∂A′(o) = r, and since s < r, o is an element of A′	. We introduce a
coordinate system with o as the origin and axes parallel to the axis directions of dL. Let
l have coordinates (x, y, z). Consider the six voxels with samplings points at (x± d, y, z),
(x, y ± d, z), and (x, y, z ± d). These are all the face-adjacent voxels to V(l). They are
at least as far from o as l if and only if |x|, |y|, |z| ≤ d/2. Thus, either o is contained
in V(l), i.e. l ∈ B, or one of the adjacent voxels has sampling point (x′, y′, z′) closer to o.
In the latter case, (x′, y′, z′) is clearly also contained in Br(o), and we repeat the above
procedure for (x′, y′, z′). Iterating this process, at some step of the iteration, we will arrive
at a sampling point l′ which is at least as close to o as any other sampling point, i.e. o is
contained in V(l′). This means that l′ is an element of B. We thus obtain a finite chain
of face-adjacent voxels from V(l) to V(l′), l′ ∈ B, all with sampling points in the compact
set B̄r(o) ⊂ A′. �

Equipped with these three lemmas, we can prove the following proposition.

Proposition. The voxel reconstruction VdL(A′) = V (A′) of A′ ∈ C is connected.Proposition 2.7

Proof. Lemma 2.4 ensures that the voxel reconstruction process maps any component
A′ ∈ C to V . We wish to show that A′ is mapped to just one component V ′ ∈ C(V). Pick
any sampling point l in A′. By Lemma 2.6, l is either itself in B or connected to a sampling
point that is by a chain of face-adjacent voxels with sampling points in A′. All sampling
points in B are connected by a chain of face-adjacent voxels with sampling points in
B ⊂ A′ by Lemma 2.5, so all sampling points in A′ are connected by face-adjacent voxels
with sampling points in A′. Hence V (A′) is connected. �

Proposition. The voxel reconstruction V of A satisfiesProposition 2.8

V =
⋃
A′∈C

V (A′),(2.4)

and this union is disjoint

Proof. It should be clear that (2.4) holds when the union is not assumed to be disjoint: by
Proposition 2.8, the sets V (A′) such that A′ ∈ C are the components of V , and V is exactly
the union of its components. We wish to prove that, given A′, A′′ ∈ C, their respective
voxel reconstructions V (A′) = V ′ and V (A′′) = V ′′ do not intersect. The boundaries ∂A′
and ∂A′′ are compact, so there exist points x ∈ ∂A′ and y ∈ ∂A′′ which minimise |x− y|
(these points are not necessarily unique). If we fix x ∈ ∂A′, this corresponds to minimising
the distance function ∂A′′ → R, y 7→ |x−y|, which means y and x lie on a normal of ∂A′′.
Then the ball B|x−y|(m) of radius |x − y| and with centre the midpoint m of the line
segment from x to y is tangent to ∂A′′ at y. By an analogous argument for y ∈ ∂A′′ and
the distance function ∂A′ → R, x 7→ |x − y|, B|x−y|(m) is tangent to ∂A′ at x. Due to
r-regularity of A′ and A′′, B|x−y|(m) has radius at least r. Thus |x− y| ≥ 2r.

Consider now two voxels V(l) and V(l′) with l ∈ A′ and l′ ∈ A′′. By the above argument,
|l− l′| ≥ 2r. The maximal distance between sampling points of adjacent voxels is equal to
the diameter of a voxel, d

√
3. Since d

√
3 < 2r, V(l) and V(l′) cannot be adjacent. Hence

V ′ and V ′′ do not intersect, so the union in (2.4) is disjoint. �

Topology of reconstructions 11

(a) (b) (c)

Figure 2.4
Allowed combinations
up to rotational and
reflectional symmetry
and complementarity
of configurations (8)
and (9) of a voxel re-
construction. (a) is (8)
paired with its own
complement, (b) is (9)
paired with its own
complement, and (c)
is (9) paired with the
complement of (8).

This result now finally yields Theorem 2.1 which we recall here for convenience.

Theorem 2.1. There is a 1:1 correspondence between components of A and components
of V .

Proof. From Proposition 2.8, we see that each A′ ∈ C corresponds exactly to its unique
reconstruction V (A′) ∈ C(V), and all elements of C(V) are realised as the reconstructions
of elements of C(A′), thus yielding a 1:1 correspondence between components of A and
those of V . �

It would now be desirable to obtain a result similar to Theorem 2.1 for the components
of ∂A and ∂V . However, such a result cannot be established unless the boundaries are
manifolds; a fact which, along with considerations of the topology of the voxel reconstruc-
tion, will motivate the introduction of an alternative reconstruction.

2.3 TOPOLOGYOFRECONSTRUCTIONS
Analogously to the terminology for the corresponding sets V and A, we will refer to ∂V
as the reconstruction of ∂A. Since we are interested in the preservation of topology in
reconstructions, the reconstruction process must preserve the components of the under-
lying set. By Theorem 2.1, this is ensured for our choice of voxel reconstruction since we
require that d

√
3/2 < r. However, this choice of resolution does not imply the existence of

a homeomorphism between ∂A and ∂V . As A is r-regular, its boundary is a 2-dimensional
C1 manifold by Proposition A.7(iv). Manifolds in R3 of dimension 2 are also called sur-
faces, and we will refer to boundaries of r-regular sets as r-regular surfaces. Contrarily,
∂V is not generally a manifold: configurations (8)–(14) do not have manifold boundary
since they contain critical cells; see Definition 2.3. The voxel reconstruction is therefore
too coarse for the reconstruction of topology. In Definition 2.13, we suggest a new digital
reconstruction, which is ambient isotopic to the original object.

2.3.1 QUASI-MANIFOLDPROPERTIES

Restricting our attention to voxel reconstructions of r-regular sets with d · 0.95571 < r
turns out to reduce the number of possible configurations in the voxel reconstruction.

Definition. A voxel reconstruction is a quasi-manifold (with boundary) if it satis-Definition 2.9
fies:

(i) The only configurations of black voxels (up to rotational and reflectional symmetry
and complementarity) are (1)–(10) of Figure 2.3;

(ii) Configurations (8) and (9) are only allowed when paired with their own or each
other’s complement as illustrated in Figure 2.4;

(iii) Any pair of black voxels in the same component of the voxel reconstruction is con-
nected by a chain of face-adjacent black voxels.

To give a better picture of the topology and three-dimensional structure of a quasi-
manifold, voxel configurations (1)–(10) are depicted in Figure 2.5 with black and white
(transparent) voxels.

Theorem. Whenever A is an r-regular set with d · 0.95571 · · · < r, VdL(A) is a quasi-Theorem 2.10
manifold.

12 Digital reconstruction of r-regular surfaces

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 2.5
The ten possible con-
figurations (up to rota-
tional and reflectional
symmetry and com-
plementarity) of black
and white voxels in a
quasi-manifold.

That V satisfies Definition 2.9(i) and (ii) is proved in Section A.4 by use of results
from [11]. The proof of Proposition 2.7 yields a stronger version of Definition 2.9(iii),
namely with the relaxed condition d

√
3/2 < r.

Since we are working with d
√

3/2 < r, it would be desirable that Theorem 2.10 hold
for this relaxed assumption on the radius of regularity. It seems that this is the case, but
we have not so far been able to prove it.

Conjecture. Whenever A is an r-regular set with d
√

3/2 < r, the voxel reconstructionConjecture 2.11
VdL(A) is a quasi-manifold.

On the other hand, what we can show is that all fourteen configurations of Figure 2.3
can occur for any smaller choice of radius of regularity.

Proposition. If A is an r-regular set and V the voxel reconstruction of A with respectProposition 2.12
to a lattice dL such that d

√
3/2 < r, all voxel configurations illustrated in Figure 2.3

are possible.

Proof. Let K be a union of 2-by-2-by-2 voxels in R3 and denote by x ∈ R3 the centre of K.
Set s = d

√
3/2 and let A be the ball Bs(x). The boundary of A intersects all centres of the

eight voxels in K, and A is s-regular. At any voxel centre l, we may use a smooth bump
function to move the boundary of A slightly away from l to render the corresponding voxel
V(l) either black or white. Such a small manipulation of A changes the curvature radius
only a little, so the resulting object is s′-regular for some s′ < s; see also Proposition A.8.
In this way, we can determine the colour of any of the eight voxels in K, and hence any
configuration of black and white voxels is possible for a radius of regularity just slightly
smaller than s = d

√
3/2. �

The quasi-manifold property of V is of great interest since we can construct a manifold
from the quasi-manifold in a canonical way and such that this manifold is ambient isotopic
to the underlying r-regular set.

Convention. For the remainder of this chapter, the voxel reconstruction V is assumedConvention
to be a quasi-manifold.

The next subsection introduces a manifold, the wedged reconstruction, based on V .

2.3.2 WEDGEDRECONSTRUCTIONOF r-REGULARSURFACES

As should be clear from Figure 2.5, if V contains any of (8)–(10) where critical cells occur,
∂V is not a manifold. The figure also illustrates the fact that critical cells are, in particular,
boundary cells. We aim to modify V such that the boundary becomes a surface. To this
end, we introduce a wedging of the critical edges and vertices through which we obtain
the wedged reconstruction of A.

Consider the two configurations containing critical edges, (8) and (9). By Defini-
tion 2.9(ii), these are only allowed to occur in certain pairs, namely the ones illustrated
in Figure 2.4. When defining a wedging of the voxel reconstruction, we thus consider
these three 2-by-2-by-3 configurations. Black wedges are inserted into the critical edges as

Wedged reconstruction of r-regular surfaces 13

〈1〉 〈2〉 〈3〉 〈4〉 〈5〉

Figure 2.6
Wedging of the crit-
ical cells in a quasi-
manifold. Each config-
uration 〈1〉–〈4〉 hides
a black voxel in the
far lower corner; com-
pare with the diagram
configurations of Fig-
ure 2.4.

illustrated in Figure 2.6, where we have also included the complement, 2.6〈4〉, of the config-
uration in Figure 2.4(c) for the sake of completeness. We denote the wedged configurations
individually by 〈1〉–〈4〉 as indicated in the figure. The wedging of (10), which contains a
critical vertex, is defined by insertion of a white wedge into the corners of the two black
voxels. This new configuration is denoted by 〈5〉 and illustrated in Figure 2.6 as well.

The wedges introduced here are defined formally in Definition B.1 of Appendix B. In
our definition of the wedging process, we have made the choice of adding black wedges
to the configurations with critical edges, but we may as well remove black wedges or,
equivalently, add white wedges. With 〈5〉, however, we do not have a similar freedom of
choice. Notice also that subsequent to wedging, it is no longer meaningful to talk about
〈1〉 and 〈3〉 respectively 〈2〉 and 〈4〉 as complementary configurations. We can still talk
about the complement of 〈5〉, which is obtained in the usual way, i.e. by reversing the
black and white colours (also of the wedges).

Definition. The wedged (voxel) reconstruction W = WV (A) of A is obtained fromDefinition 2.13
V by wedging critical edges and vertices of configurations (8)–(10) of V using the wedges
given by Definition B.1.

Since the wedged reconstruction is obtained from a voxel reconstruction which in turn
depends on the choice of lattice, we say that W is the wedged reconstruction of A with
respect to dL.

Convention. For the remainder of this chapter, W denotes the wedged reconstruction ofConvention
A with respect to dL.

The motivation for introducing the wedged reconstruction is the main theorem of this
chapter.

Theorem. W is homeomorphic to A. Moreover, there exists an ambient isotopy betweenTheorem 2.14
W and A.

The notion of ambient isotopy will be described in the following subsection, where we
also outline the proof of the theorem. As mentioned in Section 2.1, Theorem 2.14 is a
stronger version of [38, Theorem 16] which assumes d

√
3 < r; we state the theorem for

just half of their required radius of regularity. For the increased bound d · 0.95571 < r,
where we remark that

√
3/2 < 0.95571 <

√
3, the quasi-manifold property of V is ensured

by Theorem 2.10, but if one can dismiss the existence of (11)–(14) in Figure 2.3, it suffices
that d

√
3/2 < r.

We shall refer to ∂W as the wedged reconstruction of ∂A. Now, Theorem 2.1 was
stated for A and its voxel reconstruction V . What we in fact need is the same result for
the wedged voxel reconstruction and for the boundaries ∂A and ∂W .

Theorem. There is a 1:1 correspondence between components of A and componentsTheorem 2.15
of W . The underlying voxel reconstruction V need not be a quasi-manifold.

We prove this theorem in Section 2.2 and use it to argue that a similar result holds
when A and W are replaced by their boundaries ∂A and ∂W :

Corollary. There is a 1:1 correspondence between components of ∂A and componentsCorollary 2.16
of ∂W .

14 Digital reconstruction of r-regular surfaces

Figure 2.7
The unknot (left) is
not ambient isotopic to
the trefoil knot (right),
since one cannot be
twisted into the other
without breaking the
loop.

As opposed to Theorem 2.15, for the corollary, we need the underlying voxel recon-
struction to be a quasi-manifold, since the proof relies on ∂W being a manifold as we shall
see in Section 2.4 where we prove these results. We continue now with the examination of
the topological properties of W .

2.3.3 TOPOLOGICALEQUIVALENCE

For the results in this subsection, we need some preparatory topology. For a more thor-
ough review, the reader may consult for instance [23]. For M and N smooth manifolds,
a diffeomorphism is a smooth invertible map M → N with smooth inverse. A map
f : N → M is a smooth immersion if its differential dfp : TpM → Tf(p)N is injective
at each point p ∈ M . A smooth immersion is called a smooth embedding if it is a
homeomorphism onto its image. The manifold N is said to be a smooth submanifold
of M if N ⊂M and the inclusion N ↪→M is a smooth embedding. Smooth submanifolds
are sometimes also called embedded or regular submanifolds. Smooth submanifolds are
precisely the images of smooth embeddings: if f : N → M is an embedding, the image of
f has the structure of a smooth submanifold. For any topological space X, we let IdX
denote the identity mapping on X, i.e. IdX(x) = x for all x ∈ X.

Definition. A smooth isotopyDefinition 2.17

F : N × [0, 1]→M, F (x, t) = Ft(x),

is a smooth map such that for each t ∈ [0, 1], the map Ft : N →M is a smooth embedding.
Smooth submanifolds A, B ⊂ M are called (smoothly) isotopic in M if there is a
smooth isotopy F : A× [0, 1]→M satisfying F0 = IdA and F1(A) = B.

A smooth ambient isotopy of M is a smooth map F : M × [0, 1] → M such that
F0 = IdM and for each t ∈ [0, 1], the map Ft : M → M is a diffeomorphism. The map F
has compact support if there exists a compact subset K ⊂ M such that Ft(x) = 0 for
all (x, t) ∈ (M \K) × [0, 1]. Smooth submanifolds A, B ⊂ M are (smoothly) ambient
isotopic in M if there exists a smooth ambient isotopy F : M × [0, 1] → M satisfying
F1(A) = B.

Whereas an isotopy is a deformation from one embedded object to another which
distorts the embedding itself, an ambient isotopy distorts the entire ambient space. An
intuitive picture of this can be given using knots: an ambient isotopy is one that deforms
one knot into another without breaking it. Thus, the knots depicted in Figure 2.7 are
examples of non-ambient isotopic knots.

Say we obtain an ambient isotopy F between ∂A and ∂W in ∂A × [−1, 1], where
∂W ⊂ ∂A × [−1, 1]. We wish to generalise F to an ambient isotopy between A and W .
This is achieved by observing that Ft is the identity map IdR3 near the boundary of
∂A × [−1, 1], which follows from the considerations in [16, Chapter 8.1]. We can thus
define a continuous piecewise map Gt : R3 → R3 by

Gt(x) =

{
x if x ∈ R3 \ (∂A× [−1, 1]);

Ft(x) if x ∈ ∂A× [−1, 1].

Note that IdR3(A \ (∂A × (−1, 1))) = W \ (∂A × (−1, 1)). Furthermore, for t ∈ [0, 1],
the diffeomorphisms Ft map ∂A to ∂W , AC ∩ (∂A × [−1, 1]) to WC ∩ (∂A × [−1, 1]),
and A ∩ (∂A × [−1, 1]) to W ∩ (∂A × [−1, 1]). These properties related to Gt are illus-
trated in Figure 2.8. Thus Gt yields an ambient isotopy between A and W , which proves
Theorem 2.14.

In Definition 2.27, surfaces T−1 and T1, diffeomorphic to ∂A × {−1} and ∂A × {1}
respectively, and a set T[−1,1], diffeomorphic to ∂A × [−1, 1], are introduced. Our goal

Topological equivalence 15

∂A

∂A
×
{−

1}
∂A
×
{1
}AC

A

∂A
×
{1
}WC

W

∂A
×
{−

1}
∂W

Figure 2.8
The map Gt maps
the blue (respectively
green) parts of the
left-hand figure to the
blue (green) parts of
the right-hand figure.
The blue (green) do-
main inside the tube
∂A × [−1, 1] on the left
is mapped to the blue
(green) domain inside
∂A × [−1, 1] on the
right.

now is to prove that there exists an ambient isotopy between ∂A and ∂W in T[−1,1], thus
proving Theorem 2.14.

Proposition. Suppose that ∂A and ∂W are connected. Then ∂W is homeomorphicProposition 2.18
to ∂A. Moreover, there exists an ambient isotopy between ∂A and ∂W in T[−1,1].

This proposition is established by a series of results which we state without proof in
the following in order to provide a clearer overview. The proofs will follow in subsequent
sections. Notice also the assumption on connectivity of the boundaries. In fact, we need
the statement for general compact surfaces; a matter which will be addressed in the proof
of Proposition 2.18.

For connected closed surfaces S embedded in R3, the Euler characteristic completely
determines the topological properties: S is homeomorphic to a sphere with g handles for
some unique integer g ≥ 0 called the genus of S; see Figure 2.9. The genus thus classifies S;
this is commonly referred to as surface classification. The Euler characteristic, denoted
by χ, determines g by the formula χ(S) = 2− 2g [16].

Definition. Let X ⊂ R3 and let S be a surface in R3. We say that S separates X ifDefinition 2.19
X \ S has exactly two components and these have common boundary S ∩X in X.

We have the following theorem which is presumably well-known and which we prove
in Subsection 2.5.1.

Theorem. Let M be a compact smooth n-manifold without boundary, and let N ⊂Theorem 2.20
M × (−1, 1) be a compact smooth n-manifold without boundary such that N separates
M×[−1, 1], i.e.M×[−1, 1]\N is a disjoint union of two open sets U, V withM×{−1} ⊂ U
and M × {1} ⊂ V .

Let v be a continuous nowhere zero vector field on M × [−1, 1] which points inwards
on M × {−1} and outwards on M × {1} and is transverse to N . Then

χ(N) = χ(M).

We remark that we do not need the superset of N to be a product of M and (−1, 1)
as long as we can find a set diffeomorphic to such a product.

Assume for now that ∂A is connected. We then wish to apply Theorem 2.20 to ∂A and,
ideally, the boundary of W , which we will prove is also connected. However, ∂W is not a
smooth manifold. In Definition 2.29, we introduce the smoothed wedged voxel reconstruc-
tion ZW (A) = Z of A. The smoothed reconstruction Z is obtained by smoothing W .
This results in a reconstruction which has smooth manifold boundary homeomorphic
to ∂W . We prove in Proposition 2.30 that ∂Z separates the set T[−1,1] introduced in
Definition 2.27. Finally, in Definition 2.32, we introduce a vector field ξ satisfying the

Figure 2.9
A sphere with g handles
in R3 is the unit sphere
S2 for g = 0 and the
g-fold torus Tg for
g ≥ 1. The picture
shows a sphere with
three handles.

16 Digital reconstruction of r-regular surfaces

remaining prerequisites of Theorem 2.20. It now follows that χ(∂A) = χ(∂Z), so due to
surface classification of compact connected orientable surfaces, ∂A is homeomorphic to ∂Z,
which was again homeomorphic to ∂W . This proves the first part of Proposition 2.18.

To obtain an ambient isotopy between ∂A and ∂W , we apply the following proposition.

Proposition (Chazal and Cohen-Steiner, 2005 [5]). Let M and N be compact ori-Proposition 2.21
entable surfaces such that:

◦ the surface M is homeomorphic to N ;

◦ the surface N is a subset of M × [−1, 1];

◦ the intersections N ∩ (M × {−1}) and N ∩ (M × {1}) are empty;

◦ the set (M × [−1, 1]) \N has two connected components; one containing M × {−1}
and the other one containing M × {1}.

Then N is isotopic to M in M × [−1, 1].

The proof can be found in [5]. We thence obtain an isotopy between ∂A and ∂W in
∂A × [−1, 1] when these boundaries are connected. The isotopy extends to an ambient
isotopy.

Theorem (Isotopy extension theorem). Let M be a smooth manifold, possibly withTheorem 2.22
boundary; let N be a compact smooth submanifold of M , and let H : N×[−1, 1]→M \∂M
be an isotopy of N . Then H extends to an ambient isotopy F : M × [−1, 1] → M with
compact support.

We refer to [16, p. 180] for a proof of the isotopy extension theorem. As a con-
sequence of Theorem 2.22, when ∂A and ∂W are connected, we obtain an ambient isotopy
between them which yields the second part of Proposition 2.18. We are now ready to prove
Theorem 2.14.

Proof of Theorem 2.14. There exists an ambient isotopy in ∂A× [−1, 1] between the two
boundaries ∂A and ∂W when these are both connected. Suppose that ∂A and ∂W are not
connected. By Corollary 2.16, there is a 1:1 correspondence between their components.
Denote the components of ∂A by C1, . . . , Cn and those of ∂W by D1, . . . , Dn. Then for
each component Ck of ∂A, k ∈ {1, . . . , n}, we have a compactly supported ambient isotopy
Fk : Ck × [0, 1]→ Dk where, for each t ∈ [0, 1], Fk(x, t) = Fk,t(x). Consider the map

Ft(x) =

{
Fk,t(x) if x ∈ Ck × [−1, 1];

x if x ∈ R3 \ (∂A× [−1, 1]).

The map Fk,t is the identity near the boundary of Ck× [−1, 1], so Ft is a diffeomorphism.
Moreover, F0 = IdR3 and F1(∂A) = ∂W , so it follows that the map F : R3 × [0, 1]→ R3

given by F (x, t) = Ft(x) is an ambient isotopy between ∂A and ∂W with compact support.
In particular, ∂A and ∂W are homeomorphic. As argued in the paragraphs following the
theorem, this now yields Theorem 2.14. �

In the remaining sections of this chapter, we will prove the results used for The-
orem 2.14 stated above and construct the necessary objects on which to apply them.

2.4 COMPONENTSOFTHEWEDGEDRECONSTRUCTION
Let us return first to the proof of Theorem 2.15. We recall:

Theorem 2.15. There is a 1:1 correspondence between components of A and components
of W . The underlying voxel reconstruction V need not be a quasi-manifold.

Proof. We will argue that Theorem 2.1 in fact yields this similar result with V replaced
by W . Consider two arbitrary components V ′ and V ′′ of V , and let W ′ respectively
W ′′ denote their wedged versions in accordance with Definition 2.13. We need to argue
that W ′ and W ′′ are disjoint components of W . By Definition B.1, W is equal to the
union of V with a number of black and white wedges. Each wedge is a compact convex

Components of the wedged reconstruction 17

set C ⊂ R3. For the black wedges, the set C is a polyhedron which has at least three
faces intersecting the boundary of V , so insertion of the four different types of black
wedges, 〈1〉–〈4〉, preserves connectivity. Consider now (10). The two black voxels of the
configuration are in the same component of V by Proposition 2.8. As argued in the proof
of Proposition 2.7, two black voxels belonging to the same component of V are connected
by a chain of face-adjacent black voxels (tautologically in the same component). The two
black voxels in (10) are not face-adjacent, so disconnecting them by removal of the black
wedges as illustrated by Figure 2.6〈5〉 does not affect connectivity of the component in
which they lie. Hence W ′ and W ′′ are connected.

Proposition 2.8 states that V ′ and V ′′ are disjoint, so they are separated by at least
one white voxel, i.e. for all v ∈ V ′′, δV ′(v) ≥ d, where δ is the distance function defined
in (1.2). For the convex hull C corresponding to a wedge of type 〈1〉–〈4〉 inserted into a
configurationK, any point c ∈ C satisfies δK(c) < ε, where ε > 0 is given by Definition B.1.
We may assume that ε/2 < d, so for all w ∈ W ′′, δW ′(w) ≥ d − 2ε > 0. Hence W ′ and
W ′′ are disjoint. In conclusion, the 1:1 correspondence of A and V applies also when V is
replaced with W , and this result is independent of whether V is a quasi-manifold. �

For the proof of Corollary 2.16, we need to establish the property of two-sidedness
of surfaces embedded in R3. This follows from the Jordan-Brouwer separation theorem,
which is a generalisation of the celebrated Jordan curve theorem to dimension three. First,
we have the local version.

Lemma. Let S be a surface in R3 and let p ∈ S. Then there exists a connected openLemma 2.23
neighbourhood N of p in R3 such that S ∩N is connected and S separates N .

This lemma is proved in [28]. As a consequence, locally, a surface separates Euclidean
space into two components. This is also true for the global case.

Theorem (Jordan-Brouwer separation theorem). Let S be a closed connected sur-Theorem 2.24
face in R3. Then S separates R3 into two non-empty open sets.

The Jordan-Brouwer separation theorem ensures that each component of ∂A and ∂W
is two-sided; there is an inside and an outside domain separated by the component, e.g. the
domain inside the unit sphere S2 ⊂ R3 is the open unit ball B̊3

1 , and the domain outside
is R3 \B3

1 . The two-sided nature of the boundaries is presumably the natural intuition of
such surfaces in dimension three. A proof of the theorem may be found in [28]. However,
we are interested in a result for surfaces which are not necessarily connected.

Proposition. Let S be a closed surface in R3 with k components, k ∈ N. Then S sepa-Proposition 2.25
rates R3 into k + 1 non-empty open sets.

Proof. We prove this by induction over k. The case of k = 1 components is exactly the
Jordan-Brouwer separation theorem: R3 is separated into two components. Assume now
that k components of S separate R3 into k + 1 components.

Let S be a closed surface with k + 1 components, and let S′ be any component of S.
Then S \ S′ has k components, so by our induction hypothesis, R3 \ (S \ S′) has k + 1
components. The component S′ must be contained in one of these k+1 components since it
is not connected to any other component of S. Denote by N the component of R3 \(S \S′)
containing S′. We need to show that N \ S′ consists of exactly two components. By the
Jordan-Brouwer separation theorem, R3 \ S′ is the disjoint union of two open sets A and
B in R3 with common boundary S′; R3 \ S′ = A tB, and ∂A = ∂B = S′. Now

N \ S′ = N ∩ (R3 \ S′) = N ∩ (A tB) = (N ∩A) t (N ∩B).

We need to show that N ∩ A and N ∩ B are non-empty and connected. There must be
elements in N on either side of S′ as N contains S′. Assume without loss of generality
that N ∩ A is not connected; we wish to show that this leads to a contradiction. There
exists a tubular neighbourhood TS′ of S′ which contains the trivial normal bundle of S′.
The boundary of TS′ has two components which are both diffeomorphic to S′, and one of
them is contained in A. Under the assumption that N ∩ A is not connected, we can take
points x and y in different components of N ∩ A and outside of the normal bundle. By
definition, N is connected, so there exists a path from x to y in N . Since x and y are not
in the same component of N ∩A, this path must intersect N ∩B and thus have (at least)

18 Digital reconstruction of r-regular surfaces

two points of intersection with the boundary of TS′ . But these points of intersection can
be joined instead by a path along the connected boundary of TS′ . This yields a path from
x to y which does not intersect S′, so x and y must be in the same component of N ∩A,
and we have reached a contradiction. Hence N ∩ A must be connected. By an analogous
argument, N ∩ B is connected, so S′ separates N into two non-empty components. This
means that S separates R3 into k + 1 + 1 = k + 2 non-empty open sets. �

With this generalised Jordan-Brouwer separation theorem, we are ready to prove Co-
rollary 2.16 which we re-state here.

Corollary 2.16. There is a 1:1 correspondence between components of ∂A and compo-
nents of ∂W .

Proof. We have established a 1:1 correspondence between the components of A and those
of W in Theorem 2.15. Every component ∂A′ of ∂A is two-sided and separates R3 into
int(A′) and int((A′)C) = (A′)C . By Proposition 2.25, ∂A separates R3 into k+1 open sets
for k ∈ N the number of components of ∂A. Due to the 1:1 correspondence of components
of A and W , this means that there is a 1:1 correspondence between the components of
the boundaries of the sets: boundary components arise exactly as the surfaces separating
the inside and outside of components of A respectively W . �

2.5 THEVECTORFIELD ξ
In this section, we first prove Theorem 2.20, which is in fact a consequence of the Poincaré-
Hopf theorem stated below. Subsequently, we commence the construction of a vector field
ξ satisfying the prerequisites of Theorem 2.20. Definition 2.28 gives a first, naive suggestion
for a candidate ξA for the required vector field. Later, we will define a vector field inspired
by the smoothing of the voxel reconstruction introduced in Section B.2. This vector field
is then merged with ξA to finally obtain ξ in Definition 2.32, after which we prove that it
has the necessary properties in order for Theorem 2.20 to apply to A and its smoothed
reconstruction.

2.5.1 A FIRSTSUGGESTIONFORAVECTORFIELD

Theorem (Poincaré-Hopf theorem). Suppose that M is a compact differentiable n-Theorem 2.26
manifold and that v is a continuous vector field on M which has only isolated zeros
{x1, . . . , xk}. Suppose further that v points in the outward normal direction of ∂M . Then

χ(M) =

k∑
i=1

indxi(v),

where indxi(v) is the index of xi.

The Poincaré-Hopf theorem was originally proved for n = 2 by Henri Poincaré. The
proof by Heinz Hopf of the general theorem can be found in [17]. We will not define the
concept of index here since we will only make use of its properties. The interested reader
is referred to [27].

Theorem 2.20. Let M be a compact smooth n-manifold without boundary, and let N ⊂
M × (−1, 1) be a compact smooth n-manifold without boundary such that N separates
M×[−1, 1], i.e.M×[−1, 1]\N is a disjoint union of two open sets U, V withM×{−1} ⊂ U
and M × {1} ⊂ V .

Let v be a continuous nowhere zero vector field on M × [−1, 1] which points inwards
on M × {−1} and outwards on M × {1} and is transverse to N . Then

χ(N) = χ(M).

Proof. Let T be a tubular neighbourhood of N in M × (−1, 1) such that T is of the form
φ(N × [−1, 1]), where φ : N× [−1, 1] ↪→M× [−1, 1] is an embedding such that φ(x, 0) = x
for all x ∈ N . After shrinking and re-parametrising as necessary, we can suppose that v is
transverse to φ(N × {t}) for all t ∈ [−1, 1].

Let W be a continuous vector field on N with only isolated zeros. We extend to a
continuous vector field ω on T given by ω(φ(x, t)) = dφ(x,t)(W (x), 0) for all pairs of

Smoothing and transversality 19

elements (x, t) ∈ N × [−1, 1], where we use the natural isomorphism T(x,t)(N × [−1, 1]) =
TxN ⊕ Tt[−1, 1]. Define a vector field u on M × [−1, 1] by

u(y) =


−v(y) if y ∈ U\T ;

v(y) if y ∈ V \T ;

(1− t2)ω(y) + tv(y) if y = φ(x, t) ∈ T.

Clearly u is continuous, and the zeros of u are exactly the zeros of W . Denote these
zeros by {x1, . . . , xk}. Notice that u points in the outward direction of the boundary
φ(N × {−1, 1}) of T and also of the boundary M × {−1, 1} of M × [−1, 1]. We conclude
from the Poincaré-Hopf theorem that

χ(M × [−1, 1]) =

k∑
i=1

indxi(u) = χ(T).

Since φ gives a homeomorphism N × [−1, 1] ' T ,

χ(T) = χ(N × [−1, 1]).

As N and N × [−1, 1] are homotopy equivalent, χ(N × [−1, 1]) = χ(N), because the Euler
characteristic is homotopy invariant [15]. Similarly, χ(M × [−1, 1]) = χ(M), and thus we
conclude that

χ(N) = χ(M). �

The vector field ξA should be defined on some domain diffeomorphic to ∂A× [−1, 1].

Definition. For f the function defined in (A.3), let T[−1,1] = f−1[−d
√

3/2, d
√

3/2], andDefinition 2.27
for Af defined by (A.4), set T−1 = ∂Af (−d

√
3/2) and T1 = ∂Af (d

√
3/2).

It follows from Proposition A.10 that T[−1,1] is diffeomorphic to ∂A× [−1, 1] and has
boundary T−1tT1. In fact, the sets T−1 and T1 are (r − d

√
3/2)-regular by Corollary A.9.

We are now ready to define a vector field on T[−1,1].

Definition. Let ξA be the vector field on T[−1,1] consisting of unit vectors pointing inwardsDefinition 2.28
on T−1 and outwards on T1 and lying along the normals to ∂A.

This vector field has a behaviour on T−1 and T1 consistent with the requirements of
Theorem 2.20. Furthermore, ξA has no zeros, since for every point a ∈ ∂A, there exist
unique points a′ ∈ T−1 and a′′ ∈ T1, which are given by a′ = a + (d

√
3/2)N(a) and

a′′ = a− (d
√

3/2)N(a), with N : ∂A→ R3 as in Definition A.5, lying on the same normal
of ∂A as a. This follows from Corollary A.9. However, without any knowledge of the
boundary of the smoothed reconstruction, it is probably naive to assume that ξA is the
right candidate for ξ. We need to define a smoothed voxel reconstruction and a vector
field on a neighbourhood of its boundary which satisfies the transversality condition in
Theorem 2.20. We can then merge this vector field with ξA to a vector field ξ on T[−1,1]

meeting all of the conditions of the theorem.

2.5.2 SMOOTHINGANDTRANSVERSALITY

Besides the vector field ξ, we need a smoothed reconstruction Z such that ξ is transverse
to ∂Z in order to apply Theorem 2.20. The idea now is to have a particular vector field
in mind as we define a smoothing of W so we can construct Z in a way that it becomes
transverse to the desired vector field. A first suggestion could be to require that the vector
field consist of vectors normal to the boundary faces of W . This is illustrated in the
plane in Figure 2.10(a). In the figure, we have not yet taken boundary edges or vertices
into consideration; this could for instance be achieved by the modification proposed in
Figure 2.10(b), where the blue line segments representing a vector field are transverse to
the boundary near the vertex or edge. We can then use a smooth interpolation from the
lines normal to the boundary faces to the ones near the edge. A similar idea can be used
also to introduce a smoothing of edges: we make a smooth transition from one boundary
face to the other near the edge thus maintaining the transversality property of the vector
field as illustrated in Figure 2.10(c). The vector field should be non-zero. If we stay close

20 Digital reconstruction of r-regular surfaces

(a) (b) (c)

Figure 2.10
Illustration in a plane,
parallel to some bound-
ary face of W and in-
tersecting a boundary
edge, of a first sug-
gestion for a vector
field transverse to a
smoothed reconstruc-
tion.

enough to the boundary, as indicated by the green lines in Figure 2.10(c), we can avoid
any self-intersections of the normal lines. Using these ideas and extrapolating them to
vertices, we make a more precise definition of the smoothing of W in Section B.2.

Definition. The smoothed (wedged voxel) reconstruction Z of A is obtained fromDefinition 2.29
W via the smoothing procedure defined in Section B.2.

The smoothed reconstruction Z is now based on the wedged reconstruction W , which
in turn depends on the voxel reconstruction V and thus the lattice dL. We say that Z is
the smoothed reconstruction of A with respect to dL.

Convention. For the remainder of this chapter, Z ⊂ R3 denotes the smoothed recon-Convention
struction of A with respect to dL.

In Subsection 2.3.3, we suggested that certain relations between the boundary ∂Z and
T[−1,1] and its boundary, defined in Definition 2.27, hold. We now state and prove the
proposition of these relations.

Proposition. We have the following relations between (the boundary of) Z and the setProposition 2.30
T[−1,1] with boundary T1 t T−1:

(i) The intersections ∂Z ∩ T1 and ∂Z ∩ T−1 are empty;

(ii) The boundary ∂Z is a subset of the set T(−1,1);

(iii) The boundary ∂Z separates the set T[−1,1].

Proof. Consider first the reconstruction V of the r-regular set A. A point x on the bound-
ary ∂V is by definition of V contained in the boundary of two adjacent voxels: a black
voxel V(m) ⊂ V with centre m ∈ A and a white voxel V(m′) 6⊂ V with centre m′ ∈ AC .
There may be more choices for m and m′ in which case one is chosen arbitrarily. The
boundary ∂A must intersect the line segment from m to m′ in some point n. We are as-
suming that no lattice points of dL are contained in ∂A, so n is equal to neither m nor m′.
Half the diameter of a voxel equals d

√
3/2, so |n−x| < d

√
3/2, hence δ∂A(x) < d

√
3/2 for

all x ∈ ∂V , where δ is the distance function from (1.2).
On the other hand, the parallel surfaces T1 and T−1 to ∂A are defined such that

any point y ∈ T1 t T−1 satisfies δ∂A(y) = d
√

3/2. Then clearly ∂V ∩ T1 and ∂V ∩ T−1

are empty. Furthermore, ∂A ⊂ T[−1,1], and ∂A separates T[−1,1], so if we can show that
Proposition 2.30(i) holds, all three properties of the proposition will be satisfied due to
the way that Z was obtained from V .

From Definitions B.1 and B.4, we see that the wedges used for defining W and Z
are given in terms of coordinates depending on ε for some ε > 0. We can choose this
ε such that the resulting boundary stays inside T(−1,1). Smoothing of the k-cells of the
wedged object, i.e.W with the additional wedges of (6), is also kept inside an infinitesimal
tubular neighbourhood of the boundary according to the smoothing process illustrated
by Figure B.6, so again this guarantees that ∂Z is contained in T(−1,1). This concludes
the proof. �

The vector field ξA from Definition 2.28 is defined on T(−1,1) and is transverse to ∂A
since it consists of vectors that are normal to this surface. Having proved that ∂Z is also
contained in T(−1,1), we wish to construct another vector field ξZ on (a subset of) T(−1,1),
such that ξZ is transverse to ∂Z. Let ε > 0 and let Zε be the image of an embedding of
∂Z × [−ε, ε] in R3; a tubular neighbourhood of ∂Z. Then Zε ⊂ T(−1,1) for ε sufficiently
small by Proposition 2.30.

Definition of the vector field 21

ZC

Z

T−
1

T 1

Figure 2.11
The bump function b is
1 on the neighbourhood
Zε/2 (red) of ∂Z (∂Z
is the boundary inside
the red tube); between
0 and 1 on Zε (green),
and 0 everywhere else
(blue).

Definition. For ε > 0, let ξZ be the vector field on Zε ⊂ T(−1,1) consisting of unit vectorsDefinition 2.31
pointing from black to white, i.e. from Z to ZC , and lying along the line segments defined
in Definition B.8.

By definition of the vector field ξZ via the direction field φZ , ξZ is transverse to ∂Z;
see Proposition B.9.

2.5.3 DEFINITIONOFTHEVECTORFIELD

We now wish to merge the vector fields ξA from Definition 2.28 and ξZ from Definition 2.31.
Just as we defined Zε, let Zε/2 be a tubular neighbourhood of ∂Z with half the thickness
of Zε, and note that ∂Z ⊂ Zε/2 ⊂ Zε ⊂ T(−1,1). We now define a function b : R3 → R by:

b(x) = 1 if x ∈ Zε/2;

0 < b(x) < 1 if x ∈ Zε \ Zε/2;

b(x) = 0 if x ∈ ZCε ;

(2.5)

see Figure 2.11 for an illustration of the domain of b. This function is an example of a
(smooth) bump function, that is, a real-valued function on Euclidean space which is
smooth and has compact support.

Definition. Letting b : R3 → R be the bump function given by (2.5), we define a vectorDefinition 2.32
field ξ on T[−1,1] by

ξ = bξZ + (1− b)ξA.(2.6)

Proposition. The vector field ξ of Definition 2.32 is a continuous nowhere zero vectorProposition 2.33
field on T[−1,1]

∼= ∂A × [−1, 1], which points inwards on T−1 and outwards on T1 and is
transverse to ∂Z.

Proof. Continuity of ξ is ensured by construction, since ξA and ξZ are continuous vector
fields which are glued together using a continuous (smooth) bump function. On T−1 and T1,
ξ equals ξA; compare (2.5) and (2.6), so by Definition 2.28, ξ has the wanted direction
on these surfaces. Similarly, ξ inherits the property of transversality to ∂Z from ξZ , since
these vector fields are equal on Zε/2 ⊃ ∂Z, and ξZ is transverse to ∂Z. It remains to be
shown that ξ is nowhere zero.

The vector fields ξA and ξZ are both nowhere zero, so the only circumstance under
which a zero of ξ can arise is if two vectors, one from each of the two vector fields, of
opposite directions were to coincide inside Zε \Zε/2 where the smooth transition is made.
Let us assume that we have vectors v ∈ ξZ and w ∈ ξA such that v = −w in Zε and
show that this leads to a contradiction. Let dnc denote the configuration of Z containing
v and w.

Being a vector from ξZ , v lies on some line segment Lv in dnc with endpoints on the
boundary of dnc. By definition of the direction field of ξZ , Lv has endpoints on opposing
faces, edges, or vertices of dnc. This means that the length of Lv is at least 2d, i.e. two
times the side length of a voxel. If n 6= 10, Lv intersects ∂Z exactly once, so one end lies
in Z and the other in ZC . This case is illustrated in Figure 2.12(a). If n = 10, there is
the additional possibility that ∂Z intersects Lv twice so that both ends are inside Z and
one part in between lies in ZC . In this last case, the vector field is defined such that Lv
intersects the midpoint m of the black voxel containing the point of origin of Lv in d10c;
see Figure 2.12(b). Equipping Lv with the direction of v, Lv originates in a black point

22 Digital reconstruction of r-regular surfaces

Lv

(a)

Lv

m

(b)
Bl
ack

po
int
s

W
hit
e p

oin
ts T1

T−1

∂A

∂ZLw

(c)

Figure 2.12
(a) shows an example
of the first type of line
segment Lv along which
vectors in ξZ lie; (b)
the second, relevant
only for d10c. (c) shows
an example of a line
segment Lw along
which vectors in ξA
lie.

and terminates in either a white point or, as remarked, for some cases of d10c, in a black
point. If the latter is the case, the black point of termination belongs to the black voxel
in d10c which does not have m as midpoint.

We can make similar observations for the vector w ∈ ξA. This vector lies on a line
segment Lw from T−1 to T1 of length d

√
3; see Definition 2.27. Given the direction of w,

Lw originates in a black point and terminates in a white point, since T−1 ⊂ Z and T1 ⊂ ZC
as a consequence of Proposition 2.30. This is illustrated in Figure 2.12(c).

By assumption, v = −w lies on Lv ∩ Lw. Consider first the case where Lv intersects
∂Z exactly once. Now Lv is directed from black to white, so Lw must have the opposite
direction. Since Lw has to originate in a black point, this point must lie outside of dnc.
Analogously, since Lw terminates in a white point, this point must be outside dnc as
well. This means Lw must traverse the entire length of Lv through dnc, but this is a
contradiction as d

√
3 < 2d.

In the case where Lv intersects ∂Z twice, we know that n = 10. The line segment
Lw must terminate in a white point. The black voxel midpoint m that Lv intersects is
contained in A, so the distance from m to T1 is δT1

(m) > d
√

3/2 because m /∈ ∂A. Hence
T1 lies outside of this black voxel, and so Lw must terminate beyond m outside of d10c.
We need to check whether Lw might originate in a black point contained in the other black
voxel of d10c. Points in this black voxel all have distance greater than d

√
3/2 tom, which in

turn has distance greater than d
√

3/2 to T1, where both distances are along Lw. However,
Lw has length d

√
3 which does not suffice, and hence we reach another contradiction.

We should also consider the complement of d10c. Here, we can use a completely ana-
logous argument with ‘black’ and ‘white’ interchanged and T−1 in place of T1.

In conclusion, vectors of ξA and ξZ with opposite directions cannot coincide in Zε\Zε/2,
so ξ has no zeros. �

By Proposition 2.33, Definition 2.32 thus finally yields the vector field we need in
order to apply Theorem 2.20 to ∂A and ∂Z. As argued in Subsection 2.3.3, this means
that there exists a homeomorphism and an ambient isotopy between A and W as well as
their boundaries; the main result of this chapter.

For convenience, we assumed early on that no sampling points of the lattice L lie on
∂A and claimed that this would have no influence on our results. We argue now that in
the case where a sampling point intersects the boundary, we can move the boundary of
A just slightly, say δ > 0, in one of the normal directions. The resulting set A′ is then
(r − δ)-regular. As long as we choose δ such that ∂A′ still avoids the boundary of the
wedged reconstruction, the results of this chapter also apply to A′. Moving the boundary
to either side of the sampling point naturally affects the reconstruction W , since the
corresponding voxel will be either black or white, and the two different choices represent
different reconstructions. They are, however, homeomorphic.

2.6 DISCUSSION
In this chapter, we have shown that for a sufficiently high resolution, d−1 >

√
3/(2r),

r-regular sets are ambient isotopic to their wedged reconstructions with respect to a lat-
tice dL. For the wedged reconstruction to be well-defined, we need the reconstruction of
the r-regular set to be a quasi-manifold which is only guaranteed for a slightly higher
resolution, d−1 > 0.95571/r. The next step would thus be to examine if Conjecture 2.11

Discussion 23

holds: whether a resolution d−1 >
√

3/(2r) in fact implies that the voxel reconstruction
of an r-regular set is a quasi-manifold.

In addition, we are interested in reconstructing geometric features of r-regular sets such
as surface area, volume, and curvature. This task is partly commenced in the following
chapter, where we use an entirely different approach to the reconstruction of geometry,
namely via estimators of the Minkowski tensors of sets with positive reach through digital
algorithms. As noted in the introduction, r-regular sets have positive reach. The work
presented in the next chapter only concerns planar sets, however, but the theory on which
the algorithms are based is equally valid in higher dimensions.

We remark that the results of this chapter are only valid for black-and-white voxel
reconstructions, whereas in applications, data may be given as greyscale images. Here, one
assigns an intensity ranging from 0 to 1 to each sampling point of the lattice depending on
the overlap of the object with the voxel corresponding to the sampling point: If the voxel is
completely contained within the object, it is assigned a 1, corresponding to a black voxel,
and if the voxel does not overlap with the object at all, a 0 is assigned, corresponding to
a white voxel. Denote by O the union of black voxels and by N the union of white voxels.
The boundaries ∂O and ∂N do not coincide but are both approximations to the boundary
of the underlying object A. The question is whether O and N have the same topology as A
in this setting. We are then back to considering the 14 voxel configurations of Figure 2.3,
where white sampling points should be replaced by grey ones for configurations of O and
black sampling points should be replaced by grey ones for configurations of N . It is likely
possible to thin the number of configurations for r-regular sets depending on the size of
the resolution as is done in Appendix A in the three-dimensional case. Higher resolutions
are presumably needed here.

Finally, the work presented in this chapter only applies in dimension three. In [10],
du Plessis has shown similar results for r-regular sets in dimension two and in fact also
results concerning the reconstruction of geometry. However, generalising the theory from
dimension two to dimension three poses considerable mathematical difficulties due to the
combinatorics of the relation of the boundary to the lattice, represented by the voxel
configurations, as well as the differential geometry of the boundary. It is not readily clear
how results similar to those obtained in dimensions two and three could be achieved for
even higher dimensions.

Three

COMPARISONOFTWOGLOBAL
ALGORITHMSFORMINKOWSKI

TENSORESTIMATION

Traditional digital geometry [22] uses binary information to assess volume,
surface area, or, more generally, intrinsic volumes of (sufficiently regular)
sets A ⊂ Rn. More recently, the estimation of Minkowski tensors has been
suggested, as tensor-valued valuations allow for quantification of location-
and orientation-related properties of A.

In [19], algorithms for the estimation of Minkowski tensors of sets with positive reach
from digitisations are introduced. The derivation of the algorithms is based on a generalised
Steiner formula, and the estimators can be shown to converge to the true tensors as
the resolution d of the digitisation tends to infinity. This property is called multigrid
convergence, and the results on multigrid convergence of the estimators are presented as
Theorems 3.1 and 3.2 of this thesis.

In this chapter, we implement two of the algorithms described in [19] in MATLAB.
In dimension n and for a set A ⊂ Rn with positive reach, Reach(A) > 0, one algorithm
depends on the choice of n+ 1 radii 0 < R0 < · · · < Rn < Reach(A); the other on n radii
0 < R0 < · · · < Rn−1 < Reach(A). We have implemented the algorithms in MATLAB
in dimension n = 2. Based on simulations for both convex and non-convex test sets with
positive reach via our digital algorithms, we will give recommendations for the choices
of the radii on which the algorithms are based. Further, we explore the consequences of
making erroneous choices of the radii, i.e. choosing them larger than Reach(A). We also
discuss a possible lower limit d/

√
2 for the radii. Finally, both algorithms are multigrid

convergent, and we wish to explore how well the theory carries over when the algorithms
are applied in the realistic setting of finite resolution.

In Section 3.1, we give the definition of Minkowski tensors. Section 3.2 presents the
first algorithm and its implementation as well as a review of the method for obtaining the
estimators via a generalised Steiner formula. In Section 3.3 follows the second algorithm
and corresponding implementation. Having established the algorithms, we proceed to per-
form simulations on test sets in Section 3.4 and examine the theoretical properties of the
algorithms in applications. In Section 3.5 we give recommendations for the choices of input
arguments for the algorithms based on our findings in Section 3.4, and we suggest a third
algorithm, which combines the strengths of the former two algorithms to produce the best
possible estimators in this framework.

This chapter is a revised version of the electronic preprint [8], which has been modified
slightly to fit into this thesis. Moreover, further details, such as additional computations
and documentation of the code, are added in Appendices C and D.

3.1 MINKOWSKITENSORS
One purpose of image processing is the extraction of geometric characteristics of an object
from a digital image. We give here a short introduction to a rather general class of such
characteristics; the so-called Minkowski tensors. For a more thorough review, the reader
may consult the excellent book [32] by Schneider.

For p ∈ N0, let Tp denote the space of symmetric tensors of rank p on Rn. Using
the scalar product to identify Rn with its dual, an element T of Tp defines a symmetric
p-linear functional T : (Rn)p → R. Any T ∈ Tp is determined by the numbers

T(i1...ip) = T (ei1 , . . . , eip),(3.1)

i1, . . . , ip ∈ {1, . . . , n}, where e1, . . . , en is the standard basis in Rn. In particular, a tensor
of rank zero, one, and two can be identified with a scalar, a vector in Rn, and a symmetric
matrix of size n×n, respectively. More generally, a tensor of rank p can be identified with

25

26 Comparison of two global algorithms for Minkowski tensor estimation

a symmetric array of size np. When calculating tensors later on, it will be the entries of
these arrays that we calculate.

Denote by xr the r-fold tensor product of x ∈ Rn, which is given by

xr(v1, . . . , vr) =

r∏
i=1

〈x, vi〉, v1, . . . , vr ∈ Rn,

and by ab the symmetric tensor product of symmetric tensors a and b. We use the con-
vention that x0 = 1.

For a compact subset A of Rn and r ∈ N0, we define an element of Tr, called the rth
volume tensor of A, by

Φr,0n (A) =
1

r!

∫
A

xr dx.(3.2)

Notice in particular that Φ0,0
n (A) is simply the volume Vn(A) of A. For s ∈ N, we set

Φr,sn (A) = 0. More general tensors related to A can be defined by integrating over boundary
points and outer normal vectors when A is a set with positive reach.

Indeed, let A ⊂ Rn be a set with positive reach. For k ∈ {0, . . . , n− 1} and r, s ∈ N0,
we define elements of Tr+s by

Φr,sk (A) =
1

r!s!

ωn−k
ωn−k+s

∫
Rn×Sn−1

xrusΛk(A; d(x, u)),(3.3)

where ωj is the surface area of Sj−1, and Λk(A; ·) is the generalised curvature measure of
A introduced in [40]. The tensors in (3.3) are the surface tensors of A.

For all k ∈ {0, . . . , n} and r, s ∈ N0, Φr,sk (A) are the Minkowski tensors of A. For
r = s = 0 and k ∈ {0, . . . , n}, the Minkowski tensor Φ0,0

k (A) coincides with the kth
intrinsic volume Vk(A) of A; see for instance [32], as was already noted in the case of
the volume, Vn(A). In particular, 2Vn−1(A) is the surface area of A when A does not
have lower dimensional parts, and V0(A) is the Euler-Poincaré characteristic of A. By
restricting the integrations in (3.2) and (3.3) to B∩A respectively B×Sn−1 with B ⊂ Rn
a Borel set, local Minkowski tensors can be defined as suggested in [18]. Although the
digital algorithms for estimating Minkowski tensors [19] are formulated using the local
versions, we restrict our considerations to the estimation of Minkowski tensors of the form
(3.2) and (3.3).

3.2 MINKOWSKITENSORESTIMATIONFROM n+ 1
PARALLELSETS
Steiner’s formula, in its version for sets A ⊂ Rn with positive reach, shows that the parallel
volume Vn(AR), where AR is the R-parallel set of A defined in (1.4), is a polynomial in
R of degree at most n as long as 0 ≤ R < Reach(A). Up to constants, its coefficients
coincide with the intrinsic volumes V0(A), . . . , Vn(A). This allows for the computation
(estimation) of the intrinsic volumes when Vn(AR) is (approximately) known for different
radii R. Replacing the parallel volume with the Voronoi tensor measures, to be defined
below, this idea can be extended to an estimation procedure for Minkowski tensors.

3.2.1 THEVORONOITENSORMEASURES

For a compact set A ⊂ Rn, for r, s ∈ N0, and for R ≥ 0, the formula

Vr,sR (A) =

∫
AR

pA(x)r(x− pA(x))s dx(3.4)

defines Tr+s-valued measures Vr,sR (A). These are called the (total)Voronoi tensor meas-
ures and were first introduced by Hug, Kiderlen, and Svane in [19]. In the case where A
has positive reach, 0 ≤ R < Reach(A), a Steiner-type formula implies that

Vr,sR (A) = r!s!

n∑
k=0

κs+kR
s+kΦr,sn−k(A),(3.5)

where κj is the volume of the unit ball Bj1(0) in Rj .

Estimators of Minkowski tensors from digitisations 27

For n+ 1 different choices of R, 0 < R0 < · · · < Rn < Reach(A), equation (3.5) gives
rise to a system of n+ 1 linear equations for each pair (r, s) ∈ N2

0;V
r,s
R0

(A)
...

Vr,sRn(A)

 = Mr,s
R0,...,Rn

Φr,sn (A)
...

Φr,s0 (A)

,(3.6)

with the matrix

Mr,s
R0,...,Rn

= r!s!

κsR
s
0 . . . κs+nR

s+n
0

...
. . .

...
κsR

s
n . . . κs+nR

s+n
n

.
Since Ri > 0 for i ∈ {0, . . . , n}, the matrix Mr,s

R0,...,Rn
is a Vandermonde-type matrix, and

so in particular invertible, hence (3.6) can be solved for the Minkowski tensors;Φr,sn (A)
...

Φr,s0 (A)

 =
(
Mr,s
R0,...,Rn

)−1

V
r,s
R0

(A)
...

Vr,sRn(A)

.(3.7)

We wish to utilise (3.7) for the estimation of Minkowski tensors from digitisations.
To this end, suitable estimators of the Voronoi tensor measures on the right-hand side of
(3.7) must be introduced.

3.2.2 ESTIMATORSOFMINKOWSKITENSORSFROMDIGITISATIONS

Let dL be a lattice. Given a digitisation A0 = A∩ dL of a set A ⊂ Rn with positive reach
and Reach(A) > R > 0, we approximate the Voronoi tensor measure Vr,sR (A), r, s ∈ N0,
by the corresponding quantity Vr,sR (A0) for A0. For 0 < R0 < · · · < Rn < Reach(A), this
yields estimators Φ̂r,sn (A0)

...
Φ̂r,s0 (A0)

 =
(
Mr,s
R0,...,Rn

)−1

V
r,s
R0

(A0)
...

Vr,sRn(A0)

(3.8)

for the Minkowski tensors; compare (3.7). The justification for replacing Vr,sR (A) with its
discrete counterpart Vr,sR (A0) is given in [19, Theorem 4.3], which implies that Vr,sR (A0)
converges to Vr,sR (A) as d → 0+ under weak assumptions on A. This yields the following
convergence theorem result for Φ̂r,sR (A0) when A is topologically regular, that is, A is the
closure of its interior.

Theorem. Let A ⊂ Rn be compact and topologically regular. If Φ̂r,sk (A0) is defined byTheorem 3.1
equation (3.8) with A0 = A ∩ dL and 0 < R0 < · · · < Rn < Reach(A), then Φ̂r,sk (A0) is
multigrid convergent to Φr,sk (A), which means

lim
d→0+

Φ̂r,sk (A0) = Φr,sk (A).(3.9)

That A must be topologically regular seems a reasonable restriction when working
with digitisations, since the lower dimensional parts of an object are generally not visible
in the digital image A0. Note that topological regularity is automatically guaranteed for
the ρ-regular (r is reserved for other purposes in this chapter) sets in Chapter 2.

A proof of Theorem 3.1 can be found in [19, Corollary 5.2]. If, in addition, A is convex or
ρ-regular, the convergence in (3.9) is of order O(d) when r = s = 0, that is, for estimators
of the intrinsic volumes. For r, s 6= 0, convergence is known to be of order O(

√
d).

Equation (3.8) gives a set of estimators of all the Minkowski tensors, but alternative
estimators exist in the case of the volume tensors given by (3.2). We will return to these
considerations in Section 3.3, where we introduce an additional algorithm which exploits
this fact. For now, we can use (3.8) to compute estimators of the Minkowski tensors of
a set A ⊂ Rn with positive reach from a digitisation A0. In the next subsection, we will
explain how the Voronoi tensor measures can be computed for discrete sets.

28 Comparison of two global algorithms for Minkowski tensor estimation

A0 y

VA0 (y) ∩BR(y)

x
VA0

(x) ∩BR(x)

R

(a)

A0 y VA0
(y) ∩BR(y)

x
VA0

(x) ∩BR(x)

R

(b)

Figure 3.1
Comparison in dimen-
sion two of R-bounded
Voronoi cells with re-
spect to a digitisa-
tion A0 ⊂ dL. In (a),
R > d/

√
2, and in (b),

R < d/
√

2.

3.2.3 IMPLEMENTATION INDIMENSIONTWO

For x ∈ A0 and R > 0, we have the relation VA0(x) ∩ AR0 = VA0(x) ∩BR(x), and we will
refer to this intersection as the R-bounded Voronoi cell of x ∈ A0 with respect to A0.
The space Rn coincides with the finite union of the Voronoi cells of A0, so AR0 coincides
with the union of R-bounded Voronoi cells of A0. This yields a simplification of (3.4) for
the discrete set A0,

Vr,sR (A0) =
∑
x∈A0

xr
∫
VA0

(x)∩BR(x)

(y − x)s dy.(3.10)

Thus, the Voronoi tensor measures for discrete digitisations can be reduced to a sum
of contributions from each element of A0, and these contributions depend only on the
corresponding R-bounded Voronoi cells of A0. The right-hand side of equation (3.8) is
now easily computed using (3.10). This will be our first algorithm.

We choose to focus on dimension two for the implementation of the algorithm given
by (3.8). In this case, (3.8) becomesΦ̂r,s2 (A0)

Φ̂r,s1 (A0)

Φ̂r,s0 (A0)

 =
(
Mr,s
R0,R1,R2

)−1

Vr,sR0
(A0)

Vr,sR1
(A0)

Vr,sR2
(A0)

(3.11)

with r, s ∈ N0, 0 < R0 < R1 < R2 < Reach(A), and

Mr,s
R0,R1,R2

= r!s!

κsRs0 κs+1R
s+1
0 κs+2R

s+2
0

κsR
s
1 κs+1R

s+1
1 κs+2R

s+2
1

κsR
s
2 κs+1R

s+1
2 κs+2R

s+2
2

.
In practice, one is usually interested in the tensors of rank at most two, i.e. tensors for
which r + s ≤ 2. The relevant volumes κj of the unit ball in Rj are thus the ones with
j ∈ {0, . . . , 4}:

κ0 = 1, κ1 = 2, κ2 = π, κ3 = 4π/3, κ4 = π2/2.(3.12)

From [32, (4.27),(5.18), and (5.30)], it follows that for k ∈ {0, . . . , n − 1}, the tensor
Φ0,1
k (A) = 0 is trivial; see Lemma C.1. It is therefore not necessary to use approximations

Φ̂r,sk (A0) in these cases. Nonetheless, our implementation calculates and reports these
estimators, since values deviating considerably from the origin indicate that the resolution
is not sufficiently high.

For a given digitisation A0 of a set A ⊂ R2, the algorithm determines Φ̂r,sk (A0) by (3.10)
and (3.11) based on three fixed radii 0 < R0 < R1 < R2 < Reach(A). The assumption
that all radii must be smaller than Reach(A) requires the knowledge of (a positive lower
bound of) the reach of A. Since the reach may not be accessible in applications, in the
simulation section, Section 3.4, we also analyse the behaviour of the estimators when one
or more radii are larger than Reach(A).

Consider Figure 3.1. The asymptotic result in Theorem 3.1 is based on increasing
resolution d → 0+. Hence any given radius R > 0 is eventually larger than half the
diameter d

√
2 of a pixel, implying that the union of all R-bounded Voronoi cells of points

Implementation in dimension two 29

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−800

−600

−400

−200

0

200

400

Rmax

Φ̂0,0
1 (A0)

Φ̃0,0
1 (A0)

Φ0,0
1 (A)

Figure 3.2
The estimators
Φ̂0,0

1 (A0) and Φ̃0,0
1 (A0)

as functions of Rmax

for fixed resolution
d−1 = 100 and dif-
ferent radii for the
square A = [0, 1]2

with R0 = Rmax/n
for Rn, n = 2, 3.
Here R3 denotes the
algorithm presented
in Section 3.2.3, R2

denotes the second
algorithm to be intro-
duced in Section 3.3,
and Rmax denotes the
maximal radius Rn−1

for Rn. The third ra-
dius, R1, of R3 is given
by R1 = (R0 + R2)/2.
The second algorithm,
R2, only depends on
two radii. The dashed
black line indicates the
point when Rmax is
greater than d/

√
2; the

coloured dashed lines
when all radii of the
corresponding algorithm
are above d/

√
2.

x ∈ A0 covers the Gauss-digitisation of A completely. On the other hand, if R < d/
√

2 for
some d > 0, the R-bounded Voronoi cell of an inner point does not cover its pixel. In this
case the replacement of Vr,sR (A) by Vr,sR (A0) in the transition from (3.7) to (3.8) may cause
unwanted errors. In fact, Figure 3.2 shows the behaviour of half the perimeter estimator
V̂1(A0) = Φ̂0,0

1 (A0) of the unit square A = [0, 1]2 when the radii vary in the vicinity
of d/

√
2. The figure clearly illustrates the described effect. This effect can be avoided by

choosing R0 > d/
√

2, and we shall do so for the remainder of this chapter.
When R > d/

√
2, one can simplify the computations in the algorithm in the follow-

ing way. Under this assumption, the R-bounded Voronoi cell VA0(x) ∩BR(x) of an inner
point x ∈ A0 coincides with VdL(x). Hence the contributions of all inner points of the di-
gitisation to the integral

∫
VA0

(x)∩BR(x)
(y− x)s dy are the same and vanish when s is odd.

This observation is exploited in the implementation of the algorithm in order to reduce
computation times, which is discussed further in Subsection D.2.3.

With the aforementioned choices, we obtain the following algorithm, where we restrict
attention to estimators of Minkowski tensors of rank at most two. These tensors have
been shown to be most relevant in practical applications such as those suggested at the
beginning of Chapter 1. An extension to higher rank tensors is straightforward and only
requires minor modifications in the code.

Algorithm Minktensor2D3R (R3)

Input:
◦ Digitisation A0 = A ∩ dL of a compact topologically regular set A ⊂ R2 with

positive reach;
◦ Lattice distance d > 0 of dL;
◦ Two radii R0 and R2 satisfying 0 < R0 < R2 < Reach(A).

Action:
◦ Calculate Vr,sRi (A0) using (3.10) for i ∈ {0, 1, 2}, with R1 = (R0 + R2)/2, and

for all r, s ∈ {0, 1, 2} with r + s ≤ 2;
◦ Determine the corresponding Minkowski tensors by (3.11).

Output:
◦ Estimators Φ̂r,sk (A0) for all k, r, s ∈ {0, 1, 2} with r+s ≤ 2 (including the trivial

ones of the form Φ̂0,1
k (A0) for model control) of the corresponding Minkowski

tensors.

The programme will give a warning if radii are chosen below the recommended lower limit
d/
√

2 as discussed above. If any result of the algorithm is numerically below 10−6, the
output is rounded off to zero.

30 Comparison of two global algorithms for Minkowski tensor estimation

3.3 MINKOWSKITENSORESTIMATIONFROM n PARALLEL
SETS
As proved in [19], it is possible to refine the algorithm introduced in Subsection 3.2.2 by
using simpler estimators of the volume tensors defined in (3.2). Since we require that the
set A ⊂ Rn be compact and topologically regular, for r ∈ N0, one can use the estimators

Φ̃r,0n (A0) =
dn

r!

∑
x∈A0

xr(3.13)

for the volume tensors. This is the natural generalisation of the usual volume estimator in
the case r = 0, which counts foreground pixels; see for instance [29]. We have the following
result on convergence from [19, Section 5.1].

Theorem. Let A ⊂ Rn be compact and topologically regular, and suppose that ∂A is aTheorem 3.2
Lebesgue null set. Then Φ̃r,0n (A0), defined by equation (3.13) with A0 = A∩dL, is multigrid
convergent to Φr,0n (A), i.e.

lim
d→0+

Φ̃r,0n (A0) = Φr,0n (A).(3.14)

The assumption that ∂A is a Lebesgue null set is weaker than that of positive reach,
so these estimators converge towards the true volume tensors for a larger class of sets
than Φ̂r,0n (A0) do. Moreover, they do not require any knowledge of the reach of A. If, in
addition, ∂A is an (n − 1)-rectifiable set, i.e. if ∂A is the image of a bounded subset of
Rn−1 under a Lipschitz map, the convergence in (3.14) is of order O(d). This condition is
for instance satisfied by ρ-regular sets.

In addition to their advantageous convergence properties, using the estimators in (3.13)
of the volume tensors, we can derive an alternative algorithm for computation of estimators
of the Minkowski tensors of sets A with positive reach which is based on only n fixed radii
0 < R0 < · · · < Rn−1 < Reach(A).

Indeed, let 0 < R < Reach(A) and consider the Voronoi tensor measures Vr,sR (A)
defined by (3.5). Subtract r!s!κsRsΦr,sn (A) from both sides of the equation to obtain

Vr,sR (A)− r!s!κsRsΦr,sn (A) = r!s!

n∑
k=1

κs+kR
s+kΦr,sn−k(A).

In the case s ∈ N, Φr,sn (A) = 0, so this equation takes the simple form

Vr,sR (A) = r!s!
n∑
k=1

κs+kR
s+kΦr,sn−k(A), s ∈ N,(3.15)

and when s = 0,

Vr,0R (A)− r!Φr,0n (A) = r!

n∑
k=1

κkR
kΦr,0n−k(A).

Similarly to the approach used in Subsection 3.2.1, estimators of the Minkowski tensors
are now obtained from this formula combined with (3.10) and (3.15):Φ̃r,sn−1(A0)

...
Φ̃r,s0 (A0)

 =
(
Nr,s
R0,...,Rn−1

)−1

 V
r,s
R0

(A0)− r!Φ̃r,sn (A0)
...

Vr,sRn−1
(A0)− r!Φ̃r,sn (A0)

(3.16)

for all r, s ∈ N0, where a new Vandermonde-type matrix

Nr,s
R0,...,Rn−1

= r!s!

κs+1R
s+1
0 . . . κs+nR

s+n
0

...
. . .

...
κs+1R

s+1
n−1 . . . κs+nR

s+n
n−1


is introduced. The number of equations in the linear system described by (3.16) is reduced
by one compared to (3.8). Once more, we note that for s ∈ N, Φr,sn (A) equals 0 and can
thus be estimated by Φ̃r,sn (A0) = 0, so the terms r!Φ̃r,sn (A0) are set equal to zero.

Simulations 31

It follows from Theorems 3.1 and 3.2 that Φ̃r,sk (A0) is multigrid convergent for all
k ∈ {0, . . . , n} and r, s ∈ N0 if A is compact and topologically regular and 0 < R0 < · · · <
Rn−1 < Reach(A). A combination of [19, Theorem 4.2 and Lemma 5.1] and the remarks
following Theorem 3.2 implies that this convergence is of order O(d) when A is convex or
ρ-regular and r = s = 0. For r, s 6= 0, the speed of convergence is O(

√
d).

Again, this algorithm has been implemented in the planar case. For n = 2, the al-
gorithm in (3.16) reduces to(

Φ̃r,s1 (A0)

Φ̃r,s0 (A0)

)
=
(
Nr,s
R0,R1

)−1
(
Vr,sR0

(A0)− r!Φ̃r,s2 (A0)

Vr,sR1
(A0)− r!Φ̃r,s2 (A0)

)
(3.17)

for r, s ∈ N0, where Φ̃r,02 (A0) = (d2/r!)
∑
x∈A0

xr and Nr,s
R0,R1

is defined as

Nr,s
R0,R1

= r!s!

(
κs+1R

s+1
0 κs+2R

s+2
0

κs+1R
s+1
1 κs+2R

s+2
1

)
with κj given by (3.12) for j ∈ {1, . . . , 4}.
Algorithm Minktensor2D2R (R2)

Input:

◦ Digitisation A0 = A ∩ dL of a compact topologically regular set A ⊂ R2 with
positive reach;

◦ Lattice distance d > 0 of dL;

◦ Two radii R0 and R1 satisfying d/
√

2 < R0 < R1 < Reach(A).

Action:

◦ Calculate Φ̃r,02 (A0) using (3.13) for r ∈ {0, 1, 2};
◦ Calculate Vr,sRi (A0) using (3.10) for i ∈ {0, 1} and for all r, s ∈ {0, 1, 2} with
r + s ≤ 2;

◦ Determine the corresponding Minkowski tensors by (3.17).

Output:

◦ Estimators Φ̃r,sk (A0) for all k, r, s ∈ {0, 1, 2} with r+s ≤ 2 (including the trivial
ones of the form Φ̂0,1

k (A0) for model control) of the corresponding Minkowski
tensors.

The programme will give a warning if radii are chosen below the recommended lower limit
d/
√

2 as discussed above. If any result of the algorithm is numerically below 10−6, the
output is rounded off to zero.

3.4 SIMULATIONS
In the preceding sections, we have introduced two different algorithms for the computation
of estimators of the Minkowski tensors of sets A ⊂ R2 with positive reach from digitisations
A0 = A ∩ dL. We denote by R3 the first algorithm, introduced in Section 3.2, which is
based on three radii 0 < R0 < R1 < R2 < Reach(A), and by R2 the second algorithm,
introduced in Section 3.3, based on two radii 0 < R0 < R1 < Reach(A). Theorems 3.1
and 3.2 on multigrid convergence of the algorithms do not depend on the specific choice
of the radii, but we expect the choice to affect the accuracy at least to some extent: We
have already argued that choosing radii below d/

√
2 is problematic, so we will impose

the restriction d/
√

2 < R0 henceforth. Finally, we wish to explore the consequences of
choosing one or more radii larger than Reach(A).

For R3, three Voronoi tensor measures VRi(A0), i ∈ {0, 1, 2}, must be calculated
and a system of three linear equations must be solved. For R2, only two Voronoi tensor
measures VRi(A0), i ∈ {0, 1}, are calculated and a system of two linear equations solved.
As a trade-off, we must calculate estimators of the volume tensors separately, but these
are computed quite effectively using the algorithm in (3.13). In particular, note that for
the volume tensors, we need only compute the sum

∑
x∈A0

xr once for each r, the relevant
values being r ∈ {0, 1, 2}, resulting in three simple computations. For the Voronoi tensor
measures, computed via (3.10), we need computations for each choice of r ∈ {0, 1, 2},

32 Comparison of two global algorithms for Minkowski tensor estimation

1

0
0 1

(a)

1

0
0 1

(b)

1

0
0 1

Reach(A)

(c)

Figure 3.3
The three test sets
used in our simula-
tions. (a) shows the
disc B1 + (1, 1)T ,
(b) the annulus
cl(B2 \ B1) + (1, 1)T ,
and (c) the complement
of one realisation of a
Boolean model with
intensity γ = 10 and
uniform radius distri-
bution U(0.08, 0.16) for
the typical particle.

for each choice of s ∈ {0, 1, 2} such that r + s ≤ 2, and for each choice of Ri. For
R3 with three radii Ri, i ∈ {0, 1, 2}, this gives twelve computations; for R2 with two
radii Ri, i ∈ {0, 1}, only nine. Hence the second algorithm requires fewer computations,
and moreover, the number of computations of the more complicated integral on the right-
hand side of (3.10), which depends on the Voronoi diagram, is reduced by three. We would
thus expectR2 to be faster thanR3 as the size of the data set A0 increases or, equivalently,
as the resolution grows.

3.4.1 CHOICESOFRADII

The purpose of this section is to give recommendations for proper choices of radii based
on simulations with test sets. Let Rmax be the maximal radius equal to R2 in the case of
R3 and to R1 in the case of R2. To evaluate the behaviour of the estimators for varying
choices of radii, the following procedure is used.

Procedure P for selecting radii

(1) For some fixed resolution, consider the interval (d/
√

2,m) where 3d/
√

2 < m <
Reach(A). Set Rmax = m and R0 = Rmax/n for algorithm Rn, n = 2, 3. This way,
the radii are evenly spaced over the interval (0,m) and all greater than d/

√
2. We

now let m vary and plot the estimators of the Minkowski tensors as functions of m.

(2) Based on our findings in (1) and applying the same resolution, we choose a maximal
radius in the interval (3d/

√
2,Reach(A)) for which we get satisfactory estimators in

the previous simulations. We then choose R0 in the interval (d/
√

2, Rmax). We plot
the estimators as functions of R0.

(3) Based on our findings in (2) and applying the same resolution, we choose a minimal
radius R0 > d/

√
2 for which we get satisfactory estimators in the previous simula-

tions. We then choose Rmax in the interval (R0,m) where R0 < m < Reach(A). We
plot the estimators as functions of Rmax.

If A is convex, there is no upper constraint on m or Rmax in the above procedure.
The procedure requires some choice of resolution. For the simulations below, we choose
resolution d−1 = 1000.

We now apply procedure P to different test sets in R2. As test sets we have chosen, with
increasing geometric complexity, a convex disc, a non-convex annulus, and a realisation of
the complement of a planar Boolean model; see Figure 3.3. In Appendix C, the Minkowski
tensors of rank at most two of these test sets are calculated, and we provide documentation
of the digitisation of the test sets.

Our starting point is the simple case of a translated unit disc A = B1 + (1, 1)T , where
we set B1 = B1(0). Subsection C.1.1 provides detailed computations of the Minkowski
tensors of A. We apply procedure P to A to find suitable radii for each of the algorithms;
see Figure 3.4. In this figure, we only report results for the tensors Φr,sk (A), r, s ∈ {0, 1, 2},
r + s ≤ 2, in the case k = 1. The corresponding results for k = 0 are qualitatively the
same. The case k = 2 stands out in that R2 makes use of (3.13) for the estimation of the
volume tensors, and this formula does not depend on the radii. The results for the tensors
with k = 2 are, however, very similar to those with k ∈ {0, 1} for the algorithm R3, but
to illustrate the difference in behaviour of R2, Figure 3.5 shows the results of step (1) of
procedure P for the volume tensor Φ0,0

2 (A).

Choices of radii 33

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

−2

−1

0

1

2

3

Rmax

R3

R2

Φ0,0
1 (A)

Φ1,0
1 (A)(1)

Φ2,0
1 (A)(1,1)

Φ2,0
1 (A)(1,2)

Φ1,1
1 (A)(1,1)

Φ0,2
1 (A)(1,1)

(a) Procedure P(1) with R0 = Rmax/n for Rn with n = 2, 3.

0 1 2 3 4 5 6 7 8 9 10

3.1410

3.1412

3.1414

3.1416

3.1418

R0

Φ̂0,0
1 (A0)

Φ̃0,0
1 (A0)

Φ0,0
1 (A)

(b) Procedure P(2) with Rmax = 10.

5 6 7 8 9 10

3.14140

3.14145

3.14150

3.14155

3.14160

Rmax

Φ̂0,0
1 (A0)

Φ̃0,0
1 (A0)

Φ0,0
1 (A)

(c) Procedure P(3) with R0 = 5.

Figure 3.4
The quality of estim-
ators of the tensors
Φr,s1 (A), r, s ∈ {0, 1, 2},
r + s ≤ 2, for fixed res-
olution d−1 = 1000 and
different radii for the
disc A = B1 + (1, 1)T .
The estimators of
Φ0,0

1 (A) and Φ1,0
1 (A)(1)

overlap completely, thus
explaining why Φ0,0

1 (A)
does not show in (a).

34 Comparison of two global algorithms for Minkowski tensor estimation

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

3.139

3.140

3.141

Rmax

Φ̂0,0
2 (A0)

Φ̃0,0
2 (A0)

Φ0,0
2 (A)

Figure 3.5
Procedure P(1) for the
disc A = B1 + (1, 1)T

with d−1 = 1000 and
R0 = Rmax/n for Rn
with n = 2, 3.

To report results, we use the identification of rank p tensors with the entries of the array
of size np as explained in (3.1). As there are 12 non-trivial components of tensors Φr,s1 (A)
with r, s ∈ {0, 1, 2}, r + s ≤ 2, we only report a selection of such entries. To concretise,
Φ0,0

1 (A) = π is half the perimeter of A, and Φ1,0
1 (A) is, up to normalisation, the centre of

gravity of a uniform mass distribution on ∂A. Hence Φ1,0
1 (A)(1) is the projection of this

centre of gravity onto the x-axis. Another example is

Φ2,0
1 (A) =

1

2

∫
∂A

x2H1(dx),

where H1 denotes the one-dimensional Hausdorff measure. Hence

Φ2,0
1 (A)(i,j) =

1

2

∫
∂A

xixjH1(dx), i, j ∈ {1, 2}.

For Figures 3.4(b) and (c), we have chosen to plot just a single non-trivial array entry.
The reason for this is that the difference between algorithms R3 and R2 is only visible on
a very small scale; much smaller than the difference in values of the tensors. Analogously,
for the volume tensors Φr,02 (A) with r ∈ {0, 1, 2}, we plot only the entry corresponding to
the area Φ0,0

2 (A) = π in Figure 3.5. The reader should note the precision on the y-axis
before concluding that R3 is significantly poorer than R2 for volume tensor estimation;
from Rmax > 0.0023, the error of any volume tensor estimator computed by R3 in this
step is below 1%.

The behaviour shown for these selected tensors is representative of the tensors of A. No
estimators of tensors that are equal to zero are included in our plots because the estimators
likewise equal zero independently of the choices of radii in any step of procedure P for
both algorithms.

From Figure 3.4(a), representing step (1) of P, we observe that unless the radii are all
chosen below 0.02, the choice of radii does not seem to have much effect on the computed
estimators. In the figure, we have zoomed in on the small interval (d/

√
2, 0.1] to illustrate

this point. When Rmax is chosen larger than 0.4, the error of the estimators is below 1%
for both algorithms. For R3 in particular, Rmax need only be greater than 0.2 to obtain
this accuracy. This means that even though we have no upper limit on Rmax, we need
not choose an extremely large value but could select Rmax equal to e.g. a few times the
diameter of the object. In Figure 3.4(b), which corresponds to step (2) of procedure P,
we examine the algorithms for Rmax = 10. We observe that problems arise only when R0

is chosen in the lower half of the interval (0, 10). Indeed, if we choose R0 = 0.01 or 0.1 in
step (3), we get large errors for R2. In comparison, R3 is less affected by our choice of R0

and is generally more accurate than R2. In Figure 3.4(c), we set R0 = 5 and observe that
varying Rmax has close to no effect as long as we do not choose it too close to R0.

There is an apparent tendency in Figures 3.4(b) and (c) of the estimators to converge
to some wrong value of the tensor. This, however, is not in conflict with our theoretical
expectations. The estimators are expected to converge to the true tensors as we increase the
resolution, and in these simulations, we have fixed a resolution and are simply examining
the importance of the choices of radii. The examination of the importance of the resolution
follows in the next subsection.

Choices of radii 35

0.5 1 1.5 2 2.5 3 3.5

0.4

0.6

0.8

1

1.2

1.4

1.6

Rmax

Φ̂2,0
0 (A0)(1,1)

Φ̃2,0
0 (A0)(1,1)

Φ̂1,1
0 (A0)(1,1)

Φ̃1,1
0 (A0)(1,1)

Figure 3.6
Procedure P(1)
for the annulus
A = cl(B2 \ B1) +

(1, 1)T with d−1 = 1000
and R0 = Rmax/n for
Rn with n = 2, 3. The
dashed black line in-
dicates the point when
Rmax is greater than
Reach(A); the coloured
dashed lines when all
radii of the correspond-
ing algorithm are above
Reach(A).

From Figure 3.4(a), we see a tendency of the algorithms to approximate the tensors
either from above or below. One could ask whether relations

Φ̂r,sk (A0) ≤ Φr,sk (A) ≤ Φ̃r,sk (A0)

exist, possibly with the inequalities reversed depending on the choice of k, r, s ∈ {0, 1, 2},
r + s ≤ 2. However, we see from Figures (b) and (c) that this is not the case, as both
algorithms underestimate the tensor.

Analogously, we now follow procedure P in the case of a non-convex set. We choose
to consider the annulus A = cl(B2 \ B1) + (1, 1)T , the Minkowski tensors of which are
calculated in Subsection C.1.2. The reach of A is 1, so we must choose d/

√
2 < R0 < R1 <

R2 < 1. However, we now repeat procedure P(1) for this non-convex set and allow for
radii above the theoretical upper limit Reach(A) in order to investigate how this affects
the estimators. The result is illustrated in Figure 3.6, where we have chosen to plot the
non-zero tensor entries Φ2,0

0 (A)(1,1) and Φ1,1
0 (A)(1,1). Clearly, as soon as Rmax > Reach(A),

the estimators become highly unreliable. There is no visible effect when the lower radii
also surpass the upper bound.

For radii within the permitted range, (d/
√

2,Reach(A)), we get a picture similar to
the one for the disc, but since the radii are now limited to a smaller interval, we see the
effect of choosing the radii too close to one another to a greater extent. The picture is
similar for the remaining tensors: for Rmax greater than 0.25, the error of R3 is below 1%,
whereas we need Rmax > 0.5 for the same precision in R2. In general, results improve for
higher choices of Rmax, and with Rmax = 0.95, we obtain an error below 0.3%. For step
(2) of procedure P, we thus pick Rmax = 0.95. The picture here resembles Figure 3.6, so
we do not include the plot. Again, we need to choose R0 near the middle of the interval
(d/
√

2, Rmax) in order to get satisfactory results, suggesting a strategy for choosing R0

when Rmax is fixed. This becomes even more apparent when we simulate for fixed R0 in
step P(3). Indeed for R0 equal to for instance 0.1, the estimators are rather poor, most
prominently for R2, no matter how we choose Rmax. Choosing R0 = 0.5 gives much more
accurate estimators, in particular if Rmax is chosen close to Reach(A).

It thus appears that a recommendation for non-convex sets is to choose Rmax close
to the upper limit Reach(A) and set R0 = Rmax/2. These recommendations are at least
valid for the non-convex annulus, and it is now natural to ask whether they apply also in
the case of other, possibly more complex, non-convex sets.

One candidate for a more complex non-convex set is the complement of a (stationary)
Boolean model. We will not go into details with the definition of Boolean models, since
we will only consider one concrete example; the interested reader is instead referred to
[33, Section 4.3]. Consider a stationary Poisson point process in R2 with intensity γ > 0.
A random compact set is attached to each point of the process in such a way that the
random sets are independent of each other and of the Poisson process. The union Z of
these sets forms a stationary Boolean model. We consider here a Poisson process with
intensity γ = 10 and discs as random compact sets with a radius distribution given by the
uniform distribution U(a, b) in the interval between a = 0.08 and b = 0.16.

36 Comparison of two global algorithms for Minkowski tensor estimation

0.03 0.035 0.04 0.045 0.05 0.055 0.06

−1

0

1

2

3

4

5

Rmax

R3

R2

Φ0,0
0 (A)

Φ0,0
1 (A)

Φ0,0
2 (A)

Figure 3.7
Procedure P(3) for
the complement A of
the Boolean model in
Figure Figure 3.3(c)
with d−1 = 1000
and R0 = 0.03.

We will analyse Minkowski tensors of the Boolean model in the unit squareW = [0, 1]2;
see Figure 3.3(c) for the realisation that was used in the analysis. It is clear that Z ∩W
does not in general have positive reach (positive reach is only possible if none of the discs
overlap). Therefore, we consider instead its complement A = cl(W \Z) in W . This model
is described further in Subsection C.1.3, and its intrinsic volumes are calculated. We have
indicated the distance determining the reach of A with a red line in Figure 3.3(c). As this
is measured manually, we determine a lower bound 0.0614 < Reach(A) slightly smaller
than the reach. We then perform procedure P but restrict attention to the tensors of rank
zero: the Euler characteristic Φ0,0

0 (A), half the perimeter Φ0,0
1 (A), and the area Φ0,0

2 (A) as
illustrated by Figure 3.7. Here, we show the result of simulations for step (3) of procedure
P with R0 = 0.03, which was found by steps (1) and (2) to be a good choice for the
minimal radius. For this particular model, it seems we have a challenge in finding truly
good radii for obtaining satisfactory estimators. Especially R2 is prone to error.

One explanation for the less precise estimators of the complement of the Boolean model
might be that we need to consider the model for higher resolutions. It is then relevant to
ask whether the same choices of radii are equally good for different choices of resolution.
We will explore this question shortly. The procedure P can be applied to a test set for
each of the algorithms R3 and R2 in turn in order to find good choices of radii for each
of them, but one may also choose to find those radii which yield the best results for both
algorithms simultaneously. The latter allows for what could be considered a better basis
for comparison of the algorithms later on when we fix the radii and let the resolution vary.
Incidentally, for the three test sets above, we have chosen the same radii for R3 and R2

in the different steps of procedure P because the best choices for R2 work equally well
for R3 (although not necessarily the other way around).

We check now whether our choice of resolution affects the way in which we should
choose the radii for a given test set. Consider again the disc B1 + (1, 1)T . The simulations
performed for this set, illustrated by Figure 3.4, make use of a resolution d−1 = 1000. We
now carry out the same simulation but for different resolutions. The results are shown in
Figure 3.8, where the effect is illustrated for the Euler characteristic, Φ0,0

0 (A). The graphs,
each representing one of four chosen resolutions, exhibit a similar behaviour. As could be
expected, higher resolution yields better estimators, but from the figure it would seem
that the resolution only determines how large radii are needed for good estimators, i.e. for
low resolutions, one needs to be able to choose rather high radii whereas high resolutions
allow for choices of smaller radii. This tendency is reproducible for the two other test sets
as well for all the estimators. This means that if we have a model for which the choice
of radii is restricted by the reach, we can compensate by choosing a higher resolution.
Moreover, if one choice of radii works well for a given resolution, that same choice will
also work for higher resolutions.

As stated in Subsection 3.2.3, R3 sets R1 = (R0 + Rmax)/2 by default. We have
examined the effect of varying R1 in the interval (R0, Rmax), but except for when R1 is
very close to the limits of the interval, the choice of R1 seems to have no effect at all.
Therefore, minimising the number of input arguments for the algorithm by pre-assigning
R1 seems the best solution.

Influence of resolution on the quality of estimators 37

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

20

40

60

Rmax

R3

R2

d−1 = 100

d−1 = 500

d−1 = 1000

d−1 = 2000

Figure 3.8
Comparison of effect
of choices of radii on
estimators of the Euler
characteristic, Φ0,0

0 (A),
for different choices of
resolution in procedure
P(1) for A = B1 +

(1, 1)T .

Concluding this section, we can give the following general recommendations for the
choice of radii. It is advantageous to choose Rmax large; we suggest 95% of Reach(A) in
the non-convex case and several diameters of A in the convex case. The smallest radius, R0,
is recommended to be chosen in the middle of the interval (d/

√
2, Rmax), which turned

out to work well for R2. Concerning R3, the choice of R0 seems less critical as long
as it is not chosen too close to either end of the interval (d/

√
2, Rmax). For R3, setting

R1 = (R0 + Rmax)/2 is recommended, and this choice has already been made in our
implementation of the algorithm.

3.4.2 INFLUENCEOFRESOLUTIONONTHEQUALITYOFESTIMATORS

Having chosen radii for the three test sets based on procedure P for a given resolution,
we examine the influence of the resolution on the computed estimators; a task which was
partly commenced by the comparison in Figure 3.8. We simulate for varying choices of
resolution and plot the estimators as functions hereof.

Figure 3.9 shows results for the three test sets of the previous subsection. As we have
fixed the radii, we have automatically set a lower limit for the resolution, since we need
to make sure that d/

√
2 < R0. As the three sets are plotted together, the set with the

smallest R0, the complement of the Boolean model, determines the minimal resolution.
Thus for R0 = 0.03, the resolution should be at least 24.

The functions plotted in Figure 3.9 are not, as previously, the estimators. Rather, we
plot the absolute deviation of the estimator from the true tensor; the absolute residual.
The residual Φ̂r,sk (A0)−Φr,sk (A) of the estimator Φ̂r,sk (A0) is denoted by Res(Φ̂r,sk (A0)) for
k, r, s ∈ {0, 1, 2} with r + s ≤ 2. Figure 3.9(a) shows the result for the Euler character-
istic, Φ0,0

0 (A), and Figure 3.9(b) that for the area, Φ0,0
2 (A). The functions are plotted on

a log-log scale. This way, we are able to check the rate of convergence. Indeed, summing
up on previous remarks in Sections 3.2 and 3.3, for estimators of the intrinsic volumes,
Φ0,0
k (A) with k ∈ {0, 1, 2}, calculated by either algorithm, the rate of convergence is of

order O(d) if A is convex or ρ-regular. In fact, for the volume tensors, R2 yields estimators
that converge to Φr,02 (A), r ∈ {0, 1, 2}, with speed O(d) if A is a compact topologically
regular set with boundary a 1-rectifiable Lebesgue null set, which is less restrictive than
the requirements of convexity or ρ-regularity.

That the speed of convergence of the estimator Φ̂r,sk (A0) towards Φr,sk (A) is O(dm) for
m ∈ R means that

Res(Φ̂r,sk (A0)) ≤ c · dm

for some c ∈ R, where Φ̂r,sk (A0) is inherently a function of d. This implies that

log|Res(Φ̂r,sk (A0))| ≤ log(c) +m log(d).(3.18)

The disc is both convex and ρ-regular for ρ = 1, and the annulus is ρ-regular for
ρ = 1. The complement of the Boolean model is neither, but its boundary is 1-rectifiable.
Hence, by (3.18), we expect to see linear graphs in Figures 3.9(a) and (b) with slope m
equal to −1 (we are plotting as functions of d−1 and not d) for the disc and the annulus.

38 Comparison of two global algorithms for Minkowski tensor estimation

102 103

10−8

10−6

10−4

10−2

100

102

d−1

|Res(Φ̂0,0
0 (A1,0))|

|Res(Φ̃0,0
0 (A1,0))|

|Res(Φ̂0,0
0 (A2,0))|

|Res(Φ̃0,0
0 (A2,0))|

|Res(Φ̂0,0
0 (A3,0))|

|Res(Φ̃0,0
0 (A3,0))|

(a) A log-log plot of residuals of the Euler characteristic, Φ0,0
0 (A), as functions of the resolution.

102 103

10−7

10−6

10−5

10−4

10−3

10−2

10−1

d−1

|Res(Φ̂0,0
2 (A1,0))|

|Res(Φ̃0,0
2 (A1,0))|

|Res(Φ̂0,0
2 (A2,0))|

|Res(Φ̃0,0
2 (A2,0))|

|Res(Φ̂0,0
2 (A3,0))|

|Res(Φ̃0,0
2 (A3,0))|

(b) A log-log plot of residuals for the area, Φ0,0
2 (A), as functions of the resolution.

Figure 3.9
Plots of the absolute
Minkowski tensor re-
siduals as functions
of the resolution for
the three test sets
A1 = B1 + (1, 1)T

with R0 = 5,
Rmax = 10; A2 =
cl(B2\B1)+(1, 1)T with
R0 = 0.5, Rmax = 0.95,
and A3 the comple-
ment of the Boolean
model with R0 = 0.03,
Rmax = 0.05. In the
legends, Ai,0 denotes
the digitisation Ai ∩ dL
for i ∈ {1, 2, 3}.

For the complement of the Boolean model we expect the same in Figure 3.9(b), but we
have no theoretical results on its convergence rate for the Euler characteristic.

In Figure 3.9(a), linear fitting approximations yield:

|Res(Φ̂0,0
0 (A1,0))| ≈ 1.19 · log(d)− 9.15;

|Res(Φ̃0,0
0 (A1,0))| ≈ 1.28 · log(d)− 3.52;

|Res(Φ̂0,0
0 (A2,0))| ≈ 1.27 · log(d) + 0.36;

|Res(Φ̃0,0
0 (A2,0))| ≈ 1.30 · log(d) + 2.18;

|Res(Φ̂0,0
0 (A3,0))| ≈ 1.69 · log(d) + 7.86;

|Res(Φ̃0,0
0 (A3,0))| ≈ 1.30 · log(d) + 8.01,

where Ai,0 denotes the digitisation Ai ∩ dL. These simulations lead to the following con-
clusions: Firstly, for the given example sets, the asymptotic speed of convergence already
holds for finite resolution for a range of d that is realistic in practical applications. Even for
the Boolean model, for which we do not have an asymptotic speed of convergence bound
from theory, the speed is at least linear. Secondly, and maybe even more interestingly, the
speed of convergence in the examples is clearly better than dm with m = 1 as suggested
by the theory. This indicates that an improved asymptotic convergence rate holds and
could possibly be proven, at least for certain subclasses of sets with positive reach.

Influence of resolution on the quality of estimators 39

101 101.2 101.4 101.6 101.8 102
10−3

10−2

10−1

d−1

|Res(Φ̂1,1
1 (A1,0)(1,1))|

|Res(Φ̃1,1
1 (A1,0)(1,1))|

|Res(Φ̂1,1
1 (A2,0)(1,1))|

|Res(Φ̃1,1
1 (A2,0)(1,1))|

Figure 3.10
A log-log plot of the ab-
solute Minkowski tensor
residuals for a rank two
tensor as a function
of the resolution for
A1 = B1 + (1, 1)T

with R0 = 5,
Rmax = 10 and A2 =
cl(B2\B1)+(1, 1)T with
R0 = 0.5, Rmax = 0.95.

Similar conclusions can be made for Figure 3.9(b), where the linear equations are
given by:

|Res(Φ̂0,0
2 (A1,0))| ≈ 1.30 · log(d) + 1.72;

|Res(Φ̃0,0
2 (A1,0))| ≈ 1.56 · log(d) + 0.30;

|Res(Φ̂0,0
2 (A2,0))| ≈ 1.28 · log(d) + 2.66;

|Res(Φ̃0,0
2 (A2,0))| ≈ 1.41 · log(d)− 0.31;

|Res(Φ̂0,0
2 (A3,0))| ≈ 1.42 · log(d) + 3.41;

|Res(Φ̃0,0
2 (A3,0))| ≈ 1.24 · log(d)− 2.27.

Again, the speed of convergence is super-linear in the considered range of d. It appears
that the speed of convergence of Φ̃0,0

2 (A0) is better than the one of Φ̂0,0
2 (A0) except for

the case A = A3, but the slope in this case is supposedly less meaningful due to the huge
fluctuation of the residuals (green circles). In fact, the coefficient of determination equals
0.59 compared to 0.87 for A = A1 and 0.78 for A = A2, indicating that the regression line
is a rather poor approximation in the case A = A3.

That Φ̃0,0
2 (A0) performs particularly well for A1 and A2 is explained by the fact that

this estimator is based on the basic counting scheme (3.13). For the circle, A = A1, the
speed of convergence problem corresponds essentially to the Gauss circle problem, where
the best known exponent [20] is m = 285/208 ≈ 1.37, but it is conjectured [14] to be
m = 1.5− ε for arbitrary ε > 0.

The graphs for R2 exhibit strong fluctuations of the residuals. However, as the estim-
ators for the volume tensors, Φ̃r,02 (A0) with r ∈ {0, 1, 2}, are essentially based on counting
sampling points in A as explained above, a so-called Zitterbewegung effect [1, p. 307],
known from systematic sampling, occurs here, thus explaining the fluctuations.

The rate of convergence for Φ̂r,sk (A0) and Φ̃r,sk (A0) with k, r, s ∈ {0, 1, 2} and r + s ∈
{1, 2} for convex and ρ-regular sets is O(

√
d). This asymptotic result is also tested in

practice for the disc and the annulus in Figure 3.10. Here, the absolute residual for the
tensor Φ1,1

1 (A)(1,1) is plotted. As before, we obtain linear equations:

|Res(Φ̂1,1
1 (A1,0)(1,1))| ≈ 1.30 · log(d)− 0.13;

|Res(Φ̃1,1
1 (A1,0)(1,1))| ≈ 1.30 · log(d)− 0.10;

|Res(Φ̂1,1
1 (A2,0)(1,1))| ≈ 1.23 · log(d) + 0.32;

|Res(Φ̃1,1
1 (A2,0)(1,1))| ≈ 1.31 · log(d) + 1.17,

which do not corroborate the theoretically expected rate of convergence corresponding to
a slope m = 0.5 but rather point to an even higher speed of convergence comparable to
that for the intrinsic volumes.

From Figures 3.9 and 3.10, it is evident that the more complicated the test set, the
higher resolution is required in order for the algorithms to produce good estimators. For
the disc, R3 has en error below 1% for resolutions above d−1 = 46 compared to d−1 = 80

40 Comparison of two global algorithms for Minkowski tensor estimation

10 20 30 40 50 60 70 80 90 100

−0.002

0.000

0.002

0.004

d−1

Φ̂0,2
0 (A0)(1,2)

Φ̃0,2
0 (A0)(1,2)

Φ̂0,1
1 (A0)(1)

Φ̃0,1
1 (A0)(1)

Φ̂1,1
1 (A0)(1,2)

Φ̃1,1
1 (A0)(1,2)

Figure 3.11
Plot of the Minkowski
tensor estimators
of tensors equal to
zero as functions of
the resolution for
A = cl(B2 \B1)+(1, 1)T

with R0 = 0.5,
Rmax = 0.95.

for the annulus. For the complement of the Boolean model, we need resolutions well above
2000 to obtain such accurate estimators. In comparison, R2 has an error below 1% for
resolutions above d−1 = 45 for the disc but d−1 = 285 for the annulus. We cannot obtain
this accuracy for the Boolean model with resolutions below 10 000, but above 9000, we
can get below 5%.

The majority of the previous plots have neglected to report results for tensors that
are (trivially) equal to zero with the exception of the Euler characteristic of the annulus
in Figure 3.9(a). For completeness, we plot such estimators in Figure 3.11, again for the
annulus. We see that not all estimators are identically zero, and here, too, results depend
on the resolution. All zero-tensor estimators are reported by the algorithms R3 and R2, so
these can be used as indicators of the overall quality of the estimators for a given resolution.
The zero-tensors for the disc are in fact identically zero regardless of resolution, confirming
that more complicated sets demand higher resolutions.

From the simulations, we make the following observations. Firstly, it has proven par-
ticularly difficult to compute good estimators of the Euler characteristic, Φ0,0

0 (A), for both
algorithms R3 and R2, unless we consider very simple models such as the disc. Secondly,
R2 produces better estimators of the volume tensors than R3. Lastly, smaller resolutions
suffice for simpler models. This means that for the simplest model, the disc, all tensors are
computed fairly accurately by both algorithms already for low resolutions, and residuals
of both algorithms are low. In this case, the error of R2 is smaller than that of R3 because
the volume tensors are the ones more difficult to estimate. However, as complexity of
the model increases, difficulty of estimating the Euler characteristic surpasses the volume
tensors, and so R3 becomes the better choice of algorithm since it estimates all but the
volume tensors better than R2 does.

Regarding the speeds on convergence, the theoretical results for both algorithms in fact
appear to hold under a resolution regime that is realistic in practice. In fact, the speeds
of convergence deduced from our simulations are higher than the theoretically expected
and also apply to sets that do not meet the necessary requirements for the theorems on
multigrid convergence to apply.

Finally, running our simulations in MATLAB, we have observed that R2 is notice-
ably faster than R3. This is likely due to the considerations made at the beginning of
Section 3.4.

3.5 DISCUSSION
Based on our findings from the various plots in Section 3.4, we conclude that the algorithms
R3 and R2 do in fact yield good estimators of the Minkowski tensors in the setting of
finite resolution. Algorithm R3 has proven more accurate than R2 except in the case of
the volume tensors.

On the other hand, R2 is generally faster than R3 in computing the estimators, and
for sufficiently high resolutions, R2 does produce satisfactory estimators. Computation
times are, however, fairly small in general. Thus, to obtain the best results, our recom-

Discussion 41

mendation is to use (3.13) to obtain reliable estimators of the volume tensors and sub-
sequently use R3 to estimate the remaining Minkowski tensors. Hence we suggest not to
use R2 at all apart from its volume tensor estimators in (3.13). First applying (3.13) and
thereupon R3 increases computation times but yields far better estimators. The algorithm
defined in this way is named Minktensor2D:

Algorithm Minktensor2D

Input:

◦ Digitisation A0 = A ∩ dL of a compact topologically regular set A ⊂ R2 with
positive reach;

◦ Lattice distance d > 0 of dL;

◦ Two radii R0 and R2 satisfying d/
√

2 < R0 < R2 < Reach(A).

Action:

◦ Calculate Φ̂r,02 (A0) using (3.13) for r ∈ {0, 1, 2};
◦ Calculate Vr,sRi (A0) using (3.10) for i = 0, 1, 2, with R1 = (R0 +R2)/2, and for

all r, s ∈ {0, 1, 2} with r + s ≤ 2;

◦ Determine the corresponding Minkowski tensors by (3.11).

Output:

◦ Estimators Φ̂r,sk (A0) for all k, r, s ∈ {0, 1, 2} with r+ s ≤ 2 and s = 0 whenever
k = 2 (including the trivial ones of the form Φ̂0,1

k (A0) for model control) of the
corresponding Minkowski tensors.

If any result of the algorithm is numerically below 10−6, the output is rounded off to zero.

All MATLAB-files for Minktensor2D are available for download [6]. We have documented
the code for Minktensor2D in Appendix D, where a printout of the .m-files of the pro-
gramme is also provided.

With regard to the practical use of Minktensor2D, we suggest that in the setting
of finite positive reach, one chooses Rmax close to but strictly smaller than the reach;
for instance Rmax equal to 95% of Reach(A). The lower radius R0 should be chosen
near Rmax/2. When there is no upper bound on Rmax, i.e. the reach is infinite, Rmax can
be chosen arbitrarily large, but a choice equal to several diameters of the object is advised.
Accuracy of the algorithms is then determined by the resolution. The more complicated
the object, the larger resolution is required.

A disadvantage of the algorithm is that one needs to know (a lower bound for) the
reach of the object. This is a hindrance if one wishes to extract geometric knowledge of
some unknown set. Simply guessing the reach can cause major errors, since it is vital that
the radii chosen for the algorithm are strictly smaller than the reach, as illustrated in Fig-
ure 3.6. Further, in applications, data is not always given as black-and-white digitisations
but rather as greyscale images. Local algorithms for Minkowski tensor estimation based
on greyscale input can for instance be found in [39].

We conclude by mentioning that an implementation of the above algorithms in di-
mension three or higher is possible. However, it appears to be difficult to determine the
integrals on the right-hand side of (3.10) numerically. One possibility would be to use a
sufficiently fine approximation of the R-bounded Voronoi cells by polytopes for which an
exact evaluation of the corresponding integral is possible. This has already been used in
[26] to solve a related problem.

A

SUPPORTINGRESULTSOF
CHAPTERTWO

This appendix is a copy of the notes [11] by du Plessis which have not yet
been published but contain the main results on which our work in Chapter 2
is based. We therefore choose to include them here for completeness. The
notation has been adapted to fit this thesis, and small comments to link
the notes to the remaining parts of the thesis have been made. Otherwise,

the contribution of the author is limited to proof reading, minor elaborations, and the
addition of figures.

In the first section, a proof of the equivalence of the statements in Definition 1.4 as well
as additional properties related to the boundary of r-regular sets is presented. The second
section concerns the geometry of r-regular sets, and in the third section, Theorem A.21,
with which we will be able to prove the remaining parts of Theorem 2.10, is proved.
The final section is the author’s elaboration on how Theorem A.21 can be used to prove
Theorem 2.10.

A.1 DEFINITIONSANDBASICRESULTS
In Definition 1.4, we present two definitions of r-regularity, which we assert are equivalent.
This section commences with the proof of this claim. Subsequently, we will state, and in
fact revise, some results from [12] concerning smoothness properties of the boundaries of r-
regular sets, which are used in Chapter 2 for instance to define the set T[−1,1] diffeomorphic
to ∂A× [−1, 1].

Proposition. Let A ⊂ Rn be a closed set, and let r ∈ (0,∞). Then the following areProposition A.1
equivalent:

(i) At any point x ∈ ∂A, there exist two closed balls Br ⊂ A and B′r ⊂ cl(AC) with
radius r such that Br ∩B′r = {x};

(ii) The sets A and cl(AC) are equal to unions of closed balls with radius r.

Proof. (i) ⇒ (ii): Consider a point a ∈ A. If δ∂A(a) ≥ r, a is contained in the closed ball
Br(a) ⊂ A. Otherwise, denote by s the distance δ∂A(a) < r from a to ∂A. Since ∂A is
closed, there exists x ∈ ∂A with |a − x| = s. Then x ∈ Bs(a) ⊂ A. Let Br ⊂ A and
B′r ⊂ cl(AC) be closed balls with Br ∩ B′r = {x}. Now x ∈ Bs(a) ∩ Br. If Bs(a) and B′r
meet in more than one point, int(Bs(a)) ∩ int(B′r) is non-empty. But

int(Bs(a)) ∩ int(B′r) ⊂ Bs(a) ∩B′r ⊂ A ∩ cl(AC) = ∂A,

and thus ∂A contains a non-empty open set. This is a contradiction since A is closed,
so Bs(a)∩B′r = {x}. It follows that Bs(a), Br, and B′r share a common tangent line at x,
and that Bs(a) ⊂ Br. In particular, a is contained in a closed ball of radius r contained
in A. Thus A is equal to a union of closed balls with radius r. Interchanging A and cl(AC)
in the above leads to the same conclusion for cl(AC).

(ii) ⇒ (i): Let x ∈ ∂A. Since A is closed, ∂A = A ∩ cl(AC), so there exist closed balls
Br and B′r such that x ∈ Br ∩ B′r. As argued in the first half of the proof, this implies
that Br ∩B′r = {x}. �

In the following, we shall examine more closely the boundaries of r-regular sets.

Convention. For the remainder of this appendix, we let A ⊂ Rn be an r-regular set forConvention
r ∈ (0,∞).

Proposition. Let x ∈ ∂A and s ∈ (0, r]. Then there exist unique balls Bs ⊂ A withProposition A.2
x ∈ Bs and B′s ⊂ cl(AC) with x ∈ B′s.

43

44 Supporting results of chapter two

Proof. Let x ∈ ∂A, and let Br ⊂ A and B′r ⊂ cl(AC) be closed balls with radius r such
that Br ∩ B′r = {x}. Such balls exist by r-regularity of A. For s ∈ (0, r], let Bs ⊂ A be
a closed s-ball containing x. By the same argument as in the first half of the proof of
Proposition A.1, Bs ∩B′r = {x}. It follows that Br, B′r, and Bs share a common tangent
line at x and Bs ⊂ Br. If s = r, Bs is equal to Br, so Bs is the unique closed s-ball in A
containing x. If s < r, Bs is the unique closed s-ball contained in Br which is tangent to
Br at x.

Conversely, let B′s ⊂ cl(AC) be a closed s-ball containing x. Arguing as above, if s = r,
B′s is equal to B′r, so B′s is the unique closed s-ball in cl(AC) containing x. If s < r, B′s is
the unique closed s-ball contained in B′r which is tangent to B′r at x. �

For x and s as in Proposition A.2, we will denote by Bis(x) ⊂ A the unique inner
ball of A and by Bos(x) ⊂ cl(AC) the unique outer ball of A. Proposition A.2 then
implies that the balls Br ⊂ A and B′r ⊂ cl(AC) with Br ∩ B′r = {x} of Definition 1.4(i)
are unique, i.e. they are equal to Bir(x) and Bor(x) respectively.

For any closed set X ⊂ Rn and s ≥ 0, let

Us(X) = {x ∈ Rn | δ∂X(x) < s};
U is(X) = Us(X) ∩X = {x ∈ X | δ∂X(x) < s};
Uos (X) = Us(X) ∩ cl(XC) = {x ∈ cl(XC) | δ∂X(x) < s}.

(A.1)

Then Us(X) = U is(X) ∪ Uos (X), and U is(X) ∩ Uos (X) = ∂X. We shall use the convention
that Us = Us(A), U is = U is(A), and Uos = Uos (A). We now have the following corollary of
Proposition A.2, where we recall the definition of Unp(X) from (1.3).

Corollary. The set Ur is a subset of Unp(∂A).Corollary A.3

Proof. We first consider a ∈ U ir. Let s = δ∂A(a) < r. Since ∂A is closed, there exists
x ∈ ∂A such that |x − a| = s. The ball Bs(a) is contained in A, and it contains x. Thus
Bs(a) = Bis(x) by Proposition A.2. Since s < r, Bis(x)\{x} ⊂ int(Bir(x)) ⊂ A. This implies
that Bis(x) ∩ ∂A = {x}, i.e. x is the unique point in ∂A satisfying |x − a| = s = δ∂A(a).
In particular, a ∈ Unp(∂A).

Now let a ∈ Uor and s = δ∂A(a) < r. Let x ∈ ∂A be such that |x−a| = s. As above, we
see that Bs(a) = Bos(x), and x is the unique point in ∂A satisfying |x− a| = s = δ∂A(a),
so a ∈ Unp(∂A).

Since Ur = U ir ∪ Uor , we conclude that Ur ⊂ Unp(∂A). �

For a ∈ Ur, the metric projection p∂A(a) of a is thus well-defined. We now wish to
use a series of results from [12] in order to prove certain properties of the boundary of
r-regular sets. In this paper, Duarte and Torres define an open subset X ⊂ Rn to be r-
regular if X and int(XC) are both connected unions of open r-balls. The results we need
rely on [12, Proposition 5], which essentially states that for such X, Proposition A.1(i)
holds for cl(X). However, it is implicitly assumed that ∂X = ∂(int(XC)), but this is not
necessarily true. Indeed, let Br be a closed r-ball and L be either a point or a closed
bounded line segment such that δL(Br) ≥ 2r. Then X = (Br ∪ L)C is a connected
union of open r-balls, and int(XC) is itself an open r-ball, but ∂X = ∂Br ∪ L whilst
∂(int(XC)) = ∂Br. This difficulty is resolved by the following proposition.

Proposition. Let X ⊂ Rn be an open set with ∂X = ∂(int(XC)). Then the followingProposition A.4
statements are equivalent:

(i) The closure cl(X) of X is r-regular;

(ii) The sets X and int(XC) are equal to unions of open balls with radius r.

Proof. (i) ⇒ (ii): Observe that ∂(cl(X)) = ∂(int(XC)) = ∂X, where the last equality
follows by assumption. For any x ∈ X, we claim that there exists an open r-ball con-
taining x and which does not intersect ∂X. Then, since the ball is connected, it will be
contained in X.

Suppose first that δ∂X(x) ≥ r. Then the open r-ball with centre x avoids ∂X. Other-
wise, suppose δ∂X(x) ∈ (0, r]. Then x is contained in int(Bir(p∂X(x))), which is an open
r-ball that avoids ∂X. Thus X is a union of open r-balls. A similar argument, replacing
cl(X) with XC , shows that int(AC) is also a union of open r-balls.

Definitions and basic results 45

(ii)⇒ (i): Let x ∈ ∂X, and let {xi} ⊂ X be a sequence converging to x. For i = 1, 2, . . . ,
let Ai be an open r-ball containing xi such that Ai ⊂ X, and let ai be the centre of Ai.
We have

|ai − x| ≤ |ai − xi|+ |xi − x| < r + |xi − x|.(A.2)

Since |xi − x| → 0 as i → ∞, {ai} is bounded and thus has a convergent subsequence.
Denote by a the limit of the bounded subsequence. Replacing {ai} with this subsequence
and {xi} with its corresponding subsequence, we can suppose xi → x and ai → a. Letting
i → ∞ in (A.2) yields |a − x| < r. Since Ai ∩ ∂X is empty, we have δ∂X(ai) ≥ r, and
letting i→∞ admits δ∂X(a) ≥ r. Combining this with |a− x| < r, we obtain

|a− x| = r = δ∂X(a),

so Br(a) contains x and is contained in cl(X).
We have x ∈ ∂X = ∂(int(XC)) = ∂(cl(X)). Arguing as above with X replaced by

int(XC) yields a closed r-ball containing x and contained in XC .
Now we can argue as in the proof of Proposition A.1 and conclude that cl(X) is

r-regular. �

Definition. We define a map N : ∂A→ Rn by letting N(x) be the outward-pointing unitDefinition A.5
normal at x to the boundary of the ball Bir(x) ⊂ A.

Notice that −N(x) is then the outward pointing unit normal to the boundary of
Bor(x) ⊂ cl(AC). For s ∈ (−r, r),{

x+ sN(x) ∈ A if s ≤ 0;

x+ sN(x) ∈ cl(AC) if s ≥ 0.

It follows from Corollary A.3 that if x ∈ ∂A and s ∈ (−r, r), then p∂A(x + sN(x)) = x.
Further, if y ∈ U ir and s = δ∂A(y) < r, then y = p∂A(y) − sN(p∂A(y)), and similarly,
if y ∈ Uor and s = δ∂A(y) < r, then y = p∂A(y) + sN(p∂A(y)).

Definition. For X,Y ⊂ Rn, a function f : X → Y is Lipschitz continuous if thereDefinition A.6
exists a constant k ≥ 0 such that

|f(x)− f(y)| ≤ k|x− y|

for all x, y ∈ X. The constant k is called a Lipschitz constant for f .

We now state the results from [12] without the additional assumption of connectedness
for r-regular sets since it is not used in the proof.

Proposition (Duarte and Torres, 2014 [12]).Proposition A.7

(i) The map N : ∂X → Rn from Definition A.5 is Lipschitz continuous with Lipschitz
constant 1/r.

(ii) Let s ∈ (0, 2r/3). Then, with U is defined as in (A.1), the map p∂Uis is Lipschitz
continuous with Lipschitz constant

√
2r/(2r − 3s).

(iii) Let f : U ir → R be the function given by

f(x) = 〈(x− p∂A(x)), N(p∂A(x))〉.(A.3)

Then for s ∈ (0, 2r/3), f |Uis is continuously differentiable with gradient function
given by gradf(x) = N(p∂A(x)) for all x ∈ U is.

(iv) The boundary ∂A = f−1(0) is a C1 submanifold of Rn of dimension n− 1.

Proof. (i)–(iii) are proved as [12, Propositions 6, 7, and 8]; (iv) is [12, Theorem 2] and
follows from (iii) because gradf is nowhere zero on ∂A. As mentioned, none of these results
employ connectedness of A. �

46 Supporting results of chapter two

Consider for s ∈ (0, r) the s-parallel set As. By some abuse of notation, we denote by
A−s the s-parallel set of cl(AC). Intuitively, one could get the idea that the boundaries
∂As and ∂A−s are (r − s)-regular sets; that moving ∂A to either of these boundaries
corresponds to shrinking the ball Bir(x) and enlarging the ball Bor(x), or the other way
around, for any x ∈ ∂A. In fact, it turns out that this intuition is correct. Let A	 be
defined by (2.1).

Proposition. Let s ∈ (0, r). Then cl(A	(s)) = Ā	 is (r − s)-regular.Proposition A.8

Proof. Let {N(x) | x ∈ ∂A} be the outward-pointing unit normal bundle for ∂A. Then

∂Ā	 = {a ∈ A | δ∂A(a) = s} =
⋃
x∈∂A

{x− sN(x)}.

For x ∈ ∂A, let x′ = x− sN(x) ∈ ∂Ā	, and let x′′ = x− rN(x) = x′ − (r − s)N(x). Let
y′ ∈ ∂Ā	 such that y′ 6= x′, where y′ is defined similarly to x′, so y′ = y− sN(y) for some
y ∈ ∂A with y 6= x.

We now have
|x′′ − y| ≤ |x′′ − y′|+ |y′ − y| = |x′′ − y′|+ s.

Now x′′ is the centre of Bir(x) ⊂ A, and Bir(x) ∩ ∂A = {x}, so r < |x′′ − y|. Thus
r < |x′′ − y′| + s, whence r − s < |x′′ − y′|. This means that B(r−s)(x

′′) ⊂ Ā	 and
B(r−s)(x

′′) ∩ ∂Ā	 = {x′}.
Now let x∗ = x′ − (r − s)N(x) = x − (2s − r)N(x), so x∗ /∈ Ā	. Consider first the

case where 2s < r so that x∗ ∈ AC . Let y′ and y be defined as above. Let z be a point
of intersection of ∂A and the line segment joining y′ to x∗, and notice that z cannot be
equal to x. We have

|x∗ − y′| = |x∗ − z|+ |z − y′|.

Furthermore, |z − y′| ≥ s since δ∂A(y′) = |y′ − y| = s, and |x∗ − z| > r − 2s since
δ∂A(x∗) = |x∗−x| = r−2s. Hence |x∗−y′| > s+(r−2s) = r−s, and thus B(r−s)(x

∗) ⊂ AC	
and B(r−s)(x

∗) ∩ ∂Ā	 = {x′}.
Now consider the case 2s ≥ r. Here, x∗ ∈ A. Let y′ and y be defined as above. Since

δ∂A(y′) = s and y is the unique point on ∂A satisfying |y − y′| = s,

s < |y′ − x| ≤ |y′ − x∗|+ |x∗ − x| = |y′ − x∗|+ 2s− r,

so that |y′ − x∗| > s − (2s − r) = r − s. Hence we again conclude that B(r−s)(x
∗) ⊂ AC	

and B(r−s)(x
∗) ∩ ∂Ā	 = {x′}.

By the same argument as in Proposition A.1, it now follows that Ā	 is (r−s)-regular. �

As a consequence of Proposition A.8, we have:

Corollary. Let s ∈ (−r, r) and defineCorollary A.9

Af (s) = Af = {a ∈ U ir | f(a) ≤ s}.(A.4)

for f : U ir → R the function defined in (A.3). Then Af is (r − a)-regular.

Proof. For a ∈ U ir, we have f(a) = 〈(a − p∂A(a)), N(p∂A(a))〉, and so |f(a)| = δ∂A(a).
Thus

Af =

{
Ā	(s) = {a ∈ A | δ∂(a) ≥ s} if s ≤ 0;

Ū is(cl(AC)) = {a ∈ A | δ∂A ≤ s} if s ≥ 0.

Since A and cl(AC) are r-regular, the result now follows from Proposition A.8. �

The boundaries Af (s), s ∈ (−r, r), are C1 submanifolds of Rn by Proposition A.7(iv),
and they share a common normal bundle in the sense that if a′ is an element of ∂Af (s),
then a′ = a − sN(a) for some unique a ∈ ∂A, and the normal for ∂Af (s) at a′ is N(a).
It follows also that f is in fact continuously differentiable on all of U ir.

Some geometry of r-regular sets 47

L
x

y

z

S(L, 0.7)

Figure A.1
The figure shows the
0.7-spindle S(L, 0.7)
in R3 of a line L with
endpoints (0, 0, 0) and
(0, 1, 0).

Proposition. Let s1, s2 ∈ (−r, r) with s1 < s2 and f : U ir → R the function defined inProposition A.10
(A.3). Then:

(i) the preimage f−1[s1, s2] has C1 boundary ∂Af (s1) ∪ ∂Af (s2);

(ii) the preimage f−1[s1, s2] is C1-diffeomorphic to A× [0, 1].

Proof. (i): Clearly f−1[s1, s2] has boundary f−1({s1, s2}), which is C1 as remarked above.
Further, f−1[s1, s2] = ∂Af (s1) ∪ ∂Af (s2) by Corollary A.9. This proves (i).

(ii): We now observe that f−1[s1, s2] = {x + sN(x) | x ∈ ∂A, s ∈ [s1, s2]}, so that
the map φ : A × [0, 1] → f−1[s1, s2] given by φ(x, t) = x + ((1 − t)s1 + ts2)N(x) is a
homeomorphism. It is not, however, a C1-diffeomorphism when N is not continuously
differentiable. Instead, we consider a close C1 approximation η : Ū ir → Rn to N : Ū ir → Rn.
Let γ be an integral curve of η. We note that

d

dt
(f ◦ γ)(t) = gradfγ(t)γ

′(t) = 〈N(γ(t)), η(γ(t))〉,

which we can suppose is uniformly close to 1. It now follows from general theory that there
is an open neighbourhood W of f−1(s1) × {0} in f−1(s1) × R and a C1-diffeomorphism
Γ: W → U ir such that t 7→ Γ(x, t) is the complete integral curve through x for each
x ∈ f−1(s1). In particular, Γ−1(f−1(s2)) is a C1 submanifold of W ,

Γ−1(f−1(s2)) = {(x, T (x)) | x ∈ f−1(s1)},

where T : f−1(s1) → (0,∞) is a C1-function. Define now a map ψ : f−1(s1) × [0, 1] →
f−1[s1, s2] by

ψ(x, t) = Γ(x, tT (x)).

Then ψ is the required C1-diffeomorphism, which proves (ii). �

A.2 SOMEGEOMETRYOF r-REGULARSETS
We proceed in this section to examine the geometry of r-regular sets in order to establish
the notation and results necessary for proving Theorem 2.10. This entails a review of
certain results from [38], which are generalised from R3 to Rn, as well as the introduction
of spindles.

Definition. Let L be a closed line segment in Rn of length |L| < 2r. The r-spindleDefinition A.11
S(L, r) generated by L is the intersection of all r-balls whose boundaries contain both
endpoints of L.

Example. In the Euclidean plane, R2, there are just two closed r-balls, or, since n = 2,Example A.12
r-discs, Br and B′r whose boundaries contain both endpoints of L. The discs Br and B′r
are each the mirror image of the other in the affine line containing L.

In R3, each closed r-ball with boundary containing the endpoints of L is uniquely
determined by its centre, and these centres trace out a circle in the affine plane orthogonal
to L and passing through its midpoint. The intersection of all these balls is the solid of
revolution obtained by rotating a two-dimensional r-spindle generated by L around the
affine line containing L. An example of a spindle in R3 is shown in Figure A.1.

48 Supporting results of chapter two

Lemma.Lemma A.13

(i) Let 0 < s ≤ r, and let M ⊂ N ⊂ Rn be closed line segments of length |M | ≤
|N | < 2s. Then S(M, r) ⊂ S(N, s).

(ii) Let M ⊂ Rn be a closed line segment of length |M | < 2r. Then S(M, r) is the
intersection of all closed balls of radius at most r that contain M .

(iii) Let M be a closed line segment of length |M | < 2r in Rn. Then S(M, r) is the
intersection of all closed balls of radius less than r that contain M .

Proof. (i): Intersecting with affine planes containing M allows us to reduce the problem
of (i) to the case n = 2. So let M ⊂ N ⊂ R2. Denote by a and b the endpoints of M and
by α(x) the angle ∠axb for x ∈ R2. Then

S(M, r) =
{
x ∈ R2

∣∣∣ α(x) is obtuse with sin(α(x)) ≤ |M |2r

}
.

This equality follows from the fact, already known to Euclid, that the angle subtended
by a chord at points of a circle is constant in the corresponding major arc and minor arc
together with a calculation of the sine of this angle: If the circle has radius r and the chord
length l, then this sine is l/2r for both the major and the minor arc. Analogously, with c
and d the endpoints of N and β(x) the angle ∠cxd for x ∈ R2,

S(N, s) =
{
x ∈ R2

∣∣∣ β(x) is obtuse with sin(β(x)) ≤ |N |2s

}
.

Now let x ∈ S(M, r). Then α(x) is obtuse, so the larger angle β(x) is, too. Moreover,
|M | ≤ |N | and r ≥ s imply |M |/(2r) ≤ |N |/(2s), and so x ∈ S(N, s) as required, thus
proving (i).

(ii): Now write S for the intersection of all closed balls of radius at most r which
contain M . By definition, S ⊂ S(M, r). Let Bs be a closed s-ball containing M , where
s ≤ r. The intersection of Bs with the affine line containing M is a closed line segment
N containing M . By (i), S(M, r) ⊂ S(N, s), and S(N, s) ⊂ Bs. Thus S(M, r) ⊂ S, which
concludes the proof of (ii).

(iii): Let S be the intersection of all closed balls of radius less than r which contain M .
Then clearly S(M, r) ⊂ S. Let x ∈ S. Then x ∈ S(M, s) for all s ∈ (|M |/2, r). We need
to show that x ∈ S(M, r). Intersecting with the affine plane containing M and x allows
us to reduce to the case n = 2. Denote by a and b the endpoints of M and by α(x) the
angle ∠axb. The characterisation of spindles in the case n = 2 in (i) shows that α(x) is
obtuse with sin(α(x)) ≤ |M |/(2s) for all s ∈ (|M |/2, r). Taking the limit as s → r gives
sin(α(x)) ≤ |M |/(2r), and the spindle characterisation of (i) yields x ∈ S(M, r). �

Definition. For X and Y topological spaces with Y ⊂ X, a retraction (of X onto Y)Definition A.14
is a continuous map f : X → Y such that f |Y is the identity mapping IdY on Y .

We define a retraction ρ : A ∪ Ur → A by

ρ(a) =

{
p∂A(a) for a ∈ Ur \A;

a for a ∈ A.
(A.5)

Continuity of ρ follows from the observation p∂A(a) = a for a ∈ ∂A.
The following proposition is shown in [38] in R3. For the approach of Stelldinger et al.

to the proposition and its subsequent corollary, see [38, Theorem 6 and Lemma 8]. Recall
the definition of Ur(A) = Ur from (A.1).

Proposition (Stelldinger et al., 2007 [38]). Let x, y ∈ A with |x − y| < 2r, let L ⊂Proposition A.15
Rn be the line segment from x to y, and let ρ be the retraction defined in (A.5). Then:

(i) the line segment L is an element of A ∪ Ur and ρ|L is injective;

(ii) for s ≤ r and Bs any s-ball containing x and y, ρ(L) is a subset of Bs.

Proof. (i): Let z ∈ L \A. Since z is on the line segment joining x and y, |x− z|+ |z− y| =
|x − y|, and |x − y| < 2r, so at least one of |x − z| and |z − y| is strictly smaller than r.
Hence δ∂A(z) = δA(z) < r, so z ∈ Ur. It follows that L ⊂ A ∪ Ur.

Some geometry of r-regular sets 49

Suppose now that ρ is not injective: We assume z1, z2 ∈ L with z1 6= z2 and ρ(z1) =
ρ(z2) =: w. Thus z1, z2 ∈ ρ−1(w) = {w + sN(w) | s ∈ [0, 2r)}. In particular, at least
one of z1 and z2, let us say z1 for definiteness, is contained in the open line segment
λ = {x+ sN(w) | s ∈ (0, 2r)}, which is contained in the interior of Bor(w), i.e. in AC .

The unique affine line l containing x and y also contains z1 and z2, which lie between
x and y on l. The open line segment λ is a connected open subset of l that intersects L
at z1 but does not meet the endpoints x and y, which are contained in A. It follows that
λ ⊂ L. This gives a contradiction, since λ has length 2r, while L has length strictly less
than 2r. Thus our supposition was false, and ρ is injective.

(ii): Let z ∈ L \ A and write w = ρ(z) so that z = w + tN(w) for some t ∈ (0, r). Let
P be the affine plane containing L and w. Letting Bs be an s-ball containing x and y,
C = P ∩ Bs is an s′-disc containing L for some s′ ∈ (0, s], whilst B = P ∩ Bor(w) is an
r-disc, because P contains the centre w+ rN(w) of Bor(w). The set M = B ∩L is the line
segment whose interior is contained in AC and hence avoids x and y. Since z ∈ M , we
conclude that M ⊂ L.

Let S(B) be the intersection of B with its mirror image across the affine line l con-
taining L. Similarly, let S(C) be the intersection of C with its mirror image across l.
Clearly M = l ∩ S(B), and M ⊂ L ⊂ S(C). By Lemma A.13(i), S(B) ⊂ S(C). Thus
z ∈ S(B) ⊂ S(C) ⊂ C, and we can conclude that ρ(L) ⊂ C ⊂ Bs. �

From Proposition A.15(i), it follows that ρ(L) is a simple curve in A joining x and y.

Corollary. Let x, y ∈ A with |x − y| < 2r, let L ⊂ Rn be the line segment from x to y,Corollary A.16
and let ρ be the retraction defined in (A.5). Then ρ(L) ⊂ S(L, r).

Proof. This is immediate from Proposition A.15(ii) and the definition of spindles. �

Lemma. Let x, y ∈ A with |x − y| < 2r and let L ⊂ Rn be the line segment from xLemma A.17
to y. Then orthogonal projection P of Rn onto the affine line l containing L gives a
homeomorphism P : ρ(L)→ L.

Proof. The orthogonal projection P maps S(L, r) onto L. Thus, since ρ(L) is a connected
path from x to y, so is P (ρ(L)), hence P maps ρ(L) onto L.

Suppose v, w ∈ ρ(L) with P (v) = P (w) =: z and, without loss of generality, that
|v − z| ≥ |w − z|. Since the centre of the r-ball Bor(w) lies on the opposite side of z to v
in the affine line v+N(v)R, Bor(w)∩P−1(z) is a closed (n− 1)-dimensional ball C whose
boundary has v as unique nearest point to z. Thus w ∈ int(C) ⊂ int(cl(AC)) = AC . This
contradicts the fact that w ∈ ρ(L) ⊂ A, so no such v and w can exist. Thus P |ρ(L) is
injective.

Since L is compact, so is ρ(L). Then, since P |ρ(L) : ρ(L)→ L is continuous and bijective,
it is a homeomorphism. �

Proposition. Let x, y, z ∈ A be three non-collinear points, and suppose x, y, z are allProposition A.18
elements of a closed s-ball Bs ⊂ Rn for some s ∈ (0, r). Let T ⊂ Rn be the plane triangle
with vertices x, y, and z, and write Lx, Ly, and Lz for the three sides of T respectively
opposite x, y and z. Then there exists a continuous map σ : T → A such that:

(i) the image σ(T) of T under σ is a subset of Bs;

(ii) the function σ is identical to ρ on Lx ∪ Ly ∪ Lz.

Proof. (i): Let ∆ be the plane triangle in R3 with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) so that

∆ = {(s, t, u) ∈ R3 | s, t, u ∈ [0, 1] and s+ t+ u = 1}.

The map φ : ∆→ T defined by φ(s, t, u) = sx+ ty+ uz for (s, t, u) ∈ ∆ is continuous and
bijective because of the non-collinearity of x, y and z, so it is a homeomorphism, and the
points of T are uniquely and continuously parametrised by φ.

We will define σ : T → A via the following parametrisation:

σ(sx+ ty + uz) =

{
ρ
(
(1− u)ρ

(
1
s+t (sx+ ty) + uz

))
for (s, t, u) ∈ ∆ \ {(0, 0, 1)};

z for (s, t, u) = (0, 0, 1).

We need to show that σ is well-defined.

50 Supporting results of chapter two

x

y

z

C

L(C, 1.7)

Figure A.2
The figure shows the
1.7-lens L(C, 1.7) of a
circle C with radius 1
and centre (0, 0, 0).

This is clear when (s, t, u) = (0, 0, 1), where σ(z) = z ∈ A∩Bs. Now suppose (s, t, u) ∈
∆ \ {(0, 0, 1)}. Observe first that ws,t = (sx+ ty)/(s+ t) ∈ Lz. Since Bs is convex, Lz is
a subset of Bs and so has length at most 2s; the diameter of Bs. Since s < r, it follows
from Proposition A.15 that ρ|Lz exists and that ρ(Lz) ⊂ Bs. Thus ρ(ws,t) is defined and
contained in Bs.

Next, observe that vs,t,u = (1 − u)ρ(ws,t) + uz is contained in the line segment Ks,t

from ρ(ws,t) to z. These endpoints are both in Bs, so applying Proposition A.15 again,
ρ|Ks,t is defined and ρ(Ks,t) ⊂ Bs. Thus σ(sx+ty+uz) = ρ(vs,t,u) is defined and contained
in Bs. Hence σ is well-defined and σ(T) ⊂ Bs.

We must also see that σ is continuous. This is clear from its definition on T \ {z},
since ρ is continuous. To study continuity at z, let {(sm, tm, um) | m ∈ N} be a sequence
in ∆ \ {(0, 0, 1)} converging to (0, 0, 1). We must show that σ(smx + tmy + umz) → z
as m→∞.

For all m ∈ N, wsm,tm = (smx+ tmy)/(sm + tm) ∈ Lz, so ρ(wsm,tm) ∈ ρ(Lz). Since Lz
is compact, so it ρ(Lz), so |ρ(wsm,tm)− z| is bounded.

Now consider vsm,tm,um = (1− um)ρ(wsm,tm) + umz. We have

|vsm,tm,um − z| = |(1− um)ρ(wsm,tm) + umz − z|
= |(1− um)(ρ(wsm,tm)− z)|
= (1− um)|ρ(wsm,tm)− z|,

which converges to 0 as m → ∞. Thus vsm,tm,um → z as m → ∞, whence, since ρ is
continuous, σ(smx+ tmy + umz) = ρ(vsm,tm,um)→ ρ(z) = z as m→∞, as required.

(ii): We now compute σ on the edges of T . We note first that σ(z) = z = ρ(z).
The line segment Lx \ {z} is parametrised by q 7→ (1 − q)y + qz with q ∈ [0, 1), and
σ((1− q)y + qz) = ρ((1− q)ρ(y) + qz) = ρ((1− q)y + qz), so σ|Lx = ρ|Lx.

Similarly, the line segment Ly \ {z} is parametrised by q 7→ (1− q)x+ qz for q ∈ [0, 1),
and σ((1− q)x+ qz) = ρ((1− q)ρ(x) + qz) = ρ((1− q)x+ qz), so σ|Ly = ρ|Ly.

Finally, Lz is parametrised by q 7→ (1 − q)x + qy, q ∈ [0, 1], and σ((1 − q)x + qy) =
ρ(ρ((1− q)x+ qy)) = ρ((1− q)x+ qy), so σ|Lz = ρ|Lz.

In conclusion, σ = ρ on Lx ∪ Ly ∪ Lz. �

With the notation of Proposition A.18, it is immediate that σ(T) is contained in the
intersection Pr(T) of all closed balls of radius less than r which contain T . This set is a
little difficult to describe in general but can often be usefully approximated:

Example. In R3, consider the plane triangle T with vertices x, y, and z, and let C be theExample A.19
circumcircle for T , i.e. the unique circle containing x, y, and z. Suppose C has radius
s < r. Then Pr(T) is contained in the intersection of all closed balls of radius less than
r that contain C in their boundaries, which is in fact the intersection of the two closed
r-balls containing C in their boundaries; the r-lens L(C, r) associated to C. An example
of a lens is shown in Figure A.2. Intersecting with the three closed r-balls containing T
with centre in the plane spanned by T and whose boundaries pass through two of the
vertices of T yields the reduced r-lens R(C, r).

In [38, Lemma 11], Stelldinger et al. claim a stronger result in R3 than Proposition A.18.
However, du Plessis found problems in the proof. We state the lemma here and give
counterexamples to each of the three statements:

Lemma (Stelldinger et al., 2007 [38, Lemma 11]). Let A ⊂ R3 be an r-regular set
for r ∈ (0,∞), let x, y, x ∈ A be such that |x − y|, |y − z|, |z − x| < 2r, and let T be the
plane triangle with vertices x, y, and z. Then:

Configurations of points and regularity in R3 51

(i) the restriction ρ|T : T → A of ρ to T is well-defined;

(ii) the image ρ(T) of T under ρ is a subset of Pr(T);

(iii) the image ρ(T) of T under ρ is homeomorphic to a closed disc.

Example. All three statements are false in their current generality. Indeed, considerExample A.20
A = {x ∈ R3 | |x| ≥ r}. Then A ⊂ R3 is clearly r-regular.

(i): Let d ∈ (r, 2r/
√

3) and let T1 be the plane triangle with vertices x1 = d(1, 0, 0),
y1 = d(−1/2,

√
3/2, 0), and z1 = d(−1/2,−

√
3/2, 0). Then T1 is a equilateral triangle with

side length d
√

3 ∈ (r
√

3, 2r). We observe that (0, 0, 0) ∈ T1 and (0, 0, 0) /∈ A, but ρ cannot
be defined on T1, because there is no unique nearest point on ∂A to (0, 0, 0), since ∂A is
the sphere of radius r and centre (0, 0, 0). Thus ρ|T1

: T1 → A is not well-defined.
(ii): For d as above, consider the plane triangle T2 with vertices x2 = d(−3d/2, 0, 0),

y2 = y1, and z2 = z1. All three vertices are contained in A. Then T2 is also an equilateral
triangle with side length d

√
3 ∈ (r

√
3, 2r), and its circumcircle C has centre (−d, 0, 0)

and radius d. Note that (0, 0, 0) /∈ T2, so ρ|T2
is well-defined with ρ(T2) ⊂ A. Indeed, it is

readily verified that ρ(T2) = T2 \ {x ∈ R3 | |x| < r}.
We claim that T2 is not contained in any closed ball of radius less than d. For let

s ∈ (d
√

3/2, d) and suppose T2 is a subset of some closed s-ball Bs. Let L1, L2, and
L3 be the sides of T2 opposite x2, y2, and z2 respectively. Denote by D the plane disc
with boundary C, and observe that D is equal to the union of T and the three d-spindles
generated by L1, L2, and L3. By Lemma A.13(i), S(Li, d) ⊂ S(Li, s), and S(Li, s) ⊂ Bs,
so D ⊂ Bs. But this is impossible since D has diameter 2d while Bs has diameter 2s < 2d,
so no such Bs exists, proving the claim.

It follows that Pr(T2) is empty, so ρ(T2) 6⊂ Pr(T2).
(iii): Let x3 and y3 be the endpoints of a closed minor arc B of a circle C with radius

r and centre (0, 0, 0), and let y3 be an element of the interior of B. Since C ⊂ ∂A,
x3, y3, z3 ∈ ∂A ⊂ A. Let T3 be the triangle with vertices x3, y3, and z3; it is a genuine
triangle since x3, y3, z3 are not collinear. Notice that T \{x3, y3, z3} 6⊂ A. Since its vertices
lie in a minor arc of C, T3 does not contain the centre (0, 0, 0) of C, so ρ|T3

is well-defined.
Since ρ is given by radial projection to ∂A away from (0, 0, 0) on Rn \ (A∪{(0, 0, 0)}), we
have ρ(T3) = A. Certainly, then, T3 is not homeomorphic to ρ(T3).

It is also possible to give examples with the triangle vertices in A \ ∂A. Let a and b be
the midpoints of the sides of T3 opposite x3 and y3 respectively. Then |a|, |b| < r. Let

ε =
min

{ r
|a| − 1, r|b| − 1

}
2

,

let x′3 = (1 + ε)x3, y′3 = (1 + ε)y3, and z′3 = (1 + ε)z3, and let T ′3 be the triangle with
vertices x′3, y′3, and z′3. Then ρ|T ′3 is well-defined, and ρ(T ′3) = T ′3\{x ∈ R3 | |x| < r}, which
is the union of the arc B with three disjoint sets D1, D2, and D3 each homeomorphic to
a closed disc. Hence ρ(T ′3) is not homeomorphic to T ′3.

It is plausible that (i) and (ii) of [38, Lemma 11] are correct if it is also assumed that
the three points x, y, z ∈ A lie in a closed ball of radius strictly less than r as in Proposi-
tion A.18, but we will not consider this question here since the map σ of Proposition A.18
will suffice for our purposes.

However, even with this extra condition, statement (iii) in [38, Lemma 11] does not
hold in general, as the examples T3 and T ′3 show, since the vertices involved there can be
chosen arbitrarily close to one another.

A.3 CONFIGURATIONSOFPOINTSANDREGULARITY INR3

We consider the following collections of points in R3, where d > 0:

R1 = {d(0, 0, 1), d(1, 1, 1)}, G1 = {d(0, 1, i), d(1, 0, i) | i ∈ {0, 1, 2}},
R2 = {d(0, 0, i), d(1, 1, i) | i ∈ {0, 1}}, G2 = {d(0, 1, i), d(1, 0, i) | i ∈ {0, 1}},
R3 = {d(0, 1, 0), d(0, 0, 1), d(1, 1, 1)}, G3 = {d(0, 0, 0), d(0, 1, 1), d(1, 0, 1)}.

The aim of this section is to prove the following theorem.

52 Supporting results of chapter two

Theorem (du Plessis, 2016 [11]). Let t1 = t2 =
√

3/2 and t3 = 0.95571, and letTheorem A.21
Φ: R3 → R3 be any isometry. For each i ∈ {1, 2, 3}, if r > tid and A is an r-regular set,
then neither

Φ(Ri) ⊂ A and Φ(Gi) ⊂ AC

nor

Φ(Ri) ⊂ AC and Φ(Gi) ⊂ A

can occur.

The proof requires a series of results which we state below.

Lemma. It suffices to prove the statements of Theorem A.21 for Φ = IdR3 .Lemma A.22

Proof. If A ⊂ Rn is r-regular, then so is Φ(A) for any isometry Φ of Rn since Br ⊂ Rn is
a closed r-ball if and only if Φ(Br) is a closed r-ball. �

Lemma. Suppose i ∈ {1, 2, 3}, and suppose Ri ⊂ A and Gi ⊂ AC cannot occur for anyLemma A.23
r-regular set A with r > tid for t1 = t2 =

√
3/2 and t3 = 0.95571. Then Ri ⊂ AC and

Gi ⊂ A cannot happen either.

Proof. Suppose Ri ⊂ AC and Gi ⊂ A hold for some r-regular set A with r > tid. Let
m = min{δA(x) | x ∈ Ri}, choose ε ∈ (0,min{r − tid,m}), and consider

Xε = {x ∈ AC | δA(x) ≥ ε}(A.6)

Then Xε is (r − ε)-regular by Proposition A.8, and we have Ri ⊂ Xε, since ε < m, and
Gi ⊂ XC

ε , since A ⊂ XC
ε . But r − ε > tid, so by our hypothesis, this cannot occur, and

we have reached a contradiction. �

Lemma. Let c = d(1
2 ,

1
2 ,

1
2) and i ∈ {2, 3}, and suppose Ri ∪ {c} ⊂ A and Gi ⊂ ACLemma A.24

cannot occur for any r-regular set A with r > tid for t1 = t2 =
√

3/2 and t3 = 0.95571.
Then Ri ⊂ A and Gi ⊂ AC cannot happen either.

Proof. Suppose Ri ⊂ A and Gi ⊂ AC hold for some r-regular set A with r > tid. Then
c ∈ A would contradict the hypothesis, so c ∈ AC . Let m = min{δA(x) | x ∈ Gi∪{u}} and
ε ∈ (0,min{r − tid,m}), and let Xε be defined as in (A.6). Then Xε is (r − ε)-regular by
Proposition A.8, and we have Ri ⊂ XC

ε , since A ⊂ XC
ε , and Gi ∪ {c} ⊂ Xε, since ε < m.

In the case i = 2, let Φ be the rotation through π/2 radians about an axis through c
and parallel to the z-axis. For i = 3, let Φ be the reflection in the plane through c and
parallel to the xz-coordinate plane. Then for i ∈ {2, 3}, Φ is an isometry of R3 fixed on c
such that Φ(Ri) = Gi and Φ(Gi) = Ri. Thus

Ri ∪ {c} = Φ(Gi ∪ {c}) ⊂ Φ(Xε) and Gi = Φ(Ri) ⊂ Φ
(
XC
ε

)
= Φ(Xε)

C .

But r − ε > ti and Φ(Xε) is (r − ε)-regular, so this contradicts our hypothesis. �

For c = d(1
2 ,

1
2 ,

1
2), we now define

S1 = R1, S2 = R2 ∪ {c}, and S3 = R3 ∪ {c}.

It remains to be proven:

Proposition. Let t1 = t2 =
√

3/2 and t3 = 0.95571, and let A ⊂ R3 be any r-regularProposition A.25
set. For each i ∈ {1, 2, 3}, if r > tid, then

Si ⊂ A and Gi ⊂ AC

cannot occur.

It should be clear that Theorem A.21 follows from this proposition and the three
lemmas above. We need an additional four lemmas to prove Proposition A.25.

Configurations of points and regularity in R3 53

Lemma. Let L be a closed line segment in R3 of length 2l < 2r.Lemma A.26

(i) The maximal distance of points in the r-spindle S(L, r) from L is r−
√
r2 − l2, this

being attained at all points in the circle of intersection of ∂S(L, r) with the plane
orthogonal to L through the midpoint of L.

(ii) The angle at the endpoints of L between L and tangents at the endpoints to the minor
arcs rotated to give S(L, r) has sine l/r.

Proof. (i): Let C be a circle of radius r containing the endpoints of L. Then the distance
from the centre c of C to L, attained at the midpoint p of L, is

√
r2 − l2, which can be

seen by applying Pythagoras’ theorem to a triangle with vertices c, p, and an endpoint
of L. Thus the maximal distance of L from the minor arc that L cuts out from C, which is
clearly attained along the radius through p, is r −

√
r2 − l2. Since ∂S(L, r) is the surface

of revolution obtained by rotating this minor arc about L, the result follows.
(ii): Let p be the midpoint of L and let C be as above. The tangent to C at an endpoint

b of L is orthogonal to the radial line from the centre c of C to b, so the angle between L
and this tangent is π/2− ∠pbc = ∠pcb, and this angle has sine l/r. �

We observe that for 0 ≤ a ≤ r, the function r 7→ r −
√
r2 − a2 is decreasing on the

interval (a,∞), since its derivative with respect to r at r ∈ (a,∞) is 1 − r/(r2 − a2)3/2,
which is negative.

Lemma. Let D ⊂ R3 be a disc of radius s < r. Then the maximal distance of pointsLemma A.27
in the r-lens L(∂D, r) from D is r −

√
r2 − s2, this being attained at the two points of

intersection of L(∂D, r) with the line orthogonal to D through the midpoint of D.

Proof. Intersecting L(∂D, r) with a plane orthogonal to D through the midpoint of D
yields a two-dimensional r-spindle S(L, r), where L is a line segment with endpoints on
∂D and midpoint p coinciding with the centre ofD, and the length of L equals the diameter
of D. Arguing as in the proof of Lemma A.26(i), the maximal distance of points of this
spindle from L is r −

√
r2 − s2, attained on the intersection of ∂S(L, r) with the plane

orthogonal to L through p. Rotating about the line orthogonal to D through the midpoint
of D yields L(∂D, r), and the result follows. �

For the proof of the following lemma, we will need the notion of linking number of
oriented simple closed curves, i.e. oriented closed curves that do not intersect themselves.
The linking number, first introduced by Gauss, equals the number of times closed curves
wind around each other. For instance, the curves

wind around each other exactly once resulting in a linking number 1, and changing the
crossings, but not the orientations, to

changes the sign of the linking number, which is now −1.

Lemma. Let B = B1(0) ⊂ R3 with boundary S2, and let D ⊂ B be the unit disc inLemma A.28
R2 × {0} with centre 0.

Let Γ be the image of a simple path γ : [0, 1]→ B \ ∂D from a point in one component
of S2 \ ∂D to a point in the other component.

Let g : S1 → B \ Γ be homotopic to a homeomorphism h : S1 → ∂D through maps to
B \ Γ. Then g is not homotopic to a constant map through maps to B \ Γ.

Proof. Let a > 1, let α be a simple parametrisation of the line segment from aγ(0) to aγ(1),
and let β be a simple parametrisation of a great circle in aS2 from aγ(0) to aγ(1). Then the

54 Supporting results of chapter two

join of α and β yields an oriented simple closed curve in R3 which has linking number ±1
with the oriented closed curve given by any homeomorphism h : S1 → ∂D.

The parametrised line segment from γ(0) to γ(1) is clearly homotopic relative to its
endpoints to γ through maps to B \ ∂D. Thus replacing this parametrised line segment
with γ gives another simple closed curve µ in R3 with linking number ±1 with the oriented
closed curve given by h.

For Im(µ) the image of µ, the theory of linking numbers yields

H1(Im(µ)C) ∼= h∗(H1(S1)) ∼= H1(S1) ∼= Z.

It follows that h is not homotopic to a constant map through maps to Im(µ)C . Evidently
h is not homotopic to a constant map through maps to B \ (B ∩ µ) = B \ Γ. Since g is
homotopic to h through such maps, g is not homotopic to a constant map through such
maps either. �

For this next lemma, consider a continuous path γ : [0, 1]→ X, where X is any metric
space. Then γ is m-piecewise injective if there exists a sequence {t0, . . . , tm} ⊂ [0, 1]
with 0 = t0 < t1 < · · · < tm−1 < tm = 1 such that γ|[ti−1,ti]

is injective for i ∈ {1, . . . ,m}.

Lemma. Let X be a metric space. Let n ∈ N, let x0, x1 ∈ X with x0 6= x1, and letLemma A.29
γ : [0, 1] → X be a continuous path from x0 = γ(0) to x1 = γ(1) which is m-piecewise
injective. Then there exists an injective continuous path γ′ : [0, 1]→ X from x0 to x1 such
that Im(γ′) ⊂ Im(γ).

Proof. Suppose that T = {t0, . . . , tm} ⊂ [0, 1] with 0 = t0 < t1 < · · · < tm−1 < tm = 1
such that γ|[ti−1,ti]

is injective for i ∈ {1, . . . ,m}. If m = 1, the result follows since a
1-piecewise injective path is injective. If m > 1, we will show that there exists an (m− j)-
injective continuous path γ′ : [0, 1] → X from x0 to x1 with Im(γ′) ⊂ Im(γ), where
1 ≤ j ≤ m− 1. The result will then follow by downward induction.

Consider the double-point set for γ,

P = {t ∈ [0, 1] | ∃s ∈ [0, 1] \ {t} such that γ(s) = γ(t)}.

If P is empty, γ is injective and we are done, so suppose that P is non-empty, and set
u = inf(P). Then u 6= 1, since if γ(s) = γ(1) with s 6= 1, then s < 1 and s ∈ P ,
so inf(P) 6= 1. Hence u ∈ [ti−1, ti) for some k ∈ {1, . . . ,m}.

Since u = inf(P), there is a sequence {um} ⊂ P with um → u asm→∞. By definition
of P , there exists a sequence {vm} with vm ∈ P , vm 6= um, and γ(vm) = γ(um). Passing
to subsequences, we can suppose {vm} is convergent with limit v ∈ [0, 1]. We have

γ(v) = lim
m→∞

γ(vm) = lim
m→∞

γ(um) = γ(u)

by continuity of γ. We claim that u 6= v. Fur suppose u = v. Then there exists l ∈ N such
that ul, vl ∈ [tk−1, tk). Now γ|[tk−1,tk) is injective and ul 6= vl, so γ(ul) 6= γ(vl), and we
have reached a contradiction. Thus u 6= v as claimed, and u ∈ P .

Let w = γ−1(γ(u)) \ {u}. Then w ∈ P . We claim that w > tk. For suppose otherwise.
Then w ∈ (u, tk] since w ≥ inf(P) and w 6= u. Now γ|[u,tk] is injective, since [u, tk] ⊂
[tk−1, tk], so γ(w) 6= γ(u), which is a contradiction. Hence w > tk.

Now let x = max(γ−1(u)). This maximum exists because γ−1(u) is a closed subset
of [0, 1]. Then x ∈ (tj , tj+1] for some k ≤ j ≤ m − 1. Consider the join of γ|[0,u] and
γ|[x,tj+1] obtained by identifying u and x. This join is continuous since γ(u) = γ(x). It is
also injective: Firstly, [0, u) /∈ P , so [0, u) is not in the double-point set P ′ of the join.
Secondly, u /∈ P ′ since u and x are identified and γ−1(γ(u)) ⊂ [u, x]. Finally, γ|[x,tj+1] is
injective, so its points cannot be in P ′ either. It now follows that the join γ∗ of γ|[0,u] and
γ|[x,1] is (m − j)-piecewise injective with associated sequence {0, tj+1, . . . , tm}. Here, the
interval [0, tj+1] is understood as the join of the intervals [0, u] and [x, tj+1] with u and x
identified. Clearly, γ∗(0) = x0 and γ∗(1) = x1, and Im(γ∗) ⊂ Im(γ).

Since joins of closed bounded intervals are homeomorphic to closed bounded intervals
in a rather obvious way, we can re-parametrise γ∗ to find an (m − j)-piecewise injective
path γ′ with domain [0, 1] and the same image as γ∗. �

Proof of Proposition A.25. Let i ∈ {1, 2, 3}. Suppose A ⊂ R3 is r′-regular with r′ > tid
and that Si and Gi satisfy Si ⊂ A and Gi ⊂ AC . Let m = min{δA(x) | x ∈ Gi}, let

Configurations of points and regularity in R3 55

ε ∈ (0,min(r′ − tid,m)), and let Xε = {x ∈ R3 | δA(x) ≥ ε}. Then r > tid, A and Xε are
r-regular, A∩Xε = ∅, Si ⊂ A, and Gi ⊂ Xε. We will derive a contradiction, showing that
the supposition above is impossible.

Let i ∈ {1, 2, 3}. We observe that Gi spans a plane convex set Ci with Gi in its
boundary. The set Ci is a union of triangles with vertices in Gi and disjoint interiors,
each triangle having circumcircle with radius at most d

√
3/2. The maps σ to Xε, given

by Proposition A.18, associated to these triangles satisfy σ = ρXε on the sides of the
triangles, where ρXε : Xε ∪ Ur(Xε) → Xε is a retraction of Xε defined as in (A.5) and
Ur(Xε) is given by (A.1). Thus, the maps σ fit together to yield a map σ : Ci → Xε with
σ(Ci) contained in the union Qi of the reduced r-lenses of the circumcircles of the triangle.
In more detail:

◦ the set C1 is a 2d-by-d
√

2-rectangle, made up of two d-by-d
√

2-rectangles, and there
are just two distinct circumcircles involved: the two circles of radius d

√
3/2 at the

centres of the two d-by-d
√

2-rectangles;

◦ the set C2 is a d-by-d
√

2-rectangle, and the circumcircles of the two triangles involved
coincide as the circle of radius d

√
3/2 centred at the centre of the rectangle;

◦ the set C3 is an equilateral triangle with side-length d
√

2. Its circumcircle has ra-
dius d

√
2/3.

C1

(1, 0, 0)
(0, 1, 0)

(1, 0, 1) (0, 1, 1)

(1, 0, 2) (0, 1, 2)

(1, 0, 0)
(0, 1, 0)

(1, 0, 1) (0, 1, 1)

C2

(1, 0, 1) (0, 1, 1)

(0, 0, 0)

C3

Let Pi be the plane containing Ci. We note that there is a homeomorphism of pairs
ψi : (Qi, Qi∩Pi)→ (B,D), where B = B3

1(0) is the closed unit ball and D the closed unit
disc centred at 0 in 0 ∈ R2 × R.

Let H : D → Ci be any homeomorphism. Identifying S1 with ∂D, H restricts to
a homeomorphism h : S1 → ∂Ci. Thus S1 is subdivided into closed arcs with disjoint
interiors each mapped homeomorphically by h to a closed line segment in ∂Ci whose
intersection with Gi consists of its endpoints. Denote these line segments by L1, . . . , Lm.
Let j ∈ {1, . . . ,m}. Then ρXε |Lj : Lj → ρXε(Lj) is homotopic to the orthogonal projection
of Lj to the boundary arc of S(Lj , r)∩Pi contained in ∂Qi∩Pi through maps to S(Lj , r).
Since σ = ρXε on ∂Ci, we conclude that g′ = σ ◦ h is homotopic to a homeomorphism
k : S1 → ∂Qi ∩ Pi through maps to

⋃m
j=1 S(Lj , r).

We now turn our attention to constructing a path in A, from a point in one component
of Qi \ (Qi ∩ Pi) to a point in the other, which does not meet

⋃r
j=1 S(L, r). We will find

a sequence of points x0, . . . , xn ∈ A for n ≥ 1 such that:

(a) the points x0 and xn are not contained in Qi and lie in different components of PCi ;

(b) the distance |xk − xk+1| is less than 2r for k ∈ {0, . . . , n− 1};

(c) the polygonal path p with vertices x1, . . . , xn in that order, which is the join of the
line segments Mk from xk−1 to xk for k ∈ {1, . . . , n}, meets Pi only at points of Ci;

(d) for k ∈ {1, . . . , n}, S(Mk, r) ∩ Pi = ∅ unless Mk ∩ Pi is non-empty;

(e) for k ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, S(Mk, r) ∩ S(Lj , r) = ∅.

Suppose the above is satisfied. The path γ1 = ρ◦p : [0, 1]→ A, with ρ : A∪Ur → A given
by (A.5), is a path from x0 to xn, and its image is contained in the union

⋃n
k=1 S(Mk, r)

so does not meet
⋃m
j=1 S(Lj , r) and meets Pi only in Ci \

⋃m
j=1 S(Lj , r). By Lemma A.29,

56 Supporting results of chapter two

we can then find an injective path γ2 from x0 to xn with Γ2 = Im(γ2) ⊂ Im(γ1), so Γ2 ⊂ A,
Γ2 ∩

⋃m
j=1 S(Lj , r) = ∅, and Γ2 ∩ Pi ⊂ Ci \

⋃m
j=1 S(Lj , r).

Write W0 and Wn for the components of PCi containing x0 respectively xn. Let

t0 = max{t | γ2(t) ∈ ∂Qi ∩W0} and tn = min{t | γ2(t) ∈ ∂Qi ∩Wn}.

Since ∂Qi ∩ Pi ⊂
⋃m
j=1 S(Lj , r), we have Γ2 ∩ ∂Qi ∩ Pi = ∅, so γ2((t0, tn)) ⊂ int(Qi).

Re-parametrising γ2|[t0,tn] yields a simple path γ3 : [0, 1]→ A ∩ (Qi \ (∂Qi ∩ Pi)) from
a point in W0 ∩ ∂Qi to a point in Wn ∩ ∂Qi. Write Γ3 for the image of γ3.

Since Γ3 ∩
⋃m
j=1 S(Lj , r) = ∅, the homotopy from g′ to k, described above, is through

maps in Gi \ Γ3. Now apply the homeomorphism ψi also described above. We find that
the simple path γ = ψi · γ3 with image Γ = ψi(Γ3) and the map g′ satisfy the hypothesis
of Lemma A.28 so that g′ is not homotopic to a constant map through maps to B \ Γ.
Applying the homeomorphism ψ−1

i , it follows that g = ψi ◦ g′ is not homotopic to a
constant map through maps to Gi \ Γ3.

On the other hand, g = σ · h = σ ◦H |∂D, and the homotopy Ft : ∂D × [0, 1] → σ(D)
given by F (x, t) = σ ·H(tx) for x ∈ ∂D and t ∈ [0, 1] is a homotopy from g to the constant
map to H(0). Since σ(D) ⊂ Qi∩Xε, A∩Xε = ∅, and Γ3 ⊂ Qi∩A, we have σ(D) ⊂ Qi\Γ3,
so g is in fact homotopic to a constant map through maps to Qi \ Γ3. This contradiction
will complete the proof. We have yet to show that there exist sequences {x0, . . . , xn} ⊂ A
with the properties (a)–(e). The details of the proof are rather different in the three cases
corresponding to i ∈ {1, 2, 3} of the proposition, so we treat them separately.

Case 1: In this case,

S1 = {d(0, 0, 1), d(1, 1, 1)} and G1 = {d(0, 1, i), d(1, 0, i) | i ∈ {0, 1, 2}}.

Let n = 1 and take x0 = d(0, 0, 1) and x1 = d(1, 1, 1).
(a): The points x0 and x1 clearly lie in different components of the complement to the

set P1 = {(x, y, z) ∈ R3 | x+ y = 1}. Further, the maximum distance of points in Q1 from
P1 is r −

√
r2 − d2/2, and since r > d

√
3/2, this distance is less than

d
√

3

2
−

√√√√(d√3

2

)2

− d2

2
=
d(
√

3− 1)

2
<
d
√

2

2
= δP1

(x0) = δP1
(x1),

so x0, x1 /∈ Qi.
(b): This property holds since |x0 − x1| = d

√
2 < 2r.

(c): The set P1 meets the line segment M1 joining x0 and x1 at exactly one point; the
centre d(1

2 ,
1
2 , 1) of C1.

(d): This property holds trivially.
(e): It suffices to show for i ∈ {1, . . . , 6} that the orthogonal projections of S(M1, r) and

S(Li, r) onto P1 do not intersect. These projections are shown in the following diagram,
which in fact also describes the intersections of the spindles with P1:

h1 k

h2

d
√

2

2d

z

x+ y = 1

M1 ∩ P1

Here, the two-dimensional spindles in the diagram are the projections of S(Li, r) to P1

coinciding with S(Li, r)∩P1, and the circle in the middle is the projection of S(M1, r) to
P1 coinciding with S(M1, r) ∩ P1.

Configurations of points and regularity in R3 57

In the diagram, k = h1 = r−
√
r2 − d2/2 and h2 = r−

√
r2 − d2/4. Since r > d

√
3/2,

we have

k = h1 < d
√

3/2−

√√√√(d√3

2

)2

− d2

2
=
d(
√

3− 1)

2

and

h2 < d
√

3/2−

√√√√(d√3

2

)2

− d2

4
=
d(
√

3−
√

2)

2
.

From this, we see that
2k + 2h1 < 2d(

√
3− 1) < 2d

and
2k + 2h2 < d(2

√
3− 1−

√
2) < d

√
2

so that the disc S(M1, r) ∩ P1 avoids the two-dimensional spindles S(Li, r) ∩ P1 for all
i ∈ {1, . . . , 6}. Thus (e) holds, completing the argument.

Case 2: In this case,

S2 = {d(0, 0, i), d(1, 1, i) | i ∈ {0, 1}} ∪ {d(1
2 ,

1
2 ,

1
2)}

and
G2 = {d(0, 1, i), d(1, 0, i) | i ∈ {0, 1}}.

We take n = 4 and let x0 = (0, 0, 0), x2 = d(1
2 ,

1
2 ,

1
2), and x4 = d(1, 1, 1).

To define x1, consider the line segment N1 from x0 to y0 = d(0, 0, 1), which has length
d < 2r. Then ρ|N1

is a path in A from x0 to y0 with image in S(N1, r) which meets the
plane W = {(x, y, z) ∈ R3 | z = 1

2} in a unique point, which we take as x1.
Similarly, taking N4 to be the line segment from x4 to y4 = d(1, 1, 0), ρ|N4

is a path in
A from x4 to y4 with image in S(N4, r) meetingW in a unique point, which we take as x3.

(a): Since P2 = {(x, y, z) ∈ R3 | x+y = 1}, clearly x0 and x4 lie in different components
of PC2 . Further, x0 and x4 lie in the sphere of radius d

√
3/2 with centre x2. Since Q2

is contained in this sphere and meets its boundary only at the points of G2, we have
x0, x4 /∈ Q2.

(b): The spindle S(N1, r) meets W in the disc D1 with radius

r −

√
r2 −

(
d

2

)2

<
d
√

3

2
−

√√√√(d√3

2

)2

− d2

4
=
d(
√

3−
√

2)

2

and centre d(0, 0, 1
2), so

|x0 − x1| <

√√√√d2

4
+

(
d(
√

3−
√

2)

2

)2

=
d
√

6− 2
√

6

2
<
d
√

3

2
< r.

Essentially the same calculations shows that |x4 − x3| < r.
Notice that D1 is contained in the interior of the disc with radius d

√
3/2 and centre x2,

so |x1 − x2| < d
√

3/2 < r. Similarly, |x2 − x3| < r.
(c): The line segments N1 and N4 have constant distance d

√
2/2 from P2, so their

r-spindles S(N1, r) and S(N4, r) do not meet P2 and lie in different components of PC2 .
Since M1 ⊂ S(N1, r) and M4 ⊂ S(N4, r), this implies that x1 and x3 lie in different
components of PC2 . It follows that the polygonal path p with vertices x0, . . . , x4 meets P1

only at x2, the centre of C2.
(d): Since M1 ⊂ S(N1, r) and M4 ⊂ S(N4, r), we have S(M1, r) ⊂ S(N1, r) and

likewise S(M4, r) ⊂ S(N4, r), so S(M1, r) ∩ P2 = ∅ and S(M4, r) ∩ P2 = ∅.
(e): The minimum distance is d

√
2/2− (r −

√
r2 − d2/4) from points in S(N1, r) and

S(N4, r) to P1, whilst it is r −
√
r2 − d2/2 for points in

⋃4
j=1 S(Lj , r). Since r > d

√
3/2,(

r −
√
r2 − d2

4

)
+

(
r −

√
r2 − d2

2

)
<
d(2
√

3−
√

2− 1)

2
<
d
√

2

2
,

58 Supporting results of chapter two

so S(N1, r) and S(N4, r) do not intersect S(Lj , r) for any j ∈ {1, . . . , 4}. Hence neither
do the r-spindles S(M1, r) and S(M4, r) contained in them.

Consider now the r-spindle S(M2, r). The line segmentM2 has length less than d
√

3/2,
so points of this spindle have distance from M2 less than

r −

√√√√r2 −

(
d
√

3

4

)2

<
d
√

3

2
−

√√√√(d√3

2

)2

−

(
d
√

3

4

)2

=
d(2
√

3− 3)

4
.

The r-spindles with axes L1 and L3 parallel to W have nearest points to W at a distance
d/2 − (r −

√
r2 − d2/2) which is larger than d/2 − d(

√
3 − 1)/2 = d(1 −

√
3/2). Since

(2
√

3−3)/4 < 1−
√

3/2, S(M2, r) does not intersect S(L1, r)∪S(L3, r). Similarly, S(M3, r)
does not intersect S(L1, r) ∪ S(L3, r).

Finally, we consider the possible intersections of S(M2, r) and S(M3, r) with S(L2, r)
and S(L4, r). It suffices to show that there are no intersections of their projections to W
which in fact are their intersections with W . We write E2 = W ∩ S(L2, r) and similarly
E4 = W ∩ S(L4, r). These are discs of radius r −

√
r2 − d2/2 < d(

√
3 −
√

2)/2. The
symmetry of the situation means that it is enough to consider the possible intersection
of W ∩ S(M2, r) with E2, where we suppose that min{δE2

(m) | m ∈ M2} is at most
min{δE4

(m) | m ∈M2}.

D1

E2

θφ

ψ

x1

x2

Denoting by R2 the radius of E2, the angle θ between the line from the centre of E2 to
x2 to a tangent line to ∂E2 through x2 satisfies

sin(θ) =
2R2

d
√

2
<

2d(
√

3−
√

2)

2d
√

2
=

√
3−
√

2√
2

=

√
3

2
− 1,

so θ < 0.23. The angle ψ betweenM2 and the line from x2 to the centre of D1 is at most θ,
since x1 ∈ D1, so ψ < 0.23. Lastly, the angle φ between M2 and the tangent at x2 to the
boundary of W ∩ S(M2, r) satisfies

sin(φ) =
|M2|
2r

<
2d
√

3

4d
√

3
=

1

2
,

so φ < π/6. Thus θ + φ+ ψ < 0.98 < π/2, and it follows that S(M2, r) ∩ S(L2, r) = ∅.
Case 3: In this case,

S3 = {d(0, 1, 0), d(0, 0, 1), d(1, 1, 1), d(1
2 ,

1
2 ,

1
2)}

and
G3 = {d(0, 0, 0), d(0, 1, 1), d(1, 0, 1)}.

We take n = 2 and x0 = d(0, 0, 1), x1 = d(1
2 ,

1
2 ,

1
2), and x2 = d(1, 1, 1).

(a): Now C3 is the equilateral triangle with side length d
√

2 and vertices the points
of G3. It is contained in the plane P3 = {(x, y, z) ∈ R3 | x+y−z = 0}. The circumcircle of
C3 has centre c = d(1

3 ,
1
3 ,

2
3) ans radius d

√
2/3. It follows that the maximum distance of

points of the reduced r-lens Q3 of C3 from P3 is

r −
√
r2 − 2d2

3
<
d
√

3

2
−
√

3d2

4
− 2d2

3
=

d√
3

Configurations of points and regularity in R3 59

since r > t3 > d
√

3/2.
The line segment M1 from x0 to x1 is orthogonal to P3 and intersects P3 at c, so

δP3(x0) = |x0 − c| = d/
√

3, and x0 /∈ Q3.
The line segment from x2 to c′ = d(2

3 ,
2
3 ,

4
3) ∈ P3 is orthogonal to P3, so δP3

(x2) =

|x2 − c′| = d/
√

3, and x2 /∈ Q3.
Finally, x0 and x2 lie in different components of PC3 , since the normals from x0 and

x2 to P3 points in opposite directions.
(b): We notice that |x0 − x1| = d

√
3/2 = |x1 − x2|, and r > d

√
3/2.

(c): Clearly x2 = p ∩ P3 ⊂ C3.
(d): This property holds trivially.
(e): Up to orthogonal symmetries, there are two cases of r-spindle intersection that we

must consider:

(1) The case S(M2, r) ∩ S(L2, r), where L2 is the line segment from y1 = d(0, 0, 0) to
y3 = d(1, 0, 1);

(2) The case S(M1, r)∩S(L1, r), where L1 is the line segment from y2 = d(0, 1, 1) to y3.

y2 x2

x1

y3
x0

y1

For case (1), consider the triangle T with vertices y1, y3, and x2. The midpoint of the
line segment from y1 to x2 is x1. The r-spindle S(L2, r) is contained in the orthogonal disc
bundle for L2 of radius R1 = r −

√
r2 − d2/2, whilst S(M2, r) is contained in the ortho-

gonal disc bundle for M2 of radius R2 = r −
√
r2 − 3d2/16. We will show that these disc

bundles do not intersect. It will suffice to consider the orthogonal projections to the plane
containing T of these disc bundles.

y1
y3

d/2R1

R2

x2

x1

d
√

2

It is clear that it suffices to show that R1 +R2 < d/2. Since r > d
√

3/2, we have

R1 +R2 <

(
d
√

3

2
−
√

3d2

4
− d2

2

)
+

(
d
√

3

2
−
√

3d2

4
− 3d2

16

)
= d

(√
3− 5

4

)
<
d

2
.

Thus the two disc bundles do not intersect, and this implies S(M2, r) ∩ S(L2, r) = ∅.
For the case (2) and Z the plane {(x, y, z) ∈ R3 | x = y}, we consider orthogonal

projection to Z. The orthogonal projections of the r-spindles S(M1, r) and S(L1, r) are
in fact their intersections with this plane, which are the two-dimensional r-spindle for M1

respectively the closed disc E1 of radius r−
√
r2 − d2/2 centred at c1 = d(1

2 ,
1
2 ,

1
2). We will

show that these do not intersect when r = t3d, which will imply S(M1, t3d)∩S(L1, t3d) = ∅.

60 Supporting results of chapter two

y1

x0 c1

x1

c2

c3 α

Let c2 be the centre of the closed r-disc E2 through x0 and x1 which has as minor arc the
boundary of Z∩S(M1, r) above, in the sense of larger z-coordinate,M1. It will be enough to
show that E1∩E2 = ∅ or, equivalently, to show that the distance between the centres of the
discs, |c1−c2|, is greater than the sum of their radii, r+(r−

√
r2 − d2/2) = 2r−

√
r2 − d2/2.

The distance l from c2 to the midpoint c3 of M1 is
√
r2 − 3d2/16, whilst the distance

m from c3 to c1 is |d(1
4 ,

1
4 ,

3
4)− d(1

2 ,
1
2 , 1)| = d

√
3/4. The triangle with vertices c3, c1,

and x1 is isosceles and its angle α = ∠c1c3x1 satisfies sin(α/2) = (d/4)/(d
√

3/4) = 1/
√

3,
whence sin(α) = 2 sin(α/2) cos(α/2) = 2

√
2/3. Using the cosine formula in the triangle

with vertices c2, c3, and c1 yields

|c2 − c1|2 = l2 +m2 − 2lm cos(π/2 + α) = l2 +m2 + 2lm sin(α),

since cos(π/2 + α) = cos(α) sin(π/2)− sin(α) cos(π/2), so, substituting, we obtain

|c2 − c1|2 =

(
r2 − 3d2

16

)
+

3d2

16
+ d

√
r2 − 3d2

16

d
√

3

4

2
√

2

3

= r2 + d

√
r2 − 3d2

16

√
2√
3

= r2d

√
2r2

3
− d2

8
.

It follows that r must satisfy

r2 + d

√
2r2

3
− d2

8
>

(
2r −

√
r2 − d2

2

)2

,

or, equivalently, that t = r/d must satisfy

t2 +

√
2t2

3
− 1

8
−

(
2t−

√
t2 − 1

2

)
> 0.

A calculation shows that t3 = 0.95571 satisfies this inequality.
Thus S(M1, t3d) ∩ S(L1, t3d) = ∅. Since r > t3d, we have S(M1, r) ⊂ S(M1, t3d) and

S(L1, r) ⊂ S(L1, t3d), so S(M1, r) ∩ S(L1, r) = ∅. This concludes the proof. �

A.4 QUASI-MANIFOLDPROPERTIES
Proposition A.25 was the last piece of the proof of Theorem A.21. We will show now how
this theorem can be used to prove Theorem 2.10.

Theorem 2.10. Whenever A is an r-regular set with d · 0.95571 · · · < r, VdL(A) is a
quasi-manifold.

Proof. To show that V = VdL(A) is a quasimanifold, according to Definition 2.9, we need
to check that configurations (11)–(14) cannot occur, and that configurations (8) and (9)
only occur paired with their own or the other’s complementary configuration. The third
property of quasi-manifolds, that any pair of black voxels in the same component of V is
connected by a chain of face-adjacent black voxels, is already satisfied when r > d

√
3/2

by the proof of Proposition 2.7.

Quasi-manifold properties 61

(a) (b) (c)

Figure A.3
These configurations of
black and white lattice
points in a lattice dL
cannot occur in the
digitisation of an r-
regular set satisfying
r > d · 0.95571. Blue
points represent lattice
points which can be
either black or white.

For t1 = t2 =
√

3/2 and t3 = 0.95571, the hypothesis r > 0.95571 ensures that r > ti
for i ∈ {1, 2, 3}, and so Theorem A.21 applies for each choice of i ∈ {1, 2, 3}. Let us
depict the situation of the theorem; see Figure A.3. In the figure, the elements of Ri are
represented as black points and elements of Gi as white points corresponding to Ri ⊂ A
and Gi ⊂ AC . The blue points can be elements of either A or AC . Figure A.3(a) shows
R2 and G2, (b) shows R3 and G3, and (c) shows R1 and G1. By Theorem A.21, neither
of the configurations in the three subfigures are allowed to occur.

Consider first Figure A.3(a). This is (11) (up to rotation), hence we can rule out this
configuration of V .

Consider now Figure A.3(b). Replacing both blue points with white respectively black
points yields (a rotation of) (12) respectively its complementary configuration; replacing
the leftmost blue point with a black and the other with a white point yields (13), and,
finally, replacing the leftmost blue point with a white and the other with a black point
gives (a rotation of) (14).

It remains to be shown that (8) and (9) can only occur in the pairs specified by
Figure 2.4. Consider Figure A.3(c). Replacing the two upper blue points with white points,
we obtain a 2-by-2-by-3 configuration with (8) as the upper 2-by-2-by-2 configuration. If
we instead replace just one upper blue point with a black and one with a white point, we
get (a rotation of) (9) as the upper 2-by-2-by-2 configuration. The figure then implies that
we cannot have elements of AC at the two white points at once. One can now take all other
possible configurations of black and white points in the lower 2-by-2-by-1 configuration
with either (8) or (9) above, remembering that occurrences of (11)–(14) are not allowed,
as proved above, and the resulting possible configurations, up to rotation, reflection, and
complementarity, are the three shown in Figure 2.4, hence (8) and (9) can only occur in
the pairs claimed.

Reversing the colours in Figure A.3 so points of Ri are white and those of Gi are
black for i ∈ {1, 2, 3} leads to similar conclusions as above only for the complementary
configurations. In conclusion, V is a quasi-manifold. �

B

TECHNICALARGUMENTSOF
CHAPTER 2

This appendix covers the more technical details left out in Chapter 2.
Firstly, in Section B.1, we will formally introduce the wedges inserted into
the voxel reconstruction of an r-regular set to obtain the wedged reconstruc-
tion whenever the underlying reconstruction is a quasi-manifold. Secondly,
in Section B.2, a smoothing of the wedged reconstruction, which is used

to obtain a smoothed reconstruction, is defined, and finally, in Section B.3, we are ready
to give the definition of a direction field near the boundary of the smoothed reconstruc-
tion, which is utilised for the attainment of the necessary vector field on which the main
theorem of Chapter 2 relies.

B.1 DEFINITIONOFTHEWEDGEDRECONSTRUCTION

We give now a formal definition of the wedges introduced in Subsection 2.3.2. Recall
that VdL(A) = V denotes the voxel reconstruction of an r-regular set A by a lattice dL.
For 1 ≤ n ≤ 10, denote by (n)* the complement of a configuration of V , i.e. (n)* is the
configuration obtained by inverting the colours of (n). Then the allowed occurrences of (8)
and (9), according to Definition 2.9(ii), are the combinations of these configurations with
(8)* and (9)*. These two complementary configurations are illustrated in Figure B.1. The
allowed combinations of the four configurations, illustrated in Figure 2.4, are: the 2-by-2-
by-3 configuration that consists of (8)* and (8) and corresponds to Figure 2.4(a); the 2-
by-2-by-3 configuration that consists of (9)* and (9) and corresponds to Figure 2.4(b); the
2-by-2-by-3 configuration that consists of (8)* and (9) and corresponds to Figure 2.4(c),
and the 2-by-2-by-3 configuration that consists of (9)* and (8) and corresponds to the
complement of Figure 2.4(c). It is these 2-by-2-by-3 configurations and (10) for which we
need to define wedges.

We introduce for each of (8)*, (9)*, and (10) a coordinate system in order to precisely
define the wedges. Since we will need this later on, we introduce coordinate systems for
configurations (1)–(7) of Figure 2.5 as well, thus covering all configurations of W . Let any
such coordinate system have origin in the centre of the configuration and axes parallel
to the axis directions of dL. Each coordinate system divides R3 into eight regions called
octants. The octants are determined by the signs of the coordinates of the points they
contain, e.g. (+,+,−) is the octant where the first and second coordinates of all points are
positive and the third coordinate is negative. We specify the axes by imposing the coordi-
nate system in Figure B.2 on each of the ten configurations with the same ‘orientation’ as
they are given in Figure 2.5. More precisely, these coordinate systems are determined by
which octants contain black voxels, so these are specified in Table B.1. Configuration (1)
is not included in the table since it does not contain any black voxels, and so all possible
choices of coordinate system are symmetric. For configurations (2), (5), (6), (7), (8)*,
and (10), there are more possible choices of coordinate systems, which are identical up to
rotation of the configuration, so one can be chosen arbitrarily.

We are now ready to define the wedges of W . The convex hull conv(X) of a set of
points X ⊂ R3 is the smallest convex set in R3 containing X.

(8)* (9)*

Figure B.1
The complementary
configurations of (8)
and (9).

63

64 Technical arguments of Chapter 2

z

x
y

Figure B.2
Coordinate system im-
posed on configurations
(1)–(7) and 〈1〉–〈3〉 of
W .

Configuration Octants containing black voxels

(2) (−,−,−)
(3) (−,−,−), (−,+,−)
(4) (−,−,−), (−,+,−), (+,−,−)
(5) (−,−,−), (−,+,−), (+,−,−), (+,+,−)
(6) (−,−,−), (−,+,−), (+,−,−), (−,−,+)
(7) (−,−,−), (−,+,−), (+,−,−), (−,+,+)
(8)* (−,−,−), (−,+,−), (+,−,−), (+,+,−), (+,−,+), (−,+,+)
(9)* (−,−,−), (−,+,−), (+,−,−), (+,−,+), (−,+,+)
(10) (+,−,−), (−,+,+)

Table B.1
Specification of coordi-
nate systems for each
configuration of W con-
taining black voxels.

Definition. Let ε > 0, and setDefinition B.1

W1 = conv{(0, 0, 0), (ε, 0, 0), (0, ε, 0), (0, 0, d), (ε/2, 0, d), (0, ε/2, d)};
W2 = conv{(ε/2, 0, d), (0, ε/2, d), (−ε/2, 0, d), (0,−ε/2, d), (0, 0, d+ ε/2)};
W3 = conv{(0, 0, 0), (ε, 0, 0), (0, ε, 0), (0, 0,−ε)};
W4 = conv{(0, 0, 0), (−ε, 0, 0), (0,−ε, 0), (0, 0, d), (−ε/2, 0, d), (0,−ε/2, d)};
W5 = conv{(0, 0, 0), (0, ε, 0), (0, 0, ε), (−ε, 0, 0)}.

We define:

〈1〉 as the 2-by-2-by-3 configuration corresponding to (8) paired with (8)*, where we
colour the wedge W1 black in the coordinate system of (8)*;

〈2〉 as the 2-by-2-by-3 configuration corresponding to (9) paired with (9)*, where we
colour the wedges W1, W2, W3, and W4 black in the coordinate system of (9)*;

〈3〉 as the 2-by-2-by-3 configuration corresponding to (9) paired with (8)*, where we
colour the wedges W1, W2, and W4 black in the coordinate system of (8)*;

〈4〉 as the 2-by-2-by-3 configuration corresponding to (8) paired with (9)*, where we
colour the wedges W1, W3, and W4 black in the coordinate system of (9)*;

〈5〉 as the configuration obtained by colouring the wedge W5 in (10) white.

The wedging defined in Definition B.1 can now be applied to all rotations and reflections
of the indicated pairs of configurations, which yields a wedging of all critical cells of the
voxel reconstruction V . Notice that the wedge W2 will intersect the upper black voxel of
(9) in the definitions of 〈2〉 and 〈3〉. This only means that the definition applies to both
reflection symmetric configurations composed of (9) and either (8)* or (9)*.

The wedged configurations 〈1〉–〈5〉 are illustrated in Figure 2.6. For 〈1〉 and 〈5〉, we
in fact need to insert or remove two wedges, but due to the symmetry of the coordinate
systems mentioned above, we need only define one and then apply the wedging procedure
to all possible choices of coordinate systems for these configurations. Note also that for
the complement of (10), instead of colouring the wedge white, we colour it black.

Analogously to adding black wedges to configurations (8)* and (9)*, one could add
white wedges inserted into the black voxels and then use the same line of arguments as
presented in Chapter 2 to obtain a homeomorphism and an ambient isotopy between A
and W . However, this is not the case for (10), where the wedges need to have the opposite
colour of the two odd voxels of the configuration. Notice also that for the complement of
this configuration, the analogue of inserting white wedges into the black voxels of (10) is

The smoothed reconstruction 65

Figure B.3
Example of the loci
(green) and centre discs
(blue) of a wedged re-
construction. The discs
are the black and blue
regions bounded by the
loci, and the annuli are
the black regions which
are bounded both by a
locus and the boundary
of a centre disc.

to insert black wedges into the two white wedges in order to disconnect them and thereby
remove the critical vertex.

By construction, W is homotopic to V , but as opposed to V , W has manifold bound-
ary ∂W . Thus, the results of Subsection 2.3.3 will apply to W once we have constructed a
smoothed reconstruction Z homeomorphic to W and shown that the results apply to Z.

B.2 THESMOOTHEDRECONSTRUCTION
In order to obtain a smoothing of W , we will define a smoothing for each configuration
(1)–(7) of the voxel reconstruction V and for the wedged configurations 〈1〉–〈5〉; see Fig-
ures 2.5 and 2.6 respectively. These cover all possible configurations of W , so we will
simply refer to (1)–(7) and 〈1〉–〈5〉 as the configurations of W . The smoothing should be
defined in a way such that the smoothed configurations are compatible: when combined,
they should give rise to a smoothed voxel reconstruction Z with smooth boundary. At the
beginning of Subsection 2.5.2, we argued that the smoothing must take into considera-
tion the subsequent construction of a vector field which should be transverse to the thus
smoothed boundary ∂Z. We will keep this in mind as we define smoothings locally of the
loci and annuli of each configuration.

B.2.1 LOCIANDANNULI

Let us consider the lattice dL, where d
√

3/2 < r, on which W is based. In the following,
let Ks(k, dL) = Ks(k) ⊂ R3 denote a regular cube with side length s ∈ R, centre k ∈ R3,
and edges parallel to the axis directions of dL. We use the convention that the non-
critical boundary vertices of W are the non-critical boundary vertices of V . The
wedged reconstruction, W , of course has more non-critical vertices at the boundary due
to its wedges, but we treat these separately. The non-critical boundary vertices of V are
indeed preserved under the wedging process, since the wedges do not affect other vertices
of V than the critical ones. We now define certain subsets of the boundary ∂W which will
be used to specify a smoothing of W and, thereafter, the vector field ξ.

Definition. Let v be a non-critical boundary vertex of W , and let ε > 0. The disc, theDefinition B.2
centre disc, and the annulus of v are the sets

Dv = Kd(v) ∩ ∂W, Cv = K2ε(v) ∩ ∂W, Av = cl(Dv \ Cv)

respectively. The locus of v is Lv = ∂Dv, and the centre locus of v is ∂Cv.

Examples of the concepts introduced in this definition are shown in Figure B.3.
The critical cells of V are ‘repaired’ under the wedging process, and new boundary

cells arise. Thus an alternative definition of discs and loci is needed in the case of vertices

66 Technical arguments of Chapter 2

〈1〉 〈2〉 〈3〉 〈4〉 〈5〉

Figure B.4
The disc of each type
of wedge in the wedged
reconstruction is il-
lustrated in blue; its
boundary is the locus.

belonging to wedges. Consider for a moment the five configurations 〈1〉–〈5〉. The non-
critical boundary vertices of these, when viewed as isolated reconstructions, have well-
defined loci, and these loci enclose those subsets of the boundary that intersect faces of
the wedges.

Definition. The disc D of a wedge of type 〈n〉 in W for 1 ≤ n ≤ 5 is the compactDefinition B.3
subset of ∂W intersecting a face of the wedge and enclosed by the loci of the non-critical
boundary vertices of 〈n〉. The locus L of the wedge is the boundary of its disc, L = ∂D.

The subsets defined in Definition B.3 are illustrated in Figure B.4. Together, the loci
in Definitions B.2 and B.3 are called the loci of ∂W . The locus L (of a vertex or wedge)
is an embedding S1 ↪→ R3 of the unit circle S1 ⊂ R2 associated to each non-critical
boundary vertex and to each wedge of W . The disc, centre disc, and annulus consist of
a number of k-cells for all k = 0, 1, 2, whereas the locus and the centre locus consist of
only 0- and 1-cells. The annulus of a non-critical vertex will be used in the next section
to define the smoothing of the wedged reconstruction, but the smoothing of 〈1〉–〈5〉 will
be defined differently, so we do not need the notion of ‘annuli of wedges’.

B.2.2 SMOOTHINGOFTHELOCIANDANNULI

Each locus of ∂W consists of a number of 0- and 1-cells. Some 1-cells have length d, and
we wish to subdivide these into smaller segments of length d/2. Each such 1-cell of a
locus of ∂W with endpoints k1 and k2 and midpoint m is divided into two line segments:
one with endpoints k1 and m; one with endpoints k2 and m. These line segments, along
with the remaining length d/2 1-cells of the loci, are called the locus segments of ∂W .
Every locus segment shares an endpoint with up to four other locus segments: two or three
on the same boundary face as itself and exactly one on an edge-adjacent boundary face.
We will call these locus segments adjacent and, in particular, the latter is called the
edge-adjacent locus segment. We now divide the locus segments into two types. A
type I locus segment is contained in a boundary face which lies in the same plane as
the boundary face containing the corresponding edge-adjacent locus segment; a type II
locus segment is contained in a boundary face which lies in a plane perpendicular to the
boundary face containing the corresponding edge-adjacent locus segment. The two types
of locus segments are illustrated in Figure B.5.

In order to define a smoothing of W , we first define a smoothing of the loci of ∂W . For
each locus L of ∂W , we wish to smooth the vertices of L. For any vertex w of L, there are
two orthogonal locus segments s and s′ which have w as a common endpoint. For ε > 0,
define lines φ and ψ by the parametric equations

xφ(t) = ε, yφ(t) = εt;

xψ(t) = ε− εt, yφ(t) = ε,
(B.1)

for t ∈ R. The lines φ and ψ are illustrated in Figure B.6(a). The locus segments s and s′

(a) (b)

Figure B.5
(a) shows locus seg-
ments of type I, and (b)
shows the two cases of
type II locus segments.

Smoothing of the loci and annuli 67

t = 1

(0, ε)

t = 0

t = 1

ψ

t = 0

(ε, 0)

φ

y

x

(a)

s′ (0, ε)

(ε, 0)

y

x

w

s

(−d/2 + ε, ε)

(ε,−d/2 + ε)

(b)

σ

(0, 1)

(1, 0) t

(c)

t = 1

(0, ε) ρ

t = 0

(ε, 0)

y

x

(d)

Figure B.6
Plots of the lines and
functions used to define
the smoothing process.
(a) shows the lines φ
and ψ defined by the
parametric equations
in (B.1); (b) shows the
locus segments s and s′
represented as segments
of the lines φ and ψ
respectively; (c) shows
the function σ : R → R
defined by (B.2), and
(d) shows the curve ρ
defined by the paramet-
ric equations in (B.3).
All plots are shown in
the plane z = 0.

can be represented by s = φ(t) for −d/(2ε) ≤ t ≤ 1 and s′ = ψ(t) for 0 ≤ t ≤ (2ε+d)/(2ε)
when w = (ε, ε, 0) and z = 0 is the plane spanned by s and s′; see Figure B.6(b). We now
define a cutoff function σ : R→ R given by

σ(t) =
f(1− t)

f(1− t) + f(t)
,(B.2)

which is illustrated in Figure B.6(c), and where f : R→ R is the function

f(t) =

{
e−1/t for t > 0;

0 for t ≤ 0.

Finally, let ρ be the smooth curve defined by the parametric equations

xρ(t) = xφ(t)σ(t) + xψ(t)(1− σ(t)) = εσ(t) + (ε− εt)(1− σ(t)),

yρ(t) = yφ(t)σ(t) + yψ(t)(1− σ(t)) = εtσ(t) + ε(1− σ(t)),
(B.3)

for t ∈ R, see Figure B.6(d). The curve ρ is a smooth transition from s to s′ for −d/(2ε) ≤
t ≤ (2ε+ d)/(2ε). Using such smoothings, we obtain a smoothing of all loci of W which is
consistent with our initial idea for a transverse vector field as discussed in Subsection 2.5.2.
An example of the smoothed loci is given in Figure B.7.

We now extend the smoothing of the loci to a smoothing of the annuli of ∂W . For each
non-critical boundary vertex v of W , we take the smoothing defined for the loci and use it
on the centre locus ∂Cv as well. We then use linear interpolation from the smoothed locus
to the smoothed centre disc in order to obtain a smoothing of Av which is exactly bounded
by Lv∪∂Cv. This yields a smoothing of all annuli A which were defined for (n), 2 ≤ n ≤ 7.
We wish to smooth all discs of W as well, so we still need a smoothing procedure for the
centre discs for (n) as well as for the discs of 〈m〉, 1 ≤ m ≤ 5. Let us attend to the former
problem first.

68 Technical arguments of Chapter 2

Figure B.7
Example of the smooth-
ing of loci (green) of
a wedged voxel recon-
struction. The front-
most vertex and corres-
ponding edge have been
rendered slightly trans-
parent in order to show
how the smoothed locus
of the edge is moved
inside the reconstruc-
tion. This is the case
for all Type II locus
segments which have an
edge-adjacent locus seg-
ment on the same voxel.
The smoothed locus of
Type II locus segments
with edge-adjacent loci
in adjacent voxels are
moved outside of the
wedged reconstruction.

Configuration Coordinate pairs

(2) (−d/2,−d/2,−d/2), (d/2, d/2, d/2)
(4) (0, 0,−d/2), (0, 0, d/2)
(6) (−d/2,−d/2,−d/2), (d/2, d/2, d/2)
(7) (−d/2, 0,−d/2), (d/2, 0, d/2)

Table B.2
Coordinate pairs spe-
cifying for configura-
tions (2), (5), (6), and
(7) a line used to define
a smoothing of the con-
figuration.

(2) (4) (6) (7)

Figure B.8
Projections of the
boundary ∂Cvn of the
centre disc of a config-
uration (n) onto the
plane Nn. The black
lines represent the edges
of the wedged voxel
reconstruction.

B.2.3 SMOOTHINGOFTHECENTREDISCS

For configurations (n), 2 ≤ n ≤ 7, the previous section describes how to smooth the
annuli. Configuration (1) can be omitted from all smoothing considerations since it does
not contain any black voxels. Smoothing the centre discs requires a little more work since
we are still interested in a smoothing which allows for the construction of a vector field
transverse to the smooth boundary. It should be relatively clear how the smoothing of the
annuli supports the construction of the transverse vector field illustrated by Figure 2.10(c).
We would like to continue to use interpolation to define our smoothing and, eventually,
to define the vector field ξ.

Denote by vn the centre of any configuration (n). In the case of (3), consider the
smoothing of the type II locus segments. This moves the smoothed locus insideW . We can
parallel shift this procedure along the boundary edge of W from one side of the locus to
the other to smooth the entire edge of (3) contained within Dv3 , thus yielding a smoothing
of Dv3 . We denote by d3c the smoothed version of (3).

Naturally, Dv1 and Dv5 , and thereby Cv1 and Cv5 , are already smooth. To be consist-
ent with the notation, we let d1c and d5c denote the smoothed versions of (1) and (5)
respectively, which are thus identical to the non-smoothed configurations.

Consider now the remaining configurations (2), (4), (6), and (7). If the vector field
is to be symmetrical for a given configuration, there is a natural choice of line segment
through vn for each n along which the vector field should lie. Each such line segment can
be determined by specification of its two endpoints which are given in Table B.2, where
the coordinates are given in the coordinate system of the configuration, see Table B.1.
We now proceed to smooth the relevant centre discs.

Denote by Nn the plane through vn with normal the line specified by Table B.2 for
any choice of orientation of the normal. We now project the smoothed centre locus ∂Cvn
onto Nn. The projected boundaries thus obtained are shown in Figure B.8. We can think of
the smoothed centre locus ∂Cvn as a graph over its projection to Nn. In order for us to use

Smoothing of wedges 69

〈6〉

Figure B.9
Wedging of (7), where
the disc, which is now
a disc of a wedge, is
indicated (blue).

any argument on preservation of transversality when smoothly interpolating lines through
∂Cvn to Dvn as we will do in the next section, the projected image cannot have edges of
the configuration with coinciding projections. This, however, is the case for (7): we should
be able to see the projection of six edges meeting at v7, but we see only four. Therefore,
we will need another approach to smooth this configuration. For (2), (4), and (6), we now
smoothly interpolate from the smoothed boundary ∂Cvn to Nn inside Cvn . This results in
a smoothing of the vertex of the three configurations and hence a smoothing of the entire
disc Dn. Denote by dnc, n = 2, 4, 6, the smoothed configurations thus obtained. We have
still to define a smoothing of (7) and 〈1〉–〈5〉.

B.2.4 SMOOTHINGOFWEDGES

Due to the situation illustrated by Figure B.8(7), if we want to use the approach of
interpolating with N7 in Cv7 for (7), we need to introduce a wedge at v7 much as was done
for 〈1〉–〈5〉 in Definition B.1 to move those planes that collapse under projection onto N7.

Definition. For ε > 0 given by Definition B.1, setDefinition B.4

W6 = conv{(ε/2, 0, 0), (−ε/2, 0, 0), (0, ε/2, 0), (0,−ε/2, 0), (0, 0, ε/2), (0, 0,−ε/2)}.

We define 〈6〉 as the configuration obtained by colouring the wedge W4 in (7) black.

The wedged version 〈6〉 of (7) is illustrated in Figure B.9.
We now wish to define a common procedure for smoothing the six wedged config-

urations 〈1〉–〈6〉. This is done by using the same procedure as the one used for loci in
Subsection B.2.2: whenever we have a pair of 2-cells of the boundary of a wedged recon-
struction intersecting in a 0- or 1-cell belonging to a wedge, we smoothly interpolate from
one to the other in an ‘ε neighbourhood’ of the edge as was done in the aforementioned
procedure illustrated by Figure B.6. We thus obtain smoothed versions of the wedged
configurations. The designations d1c–d6c are already in use for the smoothed version of
(1)–(6), but since 〈6〉 corresponds to a wedged version of (7) and 〈5〉 to (10), we shall
denote their smoothed versions by respectively d7c and d10c. The wedged configurations
〈1〉 and 〈3〉 are based on (8)*, so we name the smoothed version of 〈1〉 d8ac and that of
〈3〉 d8bc. Similarly, d9ac denotes the smoothed version of 〈2〉 and d9bc that of 〈4〉. When
referring to smoothings d1c–d10c, it is understood that d8c means d8ac and d8bc; similarly
for d9c and d9ac, d9bc.

Definition. We define smoothings d1c–d10c of (1)–(6) and 〈1〉–〈6〉 by the smoothingDefinition B.5
procedure described in Section B.2.

Together, the smoothed configurations constitute the smoothed wedged voxel recon-
struction Z or, for short, the smoothed reconstruction, with respect to the lattice dL
and based on the wedged reconstruction W . It is easily verified that the configurations
dnc of Z, 1 ≤ n ≤ 10, are compatible: the configurations of W are compatible, and the
smoothed loci are compatible since the loci are compatible. For each configuration of
W , the smoothing inside the locus of the corresponding vertex or wedge does not affect
adjacent configurations.

The smoothing procedure renders Z homeomorphic to W , and the boundary of Z is
smooth. It should be immediate that the smoothing procedure does not affect the number
of connected components of the reconstruction: smoothing is carried out in the small

70 Technical arguments of Chapter 2

(a) (b) (c)

Figure B.10
(a) Cubic d/2-dilation
(blue) of the boundary
of configuration (6)
of V . (b) has added
transparency of the
black voxels of (6) in
order to better visualise
the boundary of the
cubic dilation inside
the configuration; in
(c), the black voxels
have been removed
altogether.

ε neighbourhoods of the edges of W and does not cause components of W to become
connected; nor does it disconnect components.

B.3 CONSTRUCTIONOFTHEVECTORFIELD
The construction of a vector field ξ satisfying our requirements as per Theorem 2.20 was
commenced in Subsection 2.5.1. We have defined the vector field ξA which will be merged
with ξZ (to be defined below) in order to obtain a vector field ξ with the desired properties.
We present now the neighbourhood of ∂Z on which to define a direction field φZ for ξZ
and subsequently define the direction field itself.

B.3.1 CUBIC DILATION

Recall that, at the beginning of Subsection B.2.1, for s ∈ R and k ∈ R3, we introduced
the cube Ks(k) ⊂ R3 with side length s, centre k, and edges parallel to the axis direc-
tions of dL.

Definition. For s ∈ R and X any subset of R3, the cubic s-dilation of ∂X with respectDefinition B.6
to dL is the set

Ks(X, dL) = Ks(X) :=
⋃

x∈∂X

Ks(x).

Figure B.10 shows an example of a cubic dilation. The idea now is to define a direction
field φZ on the cubic d/2-dilation of ∂V which we claim is also a neighbourhood of ∂Z.

Lemma. The boundary ∂Z is a subset of the interior of Kd(V).Lemma B.7

Proof. Let ε > 0 be the one given by Definition B.1. From the definition of the convex hulls
that constitute the wedges of Definitions B.1 and B.4, we see that the distance from any
point contained in a wedge of type 〈1〉–〈4〉 or 〈6〉 to the boundary of the underlying set V
is strictly smaller than ε. This means that all points inside these wedges are contained in
Kd(V) as long as we choose ε < d/2. Similarly, the points removed from V when inserting
the white wedges of 〈5〉 are closer to ∂V than ε. This means that the manipulation of the
boundary of ∂V , which is only done locally for configurations (7)–(10), does not cause the
resulting boundary to intersect Kd(V). Similarly, we see that the smoothing procedure
used to define ∂Z is a manipulation of the wedged object inside an ε neighbourhood of
the boundary; see Figure B.6. Hence ∂Z is contained inside the interior of Kd(V). �

B.3.2 ADIRECTIONFIELDONTHECUBIC DILATION

We will now define a direction field φZ inside Kd(V) such that the line segments consti-
tuting φZ are transverse to ∂Z. We base our construction on the idea initially used for
defining the smoothing process described in Section B.2. We need coordinate systems of
the configurations of ∂Z, and each smoothed configuration dnc naturally inherits its coor-
dinate system from the underlying configuration (n) for 2 ≤ n ≤ 10 if we let the coordinate
system of the 3-by-2-by-2 configurations d8ac and d8bc be determined by (8)* and d9ac and
d9bc be determined by (9)*; see Table B.1. Furthermore, d7c presents a special case which
must be treated separately. The direction field here is not as straightforward, and we need
the wedge introduced in Definition B.4 to avoid problems with transversality later on.

A direction field on the cubic dilation 71

Figure B.11
The line segments (blue
and red) which we in-
terpolate to obtain ΛII

for the two cases of
type II locus segments
(green) of ∂V . The pic-
ture is shown in the
plane containing the
line segments.

We will define line segments for the direction field for each configuration of ∂Z in turn,
but first, we define φZ on the smoothed loci of ∂Z.

Recall that the smoothing process does not affect locus segments of ∂V of type I,
so these same locus segments constitute part of the smoothed loci of ∂Z. Type II locus
segments are smoothed, and in this smoothed form, they make up the remaining parts
of the smoothed loci of ∂Z. For any locus segment s of type I, consider all line segments
of length d with midpoint on s that are normal to the (smoothed) boundary face of ∂Z
containing s. Denote the collection of such line segments by ΛI. Any locus segment s of
∂V of type II meets another type II locus segment s′ of ∂V in a boundary edge of ∂V in
some point v ∈ ∂V . Consider now a coordinate system with axes parallel to s, s′, and the
edge in which they meet and such that v has coordinates (d/2, d/2, 0), the other endpoint
of s has coordinates (0, d/2, 0), and that of s′ coordinates (d/2, 0, 0). The locus segments
s and s′ are smoothed in an ε neighbourhood of p, so inside this region, we take ΛII to be
the collection of line segments parallel to the line segment from (0, 0, 0) to (d, d, 0) with
endpoints on ∂Kd(V) and midpoint on the ε-region of s and s′ near v. On the endpoints
of s and s′, we take line segments of length d with midpoint at the endpoint, such that the
line segments are normal to the (smoothed) boundary face, and add these to ΛII. To obtain
the final line segments of ΛII, we now smoothly interpolate from the line segments near v
to those at the endpoints of s and s′ and take segments with endpoints on ∂Kd(V) and
midpoints on s or s′ parallel to those obtained by interpolation. The line segments of ΛII

are illustrated in Figure B.11.
In a similar fashion, we now define collections Λdnc of line segments for each configur-

ation dnc of Z, 1 ≤ n ≤ 10. In the coordinate system of each configuration, consider the
origin. Except for configuration d1c, the origin coincides with a boundary vertex vn of the
underlying voxel reconstruction V . We will refer to the smoothed version of the associated
locus Lvn as the (smooth) locus of dnc. The loci of all dnc are called the loci of Z. The
collections ΛI and ΛII thus define line segments through all points of the loci of Z. We
now wish to define line segments of the direction field φZ through the region bounded by
the locus of each dnc, the (smooth) disc of dnc. Line segments for each configuration
have been specified by coordinate pairs determining their endpoints in Table B.3. The
complement of d10c is not treated as a special case here since, analogously to d2c–d7c,
we will use the same line segments when the black and white colours of the configuration
(and the wedges) are interchanged to obtain the complementary configuration.

For configuration d5c, we have defined line segments through all points of the smoothed
disc, and for d3c, we have specified line segments through the edge from (−d/2, 0, 0)
to (d/2, 0, 0). For d8ac, d8bc, d9ac, and d9bc, we have specified endpoints of three line
segments, P1, P2, and P3, and for the remaining configurations of Z, endpoints of a single
line segment are defined. The definition of Ld5c is thus complete. For d3c, for ε > 0 given
by the smoothing process in Subsection B.2.2 and for −d/2 ≤ α ≤ d/2, we take all line
segments parallel to the one defined in Table B.3 for this fixed α with midpoint on a
line segment with endpoints (0, 0, 0) and (β, 0, 0) or (0, 0,−β) for 0 < β ≤ 2ε and with
endpoints on ∂Kd(V). We now use linear interpolation from these line segments to the
ones defined on the locus of d3c in the plane x = α and take the line segments parallel
to these and with endpoints on ∂Kd(V). We define Ld3c as the collection of all such line
segments for all choices of α.

For configuration d10c, we define the line segments of Ld10c as all radial lines of the ball
Bd/2(x) with x = (d/2,−d/2,−d/2) inside the cube with side length d centred at (0, 0, 0).

For the remaining configurations, inside a 2ε neighbourhood of the origin containing
the smoothed part of the vertex, we take as line segments for Λdnc the line segments parallel
to those defined through the origin in Table B.3 with endpoints on ∂Kd(V) and midpoint
on the smoothed boundary. We then interpolate from these line segments to any other

72 Technical arguments of Chapter 2

Configuration Coordinate pairs

d2c (−d/2,−d/2,−d/2), (d/2, d/2, d/2)
d3c (d/2, α, d/2), (−d/2, α,−d/2) for −d/2 ≤ α ≤ d/2
d4c (0, 0,−d/2), (0, 0, d/2)
d5c (α, β, d/2), (α, β,−d/2) for −d/2 ≤ α ≤ d/2, −d/2 ≤ β ≤ d/2
d6c (−d/2,−d/2,−d/2), (d/2, d/2, d/2)
d7c (−d/2, 0,−d/2), (d/2, 0, d/2)
d8ac P1: (d/2, d/2, d/2), (−d/2,−d/2,−d/2)

P2: (0, 0, 3d/2), (0, 0, d/2)
P3: (−d/2,−d/2, d/2), (d/2, d/2,−d/2)

d8bc P1: (d/2,−d/2, 3d/2), (−d/2, d/2, d/2)
P2: (d/2, d/2, 0), (−d/2,−d/2, 0)
P3: (−d/2,−d/2, d/2), (d/2, d/2,−d/2)

d9ac P1: (d/2,−d/2, 3d/2), (−d/2, d/2, d/2)
P2: (d/2, d/2, d/2), (−d/2,−d/2,−d/2)
P3: (−d/2,−d/2, d/2), (d/2, d/2,−d/2)

d9bc P1: (0, 0, 3d/2), (0, 0, d/2)
P2: (d/2, d/2, 0), (−d/2,−d/2, 0)
P3: (−d/2,−d/2, d/2), (d/2, d/2,−d/2)

d10c (0, 0, 0), (d/2,−d/2,−d/2)

Table B.3
Coordinate pairs spe-
cifying for configur-
ations d1c–d10c line
segments used to define
the direction field φZ .

line segments defined by Table B.3 and to the line segments on the corresponding locus.
In case of multiple line segments, we need to make sure that interpolation creates line
segments that intersect the boundary ∂Z only once. We let the length of the line segments
be determined by the cubic dilation Kd(V): the line segments should have endpoints on
the boundary of Kd(V), which is already satisfied for the endpoints defined in Table B.3.
This defines the line segments of Λdnc.

As indicated in Subsection B.2.3, d7c represents a special case where more caution
must be exercised. We have introduced the additional wedges in Definition B.4 to make
sure that the projection of the smoothed centre disc is 1:1 for sufficiently small ε and
hence to avoid the situation in Figure B.8(7).

The above yields a collection Λdnc of line segments which, together with the line seg-
ments ΛI and ΛII through the loci, can be used to define a direction field on the cubic
dilation Kd(V). For the wedged configurations 〈1〉–〈5〉, the line segments are defined such
that if they enter a black wedge from a white voxel, they continue through the wedge and
into a black voxel.

Definition. We define the direction field φZ on Kd(V) as the collection of line segmentsDefinition B.8
from ΛI, ΛII, and Λdnc defined in Subsection B.3.2.

This rather technical introduction of φZ now allows for the definition of a vector field
ξZ on a neighbourhood Zε ⊂ Kd(V); see Definition 2.31. Transversality of ξZ to ∂Z then
follows from the same property of the direction field.

Proposition. The line segments of φZ are transverse to ∂Z.Proposition B.9

Proof. The locus segments of type I of ∂V are preserved during smoothing and can thus
be thought of as type I locus segments of ∂Z as well. Any point on such a locus seg-
ment intersects a line segment from ΛI, and these line segments are normal, and hence
transverse, to ∂Z.

Locus segments of type II of ∂V are modified in one end as illustrated by Figure B.6(d)
during smoothing, and these smoothed line segments are now the type II locus segments
of ∂Z. Before smoothing, points on the locus segment intersect the line segments defined
for ΛII transversely; see Figure B.11. The smoothing process is now defined in an ε-region
of the point p in which the two type II locus segments meet. Using pictures similar to
those in Figure B.8, we can project such a neighbourhood onto one of the two planes
with normal the line parallel to the line segment l of ΛII through p. The boundary of
the ε neighbourhood can be interpreted as the graph over its projection, so transversality
is guaranteed since it is obtained in the projected picture: all line segments of ΛII are
parallel to l inside a 2ε neighbourhood, and these are transverse to the plane and thus the
projection of the boundary of the ε neighbourhood.

A direction field on the cubic dilation 73

With these conventions on locus segments of the boundary of the smoothed reconstruc-
tion, we notice that every point on a locus segment of ∂Z is intersected by a line segment
from either ΛI or ΛII which is transverse to ∂Z. The line segments defined in Table B.3
are defined such that they are transverse to ∂Z as well and intersect ∂V exactly at the
vertices where the normals of the boundary change direction. Using linear interpolation
of the line segments to obtain φZ , and making similar observations on the projected ε
neighbourhoods near vertices to planes with normals lines parallel to the lines segments
of Λdnc, ensures that we do not get line segments which are parallel to the boundary
faces of Z at the points where they intersect ∂Z; this is assured by the wedging of those
configurations containing critical cells and the special case (7). �

In this thesis, we have chosen to first introduce a smoothing Z of the wedged recon-
struction and then define a vector field in a neighbourhood of the smooth manifold ∂Z,
but the order of the two procedures can be changed. Indeed, the smoothing process makes
such small corrections to the boundary that it has no influence on how we define the vector
field, and transversality properties are not altered by the bump functions used to obtain
the smoothing.

C

TESTSETS: TENSORSAND
DIGITISATIONS

The simulations performed with Minktensor2D3R and Minktensor2D2R
in Section 3.4 are carried out for three test sets: a disc, an annulus, and
the complement of a Boolean model. The estimators computed by the al-
gorithms are compared to the actual Minkowski tensors of the three sets.
In this appendix, we show how these true tensors are calculated. Further-

more, we document how the test sets are digitised for use in the algorithms.

C.1 CALCULATIONOFTENSORS
Recall from Section 3.1 that for a compact set A ⊂ Rn, the rth volume tensor of A is

Φr,0n (A) =
1

r!

∫
A

xr dx(3.2)

with r ∈ N0, and if in addition A has positive reach, the surface tensors of A are

Φr,sk (A) =
1

r!s!

ωn−k
ωn−k+s

∫
Rn×Sn−1

xrusΛk(A; d(x, u))(3.3)

for k ∈ {0, . . . , n− 1} and r, s ∈ N0.
For the calculations below, we will refer to a number of equations from the book [32]

by Schneider. We shall use the notation (SX.Y), with a prefixed S in the equation number,
to refer to formula (X.Y) from this source.

As a first observation, a combination of formulae in [32] yields:

Lemma. For A ⊂ Rn a compact set with positive reach, the Minkowski surface tensorsLemma C.1
Φ0,1
k (A) = 0 are trivial for k ∈ {0, . . . , n− 1}.

Proof. For k ∈ {0, . . . , n− 1} and η a Borel subset of Sn−1, the formula

Sk(A; η) = Θk(A;Rn × η)(S4.11)

defines a measure Sk(A; ·) on sets of normal vectors from the support measure Θk(A; ·)
of order k on A [32, Section 4.2]. We will not go into details with these measures here as
we shall simply exploit their properties. With ρ > 0, we have

Sn−1(Aρ; ·) =

n−1∑
k=0

ρn−1−k
(
n− 1

k

)
Sk(A; ·),(S4.27)

where Aρ is the ρ-parallel set of A, and where S is the mixed area measure defined in
[32, Theorem 5.1.7], which, by (S5.18) withm = 2, λ1 = 1, λ2 = ρ,K1 = A, andK2 = Bn1 ,
satisfies

Sn−1(Aρ; ·) = Sn−1(A+ ρBn1 ; ·) =

2∑
i1,...,in−1=1

λi1 . . . λin−1S(Ki1 , . . . ,Kin−1 ; ·)

=

n−1∑
k=0

ρn−1−k
(
n− 1

k

)
S(A, . . . , A︸ ︷︷ ︸

k

;Bn1 , . . . , B
n
1︸ ︷︷ ︸

n−1−k

; ·).

We now compare this equation to (S4.27) above. Both expressions are polynomials in ρ.
Since they are both equal to Sn−1(Aρ; ·), they must have they same coefficients, and we
conclude that

S(A, . . . , A︸ ︷︷ ︸
k

;Bn1 , . . . , B
n
1︸ ︷︷ ︸

n−1−k

; ·) = Sk(A; ·).

75

76 Test sets: Tensors and digitisations

For k ∈ {0, . . . , n− 1}, (S5.30) implies that∫
Sn−1

uS(A, . . . , A︸ ︷︷ ︸
k

;Bn1 , . . . , B
n
1︸ ︷︷ ︸

n−1−k

; du) = 0,

so by the formula for the Minkowski surface tensors,

Φ0,1
k (A) =

ωn−k
ωn−k+1

∫
R×Sn−1

xrusΛk(A; d(x, u))

=

(
n
k

)
nκn−k

ωn−k
ωn−k+1

∫
R×Sn−1

xrusSk(A; d(x, u)) = 0,

where the last equality follows from (S4.11) and (S4.18), which give the relations of Λk(A; ·)
and Sk(A; ·) to Θk(A; ·). �

C.1.1 THEDISC

Consider the unit disc B1 = B1(0) in R2. Due to symmetry, many of the non-trivial
Minkowski tensors of this set equal zero. Thus, to obtain a slightly more complicated
model with more non-zero tensors, we consider a translation of B1 and use as test set
A = B1 + (1, 1)T .

To compute the surface tensors of A, we make some simplifications of the integral
in (3.3). First, for k ∈ {0, . . . , n − 1}, the generalised curvature measure Λk(K; ·) for a
compact set K ⊂ Rn with positive reach can be re-written in terms of the support measure
Θk(K; ·) mentioned above:

Λk(K; ·) =

(
n
k

)
nκn−k

Θk(K; ·).(S4.18)

In addition, we can use a Steiner formula to obtain∫
Rn×Sn−1

xrusΛk(K + z; d(x, u)) =

∫
Rn×Sn−1

(x+ z)rusΛk(K; d(x, u))

for z ∈ Rn any translation and r, s ∈ N0.
Using the above, we now compute the Minkowski tensors of A in R2. For k = 0, we have

Φr,s0 (A) =
1

r!s!

ω2

ω2+s

∫
R2×S1

(
x+ (1, 1)T

)r
usΛ0(B1; d(x, u))

=
1

r!s!

2π

ω2+s

(
2
0

)
2κ2

∫
R2×S1

(
x+ (1, 1)T

)r
usΘ0(B1; d(x, u))

=
1

r!s!

π

ω2+s

1

π

∫
R2

(
u+ (1, 1)T

)r
usH1(du),

where the last equality follows from [32, Lemma 4.2.2] and (S4.29). This implies that we
can compute the surface tensors for k = 0 by

Φr,s0 (A) =
1

r!s!

1

ω2+s

∫
S1

(
u+ (1, 1)T

)r
us du.

This expression can be computed explicitly using

κ0 = 1, κ1 = 2, κ2 = π, κ3 = 4π/3, κ4 = π2/2(3.12)

together with ω0 = κ0 and κk = kωk for k ∈ N.
We can now calculate the Minkowski surface tensors of A of rank at most two, i.e. for

r, s ∈ N0 with r + s ≤ 2. For k = 0,

Φ0,0
0 (A) =

1

2π

∫
S1

1 du = 1;

Φ1,0
0 (A) =

1

2π

∫
S1

(
u1 + 1
u2 + 1

)
du =

(
1
1

)
;

The disc 77

Φ2,0
0 (A) =

1

4π

∫
S1

(
(u1 + 1)2 (u1 + 1)(u2 + 1)

(u1 + 1)(u2 + 1) (u2 + 1)2

)
du

=
1

4π

∫ 2π

0

(
(cos(θ) + 1)2 (cos(θ) + 1)(sin(θ) + 1)

(cos(θ) + 1)(sin(θ) + 1) (cos(θ) + 1)2

)
dθ =

(
3/4 1/2
1/2 3/4

)
;

Φ1,1
0 (A) =

1

4π

∫
S1

(
(u1 + 1)u1 (u1 + 1)u2

(u2 + 1)u1 (u2 + 1)u2

)
du

=
1

4π

∫ 2π

0

(
(cos(θ) + 1) cos(θ) (cos(θ) + 1) sin(θ)
(sin(θ) + 1) cos(θ) (sin(θ) + 1) sin(θ)

)
dθ =

(
1/4 0
0 1/4

)
;

Φ0,2
0 (A) =

1

4π2

∫
S1

(
u2

1 u1u2

u1u2 u2
2

)
du

=
1

4π2

∫ 2π

0

(
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

)
dθ =

(
1/(4π) 0

0 1/(4π)

)
,

and Φ0,1
0 (A) = (0, 0)T by Lemma C.1.

For the surface tensors corresponding to k = 1, we have

Φr,s1 (A) =
1

r!s!

ω1

ω1+s

(
2
1

)
2κ1

∫
R2×S1

(
x+ (1, 1)T

)r
usΘ1(B1; d(x, u))

=
1

r!s!

1

ω1+s

∫
R2

(
u+ (1, 1)T

)r
usH1(du),

where the last equality uses [32, Lemma 4.2.2] and (S4.31). Comparing with the formula
for Φr,s0 (A), we see that

Φr,s1 (A) =
ω2+s

ω1+s
Φr,s0 (A),

and so we get

Φ0,0
1 (A) = πΦ0,0

0 (A) = π;

Φ1,0
1 (A) = πΦ1,0

0 (A) =

(
π
π

)
;

Φ2,0
1 (A) = πΦ2,0

0 (A) =

(
3π/4 π/2
π/2 3π/4

)
;

Φ1,1
1 (A) = 2Φ1,1

0 (A) =

(
1/2 0
0 1/2

)
;

Φ0,2
1 (A) =

π

2
Φ0,2

0 (A) =

(
1/8 0
0 1/8

)
,

and Φ0,1
1 (A) = (0, 0)T trivially.

Finally, for k = 2, the volume tensors of A are given by

Φr,02 (A) =
1

r!

∫
A

xr dx =
1

r!

∫
B1

(
x+ (1, 1)T

)r
dx

for r ∈ {0, 1, 2}, so

Φ0,0
2 (A) =

∫
B1

1 dx = π;

Φ1,0
2 (A) =

∫
B1

(
x1 + 1
x2 + 1

)
dx =

∫ 2π

0

∫ 1

0

(
r2 cos(θ) + r
r2 sin(θ) + r

)
dr dθ =

(
π
π

)
;

Φ2,0
2 (A) =

1

2

∫
B1

(
(x1 + 1)2 (x1 + 1)(x2 + 1)

(x1 + 1)(x2 + 1) (x2 + 1)2

)
dx

=
1

2

∫ 2π

0

∫ 1

0

(
r(r cos(θ) + 1)2 r(r cos(θ) + 1)(r sin(θ) + 1)

r(r cos(θ) + 1)(r sin(θ) + 1) r(r sin(θ) + 1)2

)
dr dθ

=

(
5π/8 π/2
π/2 5π/8

)
.

78 Test sets: Tensors and digitisations

C.1.2 THEANNULUS

We use the annulus as an example of a non-convex set with positive reach. Consider the
balls (discs) B1 = B1(0) and B2 = B2(0) in R2. We obtain a compact set by taking the
closure cl(B2 \ B1) of the intersection of the 2-disc with the 1-disc. As we observed for
B1 + (1, 1)T , more non-zero Minkowski tensors arise when we translate the annulus, so
we take as test set the annulus A = cl(B2 \ B1) + (1, 1)T . Notice that all x ∈ B1 \ {0}
belong to Unp(A), and B2 has infinite reach, so the reach of A equals the radius of B1;
Reach(A) = 1.

To compute the Minkowski surface tensors of A, we need to simplify (3.3). To this
end, let η be a Borel subset of Rn × Sn−1. Let K ⊂ Rn be a compact set with positive
reach, let x ∈ Unp(K), and denote by uK(x) the unit vector from pK(x) to x. Then for
0 < ρ < Reach(K), [32, Theorem 4.2.1] and (S4.18) yield

λ
(
{x ∈ Rn | 0 < δK(x) ≤ ρ and (pK(x), uK(x)) ∈ η}

)
=

n−1∑
k=0

ρn−kκn−kΛk(K; η),(C.1)

where λ denotes the Lebesgue measure. We now consider the annulus K = cl(B2 \B1) =
A − (1, 1)T ⊂ R2 with Reach(K) = 1. For 0 < ρ < 1, the set {x ∈ R2 | 0 < δK(x) < ρ}
coincides with the union int(B1 \B1−ρ) ∪ int(B2+ρ \B2). Hence for f : R2 × S1 → [0,∞)
a measurable function, we have∫

{x∈R2|0<δK(x)≤ρ}
f(pK(x), uK(x)) dx

=

∫
B1\B1−ρ

f(pK(x), uK(x)) dx+

∫
B2+ρ\B2

f(pK(x), uK(x)) dx

=

∫ 1

1−ρ

∫
S1

f(pK(rv), uK(rv))r dv dr +

∫ 2+ρ

2

∫
S1

f(pK(rv), uK(rv))r dv dr.

For the left-hand integral in this last equation, as v ∈ S1 and since (1 − ρ)v < tv < v, it
follows that pK(tv) = v and uK(tv) = −v. For the right-hand integral, 2v < tv < (2+ρ)v,
so pK(tv) = 2v and uK(tv) = v. We thus obtain∫

{x∈R2|0<δK(x)≤ρ}
f(pK(x), uK(x)) dx

=

∫ 1

1−ρ

∫
S1

f(v,−v)r dv dr +

∫ 2+ρ

2

∫
S1

f(2v, v)r dv dr.

Now using ∫ 1

1−ρ
r dr = ρ− ρ2

2
and

∫ 2+ρ

2

r dr = 2ρ+
ρ2

2
,

we get ∫
{x∈R2|0<δK(x)≤ρ}

f(pK(x), uK(x)) dx

=

(
ρ− ρ2

2

)∫
S1

f(v,−v) dv +

(
2ρ+

ρ2

2

)∫
S1

f(2v, v) dv

= ρ

∫
S1

f(v,−v) + 2f(2v, v) dv +
ρ2

2

∫
S1

f(2v, v)− f(v,−v) dv.

Comparing this last equation to (C.1) with n = 2, we see that∫
R2×S1

f(x, u)Λ0(K; d(x, u)) =
1

2κ2

∫
S1

f(2v, v)− f(v,−v) dv

and ∫
R2×S1

f(x, u)Λ1(K; d(x, u)) =
1

κ1

∫
S1

f(v,−v) + 2f(2v, v) dv.

The annulus 79

We now substitute f(x, u) = xrus and translate by (1, 1)T to obtain∫
R2×S1

xrusΛ0(A; d(x, u)) =
1

2π

∫
S1

(
2v + (1, 1)T

)r
vs −

(
v + (1, 1)T

)
(−v)s dv

and∫
R2×S1

f(x, u)Λ1(A; d(x, u)) =
1

2

∫
S1

(
v + (1, 1)T

)r
(−v)s + 2

(
2v + (1, 1)T

)r
vs dv,

so we conclude that

Φr,s0 (A) =
1

r!s!

1

ω2+s

∫
S1

(
2v + (1, 1)T

)r
vs −

(
v + (1, 1)T

)
(−v)s dv

and

Φr,s1 (A) =
1

r!s!

1

ω1+s

∫
S1

(
v + (1, 1)T

)r
(−v)s + 2

(
2v + (1, 1)T

)r
vs dv.

We are now finally ready to calculate the Minkowski surface tensors of A.
For k = 0,

Φ0,0
0 (A) =

1

2π

∫
S1

0 dv = 0;

Φ1,0
0 (A) =

1

2π

∫
S1

(
2v1 + 1− v1 − 1
2v2 + 1− v2 − 1

)
dv =

1

2

∫ 2π

0

(
cos(θ)
sin(θ)

)
dθ =

(
0
0

)
;

Φ2,0
0 (A) =

1

4π

∫
S1

(
(2v1 + 1)2 − (v1 + 1)2 (2v1 + 1)(2v2 + 1)− (v1 + 1)(v2 + 1)

(2v1 + 1)(2v2 + 1)− (v1 + 1)(v2 + 1) (2v2 + 1)2 − (v2 + 1)2

)
dv

=
1

4π

∫ 2π

0

(
3 cos2(θ) + 2 cos(θ) 3 cos(θ) sin(θ) + 2 cos(θ)

3 cos(θ) sin(θ) + 2 sin(θ) 3 sin2(θ) + 2 sin(θ)

)
dθ

=

(
3/4 0
0 3/4

)
;

Φ1,1
0 (A) =

1

4π

∫
S1

(
(2v1 + 1)v1 + (v1 + 1)v1 (2v1 + 1)v2 + (v1 + 1)v2

(2vv + 1)v1 + (v2 + 1)v1 (2v2 + 1)v2 + (v2 + 1)v2

)
dv

=
1

4π

∫ 2π

0

(
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

)
dθ =

(
3/4 0
0 3/4

)
;

Φ0,2
0 (A) =

1

4π2

∫
S1

(
v2

1 − v2
1 v1v2 − v1v2

v1v2 − v1v2 v2
2 − v2

2

)
dv =

(
0 0
0 0

)
,

and Lemma C.1 implies that Φ0,1
0 (A) = Φ0,1

1 (A) = (0, 0)T . For the remaining surface
tensors with k = 1,

Φ0,0
1 (A) =

1

2

∫
S1

3 dv = 3π;

Φ1,0
1 (A) =

1

2

∫
S1

(
v1 + 1 + 4v1 + 2
v2 + 1 + 4v2 + 2

)
dv =

1

2

∫ 2π

0

(
5 cos(θ) + 3
5 sin(θ) + 3

)
dθ =

(
3π
3π

)
;

Φ2,0
1 (A) =

1

4

∫
S1

(
(v1 + 1)2 + 2(2v1 + 1)2 (v1 + 1)(v2 + 1) + 2(2v1 + 1)(2v2 + 1)

(v1 + 1)(v2 + 1) + 2(2v1 + 1)(2v2 + 1) (v2 + 1)2 + 2(2v2 + 1)2

)
dv

=
1

4

∫ 2π

0

(
9 cos(θ)2 + 3 9 cos(θ) sin(θ) + 3

9 cos(θ) sin(θ) + 3 9 sin(θ)2 + 3

)
dθ =

(
15π/4 3π/2
3π/2 15π/4

)
;

Φ1,1
1 (A) =

1

2π

∫
S1

(
2(2v1 + 1)v1 − (v1 + 1)v1 2(2v1 + 1)v2 − (v1 + 1)v2

2(2v2 + 1)v1 − (v2 + 1)v1 2(2v2 + 1)v2 − (v2 + 1)v2

)
dv

=
1

2π

∫ 2π

0

(
3 cos2(θ) 3 cos(θ) sin(θ)

3 cos(θ) sin(θ) sin2(θ)

)
dθ =

(
3/2 0
0 3/2

)
;

Φ0,2
1 (A) =

1

8π

∫
S1

(
v2

1 + 2v2
1 v1v2 + 2v1v2

v1v2 + 2v1v2 v2
2 + 2v2

2

)
dv

=
1

8π

∫ 2π

0

(
3 cos2(θ) 3 cos(θ) sin(θ)

3 cos(θ) sin(θ) sin2(θ)

)
dθ =

(
3/8 0
0 3/8

)
.

The volume tensors of A, corresponding to k = 2, are given by the formula

Φr,02 (A) =
1

r!

∫
A

xr dx =
1

r!

∫
B2\B1

(
x+ (1, 1)T

)r
dx

80 Test sets: Tensors and digitisations

for r ∈ {0, 1, 2} from which we calculate

Φ0,0
2 (A) =

∫
B2\B1

1 dx = 3π;

Φ1,0
2 (A) =

∫
B2\B1

(
x1 + 1
x2 + 1

)
dx =

∫ 2π

0

∫ 2

1

(
r2 cos(θ) + r
r2 sin(θ) + r

)
dr dθ =

(
3π
3π

)
;

Φ2,0
2 (A) =

1

2

∫
B2\B1

(
(x1 + 1)2 (x1 + 1)(x2 + 1)

(x1 + 1)(x2 + 1) (x2 + 1)2

)
dx

=
1

2

∫ 2π

0

∫ 2

1

(
r(r cos(θ) + 1)2 r(r cos(θ) + 1)(r sin(θ) + 1)

r(r cos(θ) + 1)(r sin(θ) + 1) r(r sin(θ) + 1)2

)
dr dθ

=

(
27π/8 3π/2
3π/2 27π/8

)
.

C.1.3 THECOMPLEMENTOFABOOLEANMODEL

The more complicated of the three test sets, the complement of a Boolean model, is realised
using the spatstat [2] package in R. The code is provided below.

R-code for creating Boolean model data

library("nlme")
library("spatstat")
library("foreign")

gamma <- 10 # Intensity
w <- as.owin(c(0,1,0,1)) # Test window
X <- rpoispp(gamma, win=w) # Poisson point process

Attach radii i.i.d. uniform in [Rmin,Rmax]
Rmin <- 0.08
Rmax <- 0.16
marks(X) <- runif(X$n,min=Rmin,max=Rmax)

write.table(X, "MarkedPoissonProcess.dat", row.names=FALSE, col.names=FALSE)

We choose a Boolean model with intensity γ = 10 and uniform radius distribution
U(0.08, 0.16), since this is likely to yield a model with several components in the test
window [0, 1]2 ⊂ R2 and with some of the particles overlapping. By plotting, as described
below, we check that the model is suited for use in the algorithm: if the overlap of any
two discs is very small, so is the reach of the complement of the model, and for simulation
purposes, we prefer a model with a reach which is not too close to zero. With the code
above, we have obtained one such model, the .dat-file of which is

0.476299664704129 0.850764135597274 0.140963518023491
0.997265604557469 0.664132648380473 0.119821783825755
0.525292261270806 0.115457823267207 0.130210266839713
0.757840970531106 0.126047324389219 0.095637433771044
0.971295412397012 0.113157438812777 0.146272454746068
0.0676232073456049 0.58372062491253 0.131762228570878
0.484636666253209 0.448957734275609 0.0956309075094759
0.0988877536728978 0.661047839326784 0.131928788013756

The first two columns contain the first respectively second coordinates of the centres of
the discs constituting the model; the third column their radius. These discs now form
a Boolean model Z. We plot the discs in the window [0, 1]2 to obtain a picture of the
model Z; see Figure 3.3(c).

The algorithms discussed in Chapter 3 are only valid for sets with positive reach, and
the Boolean model Z in Figure 3.3(c) does not satisfy this requirement: When two discs
overlap, sharp corners arise such as the one determining the size of the reach (marked
with a small red line) of the complement in the figure. The complement A = cl([0, 1]2 \Z),
on the other hand, does have positive reach, and we have chosen this particular set as the
third test set. To obtain (a value strictly smaller than) the reach of A, we measure the
length of the red line, which is (at most) 0.0614.

Digitisation of the test sets 81

As might be evident from the two preceding subsections, re-writing (3.3) into a form
which can be explicitly computed requires many calculations, and for a set composed
of not one or two but eight discs, this would prove a challenge. We therefore choose a
different approach to determining the Minkowski tensors of A. In fact, we consider only
the intrinsic volumes Φ0,0

k (A) for k ∈ {0, 1, 2}.
The Euler characteristic Φ0,0

0 (A) is easily determined since it is simply equal to the
number of connected components minus the number of holes. Notice that the black border
of Figure 3.3(c) is not part of the model; it only represents the window [0, 1]2. There is
only one component of A since the white discs do not enclose any blue regions, and the
number of holes equals two, since there are just two discs which are not connected to
R2 \ [0, 1]2. This yields Φ0,0

0 (A) = 1− 2 = −1.
The tensor Φ0,0

1 (A) equals half the perimeter of the set. We estimate this by manual
measurement: we measure the angles of those arcs that contribute to the perimeter and use
the true radii from the .dat-file. To the arc lengths, we add the perimeter of [0, 1]2 minus
the holes due to discs connected to R2 \ [0, 1]2. We thus obtain an estimator Φ̌0,0

1 (A) =
6.9669/2 = 3.4835 of half the perimeter.

To determine the area of A, we sample the area of the Boolean model via the following
MATLAB-function, which loads the .dat-file created in R.

Sampling of area

function [Area] = SampleBooleanArea()
% SAMPLE_BOOLEAN_AREA estimates the area of a Boolean model by sampling
% with a lattice of resolution 50000

% Load the Boolea model data
[DataFileName,DataPathName] = uigetfile('*.dat','Select data file (.dat)

containing the Boolean model');

Data = load([DataPathName DataFileName]);

Res = 50000; % Resolution (reciprocal lattice distance) of sampling
lattice

Area = 0; % Counter for area of the Boolean model
N = size(Data,1); % Total number of Poisson distributed points

for iii = 1:Res
for jjj = 1:Res

kkk = 1; % Data point number
GoOn = 1; % Indicator of loop termination
Intersection = 0; % Indicator of intersection between sampling

point and disc
xxx = (iii/Res); % x-increment
yyy = (jjj/Res); % y-increment

% We now sample all Poisson distributed points of the Boolean
% model. If any of the discs intersect the sampling point (iii,jjj),
% the loop terminates and we add the area of its pixel to the total
% area:
while (kkk <= N && GoOn)

Intersection = ((Data(kkk,1)-xxx).^2 + (Data(kkk,2)-yyy).^2)
<= Data(kkk,3).^2;

GoOn = ~Intersection;
kkk = kkk+1;

end
Area = Area + Intersection; % The area of a pixel is set to 1

end
end

Area = Area*(1/Res^2); % Scaling of the area by the true area of a pixel

The function returns the value 0.2968 for our specific .dat-file, and so the estimated
area of A is Φ̌0,0

2 (A) = 1− 0.2968 = 0.7032.

C.2 DIGITISATIONOFTHETESTSETS
In order to be able to use the three test sets described above with Minktensor2D3R,
Minktensor2D2R, or Minktensor2D, we must first digitise them. We do so using MATLAB.

A digitisation depends on the resolution d of the lattice dL as well as some choice
of origin. Figures 3.8–3.10 represent simulations where the same set A is digitised with

82 Test sets: Tensors and digitisations

different resolutions. The digitisation is given as A0 = A∩dL with L some choice of rotated,
translated version of Z2, so while d is varying, we have implicitly made a choice of origin
which must be held fixed as the resolution varies. This must be taken into consideration
as we write the code to produce our digitised test sets. For the complement of a Boolean
model, the .dat-file produced in R needs to be loaded. Furthermore, in our digitisation of
Boolean models, we require that the lattice distance be an integer. The .m-files for the
digitisations are given below.

Digitisation of the disc

function [Origin] = DATAdisc(Res)
% Origin = DATAdisc(Res) writes a .dat-file containing the digitisation of a unit
% disc translated to (1,1)^T. The input for the function is the resolution of the
% digitisation. The function returns the origin in terms of row and column number
% of the array in the .dat-file.

R = 2*ceil(Res)+1;
A = zeros(R,R);
Origin = [R,1]; % [Row,Column]
DiscCentre = [R-Res,1+Res]; % [Row,Column]

for iii = 1:R
for jjj = 1:R

A(iii,jjj) = ((iii-DiscCentre(1))^2 + (jjj-DiscCentre(2))^2 <= Res^2);
end

end

save Disc.dat A -ASCII

Digitisation of the annulus

function [Origin] = DATAannulus(Res)
% Origin = DATAannulus(Radius) writes a .dat-file containing the digitisation of
% an annulus equal to the (closure of the) 2-disc minus the unit disc translated
% to (1,1)^T. The input for the function is the resolution of the digitisation.
% The function returns the origin in terms of row and column number of the array
% in the .dat-file.

R = 2*ceil(Res);
A = zeros(2*R+1,2*R+1);
Origin = [2*R+1-ceil(Res),1+ceil(Res)];
DiscCentre = [Origin(1)-Res,Origin(2)+Res];

for iii = 1:2*R+1
for jjj = 1:2*R+1

Coordinate = (iii-DiscCentre(1))^2 + (jjj-DiscCentre(2))^2;
A(iii,jjj) = (Coordinate >= Res^2) && (Coordinate <= (2*Res)^2);

end
end

save Annulus.dat A -ASCII

Digitisation of the complement of a Boolean model

function [Origin] = DigitiseBooleanBackground(Res)
% Origin = DigitiseBooleanBackground(Res) writes a .dat-file containing the
% digitisation of the complement of a Boolean model with the resolution Res and
% returns the origin in terms of row and column number of the array in the
% .dat-file.

[DataFileName,DataPathName] = ...
uigetfile('*.dat','Select data file (.dat) containing the Boolean model');

Data = load([DataPathName DataFileName]);

DataSize = size(Data,1);

Res = round(Res);
Origin = [Res,1];
A = zeros(Res,Res);

% [Continues on next page]

Digitisation of the test sets 83

for iii = 1:Res
for jjj = 1:Res

kkk = 1;
GoOn = 1;
Contained = 0;
xxx = (iii/Res);
yyy = (jjj/Res);
while ((kkk <= DataSize) && GoOn)

Contained = ((Data(kkk,1)-xxx)^2+(Data(kkk,2)-yyy)^2) ...
<= Data(kkk,3)^2;
A(iii,jjj) = ~Contained;
GoOn = ~Contained;
kkk = kkk+1;

end
end

end

B = rot90(A); % We rotate to get a coordinate system with origin at [Res,1]

save BooleanBackground.dat B -ASCII

D

DOCUMENTATIONOF
MINKTENSOR2D

This appendix presents a worked example of how to use the programme
Minktensor2D, which was examined in Chapter 3, followed by some docu-
mentation for the code. The programme consists of a number of .m-files, its
components, and we describe the structure of the code and the underlying
theory of the respective components. All code in the .m-files is documented,

but some steps of the algorithm need additional explanation thus included here.
The programme Minktensor2D is available for download [6]. In the last section of this

appendix, we also include the code for completeness.

D.1 WORKEDEXAMPLE:MINKTENSOR2D
We begin this appendix with a worked example of the use of Minktensor2D. The reader is
encouraged to follow the procedure for his/her own digitisation of a set with positive reach
after downloading the programme, or one of the digitisations of Section C.2 can be used.

The main file of the code is Minktensor2D.m. The file should be placed in a folder
together with the remaining .m-files of the programme which are:

computeMinkowskiTensorEstimators.m
computeTensorMeasureComponents.m
computeVolumeTensorEstimators.m
computeVoronoiCells.m
computeVoronoiTensorMeasures.m
convertDigitisationToCoordinates.m
intersectLineCircle.m
intersectLinesegmentCircle.m
RBoundedVoronoiVertex.m
retrieveData.m
retrieveRadii.m
verticesToCounterclockwiseOrder.m

Use of the programme is now explained in a series of steps which should be followed using
the desired digitisation.

Step 1. Preparing a digitisation: Minktensor2D.m takes as input a digitisation A0 of
some set A ⊂ R2 with positive reach. The digitisation should be given as a file containing
a whitespace separated list of zeros and ones, e.g.

0 0 0 0 1 0 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
0 1 1 0 0 0 1 1 0
1 1 1 0 0 0 1 1 1
0 1 1 0 0 0 1 1 0
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0
0 0 0 0 1 0 0 0 0

is a digitisation of an annulus. Let us denote this particular test set by T0. A 1 indicates
that the corresponding lattice point is contained in the digitisation; a 0 that it is not. Such
a file must be available upon execution of the programme.

Step 2. Determining the lattice distance: Next, one must determine the lattice
distance d of the digitisation. This equals the reciprocal of the resolution of the digitisation,
and the user is expected to know d or d−1 of the digitisation chosen in step 1.

For the digitised annulus T0, we know that the lattice distance dT is 0.5.

85

86 Documentation of Minktensor2D

Step 3. Determining the origin of the digitisation: The programme needs the
user to input the origin of the digitisation. The origin must be given in terms of the row
and column numbers of the digitisation. The origin may not coincide with a lattice point,
so the specified row and column numbers can be any real number, e.g. a digitisation with
n rows and m columns could be placed in a coordinate system such that the mth element
of row n is at coordinate (s, t) for any s, t ∈ R, so we specify a row number n + t and a
column number m− s.

The set T0 has origin at the lattice point in the lower left corner of the digitisation,
so the row number is rT = 9 and the column number is cT = 1.

Step 4. Choosing radii for the algorithm: Two radii 1/
√

2 < R0 < R2 < Reach(A)
must be chosen for the algorithm. Based on the results in Subsection 3.4.1, we recommend
R2 = 0.95 ·Reach(A) in the case of finite reach or, in the case of convex sets with infinite
reach, R2 equal to several diameters of the digitised set. The second radius R0 should be
chosen close to R2/2 and never below d/

√
2.

The annulus T digitised to T0 equals cl(B2 \B1) + (1, 1)T , so its reach is 1. We choose
R1 = 0.95 and R0 = 0.5.

Step 5. Running the programme: Having completed the preparatory steps 1–4,
we are now ready to execute the programme Minktensor2D. This is done by running
Minktensor2D.m in MATLAB. Once the programme is running, the user is prompted to:

(1) specify a file containing a digitisation;

(2) enter the row number of the origin;

(3) enter the column number of the origin;

(4) enter a lower radius, R0;

(5) enter an upper radius, R2.

The programme then outputs estimators of all Minkowski tensors Φr,sk (A) for k, r, s ∈
{0, 1, 2} with r + s ≤ 2 and s = 0 when k = 2.

Since we have chosen a digitisation T0 with a very low resolution, (dT)−1 = 2, in our
example, the programme yields very poor estimators.

D.2 DOCUMENTATIONOFTHEPROGRAMME
The algorithm Minktensor2D for obtaining estimators of the Minkowski tensors of sets
with positive reach is explained in depth in Chapter 3. However, the implementation itself
requires many subtle calculations. These are explained in the following.

Convention. For the remainder of this appendix, A will denote a set with positive reachConvention
and A0 = A ∩ dL a digitisation of A by a lattice dL with lattice distance d > 0.

D.2.1 STRUCTUREOFTHE .m-FILES

Let us first consider the structure of the .m-files that constitute Minktensor2D. The main
file is Minktensor2D.m, and this file makes use of a number of primary .m-files which in
turn make use of a number of secondary .m-files and so on. The structure is as follows:

Mintensor2D.m:

(1) retrieveData.m

(2) retrieveRadii.m

(3) computeVoronoiCells.m

◦ convertDigitisationToCoordinates.m

(4) computeVolumeTensorEstimators.m

Lattice distance as unity 87

(5) computeMinkowskiTensorEstimators.m

◦ computeVoronoiTensorMeasures.m

– verticesToCounterclockwiseOrder.m
– intersectLinesegmentCircle.m
– RBoundedVoronoiVertex.m

∗ intersectLineCircle.m
– computeTensorMeasureComponents.m

The secondary .m-files of Mintensor2D.m are executed in a particular order, 1–5, and
these as well as their secondary files, the tertiary files, are executed only once. However, the
files secondary and tertiary to computeVoronoiTensorMeasures.m are executed a number
of times not necessarily following each other.

Given the structure of the code, one can read through the .m-files in Section D.3 to
figure out how the algorithm is implemented. A full understanding of the code is facilitated
by the explanations in the following subsections.

D.2.2 LATTICEDISTANCEASUNITY

Reading through the .m-files which constitute the programme Minktensor2D as described
above, in retrieveRadii.m, one will notice that the radii are all scaled by the lattice
distance. All calculations are in fact made with d as unity. This is only corrected for
at the very end of the programme, when the Voronoi tensors measures are calculated
in computeMinkowskiTensors.m. The reason for the scaling is that it is much easier to
convert lattice points to coordinates when the distance between neighbouring rows and
columns of the digitisation file is 1, and the volume of the Voronoi cell of any inner point
of the digitisation also becomes 1. We need to consider the effect of this choice on the
algorithm.

We wish to solve the systemVr,sR0
(A0)

Vr,sR1
(A0)

Vr,sR2
(A0)

 = Mr,s
R0,R1,R2

Φr,s2 (A0)
Φr,s1 (A0)
Φr,s0 (A0)

.(D.1)

as explained in Subsection 3.2.3. The simplification d = 1 means that we are in fact
computing tensors for the set B0 = A0/d as well as using radii 1/

√
2 < R0/d < R1/d <

R2/d < Reach(A)/d, so we obtain Voronoi tensor measures Vr,sRi/d(B0) instead of Vr,sRi (A0)

for i ∈ {0, 1, 2}. We thus obtain a systemV
r,s
R0/d

(B0)

Vr,sR1/d
(B0)

Vr,sR2/d
(B0)

 = Mr,s
R0,R1,R2

d−s 0 0
0 d−s−1 0
0 0 d−s−2

Φr,s2 (B0)
Φr,s1 (B0)
Φr,s0 (B0)

.(D.2)

Note that
Φr,sk (A) =

1

r!s!

ωd−k
ωd−k+s

∫
Σ

xrusΛ(A; d(x, u))

implies Φr,sk (A/d) = d−r−kΦr,sk (A), where the exponent of d stems from the scaling of xr
and the generalised curvature measures Λ(A; d(x, u)). We can now re-write (D.2) toV

r,s
R0/d

(B0)

Vr,sR1/d
(B0)

Vr,sR2/d
(B0)

 = Mr,s
R0,R1,R2

d−s 0 0
0 d−s−1 0
0 0 d−s−2

d−2−rΦr,s2 (A0)
d−1−rΦr,s1 (A0)
d−rΦr,s0 (A0)


= Mr,s

R0,R1,R2
· d−s−r−2

Φr,s2 (A0)
Φr,s1 (A0)
Φr,s0 (A0)


= d−s−r−2

Vr,sR0
(A0)

Vr,sR1
(A0)

Vr,sR2
(A0)

,

88 Documentation of Minktensor2D

and we conclude Vr,sRi/d(B0) = ds+r+2Vr,sRi (A0) for i ∈ {0, 1, 2} and r, s ∈ {0, 1, 2} with
r + s ≤ 2. We can thus use the Voronoi tensor measures Vr,sRi/d(B0) to obtain Vr,sRi (A0),
i ∈ {0, 1, 2} and then solve the original system (D.1) for the Minkowski tensors. This
fact is exploited in the .m-file computeMinkowskiTensors.m when all Voronoi tensors
measures Vr,sRi/d(B0) have been computed. The method for computing the tensor measures
in practice is described in Subsection D.2.4.

The scaling of the digitisation must also be taken into consideration when the volume
tensor estimators are calculated in computeVolumeTensorEstimators.m. From (3.13) and
by replacing A0 with B0 = A0/d, we get

Φ̃r,02 (A0) =
d2

r!

∑
x∈A0

xr =
d2

r!

∑
x∈B0

(x · d)r =
dr+2

r!

∑
x∈B0

xr,

and this formula is used in computeVolumeTensorEstimators.m to obtain estimators
for the volume tensors of A0. The estimators are output as scalars, vectors, and 2-by-2
matrices as explained in (3.1), so for x = (x1, x2)T ,

Φ̃0,0
2 (A0) = d2

∑
x∈B0

x0 = d2
∑
x∈B0

1 = d2|B0|;

Φ̃1,0
2 (A0) = d3

∑
x∈B0

x1 = d3
∑
x∈B0

(
x1

x2

)
;

Φ̃2,0
2 (A0) = d4

∑
x∈B0

x2 = d4
∑
x∈B0

(
x2

1 x1x2

x1x2 x2
2

)
,

where |B0| denotes the cardinality of B0, and where we use the identity x1x2 = x2x2 in
the last line (the tensors are symmetric).

D.2.3 OPTIMISINGCOMPUTATIONSOFVORONOI CELLS

The most time consuming step of the programme is the calculation of Voronoi cells for
the sampling points in the digitisation. The vertices of the Voronoi cells are determined
by use of the Math function voronoin in MATLAB, which is based on Qhull [3]. We give
now a description of how to reduce the computation time, at least for large digitisations.
This method has been implemented in computeVoronoiCells.m.

We need the Voronoi cells to compute the Voronoi tensor measures via (3.10),

Vr,sRi (A0) =
∑
x∈A0

xr
∫
VA0

(x)∩BRi (x)

(y − x)s dy.(3.10)

One way to reduce computation times is the following: As we shall see in Subsection D.2.4,
the contribution of an inner point x ∈ A0 to the Voronoi tensors measures is determined
solely by the coordinates of x as well as the volume of its R-bounded Voronoi cell, that is,
the vertices of its Voronoi cell play no part in the calculations. Hence, there is no reason
to compute the Voronoi vertices for inner points. We still need the Voronoi vertices for
all outer points of the digitisation, i.e. points in A0 that are not inner. The vertices
of the Voronoi cell of such a point x ∈ A0 are determined by the coordinates of other
outer points as well as by any four-neighbours of x in A0; there can be up to three four-
neighbours of x in A0, since x is an outer point. The four-neighbours of x may be inner
points. We will refer to such inner points in A0 with outer points as four-neighbours as
semi-outer points of the digitisation.

Together, the inner points and the semi-outer points of A0 determine the Voronoi cells,
and hence their vertices, of all inner points of A0. However, some Voronoi cells will be
unbounded, and voronoin specifies only the vertices of the Voronoi cells, which means
we lack information of those edges that have vertices at infinity. We need to be able
to determine those edges later on when we calculate the Ri-bounded Voronoi cells for
i ∈ {0, 1, 2}. To circumvent this problem, we introduce artificial border points of the
digitisation; points that, in the coordinate system of the digitisation, are placed so far
away from any point x ∈ A0 that they do not alter the edges of VA0

(x) inside BRi(x)
for i ∈ {0, 1, 2}, but so that every outer point will have its Voronoi cell bounded by these
border points.

Calculation of the Voronoi tensor measures 89

Having determined the inner and semi-outer points of the digitisation as well as
border points, we use voronoin to compute the Voronoi cells of all these points in
computeVoronoiCells.m. The function voronoin returns an array of vertices of the Voro-
noi cells as well as a cell array with indices for the Voronoi cell of each point. We then
delete the indices corresponding to semi-outer and border points, and the border points
are discarded. We thus end up with artificially bounded Voronoi cells for all outer points
x of A0 which coincide with VA0

(x) inside BRi(x) for all i ∈ {0, 1, 2}.
The above procedure of course adds slightly to the computation time in the case where

there are only few or no inner points in the digitisation, since the programme runs through
all the points of the digitisation to check whether they are inner or semi-inner. However,
for large data sets, the loss of time on this additional check is by far outweighed by the
increase of effectiveness when the computation of the Voronoi cells of all inner points that
are not semi-outer is avoided.

D.2.4 CALCULATIONOFTHEVORONOITENSORMEASURES

To calculate the Voronoi tensor measures in computeVoronoiTensorMeasures.m for the
scaled digitisation A0/d = B0, we utilise (3.10). Computing the integrals

IsR(x) =

∫
VB0

(x)∩BR(x)

(y − x)s dy

for x ∈ B0, R > 1/
√

2, and s ∈ {0, 1, 2} in practice is not straightforward, since we
need to specify the R-bounded Voronoi cell VB0

(x) ∩ BR(x) of x. We have the vertices
of the Voronoi cells of all points of B0 at our disposal; those of the outer points of the
digitisation are computed in computeVoronoiCells.m, and the inner points x have trivial
Voronoi cells equal to squares centred at x and with sides of length 1 parallel to the axis
directions of the given coordinate system. The Voronoi tensor measures can be split into
contributions from inner and outer points of the digitisation. Denote by outer(B0) the
outer points and by inner(B0) the inner points of B0. Then

Vr,sR (B0) =
∑
x∈B0

xrIsR(x) =
∑

x∈inner(B0)

xrIsR(x) +
∑

x∈outer(B0)

xrIsR(x)(D.3)

for r, s ∈ {0, 1, 2} such that r+ s ≤ 2 and R > 1/
√

2. We will now describe the procedure
for computing the integral IsR(x) for inner respectively outer points of B0. The considera-
tions made below for the R-bounded Voronoi cells of inner respectively outer points with
R > 1/

√
2 are illustrated in Figure 3.1(a).

Inner points: Inner points x ∈ B0 are easily handled since we require that R be greater
than 1/

√
2. This means that the R-bounded Voronoi cell VB0

(x) ∩BR(x) is simply equal
to VB0

(x), which, as mentioned above, is the unit square [0, 1]2 translated to x. Thus,

I0R(x) =

∫
[0,1]2+x

(y − x)0 dy =

∫
[0,1]2

1 dy = vol([0, 1]2) = 1;

I1R(x) =

∫
[0,1]2

y dy =

∫ 1/2

−1/2

∫ 1/2

−1/2

(
y1

y2

)
dy1 dy2 =

(
0
0

)
;

I2R(x) =

∫
[0,1]2

y2 dy =

∫ 1/2

−1/2

∫ 1/2

−1/2

(
y2

1 y1y2

y1y2 y2
2

)
dy1 dy2 =

(
1/12 0

0 1/12

)
,

where y = (y1, y2)T . We then compute the terms xrIsR(x) in (D.3) for all inner points
x ∈ B0 using these three equations.

Outer points: For outer points x ∈ outer(B0), we need a procedure for determining
the vertices of the R-bounded Voronoi cell of x. In Subsection D.2.3, we described how
computeVoronoiCells.m computes a finite polygon, which we denote now by ṼB0

(x),
for outer points x; the bounded Voronoi cell of x determined by the choice of border
points. The bounded Voronoi cell of x satisfies ṼB0(x) ⊂ VB0(x), and most importantly
ṼB0

(x) ∩BR(x) = VB0
(x) ∩BR(x).

Let v1, . . . , vk be the vertices of ṼB0
(x), where k ≥ 3 since ṼB0

(x) is a polygon, and
suppose that v1, . . . , vk are ordered counterclockwise relative to x. We wish to convert
v1, . . . , vk to vertices (if any) of the R-bounded Voronoi cell VB0(x)∩BR(x) (which might

90 Documentation of Minktensor2D

v

xR

|x− v| ≤ R

v

x

P

S

R

v

x

P
p̃

R

v

x

s̃
S

R

|x− v| > R

Figure D.1
The different cases
to consider when de-
termining whether a
vertex v of the Voronoi
cell of an outer point
x ∈ A0 is, or gives
rise to, a vertex of the
R-bounded Voronoi cell.

equal the disc BR(x)). There turns out to be several different cases to treat. Let v = vi
for any i ∈ {1, . . . , k}, let p = pi be the previous vertex, pi = vi−1 for i ≥ 2 and p1 = vk,
and let s = si be the subsequent vertex, si = vi+1 for i < k and sk = v1. The cases to be
treated below are illustrated in Figure D.1.

If |x− v| ≤ R, v is already a vertex of the R-bounded Voronoi cell, and v is connected
to the subsequent vertex of VB0(x) ∩ BR(x) by a line segment in the boundary of the
R-bounded Voronoi cell.

Otherwise, if |x− v| > R, v is not a vertex of the R-bounded Voronoi cell. Denote by
P = Pi the line segment from x to p and by S = Si the line segment from x to s. We
need to determine whether v ‘gives rise to’ any vertices of the R-bounded Voronoi cell: if
S or P intersects the boundary of BR(x), new vertices arise in the points of intersection
of the line segments and ∂BR(x) nearest to v. Hence, we need to examine whether S or
P intersect the boundary of BR(x).

If neither P nor S intersects ∂BR(x), v does not give rise to vertices of the R-bounded
Voronoi cell and is not itself a vertex of it. Thus v can be discarded.

If P intersects ∂BR(x), v gives rise to a vertex p̃ = p̃i of the R-bounded Voronoi cell
unless p̃ = p, in which case no new vertex arises from this intersection. If p̃ 6= p, p̃ is
a vertex of the R-bounded Voronoi cell, and it is connected to the subsequent vertex of
VB0(x) ∩BR(x) by an arc in ∂(VB0(x) ∩BR(x)).

If S intersects ∂BR(x), v gives rise to a vertex s̃ = s̃i of the R-bounded Voronoi cell
unless s̃ = s, in which case no new vertex arises from this intersection. If s̃ 6= s, s̃ is
a vertex of the R-bounded Voronoi cell, and it is connected to the subsequent vertex of
VB0

(x) ∩BR(x) by a line segment in ∂(VB0
(x) ∩BR(x)).

We follow the procedure described above for all outer points of B0 in order to determ-
ine all vertices w1, . . . , wm, m ≥ 0, of VB0(x)∩BR(x) and how these are connected to the
subsequent vertex along ∂(VB0

(x)∩BR(x)), either by line segments or arcs. This inform-
ation is now input into computeTensorMeasureComponents.m. This script computes the
terms xrIsR(x). To compute the integral IsR(x), we will split the region of integration, i.e. the
R-bounded Voronoi cell, into subregions determined by the vertices w1, . . . , wm (if any).

We write line(x) for vertices w = wi such that w is connected to the subsequent
R-bounded Voronoi vertex u = ui by an arc in ∂(VB0

∩BR(x)). Consider for w ∈ line(x)
the unbounded region C with edges the half-open line segments with end point x and
intersecting w respectively u. We now take the intersection of C with BR(x). This forms
a region which we will denote by (w).

Similarly, we write arc(x) for vertices w such that w is connected to u by a line
segment in ∂(VB0

∩ BR(x)). We denote by (w) the polygon with vertices x, w, and u.
The R-bounded Voronoi cell of x then coincides with the union over all wi of such (wi)
and (wi), and these subsets have pairwise disjoint interiors. We can thus compute the
integral IsR(x) by

IsR(x) =
∑

w∈arc(x)

∫∫
(w)

(y − x)s dA +
∑

w∈line(x)

∫∫
(w)

(y − x)s dA

for x ∈ outer(B0), s ∈ {0, 1, 2}, and R > 1/
√

2, and these integrals over regions (w) and
(w) are now possible to compute in MATLAB.
Indeed, if w ∈ arc(x), let u be the subsequent point to w as above. Denote by θw the

angle of w − x in the coordinate system of the digitisation and by θu that of u− x. Then∫∫
(w)

(y − x)s dA =

∫ θu

θw

∫ R

0

(
r2 cos(θ)
r2 sin(θ)

)s
dr dθ.

Calculation of the Voronoi tensor measures 91

The primitive functions of the integrals have been computed for each s ∈ {0, 1, 2}, and
these are written as functions of θw, θu, and R in computeTensorMeasureComponents.m,
for example ∫∫

(w)

(y − x)1 dA =
1

3

(
R3
(

sin(θu)− sin(θw)
)

R3
(

cos(θu)− cos(θw)
)).

If there are no vertices or just one of the R-bounded Voronoi cell,

Ir,sR (x) =

∫ 2π

0

∫ R

0

(
r2 cos(θ)
r2 sin(θ)

)s
dr dθ.

If, on the other hand, w ∈ line(x), integration in MATLAB is achieved as follows: We
again denote by u the subsequent vertex to w. The idea now is to rotate and translate
our vectors to a coordinate system with axes p, q and origin x such that w lies on the
p-axis. Let p1 = |w − x| 6= 0, p̃ = (p̃1, p̃2)T = (w − x)/p1, q̃ = (−p̃2, p̃1)T , p0 = 〈u− x, p̃〉,
and q0 = 〈u − x, q̃〉. Then the coordinates of u in the p, q-coordinate system are (p0, q0).
Now p̃ is a unit vector on the p-axis and q̃ a unit vector on the q-axis. Let e1 = (1, 0)T

and e2 = (0, 1)T be a basis for the coordinate system of the digitisation. Expressed in the
p, q-coordinate system, e1 and e2 become(

〈e1, p̃〉p̃+ 〈e1, q̃〉q̃
〈e2, p̃〉p̃+ 〈e2, q̃〉q̃

)
=:

(
e1,pp̃+ e1,q q̃
e2,pp̃+ e2,q q̃

)
.

For the integration, we will also need to express the line through x and u as a function
g(p) and similarly the line through u and w as a function h(p), since these functions will
be needed to define the region of integration. If, however, p0 = 0, we will not need the
function g(p), and if p0 = p1, we will not need h(p).

Suppose p0 6= 0. Clearly, g(p) = ap for some a ∈ R. Since g(p0) = q0, a = q0/p0. For
p0 6= p1, write h(p) = bp+ c for b, c ∈ R. Note that h(p0) = q0 = bp0 + c, so c = q0 − bp0.
Further, h(p1) = 0 = bp1 + c = bp1 + q0 − bp0 = b(p1 − p0) + q0, so b = q0/(p0 − p1) and
c = q0(1 + p0/(p1 − p0)). To summarise,

g(p) =
q0

p0
p for p0 6= 0

and

h(p) =
q0

p0 − p1
p+ q0

(
1 +

p0

p1 − p0

)
for p0 6= p1.

We now have∫∫
(w)

(y − x)s dA

=

∫ p0

0

∫ g(p)

0

(
e1,pp+ e1,qq
e2,pp+ e2,qq

)s
dq dp+

∫ p1

p0

∫ h(p)

0

(
e1,pp+ e1,qq
e2,pp+ e2,qq

)s
dq dp

(D.4)

for p0 6= (0, p1) and s ∈ {0, 1, 2}. As for w ∈ arc(x), the primitive functions of the integral
have been computed and are given as functions of p0, q0, p1, e1,p, e1,q, e2,p, and e2,q in
computeTensorMeasureComponents.m, e.g.∫∫

(w)

(y − x)1 dA =
1

6

(
p0q0(2p0e1,p + q0e1,q)− q0(p0 − p1)(2p0e1,p + q0e1,q)
p0q0(2p0e2,p + q0e2,q)− q0(p0 − p1)(2p0e2,p + q0e2,q)

)
.

The first term of each of the two entries of the vector on the right-hand side corresponds
to the first double integral on the right-hand side of (D.4) and, analogously, the second
term to the second double integral. For p0 = 0, the first double integral of (D.4) vanishes,
and so the first term of the vector entries should not be included, but notice that for p = 0,
the term in fact automatically vanishes. The same applies to the second term for p0 = p1.
Thus the primitive functions can be defined as above also for p0 = 0 and p0 = p1 which is
exploited in computeTensorMeasureComponents.m. Similar considerations can be made
for s ∈ {0, 2}.

The above allows us to compute the remaining terms xrIsR(x) in (D.3) for all outer
points of B0.

92 Documentation of Minktensor2D

D.3 MATLAB-CODEFORMINKTENSOR2D
This section contains the code for every .m-file used in Minktensor2D.

Minktensor2D.m

% Minktensor2D computes estimators of Minkowski tensors in dimension 2 for
% compact sets with positive reach given a digitisation of the set.

% User must input a digitisation in form of a datafile containing an array
% of 0's and 1's, where a 1 indicates that the corresponding lattice point
% is contained within the set with positive reach; a 0 that it is not. The
% user must also specify the lattice distance as well as the origin, where
% the latter must be expressed as a row and column number corresponding to
% the 0-1-array (where these numbers need not be integers nor positive
% since the origin may not coincide with a lattice point). Finally, a lower
% and an upper radius for use in the algorithm must be chosen. The radii
% must not be lower than 1/sqrt(2) times the lattice distance, and neither
% radius must exceed the reach of the digitised object.

% Primary (necessary) .m-files:
% computeMinkowskiTensorEstimators.m
% computeVolumeTensorEstimators.m
% computeVoronoiCells.m
% retrieveData.m
% retrieveRadii.m
%
% Secondary .m-files used by the primary .m-files
% computeTensorMeasureComponents.m
% computeVoronoiTensorMeasures.m
% convertDigitisationToCoordinates.m
% intersectLineCircle.m
% intersectLinesegmentCircle.m
% RBoundedVoronoiVertex.m
% verticesToCounterclockwiseOrder.m

% Retrieve digitisation data, lattice distance, and origin from user
[digitisation,a,origin] = retrieveData();

% Retrieve radii from user
radii = retrieveRadii(a);

% Find planar coordinates of the sampling points in digitisation as well as
% the vertices and indices of the Voronoi cells of the sampling points
[outerPoints,innerPoints,VoronoiIndices,VoronoiVertices] = ...

computeVoronoiCells(digitisation,radii(3),origin);

% Compute estimators of the volume tensors
[Phi200,Phi210,Phi220] = ...

computeVolumeTensorEstimators(outerPoints,innerPoints,a);

% Compute estimators of the Minkowski tensors of rank at most two
[Phi000,Phi010,Phi020,Phi001,Phi011,Phi002,Phi100,Phi110,Phi120,...

Phi101,Phi111,Phi102] = computeMinkowskiTensorEstimators(radii,...
innerPoints,outerPoints,VoronoiIndices,VoronoiVertices,a);

% Display all estimators

disp('The estimators of the Minkowski tensors are:')

disp('Phi000'),disp(Phi000);
disp('Phi010'),disp(Phi010);
disp('Phi020'),disp(Phi020);
disp('Phi001'),disp(Phi001);
disp('Phi011'),disp(Phi011);
disp('Phi002'),disp(Phi002);

disp('Phi100'),disp(Phi100);
disp('Phi110'),disp(Phi110);
disp('Phi120'),disp(Phi120);
disp('Phi101'),disp(Phi101);
disp('Phi111'),disp(Phi111);
disp('Phi102'),disp(Phi102);

disp('Phi200'),disp(Phi200);
disp('Phi210'),disp(Phi210);
disp('Phi220'),disp(Phi220);

MATLAB-code for Minktensor2D 93

RetrieveData.m

function [digitisation,latDist,origin] = retrieveData()
% digitisation = retrieveData() returns an array corresponding to a loaded
% data file specified by the user
% [dagitisation,latDist,origin] = retrieveData() also returns the lattice
% distance latDist and origin of the digitisation both specified by the
% user

% Ask user to choose a data file of type .dat
[DataFileName,DataPathName] = ...

uigetfile('*.dat','Select data file (.dat) containing the digitisation');

% Load the specified data file
digitisation = load([DataPathName DataFileName]);

% Determine the size of the data file
DataColumns = size(digitisation,2);
DataRows = size(digitisation,1);

% Ask user to input the lattice distance of the digitisation
latDist = input('>> Please enter the lattice distance of your digitisation. ');

% If latDist is not a positive number, request a new lattice distance value
while ((~isnumeric(latDist)) || (isempty(latDist)) || (latDist <= 0))

latDist = ...
input('>> Your input is not a positive number. Please try again: ');

end

disp(...
'Entries of the data file are given by coordinates [row number,column number]')

disp('read from top to bottom respectively left to right.')
disp(['Coordinates of the origin are required.',...
'Since the origin may not be a data point, '])

disp(...
'in the following, row and column numbers are allowed to be any real number.')

% Ask the user for the origin of the data file
originr = ...

input('>> Please enter the row number of the origin in the data file. ');
% 'Row number' of the origin

while ((originr < 1) || (originr > DataRows))
originr = ...

input('>> Your input is not a valid row number. Please try again: ');
end

originc = ...
input('>> Please enter the column number of the origin in the data file. ');

% 'Column number' of the origin

while ((originc < 1) || (originc > DataColumns))
originc = ...

input('>> Your input is not a valid column number. Please try again: ');
end

origin = [originr,originc];

retrieveRadii.m

function [radii] = retrieveRadii(a)
% radii = retrieveRadii(a) returns three radii [R0,R1,R2] (where R0<R2 are
% specified by the user and R1=(R0+R2)/2) for use in the algorithm
% Minktensor2D for a digitisation with lattice distance a.

% Ask user for lower radius for use in the algorithm
lowerRadius = input('>> Please enter a lower radius for use in the algorithm. ');

% Continue to prompt for lowerRadius if user does not input a positive
% number greater than a/sqrt(2)
while (~isnumeric(lowerRadius)) || (isempty(lowerRadius)) || ...

(lowerRadius <= (a/sqrt(2)))
disp(['>> Your input is not a positive number greater than the lattice ',...
'distance divided by the square root of two.'])
lowerRadius = input('Please try again: ');

end

94 Documentation of Minktensor2D

% Ask user for upper radius for use in the algorithm
disp('>> Please enter the upper radius for use in the algorithm.')
upperRadius = input('(Number must not exceed the reach of the object!) ');

% Continue to prompt for upperRadius if user does not input a positive
% number greater than lowerRadius
while (~isnumeric(upperRadius)) || (isempty(upperRadius)) || ...

(upperRadius <= lowerRadius) || (isnan(upperRadius)) || ...
(isinf(upperRadius))
disp(['>> Your input is not a positive number (greater than the lower '...
'radius chosen). '])
upperRadius = input('Please try again: ');

end

% Scale radii with lattice distance
upperRadius = upperRadius/a;
lowerRadius = lowerRadius/a;

radii = linspace(lowerRadius,upperRadius,3);

computeVoronoiCells.m

function [outerPoints,innerPoints,VoronoiIndices,VoronoiVertices] = ...
computeVoronoiCells(digitisation,r,origin)

% [outerPoints,innerPoints,VoronoiIndices,VoronoiVertices] =
% computeVoronoiCells(digitisation,r,origin) returns an array outerPoints
% of coordinates of the sampling points in digitisation which have a
% non-trivial Voronoi cell; an array innerPoints of coordinates of inner
% points in digitisation, which have trivial Voronoi cell; an array
% VoronoiVertices of vertices of Voronoi cells of points in
% [outerPoints;innerPoints], and a cell array VoronoiIndices whose n'th row
% correspondonds to the indices of the Voronoi vertices in VoronoiVertices
% of the n'th point in [outerPoints;innerPoints].

% Necessary .m-files:
% convertDigitisationToCoordinates.m

% Convert digitisation to points in the plane
[innerPoints,outerPoints,VoronoiRelevant] = ...

convertDigitisationToCoordinates(digitisation,origin);

if isnan(innerPoints)
allPoints = outerPoints;

else
allPoints = [innerPoints;outerPoints];

end

numberOfPoints = size(allPoints,1);

% Find the extremal coordinates of the digitisation
xMin = min(allPoints(1:numberOfPoints,1));
xMax = max(allPoints(1:numberOfPoints,1));
yMin = min(allPoints(1:numberOfPoints,2));
yMax = max(allPoints(1:numberOfPoints,2));

xMid = (xMax - xMin)/2 + xMin;
yMid = (yMax - yMin)/2 + yMin;

% We will insert 'border points' far away from the sampling points in order
% to obtain bounded Voronoi cells.
% The distance from digitisation to border points is set to three times the
% maximal radius. Thus the relevant parts of the Voronoi cells of the
% digitisation will not be affected.

borderPointDistance = 3*ceil(r);

% Create border points
borderPoints = zeros(8,2);
borderPoints(1,:) = [xMin-borderPointDistance,yMid];
borderPoints(2,:) = [xMid,yMax+borderPointDistance];
borderPoints(3,:) = [xMax+borderPointDistance,yMid];
borderPoints(4,:) = [xMid,yMin-borderPointDistance];
borderPoints(5,:) = [xMin-borderPointDistance,yMin-borderPointDistance];
borderPoints(6,:) = [xMin-borderPointDistance,yMax+borderPointDistance];
borderPoints(7,:) = [xMax+borderPointDistance,yMin-borderPointDistance];
borderPoints(8,:) = [xMax+borderPointDistance,yMax+borderPointDistance];

MATLAB-code for Minktensor2D 95

% Create the Voronoi vertices and indices for all relevant sampling points
% of the digitisation
if isnan(VoronoiRelevant)

VoronoiRelevantPoints = [];

% If there are Voronoi relevant inner points, we use them when computing
% the Voronoi cells
else

VoronoiRelevantPoints = VoronoiRelevant;

end

% The Voronoi diagram is now computed for all relevant points
[VoronoiVertices,excessVoronoiIndices] = ...

voronoin([outerPoints;borderPoints;VoronoiRelevantPoints]);

% Clean up VoronoiIndices by removing indices correponding to artificial
% points
numberOfRelevantIndices = size(outerPoints,1);
VoronoiIndices = excessVoronoiIndices(1:numberOfRelevantIndices,:);

convertDigitisationToCoordinates.m

function [innerPoints,outerPoints,VoronoiRelevant] = ...
convertDigitisationToCoordinates(digitisation,origin)

% [innerPoints,outerPoints,VoronoiRelevant] =
% convertDigitisationToCoordinates(digitisation,origin) returns an array
% outerPoints of coordinates of the sampling points in digitisation which
% have a non-trivial Voronoi cell; an array innerPoints of coordinates of
% inner points in digitisation, which have trivial Voronoi cell, and an
% array of those points in digitisation which define the non-trivial
% Voronoi cells of the outer points

digitisation = flipud(digitisation); % Matrix indices are read from the
% upper left corner whereas planar coordinates are read from the bottom
% left corner, so we flip digitisation horisontally

numberOfRows = size(digitisation,1);
numberOfColumns = size(digitisation,2);

originx = origin(2) - 1;
originy = numberOfRows - origin(1);

% Prepare arrays for the three types of sampling points and allocate space
% for the maximal number of rows

arrayInnerPoints = zeros(numberOfRows*numberOfColumns,2);
arrayOuterPoints = arrayInnerPoints;
arrayVoronoiRelevant = arrayInnerPoints;

% Counters for the number of sampling points of each type
countInner = 0;
countOuter = 0;
countVoronoi = 0;

for iii = 1:(numberOfRows)
for jjj = 1:(numberOfColumns)

x = digitisation(iii,jjj);

% Only 1's are converted to coordinates
if x

notBorder = (iii-1)*(jjj-1)*(iii-numberOfRows)*(jjj-numberOfColumns);
% false if x lies in first or last column and/or row

if notBorder

xr = digitisation(iii+1,jjj); % point to the right of x
xl = digitisation(iii-1,jjj); % point to the left of x
xu = digitisation(iii,jjj+1); % point above x
xd = digitisation(iii,jjj-1); % point below x

inner = xr*xl*xu*xd; % true if x is an inner point

96 Documentation of Minktensor2D

if inner

countInner = countInner + 1;
arrayInnerPoints(countInner,:) = [jjj-1,iii-1];

innerBorder = ~((iii-2)*(jjj-2)*(iii-numberOfRows+1)*...
(jjj-numberOfColumns+1)); % true if x is a four-neighbour
% of a non-inner point. If so, x determines the Voronoi
% vertices of its neighbour

if innerBorder

countVoronoi = countVoronoi + 1;
arrayVoronoiRelevant(countVoronoi,:) = [jjj-1,iii-1];

else
% Four-neighbours of the four-neighbours of x
xrr = digitisation(iii+2,jjj);
xru = digitisation(iii+1,jjj+1);
xrd = digitisation(iii+1,jjj-1);
xll = digitisation(iii-2,jjj);
xlu = digitisation(iii-1,jjj+1);
xld = digitisation(iii-1,jjj-1);
xuu = digitisation(iii,jjj+2);
xdd = digitisation(iii,jjj-2);

% Check which of the four-neighbours of x are inner
% points
rightInner = xrr*xru*xrd;
leftInner = xll*xlu*xld;
upInner = xuu*xru*xlu;
downInner = xdd*xrd*xld;

relevant = ~(rightInner*leftInner*upInner*downInner);

if relevant
countVoronoi = countVoronoi + 1;
arrayVoronoiRelevant(countVoronoi,:) = [jjj-1,iii-1];

end
end

else
countOuter = countOuter + 1;
arrayOuterPoints(countOuter,:) = [jjj-1,iii-1];

end
else

countOuter = countOuter + 1;
arrayOuterPoints(countOuter,:) = [jjj-1,iii-1];

end
end

end
end

if countInner

% innerPoints trims arrayInnerPoints
innerPoints = arrayInnerPoints(1:countInner,:);
innerPoints(:,1) = innerPoints(:,1) - originx;
innerPoints(:,2) = innerPoints(:,2) - originy;

else
innerPoints = NaN;

end

if countVoronoi

% VoronoiRelevant trims arrayVoronoiRelevant
VoronoiRelevant = arrayVoronoiRelevant(1:countVoronoi,:);
VoronoiRelevant(:,1) = VoronoiRelevant(:,1) - originx;
VoronoiRelevant(:,2) = VoronoiRelevant(:,2) - originy;

else

VoronoiRelevant = NaN;

end

MATLAB-code for Minktensor2D 97

% outerPoints trims arrayOuterPoints
outerPoints = arrayOuterPoints(1:countOuter,:);
outerPoints(:,1) = outerPoints(:,1) - originx;
outerPoints(:,2) = outerPoints(:,2) - originy;

computeVolumeTensorEstimators.m

function [Phi200,Phi210,Phi220] = computeVolumeTensorEstimators(outerPoints,
innerPoints,a)

% [Phi200,Phi210,Phi220] =
% computeVolumeTensorEstimators(outerPoints,innerPoints,a) returns
% estimators of the non-trivial volume tensors of rank at most two in
% dimension two based on arrays outerPoints and innerPoints of coordinates
% of all outer and inner sampling points of a ditigisation with lattice
% distance a

numberOfPoints = size(outerPoints,1) + size(innerPoints,1);
allPoints = [outerPoints;innerPoints];

% (r=0)-tensor estimator
sumxr0 = numberOfPoints;
Phi20 = a^2*sumxr0;

% (r=1)-tensor estimator
sumxr1 = sum(allPoints,1);
Phi21 = a^3*sumxr1;

% (r=2)-tensor estimator
sumxr21 = sum(allPoints.^2,1);
sumxr22 = sum(allPoints(:,1).*allPoints(:,2),1);
Phi22a = (a^4/2)*sumxr21;
Phi22b = (a^4/2)*sumxr22;
Phi22 = [Phi22a,Phi22b];

% Tensors very close to zero are rounded off
Phi200 = Phi20*(Phi20>1e-6);
Phi210 = [Phi21(1)*(abs(Phi21(1))>1e-6) ; Phi21(2)*(abs(Phi21(2))>1e-6)];
Phi220 = [Phi22(1)*(abs(Phi22(1))>1e-6) Phi22(3)*(abs(Phi22(3))>1e-6);...

Phi22(3)*(abs(Phi22(3))>1e-6) Phi22(2)*(abs(Phi22(2))>1e-6)];

computeMinkowskiTensorEstimators.m

function [Phi000,Phi010,Phi020,Phi001,Phi011,Phi002,Phi100,Phi110,Phi120,...
Phi101,Phi111,Phi102] = computeMinkowskiTensorEstimators(radii,...
innerPoints,outerPoints,VoronoiIndices,VoronoiVertices,a)

% [Phi000,Phi010,Phi020,Phi001,Phi011,Phi002,Phi100,Phi110,Phi120,Phi101,...
% Phi111,Phi102] = computeMinkowskiTensorsEstimators(radii,...
% innerPoints,outerPoints,VoronoiIndices,VoronoiVertices,a,Phi20,Phi21,Phi22)
% returns all computed estimators (not including the volume tensors) of
% the Minkowski tensors of a set with positive reach given an array
% containing three radii below the reach of the set, arrays with the inner
% and outer points of the digitisation of the set, an array VoronoiVertices
% with the Voronoi vertices of the outer points as well as a cell array
% containing the indices of the vertices for each sampling point. Finally,
% the lattice distance a must be specified.

% Necessary .m-files:
% computeVoronoiTensorMeasures.m

% Compute the Voronoi tensor measures
[VR00,VR20,VR02,VR01,VR10,VR11] = ...

computeVoronoiTensorMeasures(radii,innerPoints,outerPoints,...
VoronoiIndices,VoronoiVertices);

Kappa = [1 2 pi 4*pi/3 pi^2/2]; % Volumes of the unit ball in Euclidean n-space
% where n equals the column number of Kappa minus 1

% Radii and Voronoi tensor measures for the non-scaled digitisation
radii = a*radii;

VR00 = a^(2)*VR00;
VR20 = a^(4)*VR20;
VR02 = a^(4)*VR02;
VR01 = a^(3)*VR01;
VR10 = a^(3)*VR10;
VR11 = a^(4)*VR11;

98 Documentation of Minktensor2D

% Inverses of the constant matrices for s=0,1,2
M0 = [Kappa(1) Kappa(2)*radii(1) Kappa(3)*radii(1)^2;...

Kappa(1) Kappa(2)*radii(2) Kappa(3)*radii(2)^2;...
Kappa(1) Kappa(2)*radii(3) Kappa(3)*radii(3)^2];

M1 = [Kappa(2)*radii(1) Kappa(3)*radii(1)^2 Kappa(4)*radii(1)^3;...
Kappa(2)*radii(2) Kappa(3)*radii(2)^2 Kappa(4)*radii(2)^3;...
Kappa(2)*radii(3) Kappa(3)*radii(3)^2 Kappa(4)*radii(3)^3];

M2 = [Kappa(3)*radii(1)^2 Kappa(4)*radii(1)^3 Kappa(5)*radii(1)^4;...
Kappa(3)*radii(2)^2 Kappa(4)*radii(2)^3 Kappa(5)*radii(2)^4;...
Kappa(3)*radii(3)^2 Kappa(4)*radii(3)^3 Kappa(5)*radii(3)^4];

% Solving the systems of linear equations for the Minkowski tensors
% r = s = 0
b00 = [VR00(1) ; VR00(2) ; VR00(3)];
Phi00 = M0\b00;

Phi100 = Phi00(2)*(abs(Phi00(2))>1e-6);
Phi000 = Phi00(3)*(abs(Phi00(3))>1e-6);

% r = 2, s = 0
b201 = [VR20(1,1) ; VR20(1,2) ; VR20(1,3)];
EtPhi20 = M0\b201;
b202 = [VR20(2,1) ; VR20(2,2) ; VR20(2,3)];
ToPhi20 = M0\b202;
b203 = [VR20(3,1) ; VR20(3,2) ; VR20(3,3)];
TrePhi20 = M0\b203;

Phi120 = ...
[EtPhi20(2)*(abs(EtPhi20(2))>1e-6) TrePhi20(2)*(abs(TrePhi20(2))>1e-6);...
TrePhi20(2)*(abs(TrePhi20(2))>1e-6) ToPhi20(2)*(abs(ToPhi20(2))>1e-6)]/2;

Phi020 = ...
[EtPhi20(3)*(abs(EtPhi20(3))>1e-6) TrePhi20(3)*(abs(TrePhi20(3))>1e-6);...
TrePhi20(3)*(abs(TrePhi20(3))>1e-6) ToPhi20(3)*(abs(ToPhi20(3))>1e-6)]/2;

% r = 0, s = 2
b021 = [VR02(1,1) ; VR02(1,2) ; VR02(1,3)];
EtPhi02 = M2\b021;
b022 = [VR02(2,1) ; VR02(2,2) ; VR02(2,3)];
ToPhi02 = M2\b022;
b023 = [VR02(3,1) ; VR02(3,2) ; VR02(3,3)];
TrePhi02 = M2\b023;

Phi102 = ...
[EtPhi02(2)*(abs(EtPhi02(2))>1e-6) TrePhi02(2)*(abs(TrePhi02(2))>1e-6);...
TrePhi02(2)*(abs(TrePhi02(2))>1e-6) ToPhi02(2)*(abs(ToPhi02(2))>1e-6)]/2;

Phi002 = ...
[EtPhi02(3)*(abs(EtPhi02(3))>1e-6) TrePhi02(3)*(abs(TrePhi02(3))>1e-6);...
TrePhi02(3)*(abs(TrePhi02(3))>1e-6) ToPhi02(3)*(abs(ToPhi02(3))>1e-6)]/2;

% r = 0, s = 1
b011 = [VR01(1,1) ; VR01(1,2) ; VR01(1,3)];
EtPhi01 = M1\b011;
b012 = [VR01(2,1) ; VR01(2,2) ; VR01(2,3)];
ToPhi01 = M1\b011;

Phi101 = [EtPhi01(2)*(abs(EtPhi01(2))>1e-6) ; ToPhi01(2)*(abs(ToPhi01(2))>1e-6)];
Phi001 = [EtPhi01(3)*(abs(EtPhi01(3))>1e-6) ; ToPhi01(3)*(abs(ToPhi01(3))>1e-6)];

% r = 1, s = 0
b101 = [VR10(1,1) ; VR10(1,2) ; VR10(1,3)];
EtPhi10 = M0\b101;
b102 = [VR10(2,1) ; VR10(2,2) ; VR10(2,3)];
ToPhi10 = M0\b102;

Phi110 = [EtPhi10(2)*(abs(EtPhi10(2))>1e-6) ; ToPhi10(2)*(abs(ToPhi10(2))>1e-6)];
Phi010 = [EtPhi10(3)*(abs(EtPhi10(3))>1e-6) ; ToPhi10(3)*(abs(ToPhi10(3))>1e-6)];

% r = 1, s = 1
b111 = [VR11(1,1) ; VR11(1,2) ; VR11(1,3)];
EtPhi11 = M1\b111;
b112 = [VR11(2,1) ; VR11(2,2) ; VR11(2,3)];
ToPhi11 = M1\b112;
b113 = [VR11(3,1) ; VR11(3,2) ; VR11(3,3)];
TrePhi11 = M1\b113;

MATLAB-code for Minktensor2D 99

Phi111 = ...
[EtPhi11(2)*(abs(EtPhi11(2))>1e-6) TrePhi11(2)*(abs(TrePhi11(2))>1e-6);...
TrePhi11(2)*(abs(TrePhi11(2))>1e-6) ToPhi11(2)*(abs(ToPhi11(2))>1e-6)];

Phi011 = ...
[EtPhi11(3)*(abs(EtPhi11(3))>1e-6) TrePhi11(3)*(abs(TrePhi11(3))>1e-6);...
TrePhi11(3)*(abs(TrePhi11(3))>1e-6) ToPhi11(3)*(abs(ToPhi11(3))>1e-6)];

computeVoronoiTensorMeasures.m

function [VR00,VR20,VR02,VR01,VR10,VR11] = computeVoronoiTensorMeasures(radii,...
innerPoints,outerPoints,VoronoiIndices,VoronoiVertices)

% [VR00,VR20,VR02,VR01,VR10,VR11] = computeVoronoiTensorMeasures(radii,...
% innerPoints,outerPoints,VoronoiIndices,VoronoiVertices)
% returns the Voronoi tensor measures of a set with positive reach given an
% array containing three radii below the reach of the set and greater than
% 1/sqrt(2), arrays with the inner and outer points of the digitisation of
% the set, a cell array VoronoiVertices with the Voronoi vertices of the
% outer points as well as an array containing the indices of the vertices
% for each sampling point.

% Necessary .m-files:
% verticesToCounterclockwiseOrder.m
% intersectLinesegmentCircle.m
% RBoundedVoronoiVertex.m
% computeTensorMeasureComponents.m

numberOfInnerPoints = size(innerPoints,1)*(~isnan(innerPoints(1)));
numberOfOuterPoints = size(outerPoints,1);

% Arrays containing the entries for the Voronoi tensor measures are
% prepared. The three columns correspond to the three radii

VR00 = [0 0 0]; % r=0, s=0 (0-tensor)
VR20 = zeros(3,3); % r=2, s=0 (2-tensor)
VR02 = VR20; % r=0, s=2 (2-tensor)
VR01 = zeros(2,3); % r=0, s=1 (1-tensor)
VR10 = VR01; % r=1, s=0 (1-tensor)
VR11 = VR20; % r=0, s=1 (1-tensor)

% First, contributions from the inner points to all Voronoi tensor measures
% are calculated
if numberOfInnerPoints

for iii = 1:numberOfInnerPoints

x = innerPoints(iii,:);
x1 = x(1);
x2 = x(2);

for kkk = 1:3
VR00(kkk) = VR00(kkk) + 1;
VR20(:,kkk) = VR20(:,kkk) + [x1^2 ; x2^2 ; x1*x2];
VR02(:,kkk) = VR02(:,kkk) + [1 ; 1 ; 0]*(1/12);
VR10(:,kkk) = VR10(:,kkk) + [x1 ; x2];

end
end

end

% Next, contributions from the outer points to all Voronoi tensor measures
% are calculated
for iii = 1:numberOfOuterPoints

x = outerPoints(iii,:);

indices = VoronoiIndices{iii}; % Indices of the Voronoi vertices of x
vertices = VoronoiVertices(indices,:); % Voronoi vertices of x
vertices = verticesToCounterclockwiseOrder(vertices,x); % Make sure the
% Voronoi vertices are in counterclockwise order with respect to x
nVertices = size(vertices,1);

% Arrays containing the contributions to the entries of the Voronoi
% tensor measures from x are prepared
componentsVR00 = [0 0 0];
componentsVR20 = zeros(3,3);
componentsVR02 = componentsVR20;
componentsVR01 = zeros(2,3);
componentsVR10 = zeros(2,3);
componentsVR11 = componentsVR20;

100 Documentation of Minktensor2D

for kkk = 1:3
R = radii(kkk);

column = ones(nVertices,1);
coordinateMatrix = [x(1)*column x(2)*column];

vTypes = (R < sqrt(sum((vertices-coordinateMatrix).^2,2))); % Assign a 1
% to vertices that are further away from the current coordinate than R; 0
% otherwise

ConcatenatedVertices = [vertices(nVertices,:); vertices; vertices(1,:)];
% Concatenated array with Vertices where the last row is copied to the
% first row and the first row is copied to the last row

% We now adjust all Voronoi vertices to vertices lying on the
% R-bounded Voronoi cell. Additionally, we determine whether a
% vertex is connected to its subsequent neighbour by an arc
% (type 1) or a line (type 0).

adjustedVertices = zeros(2*nVertices,3); % For saving the adjusted
% vertices and their integration type. Each vertex is adjusted to at most
% 2 new vertices
vertexCounter = 0;

for jjj = 1:nVertices
% The types of the vertex and its two neighbours decide how the
% vertex should be adjusted
v = vertices(jjj,:); % v is the jjj'th Voronoi vertex of x
vType = vTypes(jjj); % vType is the type of v

% If v is inside the R-ball with centre x, it is a vertex of the
% R-bounded Voronoi cell of type 0
if ~vType

vertexCounter = vertexCounter + 1;
adjustedVertices(vertexCounter,1:2) = v;
adjustedVertices(vertexCounter,3) = 0;

else
p = ConcatenatedVertices(jjj,:);
s = ConcatenatedVertices(jjj+2,:);

% Check whether sv and vp intersect the R-ball
intersectionsPV = intersectLinesegmentCircle(v,p,x,R);
intersectionsVS = intersectLinesegmentCircle(v,s,x,R);

if (~intersectionsPV && ~intersectionsVS) % If none of the line
% segments intersect, the vertex is irrelevant

continue

else

if intersectionsPV
v1 = RBoundedVoronoiVertex(p,v,x,R); % Adjust v to the
% point where pv intersects the R-ball

if isequal(v1,p)
continue

else
vertexCounter = vertexCounter + 1;
adjustedVertices(vertexCounter,1:2) = v1;
adjustedVertices(vertexCounter,3) = 1;

end
end

if intersectionsVS
v2 = RBoundedVoronoiVertex(s,v,x,R); % Adjust v to the
% point where vs intersects the R-ball

if isequal(v2,s)
continue

else

vertexCounter = vertexCounter + 1;
adjustedVertices(vertexCounter,1:2) = v2;
adjustedVertices(vertexCounter,3) = 0;

end

MATLAB-code for Minktensor2D 101

end

end

end

end

% Remove all zero-rows from adjustedVertices to obtain the vertices
% of the R-bounded Voronoi cell of x
RboundedVertices = adjustedVertices(1:vertexCounter,:);

% Add the terms for this coordinate and radius to the Voronoi
% tensor measures
[componentsVR00(kkk),componentsVR20(:,kkk),componentsVR02(:,kkk),...
componentsVR01(:,kkk),componentsVR10(:,kkk),componentsVR11(:,kkk)] =...
computeTensorMeasureComponents(R,x,RboundedVertices);

end

VR00(1) = VR00(1) + componentsVR00(1);
VR00(2) = VR00(2) + componentsVR00(2);
VR00(3) = VR00(3) + componentsVR00(3);

VR20(:,1) = VR20(:,1) + componentsVR20(:,1);
VR20(:,2) = VR20(:,2) + componentsVR20(:,2);
VR20(:,3) = VR20(:,3) + componentsVR20(:,3);

VR02(:,1) = VR02(:,1) + componentsVR02(:,1);
VR02(:,2) = VR02(:,2) + componentsVR02(:,2);
VR02(:,3) = VR02(:,3) + componentsVR02(:,3);

VR01(:,1) = VR01(:,1) + componentsVR01(:,1);
VR01(:,2) = VR01(:,2) + componentsVR01(:,2);
VR01(:,3) = VR01(:,3) + componentsVR01(:,3);

VR10(:,1) = VR10(:,1) + componentsVR10(:,1);
VR10(:,2) = VR10(:,2) + componentsVR10(:,2);
VR10(:,3) = VR10(:,3) + componentsVR10(:,3);

VR11(:,1) = VR11(:,1) + componentsVR11(:,1);
VR11(:,2) = VR11(:,2) + componentsVR11(:,2);
VR11(:,3) = VR11(:,3) + componentsVR11(:,3);

end

verticesToCounterclockwiseOrder.m

function [counterclockwiseVertices] = ...
verticesToCounterclockwiseOrder(vertices,referencePoint)

% [counterClockwiseVertices] = ...
% verticesToCounterclockwiseOrder(vertices,referencePoint) returns an array
% of vertices of a polygon in counterclockwise order with respect to a
% reference point, referencePoint, given an array of vertices of the
% polygon. It is assumed that the polygon is closed, that the polygon is
% not self-intersecting or has holes, and that the vertices are not all
% collinear.

% Return an error if less than three vertices are provided
if all(size(vertices) < 3)

error('Three points are needed to define polygon.')
end

% We check whether the vertices are ordered in rows. If not, we transpose

if size(vertices,1) < 3
flip = 1;
adjustedVertices = vertices';
adjustedVertices(:,1) = adjustedVertices(:,1) - referencePoint(1);
adjustedVertices(:,2) = adjustedVertices(:,2) - referencePoint(2);

else
flip = 0;
adjustedVertices = vertices;
adjustedVertices(:,1) = adjustedVertices(:,1) - referencePoint(1);
adjustedVertices(:,2) = adjustedVertices(:,2) - referencePoint(2);

end

102 Documentation of Minktensor2D

count = 0;
n = size(adjustedVertices,1);

% Sum over the edges between all vertices
for iii = 1:(n-1)

count = count + (adjustedVertices(iii+1,1)-adjustedVertices(iii,1))*...
(adjustedVertices(iii+1,2)+adjustedVertices(iii,2));

end
% Also sum the edge from the last to the first point
count = count + (adjustedVertices(1,1)-adjustedVertices(n,1))*...

(adjustedVertices(1,2)+adjustedVertices(n,2));

% Count is plus/minus twice the enclosed area, with a plus if the vertices
% are in clockwise order relative to the reference point. If so, we flip
% the sequence of the vertices
if count > 0

adjustedVertices = flipud(adjustedVertices);
end

% Translate back to the original coordinate system
adjustedVertices(:,1) = adjustedVertices(:,1) + referencePoint(1);
adjustedVertices(:,2) = adjustedVertices(:,2) + referencePoint(2);

% If the vertices were transposed, transpose them back
if flip

counterclockwiseVertices = adjustedVertices';
else

counterclockwiseVertices = adjustedVertices;
end

intersectLinesegmentCircle.m

function [intersection] = intersectLinesegmentCircle(p1,p2,c,r)
% [intersections] = intersectLinesegmentCircle(p1,p2,c,r) determines
% whether the line segment from p1 to p2 intersects the circle with radius
% r and centre c. intersection equals the number of intersection points
% between the line segment and the circle which can be 0, 1, or 2

if isequal(p1,p2)

error('The two points are equal. No line segment can be determined.')

end

p = p2-p1; % Vector from p1 to p2
np = norm(p);
punit = p/np;
l = c - p1; % Vector from p1 to the centre of the circle
nProj = dot(l,punit); % Length of the projection of l onto p

% Find the closest point on the line segment to the centre c

if nProj <= 0
closest = p1;

elseif nProj > np
closest = p2;

else
Proj = punit*nProj;
closest = Proj + p1;

end

distance = c - closest; % Vector from the closest point to c

nDistance = norm(distance);

% Find out whether the line segment and the circle intersect

if nDistance > r
intersection = 0; % The line segment does not intersect the circle

elseif nDistance < r
intersection = 2; % The line segment intersects the circle in two points

else
intersection = 1; % The line segment is tangent to the circle

end

MATLAB-code for Minktensor2D 103

RboundedVoronoiVertex.m

function [correctedVertex] = RBoundedVoronoiVertex(neighbourVertex,vertex,c,R)
% [correctedVertex] = RBoundedVoronoiVertex(neighbourVertex,vertex,c,r)
% returns the R-bounded Voronoi vertex corresponding to vertex by
% translating it to the nearest point of intersection between the circle
% with radius R and centre c and the line segment from neighbourVertex to vertex.

% Necessary .m-files:
% intersectLineCircle.m

[xIntersect,yIntersect] = intersectLineCircle(neighbourVertex(1),...
neighbourVertex(2),vertex(1),vertex(2),c(1),c(2),R);
% Coordinates of intersection of the line and the circle with given radius and
% centre

[minimalDistance,index] = min([norm(vertex - [xIntersect(1),yIntersect(1)])...
norm(vertex - [xIntersect(2),yIntersect(2)])]); % Find the index of the
% intersection point closest to vertex

correctedVertex = [xIntersect(index) yIntersect(index)];

intersectLineCircle.m

function [xout,yout] = intersectLineCircle(point1x,point1y,point2x,point2y,...
centrex,centrey,radius)

% [xout,yout] = intersectLineCircle(point1x,point1y,point2x,point2y,...
% centrex,centrey,radius)
% returns arrays xout and yout with the x- and y-coordinates of the
% intersection points of a line with a circle in the plane. If the line is
% tangent to the circle, the point of intersection is stored as two
% identical points; if there are no points of intersection, the arrays
% contain NaN as entries.
% Input arguments are coordinates (point1x,point1y) and (point2x,point2y)
% of two points on the line, the coordinates (centrex,centrey) of the
% centre of the circle, and the radius of the circle.

% Translate the coordinates to a system with the centre of the circle at
% the origin
x1 = point1x-centrex;
y1 = point1y-centrey;
x2 = point2x-centrex;
y2 = point2y-centrey;

% Compute the parameters of the system
dx = x2-x1;
dy = y2-y1;
dr = sqrt(dx^2+dy^2);
determinant = x1*y2-x2*y1;
discriminant = radius^2*dr^2-determinant^2;
epsilon = 1e-14; % Precision

% Compute the points of intersection (i.e. the solutions to the second
% order equation)
if discriminant > epsilon % Two points of intersection

x = [(determinant*dy+sgn(dy)*dx*sqrt(discriminant))/dr^2 ; ...
(determinant*dy-sgn(dy)*dx*sqrt(discriminant))/dr^2];

y = [(-determinant*dx+abs(dy)*sqrt(discriminant))/dr^2 ; ...
(-determinant*dx-abs(dy)*sqrt(discriminant))/dr^2];

elseif abs(discriminant) < epsilon % One point of intersection (the line
% is tangent to the circle)

x = determinant*dy/dr^2*ones(2,1);
y = -determinant*dx/dr^2*ones(2,1);

else % No points of intersection
x = NaN*ones(2,1);
y = NaN*ones(2,1);

end

% Translate the points of intersection back to a system with the centre of
% the circle at (centrex,centrey)
xout = x+centrex;
yout = y+centrey;

104 Documentation of Minktensor2D

function s = sgn(x)
% sgn is a signum function which returns -1 for all negative numbers and 1
% otherwise
s = sign(sign(x)+0.5);

computeTensorMeasureComponents.m

function [componentVR00,componentVR20,componentVR02,componentVR01,...
componentVR10,componentVR11] = ...
computeTensorMeasureComponents(R,x,VoronoiVertices)

% [ComponentVR00,ComponentVR20,ComponentVR02,ComponentVR01,...
% ComponentVR10,ComponentVR11] = ...
% computeTensorMeasureComponents(r,x,vertices) returns the contributions to
% the Voronoi tensors measures of x when x has R-bounded Voronoi vertices
% VoronoiVertices

vertexCounter = size(VoronoiVertices,1);

x1 = x(1);
x2 = x(2);

% Functions for integrals involved in the Minkowski tensor measures in
% polar coordinates

ints211Ice = @(tMin,tMax,rMax) (1/16)*(rMax.^4).*(2*(tMax-tMin)+...
sin(2*tMax)-sin(2*tMin)); % Primitive function for the coordinate (1,1) for
% tensors with s=2 ('ice' region)

ints222Ice = @(tMin,tMax,rMax) (1/16)*(rMax.^4).*(2*(tMax-tMin)-...
sin(2*tMax)+sin(2*tMin)); % Primitive function for the coordinate (2,2) for
% tensors with s=2 ('ice' region)

ints212Ice = @(tMin,tMax,rMax) ((sin(tMax)^2 - sin(tMin)^2)*(rMax^4))/8;
% Primitive function for the coordinate (1,2)=(2,1) for tensors with s=2 ('ice'
% region)

ints11Ice = @(tMin,tMax,rMax) (rMax^3*(sin(tMax) - sin(tMin)))/3; % Primitive
% function for the coordinate (1,1) for tensors with s=1 ('ice' region)
ints12Ice = @(tMin,tMax,rMax) -(rMax^3*(cos(tMax) - cos(tMin)))/3; % Primitive
% function for the coordinate (2,1) for tensors with s=1 ('ice' region)

% If the R-bounded Voronoi cell is a disc, we simply integrate over this
if (~vertexCounter || vertexCounter == 1)

volume = pi*R^2;

% r = s = 0
componentVR00 = volume;

% r = 2, s = 0
componentVR20 = [x1^2*volume ; x2^2*volume ; x1*x2*volume];

% r = 0, s = 2
componentVR02 = [ints211Ice(0,2*pi,R) ; ints222Ice(0,2*pi,R) ; ...

ints212Ice(0,2*pi,R)];

% r = 0, s = 1
componentVR01 = [ints11Ice(0,2*pi,R) ; ints12Ice(0,2*pi,R)];

% r = 1, s = 0
componentVR10 = [x1*volume ; x2*volume];

% r = 1, s = 1
componentVR11 = [x1*componentVR01(1) ; x2*componentVR01(2) ; ...

0.5*(x1*componentVR01(2) + x2*componentVR01(1))];

else

concatenatedVertices = [VoronoiVertices; VoronoiVertices(1,:)];

% We prepare the components for the Voronoi tensor measures

componentVR00 = 0; % r = s = 0 tensor
componentVR20 = [0 0 0]'; % r = 2, s = 0 tensor
componentVR02 = componentVR20; % r = 0, s = 2 tensor
componentVR01 = [0 0]'; % r = 0, s = 1 tensor
componentVR10 = componentVR01; % r = 1, s = 0 tensor
componentVR11 = componentVR20; % r = 1, s = 1 tensor

MATLAB-code for Minktensor2D 105

ints0Ice = @(tMin,tMax,rMax) (1/2)*(rMax.^2).*(tMax-tMin); % Primitive
% function for tensors with s=0 ('ice' region)

% Functions for integrals involved in the Minkowski tensor measures in
% Cartesian coordinates of a rotated coordinate system

ints0Triangle = @(s0,t0,s1) (s0*t0)/2 - (t0*(s0 - s1))/2; % Primitive
% function for tensors with s=0 ('triangle' region)

ints2XXTriangle = @(s0,t0,s1,xs,xt) (s0*t0*(3*s0^2*xs^2 + ...
3*s0*t0*xs*xt + t0^2*xt^2))/12 - (t0*(s0 - s1)*...
(3*s0^2*xs^2 + 2*s0*s1*xs^2 + 3*s0*t0*xs*xt + s1^2*xs^2 + ...
s1*t0*xs*xt + t0^2*xt^2))/12; % Primitive function for the coordinates

% (1,1) and (2,2) for tensors with s=2 ('triangle' region)

ints2XYTriangle = @(s0,t0,s1,xs,xt,ys,yt) (s0*t0*(6*s0^2*xs*ys + ...
2*t0^2*xt*yt + 3*s0*t0*xs*yt + 3*s0*t0*xt*ys))/24 - (t0*(s0 - s1)*...
(6*s0^2*xs*ys + 2*s1^2*xs*ys + 2*t0^2*xt*yt + 4*s0*s1*xs*ys + ...
3*s0*t0*xs*yt + 3*s0*t0*xt*ys + s1*t0*xs*yt + s1*t0*xt*ys))/24;

% Primitive function for the coordinates (1,2)=(2,1) for tensors with s=2
% ('triangle' region)

ints1Triangle = @(s0,t0,s1,xs,xt) (s0*t0*(2*s0*xs + t0*xt))/6 - ...
(t0*(s0 - s1)*(2*s0*xs + s1*xs + t0*xt))/6; % Primitive function for the

% coordinates (1,1) and (2,1) for tensors with s=1 ('triangle' region)

% Coordinates are translated to a coordinate system with x as origin
s = concatenatedVertices(1,1:2)-x;

for jjj = 1:vertexCounter

v = s; % Current vertex
s = concatenatedVertices(jjj+1,1:2)-x; % Subsequent vertex

vType = concatenatedVertices(jjj,3); % Connection type of the current
% vertex

% The vertex connection type now determines which type of integral we
% need to compute

% Connection type 1 (arc)
if vType

% Find the angles of the two points
if v(1) == 0

vAngle = norm(sign(v(2)))*(pi/2 + (mod(sign(v(2))+2,3))*pi);
else

vAngle = atan(v(2)/v(1)) + (v(1)<0)*pi + (v(1)>0 && v(2)<0)*2*pi;
end

if s(1) == 0
sAngle = norm(sign(s(2)))*(pi/2 + (mod(sign(s(2))+2,3))*pi);

else
sAngle = atan(s(2)/s(1)) + (s(1)<0)*pi + (s(1)>0 && s(2)<0)*2*pi;

end

% Adjustment of angles for the integration
if vAngle > sAngle

sAngle = sAngle + 2*pi;
end

% Computation of the Voronoi tensor measure contributions from
% the current R-bounded Voronoi vertex

integrals0Ice = ints0Ice(vAngle,sAngle,R); % Integral calculated for
% all component terms where s = 0 for inner Voronoi vertices
integrals11Ice = ints11Ice(vAngle,sAngle,R);
integrals12Ice = ints12Ice(vAngle,sAngle,R);

% r = s = 0
componentVR00 = componentVR00 + integrals0Ice;

% r = 2, s = 0
componentVR20(1) = componentVR20(1) + x1^2*integrals0Ice;
componentVR20(2) = componentVR20(2) + x2^2*integrals0Ice;
componentVR20(3) = componentVR20(3) + x1*x2*integrals0Ice;

106 Documentation of Minktensor2D

% r = 0, s = 2
componentVR02(1) = componentVR02(1) + ints211Ice(vAngle,sAngle,R);
componentVR02(2) = componentVR02(2) + ints222Ice(vAngle,sAngle,R);
componentVR02(3) = componentVR02(3) + ints212Ice(vAngle,sAngle,R);

% r = 0, s = 1
componentVR01(1) = componentVR01(1) + integrals11Ice;
componentVR01(2) = componentVR01(2) + integrals12Ice;

% r = 1, s = 0
componentVR10(1) = componentVR10(1) + x1*integrals0Ice;
componentVR10(2) = componentVR10(2) + x2*integrals0Ice;

% r = 1, s = 1
componentVR11(1) = componentVR11(1) + x1*integrals11Ice;
componentVR11(2) = componentVR11(2) + x2*integrals12Ice;
componentVR11(3) = componentVR11(3) + 0.5*(x1*integrals12Ice + ...

x2*integrals11Ice);

% Connection type 0 (line segment)

else
% Constants for computing the Voronoi tensor measure contribution
% from the current R-bounded Voronoi vertex

normV = norm(v);
u = v/normV;
v = [-u(2) u(1)];
s0 = dot(s,u);
t0 = dot(s,v);
xs = dot([1 0],u);
xt = dot([1 0],v);
ys = dot([0 1],u);
yt = dot([0 1],v);

integrals0Triangle = ints0Triangle(s0,t0,normV);
integrals1xTriangle = ints1Triangle(s0,t0,normV,xs,xt);
integrals2yTriangle = ints1Triangle(s0,t0,normV,ys,yt);

% r = s = 0
componentVR00 = componentVR00 + integrals0Triangle;

% r = 2, s = 0
componentVR20(1) = componentVR20(1) + x1^2*integrals0Triangle;
componentVR20(2) = componentVR20(2) + x2^2*integrals0Triangle;
componentVR20(3) = componentVR20(3) + x1*x2*integrals0Triangle;

% r = 0, s = 2
componentVR02(1) = componentVR02(1) + ...

ints2XXTriangle(s0,t0,normV,xs,xt);
componentVR02(2) = componentVR02(2) + ...

ints2XXTriangle(s0,t0,normV,ys,yt);
componentVR02(3) = componentVR02(3) + ...

ints2XYTriangle(s0,t0,normV,xs,xt,ys,yt);

% r = 0, s = 1
componentVR01(1) = componentVR01(1) + integrals1xTriangle;
componentVR01(2) = componentVR01(2) + integrals2yTriangle;

% r = 1, s = 0
componentVR10(1) = componentVR10(1) + x1*integrals0Triangle;
componentVR10(2) = componentVR10(2) + x2*integrals0Triangle;

% r = 1, s = 1
componentVR11(1) = componentVR11(1) + x1*integrals1xTriangle;
componentVR11(2) = componentVR11(2) + x2*integrals2yTriangle;
componentVR11(3) = componentVR11(3) + ...

0.5*(x1*integrals2yTriangle + x2*integrals1xTriangle);

end
end

end

BIBLIOGRAPHY

[1] Adrian Baddeley and Eva B.V. Jensen. Stereology for statisticians. CRC Press, 2004.

[2] Adrian Baddeley, Ege Rubak, and Rolf Turner. Spatial point patterns: Methodology
and applications with R. URL http://www.crcpress.com/Spatial-Point-Patterns-
Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/.

[3] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS), 22
(4):469–83, 1996.

[4] Claus Beisbart, Marconi S. Barbosa, Herbert Wagner, and Luciano da F. Costa.
Extended morphometric analysis of neuronal cells with Minkowski valuations. The
European Physical Journal B-Condensed Matter and Complex Systems, 52(4):531–46,
2006.

[5] Frédéric Chazal and David Cohen-Steiner. A condition for isotopic approximation.
Graphical Models, 67(5):390–404, 2005.

[6] Sabrina Tang Christensen. Minktensor2D for MATLAB. URL https://gist.github.
com/SabrinaGeggie/08634a26664ed7e17344422d42293a6b.

[7] Sabrina Tang Christensen and Andrew Allan du Plessis. Reconstruction of topology
from digitisations of r-regular sets in R3. In preparation, 2016.

[8] Sabrina Tang Christensen and Markus Kiderlen. Comparison of two global digital
algorithms for Minkowski tensor estimation. CSGB Research Reports, (10), July 2016.

[9] Ulrich Clarenz, Martin Rumpf, and Alexandru Telea. Robust feature detection and
local classification for surfaces based on moment analysis. IEEE Transactions on
Visualization and Computer Graphics, 10(5):516–24, 2004.

[10] Andrew Allan du Plessis. On the reconstruction of r-regular curves in 2D. In pre-
paration, 2016.

[11] Andrew Allan du Plessis. Notes on r-regularity. Notes handed out from supervisor
to the author, 2016.

[12] Pedro Duarte and Maria Joana Torres. Smoothness of boundaries of regular sets.
Journal of mathematical imaging and vision, 48:106–13, 2014.

[13] Herbert Federer. Curvature measures. Transactions of the American Mathematical
Society, 93(3):418–91, December 1959.

[14] Richard Guy. Unsolved problems in number theory, volume 1. Springer Science &
Business Media, 2013.

[15] Allen Hatcher. Algebraic topology. Cambridge University Press, 2001.

[16] Morris W. Hirsch. Differential Topology. Springer-Verlag, 1976.

[17] Heinz Hopf. Vektorfelder in n-dimensionalen Mannigfaltigkeiten. Matematische An-
nalen, 96:225–50, 1927.

[18] Daniel Hug and Rolf Schneider. Local tensor valuations. Geometric and Functional
Analysis, 24(5):1516–64, 2014.

107

http://www.crcpress.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/
http://www.crcpress.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/
https://gist.github.com/SabrinaGeggie/08634a26664ed7e17344422d42293a6b
https://gist.github.com/SabrinaGeggie/08634a26664ed7e17344422d42293a6b

108 Bibliography

[19] Daniel Hug, Markus Kiderlen, and Anne Marie Svane. Voronoi-based estimation of
Minkowski tensors from finite point samples. CSGB Research Reports, (06), April
2016.

[20] Martin N. Huxley. Integer points, exponential sums and the Riemann zeta function.
Number theory for the millennium, II (Urbana, IL, 2000), pages 275–90, 2002.

[21] Sebastian C. Kapfer, Walter Mickel, Fabian M. Schaller, Markus Spanner, Christian
Goll, Tomoaki Nogawa, Nobuyasu Ito, Klaus Mecke, and Gerd E. Schröder-Turk.
Local anisotropy of fluids using Minkowski tensors. Journal of Statistical Mechanics:
Theory and Experiment, 2010(11):P11010, 2010.

[22] Reinhard Klette and Azriel Rosenfeld. Digital geometry: Geometric methods for di-
gital picture analysis. Elsevier, 2004.

[23] John M. Lee. Introduction to Smooth Manifolds, volume 218. Springer, second edition,
2013.

[24] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. 21(4):163–9, 1987.

[25] MATLAB. Version 9.0.0.341360, Release 2016a. The MathWorks, Inc., Natick,
Massachusetts, United States.

[26] Quentin Merigot, Maks Ovsjanikov, and Leonidas Guibas. Voronoi-based curvature
and feature estimation from point clouds. IEEE Transactions on Visualization and
Computer Graphics, 17(6):743–756, 2011.

[27] John W. Milnor. Topology from the differentiable viewpoint. The University Press of
Virginia, Charlottesville, 1965.

[28] Sebastián Montiel, Antonio Ros, and Donald G Babbitt. Curves and surfaces,
volume 69. American mathematical society Providence, 2005.

[29] Joachim Ohser and Frank Mücklich. Statistical Analysis of Microstructures in Ma-
terials Sciences. Wiley, New York, 2000.

[30] Theo Pavlidis. Algorithms for graphics and image processing. Springer-Verlag Berlin
– Heidelberg, 1982.

[31] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-
project.org/.

[32] Rolf Schneider. Convex bodies: The Brunn-Minkowski Theory. Cambridge University
Press, second expanded edition edition, 2014.

[33] Rolf Schneider and Wolfgang Weil. Stochastic and Integral Geometry. Springer-Verlag
Berlin Heidelberg, 2008.

[34] G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, M.A. Klatt, F.M. Schaller, M.J.F. Hoff-
mann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, et al. Minkowski tensor
shape analysis of cellular, granular and porous structures. Advanced Materials, 23
(22-23):2535–53, 2011.

[35] Gerd E. Schröder-Turk, Walter Mickel, Matthias Schröter, Gary W. Delaney, Mo-
hammad Saadatfar, Tim J. Senden, Klaus Mecke, and Tomaso Aste. Disordered
spherical bead packs are anisotropic. EPL (Europhysics Letters), 90(3):34001, 2010.

[36] Jean Serra. Image analysis and mathematical morphology, volume 1. Academic Press,
Inc., 1982.

[37] Peer Stelldinger and Ullrich Köthe. Towards a general sampling theory for shape
preservation. Image and Vision Computing, 23(2):237–48, 2005.

[38] Peer Stelldinger, Longin Jan Latecki, and Marcelo Siqueira. Topological equivalence
between a 3D object and the reconstruction of its digital image. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(1):126–40, 2007.

https://www.R-project.org/
https://www.R-project.org/

Bibliography 109

[39] Anne Marie Svane. Estimation of Minkowski tensors from digital grey-scale images.
Image Anal. Stereol., 34:51–61, 2015.

[40] Martina Zähle. Integral and current representation of Federer’s curvature measures.
Archiv der Mathematik, 46(6):557–567, 1986.

INDEX

| · |, 1
〈 · , · 〉, 1
∠abc, 48
dnc, 69

(w), 90
(w), 90

Ar, 2
arc(x), 90
Av, 65
B0, 87
Bis(x), 44
Bos(x), 44
Br, 3
Bnr (x), 3
C, 9
cl(A), 3
Cv, 65
C(X), 9
∂A, 3
δA, 2
δA(x), 2
∂Cv, 65
dL, 1
Dv, 65
Exo(A), 3
H1, 34
IdX , 14
inner(A0), 89
int(A), 3
IsR(x), 89
χ, 15
κj , 26
Ks(k), 65
Ks(X), 70
ΛI, 71
ΛII, 71
L(C, r), 50
line(x), 90
Λk(A; ·), 26
Λdnc, 71
Lv, 65
Ma(A), 3
Mr,s
R0,...,Rn

, 27
Nr,s
R0,...,Rn−1

, 30
N(x), 45
ωj , 26
outer(A0), 89
pA(x), 2
Φr,sk (A), 26
Φ̂r,sk (A0), 27
Φ̃r,sk (A0), 30
Φr,0n (A), 26
Φ̃r,0n (A0), 30
P, 32
Pr(T), 50
R2, 31

R3, 29
R(C, r), 50
Reach(A), 3
Res(Φ̂r,sk (A0)), 37
Rn, 1
S(L, r), 47
Sn−1, 3
Tp, 25
Unp(A), 2
Us, 44
Us(X), 44
U is, 44
U is(X), 44
Uos , 44
Uos (X), 44
ṼA0

(x), 89
VA0

(x), 1
VdL(l), 1
Vk(A), 26
V(l), 1
Vr,sR (A), 26
Z, 1

Absolute residual, 37
Adjacency of voxels, 8
Adjacent locus segments, 66
Ambient isotopy, 14
Annulus, 65

Black voxel, 2
Black-and-white reconstruction, 2
Boolean model, 35
Border point of digitisation, 88
Boundary cell, 8
Boundary of set, 3
Bounded Voronoi cell, 89
Bump function, 21

Cardinality, 88
Cell adjacency of voxels, 8
Centre disc, 65
Centre disc of dnc, 71
Centre locus, 65
Circumcircle, 50
Closed ball, 3
Closure of set, 3
Configuration, 8
Convex hull, 63
Critical cell, 8
Cubic dilation, 70
Cubic lattice, 1

Diffeomorphism, 14
Digital reconstruction, 2
Digital reconstruction of boundary, 11
Digitisation, 1
Disc of vertex, 65

111

112 Index

Disc of wedge, 66
Distance function, 2

Edge-adjacent locus segment, 66
Embedding, 14
Erosion of a set, 9
Euclidean norm, 1
Euclidean space, 1
Euler characteristic, 15
Exoskeleton, 3

Generalised curvature measure, 26
Genus, 15
Greyscale images, 2

Hausdorff measure, 34

Identity mapping, 14
Immersion, 14
Inner point of a digitisation, 2
Inner product on Rn, 1
Interior of set, 3
Intrinsic volume, 26
Isotopy, 14
Isotopy extension theorem, 16

k-cell, 8

Lattice, 1
Lattice distance, 1
Lens, 50
Linking number, 53
Lipschitz constant, 45
Lipschitz continuous function, 45
Locus of ∂W , 66
Locus of dnc, 71
Locus of vertex, 65
Locus of wedge, 66
Locus segment, 66

m-piecewise injective path, 54
Medial axis, 3
Metric projection, 2
Minkowski tensor, 26
Minktensor2D, 41
Minktensor2D2R, 31
Minktensor2D3R, 29
Multigrid convergence, 27

Nearest point, 2
Non-critical boundary vertex, 65
Non-empty components, set of, 9

Octant of coordinate system, 63
Outer point of digitisation, 88

Parallel set, 2
Piecewise injective path, 54
Pixel, 1
Pixel reconstruction, 2
Positive reach, 3

Quasi-manifold, 11

r-fold tensor product, 26
r-homeomorphic sets, 7
r-lens, 50
r-parallel set, 2
r-regular set, 3
r-spindle, 47
R-bounded Voronoi cell, 28
Reach of a set, 3
Reconstruction, 2
Reconstruction of boundary, 11
Reduced r-lens, 50
Reduced lens, 50
Residual, 37
Resolution of a digitisation, 1
Retraction, 48

Sampling point, 1
Semi-outer points of digitisation, 88
Separating surface, 15
Set boundary, 3
Set closure, 3
Set erosion, 9
Set interior, 3
Set of non-empty components, 9
Set with positive reach, 3
Smooth centre disc of dnc, 71
Smooth locus of dnc, 71
Smooth submanifold, 14
Sphere with g handles, 15
Spindle, 47
Surface, 11
Surface area of unit sphere, 26
Surface classification, 15
Surface tensors, 26
Symmetric tensor product, 26

Tensor of rank p, 25
Tensor product, 26
Topologically regular set, 3
Torus, 3
Type I locus segment, 66
Type II locus segment, 66

Unique inner ball of r-regular set, 44
Unique outer ball of r-regular set, 44
Unit ball volume, 26
Unit sphere, 3
Unit sphere surface area, 26

Volume of unit ball, 26
Volume tensor, 26
Voronoi cell, 1
Voronoi reconstruction, 2
Voronoi tensor measure, 26
Voxel, 1
Voxel colouring, 2
Voxel configuration, 8
Voxel reconstruction, 2, 8

Wedged (voxel) reconstruction, 13
Wedged reconstruction, boundary, 13
White voxel, 2

	English résumé
	Dansk resumé
	Preface
	Acknowledgements
	1 Introduction
	2 Digital reconstruction of r-regular surfaces
	2.1 The voxel reconstruction
	2.2 Components of the voxel reconstruction
	2.3 Topology of reconstructions
	2.3.1 Quasi-manifold properties
	2.3.2 Wedged reconstruction of r-regular surfaces
	2.3.3 Topological equivalence

	2.4 Components of the wedged reconstruction
	2.5 The vector field xi
	2.5.1 A first suggestion for a vector field
	2.5.2 Smoothing and transversality
	2.5.3 Definition of the vector field

	2.6 Discussion

	3 Comparison of two global algorithms for Minkowski tensor estimation
	3.1 Minkowski tensors
	3.2 Minkowski tensor estimation from n+1 parallel sets
	3.2.1 The Voronoi tensor measures
	3.2.2 Estimators of Minkowski tensors from digitisations
	3.2.3 Implementation in dimension two

	3.3 Minkowski tensor estimation from n parallel sets
	3.4 Simulations
	3.4.1 Choices of radii
	3.4.2 Influence of resolution on the quality of estimators

	3.5 Discussion

	A Supporting results of chapter two
	A.1 Definitions and basic results
	A.2 Some geometry of r-regular sets
	A.3 Configurations of points and regularity in R
	A.4 Quasi-manifold properties

	B Technical arguments of Chapter 2
	B.1 Definition of the wedged reconstruction
	B.2 The smoothed reconstruction
	B.2.1 Loci and annuli
	B.2.2 Smoothing of the loci and annuli
	B.2.3 Smoothing of the centre discs
	B.2.4 Smoothing of wedges

	B.3 Construction of the vector field
	B.3.1 Cubic dilation
	B.3.2 A direction field on the cubic dilation

	C Test sets: Tensors and digitisations
	C.1 Calculation of tensors
	C.1.1 The disc
	C.1.2 The annulus
	C.1.3 The complement of a Boolean model

	C.2 Digitisation of the test sets

	D Documentation of Minktensor2D
	D.1 Worked example: Minktensor2D
	D.2 Documentation of the programme
	D.2.1 Structure of the .m-files
	D.2.2 Lattice distance as unity
	D.2.3 Optimising computations of Voronoi cells
	D.2.4 Calculation of the Voronoi tensor measures

	D.3 MATLAB-code for Minktensor2D

	Bibliography
	Index

