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Abstract

Motivated by applications in local stereology, a new rotational Crofton formula
is derived for Minkowski tensors. For sets of positive reach, the formula shows
how rotational averages of intrinsically defined Minkowski tensors on sections
passing through the origin are related to the geometry of the sectioned set.
In particular, for Minkowski tensors of order j — 1 on j-dimensional linear
subspaces, we derive an explicit formula for the rotational average involving
hypergeometric functions. Sectioning with lines and hyperplanes through the
origin is considered in detail. We also study the case where the sections are not
restricted to pass through the origin. For sets of positive reach, we here obtain
a Crofton formula for the integral mean of intrinsically defined Minkowski
tensors on j-dimensional affine subspaces.

Keywords: integral geometry, sets of positive reach, Minkowski tensors, local
stereology

1 Introduction

In local stereology, rotational averages of measurements on sections through fixed
points are considered [13]. Local stereology is applied in optical microscopy which
allows virtual sections to be generated through reference points in a tissue block.
A typical example is optical sectioning through the nucleus of a biological cell. A
technical advantage of such sectioning in biological material is that the boundary of a
central section is often much more clearly visible than the boundary of a peripheral
section. Local stereology is by now recognized as being a very powerful tool in
biomedicine, especially in neuroscience and cancer grading.

Motivated by applications in local stereology, we study in the present paper
functionals W defined on a set of positive reach X by

U(X) = /M U, (XNL)dL, (1)

where E? is the space of all j-dimensional linear subspaces in R?, ¥} is a functional
on the sets X N L and dL is the element of the rotation invariant measure on £?.
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Such functionals arise in local stereology where W (X N L) is observed on a random
section L, distributed according to a normalized version of the rotation invariant
measure. Then, (1) implies that the mean of W, (X N L) is, up to a known constant,
equal to U(X).

For the fundamental case where ¥ is one of the intrinsic volumes, an explicit
expression for W(X) was determined under weak regularity conditions in [14], see
also [3]. In particular, explicit expressions for ¥(X) are available in the case where
U, is volume and surface area in L. In the present paper, we will generalize this
result by applying (1) to a general class of functionals W that contains Minkowski
tensors on L of arbitrary rank. The intrinsic volumes are Minkowski tensors of
rank 0. Minkowski tensors of rank 1 or higher contain important information about
position, shape and orientation. The particular case where ¥, is a volume tensor
was treated in [2, (10) and Proposition 5.3]. In the present paper, we treat explicitly
the case of surface tensors.

We also study functionals of the form

U(X) = [54 V(X NE)dE, (2)

where 5]‘-1 is the space of all j-dimensional affine subspaces in R%, ¥ is a functional
on the sets X N E and dF is the element of the motion invariant measure on 5]‘-1.

Functionals of the form (2) are well studied in the literature. In the case where
U is an intrinsic volume, ¥ is again an intrinsic volume. This is the classical Crofton
formula. The case of Minkowski tensors has been treated in [11]| while very general
formulae are derived in [19]. Recently, Hug and Weis [12]| have studied the case where
V(X N E) is substituted by a tensor-valued measure.

In the present paper, we consider the case where Vg is an arbitrary Minkowski
tensor. Using the basic theorems in [19], we show for an arbitrary set X of positive
reach that the functional ¥ in (2) is a linear combination of Minkowski tensors. The
same formulae are obtained for total measures in the Crofton formulae for tensor-
valued measures, derived for convex bodies in [12].

The paper is structured as follows. In Section 2, definitions and basic notation
used for Grassmann manifolds, generalized curvature measures, Minkowski tensors,
and hypergeometric functions are shortly summarized. The rotational integral for-
mulae of the type (1) are derived in Section 3, while some affine counterparts of the
type (2) may be found in Section 4. Proofs are deferred to an Appendix.

2 Notation and definitions

We first introduce some relevant notation and definitions that we are going to use
throughout the paper.

2.1 Grassmann manifolds

Let E? denote the Grassmannian consisting of j-dimensional linear subspaces of RY.
The measure we consider on E;-l is the rotation invariant measure, which is unique up
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to a constant. More specifically, the measure is the j(d — j)-dimensional Hausdorff
measure on L'f considered as a subspace of the vector space /A i R? by identifying
L e E? with v; A --- Aw; for any oriented orthonormal basis vy, ..., v; spanning L,
see |5, Chapter 1|. This measure has total measure given by

. (d—i d O’d...o-df‘]Jrl
Cay = M (d) = T TdinL
0']-..-0'1

Y

see [, 3.2.28]. Here, H™ denotes the m-dimensional Hausdorff measure and
o) = 212 )T (k/2) = HEL(SFY)

is the surface area of the (k — 1)-dimensional sphere. By convention ¢, = 1.

For L € E;ﬂl and x ¢ L, we let L* € Ej-l denote the linear subspace spanned
by L and x. We let p(z|L) be the orthogonal projection of x onto L and m(x|L) =
p(z|L)/|p(z|L)| € S41 its normalization. Similarly, if v is a vector, we write p(z|v)
for the projection of = onto the line through the origin spanned by v and 7 (z|v)
for its normalization. If L C R? is a linear subspace of R? of dimension larger than
J, then EJL denotes the space of j-dimensional linear subspaces of L. If v € R? is
a non-zero vector, then LY denotes the set of j-dimensional linear subspaces of R
containing v.

Given two subspaces L; € L4 and L, € Lf, we define the generalized sine
function G(L;, L) as follows. An orthonormal basis for L; N Ly is extended to an
orthonormal basis for L; and one for L;. Then, G(L;, Ly) is the volume of the
parallelepiped spanned by all these vectors. In particular, G(Lq_1, Ly) = |p(n|L)|,
where n is a unit normal of L;_;.

Let v € R? and assume v # 0. Consider the function

h:LN{LeL!|vlL}— St

mapping L to w(v|L). Then, the (d — 1)-Jacobian (see [5]) was computed for L with
v¢ Land v ¢ Lt in |19, Lemma 4.2] to be

[p(ol LYY
|p(v|L)|) '

This allows us to apply the coarea formula to a bounded measurable function f :
E;l — R as follows

Juh(L) = (

_ 1_<uvv>2 1%] ”
. F(L)dL = /5 s (W) /E - FMY dM du. (3)

Here, dL denotes the element of the rotation invariant measure on E? while du is the
element of the (d — 1)-dimensional Hausdorff measure on S9!, We will also make
repeated use of the following integration formula, see e.g. [8, Lemma 1.3.1],

f(u)duz/ /lf(w+\/1—t2w)(1—t2)dzg dt dw, (4)
gd-1 Sa-1mpt J—1
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where v € S%! is any unit vector.

Finally, we let 8]‘-1 denote the affine Grassmannian consisting of j-dimensional
affine subspaces of R%. The element of the motion invariant measure on £ jd is denoted
by dE where for E = L +y with y € L+ we have dE = dydL. If L C R? is a j-
dimensional linear subspace, we denote by S7~!(L) the unit sphere in L and ¥ =
LxS71(L). Similarly, if E = L+y is an affine subspace, we write S7~1(E) = S771(L)
and XF = E x ST7Y(E).

2.2 Generalized curvature measures

The reach of a closed set X C R? is the supremum of all R satisfying that every
point x at distance less than R from X has a unique closest point in X. We denote
this closest point by py(z) € X. The space of non-empty compact sets in R? (resp.
E e 5]4) having positive reach will be denoted by PR? (resp. PR(E)). Similarly, let
K? (resp. K(E)) denote the set of non-empty compact convex subsets of R? (resp.
Ee Ef). All convex sets have infinite reach, so K¢ C PRY.

For X € PR, the generalized curvature measures Ap(X; -), k=0,...,d — 1,
are measures on . They were introduced for sets of positive reach in [25], see also
[20] in the case of convex sets, and they satisfy the following local Steiner formula

d—1
Hd<:c € R? ‘ 0<d(z,X) <e, (px(2), é:iig‘) € A) = ng*k/ﬁdkak(X;A%
k=0
for any Borel set A C ¥ and ¢ smaller than the reach of X. The so-called intrinsic
volumes are obtained as Vi (X) = Ap(X; %), k=0,...,d— 1.
The generalized curvature measures can be described explicitly as follows. For
X € PRY, the unit normal bundle nor X of X is the set of support elements, i.c.
the set of pairs (x,n) for which z is a boundary point of X and n is an outer unit
normal of X at x. More specifically,

nor X = {(Jc, é:i') eERI xSy ¢ X, px(y) :x}.

This is a (d — 1)-rectifiable set. A basis for the tangent space of nor X at (x,n) is
given by the vectors

<,/1+,:i($’n)2ai(xvn)a \/%ai(x,n)), 1=1,...,d—1, (5)

where a;(x,n) are the principal directions at (z,n) corresponding to the principal
curvatures k;(z,n), i = 1,...,d — 1. Integration of a locally bounded measurable
function ¢ : ¥ — R with respect to Agx(X; -) is then given by

/E (e, m) Ap(X; d(x,m) (6)

1 Hie[ Ki(T,n) d—1
E xr,n 'H dZL',TL .
it s " 2 T )




If X € PR(E) for some E € £, there are also generalized curvature measures
relative to E, denoted AF (X -). These are measures on %% satisfying the analogue
of the local Steiner formula in F

j—1

Hj(x eEE|0<d(z,X)<e, (px(x) z—px(z) ) € A) = Zsj_kmj_kAE(X;A),

" |lz—px (@)

where A C ©.F is a Borel set and ¢ is smaller than the reach of X.
We are going to consider families of valuations \If}f 5 on PR(E) of the following
form. For X € PR(E),

\Iﬂlf,E(X> - ¢(Ea$7n) Af(X,d(x,n)), (7>

»E

where 9 : Z/{;l — R is a function on

U = {(E.z,n) € & xR x $71 | (z,n) € T} (®)

J

To ensure integrability, we assume that ¢ is measurable and locally bounded.

2.3 Minkowski tensors

We are particularly interested in a special case of (7), known as the Minkowski
tensors. To define these, we let T? be the vector space of symmetric tensors of rank
p € Ny on R? The volume tensors are defined for X € PR and p € Ny by

(X)) = /Xxp dz € T?,

where 2P is the tensor product of p copies of x. The integration is to be understood
coordinatewise. The integral geometry of volume tensors is well understood [2, 11,
18, 26|, so this paper will focus on the remaining Minkowski tensors. These are
defined for r,s € Ny and 0 < k < d — 1 as follows

Od—

() = — Tk / 2 Ap(X;d(x,m)) € T, (9)
r1slog_kts Jx

where £"n® denotes the symmetric tensor product of r copies of x and s copies of n.

The tensors in (9) are sometimes called surface tensors. Using (6) coordinatewise,

we also have

1 ; il T, _
Py (X) = 57— / ot Y Wier ml®n) 014z, ),
T!S!O-d—k-i-s nor X I|=d—k—1 HZ \/ 1+ ’ii('ra n)2

If X € PR(E), we can replace ¥ and Agx(X; -) by X¥ and AP(X; - ) in (9). The
resulting tensors are thus defined relative to E (i.e. intrinsically defined) and are
denoted by % (X).

In the literature, Minkowski tensors are usually only considered for X € K¢, but
since both the definition and the results of this paper hold for sets of positive reach,
satisfying mild regularity conditions, we will be working in this generality.
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We let Q € T? denote the metric tensor Q = ZZ L V2, where vy,...,vq Is an
orthonormal basis of R?. Similarly, for L € L’;l we define the metric tensor on L by
QL) = j _, w?, where wy, ..., w; is any orthonormal basis for L.

The Mlnkowski tensors, considered as functionals on K¢ with values in T"+*,
have the following properties:

(i) Continuity with respect to the Hausdorff metric on K¢

(ii) Isometry covariance: (X 4+ ¢) = >, orys—i(X)t! for all ¢ € RY, and for any
rotation 6 € SO(d), ,°(0X) = 09,°(X) (see [10] for details).

(iii) Valuation property: If X;, X5, X; U X5 € K%, then
O (X1) + B (Xp) = (X1 U Xo) 4+ B (X1 N Xo).

According to Alesker’s classification theorem [1], all tensor-valued functionals with
the properties (i)-(iii) are linear combinations of the tensors Q'®)"(X).

The Minkowski tensors can be viewed as the total measures of the tensor valued
measures given for X € PR on a Borel set A C ¥ as follows

(X A) = ,(,7#/ Li@meayzn® Ap(X;d(z, n)).
r8:0d—k+s Jx

These measures are called the local Minkowski tensors. In the classification of local

tensor valuations on K¢, some new tensor measures @7,;’8’1 with very similar properties

were discovered |9, 10]. These are the so-called generalized local Minkowski tensors

given by ([10, (2.38)])

(X A)

1 r.s 161 d—1
T!S!Ud—k—l—s/norXﬁAxn I|;€ L \/1+,{ Zazscn )" HT (d(,n))
for k € {1,...,d =1}, r;s > 0, and A C ¥ a Borel set. We let CDZ’S’I(X) =
dp>'(X;¥). Although the local Minkowski tensors Q'®p°, 21 + r + 2 = p, and
the generalized local Minkowski tensors Q'®;"!, 21 +7+s+2 = p, are linearly inde-
pendent, there are linear dependences between their total measures, as the following
proposition shows.

Proposition 2.1. Let X € PR, r >0, and s > 2. Then

O X) = QO A(X) — 2ms @y (X). (10)
For1<k<d-2,
s—1
o) = - 1 0 - 0w )
1=0
and ,
@Z,S—zl QZ@Z_,’_ZIS 2+l _ Z27T<$ + l)@;;_:l 8+I(X). (12)
1=0
In particular,
O THHX) = QO TH(X) — 2ms D (X). (13)
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For X € K% the results in Proposition 2.1 were observed in [9, Remark 4.1]
(referring to computations in [11]). In the Appendix, it is shown that the definition
of CDZ’S’l makes sense and Proposition 2.1 holds more generally for sets of positive
reach.

We end the discussion of tensors by defining the contraction of two tensors 17" €
T+ and S € T" as follows: If S = v; ® -+ ® v,, where ® denotes the symmetric
tensor product, then the contraction Contr(7,S) of 7" and S is an element of T*
given by

Contr(T,v, @ -~ ©uv.) () =T(v1,...,0p, - ),

where T is identified with its dual map (R?)"** — R. This is extended to all S by
linearity.

2.4 Hypergeometric functions

Hypergeometric functions show up in many of the formulae below. We therefore re-
call some basic definitions and properties here. More information can be found in [22]
or [23]. The hypergeometric function ,F; has p+¢q parameters ay, ..., ap, b1, ..., b, €
R and is given by the power series expansion

=T (a:), 2
qu(al,...,ap;bl,...,bq;z):ZM— z € R,

n=0
where the Pochhammer symbol is defined by
~ T(a+n)

=TI

=a-(a+1)---(a+n—-1)

when n is a positive integer and (a)g = 1. We shall only need the case p = ¢ + 1.
Then ,F, has convergence radius at least 1 and converges absolutely at z = 1 if
> iai— > ;b > 0. If some b; <0 is an integer (and b; is maximal among by, ..., b,
with this property), then ,F, is undefined unless there is an integer 0 > a; > b;, in
which case we define

n

— H?(ai)nz
F(al...a'bl...b'z)zg ——
p-q ) ) YDy ) s Vg q

(This interpretation seems to be non-standard when a; = b;, but we include this
case to simplify notation later).

The most important case is p = 2 and ¢ = 1, where we have the following integral
representation for 0 < b < ¢

—F(b)?i?_ 3 /0 (1—zt) " (1 — )" .

We will also need Gauss’s hypergeometric theorem

I'(e)l'(c—a—Db)
I'(c—a)l'(c—10)’

2F1((1, b; c; Z) =

2Fi(a,b;c;1) = (14)

which holds whenever ¢ > a + b.



3 Rotational Crofton formulae

3.1 A general rotational formula

In this section, we consider rotational integrals of the form

U(X) = /m Uy (XNL)dL, (15)

where X € PR is a set of positive reach, \Iff ;, 1s a functional on PR(L) of the
form (7),and 0 < k < j < d.

—d
We will restrict ourselves to the class PR consisting of sets X of positive reach,
satisfying:

(i) o ¢ 0X.

(ii) For almost all L € £J, there is no (x,n) € nor X with z € L and n perpendic-
ular to z.

According to [6, Theorem 4.10], the condition (ii) ensures that X N L has positive
reach for almost all L and hence the integrand in (15) is defined almost surely. The
condition (i) is discussed in Remark 3.2 below. The restriction to PR is rather mild.
It was thus shown in [14, Proposition 1| that the class PR? contains all convex sets
X satisfying o ¢ 0X. Furthermore, if X € PR?, then almost all translations of X
will belong to PRY. -

Theorem 3.1 below shows that the integral in (15) exists for all X € PR
Moreover, the theorem gives an explicit formula for W(.X). In the special case where
1 is a function of x only, such a formula was already given in [14, p. 558|. To state
the theorem, we introduce for (z,n) € nor X the notation A;(x,n) for the tangent
subspace

Ar(z,n) = span{a;(x,n),i ¢ I},
where I C {1,...,d — 1} and a;(x,n), i =1,...,d — 1, are the principal directions.

Theorem 3.1. Suppose X € 7/7\7/3d. Let 1 : Z/{Jd — R be a locally bounded measurable
function and 0 < k < j < d. Then,

1 1 ; G
/ qlgL(X N L) dl, = _/ — Z d_ll—Lelff (flf n) (16)
ﬁ;_i ’ Oj—k Jnor X |IL‘| J [I|=j—1—k Hi:l \/ 1+ Hi(x7 Tl)2

g(L””,AI(x,‘n))2
p(n|Le)[ "

dL H*Y(d(z,n)).

X /c;ﬁ W(L*, 2, m(n|L"))

In particular, the integral on the left hand side exists.

A proof of Theorem 3.1 can be found in the Appendix. The proof follows the
lines of [14], but avoids the theory of slices. Instead, the area and coarea formulae
are applied directly.



Remark 3.2. Theorem 3.1 does not hold if the assumption (i) is relaxed. As a
simple counterexample, let d = 2, 7 = 1, and £k = 0. Let X be a polygon with a
vertex at o and let ) = 1. Then, \I!KL(X NL)=1for all L € £2 and the left hand
side of (16) becomes ¢o; = w. The inner integral at the right hand side of (16) is
simply |p(n|x)|. Since {(0,n) € norX} has positive measure, the right hand side of
(16) is undefined.

In the special case k = j—1, \If}iL(Xﬂ L) is an integral with respect to the Haus-
Theorem 3.1 shows that the rotational integral W(X) is again an integral with re-
spect to the Hausdorff measure over the normal bundle of X. This is made precise
by the following corollary.

Corollary 3.3. Suppose X € 73\7/€d. Let 1 : L{]d — R be a locally bounded measurable
function and 1 < j < d. Then

/ﬁ ) vy (XNL)dL

1
- /norX |£U|d_j /cxl ¢(Lm,x,w(n|L$))’p(n|Lw)‘ dLAd—1(X;d(:E,n)),

j—1

3.2 Rotational Crofton formulae for Minkowski tensors

If we choose o
Y(L,x,n) = Hj—_k:crns
rlslo; s

in (7), then \Il}f,L is the Minkowski tensor ®;7 in L and Theorem 3.1 becomes a
result concerning the rotational integral of Minkowski tensors.

The special case s = 0 was treated in |2, Proposition 5.3]. For s > 0 and k =
j — 1, the formula in Theorem 3.1 can be given a more explicit expression. This
is shown in the following theorem when j > 1. The case j = 1 is simpler and is
postponed to Section 3.3. To state the theorem, we introduce the following notation

for (z,n) € nor X:

(z,n)?
[z]2

a=a(zr,n) =sin(L(r,n)) =4/1 —
where Z(z,n) is the angle between x and n.

—d
Theorem 3.4. Suppose X € PR and1 < j <d. Then

S ) 0214+d—20 d—1+42b+2c+41

01C4—3,j—
/ @;’fLL(XmL)dL:M (
L"? a+b+c+2l=s

rlislog a,b,c,2l 021410 j—142b+2c+210 d—j+21
l b :L.T+tl+b+2v+t
t+1p c+2q+t
X E —1)7tvthg n .
(p’ 4 t’ U) ( ) Q nor X |$|d7]+a+b+2v+2t

p+q+t+v=Il

X a2 (z, )t By <%7 d—j2+21; d—l+2(;+2c+4l;a2> Mgt (X d(z,n)).

For a = 1, the integrand should be interpreted as the limit when o — 1.
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We remark here that in the case where X is convex and o is an interior point
of X, the situation a = 1 does not occur.

Proof. Corollary 3.3 shows that

/ﬁ @ LX) dL (17)
r Lx 5
_ ' '01 / 'Id_'/ p(L)s,ldLAd_l(X’d(x’nJ)
S8 0s+1 Jnor X |l‘| J L?fl ‘p(n|LI)‘

We compute the inner integral. Write n = n, + n,. where n, = (n,z)x/|z|* is the
projection of n onto z and n,. the projection of n onto x*. Then,

I:= / A p(n|LI)S|p(n\Lx)|1_SdL
EI

j—1

= /£L (nm+p(nx¢|L))s|nz+p(nxL|L)|1_SdL.

x
j—1

If n,1 # 0, we may use (3) and (4) with v = n,1 /|n,.| and find

I = Cd_37j_2/ ﬂ{(u,an_)>0}
Sd*2(ml)

(VPP (et )
( )

<n931- ) u>

1 )
— Cd3,j2/ / tjf2(1 o tQ)dfgfj
Sd=3(zLnnl) JO

y (ns + at(ta n,. + V1 —w))’ 4 d
(1= a?) + a22) 7 ¢

= Cd—3,j-2 Z (a ?) l) ngng.af (18)

a+b+l=s

n. + <nzl,u>u‘s_l

1 .
< / / W] = 0?) 1 a282)'5 (1 — £) 75 dt dw.
Sd=3(zLnnl) Jo

Note that

278420 (2 N nl)é, [ even,
/Sd o L)wl dw= {0 . l odd (19)
—2(x—-MNn ) )

as shown in e.g. [21, (24)], and that

d—j—2

1
Fd,j,s,l,b(ag) — / tj—2+2b+2l((1 B CYQ) + OéZtQ)%(l _ tZ) I—=+1 dt
0

1
_ 1/ (1 _ t)j—3+22b+2l (1 _ a2t) 1;std7j722+2l a
2 Jo
Od—1+2b+41 _ i _
_ +2b+ 2F1(%, d 32+2z; d 1+22b+4l;a2> (20)

Oj—142b4+210d—j42I
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for a < 1. This yields

ag — S
atbral=s 02+ \BO

when « < 1. For aw = 1, only terms with @ = 0 contribute to (18) since n, = 0. This
corresponds to interpreting terms of the form

neFy ()

in (21) as the limit when o — 1. Indeed, this holds for a = 0 because s = b+ 2l in
this case, and hence (14) shows that Fj;s;4(1) is finite. For a > 0, we have

1-s d—j—2+421

(1—a?*t)zt = dt

j—342b+21
2

1
s—b—21
" Fagassle) = (1= o) 55 [ =

s—b—21—-1

/1<1—t>j‘“5”+”(11_oft) Tt gy
0 -«

/1(1—t)j_3‘+btw dt.

0

Our assumptions on j ensure that this converges to 0 when av — 1.

It is easy to check that the formula (21) also holds when n,. = 0 since a = 0
in this case. Finally, we use that n, = (n,z)z/|z|> and ny,. = n — (n,z)x/|z|* to
obtain

[ NI

N — DN

=(1-a?)

<(1-a)?

b
b
n;nZL _ Z < )(_1>bcncxa+bc<n7 x>a+bfc’x|72(a+b7c) (22>

and

ot~ (o (2) - (2))

— Z (p qlv t> (_1)Q+U2ta_2(Q+v+t) <gj7n)t|m|—2v—2tQpn2q+t$2U+t.
p+qt+ut+t=l [ R

Inserting everything in (17) and renaming indices proves the theorem. O

Example 3.5. Let d = 3 and 7 = 2. Previously, explicit formulae for

/L 3 39 (XNL)dL and /E 3 P (X NL)dL

have been given |2, Example 5.2 and 5.4]. Theorem 3.4 opens up for studying the
integrals

/ &7 (X N L)dL
s

for arbitrary s.
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For s = 1, we use that ,F1(0,b;c; %) = 1 and get

/(I){’lL(XﬂL)dL
3
2
_ T242b+2¢ b o et atb :
Sl Z 01+2b+20(_1) Xn \x]d*j+a+b<x’n> Ay (X5 d(z,m))
a+b+c=1 nor

_ 2%(/}( ’T; (2, n) Ao (X d(,n)) +/n0an% AQ(X;d(a:,n)))-

For s = 2, Theorem 3.4 yields the following expression

/[,g PP (X NL)dL = %( > (ai C) (—1)° (24)

a+b+c=2

X ncxr+a+bMF (aQ)A (Xd(x n))
nor X |(1;‘1+a+b 3,2,2,0,b+c o(X; :

+ Z q+v 2t QP

pt+q+t+v=1
042 r,n
X/ Xn2q+txr+2v+t’x|1<+T+;5F32210( Q)AQ(X;d(x,n)))
nor

where Fj;s.p is as in (20). The hypergeometric functions involved can be found
at [23]. If K and E denote the complete elliptic integrals of the first and second
kind, respectively, we get

F32000(a%) = %2F1<%> 51 a2> = K(o?),

Fyo201(0%) = 5213 (5.4,210%) = a72(B(a?) + (o = DK (a?)),

Fyzai0(0?) = 162F1(§,g,3,a2) = 5 (2(0” - DK () - (0 ~ 2)E(0?)),
Fyzp02(0%) = 22F1(4,4,307) = (402 = 2) E(0?) + (30" - 50® +2) K (a%)),

This can be inserted in (24) to simplify the expression, but the functions F(a?) and
K (a?) do not cancel out.

3.3 Thecase j=1

IfL e Lgi then L” is the line spanned by x. Moreover, if x and n are non-orthogonal,

then 7(n|L*) = m Thus, Corollary 3.3 becomes
/ Uy (XNL)dL
Ly

[ [ ) A A s

(z,n)x
1 ¥ span(z), =, 5
nor X

71 ||
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In the special case of Minkowski tensors, this yields

s 1 "z, n)* _
/Ld Py (X NL)dL = —/ T — M (d). (25)

rislog.q |93 |(x, n)|
We remark that if X € K¢ and o lies in the interior of X, then 7(n|L®) = z/|z|, so
(25) simplifies to

T8 1 e d—1
EdCIJO,L(XﬂL)dL —— ———(z,n) H(dx).

B T!S!US-Fl nor X |x|d+5_1

3.4 Thecase j=d—1

In the case j = d — 1, the rotational integral in Theorem 3.1 can also be computed
explicitly. We demonstrate this only for Minkowski tensors (IDZSL with k£ < d— 2 since
the case j =d — 1 and kK = d — 2 is covered by Theorem 3.4. We get

7,8 1 x’ Hz I /ﬁ)i(ﬂf, TL)
/ PpL(XNL)dL = g / oYL mEe——s
Lg_l 7:8:0d—1—k+s Jnor X |.§C| Hi:l 1+ /ii(llﬁ', ’n,)

|I|=d—2—k

% /SH( L)(” — (n,u)u)*[p(ulAr(z,n))][n — (n,w)u[*~ 7 duH* (d(z, 1))

1 S " [Lics wi(2,n)
= _1 bna_ ZEI :
QT!S!Ud—l—k-i—S /norX a%;s (a)( ) |$| Z H?:_ll V 1+ Iii<m7 n>2

|I|=d—2—k

X ZContr (/ (n, u)’u?T2(1 — (n, u>2)kid§175 du, a?) HH(d(z,n)).
5d=2(gL)

il

(26)
If z and n are not parallel, then (4) with v = 7(n|zt) yields

k—d+1—s

/ o 0 ) S

1
= O‘b/ / (1 =127 (tr(nfat) + V1= 2w) (1 = 20?57 dtdw
Sd=3(gLtnnt) J—

1

b+g+1 2p+d—2
_ 2ab Z (b + 2) O2p+d—2 F( 2 )F( 2 )7T(7'L|.TJ_)qQ(fEJ_ N nJ.)p

9 o 2b+d+1

2p+q=b+2 P 2ptl F( 2 )
d—1—k+s btq+l. 2b+1+d. 2

X 2F1( 5 St s e )

If # and n are parallel, the same holds when 7(n|zt) is interpreted as any vector
v €S2 (xt) and Q(nt Nat) as Q(zt Not).

13



When a # 0, we may compute
(b; 2> Contr (n(nls)1Q(a* Nn )P, a?)
_ (g)m\xi)q—?cg(ﬁ At Contr (w(nfa), a)
+ 2pg m(n|zH)I Qe N )P Contr (w(n\xi), ai) Contr (Q(;ﬁ Ant), ai)
44 <12’> w (ol Qe Ny~ Comtr (Q(x* N ), ai>2
+pr(nlat) Qe Nty Contr (Q(e* Nnt), a?), (27)

where negative powers of a tensor are interpreted as zero and

Y

Contr (”(n’-l"L)ﬂO = (r(n|zt),a;) = & m{w, ai)

alz|?

Contr (Q(JJJ‘ Nn'), az-) = plajlz-Nnt) =a; — <x7—ai>7r(:c|nL),

alz|

Contr (Q(xL N nﬂ,a?) = |p(azt Nnh)P=1— (z

This can be inserted in (26) to provide a formula for the rotational integral.

Example 3.6. In dimension d = 3, the simplest example with j =d —1 = 2 and
k<j—1=1Iis <I>T0 To the best of our knowledge, this situation has not been
treated in the literature Using the above computations in this case, we get

w2
Contr (/ — du, a?)
S1(zl) 1-— (n,u)

= 7rContr(Q(:13L Nnt)aFi(L, 3:2;0%) + m(n|at) % Fi(1, 352;07), a?)
<2—2\/1—a2 2(\/1—oz2—1) (x, az>2>
= — :

4

a? a | |2

™

This should be interpreted as 7 when o = 0. The values of the hypergeometric

functions are taken from [23|. Inserting in (26), we get

2

frsonnan=gs [ 53 e
'>2) H2(d(z,n)).
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4 Affine Crofton formulae

4.1 General affine formulae

In this section, we consider for each affine subspace £ € 5;1 a valuation \Il}f  defined
on compact sets of positive reach X C E by

Vi p(X) = | o(B,2,n) AP(X,d(z,n),

»E
0<k<j<d Here¢: L{Jd — R is a locally bounded measurable function, where
U is as in (8).
Suppose X C R? is a compact set of positive reach. It follows from [6, Theo-
rem 6.11 (1)] that for almost all E € £, the set X N E has positive reach and hence

UY (XN E) is well-defined. The integral of ¥ (X N E) with respect to the motion
invariant measure on de is determined in the next theorem.

Theorem 4.1. Let X € PR and 0 < k < j < d. Then,

/ v (X E)dE = — / Z [Ligy i, ) (28)
g Tj—k Jnor X | — 1L V1 +ri(z,n)?

G(L, Ar(z,n))?
P N T

For k= j — 1, this can be simplified to

dL H*(d(z, n)).

[oueceneae= [ [ w@amamln)lpein)] dL e (X))
EJ‘?Z nor X llc.l

Proof. 1t follows from [19, Theorem 3.1] that

£ Uj ket Jnor x| 57 k L V1 + ki, n)

Q(L, Ar(z,n))?
Ip(n|L)[7—*

since the condition [19, (3.1)] is satisfied for almost all L € £, as noted in the proof
of [19, Theorem 3.5|. One can show, using an argument similar to the one in the proof
of Theorem 3.1 given in the appendix, that Fubini’s theorem can be applied to (29).
This yields (28). The last statement follows because G(L, Ap(z,n)) = [p(n|L)|. O

X (L + x,z,m(n|L)) HH(d(z,n))dL, (29)

In the case where ¥(F,x,n) does not depend on E, the following theorem is
a direct consequence of [19, Theorem 3.5|. To state the result, we introduce the
constant
)

;l( ZE— Ay 0<k<j<d,

d+k—j—1\ (& (&=E
Cd,j,kzcd,j< k] ) ( 2 )

and, given n € S, we let ST '(n) = {z € S | (z,n) > 0} denote the upper
halfsphere determined by n.

(e
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Theorem 4.2. Let X € PRY and 0 < k < j < d. Suppose ¥ : R x S*! - R is a
measurable, locally bounded function. Then,

v Cajk \- [Lics Ki(x, n)
v (X NE)dE = -2 > Z (30)
5;-1 ’ Oj—k Jnor X =1 |I|=j—k—1, H vV 1+ /‘fz x, n

z¢1
X /S( )1/1(9%2*)(1 —(z,n)) 7 (2, n) " 2, a)? de 7 (d(x, n)).

Note that the factor 1/0,_ in (30) also appears in the proof of [19, Theorem 3.5],
but seems to be forgotten in the statement of the theorem.

The approach in [11], using the explicit expression for the curvature measures
for polytopes, also relies on the result in Theorem 4.2 in the special case where X
is a polytope.

If Y(E,z,n) does not depend on E and n, then (30) becomes particularly nice.

Corollary 4.3. Let X € PR? and 0 < k < j < d. Suppose Y(E,z,n) = 1(x) is a
locally bounded measurable function. Then

d+-k— ]+1
3 )( ey Jyr )

/ V(X NE)AE = ¢4 .
g NG
Proof. We find, using (4) with v = n, that
Lo, 0= ) S e ) de
591 (n)

1
:/ tk+1(1—t2)dﬂf / (w, a;)*dw
0 §a-2(n L)

_TEAIN(R) oan
oT (=itht2) (d — 1)

The result now follows from Theorem 4.2. O

Note that for ¢ = 1, Corollary 4.3 reduces to the classical Crofton formula.

4.2 Affine Crofton formulae for Minkowski tensors

By choosing
V(E,z,n) = '?j—ka’"ns
T8.0j—k+s

in Theorem 4.2, we obtain affine Crofton formulae for Minkowski tensors. Such for-
mulae were first given in [11, Theorem 2.5 and 2.6] in the case of convex sets. These
theorems show that the integral of the Minkowski tensors <I>7,;’7‘°’E(K N E) with respect
to the motion invariant measure on 5? is again a linear combination of Minkowski
tensors as one would expect from Alesker’s classification theorem mentioned in Sec-
tion 2.3. However, the constants appearing in the linear combinations are compli-
cated to evaluate. Recently, the results have been generalized and the constants have

16



been simplified in [12]. It is possible to derive the constants in Theorem 4.4 below
directly from the formulae in [11] using the identity (14) or from [12, Theorem 2| by
rearranging terms. The main contribution of our Theorem 4.4 is the generalization
of the formulae to sets of positive reach. Like the results in [11] and [12], the proof
of Theorem 4.4 relies on Theorem 4.2 shown in [19].

Theorem 4.4 is stated, using the tensors @Z’S’I(X ) that were introduced in Sec-
tion 2.3. These tensors can be written as a linear combination of the Minkowski
tensors according to Proposition 2.1.

Theorem 4.4. Let X € PR and 0 < k < j < d. Then

d—1
Cajkm 2

20 4sl (%)

/ O (X A E)dE —
gt
[5]
XD W (4= + RQUETHEX) + 2pQ 0120 (X)),
p=0
where the constants X7 ;. , are given in (31) below.

Using (13), we get the following corollary for » = 0, which was proven for convex
sets in |12, Corollary 1].

Corollary 4.5. Let X € PR® and 0 < k < j < d. Then

d—1
Cajrm 2

T ( d—j+§+k+s )

Ld OYH(X NE)dE =

20—jfk+s
L3)

3 (0= 5+ b+ 20 — Ao+ D5 = 200505, ) Q0% (),
p=0

N[

where the constants xj ;. , are given in (31) below (X ;.. =0 ifp>3).

Proof of Theorem 4.4. Using Theorem 4.2 with

() = I —an,
1810 ks
we find
Cajk H T i
(X NE)IE = __dgk / S -
/5‘]d e T'S|U —k+s Jnor X ; |I| Z Hz \/ ]. + Ii?

z¢1
X / 21— (z,n)) "% (2,n)" (2, )2 dz HE N (d(z, ).
S (n)

We now use that

[, sy
S (n)
= Contr (/ 221 — (z,n)?)”
5471 (n)

J+1

5 <Z n>k+1<

z,a))? dz

J+1

= (z,n)" 1 dz, a?).

17



Applying (4) with v = n, we obtain

[, = ey
S (n)
1 -
:/ / (tn + V1 — 2w)*2(1 — 2) 5tk dt dw
Sd*Q(nJ-) 0

1
_ Z (8 + 2) na/ w2b dw/ (1 _ t2) 2b+d2_j_2 ta+k+1 dt
a Sd=2(nl) 0

a+2b=s+2

_ 542\ Oqpopr D (BT (EH2) L,
= > > a D (EEei2) @,

g
a+2b=s+2 p+q=b 2b+1 2

%(z,mk“ dz

where we have used that

[ an_ fFEQ0 o
§d-2(nL) 0, [ odd,

and that Q(nt) = Q — n?. Since

N~

o\ !
Contr (Qpn“+2q,al2) — (S—; ) p<Qp—1na+2q + 2(p _ 1)Qp—2na+2qal2),
we get
Crip ol b 2
[asenmar= et STy (1) (7] e
&g ' 75:0j—k+s 15 =0 p 20 O2b+1
I k+4+s 2b d j— 2+Zb 8—|—2
X ( d+k ]+8+2 / Z( >
F( nor X
% <Qp71ns+2f2p+2<p_ 1)Qp72ns+272pal)
Hel d—1
x Y d H(d(z, n))
\T|=j—k— 1l§éIH V1K
_ Cd]kﬂ' 2
ngikﬂp(%)
. r,s—2 — r,s—2p,1
XY X s ((d = G 4+ F)QPEL T2 (X) + 2pQP @) T (X))
where
L51-p 241 fe+2+5—2b—2 d—j+2b+2
XZ e = Oj—k+s—2p 22: (_1)b(5_2p>r< ;)F( 2 p)F( ’ 2 p) (31>
Jikss T 92 1/2 2b+2p+d+1
J 22rpll/ — 2b [ (&)
E+2+s—2 d—j+2py L3l-p 5—2 s—2p—1\ (d—j+2
o Uj—k+s—2pF( +J§ p)r( j2+ p) < (_ Tp>b( - 2p )b( ]2 p)b
- 2p+d+1 2p+d+1 k+s—2
pl2zvl () b—o (1)b(pT)b( - Tp)b
d—j+2 k+2+s—2
. Uj—k+s—2pr( j2+ p)r( +J; p) F 2p—s+1 2p—s d—j+2p. 2p—k—s 2p+d+1. 1
= 3472 2 » T2 2 2 ’ 2

pl22D ()
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[]

In the special case k = j — 1, we obtain the following simplification, see also [12,
Corollary 5].

Corollary 4.6. Let X € PR and let 1 < j < d and k = j — 1. Then,

arn [5] p
Cd—2,j—1T 2 Xd—2,j—2,j—1,s qu)r,s—2p(X)
d 1 d—1 3
sl (F55) s—2p—1

/gd o7, (XN E)dE =

J p=0
where X§ o 9 14 15 given in (31) (we interpret 2moy,/m as omio if m=0,—1).

Proof. This follows either directly from Theorem 4.2 using a computation of
[, 20 s
S (n)

or from Theorem 4.4 using the identity [24]

d(d + 1)6(3F2(6L, b,c;d,e; z) — 3Fy(a,b,c;d+ 1 ¢ Z))
=abczsFy(a+ 1,0+ 1,c+ 1;d+2,e + 1;2). ]

4.3 Crofton integrals for spherical harmonics

In the case k = 7 — 1, the Crofton integral has a particularly nice expression in terms
of spherical harmonics. This is analogous to [4, Corollary 6.1].

Corollary 4.7. Let X € PR where d > 3 and let 1 < j<dandk=j—1. Assume
W(E,z,n) = f(x)h(n) where h is a d-dimensional spherical harmonic of degree s.
Then,

/g ) \IJ;P_IE(X NE)AE = ¢q_9; 104-105;a%" | oa(X),

d—1,Rd
where
d—2 . .
RN COIN G
g iy = (—1)™ 2 2 2 F<— 72m+d—2jilld_1’1>’
O0d—102m,j,d ( F(ngdfl)r(%) 3472 m 2 )92 199 9
22" [ (23 1 (4 (££2) .
Jd-1d2m Ljd = (_ " m2 — 2 : 3F2<_m7 2m+d’jﬁ;§’u’1>
. CEE(5) s
Proof. Applying (4) and [8, Theorem 3.4.1|, we get

—j+1 d—j—2

/d_1 (z,n) (1 — (z,n)*) 2 h(z)dzzad_lh(n)/ (1 -3 "2 ¢/ PY¢t)dt,
5S¢ (n) 0

where PY(t) is the Legendre polynomial of dimension d and degree s (with the

notation of [8]). The constants

1 o )
s jd :/ (1 —t2)d’% QtJPSd(t) dt
0
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are computed explicitly in [16, Proposition 3| (with the same notation). A more

compact expression can be found by consulting the integral table [7]. The polynomial
called (Sﬁgg) P% in [8] is here referred to as the Gegenbauer polynomial ol=2/2,

We perform a substitution

1 s 1 /s+d—3\" [ e 1 a2 s
[a-ererma-3 (000 [a-n e vha
0 0

The latter integral can be found in |7, 7.319]. Theorem 4.2 then yields the result. [

Corollary 4.7 has a nice application to Minkowski tensors. It was shown in [4,
Proposition 4.16| that the following tensor of rank s

N|w

L i (d .
(COT(Ehs—1—d) o

HS — : 2 2i i, s—21
() par 4] (s — 21)! Q'

has the property that all its coordinates are d-dimensional spherical harmonics. Re-
placing u® by Hj(u) in the definition of the Minkowski tensors, we get the harmonic
Minkowski tensors

=re(X) = - Tk / " H(n) Ay(X: d(z, ).

Crlslog s
Similarly, for £ € Ejd and X C E we may define

01

= p(X)

/2E z"Hj(n) Af_l(X; d(z,n)).

rlslogiy

The tilde in é;fl (X)) indicates that this is generally not a harmonic tensor when

j =dim E < d since Hj(u) restricted to S77!(E) is not necessarily harmonic.

Corollary 4.8. Let X € PR where d >3 and let 1 < j <d and k =j — 1. Then
/ ) Ens(X NE)E = ayj4c4-2-104-1Z5°1(X). (32)
&

Remark 4.9. The result in Corollary 4.8 resembles [4, Corollary 6.1]. In [4], the
tensors on the left hand side of (32) are computed with respect to the measures
A(X NE, ), ie. with X N E considered as a subset of R? rather than F. In this
setting, a formula like (32) holds for all £ < j — 1 when r = 0. We are able to show
the formula for all » > 0, but only for £ = j — 1. We leave it open whether a similar
formula holds for k < j — 1.

In applications, it is simpler and more natural to consider X N E as a subset
of £ when computing a tensor. On the other hand, the tensor é;flE(X NE) is
not a harmonic tensor on £ and therefore the formula (32) is less natural than the
analogue in [4].
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Remark 4.10. Corollary 4.8 can be used to define an unbiased estimator for the
harmonic tensor =%, (X) if a4 is non-zero. It can be shown that a4 # 0 if and
only if s is even or s = 1. The question whether a, ;4 # 0 for j > 1 is more involved.
It was answered in [16] in certain cases.

Suppose we want to express the Minkowski tensor ®;°, (X) as a Crofton integral.
In the case r = 0 and j = 1, this was done in [17]. In the general situation, we write
®%° (X) as linear combination of the harmonic Minkowski tensors QPZ5" % (X).
This is possible because u® can be written as a linear combination of the tensors
QP H; ™~ (u) (see [4, Proposition 4.10] when r = 0). If the constants a, g, ;4 are non-
zero for all p > 0, then we can use (32) to express ®° (X)) as a Crofton integral.

Appendix

In this Appendix, we present proofs of Proposition 2.1 and Theorem 3.1. Since the
proofs use the theory of normal cycles for sets of positive reach, we first recall the
definition and basic properties. Details can be found in [25].

Let X € PR? be a compact set of positive reach. Then nor X is a compact
(d—1)-rectifiable set. The oriented tangent space at (z,n) € nor X can be identified
with the simple (d — 1)-vector

_ 1 ) Ki(z,m) ) d d—1
ax(x,n) = /\ <—\/Wal(:c,n),—\/mal(x,n)) E/\(R x TS,

1<i<d—1 d—1

where a; and r; are as in (5). If X € PR(L) is considered as a subset of L € L,
then we denote its normal bundle inside ¥ by nor’ X and the tangent (j —1)-vector
field of nor* X by a% € A;_,(TE").

The normal cycle of X € PR%is a (d — 1)-current Nx that acts on a differential
(d —1)-form w in R? x S9! by

Nx(w) = / (ax,w)dH".
nor X

The normal cycle is a cycle, i.e. it vanishes if w is a coboundary.
The Lipschitz-Killing curvature form on R? x S?~! is the (d — 1)-form given in
the coordinates 1, ..., x4, n1,...,nq on R x R? by

1
PE=H0d —k — 1)logs
X Z sgn(a)ng(d) d:L‘U(l) VANERIVAY dxg(k) VAN dng(k_H) VANRIERIVA dng(d_l),

€Sy

where Sy is the group of permutations of {1,...,d} and sgn(o) is the sign of o € S,.
For L € E?, a relative Lipschitz-Killing (j — 1)-curvature form pZ on L x S7=1(L)
is defined in a similar way. Suppose X € PR(L). Integration of a locally bounded
measurable function 1 : £ — R with respect to AX(X; -) is then given by

WL () = [ e n) AR d(z,n)) = / (e, m){ak, o) MO (A(z, ).

»L norl X
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Proof of Proposition 2.1. The identity (10) follows easily from

T
)

Both (11) and (12) follow inductively from the identity

]l{TZO}cI)Z’S—Zl(X) (33)
= Lo B0 (0 + 2m(s = DB (X) — Lo Q2L (X)

for s > 2, r > —1,and 1 < k < d— 1. In the case of (12), the induction start is
(10). Equation (13) is the special case r = —1.

The Minkowski tensor ®°(X) is given by applying the normal cycle Nx to a
(d — 1)-form p* : A, ;(R* x R?) — T""*. Choose an oriented orthonormal basis
e1,...,eq for RY Then the coordinate of p)* corresponding to the basis element
€, O Oe,, €T is

r,s . Ly ...inrnir_H ...TLZ'H_S
Phiivsesires = }1(d — & — 1)lwg_pesr!s!

X Z Sgn(O')TLU(d) dZEU(l) VANRIERIVAN dZL’U(k) N dng(k+1) VANREIRWAN dng(d_l).
0ESy

Here and throughout the proof, symmetrization in the indices iy, ..., %,,4 is under-
stood when we write the coordinates of a T"**-valued tensor. Similarly, it can be
shown [9, Section 4] that ®}°>'(X) is given by applying the normal cycle to the
(d — 1)-form with coordinates

s Tiy *  Lg Mg -+ - Mg

Mhiveires = (1 ZD)(d = k — 1)lwgpre_ar!(s — 2)!
X dIiTJrsfl VAN Z sgn(a)ng(d) d.l’a(g) VAR dl’a(k) AN dng(k_H) VANRIERIA dna(d_l).

0ESy
o(1)=tr4s

We first show (33) in the case r > 0. Define the T"*-valued (d — 2)-form

T,8 x’il to xirx’ir+s—1nir+1 ttt nir+s—2

Chivires = (5~ 1)(d — k — 1)lwg_ppe_a(r + 1)I(s — 2)!
X Z Sgn(a)na(d) dxg(g) VARIERIAN dl’a(k) A dna(kﬂ) VANIERIVAN dng(d_l).

UESd,U(l):ir+5

Since Nx vanishes on coboundaries, it suffices to show that pointwise

<aX, dw,”®
_ r,S r+1,5s—1 r4+1,s—1 r+1,5—3 (34)

= <ax,ﬁk — L1650y —2m(s — 1)Pk_1 + ]l{s>2}QPk—1 >
It is straight-forward to check that all differential forms in (34) are SO(d)-covariant.

(We say that w is SO(d)-covariant if for all 8 € SO(d),

d—1 d—1
( /\(9*%9*w¢),w(9(az),e(n))(eu1, o Bug)) = /\(Uiawi)yw(x,n) (wi, ..\ Urts)),
1=1 1=1
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for all (vs,w;) € R x R? and uy, ... u,,, € R%) It is therefore enough to show (34)
when (x,n) = (z,e4). At this point, forms of the type dng A€ and dzg A € vanish on
ax. We first compute:

WS e = Tty oir s
T2 ST T4 Mg o e My oMy
+ 1 4o rHlr4s—1""lr+1 2 lr4s—2 Sgn
{>}];1 d k—l)'wd kds— 2(7“—}-1 8_2'6254
X (50(1)#'”57710((1) dnij A dxg( VASRREIVAY dxa (k) /\ dng(k_H) VANRREIVAY dng(d_l) (35)
‘/'Eil o xirxir+s lni'r‘-&-l : nzr+s 2
+ S Il
(k= )(d — k — 1)lwg_praalr +1) 'Ezsd &
X (50(1)7%% dno(d) A dl'g(g) VANEIEIAN dxg(k) A dno(kH) A A dng(d_l). (36)

[13ah)

Here the Kronecker d-notation has been used and a indicates that a factor is

left out. We see that (35) equals

r+s—2
I‘ :L’ n LY n IR n
]]- a2 trHlr4s5—1""r+1 15 lr4+s—2 Z ﬂr . Sgn U 1 71:7‘ .
{>}JZ+1 Wd =k = Dlwappsa(r + Dl(s =21 +aezsd e
X N (d) dng(l) VAN dmg(g) VANRRIVAY dxg(k) A dng(k_H) VANRREIVAY dng(d_l) (37)
r+s—2 ~ k
xlrxlr s— nzr 100 e nzr+5 2
“lwa D G e DIEGLTINNY
_ ' _ r+s
= 7’+1 d l{? 1) Wd—k4s— 2(7" + 1 8 2 oc5y e
X 5ij’g(m)na(d) dSL’ij VAN dxg(g) VAN dng(m) SORNVAN dxg(k) AN dng(k_H) e A dng(d_l)
(38)
+ ]l TiQ xzr$1r+9 1nlr+1 PPN ﬁij . nlr_;,_s 2 Z sgn
{S>2}] 7°+1 d k— 1)'wd kdts— 2(’/” + 1 S — 2 ! J )iirss
X 5Z~j7a(d)na(d) dna(d) AN dl‘a(g) VAR dCBU(k) N d’na(k+1) A dno(dfl). (39)

Clearly (39) vanishes at (x,e4) when evaluated on ax. Moreover, (37) equals

QPT-H T 3]l{s>2}

r4s—2
]1{ } 'TlTxlr+a lnz7+1 e n nl7+5 2 Sgn
k>1,5>2 E 2 frts E
d—Fk)lw r+1 2)1
j= r+1 ) d—k+s— 2( + ) ( €Sy

X 50(1)’1-”3710(6[) dxg(l) A dxo(2) JANEIVAN dajg(k_l) A dno(k) VANRERIVAY dno(d_l) (40)

r+s—2 ~
]l{ } xlrxlr+s 1n’Lr+1 e nij T nZT+S 2 SgIl
- §>2 E z 7 E
d—Fk—1)w r—+1)(s—2)!
j= 7‘+1 ) d—k+s— 2( + ) ( €Sy

X 50(d),ir+sno(d) dl’g(l) A d$0(2) VANRIERWAN dl‘g(k_l) AN dng(k) VANKIERIVAN dng(d_l), (41)
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and (38) + (40) equals

r+s—2
k xz R 1, ...nl. 1,
]l{s>2 k>1} : L : SO Sgn
J;l ld—k —1)!wggts—a(r +1) 3_2'062&1
X (50(1) iH_S(Si], (k) ng(d d:UZ-. ANdzgey A dxe—1) Adngpy A -+ Adnga—)
r+s— 2
IZ LRI S 7 n; . nz e Ny
— oo ps1 - B . T+5 . sgn(o
{S }er:_i_l d k)'wd kts— 2(7"—"1 ags:d
X O, ir+5§i],a(1)na (d) dxij Ndzoe) A= ANdzgg—1) A d”a(k) o Adng(a-
1,5—1
—T(so, k>1}77k Lot soeesirts
r+s—2 e~
“ X X Mgt Ny nz
+ Lo p>1y Z SRR I : Hs : Z sgn(o
— 1) — N
j= r+1 Wd =k = 1)lwapps- 2<T+ (s —=2) oSy
X O(1),ir+ 0o (d)i; Mo (d) dﬂfz’j Ao A - N dTog-1) Adnogy A -+ A dnoa-)-

(42)
Also (42) vanishes at (x,eg4). It remains to evaluate (36)+(41) at (x,e4). This yields

CCil e $irxir+s 15ir+17 i'r+s 27ir+s d
(F=DN(d— k — g tsa(r + Di(s —2)!
X Z — Sgn U g(d),ir“ d.Z‘U(l) VANEIVAY dl‘o(k—l) VAN dng(k) VANRIERIVA dng(d_l)
€Sy

- ]l{s>2}(3 - 2)

xil e 'rirxi'r+5 152.7'«&»1, 7i'r+5 27i'r+57d

(k‘ DId — k)lwg_grs—o(r+ 1)(s —2)!
X Z Sgn o (d) irts dxg VASRERIVAN dxg(k,l) A dng(k) VAR dng(dfl)
€Sy

1 1
= —27T<3 - 1>pk+1fl, alr-!—s

Putting things together yields (34).
To check the remaining case r = —1, 1 < k < d—1, in (33), it is enough to show

<aX, dw2’3> = <aX, —11{1c>1,s>2}77;(g)’872 - 2773P%S + ]1{8>2}QP%872> =0,

where

~07S nil .o nis_l
w

Biitesis — El(d — & — 2)lwg_pes_a(s — 1)!

X Sgn(o)ng(d) dl‘a(z) VANEIERIVAN dZL‘J(k+1) AN dno—(k+2) VAN dng(d_l).
0€Sq,0(1)=is

The computations are similar, but slightly simpler. O
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Proof of Theorem 3.1. We first show that ‘If}f (X N L) is integrable with respect to
L. Since v is bounded by some M > 0 on nor X, we have

/ UY (X NL)dL

j /ﬁd /Sd—j L)

/ / / (0o, o) H (A2, m)) d2 dL.
Ed Sd=3(LL) Jnorl?® (XNL?)

Fix L € C?_l such that for H’~!-almost all (x,n) € nor X we have z ¢ L and for
almost all z € ST (L+):

[ L Y S RV CENDI LR
norl® (XNL#)

There is no (z,n) € nor X with x € L* and n L L*. (43)
Almost all L € £9_; satisfy these two conditions by [14, Lemma 5] and the definition
—d
of PR .
Define two functions f and g as in [14, Section 7| by
f:nor X\{(z,n) €nor X |z € Lorn L L*} — R? x S*(L?),
f(x,n) = (z,7(n|L7)),
g:nor X\{(z,n) €Enor X |z € L} — S4I(LF),
g(z,n) = m(z|L*),

and for z € S99 (L1), define
h,:LxS"™ {(z,n) € L xS |n L L*} - LxS (L),
h.(x,n) = (x,m(n|L?)).
It follows from |6, Theorem 4.10 (3)] that for z € S (L1) satisfying (43), we have
(X N L?) = {(z,7(n|L?)) | (z,n) € nor X,z € L*}
= f(97'(2) Ug™'(=2)) U h(N),

where N = {(z,n) € nor X | z € L} has H/~*-measure 0 by assumption. Because
of condition (43), h, is locally Lipschitz on N, and hence H/~!(h.(N)) = 0.
It was shown in [14, Lemma 3| that for almost all z,

1 ((x,n) € flg7'(2)) | #(f M (@m) Ng'(2)) > 1) =0, (44)

where # denotes cardinality. It follows from [14, Proof of Lemma 4] that for almost
all z it holds for H/~!-almost all (z,n) € nor’ (X N L?) that there is a unique

y € g (2)Ugl(—2) with (z,n) = f(y) and
axnp:(2,1) = f(CW))/ Ti-1(flg1zyug1(-2) (1),

where

¢ = (axrg*Qu_j)/Jajg
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and ,_; is an orientation form on S%7(L1) as in |14, p. 552].
Since f is locally Lipschitz on g~*(z) for almost all z € S4=9(L1), the area and
coarea formulae together with (44) yield

/ / / (@, o) 9 (A, m)) d AL
Ed S4=3(LL+) Jnorl? (XNL*)
= 2/ / / aXnLZaPk >
£d  Jsd=i(Lt)

= § L j—1
’ /Lg_l /de(LL) /gl(z) (G oo ) [ (d(,m)) dzdL
- 2/ / N ax, §*Qa—; A frpp )| H* (A2, n)) dL. (45)

H 7 (d(z,n))dzdL

We must show that (45) is finite. In [14, Section 7] it is shown that

1 1
0j—k [p(| L) p(n|L7)7=F

S P L R N
\I|:j—1—kH ' /1+ ki(x,n)?

Since G(L*, Aj(xz,n)) < |p(n|L*)|, there is a C' > 0 such that

<aXagﬁQd—j A fﬁpkz> =

1 H er Ki(T,n) )
4 . i G(L", As(x,
PGILD I p(n] L) F |Z [T T e At m)
< C
= DGO P+

It follows from e.g. [25, (1)] that H? !(nor X) < oo when X is compact, so it is
enough to show that

[, el )L (47)

j—1

is uniformly bounded on nor X. By assumption, there is an € > 0 such that |z| > ¢
on nor X. The (j — 1)(d — j)-Jacobian of the map L£J ,\L? | — E;’-”fl given by
L — p(L|xt) was computed in [14, Lemma 6] to be |z|*/|p(z|L1Y)]"~4. Letting
w = w(n|zt), the coarea formula yields

x
j—1 j—1

/ [p(l L) p(n| L)L < &7 / | Pl L)AL
ra

2— ]+k

zsj_d/ ) (1 —a? + o?|p(w|L)?) dL,
c

x
j—1

where @ = a(z,n) = sinZ(z,n). If j —k < 2 or @ = 0, this is clearly bounded.
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Assume j — k > 2 and « # 0. Using (3) and (4), we then have

[ iz

<u, w)jf2 2—j+k

:cd3,-2/ T {uwy>0 — (1 —a*+a*(u,w)*) "2z du
77 Jsrary A w)2)

2—j+k
2

1
= Cd3,j20d2/ t‘jiZ(l — t2)d7%72 (1 — 062 + 042t2) dt
0

1
< Cd—3,j—20d—2/ (1- 752) dt.
0

Since 2 < j < d — 1, this is finite and hence (45) is finite.
The finiteness of (45) allows us to apply the area and coarea to the rotational
integral. A computation similar to (45) yields

/ Uy (X NL)dL

:_/ / / x?n)<a§<mLZapk >Hj 1( (x,n))dzdL
£d_ Jsdi(Lt)
S 2 [ e ax s A £ ).

j—1

Using again that (45) is finite, we can apply Fubini’s theorem. Inserting (46), we get

/ / Y(L*, x, w(n|L"))
0305k Jnorx Jra ﬂﬂlLL [ |p(n] L)~

X Z H’e" ki@, n) G(L*, Ap(z,n))> dLH (d(x,n)).

|I\:j—l—kH ' /1+ ki(z,n)

Since (47) was finite, we can apply the coarea formula for the map L + p(L|zt)
once again to obtain the claim of Theorem 3.1:

/ / Y(L*, x,w(n|L7))
UJ k Jnor X ’:L |x|d ]’p n|LI)|J F

x Y Hzef S8 G Ay ) AL HE d(x ).

|I\:j—1—kH ' /1+ ki(z,n)

/Ld\IJ}fL(XﬂL

/Cdﬁf’,fL(XﬂL
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