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Abstract

Let M and 7 be the supremum and its time of a Lévy process X on some
finite time interval. It is shown that zooming in on X at its supremum, that
is, considering ((X 41 —M)/ae)ier as € | 0, results in (&;)er constructed from
two independent processes having the laws of some self-similar Lévy process X
conditioned to stay positive and negative. This holds when X is in the domain
of attraction of X under the zooming-in procedure as opposed to the classical
zooming out of Lamperti (1962). As an application of this result we establish
a limit theorem for the discretization errors in simulation of supremum and
its time, which extends the result of Asmussen, Glynn, and Pitman (1995) for
the Brownian motion. Additionally, complete characterization of the domains
of attraction when zooming in on a Lévy process at 0 is provided.

Keywords: conditioned to stay positive, discretization error, domains of at-
traction, Euler scheme, functional limit theorem, high frequency statistics,
invariance principle, scaling limits, self-similarity, small-time behaviour

1 Introduction

The law of the supremum of a Lévy process X over a fixed time interval [0, 7] plays
a key role in various areas of applied probability such as risk theory, queueing, fi-
nance and environmental since, to name a few. In particular, it is closely related
to first passage (ruin) times, as well as to the distribution of the reflected (queue
workload) process. Furthermore, this law is essential in pricing path-dependent op-
tions such as lookback and barrier options (Broadie et al., 1997). There are only
few examples, however, where the law of the supremum is available in explicit form.
More examples are known when 7' is an independent exponential random variable,
see, e.g., (Lewis and Mordecki, 2008) and (Kuznetsov, 2010), but this essentially
corresponds to taking Laplace transform over time horizon T'. For various repre-
sentations and estimates of the law of the supremum see the works of Chaumont
(2013); Kwasnicki et al. (2013b); Michna et al. (2015); Kwasnicki et al. (2013a) and
references therein.

An obvious way to evaluate the law of the supremum is to perform Monte Carlo
simulation using a random walk approximation of the Lévy process. In other words,
the Lévy process is simulated on a grid with a small fixed time increment ¢ > 0



which, of course, assumes that X, can be simulated efficiently. Even though alter-
native simulation methods exist (Ferreiro-Castilla et al., 2014), we focus on this
obvious discretization scheme and aim at characterizing the limiting behaviour of
the discretization or monitoring error. Further motivation comes from the fact that
discrete-time models may be more natural in practice, whereas related continuous-
time models may admit an explicit solution, see (Broadie et al., 1999) considering
such approximations of discrete-time option payoffs. Finally, this setup is consistent
with the influential field of high frequency statistics where it is assumed that an It6
semimartingale is observed at equidistant times with time lag tending to zero (Jacod
and Protter, 2012).
Define the supremum of X and its discretized counterpart

M :=sup{X, :t €[0,T]}, M. :=max{X;:i=0,...,|T/¢|}

and let A, = M — M. > 0 be the discretization error. The (last) times of the
supremum and the maximum are denoted by 7 and 7., respectively. In the case
when X is a Brownian motion with variance o and drift , Asmussen et al. (1995)
showed the following weak convergence:

A /(o\e) =V, ase 0, (1.1)

where V' is defined using two independent copies of a 3-dimensional Bessel process
and an independent uniform time shift. It is intuitive that (1.1) continues to hold if
X is replaced by an independent sum of a Brownian motion and a compound Poisson
process, which is indeed true as shown by Dia et al. (2011). Despite numerous follow-
up works and importance of (1.1) in various applications, the limiting behaviour of
A, is not known for a general Lévy process X. In fact, most of the related works
are concerned with asymptotic expansions of the expected error EA,, see (Janssen
and Van Leeuwaarden, 2009), (Dia, 2010), (Chen, 2011) and (Dia et al., 2011).

In this paper we establish a functional limit theorem for (X, — M)/a., where
a. > 0 and € | 0, on the Skorokhod space of two-sided paths, which corresponds to
zooming in on the Lévy process X at its supremum, see Theorem 9. The limit process
¢ for positive times has the law of a certain self-similar Lévy process X conditioned
to be negative, whereas for negative times it is the negative of X conditioned to be
positive. It is required for this limit theorem that X is in the domain of attraction
of X (with a scaling function a.) under the zooming-in procedure as opposed to the
classical zooming-out of Lamperti (1962). It is noted that zooming-in and zooming-
out domains are very different, and the former is determined by the behaviour of X
at 0, see Theorem 6. Finally, a general version of (1.1) is provided in Theorem 11
which additionally includes the scaled difference of suprema times (7 —7.)/e. In par-
ticular, it is shown that (1.1) holds whenever the Brownian component is present,
i.e. 0 > 0 in the Lévy-Khintchine formula (2.1).

Let us briefly discuss some additional related literature. In the study of extremes
of Gaussian processes (Piterbarg, 1996) it is standard to assume that the process
of interest locally behaves as a fractional Brownian motion or, more generally, as a
self-similar centered Gaussian process. In the context of Lévy processes, Barczy and
Bertoin (2011) obtained a somewhat related functional limit theorem by starting
the process (with a negative drift) at * — —oo, conditioning on having a positive
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supremum, and shifting at the instant of the supremum. Finally, it is noted that our
problem does not fit into the standard framework of high frequency statistics (Jacod
and Protter, 2012), because the discretization error A, can not be easily retrieved
from the difference of X and its discretized version.

This paper is organized as follows. §2 is devoted to preliminaries on Lévy pro-
cesses, self-similar processes, processes conditioned to stay negative, as well as post-
supremum processes. In §3 we present the result of Lamperti (1962) but for zooming
in instead of zooming out, and then specialize to the case of Lévy processes. Com-
plete characterization of the respective domains of attraction together with some
noteworthy examples is given in §4. A general invariance principle for Lévy pro-
cesses conditioned to stay negative is stated in §5, and the main results of this paper
are given in §6. Appendices contain proofs of the results from §4 and §5, which are
partly known in the literature.

2 Preliminaries

2.1 Regular variation

We write f € RV, a € R and say that f is regularly varying at 0 with index « if f is
a positive measurable function on (0, ) for some 6 > 0 such that f(xe)/f(e) — 2
as € | 0 for all x > 0, see (Bingham et al., 1987). If f € RV,, then F(t) = f(1/t)
is regularly varying at oo with index —a, which allows to convert results from one
setting to another. Throughout this paper we consider regular variation at 0 unless
specified otherwise.

2.2 Canonical notation

Let © be the set of two-sided paths w : R — R U {t} such that

w;, fort € la,b),
Wy = .
1, otherwise,

for some a < b and a two-sided cadlag path ' : R — R. It will be assumed that
R U {t} is one-point compactification of the real line, i.e., T is the point at infinity.
Furthermore, it is convenient to assume that any algebraic operation involving
results in {, i.e., T —x = t. For a usual path defined on [0,00) we put w; = 0 for
all t < 0 which will be convenient in the following. Additionally, we may want to
terminate the path w at some non-negative time 7', and then we put w; = { for all
t>T.

We equip 2 with the extended Skorokhod J; topology (Whitt, 1980), so that
a sequence of two-sided paths converges to some w € € if the restrictions to [a, d]
converge for all a < b such that a,b are the continuity points of w. We let X be
the canonical process: X;(w) = wy, and let P be a probability measure on €2 with
its Borel o-algebra F under which (X;);>0 is a Lévy process adapted to a usual
filtration (F3);>0. Additionally, we write [P, for the law of this process issued from .
We say that X is b.v. (ub.v.) if P-almost all paths of X are of bounded (unbounded)
variation on compacts.



2.3 Lévy processes

Consider a Lévy process (X;);>0 and let () be its Lévy exponent: EefXt = ¥
t > 0 for at least purely imaginary 6. Standard textbooks on this topic are (Bertoin,
1996; Sato, 2013; Kyprianou, 2006). The Lévy-Khintchine formula states that

Y(0) =0 + 10%0% + / (" — 1 — 0z 1{4<1y) I(dz), (2.1)
R

where v € R,0 > 0 and II(dz) is a Radon measure on [—o0,0) U (0, co] satisfying
Jz(@* A1)II(dz) < co. When f_ll |z|II(dx) < oo this formula can be rewritten as

Y(0) =40+ 10%0° + / (" — 1) I(dx), (2.2)
R
which corresponds to an independent sum of a drifted Brownian motion with mean
~' and variance o2, and a pure jump b.v. process.

Throughout this work we exclude the trivial process which is equal to 0 identi-
cally. Concerning the behaviour of X for large ¢, we recall that only the following
three possibilities can occur as t — oo: (i) X; — oo, (ii) liminf; X; = —oo and
limsup, X; = oo, (ili) X; — —oo a.s., where in case (ii) we say that X oscillates.

Often it is convenient to consider a Lévy process X Fkilled (sent to f) at an
independent exponential time e, of rate ¢ > 0. This is the only way of killing which
preserves stationarity and independence of increments, and so it leads to a natural
generalization of a Lévy process. We often keep ¢ > 0 implicit, but write P?, ¢
when it is necessary to stress that the corresponding Lévy process is killed at rate q.
The Lévy-Khintchine formula (2.1) is extended to killed Lévy processes by putting
Y(0) = () — q so that E(efXt; X, £ 1) = 'O,

Finally, we define the overall supremum and its (last) time:

X :=sup{X;: X; # 1}, Gi=sup{t>0:X,=Xor X, =X},
>0

so that G = oo when X = oco. The latter occurs when X drifts to oo or oscillates,
in which case X must be non-killed. Additionally, we let X := inf;>o{X; : X; # T}
to denote the overall infimum.

2.4 Self-similar processes

A process (X;)i>0 is called self-similar with index H > 0 if for all u > 0 it holds that
(Xut)tzo = (UHXt)tzoy (2-3)

and in particular Xy = 0 a.s. The index H is unique when X is not identically
0 or ; both are said to be trivial in the following. Standard textbook references
are (Samorodnitsky and Taqqu, 1994, Ch. 7) and (Embrechts and Maejima, 2002).

Suppose that X is a non-trivial self-similar Lévy process then necessarily o :=
1/H € (0,2] and ¢ = 0 (no killing). The following is an exhaustive list of self-similar
Lévy processes:



(i) Brownian motion: v =0, ¢ > 0, Il = 0, in which case o = 2;
(ii) Linear drift process: v # 0, 0 = 0, IT = 0, in which case a = 1,
(iii) Strictly a-stable Lévy process for a € (0,2): 0 =0,

II(dz) = 1oy cox ' %da + Lyzeoy o |z| 7' %da (2.4)
for some c. > 0,cy + c_ > 0, and, additionally,

Y=(es—e)f(1—a) fafl,
cy =c_, ifa=1,

see (Sato, 2013, Thm. 14.7 (iv)—(vi)).

The linear drift process in (ii) is often excluded from consideration. This simple pro-
cess, however, is needed for completeness of the limit theory presented in Theorem 1,
see also Remark 2. It is not always possible to subtract a linear drift to get another
(stable) limit process, see §4.2.2. Furthermore, in our application to the study of
supremum such a transformation would completely change the problem.

Suppose X is a self-similar Lévy process which is not a linear drift process. Then
X is b.v. if and only if o € (0,1), in which case we may use the representation (2.2)
with v/ = 0 and o = 0. In particular, if X is monotone then necessarily o < 1, and
so it is a pure jump process with all the jumps of the same sign. Finally, if X is not
monotone then the point 0 is regular for (—oo,0) and (0, 00), see (Kyprianou, 2006,
Thm. 6.5). In this case, by self-similarity, the process X must be oscillating and so
X =00 and X = —c0.

2.5 Processes conditioned to stay negative

For any x < 0 we may define the law of a Lévy process X started in  and conditioned
to stay negative: o
Pr(-) =P, (- | X <0)

unless P(X = oo) = 1, because then we would condition on the event of zero
probability. In general, we first consider a killed process and then take the limit:

PH(B) := li{EIP’g(B | X <0) (2.5)
q

for all B € Fr,T € [0,00), which defines a probability law (Chaumont and Doney,
2005). Tt is well known that the process under P% is a Markov process on (—oc,0)
with a Feller semigroup, say pf(x, dy). This process has infinite life time if and only
if the original Lévy process X satisfies X = —oo, i.e. X either drifts to —oo or
oscillates. Finally, it is standard to express the semigroup pti(x,dy) as Doob’s h-
transform of X killed at the entrance time into [0,00), see (C.1) for the precise

expression.
It is crucial to take the limit in (2.5) along independent exponential times, that
is, the limit of conditioned killed Lévy processes, because deterministic times may
result in a different limit law. In particular, when X — oo the life time of the process



under P¥ is finite, whereas deterministic times necessarily lead to an infinite lifetime
if the corresponding limit law exists, see also (Hirano, 2001). When X oscillates,
we may alternatively condition on X exiting (—y,0) through —y and then letting
y — 00, see (Chaumont and Doney, 2005, Rem. 1). Finally, according to (Chaumont,
1996, Rem. 1), for a non-monotone self-similar Lévy process we may also take the
limit along deterministic times:

PH(B) = lim Po(B | X, < 0Vs € [0,]).

2.6 Post-supremum processes

Unless X = oo we consider the post-supremum process (Xg +t_7)t207 and denote its
law by P* (there is no subscript as compared to the conditional law P¥). In general,
we consider X on a finite time interval [0, 7] and the corresponding post-supremum
process. Then we take T — oo to define the law P, see (Bertoin, 1993), where
it is also shown that the process under P* is Markov with transition semigroup
pf(x,dy) for any x,y < 0 and ¢ > 0. This explains the notation for the law of
the post-supremum process; moreover P+ is also called the law of X conditioned to
stay negative. If X is such that 0 is regular for (—oo,0) then the process under P+
starts at 0 and leaves it immediately, but otherwise it starts at a negative value
having a certain distribution, see (Chaumont and Doney, 2005). In the latter case
the post-supremum process may also be identically T with positive probability.

It should be noted that some of the cited results are stated for non-killed pro-
cesses, but their extension to killed Lévy processes is straightforward. Furthermore,
in the analogous way we define the laws P12 > 0 and P' corresponding to the Lévy
process conditioned to stay positive and the post-infimum process, respectively; one
may easily obtain these laws by considering —X. R

In this paper we will focus on a self-similar Lévy process X with law I arising as a
weak limit when zooming in on X. Recall that such X oscillates when non-monotone
and hence both PT and P¥ are defined as the limit laws of finite time post-infimum
and post-supremum processes, respectively. Furthermore, even for non-oscillating
non-killed process one of the above laws is defined as a limit.

3 The result of Lamperti for zooming in

3.1 Zooming out — the classical theory

Consider an arbitrary stochastic process X, and assume that (X,;/a,)i>0 has a
stochastically continuous, non-trivial limit X as n — oo for some scaling function
ap > 0, in the sense of convergence of finite dimensional distributions. Lamperti
(1962) showed that necessarily X is a self-similar processes, see §2.4. In fact, Lam-
perti Q962) considered a more general scaling of the form X,;/a,+0b, while assuming
that X is non-degenerate for every ¢. In that case b, — b and so one may as well
drop b,, which would still result in a stochastically continuous limit process.

The above rescaling may be seen as zooming out on the process X, and a clas-
sical example is the generalized Donsker’s theorem, where X, = Zgl ¢; for an
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i.i.d. sequence of random variables (;, see e.g. (Whitt, 2002, Ch. 4). In this case all
the possible non-trivial limits of (X,:/a,)i>0 are given by the class of self-similar
Lévy processes X with the necessary and sufficient condition (Kallenberg, 2002,
Thm. 16.14) being

ZC@'/an:Xl- (3.1)
=1

Strict domains of attraction, when the index of stability is different from 1, can
be obtained from non-strict domains characterized in (Gnedenko and Kolmogorov,
1954, Thm. 7.35.2), but see also (Bingham et al., 1987, Thm. 8.3.1) and comments
following it. The case of strictly 1-stable law is substantially different and its com-
plete analysis can be found in a rather unknown work of Shimura (1990). Finally,
characterization of the strict domain of attraction to a non-zero constant is required
for the complete picture, see Remark 2. Such result is stated in Appendix B, but
see also (Feller, 1966, Thm. VII.7.3) for the case of positive random variables.

3.2 Zooming in

In this paper, however, we are interested in the opposite scaling of time and space,
that is, in zooming in on the process X:

(Xet/ac) =0 = ()?t)tzo as el 0, (3.2)

and the convergence is in the sense of finite dimensional distributions. Surprisingly,
to the best of author’s knowledge, this regime has not been properly addressed in
the literature. By a slight adaptation of the arguments in (Lamperti, 1962, Thm. 2),
but see also (Bingham et al., 1987, Thm. 8.5.2), we get the following result.

Theorem 1. Assume that (3.2) holds for a stochastically right-continuous, non-
trivial process X . Then X is self-similar with some index H > 0 as defined in (2.3)
and a, € RVy as e | 0.

Note that a. — 0 and so it must be that Xy = 0 a.s. Similarly to the classical
case, the more general scaling of the form (X, + b.)/a. is superfluous. It allows
for processes X started at some deterministic =, but the same can be achieved by
simply considering (X —x)/a.. Finally, it should be stressed that Theorem 1 can be
extended by considering the time interval (0, co) instead of [0, oo)din (3.2), in which

case there is an additional possibility that a. € RV and (X )i~0 = (X +blogu)i~o
for some b € R and all © > 0.

Remark 2. In the setting of an arbitrary positive affine scaling one assumes that
the limit process is non-degenerate for some ¢t > 0, i.e., the distribution of X; does
not concentrate at a point, see (Bingham et al., 1987, Ch. 8.5). For the above scaling,
however, it is sufficient that the limit process is non-trivial. The reason is that in the
corresponding Convergence to Types Lemma 3 it is only required that one random
variable does not concentrate at 0. In particular, the linear drift process is not
excluded in the statement of Theorem 1.



Lemma 3 (Convergence to Types). Suppose that for some a,,a,, > 0 and random
variables X,, X, X',

XoJan =X and X,/a, = X', n — oo,
and P(X = 0) < 1. Then a,/d,, — u € [0,00) and X' = uX.

Proof. Adapt the proofs of (Gnedenko and Kolmogorov, 1954, Thm. 2.10.1 and Thm.
2.10.2). 0

Furthermore, Convergence to Types result implies that if Theorem 1 holds with
another scaling function a. > 0 and non-trivial limit process X’ then necessarily

acjd. —ue (0,00) and (X))o = (uX,)o. (3.3)

3.3 Zooming in on a Lévy process

Let us specialize (3.2) to the case when X is a Lévy process with the Lévy ex-
ponent ¢. It is clear that stationarity and independence of increments must be
preserved by the limit process, and so X must be a Lévy process; its Lévy exponent
is denoted by 1. Now the convergence in (3.2) extends to the weak convergence on
the Skorokhod space (Jacod and Shiryaev, 1987, Cor. VIL.3.6), and it is equivalent
to

VO (0) = ep(0/a.) = V(0),  asel0 (3.4)
for all purely imaginary 6, where () is the Lévy exponent of the Lévy process
X = X_/a.. According to Theorem 1, if X is non-trivial then it is 1/a-self-

similar Lévy process, see §2.4, and a. € RVy/, for some o € (0,2]. Necessary and
sufficient conditions for the convergence in (3.4) are provided in §4. In this regard
it is noted that there exist Lévy processes such that no scaling function a. > 0
satisfies (3.4), i.e., such Lévy processes do not have a non-trivial limit under zooming
in. A simple example is given by a compound Poisson process. It should be stressed
that throughout this paper the limits in (3.2) and (3.4) are assumed to hold for all
sequences ¢, | 0. Alternatively, one may talk about partial attraction by requiring
the above for some sequence ¢, only, see (Gnedenko and Kolmogorov, 1954, §37)
and (Maller, 2009).
We conclude by a simple but important observation.

Lemma 4. Assume that (3.4) holds for some non-trivial X. If X is such that 0
is irreqular for (—o0,0) or for (0,00) then X must be increasing or decreasing,
respectively.

Proof. Assume that 0 is irregular for (—oo, 0). Then with arbitrarily high probability
X; > 0 for all ¢ € [0,h], where h > 0 is small enough, but then X{® > 0 for all
t € [0, h/e]. Using Skorokhod’s representation theorem we conclude that X must be
non-negative. This completes the proof of the first statement and the second one
follows by considering —X. m

Importantly, the case when 0 is regular for both (o0, 0) and (0, c0) does not in
general imply that X is non-monotone, see §4.2.2 for an example.
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4 Domains of attraction when zooming in on a
Lévy process

In this section for every self-similar Lévy processes X , see §2.4, we provide necessary
and sufficient conditions on the characteristics of X so that the limit in (3.4) holds
true, and also supply the associated scaling function a.. Recall from (3.3) that for
any process X the limit X and the scaling function a. are (asymptotically) unique
up to a deterministic factor. As before, the Lévy triplet of X is denoted by (v, o, IT),
see §2.3. Moreover, for a b.v. process we use the linear drift 4'. The quantities
corresponding to X are denoted by 7,7, ¢4 and so on.

The following zooming-in theory is rather similar to the classical zooming-out
theory and the characterization of the strict domains of attraction for sums of i.i.d.
random variables, see (Gnedenko and Kolmogorov, 1954, Thm. 7.35.2) or (Bingham
et al., 1987, Thm. 8.3.1), as well as (Shimura, 1990). Instead of conditions on the tails
of the distribution of a random variable, in zooming-in context one needs to consider
the small-time behaviour of X. Characterization of the domains of attraction to a
Brownian motion and a linear drift process are due to Doney and Maller (2002),
but see the comments following Theorem 6. Conditions for attraction to strictly
stable Lévy processes are not readily available in the literature, even though non-
strict domains have been characterized by Maller and Mason (2008). Somewhat
related scaling limits of normalized small jump processes are studied by Asmussen
and Rosinski (2001) and Covo (2009). Additionally, it is noted that the literature
on various aspects of small-time behaviour of Lévy processes is extensive, see the
works of Doney (2007); Bertoin et al. (2008); Aurzada et al. (2013); Maller (2015)
and references therein.

The following result presents some simple observations and, in particular, it
states that the Lévy measure of X can be modified arbitrarily away from 0 without
affecting the limit under zooming in.

Lemma 5. If o > 0 then (3.4) holds with (0) = 620%/2 and a. ~ \/0 /T for any
o> 0.

If X is b.ov. with v # 0 then (3.4) holds with 1¥(0) =70 and a. ~ €v'/5 for any
v # 0 of the same sign as 7'.

If (3.4) holds for X then it also holds for the independent sum of X and a
compound Poisson process, and vice versa.

Proof. Tt is well known (Bertoin, 1996, Prop. 1.2) that ¢(60)/6* — ¢%/2 as |0] — .

Hence for a. ~ /0 /G we have

V' (0) = e(0/a.) = ¢0(20//§2€>025/a§ — 56 /2

as € | 0, and the second claim follows similarly. B
Concerning the last statement, it is sufficient to show that ¢ (6/a.) — 0 with

1;(9) corresponding to any compound Poisson process. This is immediate, because
such [1(0)| is bounded. O



For a complete characterization of the domains of attraction we define as in (Maller
and Mason, 2008) the truncated mean and truncated variance functions for = €

(0,1):

miz) =y - / RLCTORT /| o)

as well as the tails of 11I:
ﬁ+(l‘) :H(I',OO), H_(l‘) :H(—OO,—.I’), H(ZL’) :H+(I)+H_(I)

Note that when fjl |z|TI(dz) < oo we have an alternative expression for the trun-
cated mean:

m(z) =7 + / i) (4.1)

Theorem 6 (Domains of attraction under zooming in). The following cases hold
true with respect to (3.4):

(i) X is attracted to the Brownian motion with variance o if and only if
v € RV, or equivalently 2 TI(x) /v(z) — 0

as x | 0, and a. is chosen to satisfy a?/v(a.) ~ /5>

(ii) X is attracted to the non-zero linear drift (Vt)i>o if and only if
o =0, m(x)/7 is eventually positive, xI1(z)/m(z) — 0

as x | 0, and a. is chosen to satisfy a./m(a.) ~ /7.
(iii) X s attracted to the strictly a-stable Lévy process with parameters ¢, ,c_,7,
see (2.4), if and only if
(a) 0 =0, and v =0 when X is b.v.,
(b) Tl € RV_,, ifcx > 0, and I, (z)/T1_(z) — ¢, /¢ as x | 0,
(c) for a=1 it is additionally required that

m(z)
oIl (z)

—7/c; as x ] 0, (4.2)

and a. is chosen to satisfy I(a.) ~ e 'C/a if 4 > 0.

Proof. For completeness we provide proofs of all three cases in Appendix A using
the same machinery, see also the following comments. O]

The cases (i) and (ii) are given by (Doney and Maller, 2002, Thm. 2.5 and
Thm. 2.2). In the former result the convergence statements (2.13) and (2.15) are, in
fact, equivalent, meaning that seemingly stronger condition (2.16) can be replaced
by (2.14). With respect to (iii) it is noted that (Maller and Mason, 2008, Thm. 2.3)
considered (X, —b.t)/a. = X, and characterized the respective non-strict domains.
Similarly to the classical case, but in the opposite way, no centering is needed for
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a > 1 and in particular for a = 2, and for @ < 1 we may choose b. = 7', whereas
the case e =1 is tricky.

To a Lévy measure II it is common to associate the index (Blumenthal and
Getoor, 1961) defined by

Bpg :=inf{s >0: / lz|°TI(dz) < oo},

|z|<1
where necessarily Spg € [0, 2].

Corollary 7. If X is attracted to 1/a-self-similar Lévy process in the sense of (3.4)
then Bpa = a, unless o > 0 or X is b.v. with v # 0.

Proof. The proof is given in Appendix A. ]

In particular, Corollary 7 shows that for & > 1 both X and the limit are ub.v.
processes, and for o < 1 both are b.v. processes. In the case of & = 1 the limit process
may be of different type than X, see §4.2.2. In the rest of this section we assume
that o = 0 and 7/ = 0 if X is b.v. process, since otherwise the limit always exists
and it is given by the Brownian motion or the linear drift process, see Lemma 5. It
is not hard to verify that these two cases are included in (i) and (ii) of Theorem 6,
respectively.

4.1 Comments

Note that there are two essentially different limit processes corresponding to o = 1:
linear drift process in (ii), and 1-stable Lévy process in (iii). In the latter case
m(z)/(zII(z)) must have a finite limit (4.2), whereas in the former case it must go
to +00 or —oo.

Consider for a moment condition (b) in Theorem 6 (iii). In the case of cx > 0
this condition is equivalent to multivariate regular variation on the cone consisting
of two rays, R and R_, of the function evaluating to II, (z) and II_(|z|), respec-
tively. It is noted that multivariate regular variation is a common property used
in characterizing various domains of attraction (Resnick, 2007). Let us also point
out that for any o > 0 it is possible to construct an example of positive decreasing
II. € RV_, such that also IT € RV_,, but the balance condition is not satisfied, i.e.,
T, /TI_ does not have a limit in [0, 0o].

For X attracted to strictly a-stable process it must be that II € RV_,. Regular
variation of II is not required, however, when X is attracted to (i) Brownian motion
or (ii) linear drift process. Nevertheless, if we assume that IT € RV_,, then necessarily
a=2in (i) and @ = 1 in (ii), see Corollary 7 and its proof; it is assumed here that
o =0 and 7' = 0 for a b.v. process.

Finally, let us provide some examples of Lévy processes without a non-trivial
limiting process under zooming-in. Firstly, any b.v. process with 7/ = 0 and IT € RV,
including the compound Poisson process, is such. Secondly, for any o € (0,1)U(1,2)
we may choose a process with I € RV_,, which satisfies (a) of Theorem 6 (iii) but
does not satisfy the balance condition in (b). Thirdly, Corollary 7 can be employed
to provide further examples with a non regularly varying II.
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4.2 Noteworthy examples

In the boundary cases, when a = 2 and especially so when o = 1, somewhat
surprising examples can be constructed.

4.2.1 Process with ¢ = 0 attracted to Brownian motion

Take II(dz) = 273 log™ zdx for small x > 0 and let II(—o0,0) = 0 so that

v(x) = / ylog 2 ydy = —1/logz € RV, .
0

According to Theorem 6 (i) this process is attracted by the Brownian motion. The
scaling function must satisfy —a?loga. ~ /52 and in particular a./y/c — 0.

4.2.2 Non-strictly 1-stable process is attracted to linear drift

Let X be a 1-stable process (2.4) which is not strictly stable, i.e., ¢y # c_. A simple
computation reveals that II(z) = (cy +c_)/z and m(z) = v+ (cy —c_) log z. Hence
we see that the conditions of Theorem 6 (ii) are satisfied for any 7 having the same
sign as (c_ — ¢4 ). Therefore, a non-strictly 1-stable process is attracted to a linear
drift process. The scaling function must satisfy

—a./loga. ~ e(c- —c;)/A.

and so a./e — oo. In this case one may also verify (3.4) directly using the above
function a. and the analytic representation of 1(6), see (Sato, 2013, (14.20) and
(14.25)). This example shows in particular that ub.v. process may have a b.v. limit,
which at first sight may look counter-intuitive: the process X is such that 0 is regular
for both half lines, whereas 0 is irregular for one half line for the limit process. Note
also that when ¢, = 0 the limit is a positive drift, which intuitively means that
under zooming-in we see the drift compensating negative jumps.

4.2.3 B.v. process attracted to strictly 1-stable process

Let X be b.v. process with 7/ = 0 and II, = II_ € RV_;. A concrete example is ob-

tained by taking IT, () = 27! log™? z for small z > 0. Now m(z) = Jiy<a y1(dy) =0

and so (4.2) holds with 4 = 0. The appropriate scaling function satisfies
a:log* a. ~ /¢y,

and so a./e — 0.

4.2.4 On the necessity of (4.2)

Let 0 = 0,7 = 0 and I+ (7) = —2~!/log = for small z > 0 so that X is ub.v. process.
As in the above example the limit is strictly 1-stable process with 7 = 0. Next,
keeping everything else the same let II, (z) = —2~'/log @ + 1{;<1/2), which yields
m(z) = —1/2 and thus m(z)/{zIl(z)} — —oc. In particular, we see that (4.2) does

12



not hold even though the assumptions (a) and (b) of Theorem 6 (iii) are satisfied.
In fact, the limit process must be a negative linear drift, see Theorem 6 (ii). This
may seem to contradict the last item of Lemma 5. Observe, however, that addition
of an independent compound Poisson process with Lévy measure d,/, leads also to
modification of v so that v = 1/2, and in that case the limit is preserved.

5 Invariance principle for Lévy processes
conditioned to stay negative

Invariance principles for processes derived from random walks is a classical theme in
probability (Skorohod, 1957). Concerning the case of a random walk conditioned to
stay negative the reader is referred to the works of Caravenna and Chaumont (2008),
Chaumont and Doney (2010) and references therein. By the standard approximation
argument one may also derive an invariance principle for Lévy processes conditioned
to stay negative, which is stated below.

Recall from §2.2 that we work with two-sided paths taking values in R com-
pactified by addition of the absorbing state {, and such that w, = 0 for all ¢ < 0.
This trick allows us to provide a clean formulation of the following functional limit
theorem.

Theorem 8. Let X™ be a sequence of (possibly killed) Lévy processes weakly con-
verging to a Lévy process X, which is not a compound Poisson process. Then ]P’(")i =
PL for any x < 0 and Pt P+, where the latter law may put a positive mass
on (T)i>o-

If the process X has finite supremum then the above statement follows imme-
diately from the continuous mapping theorem and the fact that X has a unique
time of the supremum. The main difficulty lies in the other case, where the law
Pt is defined as a limit. In fact, Theorem 8 follows by a standard approximation
argument from (Chaumont and Doney, 2010, Thm. 4), at least when X is such that
0 is regular for both half lines (—o0,0) and (0, 00), and the processes X, X(™ are
non-killed and do not drift to —oco. An alternative proof of Theorem 8 is given in
Appendix C.

The assumption of two-sided paths with w; = 0 for all t < 0 allows us to avoid the
following problem. Suppose that X is such that 0 is irregular for (—oo, 0), but X
are such that 0 is regular for (—oo,0); for example, we may add to X a Brownian
motion with diminishing variance. Then X leads to the post-supremum process
starting at a negative level, whereas for X ™ such process starts at 0 and then quickly
jumps to a negative level when n is large. The assumption that these processes are
fixed at 0 for negative times ensures the claimed convergence in the Skorokhod
topology. A similar problem but with a different solution appears in (Chaumont
and Doney, 2005, Thm. 2). Finally, the assumption of Theorem 8 that X is not a
compound Poisson process is essential, and a counter example can be easily provided
by considering X; —t/n so that the limit of P is the law of X conditioned to stay
non-positive rather than negative.
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6 Zooming in on the supremum

Consider a Lévy process X satisfying (3.4) for some function a. | 0 and a non-trivial
Lévy process X, which then must be self-similar. Necessary and sufficient conditions
for such convergence are given in §4. Letting P be the law of X, we consider a non-
positive process £ on R specified by:

(&)i>0 has the law B, (=&(=#)—)t=0 has the law P, (6.1)

where the two parts are independent, see §2.6. Note that on the right hand side we
reverse both time and space. In other words, when looking at ¢ from the point (0, 0)
backwards in time and down in space we see the law Pt According to the discussion
in §2.4 and in §2.6 we have the following cases:

(a) X is non-monotone (thus oscillating) then £ has doubly infinite life time, and
it is continuous at 0 with & = 0;

(b) X is decreasing then & = Tl{t<0} +X, 101
(c) X is increasing then & = X( - Lp<oy + 1 1psoy

Furthermore, the laws P* and P! inherit self-similarity from P, and so they corre-
spond to self-similar Markov processes, where the former is negative and the latter
is positive (when started away from 0). Such processes are well-studied and, in par-
ticular, they enjoy the Lamperti representation via the associated Lévy processes,
see (Caballero and Chaumont, 2006, Cor. 2) specifying the latter. Note from Theo-
rem 1 that both parts of £ indeed must be self-similar (when non-trivial) if £ is to
be a limit process.

Theorem 9. Let X be a Lévy process satisfying (3.4) for some function a. ] 0 and
a non-trivial Lévy process X . Consider X on [0,T) for any T > 0, and let M and
T be the supremum and its time, respectively. Then

(Xrpte = M) /ac)ier = (&)ier as € 10, (6.2)

where & is defined in (6.1). Furthermore, the convergence in (6.2) is mixing (Rényi,
1958) in the sense that it is preserved when the left hand side is conditioned on an
arbitrary event B € F of positive probability.

Proof. Note that X can not be a compound Poisson process, because then the limit
X = 0is trivial for any function a.. Restriction of X to [0,T) is achieved by putting
Xy =t forallt ¢ [0,7). The main idea is to first consider, instead of a deterministic
time horizon, an independent exponential time T" = e, of rate ¢ > 0. By doing SO
we obtain a killed Lévy process, which satisfies (3.4) with the same a. and w, and
hence the corresponding killed Lévy process X (®) converges to the same X. Observe
that
(Xppte — M) Ja. = X Ja. = X©OF, >0

is the post-supremum process corresponding to X©), and so its law converges to P
according to Theorem 8. Moreover, it is well known that the pre-supremum process

_<X(T—t5)— - M)/as7 t>0
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is independent of the post-supremum process and has the law of the post-infimum
process, which follows from time reversal and splitting (Greenwood and Pitman,
1980). Another application of Theorem 8, but for conditioning to stay positive, shows
that the limit law is given by P'. Hence we have the joint convergence of post- and
pre-supremum processes, which proves (6.2) for a random 7" = e,. Moreover, when
joining the one-sided paths we use the fact that either &, = 0 or &, = 0.

Next, we show that the convergence is mixing (for the exponential time horizon).
According to splitting at the supremum and (Rényi, 1958, Thm. 2) it is sufficient to
establish that

(Xtt/aa)tzo|A:> ()A(f) ase |0,

t>0

for any A C o(X},..., X} ) and any finite collection of times 0 < s < -+ < sp;
and a similar result for the pre-supremum process. Furthermore, according to Whitt
(1980) it is equivalent to show the above weak convergence for restrictions to ¢ € [0, 7]
for any 7 > 0, since X* is continuous at r a.s. In other words, we aim to show that

Ei (f{(Xta/aa)te[O,r]}g{Xsl7 oo aXsn}) — Eif{(Xt)te[O,r} }Eig{Xsla cee 7Xsn} (63)

for bounded continuous functions f and g. Letting € > 0 be so small that re < s;
we find by the Markov property of X+ that the left hand side of (6.3) is given by

0
/ E¢ (f{(th/as)te[O,r]}; Xre/aa € d[E) ]Ei%g{Xsl—ra ce 7Xsn—ra}

—00

-/ " (dn)ha(e),

Similarly, the right hand side of (6.3) can be written as

0 0
/ Ei (f{(Xt)te[O,r]}; Xr € dl') Eig{Xsn e aXsn} = / M(dm)h
As before, Theorem 8 guarantees weak convergence of the finite measures: p. = pu.
Thus it is left to show that for any x. — x we have h.(z.) — h(z) = h, which
implies (6.3) in view of the Skorokhod’s representation theorem, but see also (Whitt,
2002, Thm. 3.4.4). Finally, the same argument based on Skorokhod’s representation
theorem can be used to establish that h.(z.) — h. Firstly, from (Chaumont and
Doney, 2005, Thm. 2) we find that Pieas = P*, because a. — 0. Secondly, the
fact that X+ does not jump at si,...,s, shows convergence of the corresponding
functionals. This concludes the proof for an independent exponential time horizon e,.

Finally, we extend the result to an arbitrary deterministic 7" > 0. Consider a
bounded continuous functional f on the Skorokhod space of two-sided paths. Let
Ff) and F(© denote f applied to the paths on the left hand side of (6.2) and the
right hand side, respectively. The first parts of the proof show that

q / e E(F | B)dt » E'F" =¢ / e "E*FOdt,
0 0

that is, the Laplace transforms in ¢ converge, where E* denotes the law of £ and
e is taken independent of B. Hence E(F/® | B) — E*F© for almost all ¢ > 0,
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implying the corresponding weak convergence. If X is such that 0 is regular for
(—00,0) then 7 # T a.s. Thus with arbitrarily high probability we may choose small
enough ¢ > 0 such that T'— 7 > 2, and then for any ¢ the rescaled post-supremum
processes corresponding to T and 7" € (T — §,T') coincide at least up to time d/e,
which means that the respective Skorokhod distance tends to 0 as € | 0; whereas
the corresponding pre-supremum processes are identical. It is left to choose T” for
which (6.2) holds true, and to apply (van der Vaart, 1998, Thm. 2.7 (iv)). If 0 is
irregular for (—oo,0) then we use time reversal to translate our supremum problem
into infimum problem, and observe that the infimum can not be achieved at the end
point 1. ]

Let us provide some commentary with respect to Theorem 9. Assume for a
moment that X is such that 0 is irregular for (—o0,0). According to Lemma 4 if X
is in the domain of attraction of some non-trivial X then the latter is increasing,
and the corresponding limiting post-supremum process is (f):;>o. Indeed, the post-
supremum process of X starts at a negative value or {, and upon zooming-in it must
reduce to identically killed process; recall that { is assumed to be a point at £oo. A
very similar conclusion can be drawn about the case when 0 is irregular for (0, c0).

Interestingly, the above behaviour can also be exhibited by a process X for
which 0 is regular for both half-lines, and so X is continuous at 7. For example,
consider a 1-stable process with c. > ¢y, see §4.2.2, in which case we may take
X; = t. In other words, the corresponding scaling function a. works fine for the
pre-supremum process, but is decreasing too fast for the post-supremum process.
It may be interesting to find an appropriate scaling function for the latter if such
exists.

Finally, let us show that mixing convergence in Theorem 9 easily leads to further
generalizations.

Corollary 10. The result of Theorem 9 extends to an arbitrary random time interval
[p1, p2) and an event B, such that on B it holds that py < py < 0o and T ¢ {p1, p2}-
If p1 is a stopping time then the latter condition can be weakened to T # ps.

Proof. We may choose § > 0 so small that 7 € (p; + 0, po — d) with arbitrarily high
probability, where 7 is the time of the supremum of the process restricted to [p1, pa).
Using the argument from the last step in the proof of Theorem 9 we find that the
claimed result holds on the event B jointly with p; € [k;0/2, (k; + 1)d/2) for some
fixed integers k1, ks (when it has positive probability) and the above condition on 7.
The rest is obvious. [

6.1 Discretization error

Next, using Theorem 9 we derive a limit result for the discretization error A, gen-
eralizing (1.1), see §1. Another important ingredient is the old result of Kosulajeff
(1937) stating that the fractional part {7/¢} weakly converges to a uniform random
variable as ¢ | 0 for an arbitrary random variable 7 possessing Lebesgue density.
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Theorem 11. Let U be an independent uniform (0,1) random variable. Under the
conditions of Theorem 9, for a non-monotone X it holds on the event 7 ¢ {0,T'}
that

(—A ag, (1. —7)/e) = (HileaZX Eusi, U + argmax;c,&u4:) el 0.
If X is decreasing or increasing then the limiting pair reduces to
(Xv,U)  or  —(Xp,U),
respectively.

Proof. Note that observing X, at the time instants ie, ¢ € Z corresponds to observing
X1t at the time instants Z — {7/e}. It is well known (Chaumont, 2013, Thm. 6)
that the distribution of 7 has a Lebesgue density on (0,7") and possibly an atom
at 0 or at 7. According to Kosulajeff (1937), on the event 7 ¢ {0,7'} we have that
{r/e} = U. Furthermore, the mixing convergence in Theorem 9 shows that

(1= {7/e}, (Xrpie = M)/ac)ier) = (U, (&)ier)

where U and £ are independent. Finally, note that & observed at times ¢ 4+ U, i € Z
has a unique maximum. Furthermore, £ is continuous at each of the observation
instants a.s., and so the continuous mapping theorem completes the proof. O

As a consequence of Theorem 11 the following can be said about the three cases
of Theorem 6.

(i) If ¢ > 0 then (1.1) holds true: choose a. = o+/z and observe that X is a
standard Brownian motion, which implies that the law of |£;| for positive and
negative times corresponds to the three-dimensional Bessel process. Moreover,
the same limit can be obtained for a process with o = 0, but then the scaling
function a. must satisfy a./\/e = 0, see §4.2.1.

(ii) If X is b.v. with 4" # 0 then
A/ )e) = U on the event 7 ¢ {0,7T}.

The same limit law can be obtained when X is, e.g., a 1-stable process with
cy #c_, see §4.2.2.

(iii) A strictly a-stable process X has two free parameters, one of which can be
fixed by an appropriate choice of the scaling function a.. Alternatively, we
may use the positivity parameter p = P(X; > 0), so that all possible limits
are parametrized by the pair («,p) in a certain domain. When o € (0,1) we
may have p = 0 or p = 1 corresponding to a monotone X.

According to Theorem 1 and Corollary 7, in the case when 0 = 0 and 7/ = 0 if X
is b.v. the scaling function must satisfy a. € RV g,,,, where Sp¢ is the corresponding
Blumenthal-Getoor index, given that X is in the domain of attraction of some non-
trivial X which then must be 1/8p¢g-self-similar.

Finally, it is easy to see that the same weak limit as in Theorem 11 is obtained
for (M —M.)/a., (r—1_.)/¢) on the event 7 ¢ {0, T}, where M, 7 and M_, 7_ are the

ey le
infimum of X on [0,7") with its time and their discretized analogues, respectively.
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6.2 Further comments

As mentioned in §1, there is quite some interest in the literature in determining
the rate of convergence of the expected error EA, to 0. For example, Dia et al.
(2011) and Chen (2011) showed, respectively, that EA. = O(y/¢) if ¢ > 0, and that
EA. = O(¢") for r < 1/Bp¢ if 0 = 0 and the process is ub.v. Our results provide
a hint on the rate, but do not readily determine it. The reason is that proving
uniform integrability of A./a. seems to be a hard task in general. In some cases
the representation of A, based on Spitzer’s identity, see (Asmussen et al., 1995,
Eq. (3.3)), may be useful. Furthermore, it is anticipated that uniform integrability
does not hold when the attractor X is a strictly a-stable Lévy process with o < 1,
which is clearly true when X is monotone and E|X | = co.

Finally, it is possible to apply our results to study the behaviour of X around its
first passage and last exit times, instead of the time of supremum. The key result here
is the well known path decomposition of the Lévy process at these times (Duquesne,
2003). For example, on the event of continuous last exit from some interval (—oo, z),
the post-exit process is independent from the pre-exit process and the former has
the law PT, whereas the latter when time-reversed has the original law (up to the
last exit). Hence using the tools of this paper, and in particular Theorem 8, we may
provide, e.g., a limit result for zooming in on X at its last exit time.
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A Proofs of the results from §4

This Appendix is devoted to proofs of the results from §4. These proofs make re-
peated use of Karamata’s theorem and its Stieltjes-integral form variant, see (Bing-
ham et al., 1987, §1.5 and §1.6). The corresponding result translated into the setting
of regular variation at 0 is stated below, where it is assumed that the intervals of
integration include left endpoints and exclude right endpoints.

Theorem 12 (Karamata’s Theorem). Let f : (0,0) — R, be a positive left-conti-
nuous function of bounded variation on compacts.

o IffeRV_, and s+ p > 0 then
5
[ v/ r@) - o/ + o) (A1)
If (A.1) holds with ¢+ p >0 and ¢ >0 then f € RV_,.
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o If feRV_, and <+ p <0 then

/ "y df ) e f @)} = p/s +p). (A2)

If (A.2) holds with ¢+ p < 0 and ¢ # 0 then f € RV_,,.
o If f € RV, with p > 0 then

/0 Y )dy/ £ () = 1/p. (A3)

Proof of Theorem 6. The Lévy triplet corresponding to the Lévy exponent 1)) of
the rescaled process can be easily identified:

A& = i(y —/ xH(dx)), o®)? = %02, 1 (dz) = ell(acdx)
as<|z|<1 az

Qe

for any x > 0, assuming that ¢ is small enough so that a. < 1. According to (Kallen-
berg, 2002, Thm. 15.14) the convergence in (3.4) is equivalent to

NON / 211 (da) = em(ua.)/a. — 7 — / +Tl(dz), (A.4)
u<|aj‘§1 u<\x|§1
e [ O = eua) a2 554 [ ), (AS)
jo|<u ol <
e 201 (A.6)

for some (and then for all) v > 0, where [ for w > 1, and the

<Jzj<1 T _f1<|z\gu
Lévy measure converges vaguely on [—oo,0) U (0, 0o].

Case (i)

In this case ¢ > 0,7 = 0, Il = 0. Note that v is non-negative and non-decreasing.
From (A.5) we see that v is necessarily positive and such that v(ua.)/a? — &, where
a. € RV, according to Theorem 1. Taking ¢ = 1/n and noting that a1/, ~ a1/(n41)
(by the uniform convergence theorem) we find according to (Bingham et al., 1987,
Thm. 1.10.3) that v is regularly varying. Since v(ua.)/v(a.) — 1 it must be that
v € RVy; reference to the above theorem is necessary, because a. is not an arbi-
trary sequence. Moreover, it is sufficient to choose a. such that v(a.)/a? ~ 5271,
which is always possible according to (Bingham et al., 1987, Thm. 1.5.12). Further-
more, since [ y~2dv(y) = II(z), we find from (A.1) that v € RV is equivalent to
2 11(x) /v(z) — 0 as x | 0.

For sufficiency we need to show that v € RV implies (A.6) and (A.4) with u = 1.
Observe that

(ra.)?Tl(xa.) v(za.) cv(a.)

I (R\[~x, z]) = ell(za.) = o(rn) o) @ — 0,
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because the first term goes to 0 while the latter two have finite limits, which
shows I1) % 0. Next, we show that em(a.)/a. — 0. Note that £/a. — 0 and
so it is enough to establish that

€ cv(a 133_1(1?] x
< ’$|H(dﬂf) _ ( z—:) fa5<x< ( )

2 -1
Qe Ja.<|z|<1 = Qe U(CLE)

but the first term has a finite limit and the second converges to 0 according to (A.1).

— 0,

Case (ii)

In this case § > 0,5 = 0,11 = 0. We have em(ua.)/a. — 7, but the function m is
not monotone in general. Nevertheless, for v € (1,00) and small enough ¢ we must
have

sup —|m(ua.) —m(a.)| < sup — [2[T1(da)
u€[1,w] Qe u€ll,v] Ae Jac<|z|<uae
< sup ue/ (a.dz) < vII®((—v,1) U (1,v)) — 0.
u€[1,v] 1<|z|<u
This and a similar statement for v € (0, 1) lead to the conclusion that
EM — 1 uniformly in « on compact sets of (0, 00).
a.

Since a. € RV, we have a1/, ~ a1/(n41) showing, in particular, that m(z)/7 is
positive for all small . Thus m(x)/5 € RV, according to (Bingham et al., 1987,
1.9.3), and we may choose a. as stated. Moreover,

raJll(za.) m(za.) m(a.)e

ell(za.) = — 0 (A.7)

m(za:) xm(a:) a

showing that xa.ll(xa.)/m(xa.) — 0 uniformly in x on compact sets of (0, c0). So we
may conclude that 2II(x) /m(z) — 0 as x | 0. Let us now show that zI1(z)/m(x) — 0
and the fact that m(x)/7 is eventually positive imply that m(z)/5 € RVy. Observe
that dm(y) = y(II(dy) — TI(—dy)) and so

L ) = (b — T(—b, —a) < PO
) = )~ (b ) <

establishing the claim in view of (A.1).
For sufficiency it is only left to show that ev(a.)/a? — 0, where necessarily o = 0
in view of £/a? — oo or (3.3). Hence we need to establish that

() ~25 /0 " T(2)dz — 0, (A3)

where we relied on the fact that z2II(z) — 0 which follows from zII(z)/m(x) — 0
and zm(x) — 0 as = | 0. But

m(@)] "

c 22dll(x) = eIl

2
a:z Jo

(5]

3 _ em(ac

— m(z)dzr = —)/ m(z)dz/(a:m(a:)) = 7,
az Jo Qe 0

because the second term converges to 1 according to (A.3). From this and since
zll(z)/m(z) — 0, as well as (A.7), we find that (A.8) indeed holds true.
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Case (iii)

In this case ¢ = 0 and ﬁ(dx) is given in (2.4). Without loss of generality we assume
that ¢, > 0. The necessity of (a) follows from the Convergence to Types Lemma 3
and the results in (i) and (ii).

Concerning (b) we find from (A.6) that

1©)(, 00) = eIl (za.) — o~ = Ti(z, 00) (A.9)
for all z > 0, together with the analogous statement for (—oo, —x). Clearly II, is
monotone and positive for small arguments, otherwise (A.9) can not hold. Further-
more, 11, (za.) /T, (a.) — x~* and thus it must be that II, € RV_,, see (Bingham
et al., 1987, Thm. 1.10.3). Similarly, [T € RV_, if¢_ > 0, and II_(za.) /I, (za.) —
c_/cy as e | 0. The latter convergence is uniform in x on compact sets of (0, c0),
which is inherited from the uniform convergence of IlL(za.)/Il+(a.). Since aj, ~
1/(n+1), we must have that II_(z)/I1;(z) — ¢_/¢; as x | 0. Furthermore, we may
always choose a. as stated, and in that case (A.6) would follow from the conditions
in (b), which will be assumed in the following.

With respect to (A.5) we find that indeed

%U(ag) S / 2dI(z) — Cr e :/ 2211(dz),
z 0 2—a lz|<1

a2
a az

because ell(a.) — (¢4 + ¢_)/a and according to (A.2) also

- /Oas ?d(x)/(a’T(a.)) — /(2 — ).

For aw # 1 it is left to show (A.4) for u =1, i.e., that

em(ae)/as — 7 = chr : ;_ . (A.10)
If a € (0,1) then v/ = 0 and so
E (e = £ / 2TH(dr) = —= [ 2d(TT, (2) — T (2)).
Qe Qe J|z|<a. Qs Jo

If ¢y > 0 then (A.10) follows from (A.2) applied to in separately. If ¢ = 0 then we
apply that result to II, —II_ € RV_, and note that (Il (a.) — II_(a.)) — ¢4 /a.
If o € (1,2) then ¢/a. — 0 since a. € RVy/,. Moreover,

-~

Cy —/C\_

?

- 2I(dz) = — / 2d(T () — T (z)) —

e Ja.<|z|<1 Qe 11—«

which follows similarly to the case v < 1, but using (A.1). Hence (A.10) is established
for av # 1.
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_ In the case of a = 1 the convergence in (A.4) does not always hold. But since
ell; (a.) ~ ¢4 we must have

[ .
— (v - ylI(dy) ) — 7, A1l
aaH-i—(aa) <'Y L5S|y<1 ( )> ! ( )

which shows (4.2) for a particular sequence a.. It is left to show that this limit
extends to an arbitrary sequence x | 0. Choose n = n(z) to be the largest integer
such that < ay/,. Thus © > ay/(n4+1) and n — oo as = | 0. Using monotonicity of
various terms we find that the expression in (A.11) is bounded from above by

& (7—/1 yH(dy)ﬂL/1 yH(—dy)) -7

al/(n—i—l)HJr(al/n) ay/n a1/(n+1)

for all large n, because ﬁ+(a1/n) ~ ﬁ+(a1/(n+l)) and

! [ ) so

al/(n+1)ﬁ+(al/(n+1)) 1/(n+1)

A similar lower bound completes the proof. O

Proof of Corollary 7. The case (iii) of Theorem 6 is analyzed using standard argu-
ments. For IT € RV_, and any small § > 0 we need to show that

1 1
—/ 2 PdTl(z) < oo, —/ 2°7°dIl(x) = oo.
0 0

Convergence of the first integral follows from integration by parts and Potter’s
bounds. Divergence of the second integral follows from

- / 3T (2) ) (" Ti(y)) — a5

which is a consequence of (A.1).
In case (i) of Theorem 6 we need to show that

/x|<1 o dr) = /01 z7°dv(r) = oo

for any 0 > 0. Suppose the opposite. Then V (y) = fyl 27 %dv(r) must have a positive
limit, and so V' € RV,. Now

- / YAV (y) = v(z) — v(0) = v(z),
because we assumed that o2 = 0. From (A.2) it follows that v(x)/2°V (z) — 0 which
can not be true since v/V € RVj,.

In case (ii) assume first that X is b.v., and so fpg < 1. Define M(z) =
5 ly[(dy) and note that zII(z)/M(z) — 0. In view of [~"y'dM(y) = I(z)
and (A.1) we find that M(z) € RV,. Similarly to the case (i) we now see that
fol x7%dM (x) = oo showing that g > 1— 6. If X is ub.v. then g > 1 and we let
M(z) = fxl ly[TI(dy), which again must be RVy. But then clearly — f01 2°dM (z) < o0
showing that g < 1+ 6. O]
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B An extension of the law of large numbers

Reconsider (3.1) for a constant non-zero limit:

ZQ’/CLn%W#O, n, Gy, — 00, (B.1)
i=1

where (; are i.i.d. and convergence is in probability. In order to have a complete
picture with respect to zooming out on random walks, see §3.1, we need to find
necessary and sufficient conditions for the convergence in (B.1). The interesting part,
of course, concerns the cases E|(;| = oo and E¢; = 0, because otherwise we may
simply take a,, proportional to n and apply the law of large numbers. For positive
(; this problem is solved by (Feller, 1966, Thm. VII.7.3), whereas the general case
is not readily available in the standard textbooks. Similarly to Theorem 6 (ii) one
can establish the following result, which complements (Shimura, 1990, Thm. 3.1)
characterizing the strict domain of attraction of a strictly 1-stable distribution, see
also (3.4) therein.

Proposition 13. Let m(z) = E((i; |G| < z). Then (B.1) holds true if and only if
m(x)/7 is eventually positive and xP(|¢1| > x)/m(x) — 0 as © — oo, in which case

an/m(a,) ~n/y.

Proof Sketch. According to (Kallenberg, 2002, Thm. 15.28) the convergence in (B.1)
holds if and only if

nP(¢ € apdr) 50, nvar((; |Gl < uayp)/a2 =0, nE(C; |G| < vay)/an — 7

for some (and then for all) u > 0. The rest of the proof is somewhat similar to Case
(ii) in Appendix A. O

Assume that E(; = oo then m(x) — £oo and thus a,/n — oo, ie., the
scaling should be faster than linear. Hence if (B.1) holds then ¢; can be replaced by
(; — d for any d € R without changing the limit result. In other words, shifting is
irrelevant in this case. An example is given by the Pareto distribution with shape 1:
P(¢; € dx) = x72dx for > 1, where m(z) = log z.

C Proof of the invariance principle

Proof of Theorem 8. The proof consists of three steps, where in steps (ii) and (iii)
we use some particular representations of the laws Pt and P¥ avoiding double limits.
In the following we define some quantities for the process X and assume that the
analogous quantities are defined for each X™ without explicitly writing them.

(i) Consider the (weak) ascending ladder processes (L™!, H), where L~! denotes
the inverse local time at the supremum and H; = X Lt The corresponding Laplace
exponent is denoted by k(«, 5) and normalized so that k(1,0) = 1, see (Bertoin,
1996, Ch. VI) or (Kyprianou, 2006, Ch. 6). By the continuous mapping theorem
we get convergence of the Wiener-Hopf factors in (Kyprianou, 2006, Thm. 6.16(ii)),
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which then implies convergence of the bivariate exponents k™ (a, ) — k(a, 8) (and
hence also weak convergence of the ladder processes). It is noted that in the above
textbooks the results are formulated for non-killed Lévy processes, but they extend
to killed Lévy processes in a straightforward way.

(ii) The following representation of the semigroup of the conditioned process is
standard (Chaumont and Doney, 2005):

1 _ m(=y) ¥
pi(x,dy) = m(—x)Px(Xt e dy, X; <0), x <0, (C.1)

where X, = sup,<; Xy and m(r) = E fooo 1¢p,<ry dt is a finite, increasing function on
(0,00). Since we assumed that X is not a compound Poisson process, the function
m is continuous and P,(X; = 0) = 0 for x < 0. Hence we have

P™ (X, € dy, X; < 0) = P, (X, € dy, X; < 0).

It is well-known and easy to see that f[O,oo) e Pedm(z) = 1/k(0, B) for 8 > 0, because
dm(x) is the potential measure of the ladder height process. Thus according to step
(i) the Laplace transform of dh(™(z) converges to that of dm(x) for all 8 > 0, and
so the corresponding cumulative distribution functions converge: m™(z) — m(z),
because the latter is continuous (Feller, 1966, Thm. XIII.1.2a). We have established

convergence of the semigroup given in (C.1), and so according to (Ethier and Kurtz,
1986, Thm. 4.2.5) we obtain

P(")i = P! forz <0

because the corresponding processes are Feller and the initial distributions coincide,
see also (Ethier and Kurtz, 1986, Lem. 4.2.3) concerning the one-point compactifi-
cation of R.

(iii) Finally, we recall (Chaumont and Doney, 2005, Thm. 1) that P+ is also the
law of the post-supremum process under P! for any z < 0. Under the latter law
the time of the supremum is finite and unique, and so we can apply the continuous
mapping theorem to establish that

Pt = pt.

The respective map is continuous at any w such that the time of supremum of (w;)¢>o
is finite and unique. Indeed, for a sequence w™ converging to w the corresponding
suprema and their (last) times will converge. Then it is easy to see that the post-
supremum processes converge in Skorokhod topology given that the initial evolution

of paths can be matched. The latter follows from the assumption that wy_ = w{™ =0
allowing to deal with the case when the post-supremum process starts at a negative
value. The proof is complete. O

28



