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Abstract

In this survey we review classical and recently proposed Riemannian metrics
and interpolation schemes on the space of symmetric positive definite (SPD)
matrices. We perform simulations that illustrate the problem of tensor fatten-
ing not only in the usually avoided Frobenius metric, but also in other classical
metrics on SPD matrices such as the Wasserstein metric, the affine invariant
/ Fisher Rao metric, and the log Euclidean metric. For comparison, we per-
form the same simulations on several recently proposed frameworks for SPD
matrices that decompose tensors into shape and orientation. In light of the
simulation results, we discuss the mathematical and qualitative properties of
these new metrics in comparison with the classical ones. Finally, we explore
the nonlinear variation of properties such as shape and scale throughout prin-
cipal geodesics in different metrics, which affects the visualization of scale and
shape variation in tensorial data. With the paper, we will release a software
package with Matlab scripts for computing the interpolations and statistics
used for the experiments in the paper.!

1 Introduction

The space of symmetric positive definite (SPD) matrices, denoted Sym™(n), is de-
fined as

Sym*(n)={T e R |T;; =T;Vi,j=1,....,n, 2’ Tz >0V 2z € R"\ 0},

where the first property enforces symmetry and the second property enforces positive
definiteness. An equivalent definition of positive definiteness is that all eigenvalues
of T are positive.

SPD matrices play an important role in many data science applications. They
coincide with covariance matrices of multivariate normal distributions, and there-
fore appear both in information geometry [3] and through covariance descriptors

!The code will be made available upon publication at https://sites.google.com/site/
aasaferagen/home/software.



in computer vision [34]|. They also represent second order tensors which e.g. model
diffusion in diffusion tensor imaging (DTT) [5]. These applications have led to a rich
theory of statistics and geometry in spaces of SPD matrices, which has interest both
from a practical and theoretical point of view. Throughout the paper, we will use
the terms “SPD matrix” and “tensor” interchangingly.

In this paper we survey classical and modern geometries defined on the space
Sym™(3) of SPD 3 x 3 matrices. All of these geometries can be extended to Sym™(n),
most of them directly, but for some this is technically more challenging. We perform
simulations that illustrate the properties of the different approaches, in particular
concerning the preservation information in tensor interpolation and statistics. Fi-
nally, we discuss properties of the different metrics regarding the visualization of
statistical properties of datasets in Sym™(3), in the context of recent work in visu-
alization [37].

2 The positive definite cone and the Frobenius
metric

It is easy to see that the space Sym™(3) is a convex subset of the Euclidean space
R3*3 of 3 x 3 matrices. Let T}, Ty € Sym™(3) and t € [0, 1]; now T} + t(Ty — T}) €
Sym™(3) because it is clearly still symmetric, and

" (T +t(Ty—T))r=(1—t)a"Twe+ t 2"Tha >0  forallz € R*\0,
>0 0 >0 0
2 > > >

where the inequality holds because only one of the factors (1 — t) and ¢ can be 0.
More precisely, the elements of Sym™(3) reside on the convex positive definite cone
in R3*3, which is the interior of the more frequently used positive semidefinite cone
defined by 27Tz > 0.

Since Sym™(3) is convex, we can perform linear interpolation between elements
of Sym™(3) while remaining within the manifold. These straight lines are geodesics
on Sym™(3) with respect to the so-called Frobenius metric on Sym™(3), which is
just the inherited Euclidean metric from R3*3. In particular, distances with respect
to the Frobenius metric are given by the ambient space Euclidean distances:

((T1)ig — (T2)ig)*

3
=1

dp(T1,Ty) = |Ts = Talla = (| Y

=1 j

The Frobenius geodesic y: [0,1] — Sym™(3) from Tj to Ty is trivially computed
through Euclidean coordinate-wise interpolation:

’YF(t) = T1 + t(Tg - Tl)

While the Frobenius metric is simple and efficient to work with, it comes with
a significant cost when used for statistics on Sym™(3). Frobenius interpolation be-
tween tensors in Sym™(3) leads to a significant swelling effect, illustrated in Figure 1.



Figure 1: Samples from a geodesic interpo-
lation between two identical line-like tensors
at an angle of 85 degrees in the Frobenius
metric. Note that the samples at the mid-
dle of the geodesic are very disc-like, thus
exhibiting a very different shape from the
two endpoints, and thus containing very lit-
tle orientation information. This is called the
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Figure 2: Values of the tensor determinant
along the geodesic illustrated in Figure 1.
The non-constant behavior of the determi-
nant is what, in the literature, is referred to
as the swelling effect of the Frobenius met-
ric.

swelling effect.

Here, two tensors are interpolated which have identical, ellipsoidal shape but which
have 85 degrees difference in orientation. We observe that the tensors in the middle
of the geodesic are much rounder than the endpoint tensors. The swelling effect is
problematic for a number of applications in DTI. For example, when tensor interpo-
lation is used for upsampling, the swelling effect leads to smoothing in the upsampled
tensor field. The problem becomes more serious when statistics in Sym™(3) are used
e.g. for voxel-based morphometry. The mean of two tensors is the midpoint of the
geodesic conencting them, which carries less shape information than the original two
tensors. The mean of multiple tensors will typially exhibit even stronger smoothing
of information, leading to reduced predictive or discriminative power.

The swelling effect is defined analytically as an increase in the determinant of
the elements in Sym™(3) as one interpolates two identically shaped but differently
oriented ellipsoidal tensors. Figure 2 shows a plot of the determinant of each tensor
depicted along the geodesic in Figure 1. As seen from the plot, the determinant
is non-constant, and this is directly related to the tensor swelling throughout the
geodesic connecting the two identically shaped, but differently oriented tensors in
Figure 1.

In this paper, we will first survey classical Riemannian metrics on Sym™(3) and
illustrate that while most of these avoid the swelling effect, they still exhibit a strong
and unwanted fattening effect, as is is also remarked in [22|. Next, we proceed to
reviewing and exploring some more recently proposed metrics and interpolation
schemes that aim to avoid the fattening effect by decoupling tensor shape from
tensor orientation. While these have modelling advantages, they do come at a price:
losing the statistics that come with a well-defined and computationally efficient
geometric framework.



2.1 Acknowledgement

This paper was largely motivated by discussions of whether nonlinear geometries
on Sym™(3) might improve statistics and visualization for populations of tensors at
the Dagstuhl seminar “Multidisciplinary Approaches to Multivalued Data: Modeling,
Visualization, Analysis” (16142). We return to remark on this question in Section 5.5.

3 Classical Riemannian metrics on Sym™(3)

Riemannian metrics and other interpolation schemes for SPD matrices became an
active area of research with the advent of diffusion tensor imaging (DTT), starting a
quest for metrics that avoid the swelling effect while being computationally efficient.
We start out by surveying the classics: The Wasserstein metric, the affine-invariant
metric known in other contexts as the Fisher-Rao metric, and the Log-FEuclidean
metric.

3.1 The Wasserstein metric

Tensor determinant in Wasserstein geodesic
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Figure 3: We observe a swelling of the ten- Figure 4: The tensor determinant increases
sor as we move throughout the geodesic be- as we move through the geodesic in Figure 3.
tween equally shaped, ellipsoidal tensors.

The Wasserstein metric, also known as the earth mover’s distance, defines a gen-
eral distance metric between arbitrary probability distributions on general metric
spaces, which intuitively measures the amount of mass needed to transport one dis-
tribution into the other. Given a metric space (X, d) which is also a Radon space [4],
and given p > 1, denote by P,(X) the set of probability measures p on X such that

/X P (z, 7o) dp(z) < oo.

The p'" Wasserstein distance between two probability measures p,n € P,(X) is
given by

W) = (nt [ @eaen)’ s @aexxx,

vEL (1,m)
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where I'(u,n) is the set of measures on X x X whose marginals are p and 7, re-
spectively. We shall focus on the case p = 2 for multivariate normal distributions
N(0,Y) centered at the origin in the metric space X = R? [30]. Any such multivari-
ate normal distribution is described entirely by its covariance matrix ¥, and the set
of such covariance matrices ¥ is exactly the space of SPD matrices Sym™(3). For
general metric spaces and distributions, the Wasserstein distance is difficult to com-
pute, but for centered normal distributions in R”, it has an analytical expression. We
therefore obtain a Riemannian metric on Sym™(3) by representing any SPD matrix
T € Sym™(3) as a multivariate normal distribution with zero mean and covariance
¥ = T. This defines the Riemannian Wasserstein metric on Sym™*(3) as a pull-back
from the corresponding metric on the space of normal distributions.

Given this Riemannian metric, we can compute geodesics and geodesic distances,
where the geodesic distance dy (T3, Ts) between tensors Ty, T, € Sym™(3) is the
length of the (shortest) geodesic vy : [0,1] — Sym™(3) joining 7} and T. In the
space of normal distributions, both geodesics and geodesic distances have analytical
solutions. The geodesic vy : [0,1] — Sym™(3) connecting 77,7, € Sym™(3) is given
by

l=
=
=

1 1 1 1 1 1
yw (1) = (1= )] + 1T (T T T) 2T Ty (1 — 1) + 1T (TP TV T3 ) "3 T

)

and the geodesic distance from T} to T5 is given by

dw (T1, T) = Wa(N(0, T1), N (0, %)) = tr(Ty) + te(To) — 2tr \/ TETV T

In the more general case of normal distributions with positive semidefinite covariance
matrices, the Wasserstein distance induces a stratified space geometry, which is
analyzed in detail in [30].

The Wasserstein distance has a nice intuitive interpretation, it is well-understood
mathematically, and it is immensely popular. However, looking at Figures 3 and 4,
we observe that in practice, when interpolating two thin ellipsoidal tensors with
identical shape but different orientation, the tensors go through significant swelling.

3.2 The affine-invariant metric

The classical affine-invariant metric |7, 14] was introduced to avoid the swelling
effect on Sym™(3). For two matrices V;, V5 in the tangent space at P € Sym™(3),
Vi, Vo € TpSym™(3) € R3*3, it defines the tangent inner product via the tangent
space at the identity

(Vi,Va)p = (P2Vi P73, P72V, P~2) = Te(P Vi PTV,P72).

The geodesic between tensors 11, T, € Sym™(3) is given analytically by

Yar(t) = T exp(tTy 21Ty )T, t €[0,1],
and the geodesic distance from T} to T5 is

_1 _1
dar(Ty, Ty) = [[log(T; *T5T, *)| .

b}



Tensor determinant in affine-invariant geodesic
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Figure 5: Samples from a geodesic inter- LT ns along affinenvariant geodesic
polation between two identical line-like ten-

sors at an angle of 85 degrees in the affine-  Figure 6: The tensor determinant is con-
invariant metric. The samples at the middle  stant along the affine invariant geodesic il-
of the geodesic are less disc-like than in the  lustrated in Figure 5. The affine-invariant
Frobenius metric. Note, however, that they = metric thus avoids the swelling effect has a
still have different (fatter) shape than the  fattening effect throughout the geodesic.
endpoint tensors.

The affine-invariant metric is a special case of the Fisher-Rao metric [3| on proba-
bility distributions, restricted to zero-mean multivariate Gaussian distributions with
covariance in Sym™(3), as in the previous section.

In Figure 5 we see an example of an affine invariant geodesic on the same example
as above, and in Figure 6 we track the determinant of the interpolated tensors
throughout the geodesic. We see that there is no swelling effect, in the sense that the
determinant remains constant througout the geodesic. However, there is a noticeable
fattening effect leading to rounder tensors in the middle of the geodesic than at the
endpoints.

It is clear from the above equations that the affine-invariant metric is relatively
computationally expensive, as it relies on a number of evaluations of matrix ex-
ponentials, logs, square roots and inverses, and for this reason, the more tractable
Log-Euclidean metric was proposed in 2006 [5].

3.3 The Log-Euclidean metric

The Log-Euclidean metric on Sym™(3) [5] utilizes the observation that the matrix
exponential defines the one-to-one mapping exp: Sym(n) — Sym™(3) from the
vector space of symmetric 3 x 3 matrices into the manifold Sym™(3) of SPD 3 x 3
matrices, whose inverse is the matrix logarithm (which is well defined on Sym™(3)).
This means that the differential structure of Sym(n) = R *"/2 can be pulled
back to Sym™(3) via the matrix logarithm. Equivalently, the logarithm provides
a nonlinear transformation of Sym*(3) into the Euclidean space R™*+%)/2 where
analysis can take place. In this way, the Log-Euclidean metric defines a Fuclidean
structure on Sym™(3). In this geometry, the distance between two tensors T} and T
is given by
dpp(Ty, Tz) = || log(T1) — log(72)||r-



More importantly, the geodesic between 7T} and 75 under the Log-Euclidean metric
is given by the straight line between log(77) and log(75). However, this straight line
resides in R /2 not in Sym™(3). It can be pulled back to Sym™(3) using the
matrix exponential, giving rise to the following analytical expression for the geodesic
v [0,1] = Sym™(3):

voe(t) = exp(log(Tl) +(1—1) log(Tg)), t €[0,1].

The Log-Euclidean distances and geodesics thus avoid many of the involved matrix
power computations needed in the affine-invariant framework, although they still re-
quire matrix exponentials and logarithms. Moreover, empirically, the Log-Euclidean
geodesics are often found to be extremely similar to the affine invariant ones. This
is illustrated in our geodesic interpolation example, shown in Figure 7. As we can
see in Figure 8, the Log-Euclidean geodesic keeps the tensor determinant constant
when interpolating identically shaped tensors, and it therefore does not exhibit the
swelling effect — but we see in Figure 7 that it does, just like the affine-invariant
metric, still lead to a fattening effect in the tensors at the middle of the geodesic.
Note also the qualitative similarity between the affine-invariant geodesics in Figure 5
and the Log-Euclidean geodesics in Figure 7.

Tensor determinant in Log-Euclidean geodesic
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Figure 7: Samples from a geodesic inter- Figure 8: The tensor determinant is con-
polation between two identical line-like ten- stant along the Log-Euclidean geodesic illus-
sors at an angle of 85 degrees in the Log- trated in Figure 7. It therefore also avoids
Euclidean metric. the swelling effect, but exhibits a fattening

effect as seen in Figure 7.

4 Avoiding the swelling, but not the fattening,
effect

Figures 5 and 7 illustrate that while the affine-invariant and Log-Euclidean met-
rics do keep the tensor determinant fixed and therefore avoid the previously defined
swelling effect, they do not preserve tensor shape when interpolating between iden-
tically shaped, but differently oriented tensors. Let us quantify this effect further by
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Figure 9: We quantitatively confirm the fattening effect in the affine invariant and Log-Euclidean

metrics: The shape is variable and the tensors become fatter towards the middle of the geodesic.

considering four different shape indices: The fractional anisotropy (FA) of a tensor
T is given by

2007 + 23+ A3) ’
where A\ > Ay > A3 are the eigenvalues of T'. In the same notation, the three Westin
tensor shape indices [36] are given by

AL — Ag A2 — A3 A3
= - = ——— Cs = —

A b A TN
and quantify the tensor’s resemblence to a line, a plane or a sphere, respectively.
For the same two endpoint tensors used previously, we plot the four different shape
measures throughout the geodesic for the affine invariant and Log-Euclidean metrics
in Figure 9.

The plots in Figure 9 clearly confirm the fattening effect: The tensors are less
line-like and more plane- and sphere-like towards the middle of the geodesic, despite
the fact that the endpoint tensors have identical ellipsoidal shape. To avoid this
effect, several approaches have appeared that aim to decouple tensor shape and
tensor rotation.

FA— \/(Al —X)2 4 (A2 — A3)2 + (A3 — \)?

C

5 Decoupling shape and rotation

The eigenvalue decomposition of an SPD matrix

T =QAQ! (5.1)

into a rotation matrix @ € SO(3) given by column-wise eigenvectors and a diagonal
matrix A containing the eigenvalues, provides a natural way of splitting 7' into
its shape- and orientation properties. This presents an attractive opportunity to
avoid the fattening effect, and it is also useful for interpretation. An abundance of
approaches to decouple shape and rotation have appeared |23, 16, 35, 28, 22, 18, 9|,
seemingly independent of each other, and we shall review some of the most important
ones below, in order of increasing complexity.
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5.1 The shape-and-orientation rotation metric

In the shape-and-orientation metric [35] the tensor T = QAQ~! is considered to
reside on the Riemannian product manifold SO(3) x R?, where SO(3) is given the
angular geodesic metric and R? is given the bi-invariant metric. A geodesic vy be-
tween two SPD matrices T} and 75 in this metric is a product geodesic v = 7, X 7s,
where 7, is a geodesic between )7 and () in SO(3), and 5 is a geodesic between
Ay and Ay, where 77 = QA1Q7" and Ty = Q2A2Q5 " as in (5.1).

Such geodesics are given analytically by the formulas

() = Q1 exp(t - 1oggos) (Q1 ' Q2)),
s(t) = Ay exp(t - log(A7 ' Az)),

where logg3) denotes the log map on SO(3), and the corresponding geodesic I': [0, 1] —
Sym™(3) from T to Ty is given by

F<t> = %(t) ’ Vs(t) ’ Vr(t)il'

An example of a shape-and-orientation geodesic is shown in Figures 10 and 11, and
the determinant and shape indices are shown in Figures 12 and 13. The correspond-
ing geodesic distance between two tensors T} and 75 is given by

510 ((Q1, A1), (@2, Az)) = dSo(s)(Q1, Q2) + dig (A1, Ao)

where
1
dso) (@1, Q2) = —2|| l0gso(s) (@2Q1)[lr,  das (A1, Az) = [[log(AsATH) |

As we see from the simulations in Figures 10 and 11, where we compute the
geodesic between identically shaped but differently oriented tensors, the tensor shape
is kept constant throughout the deformation — as intended. This is confirmed by the
constant determinant and shape indices shown in Figures 12 and 13. Moreover, the
construction is fast and apparently easy to work with as all the formulas are analyt-
ical, and the metric is intuitive and preserves tensor shape properties well. However,
the construction ignores a fundamental problem: There exist multiple decomposi-
tions T; = QN Q; L of the endpoint tensors T}, i = 1,2, and different choices of Q;
and A; generate different interpolations I': [0, 1] — Sym™(3). We see this effect very
clearly in the example geodesic in Figures 10 and 11, where the path chosen turns
95 degrees and is — while locally a geodesic — not the shortest path between the two
tensors (the shortest path turns 85 degrees).

The underlying problem is that while any point on SO(3) x R? does, indeed,
correspond to a tensor, the map F': SO(3) x R} — Sym™(3) defined by F(Q,A) =
QAQ™! is not injective, because the eigenvalue decomposition is not unique. The
map [’ is the map that takes an eigenvalue decomposition to its corresponding
tensor.

There are several ways in which the eigenvalue decomposition of a tensor, as
in Equation (5.1), is not unique. First, given any eigenvector e; of a tensor T, its
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Figure 10: Samples from a geodesic inter-
polation between two identical line-like ten-
sors at an angle of 85 degrees in the shape-
and-orientation metric.

3 Tensor determinant in shape-and-rotation geodesic
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Figure 12: The tensor determinant is
constant along the shape-and-orientation
geodesic illustrated in Figure 10.
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Figure 11: The same geodesic interpolation
as in Figure 10, from a different viewpoint.
It is clear that the interpolation is not the
shortest possible 85 degree interpolation, but
a longer 95 degree interpolation.
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antipode —e; is also an eigenvector. The orientation part () of the tensor decompo-
sition consists of eigenvectors of T', but not all combinations of eigenvectors lead to
a matrix Q € SO(3). In particular, multiplying an eigenvector by —1 gives another
eigenvector, but flips the sign of (), and only those eigenvector matrices that give
det(Q) = 1 actually reside in SO(3). Moreover, even those eigenvector sets that do
define a ) € SO(3), are not unique. This is what happens in Figures 10 and 11. An-
other source of non-uniqueness is the order of the eigenvalues and eigenvectors in the
decomposition. This issue is usually avoided in practice by requiring A\; > Ay > A3
in A = diag(\1, A2, A3). However, this is also problematic, in particular when two
eigenvalues approach each other. The problem with multiple representations of the
same tensor becomes particularly complicated when the endpoint tensors have two
or more identical eigenvalues [18]. To avoid the resulting technical complications,
our experiments and code will assume that endpoint tensors have three distinct
eigenvalues.

5.2 Scaling-rotation curves

While the shape-and-orientation metric as defined in [35] is a very simple way of
defining a metric using eigenvalue decompositions, it is not the first appearance
of the manifold SO(3) x R in an attempt to generate a geometric framework for
Sym™(3). In a series of papers [28, 22, 18|, A. Schwartzman and collaborators define
scaling-rotation curves and a corresponding geometry, as follows.

A scaling-rotation curve [28] between Ty, Ty € Sym™(3) is a geodesic in SO(3) x
R? between representatives (Q1, A1) and (Q2, As) of T and T5, where the metrics on
SO(3) and R? are the same bi-invariant metrics as in Section 5.1. Scaling-rotation
curves suffer from the same non-uniqueness problems as the shape-and-orientation
metric from Section 5.1. A more recent series of papers [22, 18| attempt to handle
this by factoring out multiple representations of the same tensor as follows. Given
the mapping

F:80(3) x RY — Sym™(3), (Q,A) — QAQ ™, (5.2)

one can define an equivalence relation ~ on SO(3) x R3 by setting (Q,A) ~ (Q'A)
whenever F(Q,A) = F(Q'A"). This gives rise to a quotient space

(SO(3) x BY)/~ = (SO(3) x B})/F, (5.3)

whose elements are equivalence classes, denoted (Q,A) = {(Q',A’) € SO(3) x R :
F(Q,A) = F(Q',N)} = F1Y(QAQ ™). In the quotient space, each tensor is repre-
sented exactly once.

The quotient space (SO(3) x R3)/F can be identified with Sym™(3), since the
map F descends to a 1 — 1 mapping F': (SO(3) x R3)/F — Sym™(3). This quotient
space is not a smooth manifold, but it is a stratified space, meaning that it is a
union of smooth manifolds which are adjacent to each other in a “well-behaved”
way (see [26] for details on stratified spaces). The strata, or manifold components,
are given by elements of Sym™(3) with a fixed number of eigenvalue degeneracies,
meaning the top stratum consists of tensors with three distinct eigenvalues, the next
stratum consists of elements with two identical eigenvalues, etc.
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Groisser et al. [18] note that tensors in Sym™(3), represented as equivalence
classes F~H(T) = (Q,A) in SO(3) x R, can be interpolated by minimal scaling-
rotation curves between equivalence classes (Q,A), (Q',A’). This gives rise to the
scaling-rotation distance

cdsr(Th,T3) = dso(3)xr? ((Q1, A1), (Q2,A2))

5.4
= min{dso(g)xRi ((Q1, A1), (Q2,A9)) | Ty = QuMQ7, To = QaA2Q5 '} 54)

5.2.1 The scaling-rotation distance is not a metric

As remarked in [22, 18|, the scaling-rotation distance is not a metric, and in par-
ticular it is not the quotient (distance) metric on (SO(3) x R3)/F. The quotient
metric [8, p. 65| defined on a quotient

X/ ~={z|zeX z=ygifx ~y}

is given by

n—1

d(z,7) = inf{z d(Zi, Zip1) | 21, 2n € X, 21 €T, 2 € gj}
=1

Here, the equivalence classes 7, y are viewed as subsets of X and d(z,y) = inf{d(z,y) |
r € T,y € y) is the set distance between subsets of X. Meanwhile, the scaling-
rotation distance is a special case of

d(z,y) = inf{d(z,y) | z € &,y € y}.

The quotient metric is the minimal total cost of hopping from Z to y with stopovers
at a finite set of equivalence classes z;, while the scaling-rotation distance does not
allow stopovers. The lack of stopovers causes the scaling-rotation distance to not
satisfy the triangle inequality, which is why it does not satisfy the criteria for being
a metric.

This is easy to see via a visual example. The scaling-rotation distance between
the left- and rightmost tensors in Figure 14 would be given by a 90 degrees rotation
with no shape component, while the distance for either of those two tensors to
the round tensor in the center would consist in a very small shape change with no
rotational component. The sum of the scaling-rotation distances from the leftmost
tensor, via the middle one, to the rightmost, is smaller than the scaling-rotation
distance between the two endpoint tensors.

Nevertheless, the scaling-rotation distance does define “minimal” interpolations
that solve some of the problems of the shape-and-orientation metric from [35, 28|.
The quotient metric on (SO(3) x R3)/F remains unexplored to the best of our
knowledge. This is likely due to the computational complexity and non-Riemannian
structure of the space.

12
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Figure 14: An example of two tensors for which the scaling-rotation distance does not satisfy the
triangle inequality. The left- and rightmost tensors have identical slightly ellipsoidal shape, but are
rotated at an angle of 90 degrees. The tensor in the middle is spherical.

5.3 Linear invariant tensor interpolation

Based on a set of tensor invariants proposed by Ennis et al. [11], Kindlmann et
al. |23] proposed the geodesic loxodromes framework in order to avoid fattening
when interpolating tensors. A tensor invariant is a scalar which depends only on
the shape of the tensor — or mathematically speaking, on its eigenvalues. A classi-
cal example is the fractional anisotropy (FA). A geodesic loxodrome between two
tensors T and 75 is the shortest path from 7} to T, for which certain tensor shape
parameters (either K;-K3 or Rj-Rs, as reviewed below) are linearly interpolated.
In the original geodesic loxodromes framework, the interpolations were found by
optimization, which is inexact and sometimes computationally expensive.

Gahm et al [16] utilize the following combination of R- and K-invariants from [23],
which allows an analytical reconstruction of the eigenvalues along the interpolated
path?:

KiT)=6(D) RalT) = FAT) =3y
] (5.5)
R3(T) = 3v/6 det <i> ,
1Tl
where ||T'||r is the Frobenius norm of 7', and
porp- 20, (5.6)

3

is the anisotropic part of T, the so-called deviatoric tensor. Note that Ry is the
tensor FA used previously, while K; measures tensor scale. Now, the path through
SPD matrices in Sym™(3) with eigenvalues A1, A2, A3 given by

Aift) = 3 (Ku(t) + 28, 1 (1) Ccos (arCCOS(R3(t)) ks Pi) ; (5.7)
3v/3 —2(Ry(t))? 3
where P; = 0, —2m, 2x for i = 1,2, 3, results in a linear interpolation
Ki(t) = (1 —t)K1(Ty) + t K1 (Ty),
Ry(t) = (1 — t)Ro(Th) + tRo(T3), (5.8)
R3(t) = (1 = ) Rs(Th) + tR3(1>),

ZNote that there are some typos in the definitions of Ry and R3 in [16].
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Figure 15: The LIT interpolation between the same two thin, ellipsoidal tensors as before. We see
that the determinant and shape of the tensor is unchanged throughout the geodesic, but we also
see that the orientation is not interpolated at a constant rate. To see the reason for this effect, we
refer back to the Frobenius interpolation in Figure 1, where the tensor orientation also does not
change at a constant rate.

in the corresponding three tensor invariants. This tells us how to interpolate the

shape of the tensors while linearly, and in particular, monotonically, interpolating
the corresponding tensor invariants.

However, we do not yet know how to interpolate the orientation of the tensors.

In [16] this is handled by using the orientation component of a Frobenius geodesic.

Let vr(t) be the tensor at time ¢ in the Frobenius geodesic yp: [0,1] — Sym™(3)
from T; to T, and let 3

QMAMQM) ™ =r(t) (5.9)

be an eigenvalue decomposition of the time ¢ tensor vp(t). Let the diagonal matrix

ME) 00
A= 0 @) 0 |, (5.10)
0 0 M)

consist of the eigenvalues obtained in Eq. 5.7. The LIT interpolation ~rir: [0,1] —
Sym™(3) from T} to Ty is defined as

yur(t) = QAR (5.11)

That is, the orientation component of the interpolation from 7} to 75 coincides with
that of a Frobenius interpolation from 7} to 75, and the shape interpolation com-
ponent is the one which linearly interpolates K;, R, and R3, given in Equation 5.7.

We see that, at least in our running example, the fattening effect is resolved using
the LIT interpolation. Tensor invariant interpolation methods have the advantage
that shape is interpolated monotonically, and even linearly, with respect to the pre-
specified shape invariants. For the combination of invariants used in vyt [16], there
is an analytical solution, making the interpolation scheme computationally feasible.
These are attractive properties.

On the negative side, the particular choice of angular interpolation is not ideal
when the difference in orientation is large — this is clear from Figure 15. This could be
resolved by choosing the angular component differently, e.g. from one of the alterna-
tive tensor metrics. Moreover, to the best of our knowledge, the interpolations do not
correspond to geodesics in a given geometric space. This makes it unclear to what
extent the derived interpolations can be used in a geometric statistics framework to
obtain Fréchet means, principal components, regression etc.

14



5.4 Further simulations
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Figure 16: Interpolation between four tensors, all with three distinct eigenvalues but different
shapes and orientations.

In the above, we have used as a running example an interpolation between two
identically shaped ellipsoidal tensors at an 85 degree angle of each other. Figures 16
and 17 illustrate additional simulations,® illustrating how the different metrics and
interpolation schemes handle interpolation between tensors of different shape and
less extreme orientation differences.

In Figures 16 and 17, all four tensors have three distinct eigenvalues to give
optimal conditions for the shape-and-orientation metric. Two of the tensors are thin
and ellipsoidal; in Figure 16 one of them is rotated 85 degrees. The two remaining
tensors have the same orientation as the first, but different shape: one is a bit fatter,
and one is almost spherical. In Figure 17 the experiment is repeated with a 30 degree
rotation instead of 85 degrees. Code for the experiment will be made available online
at https://sites.google.com/site/aasaferagen/home/software.

3For the square geodesic interpolations the optimal interpolation would have been made as
a weighted Fréchet mean; however, this strategy does not apply to the linear invariant tensor
interpolation. Therefore, all interpolations were made by first interpolating pairs of corners to
obtain two “side” interpolations and then interpolating the elements of the sides to obtain the
remainder of the square.
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Figure 17: Interpolation between four tensors, all with three distinct eigenvalues but different
shapes and orientations. Two tensors are thin and ellipsoidal; one of them is rotated 30 degrees.
The two remaining tensors have the same orientation as the first, but different shape: One is less
thin and one is almost spherical.

Note the difference between the first and second columns of the interpolation
results for the shape-and-orientation metric in Figure 16(e): The inconsistencies
with respect to choice of representation of tensors results in consecutive pairwise
interpolations being radically different geodesics in Sym™(3), some of them not being
shortest paths. This corresponds to our remarks in Section 5.1.

Note the abrupt change in orientation in the leftmost column of Figure 16(f). This
is an effect of the choice of rotation component in the linear invariant interpolation,
which is the rotation found in the corresponding Frobenius geodesic. The connection
is visually evident by comparing to the Frobenius geodesic in Figure 16(a).

5.5 Tensor statistics and tensor decomposition for
visualization purposes

This paper was largely motivated by a discussion of visualization of tensor popula-
tions at the Dagstuhl seminar “Multidisciplinary Approaches to Multivalued Data:
Modeling, Visualization, Analysis” (16142). In a recent paper, Zhang et al [37] visu-
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alize tensor population variation by separately visualizing variation in scale, shape
and orientation.

This leads to the question of how scale, shape and orientation can be decomposed
in different geometric frameworks. In this section we present simulations that aim
to make clear that the choice of metric on Sym™(3) affects data variation both
quantitatively in the notion of variance, and in the extent to which it is possible to
decompose the variation into scale, shape and orientation without misrepresenting
the metric. We do so by visualizing the first component of Fletcher principal geodesic
analysis [13] on four different simulated tensor populations, shown in Figure 18, for
four of the above discussed metrics.

=
N S -
\ -
\7 - - ~
\ -
(a) Dataset 1 (b) Dataset 2
- - > N
- \ - - ° - P ¢
A ~ - - e - v <
- - - . b ~— -
- - . °
- ~ 9 °
- L
(c) Dataset 3 (d) Dataset 4

Figure 18: Four similated datasets.

Each dataset consists of 20 tensors. The tensors in dataset 1 have identical shape
and rotation, but variable scale (defined as the Frobenius norm of the tensor ma-
trix); the tensors in dataset 2 have identical shape and scale but variable rotation;
the tensors in dataset 3 have identical shape but the scale and rotation of the cor-
responding tensors in datasets 1 and 2, respectively. Dataset 4 has variable shape,
scale and orientation.

Figure 19 shows sampled tensors along the first geodesic principal component for
the Frobenius, affine-invariant, Log-Euclidean and shape-and-rotation metrics. The
middle sample for each dataset and metric is the Fréchet mean. The first conclusions
to be made from Figure 19 is that the Riemannian metric frameworks are rather
different, and that neither of the first three metrics capture the dataset variability
very well except for in the case where orientation is kept constant. In particular,
while every tensor in the datasets 1-3 has identical shape, the geodesic principal
components of these datasets for the first three Riemannian metrics indicate shape
variation. In dataset 4, however, there is shape variation in the dataset, but the
tensors sampled along the geodesic principal component do not exhibit much shape
variation. The tendency holds for all of the first three metrics. This indicates that
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Figure 19: First geodesic principal components in four Riemannian metrics, for the four simulated
datasets.
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the Riemannian metrics do not capture tensor shape very well in the presence of
high orientation variation. This is not surprising.

The shape-and-rotation metric is better at capturing the shape variation (or lack
of it), as expected. However, we already know that due to its multiple representation
of single tensors, it will overestimate variance and we know the results to be incorrect.

Note that while the shape and scale of the tensors in datasets 1 and 3 are identi-
cal, the variation of the shape and scale along the first geodesic principal component
is quite different both between the metrics and the datasets. This indicates that one
should think carefully about how to separate scale, orientation and shape for visu-
alization of variance when using a geometric framework. For instance, factoring out
orientation before applying the geodesic PCA as in dataset 1 changes the captured
shape variance dramatically. This might be surprising.

6 Further related work

Tensor interpolation and geometric frameworks for analysis of tensors has been an
active field of research for a number of years, and in the above we have only touched
upon some of the most classical and most recent approaches to tensor interpolation.
As an extension of the geometric framework, several approaches have appeared that
utilize divergences [10, 29]. Divergences are not generally symmetric and therefore do
not lead to a geodesic space in an obvious way. They can, however, be closely linked
to Riemannian metrics, as in the case of the KL divergence, which infinitesimally
coincides with the Fisher-Rao metric [3]|. In the context of machine learning, kernel
methods have also been proposed for SPD matrices [21]|; however, these have been
shown to just consist of Gaussian kernels on Euclidean features extracted from the
SPD matrices [12]. Aside from tensors, approaches that try to separate rotation from
other properties have also appeared |9, 1].

Several surveys and comparisons exist for geometries and interpolations for
Sym™(3). Moakher et al. [24] compare the affine-invariant metric to the closely
related KL divergence in both geometric properties and in the context of statistics
and visualization. Both Peeters et al. [25] and Zhou et al. [38] compare different dis-
tance/similarity measures for DTI, including several simple measures along with the
affine-invariant and Log-Euclidean metrics representing the Riemannian approaches;
the latter has a focus on regularization. What our survey has to offer in comparison
is an extensive discussion of nonlinear geometries on Sym™(3), a comparison with
non-geometric approaches such as LIT [16], a thorough mathematical discussion
of the current status of approaches that decompose shape and orientation — and
a mathematical explanation why this is not trivial. Moreover, we offer publically
available software? online to enable any reader to start working with geometries on

Sym™(3).

4Upon publication, the software will be available at https://sites.google.com/site/
aasaferagen/home/software.
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7 Discussion and conclusion

7.1 Geometry versus shape preservation

We have investigated a number of different geometric frameworks for tensor compu-
tation: The Frobenius, Wasserstein, affine-invariant and log-Euclidean metrics are
all Riemannian metrics on Sym™(3). However, they all exhibit the fattening effect,
which can lead to unwanted smoothing effects when used for tensor interpolation or
statistics. The shape-and-orientation metric is also a Riemannian metric. However,
it comes with multiple representations of the same tensor, which leads to inconsis-
tencies and unreliable statistics in practice, as illustrated by our experiments. This
can be handled by factoring out the multiple representations in a quotient space.
This quotient space is still a geodesic metric space, but it is no longer a Riemannian
manifold — it has singularities and is a stratified space |26, 18]. The geodesics in
this space could be used for interpolation, but a remaining problem for a practical
investigation of its usefulness is to obtain an algorithm for computing the quotient
metric geodesics. We expect this to be computationally demanding.

We have also reviewed frameworks that let go of geometry and simply ask for
tensor interpolations that preserve shape well. These interpolations would very likely
be good at preserving signal, but do not give the geometric framework of a geodesic
metric space. In particular, this means that we do not have access to statistical
approaches such as Fréchet means, hypothesis tests, geodesic PCA or regression,
as we have with the more geometric approaches. This also makes interpolation of
multiple tensors less well-defined, as we have already observed in Figures 16 and 17.

7.2 Why are second order tensors still interesting?

Second order tensors were key objects in DTI, but with the advent of HARDI imag-
ing [32], they are often considered “too simple” to warrant further study. We argue
the opposite. If you want to build geometries or tools that can handle the challenges
of higher order tensors in diffusion-weighted imaging, these tools have better also
perform well on second order tensors in DTI. Some of the most natural choices of
metrics on the distributions returned by fODF model estimators such as constrained
spherical deconvolution [31] or Q-ball 33|, are the Wasserstein and Fisher-Rao met-
rics [17], as these are defined and theoretically well understood for general probability
distributions. However, as we have seen in this survey, these metrics have unwanted
smoothing effects when used for interpolation or statistics on second order tensors,
and should not be expected to behave better on higher order tensors [9].

Another route to comparison of higher-order tensors comes through representa-
tions of higher order tensors based on second order tensors. Such representations are
given by multi-compartment models [2] as well as through Finsler geometry, where
any higher order ODF can be represented through a Finsler norm, and any Finsler
norm can be represented as an orientation-dependent second order tensor [15, 6]. In
both of these representations, a well-chosen metric for second order tensors may be
extended to higher order tensors by integrating over orientation. This is an interest-
ing direction for future work.
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Finally, second order tensors are in 1-1 correspondence with covariance matrices,
and any metric on second order tensors therefore also defines a metric on centered
multivariate normal distributions. Statistics on probability distributions have many
possible applications, from population statistics on uncertain tractography results
represented as Gaussian Processes [27, 20| via evolutionary algorithms for optimiza-
tion [19], to information geometry [3].

The quest for a descriptive geometric framework for Sym™(3) therefore continues.
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