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Abstract

This paper introduces a class of mixed-effects models for joint modeling of spa-
tially correlated intensity variation and warping variation in 2D images. Spa-
tially correlated intensity variation and warp variation are modeled as random
effects, resulting in a nonlinear mixed-effects model that enables simultaneous
estimation of template and model parameters by optimization of the likelihood
function. We propose an algorithm for fitting the model which alternates es-
timation of variance parameters and image registration. This approach avoids
the potential estimation bias in the template estimate that arises when treating
registration as a preprocessing step. We apply the model to datasets of facial
images and 2D brain magnetic resonance images to illustrate the simultaneous
estimation and prediction of intensity and warp effects.

Keywords: template estimation, image registration, separation of phase and
intensity variation, nonlinear mixed-effects model

1 Introduction

When analyzing collections of imaging data, a general goal is to quantify similarities
and differences across images. In medical image analysis and computational anatomy,
a common goal is to find patterns that can distinguish morphologies of healthy and
diseased subjects aiding the understanding of the population epidemiology. Such
distinguishing patterns are typically investigated by comparing single observations
to a representative member of the underlying population, and statistical analyses are
performed relative to this representation. In the context of medical imaging, it has
been customary to choose the template from the observed data as a common image
of the population. However, such an approach has been shown to be biased towards
the choice of the image. In more recent approaches, the templates are estimated
using statistical methods that make use of the additional information provided by
the observed data [18].
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In order to quantify the differences between images, the dominant modes of vari-
ation in the data must be identified. Two major types of variability in a collection of
comparable images are intensity variation and variation in point-correspondences.
Point-correspondence or warp variation can be viewed as shape variability of an
individual observation with respect to the template. Intensity variation is the varia-
tion that is left when the observations are compensated for the true warp variation.
This typically includes noise artifacts like bias and sensor noise or anatomical vari-
ation such as tissue density or tissue texture. Typically one would assume that the
intensity variation consists of both independent noise and spatially correlated effects.

In this work, we introduce a flexible class of mixed-effects models that explicitly
model the template as a fixed effect and intensity and warping variation as random
effects, see Figure 1. This simultaneous approach enables separation of the random
variation effects in a data-driven fashion using alternating maximum-likelihood es-
timation and prediction. The resulting model will therefore choose the separation
of intensity and warping effects that is most likely given the patterns of variation
found in the data. From the model specification and estimates, we are able to denoise
observations through linear prediction in the model under the maximum likelihood
estimates. Estimation in the model is performed with successive linearization around
the warp parameters enabling the use of linear mixed-effects predictors and avoiding
the use of sampling techniques to account for nonlinear terms. We apply our method
on datasets of face images and 2D brain MRIs to illustrate its ability to estimate
templates for populations and predict warp and intensity effects.

θ ◦ v + x y=θ ◦ v + x+ εθ θ ◦ v
Figure 1: Fixed and random effects: The template (θ: leftmost) pertubed by random warp
(θ◦v: 2nd from left) and warp+spatially correlated intensity (θ◦v+x: 3rd from left) together
with independent noise ε constitute the observation (y: 4th from left). Right: the warp field
v that brings the observation into spatial correspondence with θ overlayed the template.
Estimation of template and model hyperparameters are conducted simultaneously with
prediction of random effects allowing separation of the different factors in the nonlinear
model.

1.1 Outline of the paper

The paper is structured as follows. In Section 2, we give an overview of previously
introduced methods for analyzing image data with warp variation. Section 3 covers
the mixed-effects model including a description of the estimation procedure (Sec-
tion 3.1) and how to predict from the model (Section 3.2). In Section 4, we give an
example of how to model spatially correlated variations with a tied-down Brownian
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sheet. We consider two applications of the mixed-effects model to real-life datasets
in Section 5 and Section 6 contains a simulation study that is used for comparing
the precision of the model to more conventional approaches.

2 Background

The model introduced in this paper focuses on separately modelling the intensity
and warp variation. Image registration conventionally only focuses on identifying
warp differences between pairs of images. The intensity variation is not included in
the model and possible removal of this effect is considered as a pre-or postprocessing
step. The warp differences are often found by solving a variational problem of the
form

EI1,I2(ϕ) = R(ϕ) + λS(I1, I2 ◦ ϕ−1), (2.1)

see for example [38]. Here S measures the dissimilarity between the fixed image I1
and the warped image I2 ◦ ϕ−1, R is a regularization on the warp ϕ, and λ > 0
is a weight that is often chosen by ad-hoc methods. After registration, either the
warp, captured in ϕ, or the intensity differences between I1 and I2 ◦ ϕ−1 can be
analyzed [39]. The approach described in this paper differs from traditional image
registration by: (a) being able to estimate model parameters such as λ in a data-
driven fashion; (b) assuming a generative statistical model that gives explicit inter-
pretation of the terms that corresponds to the dissimilarity S and penalization R;
and (c) being simultaneous in the estimation of population-wide effects such as the
mean or template image and individual per-image effects, such as the warp and in-
tensity effects. These features are of fundamental importance in image registration
and many works have addressed combinations of them. The main difference of our
approach to state-of-the-art statistical registration frameworks is that we propose
a simultaneous random model for warp and intensity variation. As we will see, the
combination of maximum likelihood estimation and the simultaneous random model
for warp and intensity variation manifests itself in a trade-off where the uncertainty
of both effects are taken into account simultaneously. As a result, when estimating
fixed effects and predicting random effects in the model the most likely separation
of the effects given the observed patterns of variation in the entire data material is
used.

Methods for analyzing collections of image data, for example template estimation
in medical imaging [15], with both intensity and warping effects can be divided
into two categories, two-step methods and simultaneous methods. Two-step methods
perform alignment as a preprocessing step before analyzing the aligned data. Such
methods can be problematic because the data is modified and the uncertainty related
to the modification is ignored in the subsequent analysis. This means that the effect
of intensity variation is generally underestimated, which can introduce bias in the
analysis, see [33] for the corresponding situation in 1D functional data analysis.
Simultaneous methods, on the other hand, seek to analyze the images in a single
step that includes the alignment procedure.

Conventional simultaneous methods typically use L2 data terms to measure dis-
similarity. Such dissimilarity measures are equivalent to the model assumption that
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the intensity variation in the image data consists solely of uncorrelated Gaussian
noise. This approach is commonly used in image registration with the sum of squared
differences (SSD) dissimilarity measure, and in atlas estimation [47]. Since the L2

data term is very fragile to systematic deviations from the model assumption, for
example contrast differences, the method can perform poorly. An implicit solution
to the lacking robustness to systematic intensity variation and in general to insuf-
ficient information in the data term is to impose a strong penalty for variation on
the warping functions. Such an approach is, for example, taken in the variational
formulations of the template estimation problem in [15]. An elegant instance of this
strategy is the Bayesian model presented in [1] where the warping functions are
modeled as latent Gaussian effects with an unknown covariance that is estimated
in a data-driven fashion. Conversely, systematic intensity variation can be sought
to be removed prior to the analysis, in a reversed two-step method, for example by
using bias-correction techniques for MRI data [42]. The presence of warp variation
can however influence the estimation of the intensity effects.

Analysis of images with systematic intensity differences can be improved using
data dissimilarity measures that are robust or invariant to such systematic differ-
ences. However, robustness and invariance come at a cost in accuracy. By choos-
ing a specific kind of invariance in the dissimilarity measure, the model is given a
pre-specified recipe for separating intensity and warping effects; the warps should
maximize the invariant part of the residual under the given model parameters. Ex-
amples of classical robust data terms include L1-norm data terms [30], Charbonnier
data terms [4], and Lorentzian data terms [2]. Robust data terms are often challeng-
ing to use, since they may not be differentiable (L1-norms) or may not be convex
(Lorentzian data term). A wide variety of invariant data terms have been proposed,
and are useful when the invariances represent a dominant mode of variation in the
data. Examples of classical data terms that are invariant to various linear and non-
linear photometric relationships are normalized cross-correlation, correlation-ratio
and mutual information [19, 12, 35, 26]. Another approach for achieving robust or
invariant data terms is to transform the data that is used in the data term. A clas-
sical idea is to match discretely computed gradients or other discretized derivative
quantities [27]. A related idea is to construct invariant data terms based on discrete
transformations. This type of approach has become increasingly popular in image
matching in recent years. Examples include the rank transform and the census trans-
form [46, 21, 9, 10], and more recently the complete rank transform [6]. While both
robust and invariant data terms have been shown to give very good results in a wide
array of applications, they induce a fixed measure of variation that does not directly
model variation in the data. Thus, the general applicability of the method can come
at the price of limited accuracy.

Several alternative approaches for analyzing warp and intensity simultaneously
have been proposed [23, 14, 3, 44]. In [23] warps between images are considered as
combination of two transformation fields, one representing the image motion (warp
effect) and one describing the change of image brightness (intensity effect). Based
on this defintion warp and intensity variation can be modeled simultaneously. An
alternative approach is considered in [14], where an invariant metric is used, which
enables analysis of the dissimilarity in point correspondences between images disre-
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garding the intensity variation. These methods are not statistical in the sense that
they do not seek to model the random structures of the variation of the image data.
A statistical model is presented in [3], where parameters for texture, shape variation
(warp) and rendering are estimated using maximizing-a-posteriori estimation.

To overcome the mentioned limitations of conventional approaches, we propose
to do statistical modeling of the sources of variation in data. By using a statistical
model where we assume parametric covariance structures for the different types of
observed variation, the variance parameters can be estimated from the data. The
contribution of different types of variation is thus weighted differently in the data
term. By using, for example, maximum-likelihood estimation, the most likely form of
the variation given the data is penalized the least. We emphasize that in contrast to
previous mixed-effects models incorporating warp effects [1, 47], the goal here is to
simultaneously model warp and intensity effects. These effects impose randomness
relative to a template, the fixed-effect, that is estimated during the inference process.

The nonlinear mixed-effects models are a commonly used tool in statistics. These
types of models can be computationally intensive to fit, and are rarely used for an-
alyzing large data sizes such as image data. We formulate the proposed model as a
nonlinear mixed-effects model and demonstrate how certain model choices can be
used to make estimation in the model computationally feasible for large data sizes.
The model incorporates random intensity and warping effects in a small-deformation
setting: We do not require warping functions to produce diffeomorphisms. The geo-
metric structure is therefore more straightforward than in for example the LDDMM
model [45]. From a statistical perspective, the small-deformation setting is much
easier to handle than the large-deformation setting where warping functions are
restricted to produce diffeomorphisms.

Instead of requiring diffeomorphisms, we propose a class of models that will pro-
duce warping functions that do not fold with high probability. Another advantage
of the small-deformation setting is that we can model the warping effects as la-
tent Gaussian disparity vectors in the domain. Such direct modeling allows one to
compute a high-quality approximation of the likelihood function by linearizing the
model around the modes of the nonlinear latent random variables. The linearized
model can be handled using conventional methods for linear mixed-effects models
[28] which are very efficient compared to sampling-based estimation procedures.

In the large-deformation setting, the metamorphosis model [40, 41] extends the
LDDMM framework for image registration [45] to include intensity change in images.
Warp and intensity differences are modeled separately in metamorphosis with a
Riemannian structure measuring infinitesimal variation in both warp and intensity.
While this separation has similarities to the statistical model presented here, we are
not aware of any work which have considered likelihood-based estimation of variables
in metamorphosis models.

3 Statistical model

We consider spatial functional data defined on R2 taking values in R. Let y1, . . . ,yn
be n functional observations on a regular lattice with m = m1m2 points (sj, tk), that
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is, yi = (yi(sj, tk))j,k for j = 1, . . . ,m1, k = 1, . . . ,m2. Consider the model in the
image space

yi(sj, tk) = θ(vi(sj, tk)) + xi(sj, tk) + εijk, (3.1)
for i = 1, . . . , n, j = 1, . . . ,m1 and k = 1, . . . ,m2. Here θ : R2 → R denotes the
template and vi : R2 → R2 is a warping function matching a point in y to a point
in the template θ. Moreover xi is the random spatially correlated intensity variation
for which we assume that xi = (xi(sj, tk))j,k ∼ N (0, σ2S) where the spatial corre-
lation is determined by the covariance matrix S. The term εijk ∼ N (0, σ2) models
independent noise. The template θ is a fixed-effect while vi, xi, and εijk are random.

We will consider warping functions of the form

vi(s, t) = v(s, t,wi) =

(
s
t

)
+ Ewi

(s, t),

where Ewi
: R2 → R2 is coordinate-wise bilinear spline interpolation ofwi ∈ Rm1

w×m2
w×2

on a lattice spanned by sw ∈ Rm1
w , tw ∈ Rm2

w . In other words, wi models discrete
spatial displacements at the lattice anchor points. Figure 2 shows an example of
disparity vectors on a grid of anchor points and the corresponding warping function.

Figure 2: An example of disparity vectors at a 5 × 5 grid of anchor points and the
corresponding warping function.

The displacements are modeled as random effects, wi ∼ N (0, σ2C) where C is
a 2m1

wm
2
w × 2m1

wm
2
w covariance matrix, and, as a result, the warping functions can

be considered nonlinear functional random effects. As wi is assumed to be normally
distributed with mean zero, small displacements are favorited and hence the warp
effect will be less prone to fold. The model is a spatial extension of the phase and
amplitude varying population pattern (pavpop) model for curves [33, 31].

3.1 Estimation

First, we will consider estimation of the template θ from the functional observations,
and we will estimate the contributions of the different sources of variation. In the
proposed model, this is equivalent to estimating the covariance structure C for the
warping parameters, the covariance structure S for the spatially correlated inten-
sity variation, and the noise variance σ2. The estimate of the template is found by
considering model (3.1) in the back-warped template space

yi(v
−1
i (sj, tk)) = θ(sj, tk) + xi(v

−1
i (sj, tk)) + ε̃ijk. (3.2)
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Because every back-warped image represents θ on the observation lattice, a compu-
tationally attractive parametrization is to model θ using one parameter per obser-
vation point, and evaluate non-observation points using bilinear interpolation. This
parametrization is attractive, because Henderson’s mixed-model equations [11, 34]
suggests that the conditional estimate for θ(sj, tk) given w1, . . . ,wn is the pointwise
average

θ̂(sj, tk) =
1

n

n∑

i=1

yi(v
−1
i (sj, tk)), (3.3)

if we ignore the slight change in covariance resulting from the back-warping of the
random intensity effects. As this estimator depends on the warping parameters, the
estimation of θ and the variance parameters has to be performed simultaneously with
the prediction of the warping parameters. We note that, as in any linear model, the
estimate of the template is generally quite robust against slight misspecifications of
the covariance structure. And the idea of estimating the template conditional on the
posterior warp is similar to the idea of using a hard EM algorithm for computing
the maximum likelihood estimator for θ [22].

We use maximum-likelihood estimation to estimate variance parameters, that is,
we need to minimize the negative log-likelihood function of model (3.1). Note that
(3.1) contains nonlinear random effects due to the term θ(vi(s, t,wi)) where θ ◦ vi is
a nonlinear transformation of wi. We handle the nonlinearity and approximate the
likelihood by linearizing the model (3.1) around the current predictions w0

i of the
warping parameters wi:

yi(sj, tk) ≈ θ(v(sj, tk,w
0
i ))

+ (∇θ(v(sj, tk,w0
i )))

>Jwi
v(sj, tk,wi)

∣∣∣
wi=w0

i

(wi −w0
i )

+ xi(sj, tk) + εijk

= θ(v(sj, tk,w
0
i )) + Zijk(wi −w0

i ) + xi(sj, tk) + εijk, (3.4)

where Jwi
v(sj, tk,wi) denotes the Jacobian matrix of v with respect to wi and

Zijk = (∇θ(v(sj, tk,w0
i )))

>Jwi
v(sj, tk,wi)

∣∣∣
wi=w0

i

. (3.5)

Letting Zi = (Zijk)jk ∈ Rm×2m1
wm

2
w , the linearized model can be rewritten

yi ≈ θw
0
i + Zi(wi −w0

i ) + xi + εi. (3.6)

We notice that in this manner, yi can be approximated as a linear combination of
normally distributed variables, hence the negative log-likelihood for the linearized
model is given by

`y(θ, C, σ
2) =

nm1m2

2
log σ2 +

1

2

n∑

i=1

log detVi

+
1

2σ2

n∑

i=1

(yi − θw
0
i + Ziw

0
i )
>V −1i (yi − θw

0
i + Ziw

0
i ), (3.7)
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where Vi = ZiCZ
>
i + S + Im. The idea of linearizing nonlinear mixed-effects models

in the nonlinear random effects is a solution that has been shown to be effective
and which is implemented in standard software packages [17, 28, 29]. The proposed
model is, however, both more general and computationally demanding than what
can be handled by conventional software packages. Furthermore, we note that the
linearization in a random effect as done in model (3.6) is fundamentally differ-
ent than the conventional linearization of a nonlinear dissimilarity measure such
as in the variational problem (2.1). As we see from the linearized model (3.6), the
density of θ(v(sj, tk,wi) is approximated by the density of a linear combination,
θ(v(sj, tk,w

0
i )) + Zijk(wi −w0

i ), of multivariate Gaussian variables. The likelihood
function for the first-order Taylor expansion in wi of the model (3.1) is thus a
Laplace approximation of the true likelihood, and the quality of this approximation
is approximately second order [43].

3.1.1 Computing the likelihood function

As mentioned above the proposed model is computationally demanding. Even the
approximated likelihood function given in equation (3.7) is not directly computable
because of the large data sizes. In particular, the computations related to determi-
nants and inverses of the covariance matrix Vi are infeasible unless we impose certain
structures on these. In the following, we will assume that the covariance matrix for
the spatially correlated intensity variation S has full rank and sparse inverse. We
stress that this assumption is merely made for computational convenience and that
the proposed methodology is also valid for non-sparse precision matrices. The zeros
in the precision matrix S−1 are equivalent to assuming conditional independences
between the intensity variation in corresponding pixels given all other pixels [16]. A
variety of classical models have this structure, in particular (higher-order) Gaussian
Markov random fields models have sparse precision matrices because of their Markov
property.

To efficiently do computations with the covariances Vi = ZiCZ
>
i + S + Im, we

exploit the structure of the matrix. The first term ZiCZ
>
i is an update to the

intensity covariance S + Im with a maximal rank of 2m1
wm

2
w. Furthermore, the first

term of the intensity covariance S has a sparse inverse and the second term Im is of
course sparse with a sparse inverse. Using the Woodbury matrix identity, we obtain

V −1i = (ZiCZ
>
i + S + Im)−1

= (S + Im)−1 − (S + Im)−1Zi(C−1 + Z>i (S + Im)−1Zi)−1Z>i (S + Im)−1

which can be computed if we can efficiently compute the inverse of the potentially
huge m × m intensity covariance matrix (S + Im)−1. We can rewrite the inverse
intensity covariance as

(S + Im)−1 = Im − (Im + S−1)−1.

Thus we can write V −1i in a way that only involves operations on sparse matrices.
To compute the inner product y>V −1i y, we first form the matrix Im + S−1 and
compute its Cholesky decomposition using the Ng-Peyton method [24] implemented
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in the spam R-package [8]. By solving a low-rank linear system using the Cholesky
decomposition, we can thus compute L = (C−1 + Z>i (S + Im)−1Zi)−1. The inner
product is then efficiently computed as

y>V −1i y = y>x− (Zix)
>LZix

where
x = (S + Im)−1y.

To compute the log determinant in the likelihood, one can use the matrix deter-
minant lemma similarly to what was done above to split the computations into
low-rank computations and computing the determinant of S + Im,

det(Vi) = det(ZiCZ
>
i + S + Im)

= det(C−1 + Z>i (S + Im)−1Zi) det(C) det(S + Im).

For the models that we will consider, the latter computation is done by using the
operator approximation proposed in [32] which, for image data with sufficiently high
resolution (e.g. m > 30), gives a high-quality approximation of the determinant of
the intensity covariance that can be computed in constant time.

By taking the described strategy, we never need to form a dense m × m ma-
trix, and we can take advantage of the sparse and low-rank structures to reduce the
computation time drastically. Furthermore, the fact that we assume equal-size im-
ages allows us to only do a single Cholesky factorization per likelihood computation,
which is further accelerated by using the updating scheme described in [24].

3.2 Prediction

After the maximum-likelihood estimation of the template θ and the variance param-
eters, we have an estimate for the distribution of the warping parameters. We are
therefore able to predict the warping functions that are most likely to have occurred
given the observed data. This prediction parallels the conventional estimation of
deformation functions in image registration. Let pwi|yi be the density for the dis-
tribution of the warping functions given the data and define pwi

, pyi|wi
in a similar

manner. Then, by applying pwi|yi ∝ pyi|wi
pwi

, we see that the warping functions that
are most likely to occur are the minimizers of the posterior

− log(pwi|yi) ∝
1

2σ2
(yi − θwi)>(S + Im)

−1(yi − θwi) +
1

2σ2
w>i C

−1wi. (3.8)

Given the updated predictions ŵi of the warping parameters, we update the estimate
of the template and then minimize the likelihood (3.7) to obtain updated estimates
of the variances. This procedure is then repeated until convergence is obtained. The
estimation algorithm is given in Algorithm 1. The run time for the algorithm will be
very different depending on the data in question. As an example we ran the model
for 10 MRI midsaggital slices (for more details see Section 5.2) of size 210 × 210,
with imax = 5, jmax = 3. We ran the algorithm on an Intel Xeon E5-2680 2.5GHz
processor. The run time needed for full maximum likelihood estimation in this setup
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was 1 hour and 15 minutes using a single core. This run time is without parallization,
but it is possible to apply parallization to make the algorithm go faster.

The spatially correlated intensity variation can also be predicted. Either as the
best linear unbiased prediction E[xi |y] from the linearized model (3.6) (see e.g.
equation 5 in [20]). Alternatively, to avoid a linear correction step when predict-
ing wi, one can compute the best linear unbiased prediction given the maximum-a-
posteori warp variables

E[xi(s, t) |yi,wi = ŵi] = S(S + Im)
−1(yi − θ̂ŵi). (3.9)

The prediction of the spatially correlated intensity variation can, for example, be
used for bias correction of the images.

Algorithm 1: Inference in the model (3.1).
Data: y
Result: Estimates of the fixed effect and variance parameters of the model,

and the resulting predictions of the warping parameters w
// Initialize parameters
Initialize w0

Compute θ̂w0 following (3.3)
for i = 1 to imax do

// Outer loop: parameters
Estimate variance parameters by minimizing (3.7)
for j = 1 to jmax do

// Inner loop: fixed effect, warping parameters
Predict warping parameters by minimizing (3.8)
Update linearization points w0 to current prediction
Recompute θ̂w0 from (3.3)

end
end

4 Models for the spatially correlated variations

The main challenge of the presented methods is the computability of the likelihood
function, in particular computations related to the m×m covariance matrix of the
spatially correlated intensity variation S. The same issues are not associated with the
covariance matrix C, for the warping parameters, as the dimensions of this matrix
are considerably smaller than the dimensions of S. In the end of this section, we will
give a short description of how the displacement vectors can be modeled, but first
we consider the covariance matrix S.

As mentioned in the previous section, the path we will pursue to make likeli-
hood computations efficient is to assume that the systematic random effect xi has
a covariance matrix S with sparse inverse. In particular, modeling xi as a Gaussian
Markov random field will give sparse precision matrices S−1. The Markov random

10



field structure gives a versatile class of models that has been demonstrated to be able
to approximate the properties of general Gaussian fields surprisingly well [36]. Esti-
mation of a sparse precision matrix is a fundamental problem and a vast literature
exists on the subject. We mention in passing the fundamental works, [5, 7], which
could be adapted to the present setup to estimate unstructured sparse precision
matrices. We will however not pursue that extension in the present paper.

We here model xi as a tied-down Brownian sheet, which is the generalization of
the Brownian bridge (which is Markov) to the unit square [0, 1]2. The covariance
function, S : [0, 1]2 × [0, 1]2 → R, for the tied-down Brownian sheet is

S((s, t), (s′, t′)) = τ 2(s ∧ s′ − ss′)(t ∧ t′ − tt′), τ > 0.

The covariance is 0 along the boundary of the unit square and reaches its maximal
variance at the center of the image. These properties seem reasonable for many
image analysis tasks, where one would expect the subject matter to be centered in
the image with little or no variation along the image boundary.

Let S be the covariance matrix for a Brownian sheet observed at the lattice
spanned by (s1, . . . , sm1) and (t1, . . . , tm2), si = i/(m1 + 1), ti = i/(m2 + 1) with
row-major ordering. The precision matrix S−1 is sparse with the following structure
for points corresponding to non-boundary elements:

1

τ 2(m1 + 1)(m2 + 1)
S−1[i, j]

=





4 if j = i,

−2 if j ∈ {i− 1, i+ 1, i+m2, i−m2},
1 if j ∈ {i− 1−m2, i+ 1−m2, i− 1 +m2, i+ 1 +m2}.

For boundary elements, the j elements outside the observation boundary vanish.
As explained in Section 3.1.1, the computational difficulties related to the com-

putation of the log determinant in the negative log likelihood function (3.7) comes
down to computing the log determinant of the intensity covariance S + Im. For the
tied-down Brownian sheet, the log determinant can be approximated by means of
the operator approximation given in [32, Example 3.4]. The approximation is given
by

log det(S + Im)

=
∞∑

`=1

log

(
π`√

τ 2(m1 + 1)(m2 + 1)
sinh

(√
τ 2(m1 + 1)(m2 + 1)

π`

))
.

To compute the approximation we cut the sum off after 10 000 terms.
As a final remark, we note that the covariance function τ−2S is the Green’s

function for the differential operator ∂2s∂2t on [0, 1]2 under homogeneous Dirichlet
boundary conditions. Thus the conditional linear prediction of xi given by (3.9) is
equivalent to estimating the systematic part of the residual as a generalized smooth-
ing spline with roughness penalty

1

2τ 2

∫ 1

0

∫ 1

0

xi(s, t)∂
2
s∂

2
t xi(s, t) ds dt =

1

2τ 2

∫ 1

0

∫ 1

0

‖∂s∂txi(s, t)‖2 ds dt.
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The tied-down Brownian sheet can also be used to model the covariance be-
tween the displacement vectors. Here the displacement vectors given by the warping
variables wi are modeled as discretely observed tied-down Brownian sheets in each
displacement coordinate. As was the case for the intensity covariance, this model
is a good match to image data since it allows the largest deformations around the
middle of the image. Furthermore, the fact that the model is tied down along the
boundary means that we will predict the warping functions to be the identity along
the boundary of the domain [0, 1]2, and for the found variance parameters, the pre-
dicted warping functions will be homeomorphic maps of [0, 1]2 onto [0, 1]2 with high
probability.

In the applications in the next section, we will use the tied-down Brownian sheet
to model the spatially correlated variations.

5 Applications

In this section, we will apply the developed methodology on two different real-life
datasets. In the first example, we apply the model to a collection of face images
that are difficult to compare due to varying expressions and lighting sources. We
compare the results of the proposed model to conventional registration methods and
demonstrate the effects of the simultaneous modeling of intensity and warp effects.
In the second example, we apply the methodology to the problem of estimating a
template from affinely aligned 2D MR images of brains.

5.1 Face registration

Figure 3: Ten images of the same face with varying expressions and illumination. The
images are from the AT&T Laboratories Cambridge Face Database [37].

Consider the ten 92 × 112 face images from the AT&T Laboratories Cam-
bridge Face Database [37] in Figure 3. The images are all of the same person, but
vary in head position, expression and lighting. The dataset contains two challenges
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from a registration perspective, namely the differences in expression that cause dis-
occlusions or occlusions (e.g. showing teeth, closing eyes) resulting in large local
deviations; and the difference in placement of the lighting source that causes strong
systematic deviations throughout the face.

To estimate a template face from these images, the characteristic features of the
face should be aligned, and the systematic local and global deviations should be
accounted for. In the proposed model (3.1), these deviations are explicitly modeled
through the random effect xi.

Using the maximum-likelihood estimation procedure, we fitted the model to the
data using displacement vectors wi on an equidistant 4×4 interior grid in [0, 1]2. We
used 5 outer and 3 inner iterations in Algorithm 1. The image value range was scaled
to [0, 1]. The estimated variance scale for the random effect xi was σ̂2τ̂ 2 = 0.658; for
the warp variables, the variance scale was estimated to σ̂2γ̂2 = 0.0680; and for the
residual variance, the estimated scale was σ̂2 = 0.00134.

To illustrate the effect of the simultaneous modeling of random intensity and
warp effects, we estimated a face template using three more conventional variants
of the proposed framework: a pointwise estimation that corresponds to model (3.1)
with no warping effect; a Procrustes model that corresponds to model (3.1) with
no intensity component and where the warp variables wi were modeled as un-
known parameters and estimated using maximum-likelihood estimation; and a warp-
regularized Procrustes method where the warp variables wi were penalized using a
term λw>i C

−1wi where C−1 is the precision matrix for the 2D tied-down Brownian
sheet with smoothing parameter λ = 3.125 (chosen to give good visual results).

The estimated templates for the proposed model and the alternative models
described above can be found in Figure 4. Going from left to right, it is clear that
the sharpness and representativeness of the estimates increase.

To validate the models, we can consider how well they predict the observed faces
under the maximum-likelihood estimates and posterior warp predictions. These pre-
dictions are displayed in Figure 5. The rightmost column displays the five most
deviating observed faces. From the left, the first three columns show the corre-
sponding predictions from the Procrustes model, the warp-regularized Procrustes
model and, for comparison, the predicted warped templates from the proposed
model. It is clear that both the sharpness and the representativeness increase from
left to right. The predictions in the third column show the warped template of
model (3.1) which does not include the predicted intensity effect xi. The fourth
column displays the full prediction from the proposed model given as the best
linear unbiased prediction conditional on the maximum-a-posteori warp variables
θ̂(v(s, t, ŵi)) + E[xi(s, t) |yi,wi = ŵi]. The full predictions are very faithful to the
observations, with only minor visible deviations around the eyes in the second and
fifth row. This suggests that the chosen model for the spatially correlated inten-
sity variation, the tied-down Brownian sheet, is sufficiently versatile to model the
systematic part of the residuals.
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No alignment Procrustes free warp Procrustes regularized
warp

proposed

Figure 4: Estimates for the fixed effect θ using different models. The models used to cal-
culate the estimates are from left to right: model assuming no warping effect and Gaussian
white noise for the intensity model, the same model but with a free warping function based
on 16 displacement vectors, the same model but with a penalized estimation of warping
functions (2D tied-down Brownian sheet with scale fixed τ = 0.4), the full model (3.1).

Procrustes Regularized
Procrustes

proposed warped
template
prediction

proposed full
prediction

observation

Figure 5: Model predictions of five face images (rightmost column). The two first columns
display the maximum-likelihood predictions from the Procrustes and regularized Procrustes
models. The third column displays the warped template θ̂(v(s, t, ŵi)) where ŵi is the most
likely warp given data y. The fourth column displays the full conditional prediction given
the posterior warp variables θ̂(v(s, t, ŵi)) + E[xi(s, t) |yi,wi = ŵi].
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5.2 MRI slices

The data considered in this section are based on 3D MR images from the ADNI
database [25]. We have based the example on 50 images with 18 normal controls
(NC), 13 with Alzheimer’s disease (AD) and 19 who are mild cognitively impaired
(MCI). The 3D images were initially affinely aligned with 12 degrees of freedom and
normalized mutual information (NMI) as a similarity measure. After the registra-
tion, the mid-sagittal slices were chosen as observations. Moreover the images were
intensity normalized to [0, 1] and afterwards the mid-sagittal plane was chosen as the
final observations. The 50 mid-sagittal planes are given as 210×210 observations on
an equidistant grid on [0, 1]2. Six samples are displayed in Figure 6 where differences
in both contrast, placement and shape of the brains are apparent.

Figure 6: A sample of six MRI slices from the data set of 50 mid-sagittal MRI slices.

For the given data, we used 25 displacement vectors wi on an equidistant 5× 5
interior grid in [0, 1]2. The number of inner iterations in the algorithm was set to 3,
while the number of outer iterations was set to 5 as the variance parameters and
likelihood value already stabilized after a couple of iterations. The estimated variance
scales are given by σ̂2τ̂ 2 = 2.23 for the spatially correlated intensity variation, σ̂2γ̂2 =
0.202 for the warp variation and σ̂2 = 7.79 · 10−4 for the residual variance. The
estimated template can be found in the rightmost column in Figure 7.

For comparison, we have estimated a template without any additional warping
(i.e. only using the rigidly aligned slices), and a template estimated using a Pro-
crustes model with fixed warping effects and no systematic intensity variation, but
otherwise comparable to the proposed model. These templates can be found in the
leftmost and middle columns of Figure 7. Comparing the three, we see a clear in-
crease in details and sharpness from left to right. The reason for the superiority of
the proposed method is both that the regularization of warps is based on maximum-
likelihood estimation of variance parameters, but also that the prediction of warps
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Rigid registration with scaling Procrustes free warp proposed

Figure 7: Estimates for the fixed effect θ in three different models. From left to right:
pointwise mean after rigid registration and scaling; non-regularized Procrustes; and the
proposed model (3.1).

takes the systematic deviations into account. Indeed, we can rewrite the data term
in the posterior (3.8) as

(yi − θwi − E[xi |yi,wi])
>(yi − θwi − E[xi |yi,wi])

+ E[xi |yi,wi]
>S−1E[xi |yi,wi].

Thus, in the prediction of warps, there is a trade-off between the regularity of the
displacement vectors (the term w>i C

−1wi in eq. 3.8) and the regularity of the pre-
dicted spatially correlated intensity variation given the displacement vectors (the
term E[xi |yi,wi]

>S−1E[xi |yi,wi]).
The difference in regularization of the warps is shown in Figure 8, where the

estimated warps using the Procrustes model are compared to the predicted warps
from the proposed model. We see that the proposed model predicts much smaller
warps than the Procrustes model.

One of the advantages of the mixed-effects model is that we are able to pre-
dict the systematic part of the intensity variation of each image, which in turn also
gives a prediction of the residual intensity variation—the variation that cannot be
explained by systematic effects. In Figure 9, we have predicted the individual ob-
served slices using the Procrustes model and the proposed model. As we also saw in
Figure 8, the proposed model predicts less deformation of the template compared to
the Procrustes model, and we see that the Brownian sheet model is able to account
for the majority of the personal structure in the sulci of the brain. Moreover, the
predicted intensity variation seems to model intensity differences introduced by the
different MRI scanners well.
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Figure 8: Three MRI slices and their estimated/predicted warping functions for the Pro-
crustes model and the proposed model. The top row shows the Procrustes displacement
fields, while the displacement fields for the proposed model are given in the bottom row.
The arrows corresponds to the deformation of the observation to the template.

Procrustes warped
template prediction

Warped template
prediction from the

proposed model

Predicted spatially
correlated intensity

variation

Full prediction Observation

Figure 9: Model predictions of three mid-saggital slices (rightmost column). The first two
rows display the warped templates from the Procrustes model and the proposed model.
The third row displays the absolute value of the predicted spatially correlated intensity
variation from the proposed model. The fourth row displays the full conditional prediction
given the posterior warp variables θ̂(v(s, t, ŵi)) + E[xi(s, t) |yi,wi = ŵi].
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6 Simulation study

In this section, we present a simulation study for investigating the precision of the
proposed model. The results are compared to the previously introduced models:
Procrustes free warp and a regularized Procrustes. Data are generated from model
(3.1) in which θ is taken as one of the MRI slices considered in Section 5.2. The warp,
intensity and the random noise effects are all drawn from the previously described
multivariate normal distributions with variance parameters respectively

σ2γ2 = 0.01, σ2τ 2 = 0.1, σ2 = 0.001

and applied to the chosen template image θ. To consider more realistic brain sim-
ulations, the systematic part of the intensity effect was only added to the brain
area of θ and not the background. As this choice makes the proposed model slightly
misspecified, it will be hard to obtain precise estimates of the variance parameters.
In practice, one would expect any model with a limited number of parameters to
be somewhat misspecified in the presented setting. The simulations thus present a
realistic setup and our main interest will be in estimating the template and pre-
dicting warp and intensity effects. Figure 10 displays 5 examples of the simulated
observations as well as the chosen θ.

Figure 10: 5 examples of simulated brains. The template brain θ is shown in the upper
left corner.

The study is based on 100 data sets of 100 simulated brains. For each simulated
dataset we applied the proposed, Procrustes free warp and Procrustes regularized
model. The regularization parameter, λ, in the regularized Procrustes model, was
set to the true parameter used for generating the data λ = γ−2/2.

The variance estimates based on the simulations are shown in Figure 11. The true
variance parameters are plotted for comparison. We see some bias in the variance
parameters. While bias is to be expected, the observed bias for the noise variance
σ2 and the warp variance scale σ2γ2 are bigger than what one would expect. The
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Figure 11: Density plots for the estimated variance parameters in the proposed model.
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Figure 12: Density plots for the mean squared differences of template and warp estimates
for the three models. The plot to the left shows the density for the mean squared difference
for the template effect and the plot to the right shows the mean squared difference for the
warp effect.

reason for the underestimation of the noise variance seems to be the misspecification
of the model. Since the model assumes spatially correlated noise outside of the brain
area, where there is none, the likelihood assigns the majority of the variation in this
area to the systematic intensity effect. The positive bias of the warp variance scale
seems to be a compensating effect for the underestimated noise variance.

The left panel of Figure 12 shows the mean squared difference for the estimated
templates θ with the three types of models. We see that the proposed model produces
conisderably more accurate estimates than the alternative frameworks.

To give an example of the difference between template estimates for the three
different models, one set of template estimates for each of the models is shown in
Figure 13. From this example we see that the template for the proposed model is
slightly more sharp than the Procrustes models and are more similar to the true
θ which was also the conclusion obtained from the density of the mean squared
difference for the template estimates (Figure 12).

19



True template Proposed Procrustes λ = 0 Procrustes λ = γ−2/2

Figure 13: Example of a template estimate for each of the three models. For comparison,
the true θ are plotted as well.

The right panel of Figure 12 shows the mean squared prediction/estimation error
of the warp effects. The error is calculated using only the warp effects in the brain
area since the background is completely untextured, and any warp effect in this
area will be completely determined by the prediction/estimation in the brain area.
We find that the proposed model estimates warp effects that are closest to the
true warps. It is worth noticing that the proposed model is considerably better at
predicting the warp effects than the regularized Procrustes model. This happens
despite the fact that the value for the warp regularization parameter in the model
was chosen to be equal to the true parameter (λ = γ−2/2). Examples of the true
warping functions in the simulated data and the predicted/estimated effects in the
different models are shown in Figure 14. None of the considered models are able to
make sensible predictions on the background of the brain, which is to be expected. In
the brain region, the predicted warps for the proposed model seem to be very similar
to the true warp effect, which we also saw in Figure 12 was a general tendency.
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Figure 14: Examples of predicted warp effect for each model. The top row shows the true
warp effect, the second row the estimated warp effect of the proposed model, the third row
regularized Procrustes and the final row, the Procrustes model with free warps.
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7 Conclusion and outlook

We generalized the likelihood based mixed-effects model for template estimation and
separation of phase and intensity variation to 2D images. This type of model was
originally proposed for curve data [33]. As the model is computationally demanding
for high dimensional data, we presented an approach for efficient likelihood calcula-
tions. We proposed an algorithm for doing maximum-likelihood based inference in
the model and applied it to two real-life datasets.

Based on the data examples, we showed how the estimated template had de-
sirable properties and how the model was able to simultaneously separate sources
of variation in a meaningful way. This feature eliminates the bias from conven-
tional sequential methods that process data in several independent steps, and we
demonstrated how this separation resulted in well-balanced trade-offs between the
regularization of warping functions and intensity variation.

We made a simulation study to investigate the precision of the template and
warp effects of the proposed model and for comparison with two other models. The
proposed model was compared with a Procrustes free warp model, as well as a
Procrustes regularized model. Since the noise model was misspecified, the proposed
methodology could not recover precise maximum likelihood estimates of the variance
parameters. However, the maximum likelihood estimate for the template was seen
to be a lot sharper and closer to the true template compared to alternative Pro-
crustes models. Furthermore, we demonstrated that the proposed model was better
at predicting the warping effect than the alternative models.

The main restriction of the proposed model is the computability of the likelihood
function. We resolved this by modeling intensity variation as a Gaussian Markov
random field. An alternative approach would be to use the computationally efficient
operator approximations of the likelihood function for image data suggested in [32].
This approach would, however, still require a specific choice of parametric family of
covariance functions, or equivalently, a family of positive definite differential opera-
tors. An interesting and useful extension would be to allow a free low-rank spatial
covariance structure and estimate it from the data. This could, for example, be done
by extending the proposed model (3.1) to a factor analysis model where both the
mean function and intensity variation is modeled in a common functional basis, and
requiring a specific rank of the covariance of the intensity effect. Such a model could
be fitted by means of an EM algorithm similar to the one for the reduced-rank
model for computing functional principal component analysis proposed in [13], and
it would allow simulation of realistic observations by sampling from the model.

The proposed model introduced in this paper is a tool for analyzing 2D images.
The model, as it is, could be used for higher dimensional images as well, but the
analysis would be infeasible with the current implementation. To extend the pro-
posed model to 3D images there is a need to devise new computational methods for
improving the calculation of the likelihood function.
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