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Abstract

We introduce a stochastic model of diffeomorphisms, whose action on a variety
of data types descends to stochastic models of shapes, images and landmarks.
The stochasticity is introduced in the vector field which transports the data in
the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework
for shape analysis and image registration. The stochasticity thereby models er-
rors or uncertainties of the flow in following the prescribed deformation veloc-
ity. The approach is illustrated in the example of finite dimensional landmark
manifolds, whose stochastic evolution is studied both via the Fokker-Planck
equation and by numerical simulations. We derive two approaches for inferring
parameters of the stochastic model from landmark configurations observed at
discrete time points. The first of the two approaches matches moments of the
Fokker-Planck equation to sample moments of the data, while the second ap-
proach employs an Expectation-Maximisation based algorithm using a Monte
Carlo bridge sampling scheme to optimise the data likelihood. We derive and
numerically test the ability of the two approaches to infer the spatial correla-
tion length of the underlying noise.
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1 Introduction

In this work, we aim at modelling variability of shapes using a theory of stochas-
tic perturbations consistent with the geometry of the diffeomorphism group cor-
responding to the Large Deformation Diffeomorphic Metric Mapping framework
(LDDMM, see [You10]). In applications, such variability arises and can be observed,
for example, when human organs are influenced by disease processes, as analysed in
computational anatomy [YAM09]. Spatially independent white noise contains insuf-
ficient information to describe these large-scale variabilities of shapes. In addition,
the coupling of the spatial correlations of the noise must be adapted to a variety of
transformation properties of the shape spaces. The theory developed here addresses
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this problem by introducing spatially correlated noise which respects the geometric
structure of the data. This method provides a new way of characterising stochastic
variability of shapes using spatially correlated noise in the context of the standard
LDDMM framework.

We will show that this specific type of noise can be used for all the data struc-
tures that the LDDMM framework applies to. The LDDMM theory was initiated
by [Tro95, CRM96, DGM98, MTY02, BMTY05] building on the pattern theory of
[Gre94]. LDDMM models the dynamics of shapes by the action of diffeomorphisms
on shape spaces. It gives a unified approach to shape modelling and shape analysis,
valid for a range of structures such as landmarks, curves, surfaces, images, densi-
ties or even tensor-valued images. For any such data structure, the optimal shape
deformations are described via the Euler-Poincaré equation of the diffeomorphism
group, usually referred to as the EPDiff equation [HMR98, HM05, YAM09]. In this
work, we will show how to obtain a stochastic EPDiff equation valid for any data
structure, and in particular for the finite dimensional representation of images based
on landmarks. For this, we will follow the LDDMM derivation of [BGBHR11] based
on geometric mechanics [MR99, Hol11] and the existence of momentum maps to
represent images and shapes. The momentum maps are the key structures to retain
after the introduction of noise into the EPDiff equation, as they will allow us to use
most of the technology developed for shape analysis in the deterministic context and
in computational anatomy.

This work is not the first to consider stochastic evolutions in LDDMM. In-
deed, [TV12, Via13] and more recently [MS16] already investigated the possibility
of stochastic perturbations of landmark dynamics. In these works, the noise is in-
troduced into the momentum equation, as though it were an external random force
acting on each landmark independently. In [MS16], an extra dissipative force was
added to balance the energy input from the noise and to make the dynamics cor-
respond to a certain type of heat bath used in statistical physics. Here, we will
instead introduce an Eulerian noise directly into the reconstruction relation used
to find the deformation flows from the velocity fields, which are solutions of the
EPDiff equation [HM05, You10]. As we will see, this derivation of stochastic models
is compatible with variational principles, preserves the momentum map structure
and yields a stochastic EPDiff equation with a novel type of multiplicative noise,
depending on the gradient of the solution, as well as its magnitude. This model is
based on the previous works [Hol15, ACH16], where, respectively, stochastic pertur-
bations of infinite and finite dimensional mechanical systems were considered. The
Eulerian nature of the noise discussed here implies that the noise correlation depends
on the image position and not, as for example in [TV12, MS16], on the landmarks
themselves. This property will explain why the noise is compatible with any data
structure while retaining the freedom in the choice of its spatial correlation.

To illustrate this framework and give an early demonstration of the stochastic
landmark dynamics, we display in Figure 1 three experiments which compare the
proposed model with a stochastic forcing model, such as studied for example by
[TV12]. The proposed model is the stochastic Hamiltonian system for the positions
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Figure 1: In this figure, we compare the deterministic evolution of landmarks arranged
in an ellipse (black line) with a translated ellipse as final position (black dashed line),
to two different stochastically perturbed evolutions. The radius for the landmark kernel
is twice their average initial distances. In blue is the stochastic perturbation developed
in this paper. The black dots represent the J Eulerian noise fields arranged in a grid
configuration. In magenta is the evolution resulting from additive noise in the momentum
equation, different for each landmark but with the same amplitude as the Eulerian noise.
We run three initial value simulations to compare the limit of a large number of landmarks
and small noise correlation. The Eulerian noise model (blue) is robust to the continuum
limit and can reproduce the general behaviour of the additive noise model. Furthermore,
the choice of the noise fields provides an additional freedom in parameterisation which will
be studied and exploited in this work.

of the landmarks qi and their canonical momenta pi

dqi =
∂h

∂pi
dt+

∑

l

σl(qi) ◦ dW l
t ,

dpi = − ∂h
∂qi

dt−
∑

l

∂

∂qi
(pi · σl(qi)) ◦ dW l

t .

(1.1)

Here, the σi are given functions of space which represent the spatial correlations
of the noise. In Figure 1, the σi fields are Gaussian fields whose variance is equal
to twice their separation distance and locations are indicated by black dots. We
compare this model with

dqαi =
∂h

∂pαi
dt and dpαi = − ∂h

∂qαi
dt+ σdW i

t , (1.2)

where σ is a constant. In this case, the noise corresponds to a stochastic force
acting on the landmarks, whose corresponding Brownian motion is different for
each landmark. We show on the first panel of Figure 1 that for a small number
of landmarks and a large range of spatial correlations of the noise, both types of
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stochastic deformations in (1.1) and (1.2) visually coincide. This is shown for a
simple experiment in translating a circle (from the black circle to the black dashed
circle). By doubling the number of landmarks (middle panel), the dynamics of (1.2)
results in small-scale noise correlation (magenta), whereas the proposed model (blue)
remains equivalent to the first experiment. This figure illustrates shape evolution
when the noise is Eulerian and independent of the data structure. Indeed, the limit
of a large number of landmarks corresponds to a certain continuum limit, in this
case corresponding to curve dynamics. Finally, in the right-most panel, we reduce
the range of the spatial correlation of the noise by adding more noise fields. This
arrangement allows us to qualitatively reproduce the dynamics of the equation (1.2)
with the same number of landmarks.

Modelling large-scale shape variability with noise is of interest for applications
in computational anatomy where sources of variability include natural ageing, the
influence of diseases such as Alzheimer’s disease, and intra-subject population scale
variations. In the LDDMM context, these effects are sometimes modelled using the
random orbit model [MBC+97]. The random orbit approach models variability in
the observed data by using an ensemble of initial velocities in matching a template to
a set of observations via geodesic flows, see [VMYT04]. The randomness is confined
to the initial velocity as opposed to the evolving stochastic processes that we will
use here. A prior can be defined by assuming a distribution of the initial velocities,
and Bayesian approaches can then be used for inference of the template shape as
well as additional unknown parameters [AAT07, MMTY08, ZSF13]. The stochastic
model developed here can also be applied to model random warps and generate dis-
tributions used in Bayesian shape modelling, and for coupling warps and functional
variations such as for example in [RSM14, KSPR17]. Indeed, because the proposed
probabilistic approach assigns a likelihood to random deformations, the model can
be used for general likelihood-based inference tasks.

In the present model, the observed shape variability indicates the spatial correla-
tion of the noise. As this correlation is generally unknown, estimating the parameters
of the correlation structure becomes an important part of the framework. We will
address this problem by considering two different methods. One is based on the es-
timation of the time evolution of the probability distribution of each landmark. For
this method, we will derive a set of differential equations approximating the time
evolution of the complete distribution via its first moments. We can then solve the
inverse problem of estimating the noise correlation from a known initial and final
distribution of landmarks by minimization of a certain cost function, solved using
a genetic algorithm. The other method is based on an Expectation-Maximisation
(EM) algorithm which can infer unknown parameters for a parametric statistical
model from observed data. In this context, since only initial and final landmarks
positions are observed, the full stochastic trajectories are considered missing infor-
mation. For this algorithm, we need to estimate the likelihood of stochastic paths
connecting sets of observed landmarks. We achieve this by adapting the theory of
diffusion bridges to the stochastic landmark equation.
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Plan of this work

We begin by developing a general theory of stochastic perturbations for inexact
matching in section 2. We then focus on exact landmark matching in section 3,
which is the simplest example of this theory. In particular, we derive the Fokker-
Planck equation in section 3.2 and diffusion bridge simulation in section 3.3. In
section 4, we describe the two methods for estimating parameters of the noise from
observations. The Fokker-Planck based method is in section 4.2 and the Expectation-
Maximisation algorithm in section 4.3. We end the paper with numerical examples
in section 5 in which we investigate the effect of the noise on landmark dynamics
and compare the two methods for estimating the noise amplitude.

2 Stochastic Large Deformation Matching

In this section, we will first review the geometrical framework of LDDMM, following
[BGBHR11], and then introduce noise following [Hol15] to preserve the geometrical
structure of LDDMM. The key ingredient for both topics is the momentum map,
which we will use as the main tool for reducing the infinite dimensional equation on
the diffeomorphism group to equations on shape spaces.

2.1 The Deterministic LDDMM Model

Here, we will briefly review the theory of reduction by symmetry, as applied to the
LDDMM context, following the presentation of [BGBHR11]. We detail the proof
of the formulas below in the next section when we include noise. Define an energy
functional E by

E(ut) =

∫ 1

0

l(ut)dt+
1

2λ2
‖g1.I0 − I1‖2 , (2.1)

where I0, I1 ∈ V are shapes represented in a vector space V on which the diffeomor-
phism group Diff(Rd) acts, ut is a time-dependent vector field, and λ is a weight, or
tolerance, which allows the matching to be inexact. The flow gt ∈ Diff(Rd) corre-
sponding to ut is found by solving the reconstruction relation

∂tgt = utgt , (2.2)

and I0 is matched against I1 through the action g1.I0 of g1 on s0. The vector field
ut can be considered an element of the Lie algebra X(Rd). In the case of I0, I1 being
images I : Rd → R, the action is by push-forward, g.I = I ◦ g−1, and when I
represents N landmarks with positions qi ∈ Rd, the action is by evaluation g.q =
(g(q1), . . . , g(qN)) (see [BGBHR11] for more details). The group elements can act
on various additional shape structures such as tensor fields.

Remark 2.1 (Nonlinear shape structures). This framework can be extended to
structures that are not represented by a vector space V , such as curves or surfaces.
We leave this extension for future work.
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Using the calculus of variations for the functional (2.1) results in the equation
of motion for ut of the form

d

dt

δl

δu
+ ad∗ut

δl

δu
= 0 , (2.3)

which is called the Euler-Poincaré equation. The operation ad∗ is the coadjoint
action of the Lie algebra of vector fields associated to the diffeomorphism group.
The operation ad∗ acts on the variations δl/δu, which are 1-form densities, in the
dual of the Lie algebra of vector fields, under the L2 pairing. When l(u) is a norm,
this equation is the geodesic equation for that norm, in the case that λ = ∞; that
is, with exact matching. We will focus on this case later in section 3 when discussing
landmark dynamics. Here, the inexact matching term constrains the form of the
momentum m = ∂l

∂u
to depend on the geodesic path. Following the notation of

[BGBHR11], the momentum map is defined as

m(t) = − 1

λ2
J0
t � (gt,1(J0

1 − J1
1 )[) , (2.4)

where gt,s is the solution of (2.2) at time t with initial conditions at time s, while
J0
t = gt,0I0 and J1

t = gt,1I1. The value J0
1 corresponds to the initial image, pushed

forward to time t = 1, and J1
1 = I1 is the target image.

The operations � and [ in the momentum map formula (2.4) are defined, as
follows. The Lagrangian l in (2.1) may be taken as kinetic energy, which defines
a scalar product and norm l(u) = 〈u, Lu〉L2 = ‖u‖2

L2 on the space of vector fields
X(Rd). The quantity Lu = δl/δu may then be regarded as the momentum conjugate
to the velocity u. Similarly, for the image data space V , we define the dual space V ∗
with the L2 pairing 〈f, I〉 =

∫
Ω
f(x)I(x)dx, where f ∈ V ∗ and Ω is the image domain

Ω ∈ Rd. This identification defines the [ operator as [ : V → V ∗. When an element
gt of the diffeomorphism group acts on V by push-forward, It = gt.I0 = (gt)∗I0, the
corresponding infinitesimal action of the velocity u in the Lie algebra of vector fields
u ∈ X(Rd) is given by u.I := [g∗t

d
dt

(gt)∗I0]t=0. In terms of this infinitesimal action,
we can then define the operation � : V × V ∗ → g∗ as

〈I � f, u〉g×g∗ := 〈f, u.I〉V×V ∗ . (2.5)

A detailed derivation of this formula for the momentum map can be found in
[BGBHR11].

Remark 2.2 (Solving this equation). We will just add here the important remark
that the relation (2.4) introduces nonlocality into the problem, as the momentum
implicitly depends on the value of the group at later times. This is exactly what is
needed in order to solve the boundary value problem coming from the matching of
images I1 and I0. The optimal vector field can be found with a shooting method or a
gradient descent algorithm on the energy functional (2.1), see [BMTY05]. For more
information about the relation of the momentum map approach of [BGBHR11] to
the LDDMM approach of [BMTY05], see [BH15].
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2.2 Stochastic Reduction Theory

The aim here is to introduce noise in the Euler-Poincaré equation (2.3) while pre-
serving the momentum map (2.4) such that the noise descends to the shape spaces.
Following [Hol15], we introduce noise in the reconstruction relation (2.2) and pro-
ceed with the theory of reduction by symmetry. We will focus on a noise described
by a set of J real-valued independent Wiener processes W i

t together with J associ-
ated vector fields σi ∈ X(Rd) on the data domain. We will later discuss particular
forms of these fields and methods for estimating unknown parameters of the fields
in the context of landmark matching.

Remark 2.3 (Dimension of the noise). We proceed here with a finite number of J
associated vector fields and finite dimensional noise, while leaving possible extension
to infinite dimensional noise such as done by [Via13] for later works.

We replace the reconstruction relation (2.2) by the following stochastic process

dgt = ugtdt+
∑

i

σigt ◦ dW i
t , (2.6)

where ◦ denotes Stratonovich integration. That is, the Lie group trajectory gt is
now a stochastic process. With this noise construction, the previous derivations of
(2.3) and (2.4) in [BGBHR11] still apply and we obtain the following result for the
stochastic vector field, ut.

Proposition 2.4. Under stochastic perturbations of the form (2.6), the momentum
map (2.4) persists, and the Euler-Poincaré equation takes the form

d
δl

δu
+ ad∗ut

δl

δu
dt+

∑

i

ad∗σi
δl

δu
◦ dW i

t = 0 . (2.7)

Proof. We first show that the momentum map formula (2.4) persists in the presence
of noise. The key step in its computation is to prove the formula in the lemma 2.5
of [BGBHR11] which is given by ∂t(g−1δg) = Adgδu, where Ad is the adjoint action
on the diffeomorphism group on its Lie algebra. We first compute the variations
of (2.6)

δdgt = δugdt+ uδgdt+
∑

i

σiδg ◦ dW i
t , (2.8)

and then prove this formula by a direct computation

d(g−1δg) = −g−1dgg−1δg + g−1dδg

= −g−1(udt+
∑

i

σi ◦ dW i
t )δg + g−1(δugdt+ uδgdt+

∑

i

σiδg ◦ dW i
t )

= g−1δug dt

:= Adgδu dt .

This key formula is the same as in [BMTY05] and [BGBHR11] for the deterministic
case. In particular, it does not explicitly depend on the Wiener processes W i

t . This
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ensures that the momentum map formula (2.4) remains the same as in the deter-
ministic case. The last step of the proof is to derive the stochastic Euler-Poincaré
equation (2.7). This is done by computing the stochastic evolution of the momentum,
given by

δl

δu
= Ad∗g−1(I0 � (g−1

1 π)), where π =
1

λ2
(giI0 − I1)[.

The only time dependence is in the coadjoint action, and, by the standard formula

dAd∗g−1η = −ad∗dgg−1Ad∗gη ,

we obtain the result

d
δl

δu
= −dAd∗g−1(I0 � (g−1

1 π))

= ad∗dgg−1Ad∗g−1(I0 � (g−1
1 π))

= ad∗dgg−1

δl

δu
,

where we have used the stochastic reconstruction relation (2.6) in the form

dgg−1 = udt+
∑

i

σi ◦ dW t
i .

In summary, this stochastic perturbation of the LDDMM framework preserves
the form of momentum map (2.4), although it does affect the reconstruction relation
(2.6) and the Euler-Poincaré equation (2.7). As shown in [BGBHR11], various data
structures fit into this framework including landmarks, images, shapes, and tensor
fields. In practice, for inexact matching, a gradient descent algorithm can be used to
minimise the energy functional (2.1). The noise will only appear in the evaluation of
the matching cost via the reconstruction relation. The algorithm of [BMTY05] then
directly applies, provided the stochastic reconstruction relation can be integrated
with enough accuracy. We will not treat the full inexact matching problem here. In-
stead, we will study the simpler case of exact matching, where the energy functional
consists only of the kinetic term.

3 Exact stochastic Landmark Matching

In this section, we apply the previous ideas of stochastic deformation of LDDMM
to exact matching with landmark dynamics. This is the simplest data structure
in the LDDMM framework, and it will serve to give interesting insights into the
effect of the noise in this context. Since exact matching means that the energy
functional contains only a kinetic energy, the optimal vector field is found from a
boundary value problem with the Euler-Poincaré equation (2.3). For exact matching,
the momentum map for landmarks takes the simple familiar form for the reduction
of the EPDiff equation (see [CH93, HM05])

m(x, t) =
N∑

i=0

pi(t)δ(x− qi(t)) , (3.1)
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for N landmarks with momenta pi and positions qi, with i = 1, 2, . . . , N . A direct
substitution of u = K ∗m into the stochastic Euler-Poincaré equation (2.7) gives the
stochastic landmark equations in (3.6). Here, K is a given kernel corresponding to
the Green’s function of the differential operator L used to construct the Lagrangian.
Below, we take a different approach and proceed from a variational principle in which
the stochastic landmark dynamics is constrained. We refer the interested reader to
for example [JS14] for a detailed exposition of this derivation in the deterministic
context.

3.1 Stochastic Landmarks dynamics

Recall that for N landmarks in Rd, the diffeomorphism group elements g act on
the landmarks by evaluation of their position g.q = (g(q1), . . . , g(qN)), and the
associated momentum map is (3.1). The original action functional (2.1) can be
equivalently written as a constrained variational principle where the pi play the role
of Lagrange multipliers enforcing the stochastic reconstruction relation (2.6). This
procedure is based on the Clebsch action principle, which for landmark dynamics has
been studied for one dimensional motion of landmarks on the real line in [HT16b]

S(u,q,p) =

∫∫
l(u) dx dt+

∑

i

∫
pi ·
(
◦dqi − u(qi) dt+

∑

l

σl(qi) ◦ dW l
t

)
. (3.2)

Notice that only the Lagrangian depends on the spatial (Eulerian) variable x on the
image domain. We now use the momentum map (3.1) which provides us with the
relation

2 l(u) =

∫
m(q,p)(x) · u(x)dx =

∑

i

pi · u(qi) ,

which reduces this action functional to the finite dimensional space of landmarks.
We arrive at the action integral

S(q,p) =

∫
h(q,p) dt+

∑

i

∫
pi ·

(
◦ dqi +

∑

l

σl(qi) ◦ dW l
t

)
, (3.3)

where the Hamiltonian only depends on the landmark variables, as

h(q,p) =
1

2

N∑

i,j=1

(pi · pj)K(qi − qj) . (3.4)

The action integral in (3.3) involves the phase space Lagrangian (3.4) and the
stochastic potential, given by

φl(q,p) :=
∑

i

pi · σl(qi) . (3.5)

Taking free variations of (3.3) gives the stochastic Hamilton equations in the form

dqi =
∂h

∂pi
dt+

∑

l

∂φl
∂pi
◦ dW l

t ,

dpi = − ∂h
∂qi

dt−
∑

l

∂φl
∂qi
◦ dW l

t .

(3.6)
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Explicitly, we have

dqi =
∑

j

pjK(qi − qj)dt+
∑

l

σl(qi) ◦ dW l
t ,

dpi = −
∑

j

pi · pj
∂

∂qi
K(qi − qj) dt−

∑

l

∂

∂qi
(pi · σl(qi)) ◦ dW l

t .
(3.7)

In coordinates, the stochastic equations (3.6) become

dqαi =
∂h

∂pαi
dt+

∑

l

σαl (qi) ◦ dW l
t ,

dpαi = − ∂h

∂qαi
dt−

∑

l,β

∂σβl (qi)

∂qαi
pβi ◦ dW l

t ,

(3.8)

where α, β run through the domain directions, α, β = 1, . . . , d.
The particular form of the stochastic potential in (3.5) arises from the Legendre

transformation of (3.2). The solutions of (3.8) represent the singular solutions of the
stochastic EPDiff equation, corresponding to a stochastic path in the diffeomorphism
group. In previous works such as [TV12, Via13, MS16], noise has been introduced
additively and only in the momentum equation, corresponding to a stochastic force.
Also, the noise has typically been taken to be different for each landmark, and one
can interpret it having been attached to each landmark. In the present case, the
noise is not additive and the Wiener processes are not related to the landmarks, but
to the domain of the image. Nearby landmarks will thus be affected by a similar
noise, controlled by the spatial correlations of the noise. We refer to Figure 1 in the
Introduction for a numerical experiment demonstrating this effect.

Remark 3.1 (Geometric noise). The geometric origin of our noise deserves more
explanation. In the position equation (3.6), the noise arises as the infinitesimal trans-
formation by the action of the stochastic vector field in (2.6), namely dgg−1 =
udt+

∑
i σi ◦dW t

i , on the manifold of positions of the landmarks, which is generated
by the J stochastic potentials, Φl(qi,pi) := pi · σl(qi)). Since this stochastic Hamil-
tonian is linear in the canonical momenta, the noise perturbing the evolution of the
landmark positions is independent of the landmark momenta. On the other hand,
the noise in the momentum equations arises as the cotangent lift of the action of the
stochastic vector field dgg−1 on the positions of the landmarks. This cotangent lift
determines the action on the momentum fibres attached to the perturbed position
of each of the landmarks in phase space. The cotangent lift transformation is given
explicitly by the product of the momentum and the gradient of the spatial fields σl
with respect to the position qi of the i-th landmark. This difference increases the
effect of the noise in regions where the σl fields have large spatial gradients, provided
the landmarks are moving rapidly enough for their momenta to be non-negligible.
We will see in the example that in certain cases this dependence on the momentum
can significantly affect the dynamics of the landmarks.
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3.2 The Fokker-Planck Equation

In this section, we study the evolution of the probability density function of the
stochastic landmarks by using the Fokker-Planck equation. This study is possible in
the case of landmarks because the associated phase space is finite dimensional.

We will denote the probability density by P(q,p, t), on the phase space R2dN

at time t. The Fokker-Planck equation can be computed using standard procedures
and is given in the following proposition.

Proposition 3.2. The Fokker-Planck equation associated to the stochastic process
(3.6) for the probability distribution P : R2dN × R→ R is given by

d

dt
P(q,p, t) = {h,P}can +

1

2

∑

l

{φl, {φl,P}can}can := L ∗P , (3.9)

where {F,G}can = ∇F TJ∇G is the canonical bracket with J = ( 0 1
−1 0 ) and φl(q,p) =∑

i pi · σl(qi) are the stochastic potentials. This formula also defines the forward
Kolmogorov operator L ∗.

Proof. The proof follows the standard derivation of the Fokker-Planck equation, by
taking into account the geometrical structure of the stochastic process (3.6). The
time evolution of an arbitrary function f : R2dN → R can be written

df(p,q) = {f, h}candt+
∑

l

{f, φl}can ◦ dW l
t .

We then take the expectation of this stochastic process. Thus, we first compute the
Itô correction, which reads 1

2

∑
l{{f, φl}can, φl}candt, as a double Poisson bracket.

The expectation of the Itô process then removes the noise term and defines the
forward Kolmogorov operator such that ḟ = L ∗f . By pairing this formula with the
density function P(q,p, t) over the phase space (q,p) with the usual L2 pairing as

∫
P(q,p, t)L f(q,p)dqdp =

∫
L ∗P(q,p, t)f(q,p)dqdp ,

we obtain the Fokker-Planck equation Ṗ = L ∗P that is explicitly given by (3.9) as
the double bracket term is self-adjoint and the advection term anti-self-adjoint.

Of course, the direct study of this equation is not possible, even numerically, due
to its high dimensionality. The main use here of the Fokker-Planck equation will be
to understand the time evolution of uncertainties around each landmark. Indeed,
for each landmark qi, the corresponding marginal distribution (integrating P over
all the other variables) will represent the time evolution of the error on the mean
trajectory of this landmark. We will show in the next section how to approximate
the Fokker-Planck equation with a finite set of ordinary differential equations which
describe the dynamics of the first moments of the distribution P. This will then be
used to estimate parameters of the noise fields σl for given sets of initial and final
landmarks.

12



Remark 3.3 (On ergodicity). The question of ergodicity of the process (3.6) is not
relevant here, as we will only consider this process for finite times, usually between
t = 0 and t = 1. The existence of stationary measures of the Fokker-Planck equation
via Hörmander’s theorem is thus not needed here. Nevertheless, we will need a notion
of reachability in the landmark position in the next section, where we will show how
to sample diffusion bridges for landmarks with fixed initial and final positions. This
ensures that there exists a noise realisation which can bring a any set of landmark to
any other set of landmarks. This property is weaker than the Hörmander condition
and was introduced by [Sus73].

3.3 Diffusion Bridges

The transition probability and solution to the Fokker-Planck equation P(q,p, t) can
also be estimated by Monte Carlo sampling of diffusion bridges. This approach will,
in particular, be natural for maximum likelihood estimation of parameters of land-
mark processes using the Expectation-Maximisation (EM) algorithm that will in-
volve expectation over unobserved landmark trajectories. This estimation approach
will be used in section 4.3, and we here develop a theory of conditioned bridge pro-
cesses for landmark dynamics which we will employ in the estimation. The approach
is based on the method of [DH06] with two main modifications. The scheme and its
modifications will be detailed after a short description of the approach of [DH06].

In [DH06], a Girsanov formula [Gir60], generalized to account for unbounded
drifts, is used to show that when the diffusion field Σ(x, t) of an Rd-valued diffusion
process

dx = b(x, t)dt+ Σ(x, t)dW , x0 = u (3.10)

is uniformly invertible, the corresponding process conditioned on hitting a point v ∈
Rd at time T > 0 are absolutely continuous with respect to an explicitly constructed
unconditioned process y that will hit v at time T a.s.. The modified process y is
constructed by adding a guiding drift term that forces the process towards the target
v. In [DH06], this process is constructed as a modification of (3.10)

dy = b(y, t)dt− y − v

T − t dt+ Σ(y, t)dW . (3.11)

Letting Px|v denote the law of x conditioned on hitting v with corresponding ex-
pectation Ex|v, the Cameron-Martin-Girsanov theorem implies that Px|v is abso-
lutely continuous with respect to Py, see for example [Øk03] and the discussion in
[PR12]. An explicit expression for the Radon-Nikodym derivative dPx|v/dPy can be
computed, and this derivative is central for using simulations of the process y to
compute expectations over the conditioned process x|v. In particular, as shown in
[DH06], the conditioned process x|v and the modified process y are related by

Ex|v(f(x)) =
Ey

(
f(y)ϕ(y)

)

Ey(ϕ(y))
, (3.12)

where ϕ(y) is a correction factor applied to each stochastic bridge y. Notice here
that f is a real-valued function of the stochastic path from t = 0 to t = T and that
the formula does not depend on time.
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Returning to landmark evolutions in the phase space R2dN , the process (3.6) has
two vector variables (q,p) that typically will be conditioned on hitting a fixed set
of landmark positions v at time T . The conditioning thus happens only in the q
variables by requiring qT = v. To construct bridges with an approach similar to
the scheme of [DH06], we need to find an appropriate guiding term and handle the
fact that the diffusion field may not be invertible in general. Recall first that the
landmark process (3.6) has diffusion field

Σ(q,p) =

(
Σq(q)

Σp(q,p)

)
:=

(
σ1(q), . . . , σJ(q)

−∇q(p · σ1(q)), . . . ,−∇q(p · σJ(q))

)
(3.13)

where σj(q) denotes the vector (σj(q1), . . . , σj(qN))T . Notice that this matrix is not
square and has dimension 2dN × J so that Σ(q,p) ◦ dWt with dWt a J-vector
corresponds to the stochastic term of (3.6). Though Σ(q,p) couples the q and p
equation, when the number of noise fields J is sufficiently large, the q part Σq(q) will
often be surjective as a linear map RJ → RdN . In this situation, by letting Σq(q)†

denote the Moore-Penrose pseudo-inverse of Σq(q), we can construct a guiding drift
term as

G(q,p) := −Σ(q,p)Σq(q)†(q− v)

T − t . (3.14)

This term, when added to the process (3.6), ensures that the modified process hits
qT a.s. at time T . The drift term (3.14) is a direct generalization of the term added
in (3.11). If Σ had been invertible then ΣΣ† = Id resulting in the guiding term
of [DH06] used in equation (3.11). In the current non-invertible case, ΣΣ†q(q − v)
uses the difference q − v which only involves the landmark position but affects
both the position and the momentum equations. We stress here the fact that the
introduction of noise in the q equation in (3.6) is essential for this approach. When
conditioning on the q variable, a guided process could not directly be constructed
in this way if the noise was instead introduced in the p equation as in [TV12,
Via13, MS16]. The fact that this term is weighted by ΣΣ† is also important as it
allows the guiding term to be more efficient in the noisy regions of the image, where
there is more freedom to deviate from the deterministic path. The guiding term
can be interpreted as originating from a time-rescaled gradient flow, and with the
guiding term added, the diffusion process can be see as a stochastically perturbed
gradient flow, see [AHPS17].

The guiding term (3.14) is, in practice, not always appropriate for landmarks.
Because the correction is dependent only on the difference to the target in the po-
sition equation, a phenomenon of over-shooting is often observed. In such cases,
the landmarks travel too fast initially due to a large momentum, strengthened by
the guiding term forcing the landmarks towards v. The high initial speed is only
corrected when the time approaches T and the guiding term brings the landmark
back to their final position. This effect is illustrated in Figure 4 in section 5.2 and
results in low values of the correction factor ϕ(q,p) used to compute the expec-
tation in (3.12). This results in inefficient samples when approximating (3.12) by
Monte Carlo sampling. Instead, letting b(q,p) denote the drift term of (3.6) with
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Itô correction, we use a guided diffusion process of the form
(
dq̂
dp̂

)
= b(q̂, p̂)dt− Σ(q̂, p̂)Σq(q̂)†(φt,T (q̂, p̂)− v)

T − t dt+ Σ(q̂, p̂)dW , (3.15)

for some appropriately chosen function φt,T : R2dN → RdN that gives an estimate
of the value of q̂T using the value of the modified stochastic process (q̂t, p̂t) at
time t. The hat denotes the solution of the process (3.15), which is different from
the original dynamics of the process (3.6) written without the hats. The choice
φt,T (q̂, p̂) := q̂ recovers the guiding term (3.14). It would be natural to define
φt,T (q̂, p̂) := E(q,p)(qT |(qt,pt) = (q̂, p̂)). The resulting guiding term will only be
driven by the expected amount needed at the endpoint, not from the value at time
t. A similar choice but easier to handle is to let φt,T (q̂, p̂) be the solution at time
T of the original deterministic landmark dynamics (2.3), obtained from the initial
conditions (q̂t, p̂t) = (q̂, p̂). We will use this latter choice, which is visualised in
Figure 4, in the rest of the paper. We note that to ensure convergence, a bounded
approximation b̃ will replace the original unbounded drift b in (3.15), but this fact
has little influence in practice.

The matrix Σ(q̂, p̂)Σq(q̂)† in 3.15 only accounts for the q dynamics in the pseudo-
inverse Σq(q̂)†. When the momentum is high and the noise fields σj have high
gradients, this fact can again lead to improbable sample paths. In such cases, the
scheme can be further generalised by using a guiding term of the form

1

T − tΣ(q̂, p̂)
(
Dh

(
φt,T (Σ(q̂, p̂)h)

)
|h=0

)†
(φt,T (q̂, p̂)− v) . (3.16)

The matrix Dh

(
φt,T (Σ(q̂, p̂)h)

)
|h=0 is a linear approximation of the expected end-

point dynamics as a function of the noise vector h ∈ RJ . Again, with φt,T (q̂, p̂) := q̂,
the original guiding term (3.14) is recovered, and the term is close to the guiding
term of (3.15) when the momentum or gradients of σj are low. We use this term for
the experiments in section 5.2 involving high momentum dynamics, e.g. Figure 6.

The following result is an extension of [DH06, Theorem 5] and [Mar11, Theo-
rem 3] to the modified guided SDE (3.15). It is the basis for the EM approach for
estimating the parameters of the landmark processes developed in section 4.3. We
let W (R2dN) denote the Wiener space of continuous paths [0, T ]→ R2dN and write
D and H for the component-wise Jacobian and Hessian matrices, respectively.

Theorem 3.4. Assume Σq(q) : RJ → RNd is surjective for all q with Σq(q̂)†

bounded, and that b̃ and Σ are C1,2, bounded, and with bounded derivatives. Let
P(q,p)|v be the law of (q,p) |qT = v, and let (q̂, p̂) be solution to (3.15), (q̂0, p̂0) =
(q0,p0) with φt,T : R2dN → RdN given by the solution of (2.3). Then, with a positive
measurable f : W (R2dN)→ R,

E(q,p)|v(f(q,p)) = lim
t→T

E(q̂,p̂) (f(q̂, p̂)ϕ(q̂, p̂, t))

E(q̂,p̂)(ϕ(q̂, p̂, t))
, (3.17)
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with

logϕ(q̂, p̂, t) = −
∫ t

0

q̂TvA(q̂)
(
(D(q̂,p̂)q̂q)dq̂− 1

2
Tr
(
Σq(q̂)T (H(q̂,p̂)q̂q̂)Σq(q̂)

)
ds
)

T − s

−
∫ t

0

q̂Tvd(A(q̂))q̂v

2(T − s) −
∑

i,j

∫ t

0

2q̂i,v[dAij(q̂), dq̂j] + Aij(q̂)[dq̂i, dq̂j]

2(T − s)

+

∫ t

0

(b(q̂, p̂)− b̃(q̂, p̂))TΣ(q̂, p̂)†,Td(q̂, p̂)− 1
2
‖Σ(q̂, p̂)†(b(q̂, p̂)− b̃(q̂, p̂))‖2ds ,

where

q̂q̂ = φt,T (q̂, p̂)− q̂, q̂v = φt,T (q̂, p̂)− v, A(q̂) =
(
Σq(q̂)Σq(q̂)T

)−1
.

In the Theorem, [·, ·] is the quadratic variation of semi-martingales. As mentioned
above, a bounded approximation b̃ must be used to replace the original drift term
b in (3.15). The last integral in the expression for logϕ(q̂, p̂, t) is a result of this
approximation.

The result is proved in Appendix A. Using the guidance scheme (3.11), the right
hand side limit of (3.17) is in [DH06] shown to equal

E(q̂,p̂) (f(q̂, p̂)ϕ(q̂, p̂, T ))

E(q̂,p̂)(ϕ(q̂, p̂, T ))
,

when Σ is invertible. Extending the convergence argument to the present non-
invertible case is non-trivial, and we postpone investigating this to future work.

The second order term −1
2

Tr
(
Σq(q̂)T (H(q̂,p̂)q̂q̂) of the correction factor is gen-

erally small. Though it can be computed during the simulation, we ignore it in the
numerical experiments. The terms

q̂Tvd(A(q̂))q̂v + 2q̂i,v[dAij(q̂), dq̂j] + Aij(q̂)[dq̂i, dq̂j]

can be computed by finite difference approximation as noted in [DH06].

4 Estimating the Spatial Correlation of the Noise

We now assume a set of n observed landmark configurations q1, . . . ,qn at time T ,
i.e. the observations are considered realisations of the stochastic process at some pos-
itive time T . From this data, we aim at inferring parameters of the model. This can
be both parameters of the noise fields σi and parameters for the initial configura-
tion (q(0),p(0)). The initial configuration can be deterministic with fixed known
or unknown parameters, or it can be randomly chosen from a distribution with
known or unknown parameters. We develop two different strategies for perform-
ing the inference. The first inference method in section 4.2 is a shooting method
based on solving the evolution of the first moments of the probability distribution
of the landmark positions while the second method in section 4.3 is based on the
Expectation-Maximisation (EM) algorithm. The discussion is here in the context
of landmarks, although these ideas may also apply in the more general context of
section 2.
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4.1 The Noise Fields

We start by discussing the form of the unknown J noise fields σl. To estimate them
from a finite amount of observed data, we are forced to require the fields to be
specified by a finite number of parameters. A possible choice for a family of noise
fields is to select J linearly independent elements σ1, . . . , σJ from a dense subset
of C1(Rd,Rd). We here use a kernel k with length-scale rl and a noise amplitude
λl ∈ Rd, that is

σαl (qi) = λαl krl(‖qi − δl‖) , (4.1)

where δl denotes the kernel positions. Possible choices for the kernel include Gaus-
sians krl(x) = e−x

2/(2r2l ), or cubic B-splines krl(x) = S3(x/rl). The Gaussian kernel
has the advantage of simplifying calculations of the moment equations whereas the
B-spline representation is compactly supported and gives a partition of unity when
used in a regular grid. Other interesting choices may include a cosine or a polynomial
basis of the image domain.

In principle, the methods below allow all parameters of the noise fields to be
estimated given sufficient amount of data. However, for simplicity, we will fix the
length-scale and the position of the kernels. The unknown parameters for the noise
can then be specified in a single vector variable θ = (λ1, . . . , λK). The aim of the
next sections will be to estimate this vector, possibly in addition to the initial config-
uration (q(0),p(0)), from data using the method of moments in 4.2 and EM in 4.3,
respectively.

4.2 Method of moments

We describe here our first method for estimating the parameters θ by solving a shoot-
ing problem on the space of first and second order moments. Given an estimate of
the endpoint distributions P(q,p, T ), we will solve the inverse problem which con-
sists in using the Fokker-Planck equation (3.9) to find the values of θ such that we
can reproduce the observed final distribution. Solving the Fokker-Planck equation
directly is infeasible due to its high dimensionality, so we will derive a set of finite
dimensional equations approximating the Fokker-Planck equation (3.9). One very
successful method is to approximate the probability distribution P by its first mo-
ments. This has been developed in the context of plasma physics for the Liouville
equation, an equation similar to the Fokker-Planck equation (3.9).

Remark 4.1 (Geometric moment equation). As the Fokker-Planck (3.9) is written
in term of the canonical bracket, we could expect to be able to apply a geometrical
version of the method of moments such as the one developed by [HPT07]. Although
this method seems to fit the present geometric derivation of the stochastic equations,
we will not use it as it is not in our case practically useful. Indeed, it requires the
expansions of the Hamiltonian functions in term of the moments, but we cannot
obtain here a valid expansion with a finite number of terms. This is due to the
fact that the LDDMM kernel and the noise kernels cannot generally be globally
approximated by finite polynomials with bounded approximation error for large
distances. This would, in turn, produce spurious strong interactions between distant
landmarks.
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The method for approximating the Fokker-Planck that we will use here is the
following. We first define the moments

〈qαi 〉 :=

∫
qαi Pθ(q,p, t) dqdp (4.2)

〈qαi pβj 〉 :=

∫
qαi p

β
j Pθ(q,p, t) dqdp , (4.3)

where we have written only two possible moments, although any combinations of p
and q at any order are possible. In this work we will only consider moments up to
the second order, that is the moments 〈qαi 〉 , 〈pαi 〉 , 〈qαi qβj 〉 , 〈qαi pβj 〉 and 〈pαi pβj 〉. Notice
that the first moment are (1, 1)-tensors, and the second moments are (2, 2)-tensors,
although we will only use index notation here.

We illustrate this method with the first moment 〈qαi 〉, which represents the mean
position of the landmarks. We compute its time derivative and use the property of
the Kolmogorov operator L defined in (3.9) to obtain

d

dt
〈qαi 〉 =

∫
qαi L ∗Pθ dqdp =

∫
L qαi Pθ dqdp = 〈L qαi 〉 . (4.4)

We thus first need to apply the Kolmogorov operator L to qαi to obtain

L qαi = −{h, qαi }can +
1

2

∑

l

{φl, {φl, qαi }can}can

=
∂h

∂pαi
+

1

2

∂σαl (qi)

∂qβi
σβl (qi) ,

(4.5)

which corresponds to the q part of the drift of the stochastic process with Itô cor-
rection. Similarly, for the momentum evolution, we obtain

L pαi = −{h, pαi }can +
1

2

∑

l

{φl, {φl, pαi }can}can

= − ∂h

∂qαi
+

1

2
pγi
∂σγl (qi)

∂qβi

∂σβl (qi)

∂qαi
− 1

2
pβi
∂2σβl (qi)

∂qαi ∂q
γ
i

σγl (qi) .

(4.6)

Most of the terms on the right hand side of (4.5) and (4.6) are nonlinear; so their
expected value cannot be written in terms of only the first moments. This is the
usual closure problem of moment equations, such as the BBGKY problem arising
in many-body problems in quantum mechanics. The solution to this problem is to
truncate the hierarchy of moments at a given order and consider the system of
ODEs as an approximation of the complete Fokker-Planck solution. Here we will
apply the so-called cluster expansion method described in [KK11]. We refer to the
Appendix B.1 for more details about this method.

Apart from the first approximation 〈qαi qβj 〉 → 〈qαi 〉 〈qβj 〉, the next order of approx-
imation is to keep track of the correlations

∆2 〈qαi qβj 〉 := 〈qαi qβj 〉 − 〈qαi 〉 〈qβj 〉 . (4.7)
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This quantity is also called a centred second moment as for i = j it corresponds
to the covariance of the probability distribution for the landmark i. In general, it
corresponds to the correlation between the positions of two landmarks. The dynam-
ical equation for this correlation is found from the equation of the second moment,
which gives

∂

∂t
∆2 〈qαi qβj 〉 =

∂

∂t
〈qαi qβj 〉 − 〈qαi 〉

∂

∂t
〈qβj 〉+ T

=
∑

l

〈
σαl (qi)σ

β
l (qj)

〉
+

〈
qαi
∂h

∂pβj

〉
− 〈qαi 〉

〈
∂h

∂pβj

〉

+
1

2

∑

l

(〈
qαi σ

γ
l (qj)

∂σβl (qj)

∂qγj

〉
− 〈qαi 〉

〈
σγl (qj)

∂σβl (qj)

∂qγj

〉)
+ T ,

where T stands for the transpose of the previous term. This equation is interesting
to study in more detail, as it already gives us information about the nature of the
dynamics for the spatial covariance of landmarks. Indeed, we have three types of
terms with the following effects.

1. The σl-dependent terms. This first term is quadratic in the σ’s, not propor-
tional to any linear or quadratic polynomial in q or p. This term is a direct
contribution from the noise in the q equation and will have the effect of almost
linearly increasing the centred covariance, wherever a σl > 0.

2. The h-dependent terms. From the form of this term, we expect it to be propor-
tional to a correlation. It will thus have an exponential effect on the dynamics,
triggered by the linear contribution of the first term. Notice that this term
only depends on the Hamiltonian, and, thus, on the interaction between land-
marks. If two landmarks interact, we expect their covariance to be averaged.
This term will capture their averaged covariance.

3. The ∇qσl-dependent terms. These terms are related to the noise in the p equa-
tion and will account for the effect on the landmark position of the interaction
of the momentum of the landmark with the gradients of the noise.

Notice that the last two types of terms describe second order effects with respect
to the spatial covariance of the landmarks, as they depend linearly on the correla-
tions. In the expansion of these nonlinear terms, the other correlations involving p
will appear. This means that all of the possible second order correlations must be
computed. This computation is done in Appendix B, where we also approximate the
expected value of the kernels as 〈K(q)〉 ≈ K(〈q〉). As we will see in the numerical
examples in section 5, these approximations can give a reliable estimate of the land-
mark covariance, but this should be rigorously justified to obtain a precise estimate
of the errors. Such a study is beyond the scope of this work and is left open.

Given the equations for the moment evolution, we can estimate the parameters
θ by minimising the cost function

C(〈p〉 (0), λl) =
1

γ1

‖〈q〉 − 〈q〉 (T )‖2 +
1

γ2

‖∆2 〈qq〉 −∆2 〈qq〉 (T )‖2 , (4.8)

19



where γ1 and γ2 are weights. We denote by 〈q〉 and ∆2 〈qq〉 the target first and
second moments and by 〈q〉 (T ) and ∆2 〈qq〉 (T ) the estimated moments which im-
plicitly depend on the parameters of the noise and the initial momentum. The choice
of the norm is free here, and we chose a norm which only considers i = j and nor-
malises each term to 1 so that all the covariance of the landmarks contribute equally
to the cost. Other choices could be made, depending on applications. Also, the cost
function may depend on other parameters, but this would make its minimisation
more difficult.

To minimise the cost (4.8), we can use gradient based methods such as the BFGS
algorithm. Such methods require the evaluation of the Jacobian of C with respect
to all of its arguments. Usually, for the estimation of the initial momentum, a linear
adjoint equation is used. However, the derivative with respect to the parameters of
the noise cannot be computed in this way. We will evaluate the gradients symbol-
ically by using the Theano library in Python [The16]. To improve the efficiency of
the algorithm, we first match the mean final position, by only updating the initial
momentum. Then, with this initial condition, we match for both first and second
moments and update the initial momentum as well as the parameters λl. As we will
see in the numerical experiments in section 5, gradient-based methods are not op-
timal, and genetic algorithms, such as the differential evolution algorithm of [SP97]
designed for global minimizations, turn out to perform better.

4.3 Maximum Likelihood and Expectation-Maximization

We now describe how to estimate the unknown parameters collected in the variable
θ by a maximum likelihood estimation based on the expectation-maximisation (EM)
algorithm of [DLR77]. The likelihood of n independent observations (q1, . . . ,qn) at
time T given parameters θ takes the form

L(q1, . . . ,qn, θ) =
n∏

i=1

Pθ(qi, T ) =
n∏

i=1

∫

RNd

Pθ(qi,p, T )dp . (4.9)

The parameters θ can be estimated by maximizing the likelihood, i.e. letting

θ̂ ∈ argmaxθ L(θ;q1, . . . ,qn) .

For this, the likelihood could be directly computed by numerical approximation of
Pθ(qi, T ) using an approximation of the Fokker-Planck equation (3.9). Alternatively,
the fact that the stochastic process is only sampled at time T suggests a missing data
approach that marginalises out the unobserved trajectories up to time T . Let (q,p; θ)
denote the stochastic landmark process with parameters θ, and let P (q,p; θ) denote
its law. Let L(q,p; θ) denotes the likelihood of the entire stochastic path for a given
realisation of the noise, and computed with respect to the parameter θ. Notice that
this likelihood is only defined for finite time discretizations of the process and there
is no notion of path density for the infinite dimensional process. We thus proceed
formally, while noting that the approach can be justified rigorously, see e.g. [DS08].

The EM algorithm finds a sequence of parameter estimates {θl} converging to a
θ̂ by iterating over the following two steps:
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1. Expectation: Compute the expected value of the log-likelihood given the pre-
vious parameter estimate θl−1:

Q(θ|θl−1) := Eθl−1
(logL(q,p; θ) |q1, . . . ,qn)

=
n∑

i=1

Eθl−1
(logL(q,p; θ|qi)) . (4.10)

The expectation (4.10) over the process conditioned on the observations qi
integrates the likelihood over all sample paths reaching qi. Expectation over
conditioned diffusion processes can be approximated by Monte Carlo simu-
lation of diffusion bridges, see for example [DH06, PR12, BFS16]. Here, we
employ the bridge simulation approach developed in section 3.3. For each qi,
we thus exchange (qt,pt; θ) with a guided process (q̂, p̂; θ,qi) and use the
equality (3.17) from Theorem 3.4. The expectation on the right-hand side of
(3.17) can be approximated by drawing samples from the guided process. Note
that the correction factor ϕ(q,p|θl−1,qi) makes the approach equal to impor-
tance sampling of the conditioned process with the guided process as proposal
distribution.

2. Maximisation: Find the new parameter estimate

θl = argmaxθQ(θ|θl−1) . (4.11)

The maximisation step can be approximated by updating θl such that it in-
creases Q(θ|θl−1) instead of maximising it. This is the approach of the gener-
alised EM algorithm [NH98]. The update of θ is thus computed by taking a
gradient step

θl = θl−1 + ε∇θQ(θ|θl−1) , (4.12)

where ε > 0. The gradient which is evaluated for each of the sampled paths
can be computed symbolically using the Theano library of [The16].

The resulting estimation algorithm is listed in Algorithm 1. For each qi, the
expectation Eθl−1

(logPθ(q,p|qi)) is estimated by sampling Nbridges bridges. The al-
gorithm can perform a fixed number L of updates to the estimate θl or stop at
convergence.
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Algorithm 1: Stochastic EM-estimation of parameters θ.
// Initialization
θ0 ← initialization value
// Main loop
for l = 1 to L do

for i = 1 to n do
for j = 1 to Nbridges do

sample bridge (q̂(ωj), p̂(ωj); θl−1,q
i)

compute logPθl(q̂(ωj), p̂(ωj)) and ϕ(q̂(ωj), p̂(ωj))
end
set Cqi

= meanj
(
ϕ(q̂(ωj), p̂(ωj))

)

set E(q,p)|qi(logPθl−1
(q,p)) ≈

C−1
qi

meanj
(

logPθ(q̂(ωj), p̂(ωj))ϕ(q̂(ωj), p̂(ωj))
)

end
set Q(θ|θl−1) = meani

(
E(q,p|qi)(logPθl−1

(q,p))
)

compute ∇θQ(θ|θl−1)
update θ: θl = θl−1 + ε∇θQ(θ|θl−1)

end

5 Numerical examples

We now present several numerical tests of the stochastic perturbation of the land-
mark dynamics. In particular, we want to illustrate aspects of the effect of the noise
on the landmarks and test the algorithms for estimation of the spatial correlation
of the noise. We will focus here on synthetic examples and refer to [AHPS17] for an
application of the methods on a dataset of Corpora Callosa shapes represented by
77 landmarks. The numerical simulations of this work have been done in Python,
using the symbolic computation framework Theano [The16]. The code is available
from the public repository https://bitbucket.org/stefansommer/stochlandyn.

5.1 Solution of the Fokker-Planck equation

We first consider a simple experiment with a single landmark, subjected a square
array of noise fields with Gaussian noise kernel. To a first order approximation, the
mean trajectory of the landmark is a straight line with constant momenta as the
Hamiltonian is a pure kinetic energy.

This experiment is displayed in Figure 2(a) where we used two arrays of four
by four noise fields with either λl = (0.08, 0) or λl = (0, 0.08) and three values
of the noise radius rl = 0.5, 0.05, 0.03. For large values of rl, the noise is mostly
uniform and the gradients of the σl are negligible. The only term contributing to
the final covariance of the landmark is therefore 〈σαl (qi)σ

β
l (qj)〉. This term only

has a linear effect on the covariance which is thus an ellipse proportional to the
noise fields. Here the noise has equal strength in both the x and y coordinate thus
we observe a circle. For smaller values of rl, the gradient of σl is large enough for
the other term in the momentum equation which couple the momentum and the
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Figure 2: We plot on the left panel three simulations of a single landmark dynamics
subject to an array of Gaussian noise fields. Their parameters are either λl = (0.08, 0) or
λl = (0, 0.08). We used three different length-scales rl for the noise fields to analyse the
effects of small or large Gaussian fields σl on the mean path of the landmark and final
covariance (ellipses). We used 2000 timesteps to integrate the moment equation forwards
from t = 0 to t = 1. The initial momenta were found using a shooting method in the
deterministic landmark equation. We display on the other two panels a zoom on two of
the simulations of the left panel and compare the estimation of the final covariance from a
Monte Carlo sampling (magenta) and from the solution of the moment equation (red) for
two values of rl. The black density represents the probability distribution of the landmark
estimated from samples, and the dashed lines two level sets.

gradient of σ to affect the moment dynamics. This effect is shown in Figure 2(a)
where the covariance has a larger value in the direction of the gradient of σl than in
the other directions. This is explained by the fact that this coupling is of the form
∂
∂qi

(σl(qi) ·pi), thus the ellipse is in the direction of the gradient, not the momenta.
Notice that there should be some noise in the direction of the momenta for this term
to have an effect. Using the same experiment, we compared the estimation of the
covariance from the moment equation with a direct sampling obtained by solving the
stochastic landmarks equations. We did this experiment for rl = 0.5 and rl = 0.03
in Figure 2(b), 2(c). The left panel with rl = 0.5 shows an excellent agreement
between the two methods but the right panel with rl = 0.03 shows differences. This
type of error in the estimation of the covariance is explained by the fact that the
final distribution has a large skewness. This effect is not captured by the moment
equations as we neglected the effects of order higher than 2, and the skewness is
a third order effect described by terms such as ∆3 〈qαi qβj qγk〉. Nevertheless, the final
covariance is close enough to the correct one to be able to use it in the estimation of
the noise fields. This demonstrates that even in rather extreme cases, which are not
realistic for applications, the second order approximation used to derive the moment
equation still produces reliable results.

We did a similar experiment but with 5 interacting landmarks arranged in an el-
lipse configuration and with initial conditions obtained from the deterministic shoot-
ing method such that the endpoint of the deterministic landmark equations match
another ellipse. We display these experiments in Figure 3 with the same noise as
in the previous tests and with rl = 0.2. We modified here the landmark interaction
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(a) Landmark interaction
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(b) Sampling comparison

Figure 3: In these two panels, we present a study similar to Figure 2(a) but with 5
interacting landmarks. On the left, we illustrate the effect of varying the landmark length
scale α, and, on the right, we compare the result of the moment equation and a Monte Carlo
simulation in the case of α = 0.1. As before, the black density plot shows the probability
density of the landmarks, the magenta curve the covariance from sampling and the red
curve the covariance from the moment equation.

length scale α from α = 0.02 (no-interactions) to α = 0.2 (neighbours interactions)
to see the effect of the noise with the landmark interactions. Due to the different
length scales, the trajectories to the target ellipse are slightly different so the land-
marks will be subject to different noise. The larger length scale has the effect of
reducing the differences between the covariances of interacting landmarks.

5.2 Bridge Sampling

Here, we aim at visualising the effect of the constructed bridge sampling scheme.
In Figure 4, the effect of the guiding term is visualized on a sample path. At
t = T/2, the predicted endpoint φt,T (q̂(t), p̂(t)) is calculated and the difference
φt,T (q̂, p̂) − v is used to guide the evolution of the path towards the target v. The
guiding term ensures that q̂ will hit v almost surely at time T . Notice that the
difference φt,T (q̂, p̂) − v is generally much smaller than the difference q̂ − v. The
introduction of φt,T therefore implies that the process is modified less giving more
likely bridges. Without φt,T , the process is generally attracted to quickly towards
the target as can be seen by the landmarks at t = 0.5 being almost at their final
positions in Figure 4(b). The path thus overshoots the target. This effect is not
present when using φt,T in Figure 4(a).

5.3 Estimating the noise amplitudes

We here aim at estimating the noise amplitude from sampled data using both the
method of moments and maximum likelihood.
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(a) guided process using φt,T (b) guided process without φt,T

Figure 4: (a) Visualization of the process (3.15). From the initial landmark configuration
q(0) (blue crosses), the target v (blue dots) is hit using the modified process (q̂, p̂) (black
lines: q̂). At time t = T/2, φt,T (q̂(t), p̂(t)) is calculated (green dots) and the process
is guided by −(T − t)−1ΣΣ†q(φt,T (q̂, p̂) − v) (q part: green arrows, length doubled for
visualization). The use of φt,T implies small guiding and high probability sample bridges.
(b) Similar setup but using the guiding term −(T − t)−1ΣΣ†q(q̂ − v) without φt,T . The
momentum couples with the guiding term, and, intuitively, the path travels too fast towards
the target (q at t = T/2 much closer than halfway towards v) and overshoots. This effect
gives low probability sample bridges and the guiding term (green arrows) is much larger
than in (a).
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(a) Genetic algorithm
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(b) Gradient descent

Figure 5: This figure shows the results of estimating parameters of the σl fields with the
moment equation. Black arrows: The original σl. Blue arrows: The estimated σl. The error
in the final covariance for the differential equation genetic algorithm is of the order of 10−10

and for the BFGS algorithm, it is of the order of 5 · 10−2.
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We first use the genetic algorithm of [SP97] called differential evolution algorithm
to minimise the cost function C in (4.8). This algorithm has in experiments proven
successful in avoiding local minima during the optimisation. We compared it with
the standard BFGS gradient descent algorithm with a single landmark in Figure 5.
This algorithm relies on the Jacobian of the cost functional computed symbolically
using the Theano package of [The16]. It is able to estimate the noise amplitude
along the trajectory of the landmark where the signal from the gradient of C is
the strongest. For the other regions of the image, the algorithm cannot detect any
signal to update the noise fields. The genetic algorithm can overcome this issue as
it is based on evolving a population of solution which randomly spans the entire
parameter space. In this way, the solution obtained is a better approximation of the
global minimum of C. It is interesting that even if the final moment of figure 5 are
well matched with the genetic algorithm, but the noise amplitude is not perfectly
recovered. This illustrates the expected degeneracy of this model for a low number
of landmarks. When more landmarks are added, the noise amplitude estimation is
closer to the expected one, see figure 7 below.
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(a) Landmark and estmated noise, low
momentum
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(b) Landmark and estmated noise, high
momentum

Figure 6: Similarly to Figure 5 but the noise amplitudes are here estimated using maxi-
mum likelihood with the bridge sampling scheme. (a) The parameters are estimated cor-
rectly in the low momentum setting. (b) While the sample covariance matches the co-
variance of the original data in the high momentum case, the estimated parameters are
different from the original.

In Figure 6, the same experiment is performed with MLE and the bridge sampling
scheme. The noise kernels are in this experiment cubic B-splines placed in a grid
providing a partition of unity. In the optimisation, λl are fixed to be equal for all
l = 1, . . . , J implying that the total noise variance will be uniform at each point
of the domain. The figure shows the experiment performed with low momentum
(Figure 6 (a)) and high momentum (Figure 6 (b)). In the low momentum case,
the noise parameters are estimated correctly and the sample covariance with the
estimated parameters matches the covariance of the original samples. The SDE
(3.15) is here used for the bridge sampling scheme. In contrast to the previous
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method, the algorithm is now optimising for the maximum likelihood of the samples
and not directly for matching the final covariance. A higher difference in the endpoint
covariance is, therefore, to be expected.

With higher initial momentum, the coupling between the guidance and noise
makes the scheme (3.15) overestimate the variance. Instead, the guidance term (3.16)
is used. Notice that even though the sample covariance with the estimated param-
eters matches the covariance of the original samples, the estimated λl are different
than the original values. This indicates that the maximum likelihood estimate of
the parameters may not match the original setting in the highly nonlinear case oc-
curring when the coupling between noise and momentum is high. Because of the
nonlinearity, the noise is able to generate horizontal variation in the position of the
final the landmark even though the variation with the estimated parameters are
mainly vertical along the trajectory.
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(a) Genetic algorithm
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(b) Gradient descent

Figure 7: This figure shows the result of noise estimation using the moment equation as in
Figure 5 but for the ellipse experiment. The error in the final covariance for the differential
equation genetic algorithm is of the order of 10−9 and for the BFGS algorithm it is of the
order of 5 · 10−3.

Figure 7, Figure 8 and Figure 9 show the result of noise estimation using different
configurations of the ellipse using both the method of moments and MLE. The
noise parameters λl are allowed to vary with l in both cases giving spatially non-
uniform noise amplitude. The algorithms find the correct noise parameters in the
areas covered by the landmark trajectories.
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Figure 8: (a) Setup as Figure 6 but with five landmarks in an ellipsis configuration. (b)
Examples of simulated bridges as used in the approximation of the Q function in the EM
procedure.
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Figure 9: For the experiment in Figure 8, evolution of the estimated parameters λl in the
EM procedure as a function of iterations.

6 Discussion and Outlook

As the first topic of this work, we attempted to answer the question of how to include
stochasticity and uncertainty in the framework of large deformation matching in a
systematic and geometrically consistent way. In section 2, we exposed a general the-
ory of stochastic deformations in the LDDMM framework, based on the momentum
map representation of images of [BGBHR11], by introducing spatially correlated
time-dependent noise in the reconstruction relation used to compute the deforma-
tion map from its velocity field. By doing so, most of the advantages of the theory of
reduction by symmetry remain, in particular, the possibility of applying this generic
stochastic model to many data structures. The general dynamical equation is the
stochastic EPDiff equation, and the noise appears in a particular multiplicative form
with spatial correlation encoded in a set of spatially dependent functions σl. The key
feature of this noise is that it preserves the structure of the original equation pro-
vided by the reduction by symmetry and in particular the momentum map allowing
for both exact and inexact matching.
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The question of local in time existence and uniqueness of this equation is im-
portant but not treated in this work. We refer to [BFM16] for such a study for the
2d Euler equation and to [CFH17] for the 3d case. Another possible extension is to
consider an infinite number of σl fields with an infinite dimensional Wiener process
for the stochastic EPDiff equation as investigated by [Via13], also in the context of
stochastic shape analysis. We considered time-independent σl fields. However, there
are several approaches for making these fields time dependent beside simply pre-
scribing them as functions of time. Some of these other approaches were derived by
[GBH17] in the context of stochastic fluid dynamics. In particular, the idea of having
the noise fields being carried by the deformation could be of interest in this context
as well. Yet another possibility could be to have two different types of noise fields,
one modelling small-scale noise correlation and the other larger scale noise correla-
tions. In this case, it would make sense for the small scale variability to be advected
by the large-scale deformation, similarly to the multi-scale model of [HT12].

After defining the general model in section 2, we applied it to exact landmark
matching in section 3, which is the simplest, yet non-trivial application of the LD-
DMM framework. This approach allowed investigation of the effects of the noise on
large deformation matching in a finite dimensional model. Introducing the noise in
both the momentum and the position equations of the landmarks made the land-
mark trajectories rougher than they would have been, had the noise been only in the
momentum equation. The noise in the position equation also increased the flexibility
for controlling the landmark trajectories. This property was used to derive a scheme
for simulating diffusion bridges with corresponding sampling correction factor that
allowed evaluation of expectations with respect to the original conditioned landmark
dynamics. In addition, we used the finite dimensionality of the system to derive the
Fokker-Planck equation.

Some modifications to the standard theory of diffusion bridges were made to
fit the case of landmark dynamics and to improve the speed and accuracy of the
estimation of expectations over conditioned landmarks trajectories. The landmarks
represent the simplest cases for numerical shape analysis, especially in the context of
stochastic systems. We used a simple Heun method to solve the stochastic landmark
equations. Higher order integration schemes could be used such as the stochastic
variational integrators of [HT16a]. The next step in extending the landmark example
is to allow for inexact matching and to study the trade-off between the effect of
noise and the tolerance of the matching. Several issues regarding ergodicity and
other properties of the Kolmogorov operator were left open in this paper, whose
future treatments could add to the theoretical understanding of the model. Finally,
the stochastic LDDMM framework can be applied to other types of data structures,
in particular to images with inexact matching as originally done in [BMTY05].
Studying the effects of the stochastic model on other nonlinear data structures such
as curves or surfaces would also be of great interest for future works.

As a second topic, we raised the question of determining the noise correlation
from data sets which would allow the theory of stochastic deformations to be used
with observed data. We developed two independent methods which we implemented
and applied to several test examples. First, the moment equation allows matching of
the sample moments. It is deterministic, making optimisation of the noise parameters
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stable and efficient, and it does not require special conditions on the noise fields.
Its accuracy depends on the approximation order in the moment equation. Scaling
the moment equation to a large number of landmarks or continuous shapes such
as curves may be challenging as well as optimising for a high number of unknown
parameters. In the presented landmark experiments, the approach allowed us to
reliably estimate the underlying noise.

The second method is the MLE optimisation, a Monte Carlo method which
evaluates expectations over conditioned stochastic trajectories. The bridge sampling
scheme we used requires the noise fields to span the entire q-space to allow guiding
the landmarks towards their target. With high nonlinearity as may happen with large
initial momentum and high gradients of the noise fields, guiding the trajectories
towards their target with high-probability bridges can be challenging. In general,
the stochastic nature of the algorithm makes it harder to control than the matching
provided by the moment equation. The bridge sampling scheme can be interpreted
as a gradient flow, as discussed in [AHPS17], when applied to images. It allows the
likelihood of observed images to be evaluated without a prior image registration
step. The method may thus be applicable to image analysis problems, and more
generally for inexact matching of shapes in which case the requirement of the noise
to span the q-space may be relaxed.

The inference of noise parameters treated here can be extended to more gen-
eral statistical inference problems on shape spaces. Inferring the initial q0 positions
can be regarded as estimating a most-likely mean, thereby drawing similarities to
the Frechét mean [Fré48] and to means defined by maximum likelihood of prob-
ability distributions in nonlinear spaces [Som15]. When generalised to images, the
approach can be used for simultaneous estimation of template images [JDJG04], pos-
sible time-dependent transformations in the momentum as caused for example by
disease processes [MF12], and population variation in the spatial noise correlation.
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A Bridge Sampling

We here follow parts of the program in [DH06] and the later paper [Mar11] to
argue for the a.s. hitting of a target v for the guided process (3.15) and to find
the correction term ϕ(q,p). We will explicitly derive the correction term following
[DH06, Theorem 5]. The guided SDE (3.15) differs from the previous schemes in
using the function φt,T : R2dN → RdN to predict the endpoint, and, importantly, in
that the diffusion field Σ is not invertible resulting in a hypoelliptic diffusion. We
handle the first issue by writing the SDE in a general form presented in [Mar11]
that also deals with the unboundedness of the drift term b(q̂, p̂) coming from the
momentum of the landmarks. The result in [Mar11] however does not handle the
hypoellipticity of the process. We do not here argue for the t→ T limit that in the
elliptic case follows from [DH06, Mar11].

We let the function φt,T : R2dN → RdN be the solution of the deterministic
landmark dynamics (2.3) at time T and use the notation of Theorem 3.4. Because
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the drift b(q̂, p̂, t) in (3.6) is unbounded, we let b̃ be an approximation of b so that
the q-part b̃q is bounded on RdN and b̃ is in the range of Σ(q,p) for all (q,p). We
let φ̃t,T be given by the corresponding deterministic solution using b̃ in 2.3. Then
∂tφ̃t,T (q̂, p̂) = −b̃(q̂, p̂, t) is bounded and the process φt,T (q̂,p̂)−q̂

T−t is defined, bounded
and continuous on [0, T ]. The SDE

(
dq̂
dp̂

)
= b̃(q̂, p̂)dt− Σ(q,p)Σq(q)†(q̂− v)

T − t dt+ Σ(q̂, p̂)dW (A.1)

differs from the SDE (3.15) by

(b(q̂, p̂)− b̃(q̂, p̂))dt− Σ(q,p)Σq(q)†(ϕt,T (q̂, p̂)− q̂)

T − t dt . (A.2)

As argued for [Mar11], A.1 has a unique solution satisfying limt→T q̂ = v a.s., and
the processes A.1 and (3.15) are absolutely continuous with respect to each other.

In fact, the correction term ϕ(q,p) can be derived from [Mar11, Theorem 3] and
the difference A.2. Instead, we below give a direct derivation in the landmark case
that proves Theorem 3.4.

Proof of Theorem 3.4. Let f : W (R2dN)→ R be positive and measurable. Following
[DH06] and using the notation of Theorem 3.4, define

h(q,p, t) := −Σq(q)†(ϕt,T (q,p)− v)

T − t = −Σq(q)†qv

T − t ,

noting that in the present case, we use the pseudo-inverse Σq(q)† to define h since
Σq(q) is not invertible. If f vanishes on (t, T ], t < T , we have from [DH06, Thm. 1]

E(q̂,p̂)

(
f(q̂, p̂)ϕb(q̂, p̂, t)

)
= E(q,p) (f(q,p, t)ϕ̃(q,p, t)) (A.3)

where

log ϕ̃(q,p, t) :=

∫ t

0

hT (q,p, s)dW − 1

2

∫ t

0

‖h(q,p, s)‖2ds , (A.4)

logϕb(q̂, p̂, t) :=

∫ t

0

(b(q̂, p̂)− b̃(q̂, p̂))TΣ(q̂, p̂)†,Td(q̂, p̂)

−
∫ t

0

1
2
‖Σ(q̂, p̂)†(b(q̂, p̂)− b̃(q̂, p̂))‖2ds . (A.5)

We now define an intermediate function

g(q, t) :=
qTvA(q)qv

T − t , (A.6)

and compute

dg(q, t) =
qTvA(q)qv

(T − t)2
dt+

d
(
qTvA(q)qv

)

T − t .
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Applying the product rule, we obtain for the second term

d
(
qTvA(q)qv

)
= 2qTvA(q)dqv + qTv

(
dA(q)

)
qv

+
∑

i,j

2qv,i[dAij(q), dqj)] + Aij(q)[dqi, dqj] .

Writing (2.3) in integral form φt,T (q,p) = (q,p)T +
∫ T
t
b(q(s),p(s))ds and letting

qq := φt,T (q,p)q − q, we have, using Itô calculus,

dqv = dq + ∂tqqdt+
1

2

∑

k

Σq(q)ikΣq(q)jk
(
∂i∂jqq

)
dt+

(
Dqqq

)
dq

= Σq(q)dW +
(
Dqqq

)
dq + 1

2
Tr
(
Σq(q)T (Hq(qq)) Σq(q)

)
dt,

with Hq(qq) denoting the component-wise Hessian. By writing the process g(q, t)
in integral form, we get

1

2

∫ t

0

dg(q, s) =

∫ t

0

qTvA(q)qv

2(T − s)2
ds+

∫ t

0

qTvΣq(q)†,TdW

T − s +

∫ t

0

qTv
(
dA(q)

)
qv

2(T − s)

+

∫ t

0

qTvA(q)
(
(Dqqq)dq + 1

2
Tr
(
Σ(q)Tq (Hq(qq))Σ(q)q

))
ds
)

T − s

+
∑

i,j

∫ t

0

2qv,i[dAij(q), dqv] + Aij(q)[dqv, dqv]

2(T − s)

using that A(q)Σq(q) = Σq(q)†,T . Note that the first term −
∫ t

0
qT
vA(q)qv

2(T−s)2 ds of the
right hand side equals the term equals the term −1

2

∫ t
0
‖h(q,p, s)‖2ds in (A.4). Simi-

larly, the second term −
∫ t

0

qT
v Σq(q)†,T dW

T−s equals
∫ t

0
hT (q,p, s)dW . Rearranging terms

and inserting in (A.4),

log ϕ̃(q,p, t) =

∫ t

0

hT (q,p, s)dW − 1

2

∫ t

0

‖h(q,p, s)‖2ds

= − 1
2
g(q(t), t) + 1

2
g(q(0), 0)

+

∫ t

0

qTvA(q)
(
(Dqqq)dq + 1

2
Tr
(
Σ(q)Tq (Hq(qq))Σq(q)

))
ds
)

T − s

+

∫ t

0

qTv
(
dA(q)

)
qv

2(T − s) +
∑

i,j

∫ t

0

2qv,i[dAij(q), dqv] + Aij(q)[dqv, dqv]

2(T − s) .

Define the function ϕ(q,p, t) such that

logϕ(q,p, t) = − log ϕ̃(q,p, t)− 1
2
g(q(t), t) + 1

2
g(q(0), 0) + logϕ(q,p, t)b .

Then (A.3) gives

EP(q̂,p̂)

(
f(q̂, p̂)ϕ(q̂, p̂, t)

)
= e

1
2
g(q(0),0)EP(q,p)

(
f(q,p)e−

1
2
g(q(t),t)

)
.

Thus

lim
t→T

E(q̂,p̂)

(
f(q̂, p̂)ϕ(q̂, p̂, t)

)

E(q̂,p̂)

(
ϕ(q̂, p̂, t)

) = lim
t→T

E(q,p)

(
f(q,p)e−

1
2
g(q(t),t)

)

EP(q,p)

(
e−

1
2
g(q(t),t)

) = E(q,p)|v
(
f(q,p)

)

where convergence of the right-most limit to the conditioned process follows from
[DH06, Lemma 7].
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B Moment equation for stochastic landmark

B.1 Cluster expansion method

We explain the basics of this method, which can be find in more details in, for
example, [KK11] with application in the context of semiconductor physics. This
method is used when one seek the dynamics of the expected value of N particles
that we will write here 〈N〉. One cannot solve the complete system, especially if
the number of particle is large, thus we want to approximate the expected value of
products in term of only a few independent variables. For this we apply the cluster
expansion, which begin by writting

〈2〉 = 〈2〉s + ∆2 〈2〉 := 〈1〉 〈1〉+ ∆2 〈2〉 , (B.1)

The next decomposition is

〈3〉 = 〈3〉s + 〈1〉∆2 〈2〉+ ∆3 〈3〉 , (B.2)

and so on and so forth. We then only compute the dynamics for the singlets 〈1〉 and
the correlations, up to some chosen order. In the sequel, we will only consider the
doublet correlations ∆2, and in this case we have the general decomposition

〈N〉 = 〈N〉s + 〈N − 2〉s ∆2 〈2〉+ 〈N − 4〉s ∆2
2 〈2〉+

∑

i

〈N − 2i〉s ∆i
2 〈2〉+O(∆3) .

In the context of quantum mechanics, where the particle operators do not com-
mute, extra care is needed especially for the sign of the term. Here we will consider
qαi and pαi as our particles, and as they commute, the expansions are simpler than
in [KK11]. We directly compute two of them for illustration, up to quadratic order,

〈qαi pβj 〉 = 〈qαi 〉 〈pβj 〉+ ∆2 〈qαi pβj 〉
〈qαi qβj pγk〉 ≈ 〈qαi 〉 〈qβj 〉 〈pγk〉+ 〈qαi 〉∆2 〈qβj pγk〉+ 〈qβj 〉∆2 〈qαi pγk〉+ 〈pγk〉∆2 〈qαi qβj 〉 .

This sort of expansion can fit a more geometrical framework, where the final
equations for the first moment will preserve the original structure of the equations.
This was developed first in [HLS90] and later in [HPT07, HPT10]. We will not use
this method here for a good reason related to the form of the equations. A key step
in these papers is to expand the expected value of the Hamiltonian in terms of a
finite number of moments, to enable computation of the equation of motion. In our
case, the Hamiltonian has a kernel function, which generally cannot be expanded
in a finite sum of polynomial terms. By doing the computations directly, we will be
able to do another approximation for the kernels, that is, we will assume that they
commute with the operation of expectation. A more subtle approximation can be
done using the heaviside function, but will give a much larger number of terms in
the expansion, see appendix B.6.

To perform this expansion on the Fokker-Planck equation associated to the land-
mark dynamics we will use several simplifications:

• Gaussian noise fields σl in (4.1),
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• for a kernel K(x), we will assume that 〈K(x)〉 ≈ K(〈x〉) and

• only the second order correlations ∆2 will be considered in this expansion.

These assumptions can be relaxed but the resulting equation may be difficult to
compute.

B.2 First moments

Recall the backward Kolmogorov operator on qαi

L qαi =
∂h

∂pαi
+

1

2

∑

l,γ,δ

∂σαl (qi)

∂qγi
σγl (qi) , (B.3)

which is used to compute the time evolution of the singlet

d

dt
〈qαi 〉 = 〈pαj 〉K(〈qi〉 − 〈qj〉)−

∑

l,γ,δ

1

2σ2
l

σαl (〈qi〉)(〈qγi 〉 − δγl )σγl (〈qi〉) . (B.4)

In this case, the equation only depends on the singlet of the momentum variable.
We thus compute

L pαi = − ∂h

∂qαi
+

1

2

∑

l,γ,δ

pγj
∂σγl (qi)

∂qδi

∂σδl (qi)

∂qαi
− 1

2

∑

l,γ,δ

pγi
∂2σγl (qi)

∂qαi ∂q
δ
i

σδl (qi) . (B.5)

which similarly gives the time evolution of the momentum singlet in two terms as

d

dt
〈pαi 〉 = Ap +Bp ,

where

Ap =
1

α2

∑

j,γ

K(〈qi〉 − 〈qj〉) 〈pγi pγj (qαi − qαj )〉

Bp =
∑

l,γ

1

2σ2
l

〈pγi 〉σγl (〈qi〉)σαl (〈qi〉) .

We then expand Ap further using the cluster-expansion method on the triplet to get

Ap =
1

α2

∑

j,γ

K(〈qi〉 − 〈qj〉)(〈pγi pγj qαi 〉 − 〈pγi pγj qαj 〉)

≈ 1

α2

∑

j,γ

K(〈qi〉 − 〈qj〉)
(
〈pγi 〉 〈pγj 〉 〈qαi 〉+ ∆2 〈pγi pγj 〉 〈qαi 〉+ 〈pγi 〉∆2 〈pγj qαi 〉
+ ∆2 〈pγi qαi 〉 〈pγj 〉 − 〈pγi 〉 〈pγj 〉 〈qαj 〉 −∆2 〈pγi pγj 〉 〈qαj 〉
− 〈pγi 〉∆2 〈pγj qαj 〉 −∆2 〈pγi qαj 〉 〈pγj 〉

)
.

Already this term depends on the mixed correlations which we will compute shortly,
but we first compute the position correlation.
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B.3 〈qq〉 correlation
Recall the formula of the Kolmogorov operator applied to qαi q

β
j ,

L (qαi q
β
j ) = qαi

∂h

∂pβj
+
∑

l

σαl (qi)σ
β
l (qj) +

1

2

∑

l

qαi σ
γ
l (qj)

∂σβl (qj)

∂qγj
+ T , (B.6)

which together with (4.5) gives the time evolution of the position correlation in the
form

d

dt
∆2 〈qαi qβj 〉 = Aqq +Bqq + Cqq ,

where

Aqq =

〈
qαi
∂h

∂pβj

〉
− 〈qαi 〉

〈
∂h

∂pβj

〉
+ T

Bqq =
∑

l

〈
σαl (qi)σ

β
l (qj)

〉

Cqq =
1

2

∑

l

〈
qαi σ

γ
l (qj)

∂σβl (qj)

∂qγj

〉
− 1

2

∑

l

〈qαi 〉
〈
σγl (qj)

∂σβl (qj)

∂qγj

〉
+ T .

We will denote by A the terms corresponding to the drift, by B the terms which
are not present in the first moments equation, and by C the other terms which
only depend on the noise and the derivative of the noise fields. We proceed by first
approximating the expectation of the kernels to get

Bqq ≈
∑

l

σαl (〈qi〉)σβl (〈qj〉)

Cqq ≈ −
1

2α2
l

∑

l,γ

∆2

〈
qαi q

γ
j

〉
σγl (〈qj〉)σβl (〈qj〉) + T .

where we also used the explicit form of σl as a Gaussian and its derivative. We will
now approximate the Aqq term to get

Aqq =
∑

k

〈qαi pβkK(qj − qk)〉 −
∑

k

〈qαi 〉 〈pβkK(qj − qk)〉+ T

≈
∑

k

∆2 〈qαi pβk〉K(〈qj〉 − 〈qk〉) + T .

It is now clear that the B term will linearly increase the position correlation, which
will then exponentially increase by the C term and be affected by the momentum-
position correlation by the A term. We now proceed by computing the momentum
correlation.
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B.4 〈pp〉 correlation
We compute the Kolmogorov operator on pαo p

β
j to get

L (pαi p
β
j ) = − pαi

∂h

∂qβj
− 1

2

∑

l,γ,δ

pαi p
γ
jσ

δ
l (qj)

∂2σγl (qj)

∂qβj ∂q
δ
j

+ T

+
1

2

∑

l,γ,δ

pδip
γ
j

∂σδl (qi)

∂qαi

∂σγl (qj)

∂qβj
+

1

2

∑

l,γ,δ

pαi p
δ
j

∂σδl (qj)

∂qγj

∂σγl (qj)

∂qβj
+ T ,

and using (B.5), we obtain the time evolution of the correlation in three terms as

d

dt
∆2 〈pαi pβj 〉 = App +Bpp + Cpp ,

where

App = −
〈
pαi

∂h

∂qβj

〉
+ 〈pαi 〉

〈
∂h

∂qβj

〉
+ T

Bpp =
1

2

∑

l,γ,δ

〈
pδip

γ
j

∂σδl (qi)

∂qαi

∂σγl (qj)

∂qβj

〉
+ T

Cpp = − 1

2

∑

l,γ,δ

〈
pαi p

γ
jσ

δ
l (qj)

∂2σγl (qj)

∂qβj ∂q
δ
j

〉
+

1

2

∑

l,γ,δ

〈pαi 〉
〈
pγjσ

δ
l (qj)

∂2σγl (qj)

∂qβj ∂q
δ
j

〉

+
1

2

∑

l,γ,δ

〈
pαi p

δ
j

∂σδl (qj)

∂qγj

∂σγl (qj)

∂qβj

〉
− 1

2

∑

l,γ,δ

〈pαi 〉
〈
pδj
∂σδl (qj)

∂qγj

∂σγl (qj)

∂qβj

〉
+ T .

We first approximate

Cpp ≈
1

2

∑

l,γ,δ

1

α2
l

σβl (qj)σ
γ
l (qj)∆2 〈pαi pγj 〉

− 1

2

∑

l,γ,δ

σδl (qj)σ
γ
l (qj)

(
〈pαi pγj (qβj − δβl )(qδj − δδl )〉 − 〈pαi 〉 〈pγj (qβj − δβl )(qδj − δδl )〉

)

+
1

2

∑

l,γ,δ

σδl (qj)σ
γ
l (qj)

(
〈pαi pδj(qγj − δγl )(qβj − δβl )〉+ 〈pαi 〉 〈pδj(qγj − δγl )(qβj − δβl )〉

)
.

The last two terms cancel as they are symmetric under the transpose operation
because of the sum on the free indices, thus the C term is

Cpp ≈
1

2

∑

l,γ,δ

1

α2
l

σβl (qj)σ
γ
l (qj)∆2

〈
pαi p

γ
j

〉
+ T . (B.7)

We proceed with the Bpp term, which is also symmetric under the transpose
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operation, thus giving the approximation

Bpp =
∑

l,γ,δ

1

α4
l

σδl (qi)σ
γ
l (qj)

〈
pδip

γ
j (q

α
i − δαl )(qβj − δβl )

〉

≈
∑

l,γ,δ

1

α4
l

σδl (qi)σ
γ
l (qj)

(
〈pδi 〉 〈pγj 〉 〈qαi 〉 〈qβj 〉+ ∆2 〈pδipγj 〉 〈qαi 〉 〈qβj 〉
+ 〈pδi 〉∆2 〈pγj qαi 〉 〈qβj 〉+ 〈pδi 〉 〈pγj 〉∆2 〈qαi qβj 〉
+ ∆2 〈pδi qαi 〉 〈pγj 〉 〈qβj 〉+ ∆2 〈pδi qβj 〉 〈pγj 〉 〈qαi 〉
+ 〈pδi 〉 〈qαi 〉∆2 〈pγj qβj 〉+ ∆2 〈pδipγj 〉∆2 〈qαi qβj 〉
+ ∆2 〈pδi qαi 〉∆2 〈pγj qβj 〉+ ∆2 〈pδi qβj 〉∆2 〈pγj qαi 〉
− 〈pδi 〉 〈pγj 〉 〈qαi 〉 δβl −∆2 〈pδipγj 〉 〈qαi 〉 δβl
− 〈pδi 〉∆2 〈pγj qαi 〉 δβl −∆2 〈pδi qαi 〉 〈pγj 〉 δβl
− 〈pδi 〉 〈pγj 〉 〈qβj 〉 δαl −∆2 〈pδipγj 〉 〈qβj 〉 δαl
− 〈pδi 〉∆2 〈pγj qβj 〉 δαl −∆2 〈pδi qβj 〉 〈pγj 〉 δαl
+ 〈pδi 〉 〈pγj 〉 δαl δβl + ∆2 〈pδipγj 〉 δαl δβl

)
.

We treat the two Hamiltonian terms separately by first writing them explicitly as

App =
∑

k,γ

1

α2

〈
pαi p

γ
j p

γ
k(q

β
j − qβk )K(qj − qk)

〉

− 1

α2

∑

k,γ

〈pαi 〉
〈
pγj p

γ
k(q

β
j − qβk )K(qj − qk)

〉
+ T

=:
∑

k,γ

1

α2
(A1

pp − A2
pp) + T .

We expand the first term to arrive at

A1
pp ≈ K(〈qj〉 − 〈qk〉)

(
〈pαi pγj pγkqβj 〉 − 〈pαi pγj pγkqβk 〉

)

≈ K(〈qj〉 − 〈qk〉)
(
〈pαi 〉 〈pγj 〉 〈pγk〉 〈qβj 〉+ ∆2 〈pαi pγj 〉 〈pγk〉 〈qβj 〉
+ 〈pαi 〉∆2 〈pγj pγk〉 〈qβj 〉+ 〈pαi 〉 〈pγj 〉∆2 〈pγkqβj 〉
+ ∆2 〈pαi pγk〉 〈pγj 〉 〈qβj 〉+ ∆2 〈pαi qβj 〉 〈pγj 〉 〈pγk〉
+ 〈pαi 〉 〈pγk〉∆2 〈pγj qβj 〉+ ∆2 〈pαi pγj 〉∆2 〈pγkqβj 〉
+ ∆2 〈pαi pγk〉∆2 〈pγj qβj 〉+ ∆2 〈pαi qβj 〉∆2 〈pγkpγj 〉
− 〈pαi 〉 〈pγj 〉 〈pγk〉 〈qβk 〉 −∆2 〈pαi pγj 〉 〈pγk〉 〈qβk 〉
− 〈pαi 〉∆2 〈pγj pγk〉 〈qβk 〉 − 〈pαi 〉 〈pγj 〉∆2 〈pγkqβk 〉
−∆2 〈pαi pγk〉 〈pγj 〉 〈qβk 〉 −∆2 〈pαi qβk 〉 〈pγk〉 〈pγk〉
−∆2 〈pγkqβk 〉 〈pαi 〉 〈pγk〉 −∆2 〈pαi pγj 〉∆2 〈pγkqβk 〉
−∆2 〈pαi pγk〉∆2 〈pγj qβk 〉 −∆2 〈pαi qβk 〉∆2 〈pγkpγj 〉

)
,
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and the second term

A2
pp ≈ K(〈qj〉 − 〈qk〉)

(
〈pαi 〉 〈pγj pγkqβj 〉 − 〈pαi 〉 〈pγj pγkqβk 〉

)

≈ K(〈qj〉 − 〈qk〉)
(
〈pαi 〉 〈pγj 〉 〈pγk〉 〈qβj 〉+ 〈pαi 〉∆2 〈pγj pγk〉 〈qβj 〉
+ 〈pαi 〉∆2 〈pγj pβj 〉 〈qγk〉 〈pαi 〉 〈pγj 〉∆2 〈pγkqβj 〉
− 〈pαi 〉 〈pγj 〉 〈pγk〉 〈qβk 〉 − 〈pαi 〉∆2 〈pγj pγk〉 〈qβk 〉
− 〈pαi 〉 〈pγj 〉∆2 〈pγkqβk 〉 − 〈pαi 〉 〈pγk〉∆2 〈pγj qβk 〉

)
.

This term cancels the terms of the A1
pp proportional to 〈pαi 〉 to give the approximation

App ≈
1

α2

∑

k,γ

K(〈qj〉 − 〈qk〉)
(

∆2 〈pαi pγj 〉 〈pγk〉 〈qβj 〉+ ∆2 〈pαi pγk〉 〈pγj 〉 〈qβj 〉
+ ∆2 〈pαi qβj 〉 〈pγj 〉 〈pγk〉+ ∆2 〈pαi pγj 〉∆2 〈pγkqβj 〉
+ ∆2 〈pαi pγk〉∆2 〈pγj qβj 〉+ ∆2 〈pαi qβj 〉∆2 〈pγkpγj 〉
−∆2 〈pαi pγj 〉 〈pγk〉 〈qβk 〉 −∆2 〈pαi pγk〉 〈pγj 〉 〈qβk 〉
−∆2 〈pαi qβk 〉 〈pγj 〉 〈pγk〉 −∆2 〈pαi pγj 〉∆2 〈pγkqβk 〉
−∆2 〈pαi pγk〉∆2 〈pγj qβk 〉 −∆2 〈pαi qβk 〉∆2 〈pγkpγj 〉

)
+ T .

We end this computation by approximating the dynamics of the mixed correlation.

B.5 〈pq〉 correlation
We compute

L (pαi q
β
j ) = − qβj

∂h

∂qαi
+ pαi

∂h

∂pβj

+
1

2

∑

l,γ

pαi σ
γ
l (qj)

∂σβl (qj)

∂qγj
−
∑

l,γ

pγi σ
β
l (qj)

∂σγl (qi)

∂qαi

− 1

2

∑

l,γ,δ

qβj p
γ
i

∂2σγl (qi)

∂qαi ∂q
δ
i

σδl (qi) +
1

2

∑

l,γ,δ

pδi q
β
j

∂σγl (qi)

∂qαi

∂σδl (qi)

∂qγi
.

Then, using (4.5) and (B.5) we obtain the time evolution of ∆ 〈pαi qβj 〉 as

d

dt
∆ 〈pαi qβj 〉 = Apq +Bpq + Cpq ,

where

Apq = −
〈
qβj
∂h

∂qαi

〉
+ 〈qβj 〉

〈
∂h

∂qαi

〉
+

〈
pαi

∂h

∂pβj

〉
− 〈pαi 〉

〈
∂h

∂pβj

〉

Bpq = −
∑

l,γ

〈
pγi σ

β
l (qj)

∂σγl (qi)

∂qαi

〉
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Cpq =
1

2

∑

l,γ

〈
pαi σ

γ
l (qj)

∂σβl (qj)

∂qγj

〉
− 1

2

∑

l,γ

〈pαi 〉
〈
σγl (qj)

∂σβl (qj)

∂qγj

〉

− 1

2

∑

l,γ,δ

〈
qβj p

γ
i

∂2σγl (qi)

∂qαi ∂q
δ
i

σδl (qi)

〉
+

1

2

∑

l,γ,δ

〈qβj 〉
〈
pγi
∂2σγl (qi)

∂qαi ∂q
δ
i

σδl (qi)

〉

+
1

2

∑

l,γ,δ

〈
pδi q

β
j

∂σγl (qi)

∂qαi

∂σδl (qi)

∂qγi

〉
− 1

2

∑

l,γ,δ

〈qβj 〉
〈
pδi
∂σγl (qi)

∂qαi

∂σδl (qi)

∂qγi

〉
.

We first approximate

Bpq ≈
1

α2
l

∑

l,γ

σβl (qj)σ
γ
l (qi) (〈pγi qαi 〉 − 〈pγi 〉 δαl )

Cpq ≈ −
∑

l,γ

1

2α2
l

σβl (qj)σ
γ
l (qj)∆2

〈
pαi q

γ
j

〉
+
∑

l,γ

1

2α2
l

∆2 〈qβj pγi 〉σγl (〈qi〉)σαl (〈qi〉) .

For the Hamiltonian term we obtain

Apq ≈
1

α2

∑

k,γ

K(〈qi〉 − 〈qk〉)
(
〈qβj pγi pγkqαi 〉 − 〈qβj 〉 〈pγi pγkqαi 〉

− 〈qβj pγi pγkqαk 〉+ 〈qβj 〉 〈pγi pγkqαk 〉
)

+
∑

k,γ

K(〈qj〉 − 〈qk〉)∆2 〈pαi pβk〉

≈ 1

α2

∑

k,γ

K(〈qi〉 − 〈qk〉)
(

∆2 〈pγi qβj 〉 〈pγk〉 〈qαi 〉+ ∆2 〈pγkqβj 〉 〈pγi 〉 〈qαi 〉
+ ∆2 〈qαi qβj 〉 〈pγi 〉 〈pγk〉+ ∆2 〈pγi qβj 〉∆2 〈pγkqαi 〉
+ ∆2 〈pγkqβj 〉∆2 〈pγi qαi 〉+ ∆2 〈qαi qβj 〉∆2 〈pγkpγi 〉
−∆2 〈pγi qβj 〉 〈pγk〉 〈qαk 〉 −∆2 〈pγkqβj 〉 〈pγi 〉 〈qαk 〉
−∆2 〈qβj qαk 〉 〈pγi 〉 〈pγk〉 −∆2 〈pγi qβj 〉∆2 〈pγkqαk 〉
−∆2 〈pγkqβj 〉∆2 〈pγi qαk 〉 −∆2 〈qβj qαk 〉∆2 〈pγkpγi 〉

)

+
∑

k,γ

K(〈qj〉 − 〈qk〉)∆2 〈pαi pβk〉 .

B.6 Higher Order Approximations of the Moment
Equations

One could consider the following higher order approximation of the expected value
of the kernel K(qi − qj) = e−‖qi−qj‖2/(2α2), as

K(qi − qj) = e−‖qi−qj‖2/(2α2) ≈ θ(qi − qj)
(
1− fα

1

2α2
‖qi − qj‖2

)
, (B.8)

where the function θ(x) is given by

θ(x) =

{
1 if 1− fα ‖x‖

2

2α2 ≥ 0,

0 if 1− fα ‖x‖
2

2α2 < 0,
(B.9)
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and the coefficient fα is found such that this approximation is the best fit to the
Gaussian. In practice, we have fα ≈ 0.6, but this value depends on α in general.
This cutoff function θ is necessary here, otherwise this approximation will not be
bounded, leading to large errors in the dynamics.
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