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Abstract

Kernel estimation is a popular approach to estimation of the pair correlation
function function which is a fundamental spatial point process characteristic.
Least squares cross validation was suggested by Guan (2007a) as a data-driven
approach to select the kernel bandwidth. The method can, however, be compu-
tationally demanding for large point pattern data sets. We suggest a modified
least squares cross validation approach that is asymptotically equivalent to
the one proposed by Guan (2007a) but is computationally much faster.
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1 Introduction

The pair correlation function is an important spatial point process characteristic
which is often estimated using kernel smoothing methods (Stoyan and Stoyan, 1994;
Møller and Waagepetersen, 2003; Illian et al., 2008) related to kernel estimation of
probability densities. The bias and variance of a kernel estimate depend critically
on the choice of kernel bandwidth. In the stationary case, based on practical experi-
ence, Stoyan and Stoyan (1994) and Illian et al. (2008) suggest to use a bandwidth
inversely proportional to the estimated intensity. Guan (2007a) and Guan (2007b)
provide more principled data driven approaches where the bandwidth is chosen ei-
ther by least squares cross validation or composite likelihood cross validation. It is,
however, our impression that these suggestions have not found widespread use. We
guess that this is due to lack of userfriendly software compatible with the predomi-
nant spatial statistics software package spatstat (Baddeley et al., 2015). Another
reason could be that the cross validation approaches can be quite time consuming
for large point pattern data sets. In this paper we suggest a modification of the least
squares cross validation method. The modified approach is asymptotically equiva-
lent with the method in Guan (2007a) but computationally much faster. We have
implemented the new method in a spatstat procedure bw.pcf that covers both the
original cross validation method in Guan (2007a) as well as the fast alternative.
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2 Kernel estimation of the pair correlation
function

Let X denote a point process on Rd, d ≥ 1, that is, X is a locally finite random
subset of Rd. We denote by ρ(·) the intensity function of X where ρ(u)du, u ∈ Rd, is
the probability of observing a point from X in a neighbourhood of u of infinitesimal
volume du. Consider two locations u, v ∈ Rd. Then the pair correlation function
g(u, v) evaluated at u, v can be interpreted as the ratio ρ(u|v)/ρ(u) where ρ(·|v)
denotes the intensity function of X conditional on that v ∈ X, see e.g. Coeurjolly
et al. (2017). The pair correlation function thus quantifies how much the presence
of a point at v changes the intensity at another location u. In this paper we will
assume that g depends on u, v only through their distance and write with an abuse
of notation, g(u, v) = g(‖v − u‖).

Suppose X is observed within a bounded observation window W ⊂ Rd and let
XW = X ∩W . Further, kb(·) denotes a kernel of the form kb(r) = k(r/b)/b, where k
is a probability density with bounded support [−1, 1] and b > 0 is the bandwidth.
Typical choices of k are the density of a uniform distribution or the Epanecnikov
kernel k(r) = (3/4)(1−r2)1(|r| ≤ 1). A kernel density estimator (Stoyan and Stoyan,
1994; Baddeley et al., 2000) of g(r) is

1

ςdrd−1

6=∑

u,v∈XW

kb(r − ‖v − u‖)
ρ(u)ρ(v)|W ∩Wv−u|

, r ≥ 0,

where ςd is the surface area of the unit sphere in Rd,
∑6= denotes sum over pairs of

distinct points, 1/|W ∩Wh|, h ∈ Rd, is the translation edge correction factor with
Wh = {u+h : u ∈ W}, and |A| is the volume of A ⊂ Rd. A closely related estimator
is (Guan, 2007a)

ĝ(r; b) =
1

ςd

6=∑

u,v∈XW

kb(r − ‖v − u‖)
‖v − u‖d−1ρ(u)ρ(v)|W ∩Wv−u|

, r ≥ 0.

The two estimators mainly differ for r close to zero where the former estimator tends
to have strong positive bias while the latter may exhibit negative bias. We consider
in the following the second alternative.

2.1 Least squares cross validation selection of the
bandwidth

Guan (2007a) suggests to choose b by minimizing an estimate of the mean integrated
squared error. For some upper lag R this is defined as

MISE(b) = ςd

∫ R

0

E
{
ĝ(r; b)− g(r)

}2
rd−1dr =M(b) + ςd

∫ R

0

g(r)2rd−1dr (2.1)

where

M(b) = ςd

∫ R

0

E ĝ(r; b)2rd−1dr − 2ςd

∫ R

0

g(r)E ĝ(r; b)rd−1dr.
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Guan (2007a) disregards the term in (2.1) not depending on b and estimates M(b)
by

M̂(b) = ςd

∫ R

0

ĝ(r; b)2rd−1dr − 2

6=∑

u,v∈XW
‖v−u‖≤R

ĝ−{u,v}(‖v − u‖; b)
ρ(u)ρ(v)|W ∩Wv−u|

, (2.2)

where ĝ−{u,v}, is defined as ĝ but based on the reduced data (X \ {u, v})∩W . That
is,

ĝ−{u,v}(r) =
1

ςd

6=∑

u′,v′∈XW :
{u′,v′}∩{u,v}=∅

kb(r − ‖v′ − u′‖)
‖v′ − u′‖d−1ρ(u′)ρ(v′)|W ∩Wv′−u′ |

. (2.3)

Imposing conditions on the observation window and boundedness and translation
invariance for the second to fourth order cumulant functions, Guan (2007a) showed
consistency in the sense that E M̂(b)−M(b) tends to zero as the observation window
increases. The use of conditions on the cumulant functions leads to a fairly long proof.

Define the k’th order normalized joint intensity g(k) of X by the identity

E
6=∑

u1,...,uk∈X
h(u1, . . . , uk) =

∫

(Rd)k
h(v1, . . . , vk)

[ k∏

i=1

ρ(vi)
]
g(k)(v1, . . . , vk)dv1 · · · dvk (2.4)

for non-negative functions h on (Rd)k, where the sum is over distinct u1, . . . , uk. As
a simpler alternative to the conditions in Guan (2007a) on the cumulant functions
we just assume that the fourth order normalized joint intensity g(4) is translation
invariant and satisfies

sup
‖h1‖,‖h2‖≤R+b

∫

Rd

∣∣g(4)(0, h1, h3, h2 + h3)− g(‖h1‖)g(‖h2‖)
∣∣dh3 ≤ C1 (2.5)

for some constant C1. Intuitively this means that spatial dependence between two
pairs of points decreases as a function of distance between the pairs. We further
assume that the volume |W | of the observation window tends to infinity in such a
way that for some constant C2,

|W |/|W ∩Wl| ≤ C2 (2.6)

for any l ∈ Rd with ‖l‖ ≤ R+ b. This is easily seen to be satisfied e.g. for a sequence
of observation windows nW0, n = 1, 2, . . ., where W0 is a rectangular subset of Rd.
For completeness we provide under these conditions a short proof of consistency of
M̂(b) in the appendix.

For large point pattern data sets the evaluation of the second term in M̂(b) can
be quite time consuming, see Section 4 for further details.

3 A fast estimate of the mean integrated squared
error

The kernel estimate can be viewed as a density estimate based on distance obser-
vations d = ‖v − u‖, u, v ∈ X. Given this perspective, a natural approach to cross
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validation is to leave out in turn the contribution from each observed distance. Leav-
ing out a distance observation d corresponding to a pair {u, v} leads to the modified
leave-one-out estimate

g̃−{u,v}(r) =
1

ςd

6=∑

u′,v′∈XW :
{u′,v′}6={u,v}

kb(r − ‖v′ − u′‖)
‖v′ − u′‖d−1ρ(u′)ρ(v′)|W ∩Wv′−u′ |

.

As explained in Section 4 this is very convenient computationally. We thus suggest
to use a modified least squares cross validation criterion

M̃(b) = ςd

∫ R

0

ĝ(r; b)2rd−1dr − 2

6=∑

u,v∈XW
‖v−u‖≤R

g̃−{u,v}(‖v − u‖; b)
ρ(u)ρ(v)|W ∩Wv−u|

(3.1)

that just differs from (2.2) by the replacement of ĝ−{u,v} by g̃−{u,v}.
In addition to (2.5) and (2.6) assume further that

g(3)(·, ·, ·) ≤ C3 and 1/ρ(·) ≤ C4 (3.2)

for constants C3 and C4, i.e. g(3) is bounded from above and the intensity is bounded
away from zero. We then show that M̂(b) and M̃(b) are asymptotically equivalent
meaning that their expected difference converges to zero.

3.1 Asymptotic equivalence of cross validation criteria

The first terms in M̂(b) and M̃(b) coincide so we focus on the last terms. By inspec-
tion of (2.2) and (2.3), the last term in M̂(b) is a sum over quadruples of distinct
points u, v, u′, v′ ∈ XW . The last term in M̃(b) contains the same sum as well as a
sum over u, v, u′, v′ ∈ XW where either u = u′, u = v′, v = u′ or v = v′. We need
to show that the expected value of the latter sum converges to zero. Without loss
of generality consider the sum of terms where u = u′. The other terms are handled
similarly. By (2.4) with k = 3, the expectation of

6=∑

u,v∈XW
‖v−u‖≤R

∑

v′∈XW

kb(‖v − u‖ − ‖v′ − u‖)
ρ(u)ρ(v)ρ(u)ρ(v′)‖v′ − u‖d−1|W ∩Wv−u||W ∩Wv′−u|

is ∫

W 3

1[‖v − u‖ ≤ R]
kb(‖v − u‖ − ‖v′ − u‖)g(3)(u, v, v′)

ρ(u)‖v′ − u‖d−1|W ∩Wv−u||W ∩Wv′−u|
dudvdv′

Letting K = sup−b≤r≤b kb(r) and Vd(R) the volume of the d-dimensional sphere, and
using (2.5), (2.6) and (3.2), this is bounded by

KC2
2C3C4

|W |2
∫

W 3

1[‖v − u‖ ≤ R]
1[‖v′ − u‖ ≤ R + b]

‖v′ − u‖d−1
dudvdv′

≤KC
2
2C3C4

|W |2
|W |Vd(R)ςd(b+R)

which tends to zero as |W | tends to infinity.
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Figure 1: Pair correlation functions of the considered Poisson, Thomas, Variance-Gamma
and Gaussian determinantal point processes.

4 Implementation and simulation study

To evaluate the cross validation criteria (2.2) and (3.1) we compute ĝ(r; b) for r ∈ G
whereG is a fine grid of spatial lags between 0 and R containing the set O of observed
pairwise distances between 0 and R. This enables us to evaluate the first term in the
cross validation criteria by numerical quadrature. To evaluate the second term we
look up ĝ(r; b) for each observed distance r ∈ O. Each such distance corresponds to
a pair {u, v}. To evaluate g−{u,v}(r; b) appearing in (2.2) we need to subtract from
ĝ(r; b) all terms

T ({u′, v′}) = 1

ςd

kb(r − ‖v′ − u′‖)
‖v′ − u′‖d−1ρ(u′)ρ(v′)|W ∩Wv′−u′ |

,

u′, v′ ∈ XW , where {u, v}∩{u′, v′} 6= ∅. To evaluate g̃−{u,v}(r; b) in (3.1) we just need
to subtract 2T ({u, v}). This does not require any inspection of other pairs of points.
The computation of g̃−{u,v}(r; b) for each observed pair {u, v} with r = ‖u− v‖ ≤ R
can therefore easily be done in a vectorized manner which is very fast in R.

4.1 Simulation study

To study the performance of the fast bandwidth selection method we perform a
simulation study involving the following point process models:

P: a Poisson process with ρ = 100 and g(r) = 1.

T: a Thomas process with ρ = 100 and g(r) = 1 + exp{−r2/(4ω2)}/(4πω2κ),
where κ = 25 and ω = 0.0198.

V: a Variance-Gamma process with ρ = 100 and g(r) = 1+exp(−r/ω)/(2πω2κ),
where κ = 25 and ω = 0.01845.

D: a Gaussian determinantal point process with ρ = 100 and g(r) = 1 −
exp{−2(r/α)2}, where α = 0.056.

The pair correlation functions of these processes are shown in Figure 1. For the
Poisson process there is no interaction between points, the Thomas and Var-Gamma
processes produce clustered point pattern realizations, and the determinantal point
process is regular.
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For each of the observation windows W1 = [0, 1]2 and W2 = [0, 2]2 we gener-
ate 1000 realizations from each of the point process models. The average number
of points is 100 on W1 and 400 on W2. For each simulated realization, the band-
width b of the kernel density estimator ĝ(r; b) is estimated using the spatstat de-
fault choice b̂st = 0.15/

√
ρ̂ due to Stoyan and Stoyan (1994), the fast least squares

cross validation band width b̂fa obtained by minimizing (3.1), and the original least
squares cross validation band width b̂ls obtained by minimizing (2.2). In b̂st, ρ̂
is the empirical intensity estimate given by the number of simulated points di-
vided by the area of the observation window. Then the mean integrated squared
errors (MISE) of ĝ(r; b̂st), ĝ(r; b̂fa) and ĝ(r; b̂ls) are estimated by approximating
the integral in (2.1) using numerical quadrature over [0, R] and approximating
the expectation in (2.1) by average over simulations. For W1 we use R = 0.25
and for W2 we use R = 0.5. Table 1 summarizes MISE(b̂ls), the relative differ-
ences in MISE in %, dM(b̂st|b̂ls) = 100

(
MISE(b̂st) − MISE(b̂ls)

)
/MISE(b̂ls) and

dM(b̂fa|b̂ls) = 100
(
MISE(b̂fa) −MISE(b̂ls)

)
/MISE(b̂ls), and average computational

times t(b̂fa) and t(b̂ls) for obtaining b̂fa and b̂ls.

Table 1: Estimated values of MISE(b̂ls), the relative differences in MISE dM (b̂st|b̂ls) =
100
(
MISE(b̂st) − MISE(b̂ls)

)
/MISE(b̂ls) and dM (b̂fa|b̂ls) = 100

(
MISE(b̂fa) −

MISE(b̂ls)
)
/MISE(b̂ls), and the average computational times t(b̂fa) and t(b̂ls) for obtain-

ing b̂fa and b̂ls. Windows W1 = [0, 1]2 and W2 = [0, 2]2 are considered.

W MISE(b̂ls) dM(b̂st|b̂ls) dM(b̂fa|b̂ls) E t(b̂fa) E t(b̂ls)

W1

P 1.46× 10−2 1644.10 116.20 0.59 2.270
T 143.31× 10−2 100.84 8.73 0.50 2.487
V 344.66× 10−2 118.66 11.92 0.50 2.590
D 5.31× 10−2 −48.09 −47.97 0.52 2.080

W2

P 0.40× 10−2 3110.18 84.79 2.97 170.990
T 34.25× 10−2 328.78 2.70 1.96 158.250
V 158.35× 10−2 397.28 1.59 2.01 168.640
D 7.36× 10−2 −81.81 −72.26 2.15 154.750

The simulation results are obtained on a Linux server with 2.3GHz 12-Core
IntelR© XeonR© processor and 10GB of RAM.

Considering the results in columns 2 and 3 of Table 1, the spatstat default
choice of band width is much inferior to both of the cross validation band widths
in case of the Poisson and cluster point processes (increase in MISE at least 100%
relative to MISE with b̂ls). For the determinantal point process, the performance of
the spatstat default and the fast cross validation method are similar and clearly
better than for the original cross validation method. In case of the Thomas and
Variance-Gamma processes, the relative increase in MISE by using b̂fa instead of
b̂ls is moderate and at most 12% for W1. For the larger observation window W2, in
accordance with the theoretical result in Section 3.1, the relative increase in MISE
is smaller and at most 3%. For the Poisson process, the original cross validation
method performs better than the fast one while the opposite is the case for the
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determinantal point process. Both for the Poisson and the determinantal process
the absolute value of the MISE is small relative to the MISE for the clustered point
processes regardless of whether the fast or the original cross validation method is
used. Overall, the fast and the original cross validation methods have a similar
performance in terms of MISE within the settings of the simulation study. The fast
method on the other hand leads to substantial savings in computing time since the
fast cross validation method is at least 4 or 57 times faster than the original cross
validation method for W1 respectively W2.

5 Conclusion

In this paper we introduce a fast approach to cross validation selection of the band
width for kernel estimation of the pair correlation function of a spatial point process.
The method is asymptotically equivalent to the method introduced by Guan (2007a).
In a simulation study involving a variety of point process models, the performance in
terms of mean integrated squared error of the fast method is similar to the method
proposed in Guan (2007a) and better than the spatstat default method. Already
for moderately sized point patterns with on average 400 points, the computing time
for the fast cross validation method is much smaller than for the original cross
validation method.
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A Consistency of Guan’s estimate

We need to show that the expectation of

ςd

∫ R

0

g(r)E ĝ(r; b)rd−1dr −
6=∑

u,v∈XW
‖v−u‖≤R

ĝ−{u,v}(‖v − u‖; b)
ρ(u)ρ(v)|W ∩Wv−u|

converges to zero. By (2.4) with k = 2, the integral term is

ςd

∫ R

0

g(r)

∫

W 2

kb(r − ‖v′ − u′‖)
‖v′ − u′‖d−1|W ∩Wv′−u′ |

g(‖v′ − u′‖)du′dv′rd−1dr

= ςd

∫ R

0

g(r)

∫

Rd×Rd

kb(r − ‖l‖)
‖l‖d−1|W ∩Wl|

g(‖l‖)1[u′ ∈ W ∩W−l]du′dlrd−1dr

= ςd

∫ R

0

g(r)

∫

Rd

kb(r − ‖l‖)
‖l‖d−1 g(‖l‖)dldrd−1dr. (A.1)

The expectation of the sum is evaluated using (2.4) with k = 4 and can be parti-
tioned into the sum of
∫

W 4

1[‖v − u‖ ≤ R]

‖v′ − u′‖d−1
kb(‖v − u‖ − ‖v′ − u′‖)
|W ∩Wv−u||W ∩Wv′−u′ |

g(‖v − u‖)g(‖v′ − u′‖)dudvdu′dv′

and
∫

W 4

1[‖v − u‖ ≤ R]

‖v′ − u′‖d−1
kb(‖v − u‖ − ‖v′ − u′‖)
|W ∩Wv−u||W ∩Wv′−u′|

[g(4)(0, v − u, u′ − u, v′ − u)− g(‖v − u‖)g(‖v′ − u′‖)]dudvdu′dv′

The first term is upon a change of variable equal to (A.1). Letting

K = sup
−b≤r≤b

kb(r),
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the second term is less than

K

∫

(Rd)4
1[‖h‖ ≤ R, ‖l‖ ≤ R + b]

1[u ∈ W ∩W−h, u′ ∈ W ∩W−l]
‖l‖d−1|W ∩Wh||W ∩Wl|

× |g(4)(0, h, u′ − u, u′ − u+ l)− g(‖h‖)g(‖l‖)|dudu′dhdl

≤K
∫

(Rd)3
1[‖h‖ ≤ R, ‖l‖ ≤ R + b]

1[u ∈ W ∩W−h]
‖l‖d−1|W ∩Wh||W ∩Wl|

×
[∫

Rd

|g(4)(0, h, k, k + l)− g(‖h‖)g(‖l‖)|dk
]
dudhdl

≤KC1

∫

(Rd)2

1[‖h‖ ≤ R, ‖l‖ ≤ R + b]

‖l‖d−1|W ∩Wl|
dldh ≤ KC1C2

1

|W |Vd(R)ςd(R + b)

where Vd(R) is the volume of the d-dimensional sphere of radius R. Thus the second
term tends to zero as |W | tends to infinity.
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