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Abstract
The Fröhlich polaron model is defined as a quadratic form, and its discrete
spectrum is studied for each fixed total momentum ξ ∈ Rd in the weak
coupling regime. Criteria are determined by means of which the number of
discrete eigenvalues may be deduced. The analysis is based on relating the
spectral analysis of the Fröhlich polaron model to an equivalent problem in
terms of a family of generalized Friedrichs models. This is possible by employ-
ing a combination of the Birman-Schwinger principle and the Haynsworth
inertia additivity formula. The number of discrete eigenvalues of a general-
ized Friedrichs model is analyzed explicitly. In order to determine the family
generalized Friedrichs models induced by the Fröhlich polaron model, it is
necessary to compute a certain Feshbach operator.

A method for computing Feshbach operators in bosonic Fock space is de-
veloped. The focus is on obtaining a framework which unifies and generalizes
frameworks that have appeared previously in the literature. The end result is
a calculus for creation/annihilation symbols, where Wick’s theorem provides
a formula for the product of finitely many symbols. The framework is then
applied to the Fröhlich polaron model. The framework is also applied to the
spin boson model. The application to the spin boson model is based on the
spectral renormalization group.

It is shown that the spectral renormalization group scheme can be natu-
rally posed as an iterated Grushin problem. While it is already known that
Schur complements, Feshbach maps and Grushin problems are three sides of
the same coin, it seems to be a new observation that the smooth Feshbach
method can also be formulated as a Grushin problem. Based on this, an
abstract account of the spectral renormalization group is given.
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Resumé
Fröhlich polaronen defineres som en kvadratisk form, og dens diskrete spek-
trum studeres for hvert fastholdt totalt momentum ξ ∈ Rd i svag-kobling
regimet. Der bestemmes kriterier som kan benyttes til at udlede antallet af
diskrete egenværdier. Analysen er baseret på at relatere den spektrale anal-
yse af Fröhlich polaron modellen til et ækvivalent problem for en familie af
generaliserede Friedrichs modeller. Dette er muligt ved at benytte en kom-
bination af Birman-Schwinger princippet of Haynsworth inertiadditivitets-
formlen. Antallet af diskrete egenværdier for en generaliseret Friedrichs
model analyseres explicit. For at bestemme den familie af generaliserede
Friedrichs modeller som Fröhlich polaron modellen inducerer, er det nød-
vendigt at udregne en bestemt Feshbach operator.

En metode til at udregne Feshbach operatorer i bosonisk Fock rum ud-
vikles. Fokus er på at udvikle et maskineri som forener of generaliserer
maskinerier der tidligere har optrådt i literaturen. Slutresultatet er en cal-
culus for kreations/annihilations-symboler, hvor Wick’s sætning forsyner en
med formlen for produktet af endeligt mange symboler. Maskineriet anven-
des efterfølgende på Fröhlich polaron modellen. Maskineriet anvendes også
på spin boson modellen. Anvendelsen på spin boson modellen er baseret på
den spektrale renormaliseringsgruppe.

Det vises at metoden bag den spektrale renormaliseringsgruppe naturligt
kan formuleres som et gentagent Grushin problem. Altimens det allerede
er kendt at Schur komplementer, Feshbach afbildninger of Grushin proble-
mer er tre sider af samme sag, lader det til at være en ny observation at
den glatte Feshbach metode også kan formuleres som et Grushin problem.
Baseret på denne observation, gives en abstrakt gennemgang af den spektrale
renormaliseringsgruppe.
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Introduction
In this thesis, the spectral analysis of certain models of bosons in non-
relativistic quantum field theory will be discussed. The purpose of this intro-
ductory chapter is to provide an introduction to the topics that occur in the
later chapters. Most definitions and arguments will be heuristic and formal
(or absent).

Creation/Annihilation Operators
Since this thesis deals with bosonic non-relativistic quantum field theory, it
seems in its place to start out by introducing creation/annihilation operators
in bosonic Fock space. Let M := Rd, denote by F (n)

sym := ⊗n
sym L

2(M) the
space of symmetric, square integrable functions onMn, and denote bosonic
Fock space by Fsym := ⊕∞

n=0F (n)
sym. Consider a measurable function

ω(r)
m,n :Mm ×Mn ×Mr → C (1)

which is separately symmetric. By separately symmetric is meant that if
Sl denotes the set of permutations of the l-point set {1, 2, . . . , l}, and σ ∈
Sm, τ ∈ Sn, π ∈ Sr, then

ω(r)
m,n(kM̄ , kN̄ , kR̄) = ω(r)

m,n(kσM̄ , kτN̄ , kπR̄), (2)

where

kM̄ = (k1, . . . , km), kσM̄ = (kσ(1), . . . , kσ(m)),
kN̄ = (q1, . . . , qn), kτN̄ = (qτ(1), . . . , qτ(n)),
kR̄ = (t1, . . . , tr), kπR̄ = (tπ(1), . . . , tπ(r)).

Due to symmetry of ω(r)
m,n, the ordering of, say, the m-tuple kM̄ does not

matter. To emphasize this, introduce the notation kM , where the ordering
is not specified. One may consider kM to be the equivalence class of kM̄ ∈
Mm with respect to permutation of the variables. Denote, for each fixed
(kM , kN ), by ω(r)

m,n(kM , kN ) the operator of multiplication by the function
kR 7→ ω(r)

m,n(kM , kN , kR) in F (r)
sym. Similarly, put

ωm,n(kM , kN ) :=
∞⊕
r=0

ω(r)
m,n(kM , kN ).

With these conventions, for each (kM , kN ), ωm,n(kM , kN ) is an operator in
Fsym, which acts in each summand F (r)

sym as a multiplication operator.
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Suppose for each m,n, r ∈ N0 that ω(r)
m,n is as in (1) and satisfies (2). If

Wm,n :=
∫
dkMdkN a∗(kM )v⊗m(kM )ωm,n(kM , kN )v̄⊗n(kN )a(kN ), (3)

then W = ∑∞
m=0

∑∞
n=0Wm,n will be referred to as a creation/annihilation

operator. Here, v :M→ C is some measurable function. Formula (3) should
be interpreted as a quadratic form by means of the formula, for f ∈ Fsym,

(a(kN )f)(r)(kR) =
√

(n+ r)!
r! f (n+r)(kN , kR). (4)

so that

〈ψ,Wm,nφ〉 =
∫
dkMdkN 〈v̄⊗m(kM )a(kM )ψ, ωm,n(kM , kN )v̄⊗n(kN )a(kN )φ〉.

The triple sequence (ω(r)
m,n)m,n,r∈N0 of functions will be referred to as the

symbol of the creation/annihilation operator W .

The Fröhlich Polaron Model
The Fröhlich polaron model [12], which describes an idealized system of a
single electron interacting with a polar crystal, is defined in dimension d by
the Hamiltonian

HFröh := −1
2∆ +N −

√
α
∫ ⊕
x∈Rd

dxΦ(vx), (5)

acting in the direct integral space∫ ⊕
x∈Rd

dxFsym := L2(Rd,Fsym) ∼= L2(Rd)⊗Fsym.

The parameter α > 0 is a coupling constant whose value depends on the
particular type of crystal under consideration, vx(k) := v(k) · e−ik·x, with
v(k) := |k|− d−1

2 denoting the coupling function in dimension d [33], and

Φ(f) :=
∫
k∈Rd

dk
[
f̄(k)a(k) + a∗(k)f(k)

]
.

The free electron is modelled by the Laplacian −∆/2 acting in L2(Rd), while
the number operator N :=

∫
k∈Rd dk a

∗(k)a(k) acting in bosonic Fock space
Fsym models the free polar crystal. Modelling the polar crystal in this way
corresponds physically to considering only a single type of excitation of the
crystal: Longitudinal optical phonons with fixed frequency ω = 1 [31, 33].
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The interaction between the electron and the polar crystal is modelled by
the third term on the right hand side of equation (5),

√
α
∫ ⊕
x∈Rd

dx
∫
k∈Rd

dk
[
v̄(k)eik·xa(k) + a∗(k)v(k)e−ik·x

]
,

which ’mixes’ the electron position x with the single-phonon momentum k.
An important property of the Fröhlich polaron model is that it is trans-

lation invariant [15, 31], in the sense that the Hamiltonian HFröh commutes
strongly with the total momentum operator, Ptot := −i∇+dΓ(p), where −i∇
is the momentum operator of the electron and dΓ(p) :=

∫
Rd dk a

∗(k)ka(k) is
the momentum operator of the phonon field. This can be verified by means
of the canonical commutation relations

[a(k), a(k′)] = 0, [a∗(k), a∗(k′)] = 0, [a(k), a∗(k′)] = δ(k − k′).

As a consequence, it is possible to simultaneously diagonalize the total mo-
mentum operator and the Fröhlich polaron Hamiltonian. Such a simultane-
ous diagonalization can be implemented by the Lee-Low-Pines transform [26],
defined by

(Sψ)(x) := (2π)−d/2
∫
ξ∈Rd

dξ eix·ξe−idΓ(p)·ξψ(ξ).

Computation reveals that S∗PtotS =
∫⊕
ξ∈Rd dξ ξ, i.e. the Lee-Low-Pines trans-

form indeed diagonalizes the total momentum operator. Furthermore, if one
recalls the pull-through formula, which ensures that we have

a(k)e−idΓ(p)·ξ = e−idΓ(p)·ξ−ik·ξa(k), eidΓ(p)·ξa∗(k) = a∗(k)eidΓ(p)·ξ+ik·ξ,

one may also deduce that

S∗HFröhS =
∫ ⊕
ξ∈Rd

dξ HFröh(ξ),

with

HFröh(ξ) := 1
2 |ξ − dΓ(p)|2 +N −

√
α
∫
Rd
dk [v(k)a(k) + a∗(k)v̄(k)] . (6)

In this sense, in order to understand the spectral properties of the Fröhlich
polaron model, it suffices to consider the family of so-called fiber Hamilto-
nians HFröh(ξ) for total momentum ξ ∈ Rd, acting in bosonic Fock space
Fsym.

Irrespective of whether one takes formula (5) or (6) as the starting point
of the analysis of the Fröhlich polaron model, the question of well-definedness
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of the model must be adressed. The problem one is confronted with is that
the coupling function v(k) := |k|− d−1

2 is not square integrable in Rd. One
way to remedy this flaw is to introduce an ultraviolet cutoff Λ > 0 in the
coupling function, thereby rendering the coupling function square integrable
and thus yielding well-defined Hamiltonians HΛ

Fröh and HΛ
Fröh(ξ). Employing

a unitary transform due to Gross [19], it is then possible to show that there
are self-adjoint operators HFröh and HFröh(ξ), such that, as Λ→∞, one has
HΛ

Fröh → HFröh as well asHΛ
Fröh(ξ)→ HFröh(ξ) in norm resolvent sense [15, 18].

There is also an alternative route, by means of quadratic forms. Starting from
formula (5), it has been observed by Griesemer and Wünsch [18] that a simple
commutator estimate due to Lieb and Thomas [27] is sufficient to show that
the interaction term of HFröh is infinitesimally relatively form bounded with
respect to the non-interacting Hamiltonian. Thus, HFröh can be uniquely
defined by means of the KLMN theorem.

Another remark is in order concerning the removal of the ultraviolet cut-
off. It has been shown by Møller [31] that the essential spectrum of HΛ

Fröh(ξ)
fulfills the identity σess(HΛ

Fröh(ξ)) = [Σess(HΛ
Fröh(ξ)),∞), where the quantity

Σess(HΛ
Fröh(ξ)) := inf σess(HΛ

Fröh(ξ)) denotes the bottom of the essential spec-
trum of HΛ

Fröh(ξ). Since HΛ
Fröh(ξ) → HFröh(ξ) in norm resolvent sense, it

follows that one also has σess(HFröh(ξ)) = [Σess(HFröh(ξ)),∞) without the ul-
traviolet cutoff. Therefore, the eigenvalues of HFröh(ξ) below the bottom of
the essential spectrum are precisely the discrete eigenvalues of HFröh(ξ).

The topic of the first chapter of this thesis is the energy-momentum spec-
trum of the Fröhlich polaron model, by which is meant the set{

(ξ, E) ∈ Rd × R E ∈ σ(HFröh(ξ))
}
.

More specifically, the discrete part of the energy-momentum spectrum is
studied, with the aim of counting the number of discrete eigenvalues in the
weak coupling regime at each total momentum ξ ∈ Rd. We take formula (6)
as the starting point of our analysis. The analysis has 4 essential ingredients:

1. A relative form bound, which allows a simple definition of the model
as a quadratic form by means of the KLMN theorem.

2. A version of the Birman-Schwinger principle, by means of which the
spectral analysis of the Fröhlich polaron Hamiltonian is transformed
into an equivalent problem in terms of a Birman-Schwinger operator.

3. An extension of the Haynsworth inertia additivity formula to the set-
ting of unbounded, self-adjoint operators, by means of which the study
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of the Birman-Schwinger operator is further transformed into an equiv-
alent problem in terms of a Feshbach operator, which turns out to have
the form of a generalized Friedrichs model.

4. A direct analysis of the spectrum of the induced generalized Friedrichs
model.

The relative form bound of part 1 is closely related to the commuta-
tor estimate of Lieb and Thomas [27]. Instead of a commutator estimate,
our proof is based on a pointwise estimate for the symbol of a particular
creation/annihilation operator. More precisely, and with a slight change of
notation, if we put g :=

√
α and define

TE,ξ := 1
2 |ξ − dΓ(p)|2 +N − E, (7)

Hg,E,ξ := TE,ξ − gΦ(v), (8)

then showing that Φ(v) is relatively form bounded with respect to TE,ξ is
equivalent to deriving a norm bound for the creation/annihilation operator

Bg,E,ξ := g|TE,ξ|−1/2Φ(v)|TE,ξ|−1/2 (9)

for an appropriate choice of E. Note that if v ∈ L2(Rd), then boundedness
of Bg,E,ξ follows from standard estimates, but the case v /∈ L2(Rd) is more
subtle.

The version of the Birman-Schwinger principle needed in part 2 is very
similar to the version obtained by Birman [5] (an English translation ex-
ists [6]).

As for part 3, the procedure we employ is closely related to a procedure
employed by Minlos [28]. An essential difference is that we assume much less
regularity of v, i.e. we do not introduce infrared or ultraviolet cutoffs, nor
do we assume that v is differentiable. The generalized Friedrichs model is
defined by an operator Ag in H := C⊕ L2(Rd) which has the form

(Agψ)0 := e0ψ0 − g
∫
dk v̄(k)ψ1(k)

(Agψ)1(k) := −gv(k)ψ0 +M(k)ψ1(k)− g2
∫
dq v(k)C(k, q)v̄(q)ψ1(q),

with a real parameter e0 ∈ R, a real coupling constant g ∈ R, a coupling
function v(k) = |k|− d−1

2 , and functions M,C corresponding to a multipli-
cation and an integral operator [25]. The spectral properties of Ag depend
on the specific form of the functions M and C. A main technical ingredi-
ent of our analysis is a method for computing the functions M and C of the
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generalized Friedrichs model induced by the Fröhlich polaron model, without
relying on regularity of v. This technical ingredient is presented in the second
chapter of the thesis. As for the Haynsworth inertia additivity formula [23],
our observation that it remains true in the setting of unbounded, self-adjoint
operators seems to be new.

The analysis given in part 4 is closely related to an analysis of the
Friedrichs model on the torus given by Ikromov and Sharipov [24]. Again, we
have to deal with additional technical challenges due to the lack of regularity
of v.

Feshbach Maps in Bosonic Fock Space
Given a closed operator H in a Hilbert space H along with a pair of orthog-
onal projections P, P̄ := 1− P , suppose that the restriction of HE = H −E
to the range of P̄ , H̄E = P̄HE�dom(H)∩ran(P̄ ), is invertible for some E ∈ C.
Then the Feshbach reduction method [7] allows one to reduce the spectral
study of HE to the spectral study of the Feshbach operator

FE := PHEP − PHP̄H̄−1
E P̄HP.

The advantage of analyzing the Feshbach operator as compared to analyzing
HE directly lies in the fact that FE acts in a reduced subspace ran(P ). On
the other hand, the disadvantage is that the dependence on the spectral
parameter E is more complicated.

The Feshbach reduction method was applied by Minlos [28] in order to
reduce the Fröhlich polaron Hamiltonian HFröh(ξ), which acts in bosonic
Fock space Fsym = ⊕∞

n=0F (n)
sym, to a generalized Friedrichs operator acting in

F (61)
sym = F (0)

sym ⊕ F (1)
sym = C ⊕ L2(Rd). With notation as in equations (7), (8)

and (9), one must compute the Feshbach operator

Fg,E,ξ := PHg,E,ξP − g2PΦ(v)P̄ (H̄g,E,ξ)−1P̄Φ(v)P

= PHg,E,ξP −
∞∑
n=0

g2PΦ(v)P̄ T̄−1/2
E,ξ (B̄g,E,ξ)nT̄−1/2

E,ξ P̄Φ(v)P, (10)

where P denotes the orthogonal projection onto F (61)
sym , P̄ = 1 − P , and Ā

denotes the restriction of A to ran(P̄ ) for any operator A in Fsym. This
computation was carried out by Minlos [28] for the case v ∈ L2(Rd) (see also
the related work by Angelescu et al. [2]), but his derivation is not directly
applicable to the case v /∈ L2(Rd).

The Feshbach reduction method also forms the basis of the spectral renor-
malization group introduced by Bach et al. [4]. A crucial improvement to the
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technique was made by Bach et al. [3] with the introduction of the smooth
Feshbach map, which was further developed by Griesemer and Hasler [17].
Here, one assumes that Hg,E := TE − gW , with TE := T −E for some closed
operators H,T and a coupling constant g ∈ C. The orthogonal projections
P, P̄ are replaced by a smooth partition χ, χ̄ satisfying χ2 + χ̄2 = 1. Under
appropriate conditions, the spectral study of Hg,E is then reduced to the
spectral study of the smooth Feshbach operator
Fg,E := TE − gχWχ− g2χWχ̄(T̄E − gχ̄Wχ̄)−1χ̄Wχ,

= TE − gχWχ−
∞∑
n=0

g2χWχ̄T̄
−1/2
E (gT̄−1/2

E χ̄Wχ̄T̄
−1/2
E )nT̄−1/2

E χ̄Wχ, (11)

acting in the reduced subspace ran(χ). The map Hg,E 7→ Fg,E is called the
smooth Feshbach map, and one may say that the smooth Feshbach map
decimates the degrees of freedom of the system [3]. The hope is that the
smooth Feshbach operator has a simpler structure than the original opera-
tor, in some appropriate sense. For applications to bosonic non-relativistic
quantum field theories, the operatorW is usually a creation/annihilation op-
erator. In proofs that rely on the spectral renormalization group, it is usually
a main technical step to compute the sum (11), and to show that the result
is again a creation/annihilation operator in a certain class, such that one is
able to iterate the smooth Feshbach map.

In the second chapter of the thesis, a framework is developed for the
computation of operators such as (10) and (11). The main result is a version
of Wick’s theorem, which generalizes a result due to Bach et al. [4]. It is a
main focus that the framework should be applicable to

1. The study of the spin boson model by means of the spectral renormal-
ization group.

2. The case v /∈ L2(Rd) of the Fröhlich polaron model.
For part 1, the immediate goal is to generalize a formula for the product

of finitely many creation/annihilation symbols due to Bach et al. [4]. In order
to write down the formula, it is necessary to introduce some more notation.
For a creation/annihilation symbol ω(r)

m,n, define

w(r)
m,n(kM , kN , kR)(w)

u,v (kU , kV , kW ) := ω
(r+w)
m+u,n+v(kMtU , kN tV , kRtW ),

where kMtU := (kM , kU ) etc. One may consider w to be a symbol valued
symbol, and thus define the creation/annihilation operator valued functions
W̃ (r)
m,u,n,v(kM , kN , kR)

:=
∫
dkU dkV a

∗(kU )v⊗u(kU )w(r)
m,n(kM , kN , kR)u,v(kU , kV )v̄⊗v(kV )a(kV ).
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Let W 1, . . . ,W J be creation/annihilation operators. The formula of Bach
et al. [4, Theorem A.4] may be written in the notation introduced here as
follows: W J · · ·W 1 = W , where the symbol ofW is given by the symmetriza-
tion

ω(r)
m,n(kM , kN , kR) := 1

m!n!
∑

σ∈Sm,τ∈Sn
ω̂(r)
m,n(kσM , kτN , kR)

of the function

ω̂(r)
m,n(kM , kN , kR) :=

∑
m1+...+mJ=m
n1+...+nJ=n

∑
p1,...,pJ∈N0
q1,...,qJ∈N0

J∏
j=1

(
mj + pj
pj

)(
nj + qj
qj

)

· 〈Ω,
J∏
j=1

W̃ j(rj)
mj ,pj ,nj ,qj

(kMj
, kNj

, kRj)Ω〉,

where ∏J
j=1 a

j = aJ · · · a1, kM = (kMJ
, . . . , kM1), kN = (kNJ

, . . . , kN1) and

kRj = (kNJ
, . . . , kNj+1 , kMj−1 , kM1 , kR).

A version of this formula will be derived which is completely explicit, in
the sense that the vacuum expectation values

〈Ω,
J∏
j=1

W̃ j(rj)
mj ,pj ,nj ,qj

(kMj
, kNj

, kRj)Ω〉

are also evaluated. The result is a formula in which the product symbol ω
is expressed directly in terms of the factor symbols ωJ , . . . , ω1. Based on
this formula, it is possible to introduce a calculus for creation/annihilation
symbols, by defining a product # on the space of symbols such that one has
ω = ωJ# · · ·#ω1. Furthermore, a formula is derived for the symbol valued
symbol w in terms of the symbol valued symbols wJ , . . . ,w1. By means of
this formula, it is possible to show for instance that differentiability in the
variables (kM , kN , kR) is preserved by the product #.

Having obtained such a formula for the product of finitely many symbols,
a treatment is given of the existence and uniqueness problem for the ground
state of the spin boson model in the weak coupling regime. The treatment
is an adaptation of a proof given by Hasler and Herbst [20], based on the
spectral renormalization group. We are able to treat a slightly more infrared
singular coupling function with the use of our symbol calculus. The spectral
renormalization group is discussed in the third chapter.

As for part 2, i.e. being able to treat the case v /∈ L2(Rd) of the
Fröhlich polaron, the problem largely boils down to choosing an appro-
priate norm on the space of creation/annihilation symbols. The aim is to
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pick a norm which controls the operator norm of the corresponding cre-
ation/annihilation operator, while also ensuring that the symbols have cer-
tain differentiability properties. In the case of the spin boson model, it suffices
to consider creation/annihilation operators that act in a reduced subspace
Hred := ran(1[0,1](dΓ(|p|))), where dΓ(|p|) :=

∫
dk a∗(k)|k|a(k). For the treat-

ment of the Fröhlich polaron, however, the creation/annihilation operator
B̄g,E,ξ which appears in (10) acts in F (>2)

sym = ⊕∞
n=2F (n)

sym. The norms consid-
ered by Hasler and Herbst [20] are therefore not appropriate. On the other
hand, the norm considered by Minlos [28] is only useful if v ∈ L2(Rd). An ap-
propriate choice of norm is made, and it is demonstrated that the framework
applies to the Fröhlich polaron model.

Spectral Renormalization
The Feshbach reduction method is a variation on the Schur complement
method, which goes back at least to Schur [36]. It is based on a block version
of the Gaussian elimination algorithm,

M :=
[
A B
C D

]
=
[

1 0
CA−1 1

] [
A 0
0 S

] [
1 A−1B
0 1

]
,

where A is assumed invertible, and S := D − CA−1B denotes the Schur
complement. From this formula, it follows that M is invertible if and only if
S is invertible, and one finds an isomorphism ker(M) ∼= ker(S) as well as an
isomorphism coker(M) ∼= coker(S).

A related notion is that of a Grushin problem. Here, one has invertible
operator block matrices M, E := M−1, with

M :=
[
A B
C D

]
, E :=

[
E E2
E1 E12

]
. (12)

In this setup, one finds that A is invertible if and only if E12 is invertible,
along with isomorphisms ker(A) ∼= ker(E12) and coker(A) ∼= coker(E12).

Another related notion is that of the smooth Feshbach method. In the
treatment given by Griesemer and Hasler [17], one considers two closed oper-
ators H,T on common domain dom(H) = dom(T ) along with W := H − T .
Furthermore, one fixes two bounded operators χ, χ̄ such that

χ2 + χ̄2 = 1, χT ⊆ Tχ, χ̄T ⊆ T χ̄.

One assumes that T, H̄ := T+χ̄Wχ̄ are bijective maps from dom(T )∩ran(χ̄)
to ran(χ̄). Finally, one assumes that χ̄H̄−1χ̄Wχ is bounded. Then, with

F = T + χWχ− χWχ̄H̄−1χ̄Wχ,

9



it is found that H is invertible if and only if F is invertible, along with an
isomorphism ker(H) ∼= ker(F ).

The third chapter of this thesis starts out with a treatment of the Schur
complement theorem and its relation to the Grushin problem, based on a
work by Sjöstrand and Zworski [39]. It is then shown how to pose the smooth
Feshbach method as a Grushin problem as well. Having two mutual inverses
M, E as in formula (12) corresponds precisely to having 8 componentwise
identities, corresponding to the two matrix identites ME = 1 and EM = 1.
In this relation, it is worth noting that 6 of these identites are contained in
the work by Griesemer and Hasler [17], while the remaining two identities
needed to form a Grushin problem seem to be new.

The spectral renormalization group is based on iterated applications of the
(smooth) Feshbach map. In this relation, we note that while there is a simple
formula for the compsition of two Feshbach maps, no such formula exists for
the smooth Feshbach map. On the other hand, iterated Grushin problems are
well understood [39]. We provide a treatment of iterated Grushin problems.
We then provide an abstract treatment of the spectral renormalization group,
formulated as an iterated Grushin problem.
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1 On the Discrete Energy-momentum
Spectrum of the Fröhlich Polaron Model

Jonas Dahlbæk, David Hasler and Jacob Schach Møller

Abstract
The number of discrete eigenvalues of the Fröhlich polaron Hamil-

tonian Hg,0,ξ is counted. The method applies in any dimension d ∈ N
and for any total momentum ξ ∈ Rd, but relies on a weak coupling as-
sumption |g| � 1. The method does not require infrared or ultraviolet
cut-offs.

In any dimension, there is at most 2 discrete eigenvalues, and out-
side a region of small total momentum there is at most 1 discrete
eigenvalue. In dimension d = 1, 2, there is at least one discrete eigen-
value for all ξ. In dimension d > 3, there is bounded region of total
momenta outside which there are no discrete eigenvalues.

The analysis consists in an application of the Birman-Schwinger
principle, coupled with an application of the Feshbach method, re-
ducing the model to a generalized Friedrichs model. In order to keep
track of the number of eigenvalues below the bottom of the essential
spectrum, the Haynsworth inertia additivity formula is employed.

1.1 Introduction
In this paper, we study the lower part of the spectrum of the Fröhlich polaron
model [12], which describes an electron in an ionic crystal. Although this
model has been extensively studied in the literature, there are still open
questions regarding its spectral properties, even in the weak coupling regime.

The Fröhlich polaron Hamiltonian commutes strongly with the operator
of total momentum, and using a unitary transformation due to Lee et al.
[26], it may be fiber diagonalized with respect to total momentum, so that
the study of its spectral properties is reduced to the study of the family of
fiber Hamiltonians

Hg,E,ξ = 1
2(ξ − dΓ(p))2 +N − gΦ(v)− E, (13)

acting in the bosonic Fock space Fsym [15, 31]. Here, g ∈ R is a coupling con-
stant, E ∈ R is a spectral parameter, ξ ∈ Rd labels the total momentum, N
is the number operator, v(k) = |k|− d−1

2 is the coupling function in dimension
d [33], and we put p(k) = k. Further definitions are given in Subsection 1.2.

Analysis of the Fröhlich polaron model is made complicated by the fact
that v /∈ L2(Rd). In fact, for the full model Hg =

∫⊕
ξ∈Rd Hg,0,ξdξ, it has been
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demonstrated by Griesemer and Wünsch [18], based on a bound due to Frank
and Schlein [9], that the domain of the Fröhlich polaron model satisfies the
formula dom(Hg)∩dom(H0) = {0} whenever g 6= 0. On the other hand, they
also show that the quadratic form domain satisfies qfd(Hg) = qfd(H0). In
other words, the perturbation is singular on the level of operator domains, but
well-behaved on the level of quadratic form domains. It is further observed
by Griesemer and Wünsch that a simple commutator estimate due to Lieb
and Thomas [27] suffices to define Hg as a quadratic form.

We will define Hg,E,ξ as a quadratic form by means of an estimate that
is closely related to the commutator estimate by [27]. Our proof of the esti-
mate is different, and based on a simple pointwise estimate of the Birman-
Schwinger kernel. It is well known that if one introduces an ultraviolet cutoff
Λ > 0 in the coupling function, then HΛ

g,E,ξ → Hg,E,ξ in the norm resol-
vent sense as Λ → ∞ [13, 15, 32]. It has been shown by Møller [31] that
σess(HΛ

g,E,ξ) = [Σess(HΛ
g,E,ξ),∞), where Σess(HΛ

g,E,ξ) := inf σess(HΛ
g,E,ξ) denotes

the bottom of the essential spectrum of HΛ
g,E,ξ. It follows from norm resolvent

convergence that σess(Hg,E,ξ) = [Σess(Hg,E,ξ),∞). Therefore, the eigenvalues
of Hg,E,ξ below the bottom of the essential spectrum are precisely the discrete
eigenvalues of Hg,E,ξ.

The spectrum of the free model is given by σ(H0,0,ξ) = {1
2 |ξ|

2} ∪ [1,∞),
so it was suprising when Spohn [40], using techniques from stochastic in-
tegration, proved that, in dimension d = 1, 2, the bottom of the spectrum
Σ0(Hg,0,ξ) = inf σ(Hg,0,ξ) is in fact a discrete eigenvalue for all ξ ∈ Rd, when-
ever g ∈ R \ {0}.

Minlos [28] studied a class of operators similar to (13), but imposing the
ultraviolet condition v ∈ L2(Rd) as well as some amount of smoothness of v.
For the class of operators he studied, he was able to verify and improve the
analogue of the result of Spohn in the weak coupling regime. Specifically,
he managed to give a condition in terms of which the number of eigenvalues
below the bottom of the essential spectrum is characterized in any dimen-
sion. In dimension d > 3, Minlos was in particular able to decide from his
condition that there can be at most 1 eigenvalue below the bottom of the es-
sential spectrum, counted with multiplicity. Surprisingly, the result of Minlos
suggests that, in dimension d = 1, 2, there may be a second eigenvalue below
the bottom of the essential spectrum for small total momentum in the weak
coupling regime.

The method of Spohn is effective for arbitrary values of the coupling
constant, and applies to a class of linearly coupled models containing the
Fröhlich polaron model. The method of Minlos is also effective for a class of
linearly coupled models, but this class does not contain the Fröhlich polaron
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model, and the analysis reveals only information in the weak coupling regime.
Our analysis is based on the approach of Minlos, but modified in such

a way that it applies to a class of models containing the Fröhlich polaron
model. Our method is only applicable in the weak coupling regime. We
will now give a short account of the similarities and differences between the
method of Minlos and our method.

Minlos imposes the ultraviolet regularity condition v ∈ L2(Rd) and shows
that when the number |g|(3 + ‖v‖L2(Rd)) is suitably small, one may use the
Feshbach method to reduce the Fröhlich polaron model to a generalized
Friedrichs model [25]. He then carries out a direct analysis of the discrete
spectrum in terms of Fredholm determinants. For this analysis, sufficient
smoothness of the coupling function v is demanded. Due to the condition
that the number |g|(3 + ‖v‖L2(Rd)) be suitably small, one cannot directly
remove the ultraviolet regularity condition without taking g → 0, i.e. the
method does not directly apply to the Fröhlich polaron model.

In our approach, since we treat a more singular case, we first apply
the well known Birman-Schwinger principle [5, 37], which allows us to re-
late the polaron Hamiltonian to a bounded self-adjoint operator acting in
a weighted Fock space. We then apply a Feshbach map similar to the one
applied by Minlos, which yields a generalized Friedrichs model. Unlike the
analysis of Minlos, our analysis of the generalized Friedrichs model is based
on a second application of a Feshbach map, which reduces the model to a
Friedrichs model [10]. We count the number of discrete eigenvalues of the
Friedrichs model by means of the Birman-Schwinger principle. In order to
relate the number of discrete eigenvalues of the Friedrichs model to the num-
ber of discrete eigenvalues of the Fröhlich polaron model, we make use of the
Haynsworth inertia additivity formula [23], which does not seem to be well
known in our context.

The Birman-Schwinger principle has been extensively studied and gener-
alized in the literature, see e.g. [35, 16, 8] for recent developments. For our
purpose, we need a version of it which is very similar to the one obtained by
Birman [5], whose work has been translated into English [6].

The Haynsworth inertia additivity formula is not so well known in our
context. The formula was obtained for matrices by Haynsworth [23], but does
not seem to have appeared previously for unbounded, self-adjoint operators.
We demonstrate that, with suitable definitions, it applies equally well to the
setting of unbounded, self-adjoint operators.

The Friedrichs model, introduced by Friedrichs [10, 11], has also been the
object of extensive study. We remark that much of the work on the Friedrichs
model has been carried out under relatively strong regularity assumptions.
An exception is the work by Ikromov and Sharipov [24], where a method
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related to the technique we employ is used. Contrary to the situation we
are concerned with, Ikromov and Sharipov consider the case where the un-
derlying space is a torus rather than Rd, and they assume that the coupling
function is square integrable.

The generalized Friedrichs model was introduced and studied by Lakaev
[25]. The discrete spectrum has been further studied by Minlos [28], and the
essential spectrum has been further studied in dimension d > 3 by Angelescu
et al. [2]. For a recent work on the generalized Friedrichs model in dimension
d = 3, see the work by Akchurin [1]. In these works, it is assumed that the
coupling function v is square integrable, typically along with some amount
of smoothness. In a work by Miyao [29], a generalized Friedrichs model
with non-integrable coupling function is studied. This generalized Friedrichs
model, for which Miyao coins the term ’0, 1-phonon polaron model’, is ob-
tained from the Fröhlich polaron model by neglecting terms with 2 or more
phonons. In our analysis, we do not neglect these terms.

In dimension d = 1, 2, we recover the result of Spohn (note, however, that
Spohn considers the general coupling situation) that the ground state energy
is a discrete eigenvalue for any total momentum ξ ∈ Rd, and we improve
this result by showing, except for a region of small total momentum, that
the ground state energy is in fact the unique discrete eigenvalue. Similarly,
in dimension d > 3, we recover the result that there is a bounded region
outside of which there are no discrete eigenvalues, and we improve the result
be showing that there can be at most 2 discrete eigenvalues. Furthermore,
the second eigenvalue, if it appears, can only appear in a region of small total
momentum.

Similarly to Minlos, whose result we improve by treating a class of models
containing the Fröhlich polaron model, we are able to give a condition which
characterizes the number of eigenvalues below the bottom of the essential
spectrum. In our singular setting, we are not able to rule out the existence
of a second discrete eigenvalue for small total momentum even in dimension
d > 3.

1.2 Fröhlich Polaron Model
In the following definitions, we collect basic notation for self-adjoint operators
and quadratic forms in Hilbert spaces.

Definition 1.1. Let Q be a quadratic form on a vector space qfd(Q). If
ψ ∈ qfd(Q), we will denote the value of Q at ψ by Q[ψ] ∈ C.

Definition 1.2. Let A be a self-adjoint operator in a Hilbert space H.
We will denote by ker(A), ran(A), dom(A), qfd(A) := dom(|A|1/2) the ker-
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nel, range, operator domain and quadratic form domain of A, respectively.
We denote by σ(A) and σess(A) the spectrum and essential spectrum of A,
respectively. We denote by Σ0(A) := inf σ(A) and Σess(A) := inf σess(A)
the bottom of the spectrum and the bottom of the essential spectrum of A,
respectively. Finally, we will write

A[ψ] = 〈|A|1/2ψ, sgn(A)|A|1/2ψ〉 = ‖A1/2
+ ψ‖2 − ‖A1/2

− ψ‖2, ψ ∈ qfd(A),

for the quadratic form corresponding to the self-adjoint operator A. Here,
A± = denotes the positive/negative part of A, defined by functional calculus.

Having settled on basic notation, we will now introduce notation which
is more specific to the Fröhlich polaron model.

Let F (n)
sym := L2

sym((Rd)n) denote the Hilbert space of complex valued
functions ψ(n) : (Rd)n → C which are symmetric, i.e ψ(n)(kσ(1), . . . , kσ(n)) =
ψ(n)(k1, . . . , kn) whenever σ ∈ Sn is a permutation, and additionally satisfy
boundedness of the norm

‖ψ(n)‖F(n)
sym

:=
(∫

dk1 · · · dkn|ψ(n)(k1, . . . , kn)|2
)1/2

, n > 1.

This notation is also consistent for n = 0, if we let (Rd)0 = {?} be the
one-point measure space with counting measure. Then we denote bosonic
Fock space by Fsym := ⊕∞

n=0F (n)
sym. The inner product on Fsym is given by

‖ψ‖Fsym := (∑∞n=0‖ψ(n)‖2
F(n)

sym
)1/2. When there can be no confusion, we will

omit the subscripts F (n)
sym and Fsym from our notation, and we will likewise

supress the variable ?, putting ψ(0) := ψ(0)(?).
For E ∈ R, ξ ∈ Rd, define a self-adjoint, lower semi-bounded operator

TE,ξ in Fsym by

TE,ξ := 1
2 |ξ − dΓ(p)|2 +N − E :=

∞⊕
n=0

T
(n)
E,ξ ,

where p(k) := k for all k ∈ Rd, dΓ(p) denotes the second quantization of the
maximal multiplication operator corresponding to p, N denotes the number
operator, and we define T (n)

E,ξ to be the maximal operator of multiplication by
the function T (n)

E,ξ : (Rd)n → R, given by T (0)
E,ξ = 1

2 |ξ|
2 − E,

T
(n)
E,ξ(k1, . . . , kn) := 1

2 |ξ − k1 − . . .− kn|2 + n− E, n > 1.

The non-interacting fiber Fröhlich polaron model at spectral parameter E ∈
R and total momentum ξ ∈ Rd is defined by the Hamiltonian H0,E,ξ := TE,ξ.
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Suppose that v : Rd → C is a measurable function, define, for E < 1,

LE :=

√√√√∫ dk |v(k)|2
1
2 |k|2 + 1− E , (14)

and assume that v is rotation invariant along with 0 < L0 < ∞. Note that
the condition L0 > 0 ensures that v is not identically zero, and rotational
invariance means that v(k) = v(Ok) for any orthogonal d × d matrix O.
Furthermore, L0 < ∞ implies LE < ∞ for all E < 1. It will be shown in
section 1.5 that we have the relative form bound

|a(v)[ψ]| 6 ε‖T 1/2
0,ξ ψ‖2

Fsym + Cε‖ψ‖2
Fsym , ψ ∈ qfd(T0,ξ),

where the constants Cε do not depend on ξ, and the form a(v) defined by

a(v)[ψ] :=
∞∑
n=1

n
1
2

∫
dk1 · · · dkn ψ̄(n−1)(k1, . . . , kn−1)v̄(kn)ψ(n)(k1, . . . , kn)

is the annihilation form corresponding to v. In particular, the quadratic form

Hg,E,ξ[ψ] := TE,ξ[ψ]− 2g re a(v)[ψ], ψ ∈ qfd(T0,ξ), (15)

is well defined, and by the KLMN theorem defines a unique self-adjoint
Hamiltonian Hg,E,ξ with form domain qfd(Hg,E,ξ) = qfd(T0,ξ). The choice
v(k) = |k|− d−1

2 yields the fiber Fröhlich polaron Hamiltonian.
Since U∗Hg,E,ξU = H−g,E,ξ, where U denotes the unitary transformation

defined by (Uψ)(n) = (−1)nψ(n), one may assume g > 0 whenever convenient.
The set

{
(ξ, E) ∈ Rd × R 0 ∈ σ(Hg,E,ξ)

}
is usually referred to as the

energy-momentum spectrum of Hg :=
∫⊕
ξ∈Rd Hg,0,ξdξ. Since v is rotation-

ally invariant, we have U∗OHg,E,ξUO = Hg,E,Oξ, where (UOψ)(k) = ψ(Ok),
and we therefore have σ(Hg,E,ξ) = σ(Hg,E,ξ′) whenever |ξ| = |ξ′|. Thus, the
energy momentum spectrum may be recovered from the set{

(|ξ|, E) ∈ [0,∞)× R ξ ∈ Rd, 0 ∈ σ(Hg,E,ξ)
}
.

1.3 Statement of the Main Result
Before stating our main result, we recall that for the non-interacting model
in any dimension d ∈ N, the bottom of the essential spectrum is given by
Σess(H0,0,ξ) = 1, and there is precisely one eigenvalue, counted with multi-
plicity, namely 1

2 |ξ|
2. This information about the discrete energy-momentum

spectrum in the non-interacting case may thus be summarized in a simple
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Figure 1: g = 0.

graph, plotting the discrete spectrum against the norm of the total momen-
tum:

For the case d = 1, 2 of our main result, we impose the extra condition
∫ dk |v(k)|2

1
2 |ξ − k|2

=∞ (16)

for all ξ ∈ R. This is satisfied if, say, for any compact set C ⊆ Rd, there is
a constant MC > 0 such that |v(k)| > MC for k ∈ MC . In particular, the
coupling function v(k) = |k|− d−1

2 of the Fröhlich polaron model satisfies this
condition.

Theorem 1.3. Consider the Fröhlich polaron operator Hg,0,ξ introduced in
Subsection 1.2. There is g0 > 0 such that, for all ξ ∈ Rd, and all g ∈ R
satisfying |g| 6 g0, Hg,0,ξ has at most two discrete eigenvalues. Furthermore,

1. In dimension d = 1, 2, there is g0 > 0, C1 > 0 such that, for all g ∈ R
satisfying 0 < |g| 6 g0, we have:

(a) If 1
2 |ξ|

2 6 C1g
2, Hg,0,ξ has at least one discrete eigenvalue.

(b) If C1g
2 < 1

2 |ξ|
2, Hg,0,ξ has precisely one discrete eigenvalue.

2. In dimension d > 3, there is g0 > 0 and C1, C2, C3 > 0 such that, for
all g ∈ R satisfying |g| 6 g0, we have:

(a) If 1
2 |ξ|

2 6 C1g
2, Hg,0,ξ has at least one discrete eigenvalue.

(b) If C1g
2 < 1

2 |ξ|
2 6 Σess(Hg,0,ξ) + C2g

2, Hg,0,ξ has precisely one
discrete eigenvalue.

(c) If Σess(Hg,0,ξ) + C2g
2 < 1

2 |ξ|
2 6 Σess(Hg,0,ξ) + C3g

2, Hg,0,ξ has at
most one discrete eigenvalue.

(d) If Σess(Hg,0,ξ) + C3g
2 < 1

2 |ξ|
2, Hg,0,ξ has no discrete eigenvalues.

17



The result may be summarized by the following graphs, where the discrete
spectrum is plotted against the absolute value of the total momentum. The
dashed line represents the bottom of the essential spectrum, the grey boxes
represent areas that contain at most one eigenvalue, and the dotted lines
represent the picture in the non-interacting case, as seen in Figure 1.

E

|ξ|
0

1

1 2

Figure 2: g 6= 0 and d = 1, 2.

E

|ξ|
0

1

1 2

Figure 3: g 6= 0 and d > 3.

In the weak coupling regime of the Fröhlich polaron model, this result
clearly extends the result of Spohn [40] by ruling out the existence of excited
states below the bottom of the essential spectrum, except for a small total
momentum regime.

Our main result should be compared to the result of Minlos [28], which
we improve by treating a class of models containing the Fröhlich polaron
model. Note that in our singular setting, contrary to the setting of Minlos,
the analysis does not rule out the existence of an additional eigenvalue for
small total momentum in dimension d > 3.

1.3.1 Outline of Proof

In this subsection, we give an outline of our proof of the main result.
In Subsection 1.4, we cover the eigenvalue counting arguments that will

be essential for our proof. More precisely, we recall the Birman-Schwinger
principle and we give a treatment of the well known Feshbach method with
an emphasis on the less well known Haynsworth inertia additivity formula.

In Subsection 1.5, we cover the self-adjointedness of the model by means
of relative form estimates. The results of this section do not rely on a weak
coupling assumption.

In Subsection 1.6, we apply a Feshbach map, which reduces the Fröhlich
polaron model to a generalized Friedrichs model. Furthermore, we give a
precise analysis of the discrete spectrum of the generalized Friedrichs model
in the weak coupling regime.

Finally, in Subsection 1.7, we derive the main result.
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1.4 Eigenvalue Counting Arguments
Our analysis of the Fröhlich polaron model consists in a twofold reduction,
first to a Birman-Schwinger operator, next to a Feshbach operator. In Sub-
subsection 1.4.1, we recall the well known Birman-Schwinger principle in a
form which is useful for us. It is not so well known that a similar principle
is true of the Feshbach operator. In Subsubsection 1.4.2, we will recall this
less well known result, which is due to Haynsworth [23], along with some
properties of the Feshbach map.

First, we recall a version of the min-max principle known as the Glazman
lemma. It is usually stated for semi-bounded operators, though the proof
applies equally well in the generality stated here. In relation to our appli-
cation to the Haynsworth inertia additivity formula, it is useful to drop the
condition of lower semi-boundedness. For the convenience of the reader, we
provide a proof.

Definition 1.4. For a self-adjoint operator A : dom(A) → H in a Hilbert
space H, we let

N(λ,A) := tr[1(−∞,λ)(A)] := dim ran(1(−∞,λ)(A)) ∈ N0 ∪ {∞},
n(λ,A) := tr[1(λ,∞)(A)] := dim ran(1(λ,∞)(A)) ∈ N0 ∪ {∞}.

If λ 6 Σess(A), then N(λ,A) is the number of eigenvalues of A strictly
below λ.

Lemma 1.5. Let A be a self-adjoint operator in a Hilbert space H. Let
E ⊆ qfd(A) be a subspace which is dense in qfd(A) with respect to the norm
‖ψ‖qfd(A) := (‖A1/2

+ ψ‖2 + ‖A1/2
− ψ‖2 + ‖ψ‖2)1/2. Then

N(λ,A) = sup {dimF F ⊆ E finite dimensional subspace, A < λ on F} ,
n(λ,A) = sup {dimF F ⊆ E finite dimensional subspace, A > λ on F} .

Proof. Since n(λ,A) = N(−λ,−A), the second identity follows from the first.
Furthermore, since N(λ,A) = N(0, A − λ) and A[φ] < λ‖ψ‖2 if and only if
(A − λ)[φ] < 0, we may without loss of generality assume λ = 0. We note
also that the norm induced on qfd(A) by A coincides with the norm induced
on qfd(A) by A− λ, so E is dense with respect to the first norm if and only
if it is dense with respect to the second norm.

From A
1/2
− = 1(−∞,0)(A)A1/2

− , we see that ran(A1/2
− ) ⊆ ran(1(−∞,0)(A)).

Suppose then that F ⊆ E is a finite dimensional subspace such that A[φ] < 0
whenever 0 6= φ ∈ F . Since ‖A1/2

+ φ‖2 − ‖A1/2
− φ‖2 = A[φ] < 0, we find that

φ /∈ ker(A1/2
− ) if 0 6= φ ∈ F . Thus, A1/2

− is injective on F , and therefore
dimF = dimA

1/2
− (F) 6 dim ran(A1/2

− ) 6 N(0, A).
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Next, assuming N(0, A) > k ∈ N, we have dim ran(1(K,0)(A)) > k for
some K < 0, and thus find a subspace F̃ ⊆ ran(1(K,0)(A)) ⊆ qfd(A) of
dimension k such that A[φ̃] = −‖A1/2

− φ̃‖2 < 0 if 0 6= φ̃ ∈ F̃ . In fact, since F̃
is finite dimenional, there is 0 < ε < 1 such that ‖A1/2

− φ‖2 > ε‖φ‖2 for φ ∈ F̃ .
Let φ̃1, . . . , φ̃k be an orthonormal basis of F̃ and pick approximating vectors
φ1, . . . , φk ∈ E with ‖φj − φ̃j‖qfd(A) 6 δ. If φ = ∑k

j=1 cjφj and φ̃ = ∑k
j=1 cjφ̃j,

then we have

|‖φ‖ − ‖φ̃‖| 6 ‖φ− φ̃‖qfd(A) 6 δ
k∑
j=1
|cj| 6 δ

√
k‖φ̃‖.

Thus, if φ = 0 and δ < 1/
√
k, we find φ̃ = 0, and therefore c1 = . . . = ck = 0.

We conclude that F = span(φ1, . . . , φk) ⊆ E has dimension k. Additionally,
if δ 6 1/(2

√
k), then we have ‖φ‖/2 6 ‖φ̃‖ 6 3‖φ‖/2. Thus,

‖A1/2
− φ‖ > ε‖φ̃‖ − ‖φ− φ̃‖qfd(A) > (ε− 3δ

√
k)‖φ‖/2,

‖A1/2
+ φ‖ = ‖A1/2

+ (φ− φ̃)‖ 6 3δ
√
k‖φ‖/2,

and we therefore have, when δ < ε/(6
√
k) and φ 6= 0,

A[φ] = ‖A1/2
+ φ‖2 − ‖A1/2

− φ‖2 < 0.

1.4.1 Birman-Schwinger Principle

In this subsection, we recall the well known Birman-Schwinger principle,
which we need in a form very close to the one obtained by Birman [6]. First,
we introduce some useful notation. Let H be a fixed Hilbert space.

Definition 1.6. Let T be a self-adjoint operator in H. Define H1/2[T ] to
be the topological vector space with underlying vector space qfd(T ) and
topology induced by the norm ‖ψ‖H1/2[T ] := ‖(T 2 + 1)1/4ψ‖. Define H−1/2[T ]
to be the topological vector space obtained by completing H with respect to
the norm ‖ψ‖H−1/2[T ] := ‖(T 2 + 1)−1/4ψ‖.

This definition introduces H±1/2[T ] as topological vector spaces. For our
treatment of the Birman-Schwinger principle, it is convenient to consider
certain families of norms on H±1/2[T ], to be introduced in the following two
definitions.
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Definition 1.7. Let T be a self-adjoint operator in H. For λ ∈ C \ σess(T ),
let PΩλ denote the orthogonal projection in H onto the finite-dimensional
subspace Ωλ := ker(T − λ), and define a self-adjoint, positive operator in H
by

Uλ := |T − λ|+ PΩλ .

Write U1/2
λ : H1/2[T ] → H, and let Ū1/2

λ : H → H−1/2[T ] be the unique
continuous extension of U1/2

λ to H.

Definition 1.8. Let λ, U1/2
λ and Ū1/2

λ be as in Definition 1.7. DefineH±1/2
λ [T ]

to be the Hilbert space with underlying topological vector spaceH±1/2[T ] and
norm

‖ψ‖H1/2
λ

[T ] = ‖U1/2
λ ψ‖, ‖ψ‖H−1/2

λ
[T ] = ‖Ū−1/2

λ ψ‖.

For notational simplicity, define also ‖ψ‖λ = ‖ψ‖H1/2
λ

[T ] for ψ ∈ qfd(T ).

Remark 1.9. The topologies of H±1/2
i [T ], respectively, manifestly coincide

with the topologies of H±1/2[T ], respectively. Therefore, the inequalities

‖ψ‖H1/2
λ

[T ] = ‖U1/2
λ U

−1/2
λ′ U

1/2
λ′ ψ‖ 6 ‖U

1/2
λ U

−1/2
λ′ ‖‖ψ‖H1/2

λ′ [T ], (17)

‖ψ‖H−1/2
λ

[T ] = ‖Ū−1/2
λ Ū

1/2
λ′ Ū

−1/2
λ′ ψ‖ 6 ‖Ū−1/2

λ Ū
1/2
λ′ ‖‖ψ‖H−1/2

λ′ [T ],

which hold true for all λ, λ′ ∈ C \ σess(T ), ensure that the topologies of
H±1/2
λ [T ], respectively, coincide with the topologies of H±1/2[T ], respectively,

for all λ,∈ C \ σess(T ). Note that

‖ψ‖2
i = ‖U1/2

i ψ‖2 = ‖|T − i|1/2ψ‖2, ψ ∈ qfd(T ), (18)

Combinging the elementary inequality |x− i| 6 |x|+ 1 6 2|x− i| for x ∈ R
with formulas (17) and (18), we find that there are constants Lλ, L′λ > 0 such
that

Lλ‖ψ‖2
λ 6 ‖|T |1/2ψ‖2 +‖ψ‖2 6 L′λ‖ψ‖2

λ, ψ ∈ qfd(T ), λ ∈ C\σess(T ). (19)

Finally, there is a natural pairing of φ ∈ H1/2[T ] and ψ ∈ H−1/2[T ], given by

〈φ, ψ〉′ := 〈U1/2
λ φ, Ū

−1/2
λ ψ〉, (20)

where λ ∈ C \ σess(T ) is arbitrary.
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Theorem 1.10. Let T,H be self-adjoint operators in H with qfd(H) =
qfd(T ), define the quadratic form W [ψ] := T [ψ] − H[ψ] on qfd(T ), and
suppose that there is a positive constant L > 0 such that

|W [ψ]| 6 L(‖|T |1/2ψ‖2 + ‖ψ‖2), ψ ∈ qfd(T ).

Then there is a unique continuous linear operator W : H1/2[T ] → H−1/2[T ]
such that

〈ψ,Wψ〉′ = W [ψ], ψ ∈ qfd(T ). (21)

For λ ∈ C \ σess(T ), define the bounded operator Bλ := Ū
−1/2
λ WU

−1/2
λ on H.

If Bi is compact, then σess(H) = σess(T ). Let Jλ denote the partial isometry
from the polar decomposition T − λ = Jλ|T − λ|. If λ ∈ R \ σess(T ), then
N(λ,H) = N(0, Jλ −Bλ).

Theorem 1.10 is essentially due to Birman [6]. Birman, however, only
considers λ < Σ0(T ), in which case Jλ = 1, and thereforeN(λ,H) = n(1, Bλ).
We will refer to the operator Bλ as the Birman-Schwinger operator. Note
that if, say, W > 0, then it is most common in the literature to refer to
the ’sandwiched resolvent’ Kλ = W 1/2(T − λ)−1W 1/2 (considered by both
Birman [6] and Schwinger [37]) as the Birman-Schwinger operator.

For the convenience of the reader, we give a proof of the result, although
it is very similar to the proof given by Birman [6].

Proof. From inquality (19), we find L′λ > 0 such that |W [ψ]| 6 L′λ‖ψ‖λ when
ψ ∈ H1/2

λ [T ]. Thus, there is a unique bounded operator B̃λ on H1/2
λ [T ] with

〈ψ, B̃λψ〉λ = W [ψ], ψ ∈ H1/2
λ [T ].

Define Wλ : H1/2
λ [T ] → H−1/2

λ [T ] by Wλ = Ū
1/2
λ U

1/2
λ B̃λ. Note, for all ψ ∈

qfd(T ), that

〈ψ,Wλψ〉′ = 〈U1/2
λ ψ, Ū

−1/2
λ Wλψ〉 = 〈U1/2

λ ψ,U
1/2
λ B̃λψ〉 = 〈ψ, B̃λψ〉λ = W [ψ],

where we made use of formula (20). In particular, Wλψ does not depend on
λ, and it is therefore well-defined to put W := Wλ. Furthermore, we see that
Bλ := Ū

−1/2
λ WU

−1/2
λ = U

1/2
λ B̃λU

−1/2
λ is unitarily equivalent to B̃λ, so that Bi

is compact if and only if B̃i is compact. Additionally, if we define the operator
J̃λ := U

−1/2
λ JλU

1/2
λ = Jλ�qfd(T ), we have N(0, Jλ −Bλ) = N(0, J̃λ − B̃λ).

By the Weyl criterion, if Ci = (T − i)−1 − (H − i)−1 is compact, then
σess(H) = σess(T ). But we have, for ψ ∈ dom(H),

〈ψ, |T − i|−1(H − i)ψ〉i = 〈ψ, (H − i)ψ〉 = 〈ψ, (J̃i − B̃i)ψ〉i,
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which implies (T − i)−1(H − i) = 1 − J̃−1
i B̃i on dom(H). It follows that

Ci = −J̃−1
i B̃i(H − i)−1. Since (H − i)−1 is bounded as an operator from H

into H1/2
i [T ], and J̃−1

i is bounded as an operator from H1/2
i [T ] into H, we see

that Ci is compact if B̃i is compact.
Finally, since

〈ψ, (J̃λ − B̃λ)ψ〉λ = T [ψ]− λ‖ψ‖2 −W [ψ] = H[ψ]− λ‖ψ‖2, ψ ∈ qfd(T ),

the Glazman lemma, Lemma 1.5, ensures that N(0, J̃λ− B̃λ) = N(λ,H).

1.4.2 Haynsworth Inertia Additivity Formula

Let H1,H2 be Hilbert spaces and assume that D1 ⊆ H1,D2 ⊆ H2 are dense
subspaces. Suppose that we are given a block operator matrix

A =
[
A11 A12
A21 A22

]
: D1 ⊕D2 → H1 ⊕H2. (22)

Let P denote the orthogonal projection in H1 ⊕H2 onto H1 ⊆ H1 ⊕H2 and
suppose that A22 : D2 → H2 is invertible. The Feshbach map with respect
to P maps A to the Feshbach operator F := A11 − A12A

−1
22 A21 : D1 → H1.

The Feshbach operator F is also called the Feshbach map of A with respect
to P .

It is sometimes convenient to employ a notation where the matrix de-
composition (22) is implicit. In that case, we introduce also the orthogonal
projection P̄ in H1 ⊕H2 onto H2, and note that A22 = PA�ran(P̄ )∩D2 .

Theorem 1.11. Let A and P be as described above. Suppose that A is
self-adjoint and that A12A

−1
22 is bounded. Then the Feshbach operator F is

self-adjoint, and we have 0 ∈ σ(A)⇔ 0 ∈ σ(F ). Furthermore, we have

dim ker(A) = dim ker(F ),
N(0, A) = N(0, F ) +N(0, A22),
n(0, A) = n(0, F ) + n(0, A22).

For matrices, this result goes by the name of the Haynsworth inertia ad-
ditivity formula, and our proof below is essentially the same as the one given
by Haynsworth [23], except for technical complications associated with un-
bounded operators. For unbounded, closed (but not necessarily self-adjoint)
operators, the closedness of F and the relations 0 ∈ σ(A) ⇔ 0 ∈ σ(F ) and
dim ker(A) = dim ker(F ) are due to Bach et al. [4], albeit with a slightly
different proof and imposing slightly different conditions. The two final rela-
tions of the theorem do not seem to have appeared previously in the literature
for the case of unbounded, self-adjoint operators.
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Proof. We will first argue that the Aitken block diagonalization formula,[
1 −A12A

−1
22

0 1

] [
A11 A12
A21 A22

] [
1 0

−A−1
22 A21 1

]
=
[
F 0
0 A22

]
(23)

holds true in the sense of unbounded operators. With obvious choice of
notation, we write this formula as S(A12A

−1
22 )AS ′(A−1

22 A21) = diag(F,A22).
It is clear that diag(F,A22) ⊆ S(A12A

−1
22 )AS ′(A−1

22 A21), so we must prove
that dom(AS ′(A−1

22 A21)) = dom(diag(F,A22)) = D1 ⊕ D2. By inspection,
we find that S ′(A−1

22 A21) : D1 ⊕ H2 → D1 ⊕ H2 is a bijection, with inverse
S ′(−A−1

22 A21). It follows that dom(AS ′(A−1
22 A21)) = S ′(−A−1

22 A21)(D1 ⊕D2).
Furthermore, S ′(A−1

22 A21) and S ′(−A−1
22 A21) both map D1⊕D2 into D1⊕D2,

and their restrictions to that subspace are therefore also mutual inverses.
The Aitken block diagonalization formula (23) follows.

Next, we observe that, since A is self-adjoint, we have A−1
22 ⊆ (A−1

22 )∗
and A12 ⊆ A∗21 and therefore also A−1

22 A21 ⊆ (A12A
−1
22 )∗. We conclude that

S ′(A−1
22 A21) ⊆ S(A12A

−1
22 )∗, and therefore diag(F,A22) ⊆ SAS∗, where we

put S = S(A12A
−1
22 ). But S(A12A

−1
22 ), and therefore also S(A12A

−1
22 )∗, is

bounded with a bounded inverse on H1 ⊕ H2. It therefore follows as be-
fore that dom(SAS∗) = (S∗)−1(D1 ⊕ D2) = D1 ⊕ D2 = dom(diag(F,A22)),
and therefore that we have SAS∗ = diag(F,A22) in the sense of unbounded
operators.

We now argue that T = diag(F,A22) = SAS∗ is self-adjoint, from which
it follows that F and A22 are self-adjoint. It is clear that T is symmetric, so
it suffices to show that dom(T ∗) ⊆ dom(T ). If ψ ∈ dom(T ∗), then the linear
functional Λ defined by

(S∗)−1(dom(A)) 3 φ 7→ Λ(φ) = 〈ψ, SAS∗φ〉

is bounded. It follows that the linear functional

dom(A) 3 φ 7→ 〈S∗ψ,Aφ〉 = Λ((S∗)−1φ)

is also bounded, and therefore that S∗ψ ∈ domA∗ = domA. In conclusion,
ψ ∈ dom(AS∗) = dom(T ), and this was what we wanted. Note that self-
adjointedness of A22 implies closedness, which in turn implies closedness of
A−1

22 . The closed graph theorem therefore ensures boundedness of A−1
22 .

The assertions 0 ∈ σ(A) ⇔ 0 ∈ σ(F ) and dim ker(A) = dim ker(F ) now
follow directly from the formula SAS∗ = diag(F,A22), as do the assertions
N(0, A) = N(0, F ) + N(0, A22) and n(0, A) = n(0, F ) + n(0, A22) according
to the Glazman lemma, Lemma 1.5, with E = D1 ⊕D2.
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1.5 General Coupling Considerations
In this section we will make some considerations for general coupling g ∈ R,
in particular regarding the definition of the model we consider. The starting
point of our analysis is the following bound, which is related to a commutator
bound due to Lieb and Thomas [27] (see also [18, Lemma 2.1]). Recall from
formula (14) the definition of the constants LE for E < 1.

Lemma 1.12. Let v : Rd → C be a measurable function satisfying L0 <∞.
For ξ ∈ Rd, we have qfd(T0,ξ) ⊆ qfd(a(v)), and for any E 6 −1, we have the
inequality

|a(v)[ψ]| 6 2LE‖T 1/2
E,ξψ‖2

Fsym , ψ ∈ qfd(T0,ξ). (24)

Proof. Define, for n > 0, ψ̃(n)(k(n)) :=
√
T

(n)
E,ξ(k(n))|ψ(n)(k(n))| and

φ̃(n)(k(n)) :=
(∫

dkn+1 T
(n+1)
E,ξ (k(n), kn+1)|ψ(n+1)(k(n), kn+1)|2

)1/2
,

where k(n) = (k1, . . . , kn). Then we have, for E < 0, ξ ∈ Rd, n > 0,

Aψn+1 :=
√
n+ 1

∫
dk(n)

∫
dkn+1 |ψ(n)(k(n))v(kn+1)ψ(n+1)(k(n), kn+1)|

6
∫
dk(n)

∫ dkn+1 (n+ 1)|v(kn+1)|2

T
(n)
E,ξ(k(n))T (n+1)

E,ξ (k(n), kn+1)

1/2

· ψ̃(n)(k(n))φ̃(n)(k(n)).

With ξ(n) := ξ − k1 − . . .− kn and E 6 −1, the pointwise estimate

(n+ 1)|v(kn+1)|2
(1

2 |ξ(n)|2 + n− E)(1
2 |ξ(n) − kn+1|2 + n+ 1− E) 6

4|v(kn+1)|2
1
2 |kn+1|2 + 1− E

follows by noting that we must have |kn+1| 6 2|ξ(n)−kn+1| or |kn+1| 6 2|ξ(n)|.
Thus, after an application of the Cauchy-Schwarz inequality, we deduce that

∞∑
n=1

Aψn 6 2LE
∞∑
n=1
‖[T (n−1)

E,ξ ]1/2ψ(n−1)‖F(n−1)
sym
‖[T (n)

E,ξ ]1/2ψ(n)‖F(n)
sym
.

Another application of the Cauchy-Schwarz inequality finishes the proof.

Corollary 1.13. Suppose v satisfies L0 <∞. Then we find, for any ε > 0,
a positive number Cε > 0 independent from ξ ∈ Rd such that

|a(v)[ψ]| 6 ε‖T 1/2
0,ξ ψ‖2

Fsym + Cε‖ψ‖2
Fsym , ψ ∈ qfd(T0,ξ).

In particular, a(v) is infinitesimally relatively T0,ξ-form-bounded.
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Proof. Recall that ‖T 1/2
E,ξψ‖2 = ‖T 1/2

0,ξ ψ‖2 − E‖ψ‖2 for ψ ∈ qfd(T0,ξ). This
corollary therefore follows from inequality (24) by picking E sufficiently neg-
ative that 2LE 6 ε, in which case we may take Cε = 2|E|LE.

It now follows from the KLMN Theorem that there is a unique self-
adjoint operator Hg,E,ξ in Fsym such that formula (15) holds true. We
may therefore apply the Birman-Schwinger principle, Theorem 1.10, with
H := Hg,0,ξ, T := T0,ξ. For the convience of the reader, we write down the
conclusion of Theorem 1.10 as applied to this setting, including the explicit
form of the corresponding Birman-Schwinger operator, denoted Bg,E,ξ.
Theorem 1.14. For E < 1, we have N(E,Hg,0,ξ) = N(0, JE,ξ − Bg,E,ξ).
Here, JE,ξ := ⊕∞

n=0 J
(n)
E,ξ, with J

(n)
E,ξ := 1 if n > 1, while J (0)

E,ξ := sgn(1
2 |ξ|

2−E).
The Birman-Schwinger operator Bg,E,ξ has the structure Bg,E,ξ = g(bE,ξ +
b∗E,ξ), where, for ψ ∈ Fsym,

(bE,ξψ)(n)(k1, . . . , kn) :=
∫ dkn+1 (n+ 1)1/2v̄(kn+1)ψ(n+1)(k1, . . . , kn+1)

U
(n)
E,ξ(k1, . . . , kn)U (n+1)

E,ξ (k1, . . . , kn+1)
,

(b∗E,ξψ)(n)(k1, . . . , kn) :=
n∑
j=1

n−1/2v(kj)ψ(n−1)(k1, . . . , k̂j, . . . , kn)
U

(n)
E,ξ(k1, . . . , kn)U (n−1)

E,ξ (k1, . . . , k̂j, . . . , kn)
,

and the notation k̂j indicates that the variable kj is omitted. Here, we denote
by U (n)

E,ξ the function

U
(n)
E,ξ(k1, . . . , kn) = (1

2 |ξ − k1 − . . .− kn|2 + n− E)1/2, for n > 1,

while U (0)
E,ξ = |12 |ξ|

2 − E|1/2 if 1
2 |ξ|

2 6= E, and U (0)
E,ξ = 1 if 1

2 |ξ|
2 = E.

It is also convenient to introduce notation which mirrors the notation
introduced in Subsection 1.4.2
Definition 1.15. In Fsym, define orthogonal projections P61 onto F (61)

sym :=
F (0)

sym ⊕ F (1)
sym ⊆ Fsym, and P>2 = 1 − P61 onto F (>2)

sym := ⊕∞
n=2F (n)

sym ⊆ Fsym.
Given an operator A in Fsym, denote by Ā := P>2A�F(>2)

sym ∩dom(A) the restric-
tion of A to F (>2)

sym .

Corollary 1.16. If ψ ∈ F (>2)
sym and E 6 1, then

|a(v)[ψ]| 6 6L−1‖T 1/2
E,ξψ‖2

Fsym .

Proof. Considering inequality (24), note simply that in F (>2)
sym , we have the

inequalityN+1 6 3(N−E) whenever E 6 1, and thus also T−1,ξ 6 3TE,ξ.
Corollary 1.17. In F (>2)

sym , we have ‖B̄g,E,ξ‖F(>2)
sym
6 6gL−1.
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1.6 Generalized Friedrichs Model
In the following definition, we introduce the generalized Friedrichs model
(with a singular interaction). The definition is justified by Proposition 1.19.
The remainder of the section is devoted to clarifying the precise relation
between the generalized Friedrichs model and the Fröhlich polaron model.

Definition 1.18. Fix kmin ∈ Rd and a measurable functionM : Rd → [0,∞)
satisfying 1

4 |k−kmin|2 6M(k) 6 |k−kmin|2. Let C ∈ C2
b (Rd×Rd) be a func-

tion with two continuous, bounded derivates satisfying C̄(k1, k2) = C(k2, k1),
and let v : Rd → C be a measurable function which is not identically zero
and satisfies L0 <∞, with L0 given by formula (14). We denote also by M
the maximal operator of multiplication by the function M in L2(Rd) and by
C the quadratic form on qfd(M) ⊆ L2(Rd) defined by

(Mψ)(k)=M(k)ψ(k), C[ψ] :=
∫
dk1dk2 ψ̄(k1)v(k1)C(k1, k2)v̄(k2)ψ(k2). (25)

The non-interacting generalized Friedrichs model is defined by the Hamil-
tonian A0 := diag(e0,M), acting in the direct sum space H := C ⊕ L2(Rd).
Here, e0 ∈ R is a real parameter. The generalized Friedrichs model (with a
singular interaction) at coupling strength g ∈ R is defined by the quadratic
form, for ψ = (ψ(0), ψ(1)) ∈ qfd(A0) = C⊕ qfd(M),

Ag[ψ] := e0|ψ(0)|2 +M [ψ(1)]− 2g re
∫
dk ψ̄(0)v̄(k)ψ(1)(k)− g2C[ψ(1)]. (26)

Proposition 1.19. There is a unique self-adjoint operator Ag in the Hilbert
space H = C⊕L2(Rd) with quadratic form domain qfd(Ag) = qfd(A0) defined
by the quadratic form (26). We have σess(Ag) = [0,∞).

Proof. The bounds 1
4 |k−kmin|2 6M(k) 6 |k−kmin|2 and L0 <∞ ensure that

φλ ∈ L2(Rd), with φλ(k) := v(k)|M(k)−λ|−1/2. Putting ψ = (ψ(0), ψ(1)) ∈ H
and defining the interaction term

A
(g)
int [ψ] := A0[ψ]− Ag[ψ] = 2g re

∫
dk ψ̄(0)v̄(k)ψ(1)(k) + g2C[ψ(1)],

we have, whenever λ < min(e0, 0), the inequality

|A(g)
int [ψ]| 6 g‖φλ‖L2(Rd)(2(e0 − λ)−1/2 + g‖φλ‖L2‖C‖L∞)‖(A0 − λ)1/2ψ‖2

H.

The monotone convergence theorem ensures ‖φλ‖L2(Rd) → 0 as λ→ −∞, so
this shows that A(g)

int is infinitesimally relatively form bounded with respect
to the non-interacting term A0. By the KLMN theorem, the quadratic form
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Ag induces a unique self-adjoint operator in C ⊕ L2(Rd) with form domain
qfd(Ag) = qfd(A0).

We will now show that σess(Ag) = σess(A0) = [0,∞). According to Theo-
rem 1.10, it suffices to show that the Birman-Schwinger operator is compact
for λ = i. We have

Bλ :=
[

0 −g|e0 − λ|−1/2〈φλ|
−g|φλ〉|e0 − λ|−1/2 −g2Cλ

]
,

where, 〈φλ| : L2(Rd) → C denotes the bounded linear functional defined
by 〈φλ|(f) := 〈φλ, f〉 and |φλ〉 : C → L2(Rd) denotes the bounded rank
1 operator |φλ〉(z) := zφλ. Finally, Cλ : L2(Rd) → L2(Rd) is the inte-
gral operator with integral kernel φλ(k1)φλ(k2)C(k1, k2), which is seen to be
Hilbert-Schmidt. It is now clear that Bi is compact.

We now turn to the relation between the generalized Friedrichs model and
the Fröhlich polaron model. Recalling Definition 1.15 and Corollary 1.17, we
find that 1−B̄g,E,ξ is invertible when g is sufficiently small. We may therefore
consider the Feshbach map of JE,ξ−Bg,E,ξ with respect to P61. The Feshbach
operator, Fg,E,ξ, acts in the direct sum space F (61)

sym = F (0)
sym ⊕F (1)

sym,

Fg,E,ξ :=
[
sgn(1

2 |ξ|
2 − E) −gbE,ξ

−gb∗E,ξ 1− g2bE,ξ(1− B̄g,E,ξ)−1b∗E,ξ

]
. (27)

Theorem 1.20. There is g0 > 0 such that, for |g| 6 g0, E 6 1, ξ ∈ Rd,
there is a unique choice of kmin(g, E, ξ),Mg,E,ξ, Cg,E,ξ and λg,E,ξ ∈ R such
that

kmin := kmin(g, E, ξ), M := Mg,E,ξ, C := Cg,E,ξ,

λ := λg,E,ξ, e0 := e0,g,E,ξ := 1
2 |ξ|

2 − E + λg,E,ξ,

fulfill the conditions of Definition 1.18 and Fg,E,ξ is the Birman-Schwinger
operator corresponding to the choice of operators T := diag(1

2 |ξ|
2 − E, T (1)

E,ξ),
H := Ag at λ := λg,E,ξ.

A detailed account of this result will be given in Subsection 2.5 based on
a creation/annihilation calculus developed in that chapter. Here, we provide
instead a sketch, based on well established methods in the field.

Sketch of Proof. We use the notation Pf := dΓ(p). We define

tE,ξ(k, n) := 1
2(k − ξ)2 + n− E, tE,ξ(k, n) := tE,ξ(k, n)1n≥2.
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Then, using a generalized version of Wick’s theorem [4, 21], one obtains the
following formulae:

λg,E,ξ(k) := −min
k∈Rd

[tE,ξ(k, 1)− g2M̃g,E,ξ(k)],

Mg,E,ξ(k) := tE,ξ(k, 1)− g2M̃g,E,ξ(k) + λg,E,ξ,

M̃g,E,ξ(k) :=
∞∑
L=0

gL〈Ω,a(v)tE,ξ(Pf + k,N + 1)−1

·
L+1∏
l=2
{φ(v)tE,ξ(Pf + k,N + 1)−1}a∗(v)Ω〉

Cg,E,ξ(k, q) :=
∑
L∈N0

m,n,p,q∈NL+2
0

nl+ql+ml+pl=1
m1+p1=0

nL+2+qL+2=0∑L+2
l=1 ml=1∑L+2
l=1 nl=1

gL〈Ω, a(v)q1tE,ξ(Pf + π1(k, q), N + ν1)−1

·
L+1∏
l=2
{a∗(v)pla(v)qltE,ξ(Pf + πl(k, q), N + νl)−1}

· a∗(v)pL+2Ω〉,

where we defined

πl(k, q) := k1(∃l′≥l+1:ml′=1) + q1(∃l′≤l:nl′=1),

νl := 1(∃l′≥l+1:ml′=1) + 1(∃l′≤l:nl′=1).

Using these formulae, it is possible to show that Cg,E,ξ and Mg,E,ξ are well
defined for small g and have the desired properties. To estimate the deriva-
tives of M̃g,E,ξ and Cg,E,ξ, we use the Leibniz rule and we write differentiated
factors as

∇ktE,ξ(x+ k, n) = tE,ξ(x+ k, n)−1/2 x+ k − ξ
tE,ξ(x+ k, n)tE,ξ(x+ k, n)−1/2,

where we note that the middle factor on the right hand side is bounded.
Analogously, we can show that also second derivatives (as well as higher
derivatives) are bounded. Factors which are twice differentiated can be writ-
ten as

∂kj∂kitE(x+ k, n) =tE,ξ(x+ k, n)−1/2

·
(

δij
tE,ξ(x+ k, n) + (x+ k − ξ)i(x+ k − ξ)j

tE,ξ(x+ k, n)2

)
· tE,ξ(x+ k, n)−1/2,

where we note that the term in the bracket on the right hand side is bounded.

29



Definition 1.21. In the setting of Theorem 1.20, the generalized Friedrichs
model at coupling strenght g ∈ (−g0, g0), denoted Ag := Ag,E,ξ, will be re-
ferred to as the generalized Friedrichs model induced by the Fröhlich polaron
model Hg,E,ξ.

Theorem 1.22. For |g| 6 g0, E 6 1, ξ ∈ Rd, the generalized Friedrichs
model induced by the Fröhlich polaron model satisfies

N(λg,E,ξ, Ag,E,ξ) = N(E,Hg,0,ξ). (28)

Proof. For the case E < 1, we have by combining the Glazman lemma,
Lemma 1.5, and the Haynsworth inertia additivity formula, Theorem 1.11,

N(λg,E,ξ, Ag,E,ξ) = N(0, Fg,E,ξ) = N(0, JE,ξ −Bg,E,ξ) = N(E,Hg,0,ξ).

For E = 1 and g = 0, we have λ0,1,ξ = 0 and e0,0,1,ξ = 1
2 |ξ|

2 − 1, and it
therefore follows from direct observation that

N(0, A0,1,ξ) = N(1, H0,0,ξ) =

1 1
2 |ξ|

2 < 1,
0 1

2 |ξ|
2 > 1.

Similarly, for E = 1 and g 6= 0, we have 1 > Eess = Σess(Hg,0,ξ) along with
λg,1,ξ > 0 = Σess(Ag,1,ξ), and thus N(λg,1,ξ, Ag,1,ξ) = N(1, Hg,0,ξ) =∞.

Remark 1.23. The Fröhlich polaron model in our regime has thus succesfully
been reduced to a family of generalized Friedrichs models. As is typical of
the Feshbach method, we have obtained a simpler effective model at the price
of a more complicated dependence on the relevant parameters, as evidenced
by formula (28). If one neglects the term g2bE,ξ(1− B̄g,E,ξ)−1b∗E,ξ in formula
(27), then one obtains the quadratic form considered by Miyao [29].

The following lemma can be proven by using the same tools as were used
in the sketch of the proof of Theorem 1.20. A detailed proof is given in
Subsection 2.5.

Lemma 1.24. With notation as in Definition 1.21, we have, for fixed |g| 6
g0, ξ ∈ Rd, that the function E 7→ λg,E,ξ is strictly increasing and continuous.
There is a unique number Eess := Eess(g, ξ) 6 1 such that λg,Eess,ξ = 0. In
particular, Eess = Σess(Hg,0,ξ). If 0 < |g| 6 g0, then Eess < 1. Finally, we
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have the expansions in g

kmin = ξ + g4k
(4)
min(g, E, ξ),

Eess = 1−
∫ dq g2|v(q)|2

1
2 |q|2 + 1 + g4E(4)

ess (g, ξ),

C(k1, k2) = 1
T

(2)
E,ξ(k1, k2)

+
∫ dq g2|v(q)|2

T
(2)
E,ξ(k1, k2)T (3)

E,ξ(k1, k2, q)T (2)
E,ξ(k1, k2)

+
∫ dq g2|v(q)|2

T
(2)
E,ξ(k1, k2)T (3)

E,ξ(k1, k2, q)T (2)
E,ξ(q, k2)

+
∫ dq g2|v(q)|2

T
(2)
E,ξ(k1, q)T (3)

E,ξ(k1, k2, q)T (2)
E,ξ(k1, k2)

+
∫ dq g2|v(q)|2

T
(2)
E,ξ(k1, q)T (3)

E,ξ(k1, k2, q)T (2)
E,ξ(q, k2)

+ g4C
(4)
g,E,ξ(k1, k2).

where the remainder terms satisfy

sup
|g|6g0,E61,ξ∈Rd

(
|λ(4)
g,E,ξ|+ |e

(4)
0,g,E,ξ|+ |E(4)

ess (g, ξ)|+ |k(4)
min(g, E, ξ)|

)
<∞,

sup
|g|6g0,E61,ξ∈Rd

∑
|α|62
‖∂αM (2)

g,E,ξ‖L∞(Rd) +
∑
|α|62
‖∂αC(4)

g,E,ξ‖L∞(Rd×Rd)

 <∞.

1.6.1 Discrete Spectrum Analysis

In this subsection, we give an analysis of the discrete spectrum of the gener-
alized Friedrichs model, see Definition 1.18. The number c0 := C(kmin, kmin)
will play an important role in our analysis, and it is useful to introduce the
notation C̃(k1, k2) := C(k1, k2)− c0.

Before giving the main result of this section, we derive a simple conse-
quence of the fundamental theorem of calculus.
Lemma 1.25. Let C ∈ C2

b (Rd×Rd) andM : Rd → [0,∞) be as in Definition
1.18. Then we have√√√√ 1

2 |k − kmin|2 + 1
M(k) |C̃(k, kmin)| 6 2

√
2
∑
|α|61
‖∂αC̃‖L∞(Rd×Rd), (29)

and we have C(k1, k2) = c0 + C̃(k1, kmin) + C̃(kmin, k2) +R(k1, k2), where the
remainder term R : Rd × Rd → C satisfies√√√√(1

2 |k1|2 + 1)(1
2 |k2|2 + 1)

M(k1)M(k2) |R(k1, k2)| 6 16
∑
|α|62
‖∂αC̃‖L∞(Rd×Rd). (30)

31



Proof. Assume without loss of generality that kmin = 0. When |k| >
√

2,√√√√ 1
2 |k|2 + 1
M(k) |C̃(k, 0)| 6

√√√√ 1
2 |k|2 + 1

1
4 |k|2

|C̃(k, 0)| 6 2‖C̃‖L∞(Rd×Rd).

If |k| 6
√

2, then the identity C̃(k, 0) =
∫ 1

0
d
dt
C̃(tk, 0)dt implies√√√√ 1

2 |k|2 + 1
M(k) |C̃(k, 0)| 6

√√√√ 1
2 |k|2 + 1

1
4 |k|2

|C̃(k, 0)| 6 2
√

2
∑
|α|=1
‖∂αC̃‖L∞(Rd×Rd).

Combining these two bounds, we obtain inequality (29).
For the second relation, we have

R(k1, k2) = C̃(k1, k2)− C̃(k1, 0)− C̃(0, k2)

=
∫ 1

0

d

dt1
C̃(t1k1, k2)dt1 −

∫ 1

0

d

dt1
C̃(t1k1, 0)dt1

=
∫ 1

0

d

dt2
C̃(k1, t2k2)dt2 −

∫ 1

0

d

dt2
C̃(0, t2k2)dt2

=
∫ 1

0

∫ 1

0

d

dt2

d

dt1
C̃(t1k1, t2k2)dt1dt2,

which leads us to the four bounds

|R(k1, k2)| 6 3‖C̃‖L∞(Rd×Rd),
|R(k1, k2)|

1
2 |k1|

6 4
∑
|α|=1
‖∂αC̃‖L∞(Rd×Rd),

|R(k1, k2)|
1
2 |k2|

6 4
∑
|α|=1
‖∂αC̃‖L∞(Rd×Rd),

|R(k1, k2)|
1
2 |k1|12 |k2|

6 4
∑
|α|=2
‖∂αC̃‖L∞(Rd×Rd).

After a small amount of patchwork as above, this implies the bound (30).
Lemma 1.26. Consider the generalized Friedrichs model Ag defined by for-
mula (26). Define, for λ 6 0,

φλ := v√
M − λ

, φ̃λ(k) := φλ(k)C̃(k, kmin), ζλ := P̄λφ̃λ = φ̃λ −
〈φλ, φ̃λ〉
‖φ2

λ‖
φλ,

where P̄λ = 1 − Pλ, Pλ denotes the orthogonal projection onto the subspace
spanned by φλ, and we put ζ0 := φ̃0 if ‖φ0‖ = ∞. Furthermore, define, for
e0 < λ < 0 or λ < 0 6 e0,

ψλ := φ̃λ + 1
2((e0 − λ)−1 + c0)φλ, (31)

E±λ := re〈φλ, ψλ〉 ±
√
‖φλ‖2‖ζλ‖2 + |re〈φλ, ψλ〉2|. (32)

Then the limit E+ := limλ→0E
+
λ ∈ [0,∞] exists. In fact, we find:
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1. If e0 = 0, then E+ =∞.

2. If e0 6= 0 and ‖φ0‖ <∞, then formulas (31) and (32) extend to λ = 0
by continuity.

3. If e0 6= 0, ‖φ0‖ =∞, and e−1
0 + c0 > 0, then E+ =∞.

4. If e0 6= 0, ‖φ0‖ =∞, ‖φ̃0‖ 6= 0 and e−1
0 + c0 = 0, then E+ =∞.

5. If e0 6= 0, ‖φ0‖ =∞, ‖φ̃0‖ = 0 and e−1
0 + c0 = 0, then E+ = 0.

6. If e0 6= 0, ‖φ0‖ =∞ and e−1
0 + c0 < 0, then E+ = ‖φ̃0‖2

|e−1
0 +c0|

.

Proof. Assume without loss of generality that kmin = 0. We will give a case-
by-case derivation of the limiting behavour of E+

λ as λ → 0, thereby also
proving existence of the limit E+.

1.: If e0 = 0, we have 2〈φλ, ψλ〉 = (c0 − λ−1)‖φλ‖2 + 2〈φλ, φ̃λ〉. For |λ|
sufficiently small, c0 − λ−1 > −λ−1/2 and

−λ−1‖φλ‖/2− 2‖φ̃λ‖ > −λ−1‖φλ‖/4

so E+
λ > 2〈φλ, ψλ〉 > −λ−1‖φλ‖/4→∞ as λ↗ 0.

2.: This is clear from the formula for E+
λ .

Before considering 3.−6., we observe that ‖φλ‖−1φλ → 0 weakly as λ↗ 0,
due to the condition ‖φ0‖ =∞. In fact, if f ∈ L2(Rd), then

|〈φλ, f〉| 6 2δ−1/2
∫
|k|>δ
|v(k)f(k)| dk + ‖φλ‖

√∫
|k|6δ
|f(k)|2 dk

for any δ > 0, which suffices to prove the claim. In particular,

|〈φλ, φ̃λ〉
‖φλ‖

| 6 |〈φλ, φ̃0〉
‖φλ‖

|+ ‖φ̃λ − φ̃0‖ → 0

as λ↗ 0, and therefore also ζλ → φ̃0 as λ↗ 0.
3.: If e0 6= 0, ‖φ0‖ = ∞ and e−1

0 + c0 > 0, then 2 〈φλ,ψλ〉‖φλ‖2
→ e−1

0 + c0 > 0,

and therefore E+
λ

‖φλ‖2
→ (e−1

0 + c0). Thus, E+
λ →∞ as λ↗ 0.

4.: Since e−1
0 + c0 = 0 and ‖φ̃0‖ 6= 0, we have E+

λ

‖φλ‖
→ ‖φ̃0‖ > 0 as λ↗ 0.

5.: Since ‖φ̃0‖ = 0, we have

E+
λ 6 2|re〈φλ, ψλ〉| = ‖φλ‖2|(e0 − λ)−1 + c0|.
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We note that if e−1
0 + c0 = 0, then we have

|(e0 − λ)−1 + c0| = |(e0 − λ)−1 + c0 − e−1
0 − c0| 6 |λ||e0|−2,

and therefore

‖φλ‖2|(e0 − λ)−1 + c0| 6
∫ dk |v(k)|2|λ|

(M(k)− λ)|e0|2
.

Since the function λ 7→ −λ
m(k)−λ is decreasing for every k 6= kmin, the dominated

convergence theorem ensures that E+
λ 6 ‖φλ‖2|(e0−λ)−1 +c0| → 0 as λ↗ 0.

6.: As in 3., E−
λ

‖φλ‖2
→ e−1

0 + c0 < 0. On the other hand, we have the
identity E+

λ E
−
λ = −‖φλ‖2‖ζλ‖2, so E+

λ →
‖φ̃0‖2
|e−1

0 +c0|
.

The proof of the following result is closely related to a proof by Ikromov
and Sharipov [24].

Theorem 1.27. Consider the setting of Lemma 1.26, put

L := 16
∫ dk |v(k)|2

1
2 |kmin − k|2 + 1

∑
|α|62
‖∂αC̃‖L∞(Rd×Rd),

and assume g2L < 1. In terms of the number E+ ∈ [0,∞], we find:

(i) If e0 > 0, then N(0, Ag) 6 1. If e0 > 0 and g2E+ > 1 + g2L, then
N(0, Ag) = 1. If e0 > 0 and g2E+ 6 1− g2L, then N(0, Ag) = 0.

(ii) If e0 < 0, then 1 6 N(0, Ag) 6 2. If e0 < 0 and g2E+ > 1 + g2L, then
N(0, Ag) = 2. If e0 < 0 and g2E+ 6 1− g2L, then N(0, Ag) = 1.

Proof. Assume without loss of generality that kmin = 0. Theorem 1.10 allows
us to reduce the problem to a study of the Birman-Schwinger operator Bλ

for λ < 0. Putting Jλ := sgn(A0 − λ), we have the relation N(λ,Ag) =
N(0, Jλ −Bλ). With notation as in Proposition 1.19,

Jλ −Bλ =
[

sgn(e0 − λ) −g|e0 − λ|−1/2〈φλ|
−g|φλ〉|e0 − λ|−1/2 1− g2Cλ

]
.

Since λ < 0 6 e0 or e0 < λ < 0, we have sgn(e0−λ) 6= 0, and we may therefore
consider the Feshbach map with respect to the orthogonal projection P2 in
H onto L2(Rd). The Feshbach operator is given by

Fg,λ := 1− g2
(
(e0 − λ)−1|φλ〉〈φλ| − Cλ

)
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Noting that N(0, Fg,λ) = n(1, ((e0 − λ)−1|φλ〉〈φλ| − Cλ)), it follows from the
Haynsworth inertia additivity formula, Theorem 1.11, that we have

N(λ,Ag) = n(1, g2((e0 − λ)−1|φλ〉〈φλ| − Cλ)), e0 > 0, (33)
N(λ,Ag) = n(1, g2((e0 − λ)−1|φλ〉〈φλ| − Cλ)) + 1, e0 < 0. (34)

Defining Dλ = |φλ〉〈ψλ|+ |ψλ〉〈φλ|, we find from Lemma 1.25 that

(e0 − λ)−1|φλ〉〈φλ|+ Cλ = Dλ +Rλ,

where Rλ is the integral operator with integral kernel φλ(k1)φλ(k2)R(k1, k2).
Thus, ‖(e0−λ)−1|φλ〉〈φλ|+Cλ−Dλ‖HS 6 L. Due to the the Glazman lemma
(Lemma 1.5), equations (33) and (34) therefore imply

n(1 + g2L, g2Dλ) 6 N(λ,Ag) 6 n(1− g2L, g2Dλ), e0 > 0, (35)
n(1 + g2L, g2Dλ) + 1 6 N(λ,Ag) 6 n(1− g2L, g2Dλ) + 1, e0 < 0. (36)

Parts (i) and (ii) now follow, if we can show that E+
λ given by formula (32)

is the unique non-negative eigenvalue of Dλ.
We first observe that ζλ = ψλ− 〈φλ,ψλ〉‖φ2

λ
‖ φλ. Thus, if ψλ and φλ are linearly

dependent, then ζλ = 0, and therefore Dλ = 2 re〈φλ, ψλ〉 |φλ〉〈φλ|‖φ2
λ
‖ is a rank

1 operator with spectrum σ(Dλ) = {E−λ , E+
λ } (note that either E−λ = 0 or

E+
λ = 0). In particular, E+

λ is the unique non-negative eigenvalue of Dλ.
Next, assume that ψλ and φλ are linearly independent, so the operator

Dλ is a rank 2 operator

Dλ = 2 re〈ψλ, φλ〉
|φλ〉〈φλ|
‖φλ‖2 + |ζλ〉〈φλ|+ |φλ〉〈ζλ|,

with eigenvalues E−λ 6 0 6 E+
λ given by (32). Again, it follows that E+

λ is
the unique non-negative eigenvalue of Dλ, which finishes the proof.

1.7 Proof of the Main Result
In this section we present the proof of our main result, Theorem 1.3. We first
show that there is g̃0 > 0 such that, when |g| 6 g̃0, E = Eess(g, ξ), ξ ∈ Rd,
e0 6= 0 then e−1

0 + c0 has the same sign as e0.

Lemma 1.28. Consider the situation of Definition 1.21, and fix E = Eess.
If e0 6= 0, then we have

e−1
0 +c0 = 1

e0

 |ξ|2

T
(2)
Eess,ξ(ξ, ξ)

+ g2
∫ |v(q)|2Ng,ξ(q)dq

Dg,ξ(q)
+ g4K

(4)
g,ξ

+g4K̃
(4)
g,ξ , (37)
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where sup|g|6g0,ξ∈Rd |K
(4)
g,ξ |+ |K̃

(4)
g,ξ | <∞, and

Dg,ξ(q) :=
[
T

(2)
Eess,ξ(ξ, ξ)

]2 [
T

(2)
Eess,ξ(ξ, q)

]2
T

(3)
Eess,ξ(ξ, ξ, q), (38)

Ng,ξ(q) :=
[1
2 |2ξ + q|2 + 2(1− Eess)

]
T

(2)
Eess,ξ(ξ, ξ)T

(2)
Eess,ξ(ξ, q) (39)

+ 3
4 |ξ|

2
[
T

(2)
Eess,ξ(ξ, ξ)

]2
+
[1
4 |ξ|

2 + 1
2 |q|

2
] [
T

(2)
Eess,ξ(ξ, ξ)

]2
+ 1

4 |ξ|
2
[1
2 |ξ|

2 − 1
2 |q|

2
]2
.

Proof. According to Lemma 1.24, we have

e0 = 1
2 |ξ|

2 − Eess, kmin = ξ +O(g4), Eess = 1− g2
∫ |v(q)|2dq

1
2 |q|2 + 1 +O(g4),

and if we define K̃(4)
g,ξ := C

(4)
g,Eess,ξ(kmin, kmin), we have

1
1
2 |ξ|2 − Eess

+ Cg,Eess,ξ(kmin, kmin)

= 1
1
2 |ξ|2 − Eess

+ 1
T

(2)
Eess,ξ(kmin, kmin)

+ g2
∫ dq |v(q)|2

T
(2)
Eess,ξ(kmin, kmin)T (3)

Eess,ξ(kmin, kmin, q)T (2)
Eess,ξ(kmin, kmin)

+ 2g2
∫ dq |v(q)|2

T
(2)
Eess,ξ(kmin, kmin)T (3)

Eess,ξ(kmin, kmin, q)T (2)
Eess,ξ(kmin, q)

+ g2
∫ dq |v(q)|2

T
(2)
Eess,ξ(kmin, q)T (3)

Eess,ξ(kmin, kmin, q)T (2)
Eess,ξ(kmin, q)

+ g4K̃
(4)
g,ξ .

We see that there is K(4)
g,ξ with sup|g|6g0,ξ∈Rd|K

(4)
g,ξ | <∞ such that

1
1
2 |ξ|2 − Eess

+ 1
T

(2)
Eess,ξ(kmin, kmin)

= 1
1
2 |ξ|2 − Eess

+ 1
1
2 |ξ − 2kmin|2 + 2− Eess

= 1
e0

[
|kmin|2 + |ξ − kmin|2 + 2(1− Eess)

1
2 |ξ − 2kmin|2 + 2− Eess

]

= 1
e0

 |ξ|2
1
2 |ξ|2 + 2− Eess

+ g2

∫ |v(q)|2dq
1
2 |q|2+1

1
2 |ξ|2 + 2− Eess

+ g4K
(4)
g,ξ


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Defining Dg,ξ by formula (38) and Ñg,ξ by

Ñg,ξ(q) := 2T (3)
Eess,ξ(ξ, ξ, q)T

(2)
Eess,ξ(ξ, ξ)T

(2)
Eess,ξ(ξ, q) + e0

[
T

(2)
Eess,ξ(ξ, q)

]2
+ 2e0T

(2)
Eess,ξ(ξ, ξ)T

(2)
Eess,ξ(ξ, q) + e0

[
T

(2)
Eess,ξ(ξ, ξ)

]2
,

we find formula (37) with Ng,ξ replaced by Ñg,ξ. We finish the proof by
showing that Ñg,ξ = Ng,ξ. Noting that

2T (3)
Eess,ξ(ξ, ξ, q)T

(2)
Eess,ξ(ξ, ξ)T

(2)
Eess,ξ(ξ, q)

=
[1
2 |ξ + q|2 + 2 + ξ · q

]
T

(2)
Eess,ξ(ξ, ξ)T

(2)
Eess,ξ(ξ, q)

+ T
(2)
Eess,ξ(ξ, q)

[
T

(2)
Eess,ξ(ξ, ξ)

]2
+ T

(2)
Eess,ξ(ξ, ξ)

[
T

(2)
Eess,ξ(ξ, q)

]2
,

we see that

Ñgξ(q) =
[3
2 |ξ|

2 + 1
2 |q|

2 + 2ξ · q + 2(1− Eess)
]
T

(2)
Eess,ξ(ξ, ξ)T

(2)
Eess,ξ(ξ, q)

+ |ξ|
2 + |q|2

2
[
T

(2)
Eess,ξ(ξ, ξ)

]2
+ |ξ|2

[
T

(2)
Eess,ξ(ξ, q)

]2
.

Since 3
2 |ξ|

2 + 1
2 |q|

2 + 2ξ · q = −1
2 |ξ|

2 + 1
2 |2ξ + q|2, this finishes the proof.

We come to the proof of the main theorem. Let us first consider the case
d 6 2, where we note that condition (16) ensures in the setting of Lemma
1.26 that ‖φ0‖ =∞, since 1/4 6M 6 1.

Proof of part 1 of Theorem 1.3. From Theorem 1.22, we have the identity
N(Eess, Hg,0,ξ) = N(0, Ag), so we will proceed by computing N(0, Ag).

(a): This follows from part (ii) of Theorem 1.27.
(b): Consider first 1

2 |ξ|
2 = Eess, i.e. e0 = 0. From part 3 of Lemma

1.26 and part (i) of Theorem 1.27, we have N(0, Ag) = 1. Next, find C > 0
such that if Cg2 6 1

2 |ξ|
2 < Eess, then there is precisely one eigenvalue.

Using Lemma 1.28, pick C > 0 (independent from ξ) sufficiently large that
e−1

0 + c0 < −Cg2/2 for all |g| < g0, and also sufficiently large that g2E+ =
g2‖φ̃0‖2
|e−1

0 +c0|
< 1/2. Thus, combining part 6 of Lemma 1.26 with part (ii) of

Theorem 1.27, we find g̃0 such that when |g| 6 g̃0, have N(0, Ag) = 1.
Finally, consider the case 1

2 |ξ|
2 > Eess. According to Lemma 1.28, we have

e−1
0 + c0 > 0. Combining par 3 of Lemma 1.26 with part (i) of Theorem 1.27,
we therefore conclude that N(0, Ag) = 1.
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Proof of part 2 of Theorem 1.3. As in the previous proof, we proceed by
computing N(0, Ag).

(a): This follow from part (ii) of Theorem 1.27.
(b): We will first find C1 such that when C1g

2 6 1
2 |ξ|

2 < Eess, there
is precisely one eigenvalue. According to Lemma 1.28, we have a bound of
the form e−1

0 + c0 < −C1g
2/2, assuming C1 is sufficiently large. Assuming

|e−1
0 + c0|‖φ̃0‖ 6 2‖φ̃0‖, we find E+ 6 C ′ for an absolute constant. On the

other hand, if |e−1
0 +c0|‖φ̃0‖ > 2‖φ̃0‖, then we find E−0 6 −|e−1

0 +c0|‖φ0‖2/2,
and therefore E+ = ‖φ0‖2‖ζ0‖2/|E−0 | 6 4‖ζ0‖2/C1g

2. Combining part 2 of
Lemma 1.26 with part (ii) of Theorem 1.27, we then have N(0, Ag) = 1 if
C1 is sufficiently large. Next, consider 1

2 |ξ|
2 = Eess: Combining part 1 of

Lemma 1.26 with part (i) of Theorem 1.27, we have N(0, Ag) = 1. Finally,
we pick C2 such that if Eess + g2C2 > 1

2 |ξ|
2 > Eess, then there is precisely

one eigenvalue. According to Lemma 1.28, we have e−1
0 + c0 > 0, and we

also have e−1
0 + c0 > e−1

0 > g−2C−1
2 . This ensures that E+ > g−2C−1

2 /2 if C2
is sufficiently small. Thus, combining part 2 of Lemma 1.26 with part (i) of
Theorem 1.27, we have N(0, Ag) = 1 if we pick C2 sufficiently small.

(c): This follows from part (i) of Theorem 1.27.
(d): We will find C3 such that if 1

2 |ξ|
2 > Eess + g2C3, then there is no

eigenvalue. According to Lemma 1.28, we have e−1
0 + c0 > 0, and there is an

absolute constant c > 0 such that e−1
0 + c0 6 c(g−2C−1

3 + g4) 6 2cg−2C−1
3

assuming g0 is sufficiently small. Note that |kess| > 1, so we have a ξ-uniform
bound ‖φ0‖ <∞, ‖ψ0‖ < c′g−2C−1

3 ‖φ0‖ for an absolute constant c′ > 0. This
implies g2E+ 6 c′′C−1

3 for an absolute constant c′′, and thus, combining Part
2 of Lemma 1.26 with Part (i) of Theorem 1.27, we have N(0, Ag) = 0 if we
pick C3 sufficiently large.

1.8 Concluding Remarks
By going to the next order in g2, we hope in the future to be able to de-
cide whether or not the Fröhlich polaron Hamiltonian has a second discrete
eigenvalue at ξ = 0 in the weak coupling regime.

In dimension d = 1, 2, it would be interesting to obtain an expansion of the
ground state energy in the weak coupling regime for large total momentum.
It has been shown by Møller [31] that lim|ξ|→∞[Σess(HΛ

g,0,ξ)−Σ0(HΛ
g,0,ξ)] = 0,

where Λ > 0 is a suitably implemented ultraviolet cutoff. We conjecture that
lim|ξ|→∞[Σess(Hg,0,ξ)− Σ0(Hg,0,ξ)] = 0 also without an ultraviolet cutoff.

In this paper, we only obtain information about the discrete part of the
energy-momentum spectrum. It would be natural to attempt to probe the
essential spectrum. This has been done by Angelescu et al. [2] in extension
of the work by Minlos [28]. Unfortunately, their work does not apply to the

38



Fröhlich polaron model for technical reasons very similar to why the work
of Minlos does not apply to the Fröhlich polaron model. A natural first
question to ask would be whether Σ0(Hg,0,ξ) is an eigenvalue if Σ0(Hg,0,ξ) =
Σess(Hg,0,ξ). Note that Møller [31] has shown, in dimension d = 3, 4, that
Σ0(HΛ

g,0,ξ) is not an eigenvalue if Σ0(HΛ
g,0,ξ) = Σess(HΛ

g,0,ξ).
A natural generalization of the Fröhlich polaron model is the bipolaron

model. Miyao and Spohn [30] have given an analysis of the strong coupling
regime of this model, and it would be interesting to examine whether our
analysis of the weak coupling regime of the Fröhlich polaron model can be
applied to the bipolaron model.
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2 Creation/Annihilation Operators and
Feshbach Maps in Bosonic Fock Space

Jonas Dahlbæk and Oliver Matte

Abstract

A symbol calculus for creation/annihilation operators is developed.
Wick’s theorem provides the formula for the product of two symbols.
It is demonstrated that the framework can be used to compute Fesh-
bach maps in models of non-relativistic quantum field theory. Specifi-
cally, the Fröhlich polaron model is reduced to a generalized Friedrichs
model, and a main technical step in the study of the spin boson model
by means of the spectral renormalization group is carried out.

2.1 Notation
Let (M,Σ, µ) be a measure space with measure µ : Σ→ [0,∞). We assume
that M is σ-finite, and in our notation for integration, we suppress the µ,
i.e. if f :M→ C is integrable, then we write∫

dk f(k) :=
∫
µ(dk) f(k).

Denote by L0(M),L+(M), respectively, the spaces of measurable functions
f :M→ C, f :M→ [0,∞], respectively. If f, g ∈ L0(M)∪L+(M), we put

‖f‖L2(M) :=
√
〈f, f〉L+(M), 〈f, g〉L+(M) :=

∫
dk |f(kM )g(kM )|. (40)

We denote by L2(M) ⊆ L0(M) the subspace of functions f ∈ L0(M)
that satisfy ‖f‖L2(M) < ∞. We denote by L0(M), L+(M), respectively,
the spaces of equivalence classes of functions from L0(M),L+(M), respec-
tively, that agree almost everywhere, and we denote by L2(M) ⊆ L0(M) the
Hilbert space of equivalence classes of function from L2(M) with respect to
the semi-norm (40). As is standard, we will sometimes pass from equivalence
classes to representatives without mention, and vice versa.

When working with explicit expressions for products of creation and an-
nihilation operators, one quickly ends up with expressions involving large
quantities of variables being integrated, permuted or otherwise nontrivially
manipulated. It is therefore useful to introduce a notation suited for the pur-
pose of working with creation and annihilation operators. Such a notation
will be introduced presently.

40



Consider the space Mm, where m ∈ N. For elements of this space, we
employ the notation xM̄ ∈ Mm, where M̄ = (j1, . . . , jm) is an ordered set
of m elements, and xM̄ = (xj1 , . . . , xjm). Suppose k1, . . . , kn are n distinct
elements of the set {j1, . . . , jm}, and put ¯N = (k1, . . . , kn). Then we define
xN̄ = (xk1 , . . . , xkn). Letting Sm denote the set of permutations of the m-
point set {1, . . . ,m}, we define σM̄ = (jσ(1), . . . , jσ(m)) whenever σ ∈ Sm is
a permutation. If m = 0, we letMm = {?} be the 1-point set, and we put
M̄ = ∅ and xM̄ = ?. If m ∈ N, we consider in the space Mm the product
measure µ⊗m, and if m = 0, we let µ⊗0 denote counting measure on the
one-point set.

Our notation introduced thus far has a bar on M̄ , which is there to remind
us that M̄ is an m-tuple. The lowercase letter m denotes the corresponding
number of elements of the m-tuple M̄ . It is important to emphasize that the
m-tuple M̄ consists simply of m distinct ’elements’, and we do not identify
M̄ with them-tuple of integers (1, . . . ,m). When we introduce different such
tuples, say M̄ and ¯N , then it is always assumed that these tuples have no
common elements, unless otherwise explicitly stated. With this convention,
when we write xM̄ ∈ Mm and xN̄ ∈ Mn, there is no a priori relation
between the vectors xM̄ and xN̄ . Had we instead made the identification
M̄ = {1, . . . ,m} and ¯N = {1, . . . , n}, then this would imply that the first
min(m,n) components of xM̄ and xN̄ would coincide.

Suppose f :Mm1 × · · · ×Mmn → C is a function. Then we say that f is
separately symmetric if, for all σ1 ∈ Sm1 , . . . , σn ∈ Smn , we have

f(xσ1M̄1 , . . . , xσnM̄n
) = f(xM̄1 , . . . , xM̄n

).

It is then clear that, for a function such as this, we need not keep track
of the ordering of, say, M̄1 = (j1, . . . , jm), and so we introduce instead the
notation M1 for the (unordered) set M1 = {j1, . . . , jm}. Thus, we may write
formulas such as, say (xM1 , . . . , xMn) 7→ f(xM1 , . . . , xMn). We will make use
of both the notation with the bars, M̄ , as well as the un-barred notation,
M , depending on whether the functions under consideration are separately
symmetric or not. If n = 1 and if f : Mm → C is separately symmetric,
then we say that f is totally symmetric.

Denote by L0
sym(Mm), L+

sym(Mm), L2
sym(Mm), respectively, the sets of

functions of L0(Mm), L+(Mm), L2(Mm), respectively, that have a totally
symmetric representative.
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2.2 Preliminaries
We put (F0)(m) := L0(Mm) and (F+)(m) := L+(Mm) and define the spaces
F0 := ⊕∞

m=0(F0)(m) and F+ := ⊕∞
m=0(F+)(m). If ψ, φ ∈ F0, we put

‖ψ‖F :=
√
〈ψ, φ〉F+ , 〈ψ, φ〉F+ :=

( ∞∑
m=0

∫
dkM |ψ(m)(kM )φ(m)(kM )|

) 1
2

. (41)

For ψ ∈ F0∪F+, we do not demand that the number ‖ψ‖ be finite, i.e. ψ is
simply a formal sequence ψ = (ψ(0), ψ(1), . . .). We put F (m) := L2(Mm) and
denote by F := ⊕∞

m=0F (m) ⊆ F0 the un-symmetrized Fock space, consisting
of those ψ ∈ F0 which satisfy ‖ψ‖F <∞.

Similarly, put (F+
sym)(m) := L+

sym(Mm) and let F+
sym := ⊕∞

m=0(F+
sym)(m)

without demanding finiteness of the number ‖ψ‖F if ψ ∈ F+. Finally, put
F (m)

sym := L2
sym(Mm) and denote by Fsym := ⊕∞

m=0F (m)
sym the bosonic (sym-

metrized) Fock space, where we do impose finiteness of the norm ‖ψ‖Fsym =
‖ψ‖F if ψ ∈ Fsym.

It is important to emphasize that we distinguish between the inner prod-
uct in F , given by 〈ψ, φ〉F = ∑∞

m=0
∫
dkM ψ̄(m)(kM )φ(m)(kM ), and the pos-

itive number 〈ψ, φ〉F+ , given by formula (41). Of course, if ψ, φ > 0, then
no confusion can occur, since the two numbers coincide, and in this case we
shall often write simply 〈ψ, φ〉.

Definition 2.1. Let f : M → C be a measurable function and let (fn)n∈N
be a sequence of measurable functions fn : M → C. We say that fn → f
locally in measure provided that limn→∞ µ(F ∩{|f−fn| > ε}) = 0, whenever
F ⊆M is measurable with µ(F ) <∞. We say that the sequence (fn)n∈N is
Cauchy locally in measure provided that

∀ε, δ > 0 : ∃N ∈ N : ∀n,m > N : µ(F ∩ {|fm − fn| > ε}) 6 δ.

We regard the following results as well known and therefore omit the
proofs. The statements are given for the convenience of the reader, because
we will refer to them later.

Proposition 2.2. Let (fn)n∈N be a sequence of measurable functions. If fn
is Cauchy locally in measure, then there is a measurable f : M → C such
that fn → f locally in measure. Furthermore, there is a subsequence (fnj)j∈N
such that fnj → f almost everywhere.

Proposition 2.3. Let f be a measurable function and let (fn)n∈N be a se-
quence of measurable functions. Then fn → f locally in measure if and
only if every subsequence (fnj)j∈N has a subsubsequence (fnjl )l∈N such that
fnjl → f almost everywhere.
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Proposition 2.4. Let (fn)n∈N be a sequence of measurable non-negative func-
tions fn : M → [0,∞) and let f : M → C be a measurable function. If
fn → f locally in measure, then

∫
fdµ 6 lim infn→∞

∫
fndµ.

2.3 Standard Creation/Annihilation Symbols
For ease of later reference, we pick a measurable function v : M → C. In
applications, v is typically chosen to be a coupling function. There is no
essential loss of generality in assuming v = 1; see Remark 2.7. We first have
a long definition. Recall for the following definition our conventionM0 = {?}
from Subsection 2.1.
Definition 2.5. Whenever given m,n, r ∈ N0, we will denote by W(r)0

m,n and
W(r)+

m,n , respectively, the spaces of separately symmetric, measurable functions
ω(r)
m,n : Mm × Mn × Mr → C and ω(r)

m,n : Mm × Mn × Mr → [0,∞],
respectively. Let

W0 :=
⊕

m,n,r∈N0

W(r)0
m,n , W+ :=

⊕
m,n,r∈N0

W(r)+
m,n ,

denote the spaces of (formal) triple sequences of the respective spaces.
If ω ∈ W0 ∪W+ and f :M→ C is measurable, we define

fm(kM̄ ) := f⊗m(kM̄ ),
fm,n(kM̄ , kN̄ ) := f⊗m(kM̄ )f⊗n(kN̄ ),

(fm,nω(r)
m,n)(kM̄ , kN̄ , kR̄) := fm,n(kM̄ , kN̄ )ω(r)

m,n(kM̄ , kN̄ , kR̄),
(f · ω)(r)

m,n := fm,nω
(r)
m,n.

If ω ∈ W0, we define |ω| ∈ W+ by |ω|(r)m,n := |ω(r)
m,n|, and we say that ω > 0

if ω ∈ W+. If (ωl)l∈N is a sequence in W0 and ω ∈ W0, then we say that
ωl → ω locally in measure if, for all m,n, r ∈ N0, (ωl)(r)

m,n → ω(r)
m,n locally in

measure.
Given ω ∈ W(r)0

m,n ∪W(r)+
m,n , define Op′+(ω(r)

m,n) : (F+)(n+r) → (F+)(m+r) in
terms of representatives by

(Op′+(ω(r)
m,n)φ(n+r))(a)(kM̄ , kR̄)

:=
∫
dkN̄ |(vm,nω(r)

m,n)(kM̄ , kN̄ , kR̄)|φ(n+r)(kN̄ tR̄).

Let W(r)
m,n ⊆ W(r)0

m,n consist of those elements ω(r)
m,n ∈ W(r)0

m,n satisfying
finiteness of the number

‖ω(r)
m,n‖W(r)

m,n
:= sup

ψ(m+r)∈(F+)(m+r)

φ(n+r)∈(F+)(n+r)

‖ψ(m+r)‖=‖φ(n+r)‖=1

〈ψ(m+r),Op′+(ω(r)
m,n)φ(n+r)〉. (42)
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Remark 2.6. Note that if ψ(m+r) ∈ L2(Mm+r), then we have the pointwise
inequality |ψ(m+r)| 6 (m + r)!φ(m+r), where φ(m+r) denotes the symmetriza-
tion of |ψ(m+r)|. Since we have ‖φ(m+r)‖L2(Mm+r) 6 ‖ψ(m+r)‖L2(Mm+r), one
obtains the same spaceW(r)

m,n, with an equivalent norm, if one only considers
symmetric functions ψ(m+r), φ(n+r) in the supremum (42).
Remark 2.7. We include the function v : M → C because it will make it
easier for us to refer back to results of this subsection later on, where v will
be an explicitly fixed function. However, from the abstract point of view, it is
sometimes useful to be able to change the function v at will. Let us therefore
for a moment consider the dependence of the space W(r)

m,n =W(r)
m,n(v) on the

function v. Suppose u :M→ C is measurable and satisfies

µ({u = 0} \ {v = 0}) = 0.

LettingW(r)
m,n(u) denote the similarly defined space but replacing everywhere

v by u, we see that the mapping B :W(r)
m,n(v)→W(r)

m,n(u) given by

B(ω(r)
m,n)(kM , kN , kR) = v⊗(m+n)(kMtN )

u⊗(m+n)(kMtN )ω
(r)
m,n(kM , kN , kR)

is an isometry. This isometry is surjective if and only if

µ(({u = 0} \ {v = 0}) ∪ ({v = 0} \ {u = 0})) = 0.

Furthermore, since any isometry is injective, we may always recover results
concerningW(r)

m,n(v) from corresponding results concerningW(r)
m,n(u) with u =

1. At times, it is also convenient to take, u ∈ L2(M), ‖u‖L2(M) = 1 and
u > 0 or u > 0. Note that such a function u > 0 exists, since we assume that
M is σ-finite.
Remark 2.8. In applications, the function v will often not be differentiable.
The symbols ω(r)

m,n on the other hand will usually enjoy certain regularity
properties. It is in order to capture these regularity properties that we include
the function v in our framework. This is also the reason why we remain on
the level of semi-norms and do not pass to the quotient space with respect
to the semi-norm ‖·‖W(r)

m,n
.

It follows from our choice of semi-norm inW(r)
m,n that ω(r)

m,n ∈ W(r)
m,n defines

a unique bounded operator in the following way.
Definition 2.9. If ω(r)

m,n ∈ W(r)
m,n, then Op′(ω(r)

m,n) : F (n+r) → F (m+r) is the
operator defined in terms of representatives by

(Op′(ω(r)
m,n)φ(n+r))(a)(kM̄ , kR̄)

:=
∫
dkN̄ (vm,nω(r)

m,n)(kM̄ , kN̄ , kR̄)φ(n+r)(kN̄ tR̄)
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Theorem 2.10. Let (ωl)l∈N be a sequence in W(r)0
m,n . If vm,nωl → vm,nω ∈

W(r)0
m,n locally in measure, then ‖ω‖W(r)

m,n
6 lim inf l→∞‖ωl‖W(r)

m,n
.

Proof. Due to Proposition 2.4, we have, whenever ψ(m+r) ∈ (F+)(m+r),
φ(n+r) ∈ (F+)(n+r) satisfy ‖ψ(m+r)‖ = ‖φ(n+r)‖ = 1, the inequality

〈ψ(m+r),Op′+(ω)φ(n+r)〉 6 lim inf
l→∞

〈ψ(m+r),Op′+(ωl)φ(n+r)〉 6 lim inf
l→∞

‖ωl‖W(r)
m,n
.

Here, we used that if vm,nωl → vm,nω locally in measure, then we also have
|vm,nωl| → |vm,nω| locally in measure, as follows from Proposition 2.3.

Theorem 2.11. If (ωl)l∈N is a Cauchy sequence in W(r)
m,n, then there is ω ∈

W(r)
m,n such that ωl → ω in W(r)

m,n and vm,nωl → vm,nω locally in measure.

Proof. Let (ωj)∞j=1 be a Cauchy sequence in W(r)
m,n and fix a measurable set

F of finite measure. Since M is σ-finite, we may pick a sequence Ej ⊆ M
of measurable sets of finite measure such that Ej ⊆ Ej+1 and ⋃∞j=1Ej =M.
Then the sets Fj = Em

j ×En
j ×Er

j form a sequence of measurable sets of finite
measure with Fj ⊆ Fj+1 and ⋃∞j=1 Fj =Mm ×Mn ×Mr. In particular,

µ(F ∩ {|vm,nωl − vm,nωk| > ε})
6 µ(Fj ∩ {|vm,nωl − vm,nωk| > ε}) + µ(F \ Fj)

6
1
ε

[∫
dkMdkN dkR 1Fj |vm,n(ωl − ωk)|

]
+ µ(F \ Fj)

6
‖1Emj ×Erj ‖‖1Enj ×Erj ‖

ε
‖ωl − ωk‖W(r)

m,n
+ µ(F \ Fj),

Thus, (vm,nωl)l∈N is Cauchy locally in measure. Then Proposition 2.2 im-
plies that there is ω ∈ W(r)0

m,n such that vm,nωl → vm,nω locally in measure.
Theorem 2.10 then ensures that ‖ω‖W(r)

m,n
6 lim inf l→∞‖ωl‖W(r)

m,n
, i.e. that

ω ∈ W(r)
m,n, and similarly that ‖ωl − ω‖W(r)

m,n
6 lim infj→∞‖ωl − ωj‖W(r)

m,n
, i.e.

that ωl → ω in W(r)
m,n.

We have now covered the preliminary notions, and wish to define proper
creation and annihilation operators. These come with combinatorial prefac-
tors. Consider the operator Op(ω(r)

m,n) : F (n+r)
sym → F (m+r)

sym , defined by

Op(ω(r)
m,n)ψ(n+r) =

√
(m+ r)!(n+ r)!

r! Op′(ω(r)
m,n)ψ(n+r).

While the operator Op′(ω(r)
m,n) acts between the full (un-symmetrized) spaces

F (n+r) → F (m+r), we emphasize that the operator Op(ω(r)
m,n) acts between

the bosonic (symmetrized) spaces F (n+r)
sym → F (m+r)

sym . Explicitly, we have
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Definition 2.12. Let ω(r)
m,n ∈ W(r)

m,n. Then Op(ω(r)
m,n) : F (n+r)

sym → F (m+r)
sym is

the operator defined on representatives by

(Op(ω(r)
m,n)φ(n+r))(a)(kA )

:=
∑

MtR=A

m!

√√√√ (n+ r)!
(m+ r)!

∫
dkN (vm,nω(r)

m,n)(kM , kN , kR)φ(n+r)(kN tR),

where a = m + r, and Op+(ω(r)
m,n) : (F+

sym)(n+r) → (F+
sym)(m+r) is defined

similarly, but with vm,nω(r)
m,n replaced by |vm,nω(r)

m,n|.

Remark 2.13. According to subsection 2.1, sets such as A ,M and R are
disjoint unless otherwise explicitly specified. In the formula above, however,
we explicitly specify M t R = A . The sum ranges over all choices of
partitions of A into two disjoint subsets M and R with #M = m and
#R = r. That is, it is a finite sum, with

(
a
m

)
= a!

m!r! terms.

At this point we fix a measurable function ε : M→ (0,∞). In applica-
tions, ε is typically a boson dispersion relation.

Definition 2.14. Let Wst
m,n = ⊕∞

r=0W(r)
m,n denote the space of standard cre-

ation/annihilation symbols with m creations and n annihilations, endowed
with the semi-norm

‖ωm,n‖Wst
m,n

:= sup
ψ,φ∈F+

‖ψ‖=‖φ‖=1

∞∑
r=0
〈ψ(m+r),Op′+(γm,nω(r)

m,n)φ(n+r)〉,

where γ = 1 ∨ ε− 1
2 . Let Wst = ⋃∞

h=0
⊕

m+n6hWst
m,n denote the space of

standard creation/annihilation symbols, with the semi-norm

‖ω‖Wst :=
∑

m,n∈N0

‖ωm,n‖Wst
m,n
.

Definition 2.15. Let ωm,n ∈ Wst
m,n. Then Op(ωm,n) denotes the possibly

unbounded operator in Fsym given by Op(ωm,n) := ∑∞
r=0 Op(ω(r)

m,n) on the
domain

Dfin :=
∞⋃
l=0

l⊕
k=0
F (k)

sym. (43)

Remark 2.16. In formal notation, Op(ω) = ∑∞
m=0

∑∞
n=0Wm,n, where

Wm,n :=
∫
dkMdkN a∗(kM )v⊗m(kM )ωm,n(kM , kN )v̄⊗n(kN )a(kN ).
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Here, ωm,n(kM , kN ) := ⊕∞
r=0 ω

(r)
m,n(kM , kN ), where ω(r)

m,n(kM , kN ) denotes the
operator of multiplication in F (r)

sym by the function kR 7→ ω(r)
m,n(kM , kN , kR).

Furthermore, for f ∈ Fsym,

(a(kN )f)(r)(kR) =
√

(n+ r)!
r! f (n+r)(kN , kR),

so that

〈ψ,Wm,nφ〉 =
∫
dkMdkN 〈v̄⊗m(kM )a(kM )ψ, ωm,n(kM , kN )v̄⊗n(kN )a(kN )φ〉.

Definition 2.17. Whenever f :M→ C is measurable, we define

dΓ(f)(n)(kN ) :=
∑
j∈N

f(kj).

Theorem 2.18. Let ωm,n ∈ Wst
m,n. We have the sesquilinear form bound

|〈ψ(m+r),Op(ω(r)
m,n)φ(n+r)〉|

6 ‖ω(r)
m,n‖Wst

m,n
‖[dΓ(1 ∧ ε)(m+r)]m2 ψ(m+r)‖‖[dΓ(1 ∧ ε)(m+r)]n2 φ(n+r)‖.

In particular, we have for all φ ∈ D(dΓ(1 ∧ ε)m+n
2 ) the bound

‖Op(ωm,n)φ‖ 6 ‖ωm,n‖Wst
m,n
‖(dΓ(1 ∧ ε) +m)m2 dΓ(1 ∧ ε)n2 φ‖.

Thus, Op(ωm,n) extends uniquely to a bounded operator in D(dΓ(1 ∧ ε)m+n
2 )

with respect to the graph norm.

Proof. Assume without loss of generality that v = 1. We have

|〈ψ(m+r),Op(ω(r)
m,n)φ(n+r)〉|

6
∫
dkMdkN dkR

√(m+ r)!
r! (1 ∧ ε)m(kM ) 1

2 |ψ(m+r)(kM , kR)|

·
|ω(r)
m,n(kM , kN , kR)|

(1 ∧ ε)m,n(kM , kN ) 1
2

·
√

(n+ r)!
r! (1 ∧ ε)n(kN ) 1

2 |φ(n+r)(kN , kR)|


6 ‖ω(r)
m,n‖Wst

m,n
‖ψ̃‖F(m+r)‖φ̃‖F(n+r) ,

where

ψ̃(kM̄ , kR̄) =
√

(m+ r)!
r! (1 ∧ ε)

1
2
m(kM̄ )ψ(m+r)(kM̄ , kR̄),
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and similarly for φ̃. Now, if ψ ∈ Fsym, symmetry of ψ(m+r) implies∫
dkMdkR (1 ∧ ε)m(kM )|ψ(m+r)(kM , kR)|2

6
r!

(m+ r)!

∫
dkMdkR

[
dΓ(1 ∧ ε)(m+r)(kM , kR)

]m
|ψ(m+r)(kM , kR)|2.

Performing a similar computation for φ, it follows that we have

|〈ψ(m+r),Op(ω(r)
m,n)φ(n+r)〉|

6 ‖ω(r)
m,n‖Wst

m,n
‖[dΓ(1 ∧ ε)(m+r)]m2 ψ(m+r)‖‖[dΓ(1 ∧ ε)(m+r)]n2 φ(n+r)‖.

This takes care of the sesquilinear form inequality.
Next, we prove the second inequality. We have the pointwise inequality

dΓ(1 ∧ ε)(m+r)(kM , kR) = dΓ(1 ∧ ε)(m)(kM ) + dΓ(1 ∧ ε)(r)(kR)
6 m+ dΓ(1 ∧ ε)(r)(kR),

which implies the pointwise bound

dΓ(1 ∧ ε)(m+r)(kM , kR)m2 |ω(r)
m,n(kM , kN , kR)|

6 |ω(r)
m,n(kM , kN , kR)|(dΓ(1 ∧ ε)(n+r)(kN , kR) +m)m2 .

This allows us to conclude that

|〈ψ(m+r),Op(ω(r)
m,n)φ(n+r)〉|

= |〈dΓ(1 ∧ ε)−m2 ψ(m+r), dΓ(1 ∧ ε)m2 Op(ω(r)
m,n)φ(n+r)〉|

6 〈dΓ(1 ∧ ε)−m2 |ψ(m+r)|, dΓ(1 ∧ ε)m2 Op(|ω(r)
m,n|)|φ(n+r)|〉

6 〈dΓ(1 ∧ ε)−m2 |ψ(m+r)|,Op(|ω(r)
m,n|)[dΓ(1 ∧ ε) +m]m2 |φ(n+r)|〉.

After an application of the Cauchy-Schwarz inequality, the sesquilinear form
inequality then implies

‖Op(ωm,n)φ‖ 6 ‖ωm,n‖Wst
m,n
‖(dΓ(1 ∧ ε) +m)m2 dΓ(1 ∧ ε)n2 φ‖.

2.4 Bounded Creation/Annihilation Symbols
Definition 2.19. For ω ∈ W0, we define

‖ω‖W := sup
ψ,φ∈F+

sym
‖ψ‖=‖φ‖=1

∑
m,n,r∈N0

〈ψ(m+r),Op+(ω(r)
m,n)φ(n+r)〉,

and we define the space of bounded creation/annihilation symbols,W ⊆W0,
by ω ∈ W if and only if ‖ω‖W <∞.
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Remark 2.20. We emphasize that the supremum here is with respect to
bosonic Fock space vectors only.

Lemma 2.21. Suppose (ωl)l∈N is a sequence in W0 and v ·ωl → v ·ω locally
in measure. Then we have ‖ω‖W 6 lim inf l→∞‖ωl‖W.

Proof. We have vm,n(ωl)(r)
m,n → vm,nω

(r)
m,n locally in measure. Thus, if ψ, φ ∈

F+
sym and ‖ψ‖ = ‖φ‖ = 1, we have by first applying Proposition 2.4 and then

applying Fatou’s Lemma for sums,∑
m,n,r∈N0

〈ψ(m+r),Op+(ω(r)
m,n)φ(n+r)〉

6
∑

m,n,r∈N0

lim inf
l→∞

〈ψ(m+r),Op+((ωl)(r)
m,n)φ(n+r)〉

6 lim inf
l→∞

∑
m,n,r∈N0

〈ψ(m+r),Op+((ωl)(r)
m,n)φ(n+r)〉 6 lim inf

l→∞
‖ωl‖W .

Theorem 2.22. Suppose (ωl)l∈N is a Cauchy sequence in W. Then there is
ω ∈ W such that ωl → ω in W and v · ωl → v · ω locally in measure.

Proof. Suppose (ωl)l∈N is a Cauchy sequence in W. According to Remark
2.6, we have

‖(ωj − ωk)(r)
m,n‖W(r)

m,n
6 r!

√
(m+ r)!(n+ r)!‖ωj − ωk‖W ,

so we find that ((ωl)(r)
m,n)l∈N is a Cauchy sequence in W(r)

m,n. It follows from
Theorem 2.11 that there is ω(r)

m,n such that (ωl)(r)
m,n → ω(r)

m,n in W(r)
m,n and

vm,n(ωl)(r)
m,n → vm,nω

(r)
m,n locally in measure. This last convergence may also

be written simply v · ωl → v · ω locally in measure. But then Lemma 2.21
ensures that ‖ω‖W 6 lim inf l→∞‖ωl‖W , so that ω ∈ W, and then also that
‖ωj − ω‖W 6 lim inf l→∞‖ωj − ωl‖W , such that ωl → ω in W.

Due to our choice of semi-norm in W, any ω ∈ W induces a unique
bounded operator Op(ω) : Fsym → Fsym by the formula

Op(ω) =
∑

m,n,r∈N0

Op(ω(r)
m,n).

The operator Op(ω) is called a bounded creation/annihilation operator, and
explicitly, we have

49



Definition 2.23. Given ω ∈ W, we define Op(ω) : Fsym → Fsym in terms of
representatives by

(Op(ω)φ)(a)(kA )

:=
∑

m,n,r∈N0
MtR=A

m!

√√√√ (n+ r)!
(m+ r)!

∫
dkN (vm,nω(r)

m,n)(kM , kN , kR)φ(n+r)(kN tR),

and we define Op+(ω) : F+
sym → F+

sym similarly, with vm,nω
(r)
m,n replaced by

|vm,nω(r)
m,n|.

Remark 2.24. The sum here should be understood as described in Remark
2.13.
Remark 2.25. Note that we have the essential identity

‖ω‖W = ‖Op+(ω)‖ = sup
ψ,φ∈F+

sym
‖ψ‖=‖φ‖=1

〈ψ,Op+(ω)φ〉.

2.4.1 Wick’s Theorem

In this subsubsection, we compute the product of finitely many bounded
creation/annihilation operators.

Theorem 2.26. Given ω2, ω1 ∈ W, we may define ω2#ω1 ∈ W by

(ω2#ω1)(r)
m,n(kM , kN , kR) (44)

:=
∞∑
l=0

∑
M2tM1=M
N2tN1=N

m2!m1!
m!

n2!n1!
n!

(
n2 + l

l

)(
m1 + l

l

)
l!

·
∫
dkL |v⊗l(kL )|2ω2(m1+r)

m2,n2+l (kM2 , kN2tL , kM1tR)

· ω1(n2+r)
m1+l,n1(kM1tL , kN1 , kN2tR).

The mapping # :W×W →W is an associative product, and we have

Op(ω2#ω1) = Op(ω2) Op(ω1), ‖ω2#ω1‖W 6 ‖ω2‖W‖ω1‖W .
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If ωJ , . . . , ω1 ∈ W, then we have the formula

(ωJ# · · ·#ω1)(r)
m,n(kM , kN , kR)

=
∑
l∈N0

MJt...tM1=M
NJt...tN1=N⊔
J>k>i>1 Lki=L

 1
m!

J∏
j=1

mj!
 1

n!

J∏
j=1

nj!
  1

l!
∏

J>k>i>1
lki!


·

 J∏
j=1

(
mj + pj
pj

)(
nj + qj
qj

) [ ∏J
j=1 pj!qj!∏
J>k>i>1 lki!

]

·
∫
dkL |v⊗l(kL )|2

J∏
j=1

ω
j(rj+sj)
mj+pj ,nj+qj(kMjtPj

, kNjtQj
, kRjtSj

),

with

Pj =
⊔

J>k>j

Lkj, Qj =
⊔

j>i>1
Lji, (I)

Rj =
 ⊔
J>k>j

Nk

 t
 ⊔
j>i>1

Mi

 tR, (II)

Sj =
⊔

J>k>j>i>1
Lki. (III)

Remark 2.27. As will be evident from the proof, the theorem remains true if
one replaces everywhere W by W+ and Op by Op+.
Remark 2.28. The formulas in the statement of the theorem should be un-
derstood in the sense that, for each fixed value of l ∈ N0, we fix a set L with
#L = l. Other than this, the formulas should be understood in a fashion
similar to that described in Remark 2.13.
Remark 2.29. The formula for the iterated product may equivalently be writ-
ten

(ωJ# · · ·#ω1) =
∑

m̄,n̄,p̄,q̄∈NJ0

J

#
m̄,p̄,n̄,q̄

[ωJ , . . . , ω1], (45)

where #J
m̄,p̄,n̄,q̄ :WJ →W is the multilinear form defined by

J

#
m̄,p̄,n̄,q̄

[ωJ , . . . , ω1](r)m,n(kM , kN , kR)

:=
∑

MJt...tM1=M
NJt...tN1=N
PJt...tP1=L
QJt...tQ1=L
Pk∩Qi=∅,k>i

∏J
j=1mj!nj!
m!n!

 J∏
j=1

(
mj + pj
pj

)(
nj + qj
qj

) ∏J
j=1 pj!qj!
l!

·
∫
dkL |v⊗l(kL )|2

J∏
j=1

ω
j(rj+sj)
mj+pj ,nj+qj(kMjtPj

, kNjtQj
, kRjtSj

),

51



with Rj given by (II) and

Sj =
 ⊔
J>k>j

Qk

 ∩
 ⊔
j>i>1

Pi

 . (IV)

This formula should be understood in the sense that if

l := p1 + . . .+pJ = q1 + . . .+qJ , m1 + . . .+mJ = m, n1 + . . .+nJ = n, (46)

then we fix a set L with #L = l and interpret the formula in accordance
with Remark 2.13. On the other hand, if the relations (46) are not satisfied,
then we put #J

m̄,p̄,n̄,q̄

[
ωJ , . . . , ω1

](r)
m,n

= 0. We observe that

‖
J

#
m̄,p̄,n̄,q̄

[
ωJ , . . . , ω1

]
‖W 6 ‖ωJmJ+pJ ,nJ+qJ‖W · · · ‖ω

1
m1+p1,n1+q1‖W . (47)

In order to see that formula (45) indeed coincides with the one given in
the statement of the theorem, note that decomposing L into J(J − 1)/2
sets Lki, with J > k > i > 1, corresponds precisely to decomposing L
into J sets PJ , . . . ,P1 and J sets QJ , . . . ,Q1 satisfying Pk ∩ Qi = ∅ if
k > i. Explicitly, a correspondence is given by putting Lki = Qk ∩Pi in
one direction, and by defining Pj,Qj by equation (I) in the other direction.

Proof. Making use of Remark 2.7, we observe that the statement of the
theorem for general v > 0 follows from the statement of the theorem for
v = 1. We may therefore without loss of generality assume v = 1.

We will first show that we may define ω ∈ W0 by formula 44, i.e. that
the formula yields a well defined measurable function ω(r)

m,n in the sense that,
for any choice ω2, ω1 ∈ W, the integrand is integrable for almost every
(kM , kN , kR). In order to show this, it suffices to consider ω2, ω1 > 0, since
the integrand in the formula for |ω2|#|ω1| dominates the integrand in the
formula for ω = ω2#ω1. But then we realise that it suffices to show that
‖ω‖W <∞. Namely, if we have ‖ω‖W <∞ and we fix v ∈ L2(M) such that
v > 0 and ‖v‖ = 1 (as we may, becauseM is σ-finite), then we may define
ψ, φ ∈ Fsym with ψ, φ > 0 and ‖ψ‖ = ‖φ‖ = 1 by ψ(n) = φ(n) = 2−n−1v⊗n.
But if ‖ω‖W <∞, then∫

dkMdkN dkR ψ
(m+r)(kM , kR)ω(r)

m,n(kM , kN , kR)φ(n+r)(kN , kR)

6
r!√

(m+ r)!(n+ r)!
‖ω‖W <∞,
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which of course implies that ω(r)
m,n is finite almost surely. We will therefore

proceed by showing that ‖ω‖W 6 ‖ω2‖W‖ω1‖W when ω2, ω1 > 0.
Unraveling our definitions reveals, for any φ ∈ Fsym with φ > 0, that

(Op(ω2) Op(ω1)φ)(a)(kA )

=
∑

m2,l2,r2∈N0
M2tR2=A

m2!

√√√√ (l2 + r2)!
(m2 + r2)!

∫
dkL2 ω

2(r2)
m2,l2(kM2 , kL2 , kR2)

· (Op(ω1)φ)(l2+r2)(kL2 , kR2)

=
∑

m2,l2,r2∈N0
l1,n1,r1∈N0
M2tR2=A

L1tR1=L2tR2

m2!l1!

√√√√ (n1 + r1)!
(m2 + r2)!

∫
dkL2dkN1 ω

2(r2)
m2,l2(kM2 , kL2 , kR2)

· ω1(r1)
l1,n1 (kL1 , kN1 , kR1)φ(n1+r1)(kN1 , kR1).

Decomposing a set L2 t R2 into two sets L1,R1 corresponds precisely
to decomposing L2 into two sets N2,P21 and decomposing R2 into two sets
R,M1, so we continue our computation with an application of the Tonelli-
Fubini Theorem for positive functions,

=
∑

m2,l2,r2∈N0
n2,m1,p21,r,n1∈N0

M2tR2=A
N2tP21=L2
RtM1=R2

m2!(m1 + p21)!

√√√√ (n1 + n2 + r)!
(m1 +m2 + r)!

·
∫
dkN2dkN1dkP21 ω

2(m1+r)
m2,n2+p21(kM2 , kN2tP21 , kM1tR)
· ω1(n2+r)

m1+p21,n1(kM1tP21 , kN1 , kN2tR)
· φ(n1+n2+r)(kN2tN1tR),

and here we note that first decomposing A into two sets M2,R2 followed
by decomposing R2 into two sets R,M1 corresponds precisely to directly
decomposing A into three sets M2,M1,R,

=
∑

m2,l2∈N0
n2,m1,p21,r,n1∈N0

M2tM1tR=A
N2tP21=L2

m2!(m1 + p21)!

√√√√ (n1 + n2 + r)!
(m1 +m2 + r)!

·
∫
dkN2dkN1dkP21 ω

2(m1+r)
m2,n2+p21(kM2 , kN2tP21 , kM1tR)
· ω1(n2+r)

m1+p21,n1(kM1tP21 , kN1 , kN2tR)
· φ(n1+n2+r)(kN2tN1tR).
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Here, with l2, n2, p21 fixed, all terms in the sum

∑
N2tP21=L2

m2!(m1 + p21)!

√√√√ (n1 + n2 + r)!
(m1 +m2 + r)!

·
∫
dkN2dkN1dkP21 ω

2(m1+r)
m2,n2+p21(kM2 , kN2tP21 , kM1tR)
· ω1(n2+r)

m1+p21,n1(kM1tP21 , kN1 , kN2tR)
· φ(n1+n2+r)(kN2tN1tR).

coincide, and there are
(
n2+p21
p21

)
terms, allowing us to simplify our expression

further,

=
∑

m2,m1,r∈N0
n2,p21,n1∈N0

M2tM1tR=A

(
n2 + p21

p21

)
m2!(m1 + p21)!

√√√√ (n1 + n2 + r)!
(m1 +m2 + r)!

·
∫
dkN2dkN1dkP21 ω

2(m1+r)
m2,n2+p21(kM2 , kN2tP21 , kM1tR)

· ω1(n2+r)
m1+p21,n1(kM1tP21 , kN1 , kN2tR)

· φ(n1+n2+r)(kN2tN1tR),

which finally allows us to conclude, after another application of the Tonelli-
Fubini Theorem for positive functions, for any ψ ∈ Fsym with ψ > 0, that

〈ψ,Op(ω2) Op(ω1)φ〉

=
∑

m,n,r∈N0

√
(m+ r)!(n+ r)!

r!

∫
dkMdkN dkR ψ

(m+r)(kM , kR)φ(n+r)(kN tR)
· ω(r)

m,n(kM , kN , kR)

with ω defined by the formula (44). But then we have

‖ω‖W = sup
ψ,φ∈F+

sym
‖ψ‖=‖φ‖=1

|〈ψ,Op(ω2) Op(ω1)φ〉|

6 ‖Op(ω2)‖Fsym→Fsym‖Op(ω1)‖Fsym→Fsym = ‖ω2‖W‖ω1‖W ,

which was what we wanted.
We have therefore shown, for each ω2, ω1 ∈ W, that ω2#ω1 ∈ W is

well defined and satisfies ‖ω2#ω1‖W 6 ‖ω2‖W‖ω1‖W . But if we now repeat
the argument, this time for arbitrary ψ, φ ∈ Fsym and without imposing
ω2, ω1 > 0, then we also find Op(ω2#ω1) = Op(ω2) Op(ω1). The only change
one has to make to the argument is that one must appeal to the Tonelli-Fubini
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Theorem for integrable functions instead of the Tonelli-Fubini Theorem for
positive functions.

Now, we compute the symbol (ω3#ω2)#ω1. We have

((ω3#ω2)#ω1)(r)
m,n(kM , kN , kR)

=
∞∑
p1=0

∑
M ′tM1=M
A tN1=N

m′!m1!
m!

a!n1!
n!

(
a+ p1

p1

)(
m1 + p1

p1

)
p1!

·
∫
dkP1 (ω3#ω2)(m1+r)

m′,a+p1
(kM ′ , kA tP1 , kM1tR)

· ω1(a+r)
m1+p1,n1(kM1tP1 , kN1 , kA tR),

where

(ω3#ω2)(r′)
m′,n′(kM ′ , kN ′ , kR′)

=
∞∑

l32=0

∑
M3tM2=M ′

N ′
3 tN ′

2 =N ′

m3!m2!
m′!

n′3!n′2!
n′!

(
n′3 + l32

l32

)(
m2 + l32

l32

)
l32!

·
∫
dkL32 ω

3(m2+r′)
m3,n′3+l32

(kM3 , kN ′
3 tL32 , kM2tR′)

· ω2(n′3+r′)
m2+l32,n′2

(kM2tL32 , kN ′
2
, kN ′

3 tR′).

Combined, this yields

((ω3#ω2)#ω1)(r)
m,n(kM , kN , kR)

=
∑

p1,l32∈N0
M ′tM1=M
A tN1=N

M3tM2=M ′

N ′
3 tN ′

2 =A tP1

m′!(a+ p1)!(m1 + p1)!n1!
m!n!p1!

m3!n′2!(n′3 + l32)!(m2 + l32)!
m′!(n′3 + n′2)!l32!

·
∫
dkP1dkL32 ω

3(m2+m1+r)
m3,n′3+l32

(kM3 , kN ′
3 tL32 , kM2tM1tR)

· ω2(n′3+m1+r)
m2+l32,n′2

(kM2tL32 , kN ′
2
, kN ′

3 tM1tR)

· ω1(a+r)
m1+p1,n1(kM1tP1 , kN1 , kA tR).

Before proceeding, we point out that the integrand in this formula is
integrable for almost every (kM , kN , kR). Indeed, if we pick v ∈ F (1)

sym with
v > 0, ‖v‖ = 1 and define functions ψ(n) = φ(n) = 2−n−1v⊗(n) > 0, then the
integrand of (ω3#ω2)#ω1 is dominated by the integrand of (|ω3|#|ω2|)#|ω1|,
and we have∑

m,n,r∈N0

∫
dkMdkN dkR ψ

(m+r)(kM , kR)φ(n+r)(kN , kR)
· ((|ω3|#|ω2|)#|ω1|)(r)

m,n(kM , kN , kR)
= 〈ψ,Op((|ω3|#|ω2|)#|ω1|)φ〉 <∞.
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by what we have already shown. We are therefore justified in envoking the
Tonelli-Fubini Theorem.

Now we see that first decomposing M into two sets M ′,M1 and then
decomposing M ′ into two sets M3,M2 corresponds exactly to directly de-
composing M into three sets M3,M2,M1. Additionally, decomposing the
set A tP1 into two sets N ′

3 ,N
′

2 corresponds exactly to decomposing A
into two sets

N3 = A ∩N ′
3 , N2 = A ∩N ′

2

and decomposing P1 into two sets

L31 = P1 ∩N ′
3 , L21 = P1 ∩N ′

2 .

That is,

((ω3#ω2)#ω1)(r)
m,n(kM , kN , kR)

=
∑

p1,l32∈N0
M3tM2tM1=M

A tN1=N
N3tN2=A

L31tL21=P1

m3!(n3 + l32 + l31)!(m2 + l32)!(n2 + l21)!(m1 + l31 + l21)!n1!
m!n!p1!l32!

·
∫
dkP1dkL32 ω

3(m2+m1+r)
m3,n3+l32+l31(kM3 , kN3tL32tL31 , kM2tM1tR)

· ω2(n3+l31+m1+r)
m2+l32,n2+l21 (kM2tL32 , kN2tL21 , kN3tL31tM1tR)

· ω1(n3+n2+r)
m1+l31+l21,n1(kM1tL31tL21 , kN1 , kN3tN2tR).

Once again, we may directly decompose N into the three sets N3,N2,N1,
thereby removing A from the summation. If we then envoke the Tonelli-
Fubini Theorem for integrable functions to make the substitution∑

l32,l31,l21∈N0

∑
p1∈N0

L31tL21=P1

1
p1!

∫
dkP1dkL32 →

∞∑
l=0

∑
l32,l31,l21∈N0
l32+l31+l21=l

1
l21!l31!

∫
dkL ,

followed by the substitution
∞∑
l=0

∑
l32,l31,l21∈N0
l32+l31+l21=l

1
l32!l31!l21!

∫
dkL →

∞∑
l=0

∑
L32tL31tL21=L

1
l!

∫
dkL ,

we arrive at the conclusion

((ω3#ω2)#ω1)(r)
m,n(kM , kN , kR)

=
∑
l∈N0

M3tM2tM1=M
N3tN2tN1=N

L32tL31tL21=L

m3!(n3 + l32 + l31)!(m2 + l32)!(n2 + l21)!(m1 + l31 + l21)!n1!
m!n!l!

·
∫
dkL ω

3(m2+m1+r)
m3,n3+l32+l31(kM3 , kN3tL32tL31 , kM2tM1tR)
· ω2(m1+n3+r+l31)

m2+l32,n2+l21 (kM2tL32 , kN2tL21 , kM1tN3tRtL31)
· ω1(n3+n2+r)

m1+l31+l21,n1(kM1tL31tL21 , kN1 , kN3tN2tR).
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Inspection reveals that this formula coincides with the formula of the theorem
for J = 3.

Finally, we derive the given formula for ωJ# · · ·#ω1 inductively, by defin-
ing ωJ# · · ·#ω1 = ωJ#(ωJ−1# · · ·#ω1). Notice that due to how we put the
parenthesis, even the case J = 3 has not yet been covered at this point in
the proof.

It is straightforward to check that the formula given in the statement of
the theorem for arbitrary J > 2 agrees with the formula already derived for
the special case J = 2. Assume therefore that the formula holds true for fixed
J > 2, then we prove that it holds true for J+1. Note that the first step, i.e.
when we go from J = 2 to J + 1 = 3, thereby computing ω3#(ω2#ω1), takes
care of the proof of associativity of the product, since we already computed
(ω3#ω2)#ω1 and observed that the result coincided with the formula given
in the statement of the theorem.

Fix ωJ+1, . . . , ω1 ∈ W and let ω̃ = (ωJ# · · ·#ω1) be the symbol defined
by our induction hypothesis. Then we may employ our formula for J = 2 to
compute ω = ωJ+1#ω̃, i.e.

ω(r)
m,n(kM , kN , kR)

=
∑

qJ+1∈N0
MJ+1tA =M
NJ+1tN ′=N

mJ+1!(nJ+1 + qJ+1)!(a+ qJ+1)!n′!
m!n!qJ+1!

·
∫
dkQJ+1 ω

{J+1}(a+r)
mJ+1,nJ+1+qJ+1(kMJ+1 , kNJ+1tQJ+1 , kA tR)

· ω̃(nJ+1+r)
a+qJ+1,n′

(kA tQJ+1 , kN ′ , kNJ+1tR).

Noting that∏J
j=1(mj + pj)!(nj + qj)!

m!n!l!

=
∏J
j=1mj!nj!
m!n!

 J∏
j=1

(
mj + pj
pj

)(
nj + qj
qj

) ∏J
j=1 pj!qj!
l! ,

we have from our induction hypothesis the formula

ω̃
(r′)
m′,n′(kM ′ , kN ′ , kR′)

=
∞∑
l′=0

∑
M ′
Jt...tM ′

1=M ′

NJt...tN1=N ′⊔
J>k>i>1 Lki=L ′

∏J
j=1(m′j + p′j)!(nj + qj)!

m′!n′!l′!

·
[∫

dkL ′

] J∏
j=1

ω
j(r′j+s

′
j)

m′j+p
′
j ,nj+qj

(kM ′
jtP′j

, kNjtQj
, kR′jtS ′j

),
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where, for 1 6 j 6 J , P ′
j,Qj, respectively, is given as in formula (I) for

Pj,Qj, respectively, R ′j is given as in formula (II) for Rj, with Mj replaced
by M ′

j , and S ′
j is given as in formula (III) for Sj. All in all,

ω(r)
m,n(kM , kN , kR)

=
∑

qJ+1,l
′∈N0

MJ+1tA =M
NJ+1tN ′=N

M ′
Jt...tM ′

1=A tQJ+1
NJt...tN1=N ′⊔
J>k>i>1 Lki=L ′

mJ+1!(nJ+1 + qJ+1)!(a+ qJ+1)!n′!
m!n!qJ+1!

·
∏J
j=1(m′j + p′j)!(nj + qj)!

(a+ qJ+1)!n′!l′!

·
∫
dkQJ+1 ω

{J+1}(a+r)
mJ+1,nJ+1+qJ+1(kMJ+1 , kNJ+1tQJ+1 , kA tR)

·
∫
dkL ′

J∏
j=1

ω
j(r′j+s

′
j)

m′j+p
′
j ,nj+qj

(kM ′
jtP′j

, kNjtQj
, kR′jtS ′j

).

Firstly, instead of first splitting the set N into two sets NJ+1 and N ′,
and then splitting N ′ into J sets NJ , . . . ,N1, we may directly split N
into J + 1 sets NJ+1, . . . ,N1. Secondly, splitting the set A t QJ+1 into
J sets M ′

J , . . . ,M
′
1 corresponds precisely to splitting the set A into J sets

MJ , . . . ,M1 and splitting the set QJ+1 into J sets LJ+1,J , . . . ,LJ+1,1. The
correspondence is given by

Mj = M ′
j ∩A , LJ+1,j = M ′

j ∩QJ+1

in one direction and by M ′
j = Mj tLJ+1,j in the other direction. We note

that
Pj = P ′

j tLJ+1,j, M ′
j = Mj tLJ+1,j,

R ′j = Rj t
⊔

j>i>1
LJ+1,i, Sj = S ′

j t
⊔

j>i>1
LJ+1,i,

where, for 1 6 j 6 J + 1, Pj,Qj is given by formula (I), Rj is given by
formula (II), and Sj is given by formula (III). In particular,

M ′
j tP ′

j = Mj tPj, R ′j tS ′
j = Rj tSj,

These remarks reveal that
ω(r)
m,n(kM , kN , kR)

=
∑

qJ+1,l
′∈N0

MJ+1t...tM1=M
NJ+1t...tN1=N

LJ+1,Jt...tLJ+1,1=QJ+1⊔
J>k>i>1 Lki=L ′

∏J+1
j=1 (mj + pj)!(nj + qj)!

m!n!qJ+1!l′!
·
∫
dkQJ+1 ω

{J+1}(rJ+1)
mJ+1,nJ+1+qJ+1(kMJ+1 , kNJ+1tQJ+1 , kRJ+1)

·
∫
dkL ′

J∏
j=1

ω
j(rj+sj)
mj+pj ,nj+qj(kMjtPj

, kNjtQj
, kRjtSj

).
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In this expression, we make the substitution∑
l′,qJ+1∈N0

LJ+1,Jt...tLJ+1,1=QJ+1⊔
J>k>i>1 Lki=L ′

1
l′!qJ+1!

∫
dkQJ+1dkL ′ →

∞∑
l=0

∑⊔
J+1>k>i>1 Lki=L

1
l!

∫
dkL ,

and thus arrive at the end of our induction step. Here, we once again invoked
the Tonelli-Fubini Theorem for integrable functions.

Combining Theorem 2.22 and Theorem 2.26, we obtain the following
corollary.
Corollary 2.30. The space of bounded creation/annihilation symbolsW with
semi-norm ‖ω‖ = ‖ω‖W and product ω2ω1 = ω2#ω1 is mapped to a Banach
algebra under the quotient mapping defined by ω2 ∼ ω1 ⇔ ‖ω2 − ω1‖W = 0.

2.4.2 Summable Creation/Annihilation Symbols

Throughout this subsubsection, X denotes a metric space.
Definition 2.31. Let ω : X → W be a mapping into the space of bounded
creation/annihilation symbols. We put

ω(r)
m,n(kM , kN , kR ;x) := ω(x)(r)

m,n(kM , kN , kR),
and define symbol valued symbols
w(r)
m,n(kM , kN , kR ;x)(w)

u,v (kU , kV , kW ) := ω
(r+w)
m+u,n+v(kMtU , kN tV , kRtW ;x).

Any ω ∈ W may be considered a mapping ω : X → W with X = {?}
the one-point set. If ω ∈ W, we also use the notation w(r)

m,n(kM , kN , kR) =
w(r)
m,n(kM , kN , kR ; ?).

Definition 2.32. For ω ∈ W, we define
‖ω‖WΣ :=

∑
u,v∈N0

4u+v‖ωu,v‖W ,

and denote by WΣ the Banach space of all ω ∈ W for which the number
‖ω‖WΣ is finite, where we, in the standard way, identify ω1 with ω2 if we
have ‖ω1 − ω2‖WΣ = 0.

For η > 0, the space of summable creation/annihilation symbols, denoted
WΣ,X

η , is the space of all mappings ω : X → W which additionally satisfy
boundedness of the norm

‖ω‖WΣ,X
η

:=
∑

m,n∈N0

η−m−n sup
r∈N0

sup
kM ,kN ,kR,x

‖w(r)
m,n(kM , kN , kR ;x)‖WΣ .

Finally, we let WΣ
η =WΣ,X

η , with X = {?} the one-point set.

59



Remark 2.33. It follows from Lemma 2.22 that if (ωl)l∈N is a Cauchy sequence
in WΣ, then there is ω ∈ W such that ωl → ω in W (where we abuse
notation in the standard way, and also denote by ωl an arbitrarily chosen
respresentative of ωl), and it follows from Lemma 2.21 and Fatou’s Lemma
for sums that we have

‖ω‖WΣ 6 lim inf
l→∞

‖ωl‖WΣ and ‖ωj − ω‖WΣ 6 lim inf
l→∞

‖ωj − ωl‖WΣ .

Thus, WΣ is indeed a Banach space.
Remark 2.34. We have introduced the parameter η > 0 in order to obtain
pointwise control over the symbol ω. Explicitly, we have

|ω(r)
m,n(kM , kN , kR ;x)| 6 |(w(r)

m,n(kM , kN , kR ;x))(0)
0,0| 6 ηm+n‖ωm,n‖WΣ,X

η
.

Remark 2.35. For ω ∈ WΣ,X
η , we have

‖Op(ω(x))‖ 6 ‖ω(x)‖W 6 ‖ω(x)‖WΣ 6 ‖ω‖WΣ,X
η

.

In this sense, the parameter η which provides us with pointwise control over ω
is not related to the control of the operator norm. In previous presentations,
a similar parameter was often introduced, and the condition η < 1 imposed in
order to obtain nice control over the operator norm and the norm of products
of creation/annihilation symbols, but the condition η < 1 is unnecessary in
the framework discussed here. This is one way in which the norm defined
here differs essentially from the norms previously studied in the literature.
Remark 2.36. Another way in which the summable creation/annihilation
symbols differ from spaces commonly studied in the literature is that we
do not impose the support condition, which is the condition

ω(r)
m,n(kM , kN , kR)

= 1{dΓ(ε)(m+r)<1}(kM , kR)1{dΓ(ε)(n+r)<1}(kN , kR)ω(r)
m,n(kM , kN , kR).

Lemma 2.37. For each x ∈ X, let (ωl(x))l∈N be a sequence inW0. If we have
pointwise convergence (ωl)(r)

m,n(kM , kN , kR ;x) → ω(r)
m,n(kM , kN , kR ;x) for all

m,n, r ∈ N0, then we have ‖ω‖WΣ,X
η
6 lim inf l→∞‖ωl‖WΣ,X

η
.

Proof. We have, for fixed m,n, r, u, v, w, (kM , kN , kR ;x), the pointwise con-
vergence (wl)(r)

m,n(kM , kN , kR ;x)(w)
u,v → w(r)

m,n(kM , kN , kR ;x)(w)
u,v . Then Propo-

sition 2.3 ensures that the convergence also happens locally in measure.
Lemma 2.21 therefore ensures that

‖w(r)
m,n(kM , kN , kR ;x)u,v‖W 6 lim inf

l→∞
‖(wl)(r)

m,n(kM , kN , kR ;x)u,v‖W ,

and Fatou’s Lemma for sums ensures that ‖ω‖WΣ,X
η
6 lim inf l→∞‖ωl‖WΣ,X

η
.
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Theorem 2.38. WΣ,X
η is a Banach space.

Proof. Let (ωl)l∈N be a Cauchy sequence. From Remark 2.34, we see that
((ωl)(r)

m,n(kM , kN , kR , x))l∈N is also Cauchy. Denoting the corresponding limit
point by ω(r)

m,n(kM , kN , kR , x), it follows from Lemma 2.37 that

‖ω‖WΣ,X
η
6 lim inf

l→∞
‖ωl‖WΣ,X

η
, ‖ω − ωl‖WΣ,X

η
6 lim inf

j→∞
‖ωj − ωl‖WΣ,X

η
.

For the next theorem, recall the notation introduced in Remark 2.29.

Theorem 2.39. Let ω1, . . . , ωJ ∈ W and let ω = ωJ# · · ·#ω1 ∈ W. Then

w(r)
m,n(kM , kN , kR)(w)

u,v

=
∑

MJt...tM1=M
NJt...tN1=N
uJ+...+u1=u
vJ+...+v1=v
pJ ,...p1∈N0
qJ ,...q1∈N0

∏J
j=1mj!nj!

(
mj+uj
uj

)(
nj+vj
vj

)
m!n!

(
m+u
u

)(
n+v
v

)
  J∏

j=1

(
mj+uj+pj

pj

)(
nj+vj+qj

qj

)
(
uj+pj
pj

)(
vj+qj
qj

)


·
J

#
ū,p̄,v̄,q̄

[wJ(rJ )
mJ ,nJ

(kMJ
, kNJ

, kRJ ), . . . ,wj(r1)
m1,n1(kM1 , kN1 , kR1)](w)

u,v ,

with Rj given by formula (II). In particular, ‖ω‖WΣ,X
2η
6 4J−1∏J

j=1‖ωj‖WΣ,X
η

.

Remark 2.40. Introduce the notation

W̃ (r)
m,u,n,v(kM , kN , kR) := Op(w(r)

m,n(kM , kN , kR)u,v),

which in the notation of Remark 2.16 may be written as

W̃ (r)
m,u,n,v(kM , kN , kR)

=
∫
dkU dkV a

∗(kU )v⊗u(kU )w(r)
m,n(kM , kN , kR)u,v(kU , kV )v̄⊗v(kV )a(kV ).

If Ω = (1, 0, 0, . . .) ∈ Fsym denotes the vacuum vector, then we have
J

#
0̄,p̄,0̄,q̄

[wJ(rJ )
mJ ,nJ

(kMJ
, kNJ

, kRJ ), . . . ,w1(r1)
m1,n1(kM1 , kN1 , kR1)](0)

0,0

= 〈Ω,
J∏
j=1

W j(rj)
mj ,pj ,nj ,qj

(kMj
, kNj

, kRj)Ω〉,

where ∏J
j=1 aj = aJ · · · a1. Then the case u = v = w = 0 of the theorem

reveals that ω is the symmetrization

ω(r)
m,n(kM , kN , kR) := 1

m!n!
∑

σ∈Sm,τ∈Sn
ω̂(r)
m,n(kσM̄ , kτN̄ , kR̄)
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of the function (which is already symmetric in kR̄)

ω̂(r)
m,n(kM̄ , kN̄ , kR̄) :=

∑
m1+...+mJ=m
n1+...+nJ=n
p1,...,pJ∈N0
q1,...,qJ∈N0

J∏
j=1

(
mj + pj
pj

)(
nj + qj
qj

)

· 〈Ω,
J∏
j=1

W̃ j(rj)
mj ,pj ,nj ,qj

(kM̄j
, kN̄j

, kR̄j
)Ω〉,

where M̄ = (M̄J , . . . , M̄1), ¯N = ( ¯NJ , . . . , ¯N1) and

R̄j = ( ¯NJ , . . . , ¯Nj+1, M̄j−1, M̄1, R̄).

Thus, the theorem presents a direct generalization of a result due to Bach
et al. [4, Theorem A.4].

Proof. Due to Theorem 2.26 and Remark 2.29, we have the identity

w(r)
m,n(kM , kN , kR)(w)

u,v (kU , kV , kW )

=
∑
l∈N0

MJt...tM1=M
NJt...tN1=N
UJt...tU1=U
VJt...tV1=V

PJt...tP1=L
QJt...tQ1=L
Pk∩Qi=∅,k>i

∏J
j=1(mj + uj)!(nj + vj)!

(
mj+uj+pj

pj

)(
nj+vj+qj

qj

)
pj!qj!

(m+ u)!(n+ v)!l!


·
[∫

dkL

]
|v⊗l(kL )|2ω̃(r̄,w̄,s̄)

m̄,ū,p̄,n̄,v̄,q̄(kM , kN , kU , kV , kL )

with the placeholder notation

ω̃
(r̄,w̄,s̄)
m̄,ū,p̄,n̄,v̄,q̄(kM , kN , kU , kV , kL )

=
J∏
j=1

ω
j(rj+wj+sj)
mj+uj+pj ,nj+vj+qj(kMjtUjtPj

, kNjtVjtQj
, kRjtWjtSj

),

and Rj given by (II), Sj given by (IV), and

Wj =
 ⊔
J>k>j

Vk

 t
 ⊔
j>i>1

Ui

 tW .

The first formula of the theorem now follows from another application of
Remark 2.29.

It remains to derive the inequality. Recall first that we have the inequal-
ity ∏J

j=1

(
mj+uj
uj

)
6
(
m+u
u

)
, as follows from Vandermonde’s identity. Further-

more, we have (m+u+p
p )

(u+p
p ) = (m+u+p)!u!

(m+u)!(u+p)! 6
(
m+p
p

)
. In order to see that this last
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inequality holds true, note that if u > 1, then

(m+ u− 1 + p)!(u− 1)!
(m+ u− 1)!(u− 1 + p)! −

(m+ u+ p)!u!
(m+ u)!(u+ p)!

= (m+ u− 1 + p)!(u− 1)!
(m+ u)!(u+ p)! [(m+ u)(u+ p)− (m+ u+ p)u]

= (m+ u− 1 + p)!(u− 1)!
(m+ u)!(u+ p)! mp > 0.

We conclude that

〈ψ(u+w),Op+(w(r)
m,n(kM , kN , kR ;x)(w)

u,v )φ(v+w)〉

6
∑

MJt...tM1=M
NJt...tN1=N
uJ+...+u1=u
vJ+...+v1=v
pJ−1,...,p1∈N0
qJ ,...,q2∈N0

 1
m!n!

J∏
j=1

mj!nj!
(
mj + pj
pj

)(
nj + pj
pj

)
·
J∏
j=1
‖wj(rj)

mj ,nj
(kMj

, kNj
, kRj ;x)uj+pj ,vj+qj‖W .

Recalling the bound
(
m+p
p

)
6 2m+p, we find

‖w(r)
m,n(kM , kN , kR ;x)‖WΣ

6
∑

MJt...tM1=M
NJt...tN1=N

4J−12m+n∏J
j=1mj!nj!

m!n!

J∏
j=1
‖wj(rj)

mj ,nj
(kMj

, kNj
, kRj ;x)‖WΣ ,

which implies the inequality ‖ω‖WΣ,X
2η
6 4J−1∏J

j=1‖ωj‖WΣ,X
η

.

2.4.3 Smooth Creation/Annihilation Symbols

In various applications, it is useful to impose various regularity conditions on
the space of symbols. In the following examples, we discuss simple types of
regularity conditions. We will use the notation W∂

η for a subspace of WΣ,X
η

(possibly with a stronger norm) corresponding to some extra regularity condi-
tion, and refer to the spaceW∂

η as the space of smooth creation/annihilation
symbols.
Example 2.41. Consider the subspaceW∂

η ⊆ WΣ,X
η consisting of all ω ∈ WΣ,X

η

such that ω : X →WΣ
η is continuous. If (ωl)l∈N is a sequence in W∂

η and we
have ωl → ω in WΣ,X

η , then we have ωl(x) → ω(x) ∈ WΣ
η uniformly, which

ensures that ω ∈ W∂
η . Thus, W∂

η is a closed subspace of WΣ,X
η .
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Example 2.42. Suppose X = O ⊆ Cν is an open set. Let W∂
η denote the

space of all ω ∈ WΣ,X
η such that the mapping ω : O → WΣ

η is analytic.
Now, if (ωl)l∈N is a sequence in W∂

η and ωl → ω in WΣ,X
η , it follows that

ωl(x) → ω(x) uniformly, and therefore that ω is analytic. Thus, W∂
η is a

closed subspace of WΣ,X
η .

Since the map (ωJ , . . . , ω1) 7→ ωJ# · · ·#ω1 is multilinear, we find from
Theorem 2.39, if ωJ , . . . , ω1 ∈ W∂

η , that ωJ# · · ·#ω1 ∈ W∂
2η.

2.5 Fröhlich Polaron Model
In this subsection, we apply the framework of bounded creation/annihilation
symbols to the spectral analysis of the Fröhlich polaron model. Specifically,
we compute a certain term which appears in relation to a Feshbach reduction,
reducing the Fröhlich polaron model to a generalized Friedrichs model [25].
The argument is a refinement of a method employed by Minlos [28] and
Angelescu et al. [2].

2.5.1 Smooth Creation/Annihilation Symbols

The following class of smooth creation/annihilation symbols is useful in rela-
tion to the Fröhlich polaron model. SupposeM = Rd and letX = O ⊆ Rν be
an open subset. LetW∂

η ⊆ WΣ,X
η be the subspace consisting of all ω ∈ WΣ,X

η

such that, for m,n, r ∈ N0, the mappings

(kM , kN , kR ;x) 7→ w(r)
m,n(kM , kN , kR ;x) ∈ WΣ (48)

have two continuous Frechét derivatives, endowed with the norm

‖ω‖W∂
η

=
∑

m,n∈N0

η−m−n sup
r∈N0

max
|α|62

sup
kM ,kN ,kR,x

‖∂αw(r)
m,n(kM , kN , kR ;x)‖WΣ ,

where α ∈ Nd(m+n+r)+ν
0 .

Letting (ωl)l∈N be a Cauchy sequence in W∂
η , Theorem 2.38 implies exis-

tence of ω ∈ WΣ,X
η such that ωl → ω inWΣ,X

η . Furthermore, it is a standard
result that w(r)

m,n(kM , kN , kR ;x) is twice continuously differentiable, and that
we have

∂α(wl)(r)
m,n(kM , kN , kR ;x)→ ∂αw(r)

m,n(kM , kN , kR ;x)

in WΣ. A combination of Lemma 2.21 and Theorem 2.22 ensures that

‖∂αw(r)
m,n(kM , kN , kR ;x)‖WΣ 6 lim inf

l→∞
‖∂α(wl)(r)

m,n(kM , kN , kR ;x)‖WΣ ,
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so that we find ‖ω‖W∂
η
6 lim inf l→∞‖ωl‖W∂

η
, and therefore ω ∈ W∂

η , and
similarly ωl → ω in W∂

η . We conclude that W∂
η is complete.

If ωJ , . . . , ω1 ∈ W∂
η , we find from Theorem 2.39, since #J

ū,p̄,v̄,q̄ is multilin-
ear, that ωJ# · · ·#ω1 ∈ W∂

2η, and

‖ωJ# · · ·#ω1‖W∂
2η
6 J24J−1

J∏
j=1
‖ωj‖W∂

η
6 2 · 8J−1

J∏
j=1
‖ωj‖W∂

η
. (49)

It can be quite laborious to verify explicitly that a symbol ω ∈ WΣ,X
η lies

in W∂
η . For the class of smooth symbolds W∂

η considered in this example,
there is, however, a simple set of conditions ensuring that ω ∈ W∂

η , which we
will now describe.

Definition 2.43. Fix m,n, r ∈ N0. Let f (w)
u,v : R(m+n+r)d+2+d × R(u+v+w)d →

C be a triple sequence of functions. With the notation k = (kM , kN , kR , x),
q = (kU , kV , kW ), suppose f (w)

u,v is three times continuously differentiable in
k, and denote partial derivatives with respect to k by ∂α1 . Suppose that there
are constants C, δ > 0 (independent from u, v, w) such that

1. If |k − k′| < δ, then |f (w)
u,v (k′, q)| 6 C|f (w)

u,v (k, q)|.

2. If |α| 6 3, then |∂α1f (w)
u,v (k, q)| 6 C|f (w)

u,v (k, q)|.

Then we say that the family (f (w)
u,v )u,v,w∈N0 is self-controlling.

Remark 2.44. It is straightforward to show that if h(w)
u,v , g

(w)
u,v are two self-

controlling families, then h(w)
u,v · g(w)

u,v is a new self-controlling family, and if
h(w)
u,v , g

(w)
u,v > 0, then

√
h

(w)
u,v , 1/h(w)

u,v and h(w)
u,v + g(w)

u,v are also self-controlling
families. In our application to the Fröhlich polaron model, we will consider
combinations of the form

f (w)
u,v = 1/

√
h

(w)
u,v · g(w)

u,v

with h(w)
u,v , g

(w)
u,v two self-controlling families.

Lemma 2.45. Fix ω ∈ WΣ,X
η and m,n, r ∈ N0 and define a family of func-

tions

f (w)
u,v ((kM , kN , kR , x), (kU , kV , kW )) := ω

(r+w)
m+u,n+v(kMtU , kN tV , kRtW ;x).

If (f (w)
u,v )u,v,w∈N0 is self-controlling, then ω ∈ W∂

η .
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Proof. We find, if |k′ − k| < δ, that

|f (w)
u,v (k′, q)− f (w)

u,v (k, q)−
∑
|α|=1

∂α1f
(w)
u,v (k, q)(k′ − k)α|

6
∑
|α|=1

sup
06t61

|∂α1f (w)
u,v (tk′ + (1− t)k, q)− ∂α1f (w)

u,v (k, q)||k′ − k|

6
∑
|α|=1

∑
|β|=1

sup
06t61

|∂α1 ∂
β
1f

(w)
u,v (tk′ + (1− t)k, q)||k′ − k|2

6 ((m+ n+ r + 1)d+ 2)2C sup
06t61

|f (w)
u,v (tk′ + (1− t)k, q)||k′ − k|2

6 ((m+ n+ r + 1)d+ 2)2C2|f (w)
u,v (k, q)||k′ − k|2.

If we define, for |α| = 1,

(∂αw(r)
m,n(kM , kN , kR , x))(w)

u,v (kU , kV , kW ) := ∂α1f
(w)
u,v (k, q) (50)

and put C ′′ := ((m+ n+ r + 1)d+ 2)2C2, we conclude, if |k′ − k| < δ, that

‖w(r)
m,n(k′)−w(r)

m,n(k)−
∑
|α|=1

∂αw(r)
m,n(k)(k′ − k)α‖WΣ

6 |k′ − k|2C ′′‖w(r)
m,n(k)‖WΣ 6 |k′ − k|2C ′′‖ω(r)

m,n‖WΣ,X
η

,

which ensures that w(r)
m,n is differentiable in the Frechét sense. The second

order of differentiability and continuity of the second derivatives are obtained
similarly. We note that formula (50) holds true whenever |α| 6 2. Finally,
we find

‖ω‖W∂
η

=
∑

m,n∈N0

η−m−n sup
r∈N0

max
|α|62

sup
kM ,kN ,kR,x

‖∂αw(r)
m,n(kM , kN , kR ;x)‖WΣ

6 C
∑

m,n∈N0

η−m−n sup
r∈N0

sup
kM ,kN ,kR,x

‖w(r)
m,n(kM , kN , kR ;x)‖WΣ

= C‖ω‖WΣ,X
η

<∞,

and therefore ω ∈ WΣ,X
η .

2.5.2 The Feshbach Operator

Recall that for the application to the Fröhlich polaron model, one considers
the Birman-Schwinger operator Bg,E,ξ = g(bE,ξ + b∗E,ξ), where

(bE,ξψ)(n)(k1, . . . , kn) :=
∫ dkn+1 (n+ 1)1/2v̄(kn+1)ψ(n+1)(k1, . . . , kn+1)

U
(n)
E,ξ(k1, . . . , kn)U (n+1)

E,ξ (k1, . . . , kn+1)
,

(b∗E,ξψ)(n)(k1, . . . , kn) :=
n∑
j=1

n−1/2v(kj)ψ(n−1)(k1, . . . , k̂j, . . . , kn)
U

(n)
E,ξ(k1, . . . , kn)U (n−1)

E,ξ (k1, . . . , k̂j, . . . , kn)
,
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and the notation k̂j indicates that the variable kj is omitted. Here, we denote
by U (n)

E,ξ the function

U
(n)
E,ξ(k1, . . . , kn) = (1

2 |ξ − k1 − . . .− kn|2 + n− E)1/2, for n > 1,

while U (0)
E,ξ = |12 |ξ|

2 − E|1/2 if 1
2 |ξ|

2 6= E, and U (0)
E,ξ = 1 if 1

2 |ξ|
2 = E. Further-

more, we denote by P>2 the orthogonal projection onto F (>2)
sym := ⊕∞

n=2F (n)
sym

and by B̄g,E,ξ := P>2Bg,E,ξ�F(>2)
sym

.
Recalling Definition 1.15 and Corollary 1.17, the operator 1 − B̄g,E,ξ is

invertible when g < 1/6L−1, and we may therefore consider the Feshbach
map of JE,ξ−Bg,E,ξ with respect to P61. The Feshbach operator, Fg,E,ξ, acts
in the direct sum space F (61)

sym = F (0)
sym ⊕F (1)

sym as a block operator matrix

Fg,E,ξ :=
[
sgn(1

2 |ξ|
2 − E) −gbE,ξ

−gb∗E,ξ 1− g2bE,ξ(1− B̄g,E,ξ)−1b∗E,ξ

]
.

In this subsection, we wish to determine the form of the operator

g2P (1)bE,ξP
(>2)(1− B̄g,E,ξ)−1P (>2)b∗E,ξP

(1) =
∞∑
J=2

g2P (1)bE,ξB̄
J−2
g,E,ξb

∗
E,ξP

(1),

along with some of its properties. Here, P (1) denotes the orthogonal projec-
tion in Fsym onto F (1)

sym.
We first define X = (−g0, g0)×(−∞, 1)×Rd for some g0 > 0 to be chosen

later. We let ω̄ = ω̄1,0 + ω̄0,1, where, for r > 2,

ω̄
(r)
0,1(?, kN , kR ; g, E, ξ) := g

U
(r)
E,ξ(kR)U (r+1)

E,ξ (kN tR)
,

ω̄
(r)
1,0(kM , ?, kR ; g, E, ξ) := g

U
(r+1)
E,ξ (kMtR)U (r)

E,ξ(kR)
.

Furthermore, for fixed E ′ < 1, we let

b
(1)
0,1(?, kN , kR ; g, E, ξ | E ′) := 1

U
(1)
E′,ξ(kR)U (2)

E,ξ(kN tR)
,

b
(1)
1,0(kM , ?, kR ; g, E, ξ | E ′) := 1

U
(2)
E,ξ(kMtR)U (1)

E′,ξ(kR)
.

According to the proof of Lemma 1.12, ω̄(g, E, ξ), b(g, E, ξ | E ′) ∈ W,
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and we have

P (>2)B̄g,E,ξP
(>2) = Op(ω̄(g, E, ξ)),

P (1)bE,ξ = Op(b0,1(g, E, ξ | E)),
b∗E,ξP

(1) = Op(b1,0(g, E, ξ | E)).

It therefore follows from Theorem 2.26 that g2P (1)bE,ξB̄
J−2
g,E,ξb

∗
E,ξP

(1) is a
bounded creation/annihilation operator with symbol ωJ(g, E, ξ | E), where

ωJ(g, E, ξ | E ′) := g2b0,1(g, E, ξ | E ′)#ω̄(g, E, ξ)#(J−2)#b1,0(g, E, ξ | E ′),

Furthermore, ωJ(g, E, ξ | E ′) = 0 unless J ∈ 2N, and ω2J(g, E, ξ | E ′) only
has two nonvanishing terms, one with r = 1,m = n = 0 and one with
r = 0,m = n = 1 and it follows from Theorem 2.22 that

ω(g, E, ξ | E ′) =
∞∑
J=1

ω2J(g, E, ξ | E ′) ∈ W. (51)

In fact,

ω
(1)
0,0(k;E, g, ξ | E ′) = g2M̃g,E,ξ(k)

1
2 |ξ − k|2 + 1− E ′

ω
(0)
1,1(k1, k2;E, g, ξ | E ′) = g2Cg,E,ξ(k1, k2)

U
(1)
E′,ξ(k1)U (1)

E′,ξ(k2)
,

with

M̃g,E,ξ(k) :=
∑
l∈N⊔

2l>k>i>1 Lki=L

g2(l−1)

(2l)!

∫
dkL |v⊗l(kL )|2

2l∏
j=2

1
T

(dj)
E,ξ (kDj)

,

where
Dj = R t

⊔
2l>k>j>i>1

Lki,

and the sum is further restricted to run only over those integers which satisfy

dj > 2, pj + qj = 1, pJ = 0, q1 = 0,

where pj = ∑
J>k>j lkj, qj = ∑

j>i>1 lji. Similarly, we have

Cg,E,ξ(kM , kN ) :=
∑
l∈N0

MJt...tM1=M
NJt...tN1=N⊔
2l>k>i>1 Lki=L

g2l

(2l)!

[∫
dkL

]
|v⊗l(kL )|2 ·

2l−1∏
j=1

1
T

(dj)
E,ξ (kDj)

,
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with m = n = 1 and

Dj =
 ⊔
J>k>j>i>1

Lki

 t
 ⊔
J>k>j

Nk

 t
 ⊔
j>i>1

Mi

 ,
and the sum is further restricted to run only over those integers which satisfy

dj > 2, mj + pj + nj + qj = 1, mJ + pJ = 0, n1 + q1 = 0,

where pj = ∑
J>k>j lkj, qj = ∑

j>i>1 lji.
We now observe that (k; g, E, ξ) 7→ M̃g,E,ξ and (k1, k2; g, E, ξ) 7→ Cg,E,ξ

are both twofold continuously differentiable. In fact, the symbols ω̄ and b
(for fixed E ′ > 0) are constructed in accordance with Remark 2.44, so due
to Lemma 2.45, it suffices to show that they are in WΣ,X

η . We provide the
argument only for ω̄, since the argument for b is very similar.

In order to see that ω̄ ∈ WΣ,X
η , note first that

ω̄
(r+w)
m+u,n+v(kMtU , kN tV , kRtW ; (g, E, ξ))
6 ω̄

(w)
m+u,n+v(kMtU , kN tV , kW ; (g, E, ξ −

∑
j∈R

kj)),

which implies

sup
r∈N

sup
kM ,kN ,kR,x

‖w̄(r)
m,n(kM , kN , kR ;x)‖WΣ

6 sup
kM ,kN ,x

‖w̄(0)
m,n(kM , kN , ?;x)‖WΣ .

But then we find

‖ω̄‖WΣ,X
η
6 sup

x∈X
‖w̄(0)

0,0(?, ?, ?;x)‖WΣ

+ η−1 sup
k∈Rd,x∈X

‖w̄(0)
0,1(?, k, ?;x)‖WΣ

+ η−1 sup
k∈Rd,x∈X

‖w̄(0)
1,0(k, ?, ?;x)‖WΣ

6 sup
g,E,ξ
‖B̄g,E,ξ‖+ 2g0

η
6 6g0L−1 + 2g0

η
.

We are now ready for the

Proof of Theorem 1.20. According to formula (49), we can pick g0 sufficiently
small that the series (51) converges. It follows, for fixed E ′ < 1, that
(kM , kN , kR ; g, E, ξ) 7→ ω(g, E, ξ | E ′) is twice continuously differentiable,
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which implies that (k; g, E, ξ) 7→ M̃g,E,ξ and (k1, k2; g, E, ξ) 7→ Cg,E,ξ are
both twice continuously differentiable.

Note that the mapping (E, k) 7→ −[T (1)
E,ξ(k)−g2M̃g,E,ξ(k)] is jointly contin-

uous, and strictly increasing in E. Furthermore, since it is twice continuously
differentiable, it is easy to check that it is strictly convex if |g| is sufficiently
small and that it is also unboundedly increasing for large |k|. Thus, the
function

E 7→ λg,E,ξ := −min
k∈Rd

[T (1)
E,ξ(k)− g2M̃g,E,ξ(k)]

is well-defined, continuous and strictly increasing. Define

Mg,E,ξ(k) := T
(1)
E,ξ(k)− g2M̃g,E,ξ + λ.

Since Mg,E,ξ(k) is strictly convex, any minimum point is necessarily unique,
so by the arguments above, it has a unique minimum point, kmin. Putting
f(t) = Mg,E,ξ(tk + (1− t)kmin), we find f(0) = f ′(0) = 0, so if we denote by
[Hk]ji = ∂2Mg,E,ξ(k)

∂kj∂ki
the Hessian of Mg,E,ξ at k ∈ Rd, Taylor’s formula with

remainder ensures that

Mg,E,ξ(k) =
∫ 1

0
〈k − kmin, Htk+(1−t)kmin(k − kmin)〉(1− t)dt.

Noting that 1/2 6 Hk 6 2 in the sense of quadratic forms, we conclude that
we have 1

4 |k − kmin|2 6M(k) 6 |k − kmin|2.
It follows by construction that if E < 1, then Fg,E,ξ is the Birman-

Schwinger operator corresponding to the choice of operators

T := diag(1
2 |ξ|

2 − E, T (1)
E,ξ), H := Ag

at λ := λg,E,ξ.

We may also give the

Proof of Lemma 1.24. We first consider the monotonicity and continuity as-
sertions for E 7→ λg,E,ξ, along with the existence and uniqueness of Eess.
Noting that the mapping (E, k) 7→ −[T (1)

E,ξ(k)− g2M̃g,E,ξ(k)] is jointly contin-
uous, and strictly increasing in E, the function

E 7→ λg,E,ξ := −min
k∈Rd

[T (1)
E,ξ(k)− g2M̃g,E,ξ(k)]

is continuous and strictly increasing. For g = 0, we have λ0,E,ξ = E − 1, so
Eess = 1 is the unique number E 6 1 such that λ0,E,ξ = 0. If g 6= 0, then

λg,1,ξ = −min
k∈Rd

[12 |ξ − k|
2 − g2M̃g,1,ξ(k)] > g2M̃g,1,ξ(ξ) > 0.
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On the other hand, if we pick E sufficiently negative that E 6 g2M̃g,E,ξ(k)
for all k ∈ Rd, then λg,E,ξ 6 −1. By continuity, there is a unique Eess < 1
such that λg,Eess,ξ = 0.

It remains to obtain the expansions in g. Evaluation in the minimum
point kmin of the derivative of the function Mg,E,ξ yields

kmin = ξ + g2
∫ dq |v(q)|2(ξ − kmin − q)

[1
2 |ξ − kmin − q|2 + 2− E]2 + g4(∇M̃ (2)

g,E,ξ)(k).

Noting that, since v is reflection symmetric,∫ dq |v(q)|2(ξ − kmin − q)
[1
2 |ξ − kmin − q|2 + 2− E]2 =

∫ dq |v(q)|2q
[1
2 |q|2 + 2− E]2 +O(g2) = O(g2),

the expansion of kmin follows.
Second, evaluation in the minimum point kmin of the function Mg,Eess,ξ

yields, noting that λ = 0,

Eess = 1
2 |ξ − kmin|2 + 1− g2

∫ dq |v(q)|2
1
2 |ξ − kmin − q|2 + 2− Eess

+ g4M̃
(2)
g,E,ξ(k).

Since

1
2 |ξ−kmin|2 +1−

∫ dq g2|v(q)|2
1
2 |ξ − kmin − q|2 + 2− Eess

= 1−g2
∫ dq |v(q)|2

1
2 |q|2 + 1 +O(g4),

the expansion of Eess follows.
Third, evaluation of Mg,E,ξ in the minimum point kmin yields

0 = 1
2 |ξ − kmin|2 + 1− E + λ− g2

∫ dq |v(q)|2
1
2 |ξ − kmin − q|2 + 2− E − g

4M̃
(2)
g,E,ξ(k).

Using the expansion of Eess, we obtain the expansion of λ.
Similarly, the expansions ofM and e0 follow from the expansion of λ.

2.6 Spin Boson Model
Throughout this subsection,M = R3 and ε(k) = |k|. We will give a very brief
overview of selected results on the spin boson model and then give an outline
of the remainder of this subsection. We denote by v ∈ L2(R3) the coupling
function of the spin boson model. In order to ensure self-adjointedness of the
spin boson Hamiltonian, we impose the condition ε− 1

2v ∈ L2(R3).
Over the years, many papers have been published on the spin boson

model, and we will not attempt to give a thorough historical review. We are
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mainly interested in the application of the operator theoretic renormalization
group method to the spin boson model, and our choice of works mentioned
below reflects this. For further references, see those contained in the works
referenced below.

Bach et al. [4] introduced the BFS operator theoretic renormalization
group method, and applied the technique to a model of an atom interacting
with a massless boson field. The renormalization map consisted of a Fesh-
bach projection combined with a suitable rescaling. Non-differentiability of
the spectral projection 1[0,1](H) of their Hamiltonian H, made the analysis
technically difficult.

The difficulties related to non-differentiability were overcome by Bach
et al. [3], with the introduction of the smooth Feshbach map, which allows
one to replace the sharp projections of the Feshbach method by a smooth
partition of unity. They demonstrated that the operator theoretic renormal-
ization analysis is vastly simplified from the technical point of view if one
makes use of the smooth Feshbach map instead of the Feshbach map. They
applied the new framework to the infrared regular spin boson model, and
proved that if one imposes the condition ε−1−αv ∈ L2(R3), with α > 0, then
there is a ground state in the weak coupling regime.

Later, Hasler and Herbst [20] gave a treatment of the infrared singular
spin boson model, imposing the condition ε 1

2v ∈ L∞(R3). Note that this con-
dition is weaker than the condition ε−1v ∈ L2(R3), but it is strong enough
to ensure ε− 1

2−αv ∈ L2(R3) for all α ∈ [0, 1/2). For their proof, it is essential
that the interaction of the spin boson model has no diagonal terms. It was
remarked upon by Hasler and Herbst [20, Remark 2.2], that they expected
that, with a different choice of norm, one would be able to relax their con-
dition ε

1
2v ∈ L∞(R3) to the weaker condition ε−

1
2−αv ∈ L2(R3) for some

α > 0. The method employed by Hasler and Herbst was a modification of
the operator theoretic renormalization group method based on the smooth
Feshbach method of Bach et al..

In this subsection, we will pick a norm which allows us to treat the case
v ∈ L2(R3), ε− 1

2−αv ∈ L2(R3), α > 0, thereby verifying the expectation of
Hasler and Herbst. For a concise treatment of the smooth Feshbach map,
see the paper by Griesemer and Hasler [17].

Abstractly, the analysis we present is essentially the same as the one given
by Hasler and Herbst. Technically, the presentations differ slightly, since we
apply the framework developed in Subsection 2.4. In the first subsubsection
below, we carry out a preparatory Feshbach reduction in accordance with
the procedure of Hasler and Herbst. The second subsubsection below deals
with the contraction property of the renormalization map.
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In the final chapter of the thesis, an abstract account of the spectral the-
oretic renormalization group is given, which, coupled with the contraction
property that the renormalization map is shown to have in this subsection,
suffices to give a proof of existence and uniqueness of the ground state eigen-
value of the spin boson model in the weak coupling regime.

2.6.1 Smooth Creation/Annihilation Symbols

Throughout the subsection, we will consider the following class of smooth
creation/annihilation symbols. Let X = [0,∞) × X̃, with X̃ = O ⊆ Cν

open. Consider the subspace W∂
η ⊆ WΣ,X

η consisting of all ω ∈ WΣ,X
η such

that:

ω(r)
m,n(kM , kN , kR ; t, x̃) = ω(0)

m,n(kM , kN ; t+ dΓ(ε)(r)(kR), x̃), (52)

such that the mapping x 7→ ω(x) ∈ WΣ
η is continuous, such that (for fixed

x̃ ∈ O) the mapping [0,∞) 3 t 7→ ω(t, x̃) ∈ WΣ
η has one continuous Frechét

derivative with a one-sided derivative at t = 0, and such that (for fixed t > 0)
the mapping O 3 x̃ 7→ ω(t, x̃) ∈ WΣ

η is analytic. We impose additionally
finiteness of the norm

‖ω‖W∂
η

= ‖ω‖WΣ,X
η

+ ‖∂tω‖WΣ,X
η

,

and note that it is a standard result thatW∂
η is complete with respect to this

norm. Furthermore, it follows as in Example 2.42 that, if ωJ , . . . , ω1 ∈ W∂
η ,

then ωJ# · · ·#ω1 ∈ W∂
2η, with ‖ωJ# · · ·#ω1‖W∂

2η
6 4J−1∏J

j=1‖ωj‖W∂
η
, and

we have the Leibniz product rule

∂t[ω2#ω1] = [∂tω2]#ω1 + ω2#[∂tω1]. (53)

Due to equation (52), it is consistent to write

Op(ω0,0(0, x̃)) = ω
(0)
0,0(dΓ(ε), x̃), (54)

where the right hand side is defined in terms of the spectral calculus. Fur-
thermore, we have

‖ω0,0‖W∂
η

= sup
t,x̃
|ω(0)

0,0(t, x̃)|+ sup
t,x̃
|∂tω(0)

0,0(t, x̃)|. (55)
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2.6.2 Preparatory Feshbach Reduction

LetM = R3. The spin boson model is defined in the space Fsym ⊕ Fsym by
the Hamiltonian

H init
g − E =

[
2 0
0 0

]
+
[
dΓ(ε) 0

0 dΓ(ε)

]
− E + g

[
0 Φ(v)

Φ(v) 0

]
,

where v ∈ L2(R3), Φ(v) = a(v) + a∗(v) is the field operator and ε(k) = |k|.
We assume that ‖(1∨ε− 1

2−α)v‖L2(M) = 1. Here, v is fixed in accordance with
remark 2.7, g ∈ C is a dimensionless coupling constant and E ∈ C is a spec-
tral parameter. We have Φ(v) = Op(ω), where ω(r)

1,0(k, kR) = ω
(r)
0,1(k, kR) = 1,

is a standard creation/annihilation operator in the sense of Subsection 2.3.
That is, ω ∈ Wst

1,0 ⊕Wst
0,1, and ‖w‖Wst 6 2‖(1 ∨ ε− 1

2 )v‖L2(M). We find from
Theorem 2.18 that Hg is self-adjoint on the domain D(dΓ(ε))⊕D(dΓ(ε)).

If |E| < 1/2, we may consider the Feshbach projection to the second
factor. We find the effective Hamiltonian, acting in Fsym,

H̃g,E = dΓ(ε)− E − g2Φ(v)(2 + dΓ(ε)− E)−1Φ(v),

Defining standard creation/annihilation symbols, in the sense of Subsection
2.3, by

ω̃(r)
m,n(kM , kN , kR ; t, g, E) = ω̃(0)

m,n(kM , kN ; t+ dΓ(ε)(r)(kR), g, E),

ω̃
(0)
0,0(t, g, E) = g2

[∫ dk|v(k)|2
2 + t+ ε(k)− E −

∫ dk|v(k)|2
2 + ε(k)− E

]
,

ω̃
(0)
1,1(k, q; t, g, E) = g2

2 + t− E
+ g2

2 + t+ ε(k) + ε(q)− E ,

ω̃
(0)
2,0(k, q; t, g, E) = 1

2

[
g2

2 + t+ ε(k)− E + g2

2 + t+ ε(q)− E

]
,

and ω̃(0)
0,2(k, q; t, g, E) = ω̃

(0)
2,0(k, q; t, g, E), we have, by Theorem 2.49 the for-

mula

H̃g,E = dΓ(ε)− λg,E −Op(ω̃(0, g, E)),

λg,E = E + g2
∫ dk|v(k)|2

2 + ε(k)− E ,

on Dfin, and the extension to D(dΓ(ε)) is uniquely determined by continuity
with respect to the graph norm, according to Theorem 2.18. We have

ω̃(r)
m,n(kM , kN , kR ; t, g, E)

6
g2(m+ n)!

m!n! [1 + dΓ(1 ∧ ε)(m+r)(kMtR)]−m2 [1 + dΓ(1 ∧ ε)(n+r)(kN tR)]−n2 .
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Therefore, by Theorem 2.18, we find ω̃(t, g, E) ∈ W. Specifically,

‖ω̃(t, g, E)0,0‖W = sup
s>0
|ω̃(0)

0,0(s+ t, g, E)| 6 g2‖ε−
1
2v‖2

L2(M) 6 g2,

‖(ω̃(t, g, E)m,n)m+n=2‖W 6 4g2‖(1 ∨ ε− 1
2 )v‖2

L2(M) 6 4g2,

where the second bound is a consequence of Theorem 2.18. In fact, we find
that ω̃ ∈ WΣ

η for any η > 0, with the bound

‖(ω̃(t, g, E)m,n)m+n=2‖WΣ
η
6

∑
m+n+u+v=2

g2 (m+ u+ n+ v)!
(m+ u)!(n+ v)!

4u+v

ηm+n . (56)

We now observe that, since ∂Eλg,E = 1 + O(g2), the mapping λg(E) = λg,E
is bi-holomorphic from the set λ−1

g (D1/4) to the set D1/4. More precisely,

Lemma 2.46. Let λ : D1/2 → C be holomorphic and let 0 6 c < 1. Suppose

|λ(0)|+ sup
E∈D1/2

|λ(E)− E| 6 c2−4. (57)

Then the mapping λ�λ−1(D1/4) : λ−1(D1/4)→ D1/4 is biholomorphic.

Proof. when |E| 6 5/16, it follows from Cauchy’s estimate, where we use a
contour of radius 3/8, that |λ′(E)− 1| 6 c. It follows that the real part of λ
is injective in D5/16. Furthermore, if E ∈ λ−1(D1/4), then we have

1/4 > |λ(E)| > |E| − |λ(E)− E| > |E| − 2−4,

which implies E ∈ D5/16. We conclude that λ�λ−1(D1/4) is injective.
We will now argue that λ�λ−1(D1/4) : λ−1(D1/4) → D1/4 is surjective, so

pick E0 ∈ D1/4. Consider the auxiliary function g : D5/16 → C given by
g(E) = E + [E0 − λ(E)], which satisfies |g′(E)| = |1− λ′(E)| 6 c. If we can
show that there is t ∈ (0, 1) such that g maps D̄t5/16 into D̄t5/16, we conclude
that g is a contraction on D̄t5/16, and therefore, according to the Banach fixed
point theorem, that g has a unique fixed point, say E ′. But g(E ′) = E ′ if
and only if λρ(E) = E0, so this implies that λρ�λ−1

ρ (D1/4) is onto.
It remains to show that g maps D̄t5/16 into D̄t5/16 for some t ∈ (0, 1). But

this is true for any t > 3/5, as follows from the inequality

|g(E)| 6 |g(E)− g(0)|+ |g(0)| 6 |E| sup
E∈D1/2

|λ(E)− E|+ |E0 + λ(0)|

6
5t
16

 sup
E∈D1/2

|λ(E)− E|+ 4
5t + |λ(0)|

 6 5t
16 ·

69
80t ,
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which in turn is consequence of inequality (57). Thus, when t > 69/80, we
conclude that g maps D̄t5/16 into D̄t5/16. Since any bijective holomorphic
function is biholomorphic, this finishes the proof.

Defining ω(t, g, E) = ω̃(t, g, λ−1
g (E)) and Hg,E = H̃g,λ−1

g (E), we then find

Hg,E = dΓ(ε)− E −Op(ω(0, g, E))
= dΓ(ε)− ω(0)

0,0(dΓ(ε), g, E))− E −
∑

m+n=2
Op(ωm,n(0, g, E))

= Tg,E(dΓ(ε))−Wg,E,

Tg,E(t) = t− ω(0)
0,0(t, g, E)− E,

Wg,E =
∑

m+n=2
Op(ωm,n(0, g, E)).

where we recall formula (54). We see that E is an eigenvalue of H init
g if and

only if 0 is an eigenvalue of Hg,λg(E). If we put X = [0,∞) × X̃, with X̃ =
{(g, E) ∈ C2 |E| < 1/4}, then we find ω ∈ WΣ,X

η and now it is not difficult
to realize that ω ∈ W∂

η . We have the bound ‖ω‖W∂
η
6 2‖ω‖WΣ,X

η
, with

‖ω‖WΣ,X
η

bounded by the right hand side of (56). Whenever convenient, we
will write Tg,E = Tg,E(dΓ(ε)), identifying the function Tg,E with the operator
it induces by spectral calculus. We now want to argue that ω lies in a certain
set which will allow us to set up an iterated Grushin problem for Hg,E, and
in order to do this, we introduce some notation.

Definition 2.47. Fix η = 1/4 and ρ ∈ (0, 1) such that max(ρ, ρα) = 2−8.
Let θ ∈ C1(R) be a function such that 0 6 θ 6 1, θ(t) = 1 if 0 6 t 6 3/4,
θ(t) = 0 if 1 6 t and −16/π 6 θ′(t) 6 0. Define functions χ(t) = sin(π2 θ(t)),
χ̄(t) = cos(π2 θ(t)), and denote also χ = χ(dΓ(ε)), χ̄ = χ̄(dΓ(ε)). Finally, let
χρ(t) = χ(t/ρ), χ̄ρ(t) = χ̄(t/ρ) and put χρ = χρ(dΓ(ε)), χ̄ρ = χ̄ρ(dΓ(ε)).

Define a unitary operator Uρ in Fsym by

(Uρψ)(n)(k1, . . . , kn) = ρ−
d
2ψ(n)(ρ−1k1, . . . , ρ

−1kn).

and set X = Y = Fsym, D = D(dΓ(ε)) along with

χ1 = U∗ρχρ = χU∗ρ , χ2 = χρUρ = Uρχ,
χ̄1 = U∗ρ χ̄ρ = χ̄U∗ρ , χ̄2 = χ̄ρUρ = Uρχ̄,
W = ran 1[3/4,∞)(dΓ(ε)), V = ran 1[3ρ/4,∞)(dΓ(ε)).

Let Sg,E = U∗ρTg,EUρ and define

T̄g,E = Tg,E�V : V ∩D → V ,

H̄g,E = (Sg,E − χ̄1Wχ̄2)�W : W ∩D → W
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Making the dependence on v explicit, in accordance with Remark 2.7, we
finally define B(δ, ε, u) to consist of those w ∈ W∂

1/4(u) which have an even
number of creations and annihilations, i.e. w = (wm,n)m+n∈2N, and addition-
ally fulfill

sup
t,g,E
|∂tw(0)

0,0(t, g, E)| 6 δ, ‖(wm,n)m+n∈2N‖W∂
1/4
6 ε,

w
(0)
0,0(0, g, E) = 0, ‖(1 ∨ ε−1−α)u‖L2(Rd) 6 1.

Here, we recall formula (55).

Having introduced all of the relevant definitions, we see that we have
ω ∈ B(2g2, 210g2, v). Furthermore, we have in V the relation

dΓ(ε)− E = 1
3dΓ(ε) + 2

3dΓ(ε)− E > 1
3dΓ(ε)

if |E| 6 ρ/2, so d̄Γ(ε)− E = (d̄Γ(ε)− E)�V is invertible. We conclude that,
if δ 6 ρ/8, then

T̄g,E = [1− ω(0)
0,0(dΓ(ε), g, E))(d̄Γ(ε)− E)−1](d̄Γ(ε)− E)

is invertible. Furthermore, since we have ‖χ̄1Wg,Eχ̄2‖op 6 ε, we find similarly
that

H̄g,E = [1− χ̄1Wg,Eχ̄2S̄
−1
g,E]S̄g,E

is invertible if ε 6 ρ/16. Thus, whenever |E| 6 ρ/2, δ 6 ρ/8 and ε 6 ρ/16,
we find that T̄g,E and H̄g,E are bijective, and

‖χ̄1T̄
−1
g,Eχ̄2‖op 6

16
ρ
, ‖χ̄2H̄

−1
g,Eχ̄1‖op 6

32
ρ
. (58)

2.6.3 Contraction Property

Throughout this subsubsection, we will write ω>2 = (ωm,n)m+n∈2N whenever
ω ∈ W.

Theorem 2.48. Suppose ω ∈ B(δ, ε, v) with δ 6 2−3ρ, ε 6 ρ22−11 and
|E| 6 ρ/2. Then (Hg,E, Tg,E, Sg,E, χ1, χ̄1, χ2, χ̄2,U ,V ) is Feshbach data, so
we may define the Feshbach map

Fg,E = Sg,E − χ1Wg,Eχ2 − χ1Wg,Eχ̄2H̄
−1
g,Eχ̄1Wg,Eχ2.

Defining λρ : Dρ/2 → C by λρ(E) = ρ−1(E + 〈Ω,Wg,Eχ̄2H̄
−1
g,Eχ̄1Wg,EΩ〉),

we find that the mapping λρ�λ−1
ρ (D1/4) : λ−1

ρ (D1/4) → D1/4 is biholomorphic,
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so we may consider the renormalization map Rg,E = 1
ρ
Fg,λ−1

ρ (E). We find
ω′ ∈ B(δ + ε

2 ,
ε
2 , v
′) such that

Rg,E = dΓ(ε)− E −Op(ω′(0, g, E)).

Proof. We already argued that (Hg,E, Tg,E, Sg,E, χ1, χ̄1, χ2, χ̄2,U ,V ) is Fes-
hbach data in the previous subsubsection, so we turn to the statement about
the function λρ. We find from equation (58) that

|〈Ω,Wg,Eχ̄2H̄
−1
g,Eχ̄1Wg,EΩ〉| 6 32ε2

ρ
6 2−8ρ,

We may conclude from Lemma 2.46 that the mapping λ : D1/2 → C given by
λ(E) = λρ(ρE) induces a biholomorphic map λ�λ−1(D1/4) : λ−1(D1/4)→ D1/4.
But this is equivalent to λρ�λ−1

ρ (Dρ/4) : λ−1
ρ (Dρ/4)→ D1/4 being biholomorphic,

which was what we wanted.
Next, we observe that

Sg,E − 〈Ω,Wg,Eχ̄2H̄
−1
g,Eχ̄1Wg,EΩ〉

= ρdΓ(ε)− ω(0)
0,0(ρdΓ(ε), g, E)− ρλρ(E),

so

Fg,λ−1
ρ (E) = ρdΓ(ε)− ω(0)

0,0(ρdΓ(ε), g, λ−1
ρ (E))− ρE

− [χ1W̃g,λ−1
ρ (E)χ2 − 〈Ω, W̃g,λ−1

ρ (E)Ω〉],
W̃g,λ−1

ρ (E) := Wg,λ−1
ρ (E) +Wg,λ−1

ρ (E)χ̄2H̄
−1
g,λ−1

ρ (E)χ̄1Wg,λ−1
ρ (E).

We will now find ω̃ ∈ W∂
2η such that Op(ω̃(0, g, E)) = W̃g,λ−1

ρ (E), where

‖ω̃‖WΣ,X
2η
6 2ε, ‖∂tω̃‖WΣ,X

2η
6 3 · 23ρ−1ε,

‖ω̃0,0‖WΣ,X
η
6 ρε, ‖∂tω̃0,0‖WΣ,X

η
6 2−3ε.

Note first that

χ̄2H̄
−1
g,Eχ̄1 =

χ̄2
ρ

Tg,E − E

∞∑
J=0

(
Wg,E

χ̄2
ρ

Tg,E

)J
,

which implies

Wg,E +Wg,Eχ̄2H̄
−1
g,Eχ̄1Wg,E =

∞∑
J=1

(
Wg,E

χ̄2
ρ

Tg,E

)J−1

Wg,E.
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We will take the notational liberty of identifying the direct sum of multipli-
cation operators χ̄2

ρ

Tg,E
with its symbol, i.e.

[
χ̄2
ρ

Tg,E
](r)0,0(kR ; t) :=

χ̄2
ρ(t+ dΓ(ε)(r)(kR))

Tg,E(t+ dΓ(ε)(r)(kR)) .

From the definition of χ̄, we have

‖
χ̄2
ρ

Tg,E
‖WΣ,X

η
6

4
3ρ, ‖∂t

χ̄2
ρ

Tg,E
‖WΣ,X

η
6

16δ
9ρ2 + 8 · 4

3ρ 6
98
9ρ 6

11
ρ
.

Then we find from Theorem 2.39 that

‖[ω>2 #
χ̄2
ρ

Tg,E
]# J−1 #ω>2‖WΣ,X

2η
6

[
4 4

3ρε
]J−1

ε 6 ρJ−1ε,

so Theorem 2.38 ensures that ω̃ := ∑∞
J=1[ω>2 # χ̄2

ρ

Tg,E
]# J−1 #ω>2 is well de-

fined and satisfies

Op(ω̃) =
∞∑
J=1

(
Wg,E

χ̄2
ρ

Tg,E − E

)J−1

Wg,E, ‖ω̃‖WΣ,X
2η
6 2ε.

Furthermore, according to formula (53), we have

‖∂tω̃‖WΣ,X
η
6
∞∑
J=1

εJ(J − 1)4J−1‖∂t
χ̄2
ρ

Tg,E
‖WΣ,X

η
‖
χ̄2
ρ

Tg,E
‖J−2
WΣ,X
η

+
∞∑
J=1

εJJ4J−1‖
χ̄2
ρ

Tg,E
‖J−1
WΣ,X
η

6
∞∑
J=1

εJJ4J−1 24

ρ
( 4
3ρ)J−2 = 12ε

ρ

∞∑
J=1

J(16ε
3ρ )J−1 6

24ε

ρ
.

Finally, noting that ω̃0,0 = ∑∞
J=2([ω>2 # χ̄2

ρ

Tg,E
]# J−1 #ω>2)0,0, we find similarly

‖ω̃0,0‖WΣ,X
η
6 ε

∞∑
J=2

(16ε
3ρ )J−1 6 2ε16ε

3ρ 6 2−7ρε,

‖∂tω̃0,0‖WΣ,X
η
6

12ε
ρ

∞∑
J=2

J(16ε
3ρ )J−1 6

12ε
ρ

64ε
3ρ 6 2−3ε.

We now observe that

χ1 Op(ω̃)χ2 = χU∗ρ Opv(ω̃)Uρχ2 = Opvρ(χ# ω̃ρ #χ),
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where we put vρ(k) := ρ1−α1[0,1](|k|)v(ρk) and

(ω̃ρ)(r)
m,n(kM , kN , kR ; t, g, E) := ρ( 1

2 +α)(m+n)ω̃(r)
m,n(ρkM , ρkN , ρkR ; ρt, g, E)

and made the dependence of Op on v explicit. Note that

‖ε−
1
2−αvρ‖2 =

∫
|k|61

dk ρ3|v(ρk)|2
ε(ρk)1+2α =

∫
|k|6ρ

dk|v(k)|2
ε(k)1+2α 6 ‖ε

− 1
2−αv‖2 6 1,

and that we have, according to Theorem 2.18, the inequality

‖[w̃(r)
m,n(kM , kN , kR ; t, g, E)]u,v‖W 6 ‖ω̃m+u,n+v‖L∞‖(1 ∨ ε−

1
2 )v‖u+v

6 ηm+n+u+v‖ω̃‖W∂
η
.

Recalling that η = 1/4 and ρα 6 2−8, we find

‖[ω̃ρ]>2‖WΣ,X
η
6

∑
m+n+u+v∈2N

(2ρ 1
2 +α)m+n(4η · 2ρ 1

2 +α)u+v ‖ω̃m+u,n+v‖L∞
(2η)m+n+u+v

6 ‖ω̃>2‖WΣ,X
2η

∑
m+n+u+v∈2N

(2ρ 1
2 +α)m+n+u+v

6
ρ

27‖ω̃>2‖WΣ,X
2η
6
ρε

26

where we used that
∑

m+n+u+v∈2N
(2ρ 1

2 +α)m+n+u+v 6
∞∑
l=1

(4ρ1+2α)l(2l)3 6
∞∑
l=1

8(32ρ1+2α)l

= 28ρ1+2α

1− 25ρ1+2α 6 29ρ1+2α 6
ρ

27 .

Similarly, we find ‖[∂tω̃ρ]>2‖WΣ,X
η
6 2−7ρ‖([∂tω̃ρ]>2‖WΣ,X

2η
6 2−3ρε, along with

‖[ω̃ρ]0,0‖WΣ,X
η
6 2−7ρε, ‖[∂tω̃ρ]0,0‖WΣ,X

η
6 ρ‖∂tω̃0,0‖WΣ,X

η
6 2−3ρε.

Putting everything together, we define ω′m,n := ρ−1(χ# ω̃ρ #χ)m,n for m +
n ∈ 2N, and

ω′0,0 := ρ−1ω
(0)
0,0(ρt, g, λ−1

ρ (E))− ρ−1((χ# ω̃ρ(t, g, λ−1
ρ (E)) #χ)0,0

− ρ−1〈Ω,Wg,λ−1
ρ (E)χ̄2H̄

−1
g,λ−1

ρ (E)χ̄1Wg,λ−1
ρ (E)Ω〉).

With these definitions, we have Rg,E = dΓ(ε)− E −Op(ω′), and we find

‖ω′>2‖W∂
η
6 ρ−1

[
16‖[ω̃ρ]>2‖WΣ,X

η
+ ‖[∂tω̃ρ]>2‖WΣ,X

η

]
6 [2−2 + 2−3]ε 6 ε/2.
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We now want to argue that ‖∂tω′0,0‖WΣ
η
6 δ + ε/2. Note first that

ω
′(r)
0,0 (t, g, E) =

[ωρ](r)0,0(t, g, E) + χ(r)(t)[ω̃ρ](r)0,0(t, g, E)χ(r)(t)− [ω̃ρ](0)
0,0(0, g, E)

ρ
.

where ‖∂t[ωρ]0,0‖W∂
η

= ρ‖∂tω0,0‖W∂
η
6 ρδ by assumption. Furthermore, ac-

cording to formula (53), we have

‖∂t(χ#[ω̃ρ]0,0 #χ)‖WΣ,X
η
6 24‖[ω̃ρ]0,0‖WΣ,X

η
+ ‖[∂tω̃ρ]0,0‖WΣ,X

η
6 2−2ρε,

and therefore in particular ‖∂tω′0,0‖WΣ
η
6 δ+ ε/2. This was what we wanted.

2.7 Appendix
2.7.1 Standard Version of Wick’s Theorem

It is sometimes useful to have Wick’s Theorem available for standard cre-
ation/annihilation symbols. We observe that if ω ∈ Wst, then R(Op(ω)) ⊆
D(Op(ω)), so one may ask if the composition of finitely many standard
creation/annihilation operators Op(ωJ) · · ·Op(ω1) is again a standard cre-
ation/annihilation operator, i.e. if there is ω ∈ Wst such that Op(ω) =
Op(ωJ) · · ·Op(ω1).

Note that the standard creation/annihilation operator Op(ωJ) · · ·Op(ω1)
is uniquely determined by the action of the operators Op(ωJ) · · ·Op(ω1)Pl
as l ranges over all integers, where Pl is the projection onto F (l)

sym. How-
ever, any standard creation/annihilation symbol is turned into a bounded
creation/annihilation symbol when restricted to a subspace of finite particle
number. That is, if we have ω ∈ ⊕m+n6hWst

m,n, and P6l is the projection
onto ⊕l

k=0F (k)
sym, then we have the identity Op(ω)Pl = Op(ω6l), where

(ω6l)(r)
m,n =

ω(r)
m,n, if n+ r 6 l,m+ n 6 h

0, otherwise

But the conditions m + n 6 h and n + r 6 l force only finitely many com-
ponents of ω6l to be non-zero. In fact, any non-zero component must have
r 6 l,m 6 h, n 6 h, and therefore ‖ω6l‖W 6 (h + l)!‖ω‖Wst . Furthermore,
Op(ω)P6l = P6l+h Op(ω)Pl.

In conclusion, if we put

(ωl)(r)
m,n =

ω(r)
m,n, if n+ r = l,m+ n 6 h

0, otherwise ,
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and we have ωJ , . . . , ω1 ∈ ⊕
m+n6hWst

m,n, we may compute the action of
the standard creation/annihilation operator Op(ωJ) · · ·Op(ω1) by computing
the action of Op(ωJ6l+(j−1)h) · · ·Op(ω1

l ) as l ranges over all integers. But
this problem now has a solution in terms of Theorem 2.26, and all that
remains to be checked is that the resulting symbol is in fact a standard
creation/annihilation symbol.

Theorem 2.49. If ωJ , . . . , ω1 ∈ Wst, we may define ωJ# · · ·#ω1 ∈ Wst by
the formula given in Theorem 2.26. The mapping # : Wst ×Wst → Wst is
an associative product, and we have Op(ω2#ω1) = Op(ω2) Op(ω1).

Proof. In light of Theorem 2.26, it remains only to check that ω ∈ Wst, where
we put ω = ωJ# · · ·#ω1. For this, it suffices to assume ω1, . . . , ωJ > 0.
Define UJ = I to be the identity, and, for 1 6 j 6 J − 1, define

Uj : F (mj+pj+rj+sj) → F (nj+1+qj+1+rj+1+sj+1)

to be the unitary permutation operator given by

(Ujψ)(kNj+1 , kQj+1 , kRj+1 , kSj+1) = ψ(kMj
, kPj

, kRj , kSj
),

Note that Uj depends on the partitions

MJ t . . . tM1 = M , NJ t . . . tN1 = N ,

PJ t . . . tP1 = L , QJ t . . . tQ1 = L ,

where Pk ∩Qi = ∅, k > i.
Using Remark 2.29, we have, with the notation ∏J

j=1 aj = aJ · · · a1, the
inquality

Op′(γm,nω(r)
m,n) 6

∑
l∈N0

MJt...tM1=M
NJt...tN1=N
PJt...tP1=L
QJt...tQ1=L
Pk∩Qi=∅,k>i

 1
m!n!(l!)2

J∏
j=1

mj!nj!pj!qj!
(
mj + pj
pj

)(
nj + qj
qj

)
· l!
 J∏
j=1

Uj Op′(γmj+pj ,nj+qjω
j(rj+sj)
mj+pj ,nj+qj)

 .
Here, A 6 B should be understood in the sense Aφ(n+r) 6 Bφ(n+r) for all
φ(n+r) > 0. We have put γ = 1 ∨ ε− 1

2 and

rj =
∑
j>i>1

mi +
∑

J>k>j

nk + r, sj =
j−1∑
i=1

(pi − qi).
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In conclusion,

‖ωm,n‖Wst
m,n
6

∑
mJ+...+m1=m
nJ+...+n1=n
pJ ,...,p1∈N0
qJ ,...,q1∈N0

 J∏
j=1

(
mj + pj
pj

)(
nj + qj
qj

) J∑
j=1

pj

!

·
J∏
j=1
‖ωjmj+pj ,nj+qj‖Wst

mj+pj,nj+qj
.

There is h ∈ N0 such that, for all 1 6 j 6 J , we have mj + pj + nj + qj 6 h
for all non-zero components of ωj, so this bound suffices in order to ensure
that ω ∈ Wst.
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3 Schur Complements, Feshbach Maps,
Grushin Problems, and Spectral
Renormalization

Jonas Dahlbæk and Oliver Matte

Abstract

It is shown that the smooth Feshbach method can be posed as
a Grushin problem, and that the spectral theoretic renormalization
group can be phrased in the language of iterated Grushin problems.
Based on this, an abstrat account of the spectral theoretic renormal-
ization group is given.

3.1 Overview
We review some standard tools related to the inversion of block operator
matrices as relevant for applying spectral theoretic renormalization group
techniques. In Subsection 3.2 we start with the classical Schur complement
theorem [36] which essentially results from applying the Gauss algorithm
to a two-by-two block operator matrix. The Feshbach projection method
[7] is an example of the Schur complement theorem; see Corollary 3.2. In
Subsection 3.3 we infer another theorem on the inversion of block operator
matrices from the Schur complement theorem that gives rise to a general
strategy in spectral analysis which is commonly referred to as the Grushin
problem method, mainly following J. Sjöstrand’s nomenclature; see [39] and
the references given there. We shall demonstrate in Subsection 3.4 that the
smooth Feshbach method introduced in [3] and generalized in [17] can be seen
as a special case of a Grushin problem, which might reveal a handy framework
for the method. After that, in Subsection 3.5, we consider iterated Grushin
problems following the presentation in [39]. While all preceding results are
pure linear algebra, the corollary on inductive applications of infinitely many
Grushin problems in Subsection 3.5 will actually be the first point in this
appendix, where norms are introduced on the involved vector spaces. In
the final Subsection 3.6 we explain how the spectral renormalization group
strategy based on the smooth Feshbach map [3] fits into the framework of
iterated Grushin problems.

The following presentation is mainly motivated by [3, 17, 39].

84



3.2 Schur complements
To recall the Schur complement theorem [36] we let X1,X2,Y1,Y2 denote
real or complex vector spaces and suppose that

A : X1 → Y1, B : X2 → Y1,

C : X1 → Y2, D : X2 → Y2,

are linear operators with A being bijective. We define the operator block
matrix

M :=
(
A B
C D

)
: X1 ⊕X2 −→ Y1 ⊕ Y2. (59)

We further introduce the canonical projections πZi : Zi ⊕ Z2 → Zi and
injections ιZi : Zi → Z1 ⊕Z2, Zi ∈ {Xi,Yi}, i = 1, 2, and write

Q(B) :=
(
−A−1B
1X2

)
, Q](C) :=

(
−CA−1

1Y2

)
.

Finally, we introduce the Schur complement of A in M by

S := D − CA−1B : X2 −→ Y2.

The first formula given in Part (4) of the following theorem is known
as the (Schur-)Banachiewicz inversion formula; see, e.g., [34] for a histori-
cal discussion of early developments related to the Schur complement and
references.

Theorem 3.1 (Schur complement theorem). Under the assumptions of the
preceding paragraphs the following assertions hold true:

(1) The maps

Q(B)�kerS: kerS → kerM and πX2�kerM : kerM → kerS

are mutually inverse bijections.

(2) Q](C) maps ranM into ranS, ιY2 maps ranS into ranM , and the induced
maps

ι̂Y2 : cokerS −→ cokerM, y2 + ranS 7−→ ιY2y2 + ranM,

Q̂](C) : cokerM −→ cokerS, y + ranM 7−→ Q](C)y + ranS,

between cokerM := (Y1 ⊕ Y2)
/

ranM and cokerS := Y2
/

ranS are mu-
tually inverse bijections.
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(3) M is bijective, if and only if S is bijective. In the affirmative case

M−1 = ιX1A
−1πY1 +Q(B)S−1Q](C), πX2M

−1ιY2 = S−1.

Proof. Applying a block operator analogue of Gauss’ algorithm we obtain(
1Y1 0
−CA−1

1Y2

)
︸ ︷︷ ︸

=:R](C)

M

(
1X1 −A−1B

0 1X2

)
︸ ︷︷ ︸

=:R(B)

=
(
A 0
0 S

)
. (60)

Here R(B) is a bijection on X1⊕X2 and R](C) is a bijection on Y1⊕Y2; in
fact, their inverses are given by R(−B) and R](−C), respectively. Moreover,
the resulting identities

MQ(B) = R](−C)ιY2S, πY2R
](C)M = SπX2R(−B) = SπX2 , (61)

ιX1A
−1πY1R

](C)M = ιX1πX1R(−B) = 1X1⊕X2 −Q(B)πX2 ,

and the trivial relation πX2Q(B) = 1X2 imply Part (1). If M and S are
injective, then the formulas asserted in Part (3) are obtained by solving (60)
forM−1. Part (2) follows from the immediate Q](C)ιY2 = 1Y2 , the bijectivity
of R(B), and

MQ(B) = ιY2S, Q](C)MR(B) = SπX2 ,

MR(B)ιX1A
−1πY1 = R](−C)ιY1πY1 = 1Y1⊕Y2 − ιY2Q

](C).

Here the first relation follows trivially from the first one in (61) and the other
two can again be read off from (60).

The previous theorem can be applied to the spectral analysis of a Hamil-
ton operator H in case a good guess for a projection P onto an approximate
spectral subspace is at hand [7]:

Corollary 3.2 (Feshbach projection method). Let X be a vector space,
dom(H) ⊂ X a subspace, and let H : dom(H) → X be a linear operator.
Assume that P : X → X is a projection such that P dom(H) ⊂ dom(H).
Set P := 1X − P and assume further that H := PH�ranP is bijective from
P dom(H) onto ranP . Finally, define the Feshbach operator on the domain
dom(F ) = P dom(H) by

F := PH�ranP −PHH
−1
PH�ranP .

Then the following maps are mutually inverse bijections,

(P −H−1
PHP )�kerF : kerF 7−→ kerH, P�kerH : kerH 7−→ kerF.
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Proof. Choose X1 := P dom(H), X2 := P dom(H), Y1 := PX , and Y2 :=
PX and A := H, B := PH �ranP , C := PH �ranP , D := PH �ranP in
Theorem 3.1. Then F = S is the Schur complement of H in H = M .

In fact, the analogue of the Schur-Banachiewicz formula is usually stated
as a part of the Feshbach projection method as well. We leave its straight-
forward translation into the setting of Corollary 3.2 to the reader.

Often the projection P in Corollary 3.2 is a spectral projection of a self-
adjoint operator T in a Hilbert space and H − T is a small perturbation
of T in the operator or form sense. A detailed formulation of the Feshbach
projection method taylor-made for this situation can be found in [4]; see also
Example 3.5(2) below.

3.3 Grushin problems
In a Grushin problem one assumes invertibility of a block matrix M as in
(59) and exploits a resulting criterion for the invertibility of A to analyze the
given operator A. The entries B, C, and D of M stem from some clever,
problem-dependent ansatz. Often, D = 0, B is the projection onto a space
spanned by approximate eigenvectors of A for the eigenvalue 0, and C is the
map dual to B. For a discussion of various examples we refer to [39].

We again consider a situation as in the beginning of the previous subsec-
tion, but with no assumptions other than linearity imposed on A.

Theorem 3.3 (Grushin problem). Let M be a block operator matrix of the
form (59), assume that M : X1 ⊕X2 → Y1 ⊕ Y2 is bijective, and write the
block matrix decomposition of M−1 : Y1 ⊕ Y2 →X1 ⊕X2 as

M−1 =: E =:
(
E E2
E1 E12

)
. (62)

Then the following assertions hold true:

(1) The maps

C�kerA: kerA −→ kerE12 and E2�kerE12 : kerE12 −→ kerA

are mutually inverse bijections.

(2) E1 maps ranA into ranE12, B maps ranE12 into ranA, and the induced
maps

Ê1 : cokerA −→ cokerE12 and B̂ : cokerE12 −→ cokerA

are mutually inverse bijections.
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(3) A : X1 → Y1 is bijective, if and only if E12 : Y2 → X2 is bijective. In
the affirmative case E−1

12 = S is the Schur complement of A in M and
A−1 = E − E2E

−1
12 E1.

Proof. We consider the larger block operator matrix

M̂ :=

A B 0
C D −1Y2

0 −1X2 0

 : X1 ⊕X2 ⊕ Y2 → Y1 ⊕ Y2 ⊕X2.

Here the sub-blockM =
(
A B
C D

)
is bijective by assumption and D̂ :=

(
D −1Y2
−1X2 0

)
has the obvious left and right inverse D̂−1 =

(
0 −1X2
−1Y2 −D

)
. In view of (62),

the Schur complement of M in M̂ is −E12. The Schur complement of D̂ in
M̂ is A. Hence, by Theorem 3.1, the maps 1X1

0
C�kerA

 : kerA −→ ker M̂ and πX1 : ker M̂ −→ kerA

are mutually inverse bijections, and so areE2�kerE12

0
1Y2

 : kerE12 −→ ker M̂ and πY2 : ker M̂ −→ kerE12.

This implies Part (1), and Part (2) can be proved in a similar fashion. If A
and E12 are bijective, then we can employ the Schur-Banachiewicz formula
in Theorem 3.1(4) to both M and E to find that E12 = S−1 and A−1 =
E − E1E

−1
12 E2.

Remark 3.4. The Schur complement theorem and the above theorem on
Grushin problems are equivalent. For we derived Theorem 3.3 from The-
orem 3.1 in the preceding proof, and to go in the opposite direction we only
have to observe that, for bijective A : X1 → Y1, the block operator matrices

M̃ :=

 S −CA−1
1Y2

A−1B A−1 0
−1X2 0 0

 and

 0 0 −1X2

0 A B
1Y2 C D

 (63)

are left and right inverses of each other. Then Parts (1) and (2) of The-
orem 3.3 imply the corresponding parts of Theorem 3.1, and the Schur-
Banachiewicz formula follows upon computing the Schur complement of S in
M̃ .
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The statements of Theorem 3.3 can alternatively be read off from the
eight relations expressing that ME and EM are block identity matrices; see
[39].

For a better understanding of the smooth Feshbach method introduced
in the next subsection we demonstrate how the Feshbach projection method
fits into the framework of Grushin problems [39]:
Example 3.5. Under the hypotheses of Corollary 3.2 the following holds:
(1) Define F as in the statement of that corollary. Then, as a special case of

(63), the block matrix(
F P − PHPH−1

P

−P +H
−1
PHP PH

−1
P

)
,

which maps (P dom(H))⊕X into (PX )⊕dom(H) is invertible with in-
verse

(
0 −P
P H

)
. Applying Theorem 3.3 we re-obtain the assertion of Corol-

lary 3.2.

(2) In some applications of the Feshbach projection method the fact that P is a
projection may cause technical issues [4]. Hence, it is desirable to have the
freedom to choose more general operators in X replacing P and P . Since
no distinguished subspace like PX might then be available anymore, it is
natural to start from the formulation of the Feshbach projection method
as a Grushin problem and try to extend the matrices appearing in Part (1)
to the full spaces dom(H) ⊕X and X ⊕ dom(H), respectively, before
generalizing P .
To do so, let us assume, in addition to the hypotheses of Corollary 3.2, that
H = T +W , where T,W : dom(T ) := dom(H)→X and T is reduced by
PX in the sense that TP ⊂ TP and TP ⊂ PT . Then PTP = PTP = 0
on dom(T ). We further suppose that T := T�P dom(T ): P dom(T ) → PX

is bijective. Adding the mutually inverse blocks T and T
−1 as direct

summands to the two matrices appearing in Part (1), we then observe
that(

PT
−1
P −P

P H

)
and

(
F ′ P − PWPH

−1
P

−P +H
−1
PWP PH

−1
P

)
(64)

are left and right inverses to each other, where the extended Feshbach
operator F ′ : dom(T )→X is given by

F ′ := T + PWP − PWPH
−1
PWP.

From Theorem 3.3 we now obtain the assertion of Corollary 3.2 with F
replaced by F ′.
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3.4 The smooth Feshbach method
As anticipated in Example 3.5(2) the smooth Feshbach method has been in-
troduced in [3] as a tool to overcome technical issues caused by the choice of
a sharp spectral projection P in the application of the Feshbach projection
method in [4]. It is a generalization of Example 3.5(2). In its original formu-
lations [3, 17] the projections P and P are replaced by two linear operators χ
and χ satisfying χχ = χχ and χ2 + χ2 = 1. In important examples, χ and χ
are given by a smooth partition of unity on the spectrum of some self-adjoint
operator, which explains the nomenclature “smooth Feshbach method”.

We shall consider a slightly generalized setting:

Definition 3.6. Let X ,Y be real or complex vector spaces, dom(T ) ⊂X
and dom(S) ⊂ Y subspaces, and letH,T : dom(T )→X , S : dom(S)→ Y ,
χ1, χ1 : X → Y , and χ2, χ2 : Y →X be linear maps satisfying

χ2χ1 = χ2χ1, χ2χ1 + χ2χ1 = 1X , (65)
χ1χ2 = χ1χ2, χ1χ2 + χ1χ2 = 1Y , (66)
χ1T ⊂ Sχ1, χ1T ⊂ Sχ1, χ2S ⊂ Tχ2, χ2S ⊂ Tχ2. (67)

This includes the assumptions χ1 dom(T ) ⊂ dom(S), χ1 dom(T ) ⊂ dom(S)
and χ2 dom(S) ⊂ dom(T ), χ2 dom(S) ⊂ dom(T ). Assume in addition that
V ⊂ X , W ⊂ Y are subspaces such that ranχ2 ⊂ V , ranχ1 ⊂ W , χ1V ⊂
W , χ2W ⊂ V , T maps dom(T ) ∩ V into V , and S maps dom(S) ∩W into
W . Then we abbreviate

T := T�V : V ∩ dom(T )→ V , S := S�W : dom(S) ∩W → W ,

H := (S + χ1Wχ2)�W : W ∩ dom(S)→ W ,

with W := H−T . In case H is bijective from W ∩dom(S) to W , we further
introduce the associated smooth Feshbach operator,

F := S + χ1Wχ2 − χ1Wχ2H
−1
χ1Wχ2.

which is well-defined on the domain dom(S), as well as the operators

Q := (χ2 − χ2H
−1
χ1Wχ2)�dom(S): dom(S)→ dom(T ),

Q] := χ1 − χ1Wχ2H
−1
χ1 : X → Y .

In the case W = 0 with bijective T and S, analogues of the matrices in
(64) are (after some block permutations) now given by

T :=
(
T −χ2

−χ1 −χ1T
−1
χ2

)
, T−1 =

(
χ2S

−1
χ1 −χ2

−χ1 −S

)
, (68)

90



where T : dom(T ) ⊕ Y → X ⊕ dom(S). Here the second relation in (68)
can easily be verified with the help of (65)–(67) and the definitions of T and
S. To see what happens when we add the perturbation W we first prove a
lemma:

Lemma 3.7. In the situation of Definition 3.6, assume that S : dom(S) ∩
W → W is bijective. Then X := 1X +Wχ2S

−1
χ1 : X →X is bijective, if

and only if H : W ∩ dom(S)→ W is bijective. In the affirmative case

X−1 = 1X −Wχ2H
−1
χ1. (69)

Proof. On the one hand, X is the Schur complement of S in

N :=
(

S χ1
−Wχ2 1X

)
: (W ∩ dom(S))⊕X 7−→ W ⊕X .

On the other hand, H is the Schur complement of 1X in N . Since both S
and 1X are bijective, Theorem 3.1 thus implies that X is bijective, if and
only if N is bijective, and that this is true, if and only if H is bijective. In the
affirmative case X−1 is given by the lower right block of N−1. Computing
this block by applying the Schur-Banachiewicz formula to 1X and its Schur
complement H, we arrive at (69).

The assertion in the next theorem thatM and E are inverses is equivalent
to the validity of eight algebraic relations. In the case χ1 = χ2, χ1 = χ2, two
of them go back to [3], another four appear in [17], while the remaining two
seem to be new. The proof of the next theorem differs from the arguments
used in [3, 17].

Theorem 3.8 (Smooth Feshbach method). Let ρ > 0. In the situation of
Definition 3.6, assume in addition that T , S, and H are bijective. Then the
operator block matrix

M :=
(

H −χ2

−ρχ1 −ρχ1T
−1
χ2

)
: dom(T )⊕ Y −→X ⊕ dom(S) (70)

is bijective, and the block decomposition of its inverse, denoted E, reads

E =
(
χ2H

−1
χ1 −ρ−1Q

−Q] −ρ−1F

)
: X ⊕ dom(S) −→ dom(T )⊕ Y . (71)

As a consequence the following statements hold true:
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(1) The maps

χ1�kerH : kerH −→ kerF and Q�kerF−→ kerH

are mutually inverse bijections.

(2) Q] maps ranH into ranF , χ2 maps ranF into ranH, and the induced
maps

Q̂] : cokerH −→ cokerF and χ̂2 : cokerF −→ cokerH

are mutually inverse bijections.

(3) H : dom(T )→X is bijective, if and only if F : dom(S)→ Y is bijective,
and in the affirmative case

F−1 = χ1T
−1
χ2 + χ1H

−1χ2, H−1 = χ2H
−1
χ1 +QF−1Q].

Proof. If the first assertion holds true, i.e., if (71) is the inverse of (70), then
Statements (1)–(3) immediately follow from Theorem 3.3.

To verify that (71) is indeed the inverse of (70) it suffices to treat the
case ρ = 1. Then we observe that M is the Schur complement of 1X ⊕X in

M :=


1X ⊕X

−W 0
0 0

1X 0
0 0 T

 ,
which maps X ⊕X ⊕ dom(T )⊕ Y into X ⊕X ⊕X ⊕ dom(S). In view
of (68) the Schur complement of T in M is

Y := 1X ⊕X +
(
W 0
0 0

)
T−1

(
1X 0
0 0

)
=
(
1X +Wχ2S

−1
χ1 0

0 1X

)
.

By Lemma 3.7, Y is bijective with Y −1 =
(
X−1 0
0 1X

)
. Since T is bijective,

Theorem 3.1 now implies that M is bijective. Since 1X ⊕X is bijective, we
further conclude that M is bijective and that E = M−1 is given by the lower
right block of M−1. Computing the latter block by applying the Schur-
Banachiewicz formula to T and its Schur complement Y , we find

E = T−1 + T−1
(
1X 0
0 0

)(
X−1 0

0 1X

)(
−W 0

0 0

)
T−1

= T−1 −
(
χ2S

−1
χ1X

−1Wχ2S
−1
χ1 −χ2S

−1
χ1X

−1Wχ2

−χ1X
−1Wχ2S

−1
χ1 χ1X

−1Wχ2

)
. (72)
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Here we again used the second relation in (68). On account of (69),

X−1Wχ2S
−1
χ1 = Wχ2S

−1
χ1 −Wχ2H

−1
χ1Wχ2S

−1
χ1

= Wχ2S
−1
χ1 −Wχ2H

−1(H − S)S−1
χ1

= Wχ2H
−1
χ1, (73)

which further implies

χ2S
−1
χ1X

−1Wχ2S
−1
χ1 = χ2S

−1
χ1Wχ2H

−1
χ1

= χ2S
−1(H − S)H−1

χ1

= χ2S
−1
χ1 − χ2H

−1
χ1. (74)

Analogously to (73) we finally deduce that

χ2S
−1
χ1X

−1W = χ2H
−1
χ1W. (75)

Inserting (69) into the lower right block of the last matrix in (72) and re-
writing its remaining blocks by means of (73)–(75), we arrive at (71).

3.5 Iterated Grushin problems
As a next step towards the spectral theoretic renormalization group we dis-
cuss iterated Grushin problems in this subsection. We learned the next
theorem (in the case D(1) = 0 and D(2) = 0) on a second order Grushin
problem from [39, Prop. 3.4]. Combining it with a straightforward induction
argument, we shall obtain the subsequent theorem on a successive iteration
of Grushin problems. A particularly virtuous application of higher order
Grushin problems can be found in [38].

Theorem 3.9. Let Xi,Yi, i = 1, 2, 3 be real or complex vector spaces, assume
that the block operator matrix

M (1) =
(
A B(1)

C(1) D(1)

)
: X1 ⊕X2 −→ Y1 ⊕ Y2 (76)

is bijective, and denote its inverse as

(M (1))−1 =: E1 =:
(
E(1) E

(1)
2

E
(1)
1 E

(1)
12

)
: Y1 ⊕ Y2 −→X1 ⊕X2. (77)

Assume further that

M (2) :=
(
−E(1)

12 B(2)

C(2) D(2)

)
: Y2 ⊕X3 −→X2 ⊕ Y3
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is bijective with inverse

(M (2))−1 =: E (2) =:
(
E(2) E

(2)
2

E
(2)
1 E

(2)
12

)
: X2 ⊕ Y3 −→ Y2 ⊕X3.

Then

M2 :=
(

A B(1)B(2)

C(2)C(1) D(2) + C(2)D(1)B(2)

)
: X1 ⊕X3 −→ Y1 ⊕ Y3 (78)

is bijective with inverse

E2 :=
(
E(1) + E

(1)
2 E(2)E

(1)
1 E

(1)
2 E

(2)
2

E
(2)
1 E

(1)
1 E

(2)
12

)
. (79)

Proof. Of course, it would be a pure matter of patience to directly verify by
block matrix multiplication that E2 is a left and right inverse of M2. It is,
however, more convenient to argue as follows: Consider the block operator
matrices

J± :=

 1Y1 0 0
±E(1)

1 1X2 0
0 0 1Y3

 , PZ :=

 0 1X2 0
1Z1 0 0
0 0 1Z3

 , Z ∈ {X ,Y },

and enlarge M (1) and M (2) in a canonical fashion to bijective maps M (1) ⊕
1X3 : X1 ⊕X2 ⊕X3 → Y1 ⊕ Y2 ⊕X3 and 1Y1 ⊕M (2) : Y1 ⊕ Y2 ⊕X3 →
Y1⊕X2⊕Y3 which can be composed. The bijective map J− has been chosen
in such a way that E(1)

12 is cancelled for in the product

M̂ := PY J−(1Y1 ⊕M (2))(M (1) ⊕ 1X3)PX =

 −1X2 0 B(2)

B(1) A 0
C(2)D(1) C(2)C(1) D(2)


by virtue of the relations E(1)

1 A + E
(1)
12 C

(1) = 0 and E(1)B(1) + E
(1)
12 D

(1) =
1X2 . Obviously, M̂ is bijective with inverse M̂−1 = P−1

X (E1 ⊕ 1X3)(1Y1 ⊕
E (2))J+P

−1
Y . SinceM2 is the Schur complement of −1X2 in M̂ , we conclude

from Theorem 3.1 that M2 is bijective and that its inverse is given by the
lower right two by two block in M̂−1, which is given by (79).

In what follows, every empty product of operators equals the identity
operator in the respective vector space by definition; e.g., ∏n

j=n+1Xj := 1,∏0
j=1Xj := 1.
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Theorem 3.10. Let Xn,Yn, n ∈ N, be real or complex vector spaces. Again
we consider a bijective block matrix M (1) as in (76) with inverse (77). Fur-
thermore, we assume that we are given a sequence of bijective block matrices

M (n) :=
(
−E(n−1)

12 B(n)

C(n) D(n)

)
: Yn ⊕Xn+1 −→Xn ⊕ Yn+1, n ∈ N, n > 2,

with inverses

(M (n))−1 =: E (n) =:
(
E(n) E

(n)
2

E
(n)
1 E

(n)
12

)
: Xn ⊕ Yn+1 −→ Yn ⊕Xn+1.

Then, for any n ∈ N, the block operator matrix Mn : X1 ⊕ Xn+1 −→
Y1 ⊕ Yn+1 given by

Mn :=
(

A
∏n
`=1B

(`)∏n
`=1C

(n+1−`) ∑n
`=1{

∏n−`
i=1 C

(n+1−i)}D(`)∏n
j=`+1B

(j)

)

is bijective with inverse

En :=
(∑n

`=1{
∏`−1
i=1 E

(i)
2 }E(`)∏`−1

j=1E
(`−j)
1

∏n
`=1E

(`)
2∏n

`=1E
(n+1−`)
1 E

(n)
12

)
. (80)

Proof. By assumption the assertion is true for n = 1 and, by Theorem 3.9,
it is true for n = 2.

So assume that the assertion holds true for some n ∈ N, n > 2. Then
we can apply Theorem 3.9 to the matrixMn with inverse En given by (80)
and the matrix M (n+1) with its inverse E (n+1). Computing Mn+1 and En+1
according to (78) and (79), we may then verify the assertion for n+ 1.

3.6 Iterated smooth Feshbach reductions
Next, we employ Theorem 3.8 and Theorem 3.9 to study a repeated appli-
cation of the smooth Feshbach projection method. In the two lemmas and
the example at the end of this subsection we provide conditions under which
conclusions can be drawn from letting the number of iteration steps go to
infinity. Essentially, the content of this subsection is part of the general
strategy of the spectral renormalization group analysis based on the smooth
Feshbach map as introduced in [3]. More precisely, we shall consider the
general situation encountered after a successful adjustment of the spectral
parameter along the iteration steps as described in the succeeding subsection.
We added some minor abstractions and variations, however, and tried to iso-
late model-independent aspects. (For instance, a reduced subspace in which
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the Feshbach operators are bounded appears only in Lemma 3.12 below (the
space C ), while earlier works put some emphasis on viewing the renormal-
ization group as a fixpoint problem on a space of bounded operators; see in
particular [3, 14].)

It also seems that the simple proof of Lemma 3.11 below has not been
noticed before. This lemma reveals that, thanks to their general structure,
infinite iterations of smooth Feshbach reductions are amenable to control
the degeneracy of eigenvalues. A similar observation has been made in [22],
under closely related but slightly different assumptions and by means of a
different proof.

Let ρ ∈ (0, 1), X be a real or complex vector space, D ,V ,W ⊂ X
subspaces, and

Hn, Tn, Sn : D →X , χn,1, χn,2, χn,1, χn,2 : X →X , (81)

be linear operators, for every n ∈ N. Assume that, for every n ∈ N, the
data in (81) together with V and W fulfills all hypotheses postulated in
Definition 3.6. Define the operators Wn, T n, Hn, Fn, Qn, and Q]

n according
to Definition 3.6 applied to the data in (81). Finally, assume that ρHn+1 =
Fn is the smooth Feshbach operator associated with the data in (81), for
every n ∈ N. Then a combination of Theorem 3.8 (applied for each n) and
Theorem 3.10 (with X1 = Yn = D and Y1 = Xn = X , n > 2) shows that,
for every n ∈ N, the block operator matrix

Mn :=
(

H1 −χ1,2 . . . χn,2
−ρnχn,1 . . . χ1,1 Dn

)
: D ⊕X −→X ⊕D (82)

is bijective with inverse given by

En :=
(

En −ρ−nQ1 . . . Qn

−Q]
n . . . Q

]
1 −Hn+1

)
: X ⊕D −→ D ⊕X , (83)

where

Dn := −ρχn,1T
−1
n χn,2 −

n−1∑
`=1

ρn−`+1χn,1 . . . χ`+1,1χ`,1T
−1
` χ`,2χ`+1,2 . . . χn,2,

En :=
n∑
`=1

ρ1−`Q1 . . . Q`−1χ`,2H
−1
` χ`,1Q

]
`−1 . . . Q

]
1.

We further conclude from Theorem 3.10 and Theorem 3.3 that H1 : D →X
is bijective, if and only if some (and hence all) Hn+1 are bijective, and that

χn,1 . . . χ1,1�kerH1 : kerH1 −→ kerHn+1, (84)
Q1 . . . Qn�kerHn+1 : kerHn+1 −→ kerH1, (85)
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are mutually inverse bijections, for every n ∈ N.
Next, we note conditions permitting to draw conclusions in the limit

n → ∞. Criteria to check these somewhat implicit conditions are given in
the example below.

Lemma 3.11. In the situation considered in the preceding paragraphs, as-
sume in addition that X is a Banach space, that H1 is a closed operator in
X , and that χn,i, χn,i ∈ B(X ), n ∈ N, i ∈ {1, 2}, all have norm 6 1. Define
an operator H∞ in X by dom(H∞) := {φ ∈ D : limn→∞Hnφ exists} and
H∞ψ := limn→∞Hnψ, ψ ∈ dom(H∞). Assume that Dn ∈ B(X ) are uni-
formly bounded in n ∈ N and that the strong limit C∞ := s-limn→∞χn,1 . . . χ1,1
exists. Finally, assume that, for every ψ ∈ kerH∞, the limit Q∞ψ :=
limn→∞Q1 . . . Qnψ exists. Then Q∞ maps kerH∞ injectively into kerH1
and C∞Q∞ = 1kerH∞.

Proof. Since En in (83) is the inverse ofMn in (82),

H1Q1 . . . Qn = −ρnχ1,2 . . . χn,2Hn+1 on D .

Let ψ ∈ kerH∞. Then the previous relation shows that H1Q1 . . . Qnψ → 0
(recall 0 < ρ < 1) and by assumption Q1 . . . Qnψ → Q∞ψ, as n→∞. Since
H1 is closed, this implies Q∞ψ ∈ kerH1. Using again that En is the inverse
ofMn, we further observe that

C∞Q∞ψ = lim
n→∞

χn,1 . . . χ1,1Q1 . . . Qnψ = ψ + lim
n→∞

DnHn+1ψ = ψ.

Here we also employed that supn ‖Dn‖ <∞ and Hnψ → 0, n→∞.

Lemma 3.12. In addition to the hypotheses of Lemma 3.11 assume that
the closure in X of ⋃n∈N ranχn,1, call it C , satisfies C ⊂ D , that Hn�C∈
B(C ,X ), for all n ∈ N, and that the sequence (Hn �C )n∈N has a strong
limit in B(C ,X ), denoted H∞ �C . Furthermore, assume that every Qn,
n ∈ N, is bounded and that supn ‖Q1 . . . Qn‖ < ∞. (Here we always equip
D with the norm on X .) Then C∞ maps kerH1 injectively into kerH∞ and
Q∞C∞ = 1kerH1.

By our definitions, H∞�C is indeed the restriction to C of the operatorH∞
appearing in Lemma 3.11. The relations C∞Q∞ = 1kerH∞ and ranC∞ ⊂ C
proved in Lemma 3.11 further show that kerH∞ ⊂ C .

Proof. Let φ ∈ kerH1. In view of the uniform boundedness principle applied
to (Hn�C )n∈N and (84) we then obtain

H∞�C C∞φ = lim
n→∞

Hn+1χn,1 . . . χ1,1φ = 0.
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Thus, C∞φ ∈ kerH∞. Let ε > 0. Then, by definition of Q∞, we find some
n0 ∈ N such that ‖Q∞C∞φ−Q1 . . . QnC∞φ‖ < ε/2, for all n > n0. Let c > 0
be an upper bound on the norms ‖Q1 . . . Qn‖, n ∈ N. Then, by definition of
C∞, we find some m0 ∈ N such that ‖C∞φ − χm,1 . . . χ1,1φ‖ < ε/2c, for all
m > m0. Hence,

‖Q∞C∞φ−Q1 . . . Qnχm,1 . . . χ1,1φ‖ < ε, n > n0, m > m0.

Since the maps in (84) and (85) are inverse to each other, we know, however,
that Q1 . . . Qnχn,1 . . . χ1,1φ = φ, for all n ∈ N. Considering indices n = m >
max{n0,m0} in the previous estimate we conclude that ‖Q∞C∞φ− φ‖ < ε.
Since ε > 0 was arbitrary, Q∞C∞φ = φ.

The arguments in Part (2) of the next example appeared in [3]:
Example 3.13. Under the hypotheses of Lemma 3.11 the following holds true:

(1) Assume that ‖χn,1T
−1
n χn,2‖ 6 c/ρ, for all n ∈ N and some c ∈ (0,∞).

Then
‖Dn‖ 6 c

n−1∑
`=0

ρ` 6
c

1− ρ, n ∈ N.

(2) Assume that ‖χn,2H
−1
n χn,1Wnχn,2‖ 6 cn, n ∈ N, where the constants

cn ∈ [0,∞) are summable, Σ := ∑∞
n=1 cn <∞. Then ‖Qn‖ 6 1 + cn and

‖Q1 . . . Qn‖ 6
n∏
`=1

(1 + c`) 6
n∏
`=1

ec` 6 eΣ <∞, n ∈ N.

Next, assume in addition that χn,2 kerH∞ = kerH∞, for every n ∈ N. Let
ψ ∈ kerH∞. We shall show that Q∞ψ := limn→∞Q1 . . . Qnψ exists. In
fact, the right hand side of

‖Q1 . . . Qn(1−Qn+1)ψ‖ 6 eΣ‖(χn+1,2 −Qn+1)ψ‖ 6 eΣcn+1‖ψ‖

is summable with respect to n ∈ N. Therefore, the existence of Q∞ψ
follows from the Weierstrass test and telescopic summations.

3.7 Spectral renormalization group scheme
Suppose we wish to employ iterated smooth Feshbach reductions as described
in the previous subsection to prove that some semi-bounded Hamiltonian H0
has an eigenvalue at the bottom of its spectrum, E0 := inf σ(H0). Then
H1 = H0−E0 would be the right choice for the initial operator in the iterated
smooth Feshbach analysis. The relation kerH∞ 6= {0} would then imply the
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existence of some non-zero vector ψ in the domain of H0 with H0ψ = E0ψ.
Of course, the precise value of E0 is usually unknown in applications and
its computation or characterization is part of a given problem. However,
we might at least have a good idea of where E0 should approximately be
located like, for instance, in a perturbative situation where H0 is close to an
operator whose spectral properties are well understood. Let us thus assume
in what follows that, perhaps after an appropriate energy shift, we expect
E0 to be located in the disc Drρ = {z ∈ C : |z| < rρ}, for some ρ ∈ (0, 1)
and r > 0. Then all we can do is to consider iterated smooth Feshbach
reductions involving an additional free spectral parameter E ∈ Drρ and to
hope that, along the iteration process, we gather sufficient information to
uniquely characterize E0 in terms of relevant quantities.

Proceeding in the manner just described, we might find the following
objects in the n-th iteration step, where n ∈ N, X is a vector space, D ⊂X
a subspace, and O(Drρ) denotes the set of holomorphic functions on Drρ:

(a) A set Hn of linear operators from D to X and a class Mn of maps from
Drρ into Hn such that h[Θ] = h◦Θ ∈Mn, for all h ∈Mn and Θ ∈ O(Drρ)
with Θ(Drρ) ⊂ Drρ.

(b) A map Rn : Hn × Drρ →Hn × C of the form

Rn(H,E) = (Rn(H,E), λn(H,E)), λn(H,E) := ρ−1(E − γn(H,E)),

where Drρ 3 E 7→ Rn(h[E], E) is in Mn+1 and Drρ 3 E 7→ γn(h[E], E) is
holomorphic, for every h ∈Mn.

In particular, we obtain induced maps R̃n : Mn → Mn+1 and λ̃n : Mn →
O(Drρ),

R̃n(h)[E] := Rn(h[E], E), λ̃n(h)[E] := λn(h[E], E), h ∈Mn, E ∈ Drρ.

For example, we might have Rn(H,E) + λn(H,E) = ρ−1Fn(H,E), where
Fn(H,E) is the smooth Feshbach operator associated with some Grushin
problem for H − E. In practice, we often find uniform bounds

sup
E∈Drρ

sup
H∈Hn

|γn(H,E)| 6 an ∈ [0,∞), n ∈ N. (86)

Obviously, the question arises whether, for a given H ∈ H1, there is
any E ∈ Drρ such that (Rn ◦ · · · ◦ R1)(H,E) is defined for all n ∈ N. To
answer this question it is convenient to exploit the holomorphy of the maps
Drρ 3 E 7→ γn(h[E], E) with h ∈ Mn. Notice, however, that the map
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E 7→ Rn+1(Rn(h[E], E), λn(h[E], E)) does in general not belong to Mn+1,
because its domain is given by

Un(h) := {E ∈ Drρ : λn(h[E], E) ∈ Drρ},

which might be a proper subset of Drρ. To remedy this we may use the
following result, which is essentially due to [3]:

Lemma 3.14. In the situation described in the preceding paragraphs, let
ρ ∈ (0, 1) and r, ε > 0 be related in such a way that rε < (r − r1)2 and
ε < r1ρ− rρ2, for some r1 ∈ (rρ, r). Assume that the numbers in (86) satisfy
an 6 ε, n ∈ N. Then Un(h) ⊂ Dr1ρ and λ̃n(h) is biholomorphic from Un(h)
onto Drρ, for all n ∈ N and h ∈Mn.

Proof. The assertion follows from Part (1) of Theorem 3.17 below.

Under the conditions of the preceding lemma we know in particular that

R̂n(h) := R̃n(h) ◦ λ̃n(h)−1 ∈Mn+1, h ∈Mn, n ∈ N.

The composition with λ̃n(h)−1 is referred to as a renormalization of the spec-
tral parameter, since the second component of Rn(h[λ̃n(h)−1[E]], λ̃n(h)−1[E])
is just E. Moreover, R̂n : Mn → Mn+1 is called spectral renormalization
group map at step n, at least in more specialized situations arising in math-
ematical quantum field theory. While the latter objects do not define an
actual group, all compositions R̂n ◦ · · · ◦ R̂1 : M1 → Mn+1 are well-defined
by construction.

Lemma 3.15. Under the conditions of Lemma 3.14, let H ∈ H1, E ∈ C,
and n ∈ N. Set h0[z] := H, z ∈ Drρ, and hn := (R̂n ◦ · · · ◦ R̂1)(h0),
and define λH,n ∈ O(Drρ) by λH,n(z) := λ̃n(hn)[z], for all z ∈ Drρ. Then
(H,E) ∈ dom(Rn ◦ · · · ◦R1), if and only if E ∈ dom(λH,n ◦ · · · ◦ λH,1). In
the affirmative case,

(Rn ◦ · · · ◦R1)(H,E) =
(
hn(λH,n ◦ · · · ◦ λH,1(E)), λH,n ◦ · · · ◦ λH,1(E)

)
.

Proof. The assertion can be proved by induction and turns out to be a tau-
tological consequence of our definitions, of course.

The notation introduced in the preceding lemma is more convenient than
the one given in (a) and (b) when it comes to proofing the following main
result of this subsection, which again is essentially due to [3]:
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Theorem 3.16. Under the conditions of Lemma 3.14, assume in addition
that an → 0, as n→∞. Pick some H ∈H1. Then there exists precisely one
EH ∈ C such that (H,EH) is contained in the intersection of the domains of
definition of all compositions Rn ◦ · · · ◦R1, n ∈ N. If EH,n := (λH,n ◦ · · · ◦
λH,1)(E), n ∈ N, where we use the notation of Lemma 3.15, then

lim
n→∞

EH,n = 0 and EH =
∞∑
n=0

ρnγH,n+1(EH,n),

with γH,n(z) := γn(hn−1[z], z), z ∈ Drρ, n ∈ N.

Proof. Take Lems. 3.14 and 3.15 into account and apply Part (2) of Theo-
rem 3.17 below to the functions γH,n ∈ O(Drρ), n ∈ N.

The statement of the next theorem and its proof are slight elaborations
of corresponding results in [3]:

Theorem 3.17. Let ρ ∈ (0, 1) and r, ε > 0 be related in such a way that
rε < (r − r1)2 and ε < r1ρ − rρ2, for some r1 ∈ (rρ, r). Let an ∈ [0, ε],
n ∈ N. Assume that, for every n ∈ N, we are given a holomorphic map
Drρ 3 z 7→ γn(z) ∈ C with supDrρ |γn| 6 an. Define λn(z) := ρ−1(z − γn(z)),
z ∈ Drρ. Then the following holds true:

(1) Let n ∈ N and set Un := λ−1
n (Drρ). Then Un ⊂ Dr1ρ and Λn := λn�Un is

biholomorphic from Un onto Drρ.

(2) Assume in addition that an → 0, as n → ∞. Then there is precisely one
point e0 contained in the intersection of the domains of all compositions
λn ◦ · · · ◦ λ1, n ∈ N. If en := (λn ◦ · · · ◦ λ1)(e0), then

lim
n→∞

en = 0 and en =
∞∑
`=0

ρ`γn+`+1(en+`), n ∈ N0. (87)

Proof. Step 1. To prove Part (1), we employ the Cauchy estimate

|γ′n(z)| 6 inf
r2∈(r1,r)

r2

(r2 − r1)2 max
|ζ|=r2

|γn(ζ)| 6 anr

(r − r1)2 =: bn, z ∈ Dr1ρ. (88)

Here bn < 1, whence λn is locally biholomorphic from Dr1ρ onto the domain
λn(Dr1ρ). In fact, ρ|λ′n| > 1 − bn > 0 on Dr1ρ. Let z0 ∈ Drρ and put
g(z) := z − ρz0 − ρλn(z) = γn(z)− ρz0, z ∈ Drρ. Pick r0 ∈ (0, r1) such that
ε 6 r0ρ− rρ2. Then g(Dr0ρ) ⊂ Dr0ρ since |g| 6 ε+ rρ2 6 r0ρ. On account of
(88), g thus is a contraction on Dr0ρ and, by the Banach fixpoint theorem,
it has a unique fixpoint z∗ ∈ Dr0ρ. Since r0 < r1 can be chosen arbitrarily
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close to r1, we see that z∗ is actually the only fixpoint of g in Dr1ρ. Since
any z′ ∈ Dr1ρ is a fixpoint of g, if and only if λn(z′) = z0, this shows that λn
maps Dr1ρ ∩ λ−1

n (Drρ) biholomorphically onto Drρ. Since ε/ρ < r1 − rρ, the
membership z ∈ Drρ \ Dr1ρ entails, however, |λn(z)| > (|z| − ε)/ρ > rρ, i.e.,
Un = Dr1ρ ∩ λ−1

n (Drρ).
Step 2. According to Part (1), each Λ−1

n maps Dr1ρ continuously into
Un ⊂ Dr1ρ. Consequently, the sets Kn := (Λ−1

1 ◦· · ·◦Λ−1
n )(Dr1ρ) are compact,

non-empty, and satisfy Kn+1 ⊂ Kn, for all n ∈ N0. Therefore, K∞ :=⋂∞
n=1Kn 6= ∅. Let us observe for later reference that Step 1 also implies

Kn = (λ−1
1 ◦ · · · ◦ λ−1

n )(Dr1ρ), for all n ∈ N.
Step 3. We fix some e0 ∈ K∞ and assume that an → 0, n → ∞, in the

rest of this proof. We set en := (λn ◦ · · · ◦ λ1)(e0) ∈ Dr1ρ, n ∈ N. Then
ρen+1 = en − γn+1(en), n ∈ N, which implies

en = ρmen+m +
m−1∑
`=0

ρ`γn+`+1(en+`), m ∈ N, n ∈ N0.

Since |en| 6 r1ρ
m+1 + sup`>n a`/(1− ρ), this proves the relations in (87).

Step 4. Next, we show that K∞ = {e0}.
Suppose for contradiction that there exists e′0 ∈ K∞ \ {e0} and set e′n :=

(λn ◦ · · · ◦ λ1)(e′0) ∈ Dr1ρ, n ∈ N. In view of (88), |(λ−1
n )′| 6 ρ/(1 − bn) on

λn(Dr1ρ), for all n ∈ N. Since the line segment connecting en and e′n lies in
Dr1ρ and Dr1ρ ⊂ Drρ = λn(Un) ⊂ λn(Dr1ρ), we obtain

|en−1 − e′n−1| = |λ−1
n (en)− λ−1

n (e′n)| 6 ρ

1− bn
|en − e′n|, n ∈ N.

Since bn → 0, we further find ρ1 ∈ (ρ, 1) and n0 ∈ N such that ρ/(1−bn) 6 ρ1,
for all n > n0. Therefore, there exists a constant C > 0 such that |e0− e′0| 6
Cρn−n0

1 |en − e′n| 6 r1ρCρ
n−n0
1 → 0, n→∞; a contradiction!

Step 5. Finally, let e′′0 be any point in the domain of definition of all
compositions λn ◦ · · · ◦ λ1, n ∈ N, and set e′′n := (λn ◦ · · · ◦ λ1)(e′′0), n ∈ N.
By Step 1, e′′n−1 ∈ λ−1

n (Drρ) = Un ⊂ Dr1ρ, for all n ∈ N. The last remark of
Step 2 now implies e′′0 ∈ Kn, for all n ∈ N, thus e′′0 = e0 by Step 4.
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