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Abstract

This thesis studies symmetric spaces G/H with G a semisimple Lie
group and where the isotropy subgroup H has a non-discrete center; we
will consider the cases when G/H is either a Hermitian, pseudohermitian,
or parahermitian symmetric space. For non-compact G with has finite
center and H = K is a maximal compact subgroup, G/K is a Hermi-
tian symmetric space of the non-compact type and the Harish-Chandra
embedding realizes G/K as a bounded symmetric domain D. Clerc and
Ørsted [CØ03] expressed the symplectic area of a geodesic triangle in
terms of the Bergman kernel kD of D. We prove a similar formula for
the compact dual U/K using a slightly different kernel kc. We give a
geometric characterization of the zeroes of this kernel.

Semisimple parahermitian symmetric spaces are also studied using a
generalized Borel embedding due to Kaneyuki [Kan87]. We introduce a
suitable kernel function and relate it to the symplectic area of geodesic
triangles. We also treat complex parahermitian symmetric spaces GC/HC

separately. Here GC and HC are complex Lie groups with GC simple. In
this case, we introduce a holomorphic kernel function kC and calculate
the (complex) symplectic area of geodesic triangles. Finally we show how
the other kernels kD and kc may be recovered from the complex kernel
kC as suitable restrictions.

Dansk Resumé

Denne afhandling handler om symmetriske rum G/H, hvor G er en
semisimpel Lie gruppe og hvor isotropigruppen H har et ikke-diskret
center. Vi betragter tilfældene hvor G/H er Hermitisk, pseudohermitisk
eller parahermitisk. Hvis G er en ikke-kompakt Lie gruppe med diskret
center og H = K er en maksimal kompakt undergruppe, så er G/K et
Hermitisk symmetrisk rum af ikke-kompakt type, og Harish-Chandra
indlejringen realiserer G/K som et begrænset symmetrisk område D.
Clerc og Ørsted [CØ03] fandt et udtryk for det symplektiske areal af
en geodætisk trekant ved brug af Bergmankernen kD for D. Vi viser
en tilsvarende formel for det kompakte duale rum U/K ved hjælp af en
anderledes kerne kc. Desuden giver vi en geometrisk karakterisering af
nulpunkterne for kc.

Vi studerer også semisimple parahermitiske symmetriske rum ved
hjælp af en generaliseret Borelindlejring, der skyldes Kaneyuki [Kan87].
Vi introducerer en passende kernefunktion og relaterer den til det sym-
plektiske areal geodætiske trekanter. Vi betragter de komplekse paraher-
mitiske symmetriske rum GC/HC separat. Her er GC og HC komplekse
Liegrupper og GC er simpel. I dette tilfælde definerer vi en holomorf
kernefunktion kC og udregner det (komplekse) symplektiske areal af
geodætiske trekanter. Til sidst viser vi, hvordan de andre kernefunk-
tioner kD og kc optræder som passende restriktioner af kC.
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INTRODUCTION

If I had to boil it down to one sentence, I would say that this thesis concerns
the relation between the geometry and the canonical kernels of Hermitian
symmetric spaces. Of course, both of the terms ’canonical kernels’ and ’Her-
mitian symmetric spaces’ require further explanation to be given later. Suffice
it to say for now that Hermitian symmetric spaces is too narrow a term; this
thesis also deals with (semisimple) parahermitian spaces and to a lesser ex-
tent pseudohermitian symmetric spaces. This introduction is not a ’start at
the beginning’, but rather an overview of the contents of the thesis and my
attempt to explain why these contents are included. Definitions of spaces and
objects mentioned below are found in the subsequent chapters of the thesis. As
such, this introduction is intended for readers already familiar with symmetric
spaces.

Hermitian symmetric spaces are well-studied objects. I will not consider
the Euclidean spaces here, so really I am talking of semisimple Hermitian
symmetric spaces. There is a very rich structure theory coming from Harish-
Chandra’s embedding which realizes a Hermitian symmetric space of the non-
compact type as a bounded symmetric domain. Using the embedding, one
can construct holomorphic discrete series, classify boundary components, give
further realizations of the Hermitian symmetric space as a Siegel domain, et
cetera. As a by-product of this embedding, one also obtains useful coordinates
for the compact dual spaces. In terms of bounded symmetric domains, Theorem
2.1 of [CØ03] can be formulated as follows:

Theorem (Clerc-Ørsted, Domic-Toledo) Let D be a bounded symmetric
domain in CN and kD the Bergman kernel ofD. Denote by ω = i∂∂ log kD(z, z)
the associated Kähler form. Let ∆ be an oriented geodesic triangle in D with
vertices z0, z1, and z2. Then∫

∆

ω = −(arg kD(z0, z1) + arg kD(z1, z2) + arg kD(z2, z0)), (A)

where arg kD is the continuous argument for kD such that arg kD(z, z) = 0 for
all z ∈ D. Furthermore, the right hand side of the formula is bounded as a
function of z0, z1, z2 ∈ D.

The details are given in Section 9 of this thesis. Specializing to the case of
the unit disc D in the complex plane where kD(z, w) = π−1(1 − zw)−2, the
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Introduction

formula reads∫
∆

ω = −(arg(1− z0z1)−2 + arg(1− z1z2)−2 + arg(1− z2z0)−2),

and here ω is the volume form corresponding to the usual hyperbolic metric
with curvature −1 on D. Thus the right-hand side is bounded by ±π. This
special case was already considered in [CØ01].

It seems reasonable then, given the similarities between compact and non-
compact dual Riemannian symmetric spaces, that a similar ’area-formula’
should hold for Hermitian symmetric spaces of the non-compact type. Natu-
rally a first test case of such a conjecture would be the Riemann sphere CP1.
Here we are really thinking of CP1 as C∪{∞} and using C as coordinates on
CP1. This is the same as having choosen a specific base point in CP1. The
compact version of the Bergman kernel is the function k(z, w) = (1+zw)2 and
the form i∂∂ log k(z, z) is the volume form corresponding to the usual metric
of constant curvature +1. However, k(z, w) has zeroes as z, w range over C;
hence, one has to be more careful when speaking of arg k. Furthermore, the
right-hand side of (A) depends only on the vertices of the geodesic triangle ∆.
But three points in C are vertices of more than one geodesic triangle on the
Riemann sphere, and in general these triangles have different area. I worked
around these difficulties by considering only those pairs (z, w) ∈ C2 for which
1 + zw is not a real number ≤ 0. Then it turns out that there is a unique
shortest geodesic segment connecting z and w and this segment runs in C,
e.g. does not pass through ∞. Taking the base point 0 as the last vertex, it is
now possible to construct an oriented geodesic triangle ∆ ⊂ C with vertices
0, z, and w and sides made up of distance-realizing geodesic segments in C.
It turns out that ∫

∆(0,z,w)

i∂∂ log k = −2Arg(1 + zw),

where Arg is the usual main argument. This formula leads to

exp
( ∫

∆(0,z,w)

∂∂ log k
)

= 1 + zw

1 + zw
,

and this holds for any pair (z, w) such that 1 + zw 6= 0 and any oriented
geodesic triangle ∆ ⊂ C with vertices 0, z, and w. I have since learned that
this result is already known; it is mentioned in the book [Per86] where the
expression 1+zw arises as the scalar product between so-called coherent states.
Later, in [HM94], this result was generalized to the complex n-dimensional
projective space CPn. These results are described in §4, chapter II.

In chapter IV, the results for CP1 are generalized to Hermitian symmetric
spaces of the compact type. The setting is as follows: Let M = U/K0 be
an irreducible Hermitian symmetric space of the compact type; here U is a

viii



compact simple Lie group and K0 the group of fixed points of an involution
of U . The non-compact dual of M is realized as a bounded symmetric domain
D ⊂ p+, where p+ is a complex vector space which is mapped holomorphically
and injectively onto an open and dense subset of M . Letting kD denote the
Bergman kernel of D, we define kc(z, w) = kD(z,−w)−1 for z, w ∈ p+. Then
k(z, w) is a polynomial in z and w and ω = i∂∂ log kc(z, z) is the pull-back to
p+ of the Kähler form of M . The question of when k(z, w) vanishes is studied
by writing U as a product U = K0AK0 which reduces the problem to the case
of a polysphere (CP1)r where the results for CP1 can be applied. A continuous
argument arg kc(z, w) is defined for the subset S of p+×p+ consisting of pairs
(z, w) which are connected by a geodesic segment γ : [0, 1]→ p+ which realizes
the distance between z and w and it the unique geodesic segment doing so.
This is the geometric argument for kc.

Geodesic triangles ∆ ⊂ p+ are also studied. As ω is exact, the problem of
calculating

∫
∆ ω reduces to calculating path integrals

∫
γ ρ where γ : [0, 1]→ p+

is a geodesic segment and ρ = −i(∂ − ∂) log k is a particular 1-form on p+

such that ω = 1
2dρ. Then, if γ realizes the distances between its endpoints

and if it is the only geodesic segment doing so, we have (Theorem 12.5)

1
2

∫
γ

ρ = − arg kc(γ(0), γ(1)),

where arg kc(γ(0), γ(1)) is the previously defined geometric argument for kc.
Now Stoke’s theorem gives a formula similar to (A). The chapter concludes
with a discussion of another argument for kc which may be called a spectral
argument for kc. I did not succeed in showing that the geometric and spectral
arguments are identical.

Following a suggestion by my advisor, I also considered the two-sheeted
hyperboloid Σ = SL(2,R)/R∗ with its constant curvature metric, and the
results are described in §5. The space Σ is studied using paracomplex numbers

x+ jy, x, y ∈ R,

where j is adjoined to R and satisfies j2 = 1. Paracomplex coordinates on Σ
given by the set B of paracomplex numbers x+ jy where x2− y2 6= 1. Then it
turns out that a suitable kernel is given by the function k(z, w) = (1− zw)2

using paracomplex numbers z and w and an analogue of complex conjugation.
Following a brief introduction to basic paracomplex differential geometry and
the paracomplex version of the exponential map and logarithm, it is proved
that, for a geodesic segment γ in B which does not pass through a pair of
antipodal points of Σ, we have (Theorem 5.7)

1
2

∫
γ
ρ = − arg k(γ(0), γ(1))

ix



Introduction

where ρ = j(∂ − ∂) log k is the paracomplex version of the 1-form studied
for the Riemann sphere. The notational similarities are very pleasing in my
opinion. However, the algebra of paracomplex numbers play no role elsewhere
in this thesis.

The space SL(2,R)/R∗ is a parahermitian symmetric space. This class of
symmetric spaces was introduced by Kaneyuki and Kozai, [KK85], and the
results of §5 are generalized to general semisimple parahermitian symmet-
ric spaces in Chapter V, but I avoid the use of paracomplex numbers. The
simply connected semisimple parahermitian symmetric spaces are in one to
one correspondence with 3-graded semisimple Lie algebras g = g−1 + g0 + g1
where g is the Lie algebra of G and g0 is the Lie algebra of H. Kaneyuki
also introduced, [Kan87], a generalized Borel embedding (or compactification)
of a parahermitian symmetric space G/H, embedding it as an open orbit
in G/P+ ×G/P− where P± are certain opposite parabolic subgroups. This
provides coordinates on G/H from an open subset M in the vector space
g1 +g−1 and Kaneyuki writes down a canonical kernel k(x1 +x−1), x±1 ∈ g±1,
which transforms suitably under the group G. I proceed to define a ’polarized’
kernel κ(x, y) for points x = x1 + x−1 and y = y1 + y−1 in g1 + g−1 as

κ(x, y) = k(x1 + y−1)
k(y1 + x−1)

whenever the right-hand side is defined. Now G/H has a G-invariant sym-
plectic form ω given as −1

2ddJ log k on M where dj = Jd, J denoting the
paracomplex structure on G/H. Curve integrals of dJ log k along geodesics
are related to the kernel κ(x, y) in §16. If γ : [0, 1]→M is a geodesic segment
and g ∈ G is an element such that gγ is another curve in M, then (Lemma
16.1)

exp
(∫
γ

dJ log k −
∫
gγ

dJ log k
)

= κ(γ(0), γ(1))
κ(gγ(0), gγ(1))

provided that κ(γ(0), γ(1)) is defined. If it happens that gγ passes through
the origin, then we simply get

exp
(∫
γ

dJ log k
)

= κ(γ(0), γ(1))−1,

which should be compared to the previously mentioned results.
The space SL(2,C)/C∗ is also parahermitian, but it is also a quotient of

a complex Lie group by a subgroup fixed by a holomorphic involution and
hence a complex symmetric space. Furthermore, all of the sample spaces D,
the Riemann sphere CP1, and the hyperboloid Σ are embedded as totally
geodesic submanifolds of SL(2,C)/C∗. Kaneyuki’s compactification realizes
SL(2,C)/C∗ as the subset of pairs of distinct lines in CP1 × CP1 and we can
think of M as the set of pairs (z, w) ∈ C2 such that 1−zw 6= 0. Going through

x



the construction of the canonical kernels for a parahermitian symmetric space
while taking the complex structure into account yields a complex valued
kernel kC(z, w) = 1 − zw for (z, w) ∈ C2. The embeddings of the disc and
the Riemann sphere correspond to two real forms of C2 given by all pairs of
the form (z, z) and (z,−z) respectively. The restriction of kC(z, w) to each of
these subspaces allows one to recover the kernels k and kc.

The last part of the thesis concerns the complex simple parahermitian
symmetric spaces, among which SL(2,C)/C∗ is the basic example. These
spaces are in one to one correspondence with complex simple 3-graded Lie
algebras g = g−1 + g0 + g1. The corresponding symmetric space can be taken
as Int(g)/C(Z0) where C(Z0) is the centralizer in Int(g) of a specific element
Z0 in the center of g0. The procedures and the results are similar to that
of Chapter V; I am simply redoing everything over the complex numbers.
The complex kernel kC and κC are introduced and related to curve integrals.
Any real form of g, invariant under the involution defined by the grading,
corresponds to a totally geodesic embedding of a symmetric space G/H into
Int(g)/C(Z0). The space G/H may be either parahermitian, hermitian of
the compact or non-compact type, or even pseudohermitian; another class of
symmetric spaces, which are not studied separately in this thesis. In each case,
the restriction of kC and κC provide suitable kernels for these spaces. In fact,
the theory developed here allows one to reprove formula (A).
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Chapter I

SYMMETRIC SPACES

In this chapter we have collected some basic facts about symmetric spaces.
The purpose is not to give a thorough exposition of this vast field. but merely
to fix notation and definitions as well as to state some theorems which will
be used throughout this text.

§1 Affine Symmetric Spaces
The main reference for general results regarding symmetric spaces is [KN96].
However, [Loo69] offers a more algebraic point of view.

Definition 1.1 A symmetric space is a triple (G,H, σ) where

1. G is a connected Lie group,

2. H a Lie subgroup of G,

3. and σ is an involution of G, i.e. σ 6= id and σ2 = id, such that

(Gσ)0 ⊂ H ⊂ Gσ,

where Gσ is the closed subgroup of σ-fixed elements in G and (Gσ)0 its
identity component.

We say that the symmetric space (G,H, σ) is effective (resp. almost effective)
if G acts effectively (resp.) almost effectively) on G/H. The symmetric space
is said to be semisimple if G is semisimple.

Remark 1.2 The subgroup H is closed since it contains the identity compo-
nent of the closed group Gσ and hence M = G/H is a manifold with the
quotient topology; M = G/H is also referred to as a symmetric space (or
affine symmetric space). The involution σ defines an involution so of M with
an isolated fixed point at o = eH by so(gH) = σ(g)H. The map so is called
the symmetry at o ∈M . It follows then that for every point x ∈M there is an
involution sx with x as an isolated fixed point. We may always assume that
the symmetric space is effective by considering (G/N,H/N, σ) instead, where
N ⊂ H is the largest normal subgroup of G contained in H. Then G/H and
(G/N)/(H/N) are equivariantly diffeomorphic with respect to the canonical
homomorphism G→ G/N . ♦
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I . Symmetric Spaces

Let (G,H, σ) be a symmetric space and let g and h be the Lie algebras of G
and H respectively. Let dσ : g→ g denote the differential of σ at e ∈ G. Then
dσ is an involution and an automorphism of g, h is the 1-eigenspace, and we
have a direct sum decomposition (the canonical decomposition)

g = h + q,

where q is the (−1)-eigenspace of dσ in g. Furthermore, we have the relations

[h, h] ⊂ h, [q, q] ⊂ h, [h, q] ⊂ q,

in particular the adjoint representation adg(h) preserves q. We will write
adq : h→ End(q) for this representation of h. The symmetric space (G,H, σ)
is almost effective if and only if this representation is faithful, or equivalently
if h does not contain any non-trivial ideal of g. Similarly, q is invariant under
Ad(h) for each h ∈ H. Here Ad denotes the adjoint representation of G For
h ∈ H we will write Adq(h) for the restriction of Ad(h) to q.

Theorem 1.3 Let (G,H, σ) be a symmetric space and write π : G→ G/H for
the canonical quotient map. There is a unique G-invariant affine connection
on M = G/H. This connection is invariant by the symmetries sx, x ∈M , of
M , which are then affine symmetries. Furthermore

1. M is complete.

2. The torsion T vanishes and the curvature tensor R is parallel, i.e. ∇R =
0. At o = eH we have

Ro(X,Y )Z = −[[X,Y ], Z],

for X,Y, Z ∈ q under the identification ToM = q.

3. For each X ∈ q, parallel transport along π(exp(tX)) coincides with the
differential of exp(tX) as a transformation of M .

4. The curve exp(tX).o = π(exp(tX)) is a geodesic for every X ∈ q and
every geodesic on M starting at o is of this form.

5. Any G-invariant pseudo-Riemannian metric onM (such metrics exist in
particular for g semisimple) induces the unique G-invariant connection
on M .

Proof. See [KN96, Chapter XI].

As this thesis only deals with semisimple Lie groups, we will almost exclu-
sively discuss semisimple symmetric spaces in the following, even though we
could define Hermitian, pseudohermitian, and parahermitian symmetric spaces
without speaking about semisimple groups.
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1. Affine Symmetric Spaces

1.A Invariant Structure
If g is semisimple, which will be the case in the later parts of this thesis, and B
is its Killing form, then h and q are orthogonal under B. Hence,B restricted to
q is non-degenerate and Q = 1

2Bq×q induces a G-invariant pseudoriemannian
structure on G/H. We say that Q is normalized due to the fact that it equals
the Ricci curvature of G/H. Regardless of the normalization constant chosen,
G acts on M = G/H by isometries and we have a converse result.

Proposition 1.4 If (G,H, σ) is an effective semisimple symmetric space
equipped with the pseudoriemannian structure given by the Killing form, then
G is the identity component of the isometry group of M = G/H.

Proof. The proof is similar to that of [Hel01, Chapter V,Theorem 4.1].

Proposition 1.5 Let (G,H, σ) be a semisimple symmetric space and suppose
that J : q→ q is a linear map satisfying

1. J commutes with Adq(h) for every h ∈ H,

2. and B(JX, Y ) +B(X, JY ) = 0 for all X,Y ∈ q.

Then there exists a unique element H0 ∈ h of the Lie algebra of H such that
J = adqH0.

In particular, this H0 lies in the center of the Lie algebra h. The proof is
essentially similar to the proof of Theorem 5 in [Koh65].

Proof. We extend J to all of g by putting J = 0 on h. We claim that J is a
derivation of g. It suffices to show that

[JX, Y ] + [X, JY ] = 0

for all X,Y ∈ q. Let Z ∈ h and observe that

B([JX, Y ] + [X, JY ], Z) = B([JX, Y ], Z) +B([X, JY ], Z)
= B(Y, [Z, JX]) +B(JY, [Z,X])
= B(Y, J [Z,X])−B(Y, J [Z,X]) = 0,

which proves the claim. Since g is semisimple it follows that J = ad(H0) for
some H0 ∈ g. Let H ′ be the q-part of H0. For X ∈ q we have [H0, X] = JX
which again belongs to q, so [H ′, X] = 0. But as H0 commutes with all of h
we also have [H ′, h] = 0. So H ′ is a central element in g, hence zero.

There are two cases of special interest to us. An endomorphism J : q→ q is
said to be a complex structure on q if

J2 = −idq

3



I . Symmetric Spaces

and a paracomplex structure on q if

J2 = idq.

The main objects of study in this thesis will be semisimple symmetric spaces
(G,H, σ) with a paracomplex or complex structure J on q satisfying the
conditions of Proposition 1.5. If this is the case we will simply refer to J as an
invariant para(complex) structure, even though we have imposed additional
requirements on J .

1.B Hermitian and Pseudohermitian Symmetric Spaces
We give the definition of Hermitian and pseudohermitian symmetric spaces
from a common point of view. The paper [Sha71] discusses pseudohermitian
symmetric spaces in detail. Hermitian symmetric spaces will be discussed in
Chapters III and IV.

Definition 1.6 Let (G,H, σ) be an effective semisimple symmetric space with
an invariant complex structure J .

1. Then we say that (G,H, σ, J) is a semisimple Hermitian symmetric
space if H is compact. We make the furhter distinctions that (G,H, σ) is
of the non-compact type if σ is a Cartan involution and of the compact
type if G is compact.

2. Otherwise, i.e. when H is not compact, we say that (G,H, σ, J) is a
semisimple pseudohermitian space.

A semisimple Hermitian symmetric space (G,H, σ, J) with its invariant pseu-
doriemannian structure Q is of the compact type if and only if Q is negative
definite and of the non-compact type if and only if Q is positive definite.

If (G,H, σ) is not effective but has an invariant complex structure J ,
then, letting N denote the largest normal subgroup of G contained in H,
(G/N,GH/N, σ, J) is a semisimple pseudohermitian or Hermitian symmetric
space with the same structure J . Let us also note that J induces a complex
structure M = G/H such that G acts by holomorphic transformations of M .

Proposition 1.7 Let (G,H, σ, J) be a semisimple pseudohermitian or Her-
mitian symmetric space. Then M = G/H is simply connected.

Proof. See the remark in [Sha71] following Proposition 2.6. For semisimple
Hermitian symmetric spaces see [Hel01, Chapter VIII,Theorem 4.6].
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2. Symmetric Lie Algebras

1.C Parahermitian Symmetric Spaces
Parahermitian symmetric spaces were introduced in [KK85].

Definition 1.8 A semisimple parahermitian symmetric space is a semisimple
symmetric space (G,H, σ) with an invariant paracomplex structure J .

However, in this case M = G/H need not be simply connected.

§2 Symmetric Lie Algebras
Symmetric Lie algebras are the infinitesimal versions of symmetric spaces.

Definition 2.1 A symmetric Lie algebra is a triple (g, h, σ) where g is a Lie
algebra, σ is an involutive automorphism of g and h is the subalgebra of g
consisting of the fixed points of σ.

We say that a symmetric Lie algebra (g, h, σ) is effective if h does not contain
any non-trivial ideal of g and semisimple (resp. simple) if g is semisimple (resp.
simple). We say that (g, h, σ) is complex if g is a complex Lie algebra and σ
is complex Linear. Simple symmetric Lie algebras were classified by Berger,
[Ber57].

If G is a Lie group with Lie algebra g such that σ defines an involution,
which we will also denote by σ, of G, and if H is a subgroup of G with Lie
algebra h such that H ⊂ Gσ, then (G,H, σ) is a symmetric space. We say that
(G,H, σ) is associated to (g, h, σ). Conversely, any symmtric space (G,H, σ)
has an associated symmetric Lie algebra as we have already seen.

Definition 2.2 Let (g, h, σ) be an effective semisimple symmetric Lie algebra
and let g = h + q be the canonical decomposition with respect to σ and let B
be the Killing form of g. Suppose that J : q→ q is a linear map satisfying

1. J commutes with adqH for all H ∈ h,

2. and B(JX, Y ) +B(X,JY ) = 0 for all X,Y ∈ q,

and suppose furthermore that J is either a complex or paracomplex structure
on q. Then we say that J is an invariant complex or paracomplex structure
of the symmetric Lie algebra (g, h, σ). To be more specific, we say that

1. (g, h, σ, J) is a semisimple parahermitian symmetric Lie algebra if J is
paracomplex,

2. and (g, h, σ, J) is a semisimple Hermitian symmetric Lie algebra if J
is complex and h is compactly embedded in g. Then (g, h, σ, J) is of the
non-compact type if σ is a Cartan involution and of the compact type if
g is a compact Lie algebra.

5



I . Symmetric Spaces

3. Lastly, if J is complex and h is not compactly embedded we say that
(g, h, σ, J) is a semisimple pseudohermitian symmetric Lie algebra.

If g is simple we will use this adjective rather than semisimple.

The proof of Proposition 1.5 tells us that an invariant paracomplex or complex
structure J for a semisimple symmetric Lie algebra (g, h, σ) is of the form
J = adqJ0 for some J0 in the center of h. Note also, that σ is determined by
J or J0 since σ = exp(επadJ0) where ε = 1 if J is complex and ε = i when J
is paracomplex. In the latter case, one has to work with the complexification
gC rather than g.

Remark 2.3 Let (g, h, σ) be an effective semisimple symmetric Lie algebra
with invariant (para)complex structure J . Let

g = g1 + · · ·+ gs,

be the decomposition of g into simple ideals. Write J0 for the element of h
such that adqJ0 = J and decompose J0 = J1 + · · · + Js with each Jk ∈ gk.
Then each σ maps each gk to itself and Jk is a (para)complex structure on
q∩gk. All the simple symmetric Lie algebras (gk, h∩gk, σ|gk

) have an invariant
(para)complex structure given by Jk. ♦

Proposition 2.4 Let (g, h, σ) be a simple symmetric Lie algebra. Then the
center z(h) of h has dimension 0, 1 or 2 over R, and we have

1. If z(h) is 1-dimensional, then (g, h, σ) has either an invariant paracom-
plex or an invariant complex structure. In either case the structure is
unique up to a sign. Furthermore, the complexification gC is simple.

2. If z(h) is 2-dimensional, then g is a complex simple Lie algebra and σ
is a complex linear involution. Furthermore, (g, h, σ) has an invariant
paracomplex structure J0 and an invariant complex structure iJ0.

Thus J0 is unique up to a sign.

Proof. See Lemma 1 and Theorem 6 in [Koh65].

2.A Classification
If (g, h, σ, J) is a simple symmetric Lie algebra and J is a paracomplex or
complex structure and the center of h is 1-dimensional over R, then gC is
simple. If we let σC denote the complex Linear extension of σ to gC and let g0
denote its fixed points, then h is a real form of g0 and (gC, g0, σ

C) is a simple
complex symmetric Lie algebra. If J0 ∈ h is the element such that J = adq(J0),
then J0 and iJ0 are invariant paracomplex and complex structures (depending

6



2. Symmetric Lie Algebras

on whether J0 was originally paracomplex or complex) on (gC, g0, σ
C). Assume

for simplicity that J0 is paracomplex. Then gC splits into eigenspaces of ad(J0)
as

gC = g−1 + g0 + g1,

where gλ is the λ-eigenspace of ad(J0). That is, gC is a 3-graded Lie algebra
in the sense that [gλ, gµ] ⊂ gλ+µ.

Conversely, if g = g−1 + g0 + g1 is a complex simple 3-graded Lie algebra,
then there exists a unique element J0 ∈ g0 such that gλ is the (λ)-eigenspace
for ad(J0). Furthermore, σ = exp(iπadJ0) is an involution of g whose fixed
point set is g0 and is −id on both g−1 and g1. It follows that (g, g0, σ) is
a complex simple symmetric Lie algebra and J0 (resp. iJ0) is an invariant
paracomplex (resp. complex) structure.

Complex simple 3-graded Lie algebras are classified in [KN64]. They found
all pairs (g, J0) where g is a simple Lie algebra over R or C and adJ0 has
eigenvalues 0, ±1 on g. They did not distinguish pairs (g, J0) and (g, J ′0) for
which there exist an automorphism of g which sends J0 to J ′0. We give the
table for the complex simple Lie algebras here and assume p ≤ q, p + q ≥ 2
and n > 2. We write Zp,q for the matrix

Zp,q =
(
aIp 0
0 −bIq

)
with a, b chosen by pa − bq = 0 og a + b = 1. Thus if (g, h, σ, J0) is any

Table 1: Simple complex 3-graded Lie algebras.

Type g g0 J0 (classical g)

Ip,q sl(p+ q,C) sl(p,C) + sl(q,C) + C Zp,q

IIn so(2n,C) sl(n,C) + C 1
2

(
0 In
−In 0

)
IIIn sp(n,C) sl(n,C) + C Zn,n
IVn so(2 + n,C) so(n,C) + C Z2,n
V EC

6 so(10,C) + C

V I EC
7 EC

6 + C

simple Hermitian, parahermitian or pseudohermitian symmetric Lie algebra
such that h has 1-dimensional center, then gC together with either J0 or iJ0
is isomorphic to one of the 3-graded Lie algebras above and g is a real form
of gC which is invariant under σC. The type of (g, h, σ, J0) will then be the
type of the 3-graded gC. We gather the spaces in the classification tables in
[Sha71], [KK85], and [Hel01] according to their type. Note that the center of
h is 1-dimensional in the following tables. It follows from Proposition 2.4 that
the center of h determines J0 up to a sign and hence σ completely.

7



I . Symmetric Spaces

Table 2: Simple symmetric Lie algebras (g, h, σ) which are either Hermitian, para-
hermitian or pseudohermitian of type Ip,q.

Compact type (su(p+ q), su(p) + su(q) + R)
Non-compact type (su(p, q), su(p) + su(q) + R)

Parahermitian
(sl(p+ q,R), sl(p,R) + sl(q,R) + R)

(su∗(2p′ + 2q′), su∗(2p′) + su∗(2q′) + R)‡
(su(n, n), sl(n,C) + R)†

Pseudohermitian
(su(p+ q − h− k, h+ k), su(p− k, k) + su(q − h, h) + R)

(sl(2n,R), sl(n,C) + R)†
(su∗(2n), sl(n,C) + R)†

‡ When p = 2p′ and q = 2q′ are both even.
† When p = q = n.

Table 3: Simple symmetric Lie algebras (g, h) which are either Hermitian, paraher-
mitian or pseudohermitian of type IIn.

Compact type (so(2n),u(n))
Non-compact type (so∗(2n),u(n))

Parahermitian (so(n, n), sl(n,R) + R)
(so∗(4m), so∗(2m) + R)[

Pseudohermitian (so(2(n− k), 2k),u(n− k, k))
(so∗(2n),u(n− k, k))

[ When n = 2m is even.

Table 4: Simple symmetric Lie algebras (g, h) which are either Hermitian, paraher-
mitian or pseudohermitian of type IIIn.

Compact type (sp(n),u(n))
Non-compact type (sp(n,R),u(n))

Parahermitian (sp(n,R), sl(n,R) + R)
(sp∗(m,m), su∗(m) + R)[

Pseudohermitian (sp(n− k, k),u(n− k, k))
[ When n = 2m is even.
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2. Symmetric Lie Algebras

Table 5: Simple symmetric Lie algebras (g, h) which are either Hermitian, paraher-
mitian or pseudohermitian of type IVn.

Compact type (so(2 + n), so(n) + R)
Non-compact type (so(2, n), so(n) + R)

Parahermitian (so(n− k + 1, k + 1), so(n− k) + so(k) + R)

Pseudohermitian (so(n+ 2− k, k), so(n− k, k) + R)
(so∗(2m+ 2), so∗(2m) + R)[

[ When n = 2m is even.

Table 6: Simple symmetric Lie algebras (g, h) which are either Hermitian, paraher-
mitian or pseudohermitian of type V and V I.

Type V Type V I
Compact type (E6, so(10) + R) (E7, E6 + R)
Non-compact type (E3

6 , so(10) + R) (E3
7 , E6 + R)

Parahermitian (E1
6 , so(5, 5) + R) (E1

7 , E
1
6 + R)

(E4
6 , so(1, 9) + R) (E3

7 , E
4
6 + R)

Pseudohermitian

(E2
6 , so

∗(10) + R) (E1
7 , E

2
6 + R)

(E2
6 , so(6, 4) + R) (E2

7 , E
3
6 + R)

(E3
6 , so(8, 2) + R) (E2

7 , E
3
6 + R)

(E3
6 , so

∗(10) + R) (E3
7 , E

3
6 + R)
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Chapter I I

FOUR ELEMENTARY SYMMETRIC
SPACES

In this chapter we will discuss three fundamental examples of symmetric spaces:
The unit disc D in the complex plane, the Riemann sphere CP1, and the one-
sheeted hyperboloid. These spaces are easy to visualize and are the simplest
instances of the general notions of non-compact Hermitian symmetric spaces,
compact Hermititan symmetric spaces, and parahermitian symmetric spaces
respectively. The purpose of treating all three examples now is to illustrate
their similarities and differences before turning to each particular family of
symmetric spaces. Lastly we will discuss a ’complexifcation’ containing all
three spaces, thus adding a fourth space to our list of examples. Some results
in this chapter will be proven again later, although often by different methods.

§3 The Unit Disc
In this section we will cover some results obtained in [CØ01] for the unit disc

D = {z ∈ C : |z| < 1}

in the complex plane C. We consider D together with the kernel function

k(z, w) = (1− zw)−2

defined for all z, w ∈ D. The usual hyperbolic metric on D comes from k by
defining the Hermitian form

Hz = 2 d
dz

d

dz
log k(z, z)(dz ⊗ dz)

at z ∈ D. We can write H = g − iω where g is the Riemannian metric

g = 4dx⊗ dx+ dy ⊗ dy
(1− |z|2)2

,

which has constant curvature −1, and

ω = 4 dx ∧ dy
(1− |z|2)2

= i∂∂ log k(z, z)

is the volume form corresponding to g.
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I I . Four Elementary Symmetric Spaces

It is well known that the geodesics in D are arcs of circles which intersect
the boundary ∂D at right angles, including lines through 0. Two distinct points
are connected by exactly one geodesic segment. Given three distinct points in
D, we may form a geodesic triangle ∆ with these three points as vertices by
defining ∆ to be the set bounded by the three geodesic segments connecting
the three points. We may give ∆ an orientation by ordering the three vertices

Figure 1: A geodesic triangle ∆ with vertices z0, z1 and z2.

cyclically. It is then clear that there is a one-to-one correspondence between
ordered triples of pairwise distinct points and oriented geodesic triangles. With
these conventions the following theorem holds:

Theorem 3.1 [CØ01] Let z0, z1 and z2 be the vertices of an oriented geodesic
triangle ∆ in D. Then the (oriented) area of ∆ is given by

−(arg k(z0, z1) + arg k(z1, z2) + arg k(z2, z0)),

where arg is the unique argument for k satisfying arg k(z, z) = 0 for z ∈ D.

Proof. Since k(z, w) is never zero or a negative real number, we may simply
use the main argument. The theorem can be proved by making use of the
group

SU(1, 1) =
{(

a b

b̄ ā

)
: |a|2 − |b|2 = 1

}
,

which acts isometrically and transitively on the unit disc as fractional linear
transformations, i.e. (

a b

b̄ ā

)
.z = az + b

b̄z + ā
.

12



3. The Unit Disc

For each g ∈ SU(1, 1) and z, w ∈ D, we have

1− g(z)g(w) = j(g, z)−1(1− zw̄)j(g, w)−1
,

with
j(g, z) = b̄z + ā, g =

(
a b

b̄ ā

)
∈ SU(1, 1).

Let us therefore define the expression

C(z1, z2, z3) = 1− z1z2
1− z1z2

· 1− z2z3
1− z2z3

· 1− z3z1
1− z3z1

, (3.1)

for z1, z2, z3 ∈ D. Then C invariant under the action of SU(1, 1), that is
C(g(z1), g(z2), g(z3)) = C(z1, z2, z3) for every g ∈ SU(1, 1). Since 1− zw̄ and
its inverse belongs to the right half plane for all z and w in the unit disc, we
can define a continuous argument for c by adding the main argument of each
of the factors in the expression for C, that is

argC(z1, z2, z3) = 2 (Arg(1− z1z2) + Arg(1− z2z3) + Arg(1− z3z1)) . (3.2)

This argument is also invariant under SU(1, 1), that is

argC(g(z1), g(z2), g(z3)) = argC(z1, z2, z3) (3.3)

for each g ∈ SU(1, 1). Now it suffices to prove that the area of a geodesic

0

z

w c

z0

w0

Figure 2: A geodesic triangle with vertices 0, z and w.

triangle with vertices 0, z1 and z2 is equal to argC(0, z1, z2), which in turn is
equal to − arg k(z1, z2). There is a geometric argument for this (see figure 2)
using the classical formula giving the area of a geodesic triangle as the angular

13



I I . Four Elementary Symmetric Spaces

defect of the triangle. Using classical Euclidean geometry, it can be seen that
this defect is equal to the angle between z− c and w− c, where c is the center
of the circle connecting z and w. This circle intersects the unit circle at two
right angles. Hence, the points z′ = z−1 and w′ = w−1 also belong to this
circle, so

arg z − c
w − c

= 2 arg z − z′

w − z′
= 2 arg 1

1− zw = − arg 1
(1− zw)2 ,

which was the desired result.

Remark 3.2 The formula may be rewritten as∫
∆
ω = argC(z0, z1, z2), (3.4)

where ∆ is the oriented geodesic triangle with vertices z0, z1 and z2. The
formula also holds in the degenerate case when one or more of the zi’s are
identical, in which case ∆ has empty interior and C equals 1. ♦

3.A Ideal Triangles and the Maslov Index
We may extend our definition of an oriented geodesic triangle to include
triangles with vertices on the boundary ∂D. A geodesic triangle ∆ whose
vertices all lie on ∂D is called an ideal triangle. An ideal triangle is defined

Figure 3: An ideal triangle ∆ with vertices ζ1, ζ2, and ζ3.

by three ordered distinct points (ζ1, ζ2, ζ3) on (∂D)3 with edges made up of

14



4. The Riemann Sphere

the infinite geodesics between these points. The oriented area of ∆ is π or −π
depending on the orientation of the vertices; the area is π if one reaches ζ2
before ζ3 when traversing δD counterclockwise starting at ζ1, and−π otherwise.
This gives an expression for the classical Maslov index ι(ζ1, ζ2, ζ3) as

ι(ζ1, ζ2, ζ3) = 1
π

∫
∆
ω,

so ι takes the values ±1. For the classical setting and definition of the Maslov
index, see the book [GS77, Ch. IV].

Notice that we can extend C to triples of distinct points on ∂D (with
value −1 for all such triples) and that argC also extends continuously. By
approaching the triple (ζ1, ζ2, ζ3) from the inside of D, we have

argC(ζ1, ζ2, ζ3) = lim
r↑1

argC(rζ1, rζ2, rζ3),

hence argC(ζ1, ζ2, ζ3) equals the oriented area of ∆. Putting this together we
obtain the formula

ι(ζ1, ζ2, ζ3) = 1
π

lim
r↑1

argC(rζ1, rζ2, rζ3),

valid for any triple of pairwise distinct points ζ1, ζ2, and ζ3 on ∂D. From this
formula we can deduce a number of properties of the Maslov index ι, such as
its invariance under the action of SU(1, 1) on ∂D

ι(g(ζ1), g(ζ2), g(ζ3)) = ι(ζ1, ζ2, ζ3),
and the cocycle property

ι(ζ1, ζ2, ζ3) = ι(ζ1, ζ2, ζ4) + ι(ζ2, ζ3, ζ4) + ι(ζ3, ζ1, ζ4),

for any quartuple of distinct points ζ1, ζ2, ζ3, ζ4 on ∂D.

§4 The Riemann Sphere
There are a number of similarities between the geometry of the unit disc D

and that of the Riemann sphere CP1. One simply has to ’change a sign’ to
obtain the Riemannian metric g(c) on C given by

g(c)
z = 4dx⊗ dx+ dy ⊗ dy

(1 + |z|2)2
, (4.1)

which is (up to a factor 4) the standard Fubini-Study metric on C. The metric
g(c) is also the pull-back metric arising from inverse stereographic projection
from C to the round sphere S2 ⊂ R3 given by

ϕ : z = x+ iy 7→ 1
1 + |z|2

(2x, 2y, 1− |z|2),
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so in particular g(c) has constant curvature +1. The volume form of g(c) is

ω(c) = 4dx ∧ dy
(1 + |z|)2 ,

and it should be observed that, because stereographic projection is orientation
reversing, this form is computed using the standard orientation of C. A similar
sign change provides us with a kernel function

kc(z, w) = (1 + zw)2, (4.2)

defined for all z, w ∈ C. The power is changed from −2 to 2 in order to have
the identity ω(c) = i∂∂ log kc(z, z) hold. The rest of this section will now be
devoted to proving an area formula similar to the formula from Theorem 3.1,
but before we may state such a theorem, we have to investigate the geometry
a little further.

Under stereographic projection, great circles on S2 are mapped to circles
and lines in C which intersect the unit circle S1 = {z ∈ C : |z| = 1} at opposite
points. Together with the unit circle itself, these circles and lines are the
geodesics in C with the metric gc. In particular, given a point ζ on the unit
circle, there are infinitely many geodesics passing through both ζ and −ζ as
shown in figure 4. The geodesics through 0 are straight lines.

Figure 4: Several geodesics passing through the points ζ and −ζ on the unit circle.

In order to be able to define a continuous argument for kc we introduce
the set

S= {(z, w) ∈ C× C : 1 + zw /∈ (−∞, 0]} (4.3)
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which is star-like with respect to (0, 0). Hence it is possible to define a contin-
uous argument for the restriction of kc to S. We can choose this argument as
twice the main argument of 1 + zw, that is

arg kc(z, w) = 2Arg(1 + zw), (z, w) ∈ S, (4.4)

defines a continuous argument for kc on S. Since kc is invariant under rotations
we must have

argkc(eitz, eitw) = arg kc(z, w),

for all t ∈ R and any pair (z, w) ∈ S. Furthermore, for any z, w we see that
kc(z, w) = kc(w, z) whence

arg kc(z, w) = − arg kc(w, z)

for any (z, w) ∈ S.
The kernel kc and the set S capture some of the behaviour of geodesics as

shown below.

Proposition 4.1 Let z and w be arbitrary complex numbers. Then

1. kc(z, w) = 0 if and only if z and w are mapped to a pair of antipodal
points under stereographic projection. Thus, in this case there are in-
finitely many distinct geodesic segments of equal length in C connecting
z and w, each of which realizes the distance between z and w.

2. 1 + zw is real if and only if ϕ(z) and ϕ(w) lie on a great circle passing
through the north pole (0, 0, 1) ∈ S2 and the south pole (0, 0,−1) = ϕ(0).

3. The pair (z, w) belongs to S if and only there is a unique geodesic segment
in C which connects z and w and realizes the distance between these two
points.

Proof. The proof of 1. consists of a straightforward calculation checking that
z and −z−1 are mapped to antipodal points under stereographic projection.

Moving on to the statement in 2., we observe that 1 + zw is real if and
only if z and w are linearly dependent over R, and hence connected by a line
through the origin. This line is mapped to a great circle on S2 passing through
(0, 0, 1) and (0, 0,−1) as shown on figure 5.

To prove 3. we take two points z, w ∈ C. We may assume without loss
of generality that z and w are distinct. Furthermore, since (z, w) ∈ S if and
only if (w, z) ∈ S, we can take z to be non-zero. It follows from 1. that we
may assume kc(z, w) 6= 0. Hence there is a unique shortest great circle arc
connecting ϕ(z) and ϕ(w) on S2. Thus in order to prove 3. we have to prove
that this arc passes through (0, 0, 1) if and only if (z, w) /∈ S.

So assume that (z, w) does not belong to S, i.e. that s = 1 + zw is a real
number < 0. This happens if and only if w = (s− 1)z−1, so in particular w is
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I I . Four Elementary Symmetric Spaces

Figure 5: Stereographic projection restricted to the line through z and 0. Points on
the thick half-line are connected to z by a shortest geodesic segment which avoids
(0, 0, 1).

lies on the line through 0 and z. We parametrize this line by t 7→ zt = (t−1)z−1

so that 1+zzt = t. Then z0 is the ’antipodal point’ of z. If t is < 0, the unique
shortest geodesic segment on S2 between zt and z pass through the north pole
(0, 0, 1) as shown on figure 5. If, on the other hand, the arc through ϕ(z) and
ϕ(w) passes through (0, 0, 1), then 1 + zw is real by 2., and hence w lies on
the line through z and 0. Then w = zt as before, but t cannot be positive, for
then ϕ(z) and ϕ(w) are connected by a shortest geodesic segment that does
not pass through (0, 0, 1).

Remark 4.2 At this point we could follow the reasoning in the case of the unit
disc D and introduce the group SU(2) and its partial action on C. Suppose g
is an element of SU(2), that is

g =
(
α β
−β α

)
, |α|2 + |β|2 = 1.

Then we have a partially defined action of g on C via

g(z) = αz + β

−βz + α
,

which is isometric and defined everywhere except possibly for one point. If we
define

j(g, z) = −βz + α
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we find as before

j(g, z)(1 + g(z)g(w))j(g, w) = 1 + zw

for all z, w ∈ C where j(g, z) and j(g, w) are non-zero. Given three points
z1, z2 and z3 such that all pairs (zi, zj) belong to S, we can proceed to define
the SU(2)-invariant expression

C(z1, z2, z3) = 1 + z1z2
1 + z1z2

· 1 + z2z3
1 + z2z3

· 1 + z3z1
1 + z3z1

, (4.5)

and define an argument for C by setting

argC(z1, z2, z3) = arg kc(z1, z2) + arg kc(z2, z3) + arg kc(z3, z1), (4.6)

but argC is not necessarily invariant under elements of SU(2). To see this,
let ζ = 1

2(−1 + i
√

3) and consider the triple (1, ζ, ζ2) of third roots of unity.
All pairs of these three elements belong to S and

arg kc(1, ζ) = −2π
3 .

Using the invariance property of argK, we find

arg kc(ζ, ζ2) = arg kc(1, ζ) = −2π
3 , arg kc(ζ2, 1) = arg kc(1, ζ) = −2π

3 ,

and thus argC(1, ζ, ζ2) = −2π. Now consider the element

g =
(

0 i
i 0

)

of SU(2). This particular element acts on C \ {0} by inversion whence

(g(1), g(ζ), g(ζ2)) = (1, ζ2, ζ).

However argC(1, ζ2, ζ) = 2π so argC is not SU(2)-invariant. ♦

Theorem 4.3 Let (z, w) be a pair in S. Construct an oriented geodesic tri-
angle ∆ with vertices 0, z, w by choosing the shortest geodesics connecting 0
and z as well as 0 and w, and finally choose the shortest geodesic connecting
z and w. Then the oriented area of ∆ is given by∫

∆
ζ(c) = − arg kc(z, w), (4.7)

where arg is the argument for kc defined on S such that arg kc(z, z) = 0.
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0 z

w

z0

w0
c

Figure 6: An oriented geodesic triangle with vertices 0, z and w.

Proof. We will assume that ∆ is positively oriented. Both the area of ∆ and
the argument of kc is invariant under rotation, so we assume that z is real
and positive. The geodesic segment connecting z and w is part of a circle that
intersects the unit circle in two opposite points. The points z′ = −z−1 and
w′ = −w−1 also belong to this circle as these points are the antipodes of z and
w. Our assumption on the orientation of ∆ implies that the shortest geodesic
segment connecting z and w must lie in the upper half plane. In particular
the imaginary part of w must be strictly positive.

The classical formula gives the area of ∆ as the angular excess, i.e. α+β+
γ − π, where α, β and γ are the interior angles of ∆. Using classical geometry,
this is seen to be equal to the angle between z− c and w− c, which in turn is
twice the angle between z − z′ and w− z′. This angle can be computed using
the usual main argument. We get∫

∆
ω(c) = 2Argw − z

′

z − z′
= 2Arg(1 + zw)
= −2Arg(1 + zw)
= − arg kc(z, w),

as claimed.

Given three points z0, z1 and z2 such that each of the pairs (zi, zj) belongs to S

we can construct an oriented geodesic triangle ∆ = ∆(z0, z1, z2) as follows: ∆
is the set bounded by the three unique shortest geodesic segments connecting
the pairs (z0, z1), (z1, z2) and (z2, z0). The orientation is given by traversing
the boundary in the order z0 7→ z1 7→ z2 7→ z0.

Theorem 4.4 Let z0, z1 and z2 be three points in C such that each of the
pairs (zi, zj) belong to S. Construct an oriented geodesic triangle ∆(z0, z1, z2)
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4. The Riemann Sphere

in the manner just described. Then∫
∆(z0,z1,z2)

ω(c) = −(arg kc(z0, z1) + arg kc(z1, z2) + arg kc(z2, z0)), (4.8)

where arg is the argument for kc on S satisfying arg kc(z, z) = 0.

Proof. According to Theorem 4.3 we have

− arg kc(z0, z1) =
∫

∆(0,z0,z1)

ω(c),

and similarly for the other terms on the right hand side of (4.8). Introduc-
ing the notation ∆01, ∆12 and ∆20 for the geodesic triangles ∆(0, z0, z1),
∆(0, z1, z2) and ∆(0, z2, z1) respectively, we have

−(arg kc(z0, z1)+arg kc(z1, z2)+arg kc(z2, z0)) =
∫

∆01

ω(c)+
∫

∆12

ω(c)+
∫

∆20

ω(c),

but ω is exact so Stoke’s theorem gives∫
∆01

ω(c) +
∫

∆12

ω(c) +
∫

∆20

ω(c) =
∫

∆(z0,z1,z2)

ω(c),

as claimed.

Remark 4.5 One can prove results similar to the above for a family kn of
functions

kn(z, w) = (1 + zw)n,
with n any integer and with the corresponding form i∂∂ log kn(z, z) = n

2ω
(c).

With the same definition of Swe may define arg kn = n
2 arg kc and obtain the

same results as above. ♦

In essence, theorem 4.3 gives a geometric interpretation of arg kc(z, w) for
(z, w) ∈ S by giving a specific choice of a geodesic triangle ∆(0, z, w) whose
area equals − arg kc(z, w). Any continuous variation of (z, w) within S gives a
continuous deformation of ∆(0, z, w). But we could also start with a general
oriented geodesic triangle ∆ in C with vertices z1, z2, and z3. ∆ is bounded by
geodesic segments connecting the vertices and the orientation is determined
by the ordering (z1, z2, z3) of the vertices as in the case of the unit disc.

Theorem 4.6 Suppose that z, w ∈ C are points such that kc(z, w) 6= 0, and
that we are given an oriented geodesic triangle ∆ ⊂ C with vertices 0, z, and
w, and orientation (0, z, w). Then

exp
(
− i

∫
∆

ω(c)
)

= 1 + zw

1 + zw
, (4.9)

holds.
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I I . Four Elementary Symmetric Spaces

Proof. The ’degenerate’ case is when (z, w) /∈ Swhere ∆ has empty interior.
Here both sides of (4.9) equals 1. Suppose then that (z, w) belongs to S. Then
there are two possible geodesic segments connecting z and w as seen on figure
6. There are thus two possible oriented geodesic triangles with vertices (0, z, w).
Let ∆′ denote the oriented geodesic triangle with the shortest segment between
z and w as an edge, and let ∆′′ denote the oriented geodesic triangle that has
the longest segment between z and w as an edge. The difference between the
area of ∆′ and the area of ∆′′ is the area of the disc bounded by the geodesic
through z and w, i.e. ∫

∆′
ω(c) −

∫
∆′′

ω(c) = 2π,

and hence

exp
(
− i

∫
∆′
ω(c)

)
= exp

(
− i

∫
∆′′

ω(c)
)
,

and now it suffices to prove (4.9) for the triangle ∆′, but this is a consequence
of (4.7).

The formula (4.9) is mentioned in [Per86] and generalized to CPn in [HM94].
The proof presented here seems to be new.

Corollary 4.7 Let ∆ ⊂ C be an oriented geodesic triangle with vertices z1,
z2, and z3 and orientation corresponding to the ordering (z1, z2, z3). Then we
have

exp
(
− i

∫
∆

ω(c)
)

= C(z1, z2, z3),

where C is the function defined by (4.5).

Proof. The proof is similar to the proof of Theorem 4.4. Use the three vertices
of ∆ to construct three geodesic triangles ∆j with vertices (and orientation)
(0, zj , zj+1) where 1 ≤ j ≤ 3 and z4 = z1. Then∫

∆

ω(c) =
3∑
j=1

∫
∆jω

(c),

by Stoke’s theorem and the result follows from (4.9).

4.A Maximal Argument
Let us compute the supremum of arg kc(z, w) when (z, w) runs over all of
S. From a geometric point of view we are looking for the maximal area of a
spherical triangle on the two-sphere whose sides are shortest geodesic arcs not
passing through the antipodes of the vertices. Hence there is a sharp upper
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5. The Hyperboloid

bound of 2π. For a more analytical approach, pick (z, w) ∈ S. Assuming that
z is non-zero we may use the rotational invariance of arg kc to further assume
that z is real and strictly positive. Then the S-fiber over z consists of all w ∈ C

which do not lie in (−∞,−z−1]. As we are looking for the maximal value of
arg kc(z, w) we further assume that w is not real and has negative imaginary
part. We thus have to estimate Arg(1 + seiθ) for s > 0 and θ ∈ (0, π). But
this expression is increasing in s and lims→∞Arg(1 + seiθ) = θ, so

sup
(z,w)∈S

arg kc(z, w) = 2π

as claimed. To estimate the maximal area of a geodesic triangle ∆(z0, z1, z2)
constructed from a triple (z0, z1, z2) where each of the pairs (zi, zj) belong to
S, first note that there is a simple upper bound given by the total surface area
of the two-sphere, that is ∫

∆(z0,z1,z2)

ω ∈ (−4π, 4π).

This bound is best possible as

lim
r→∞

∫
∆(r,rω,rω2)

ω = −4π,

where ω = 1
2(−1 + i

√
3).

§5 The Hyperboloid
The third space we will consider is the two-dimensional hyperboloid Σ of one
sheet given by

Σ =
{

(x, y, z) ∈ R3 : − x2 + y2 + z2 = 1
}

with the pseudo-Riemannian structure g induced by the Lorentz metric

−dx⊗ dx+ dy ⊗ dy + dz ⊗ dz

on R3. It is well-known, see e.g. [Wol67, Theorem 2.4.4], that (Σ, g) has con-
stant curvature +1 and g has signature (1, 1). The geodesics on Σ are the
intersections Σ ∩ P where P is a plane through 0. The full isometry group of
Σ is the matrix group

O(1, 2) =

A ∈ GL(3,R) : At
−1

1
1

A =

−1
1

1



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I I . Four Elementary Symmetric Spaces

and Σ is a homogeneous space under this group. It should be noted that Σ
is also a homogeneous space under the adjoing action of SL(2,R) using the
linear isomorphism

(x, y, z) 7→
(

z y + x
y − x −z

)

between R3 and sl(2,R). In this way Σ is the symmetric space SL(2,R)/R∗,
but we will not need this fact in this section.

We pick p0 = (0, 0,−1) as our base point. Then it is easy to see that
the space-like geodesics on Σ are exactly the closed geodesics, and that the
null-lines are straight lines. We need some facts about the geometry of Σ from
[Wol67, Lemma 11.2.1].

Proposition 5.1 Let p be any point on Σ. Let `1 and `2 denote the null-lines
through −p.

1. The set Σ \ (`1 ∪ `2) has three connected components and contains p.

2. Any point in the connected component of p is connected to p in Σ \
`1 ∪ `2 by a unique geodesic segment lying entirely inside the connected
component of p.

3. Any point in the other two components of Σ \ (`1 ∪ `2) is not connected
to p by a geodesic segment.

4. The only point on `1 ∪ `2 which is connected to p by a geodesic arc is
−p.

In particular, if p = (x, y, z) be a point on Σ not equal to −p0, then p0 and p
are connected by at least one geodesic if and only if z < −1.

As in the previous example, we will use stereographic projection to obtain
some useful coordinates on Σ. This time however, we will think of the pro-
jection not as a map into C but as a map into the algebra A of paracomplex
numbers which will be briefly introduced below.

5.A Paracomplex Numbers
The paracomplex numbers A is a two-dimensional associative unital algebra
over R consisting of elements of the form

w = x+ jy, x, y ∈ R,

where j is the imaginary paracomplex unit satisfying j2 = 1. Define an R-basis
of A by

E= 1
2(1 + j), E= 1

2(1− j),
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5. The Hyperboloid

and observe that E2 = E, E2 = E and EE = 0. Hence we may also think
of A as the vector space R2 equipped with coordinate-wise multiplication
(x, y) · (u, v) = (xu, yv) as well as the usual topology. In the following we will
mostly use the basis 1 and j, but nevertheless define the coordinate maps
()± : A→ R by w = w+E+ w−E for any w ∈ A.

Paracomplex conjugation is defined by w = x− jy and the corresponding
modulus is |w|2 = ww = x2 − y2. Notice that |w|2 = 0 if and only if w lies
on one of the null-lines RE or RE and that any paracomplex number with
non-zero modulus is invertible . The ’unit circle’ of paracomplex numbers of
norm 1 is a hyperbola. The paracomplex exponential function is defined using

Figure 7: The plane of paracomplex numbers.

the analogue of Euler’s formula

ex+jy = ex(cosh y + j sinh y), x, y ∈ R,

and the usual identity ew1+w2 = ew1ew2 holds for any w!, w2 ∈ A. In terms
of ()±-coordinates exponentiation is given by (ew)± = ew± . Hence for any
w ∈ A with w± > 0 we define the paracomplex logarithm logw by (logw)± =
log(w±).

Suppose that U ⊂ A is open and that f : U → A is an A-valued smooth
function. Then, as A-valued forms, df = ∂f

∂wdw + ∂f
∂wdw where

∂

∂w
= 1

2

(
∂

∂x
+ j

∂

∂y

)
∂

∂w
= 1

2

(
∂

∂x
− j ∂

∂y

)
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I I . Four Elementary Symmetric Spaces

and
dw = dx+ jdy

dw = dx− jdy.

We will write ∂f = ∂f
∂wdw and ∂f = ∂f

∂wdw. We say that f is paraholomorphic
if ∂f = 0. Observe that ew and logw are both paraholomorphic and

∂

∂w
ew = ew,

∂

∂w
logw = w−1.

For any paraholomorphic function f we use the notation f ′ = ∂
∂wf .

5.B Paracomplex Structure of Σ
We define ϕ : Σ \ {z = 1} → A by

ϕ(x, y, z) = 1
1− z (x+ jy)

for (x, y, z) ∈ Σ, z 6= 1. The image of ϕ is the set

B =
{
w ∈ A : |w|2 6= 1

}
,

and the metric g and volume form ω on Σ are given by

g = 4−dx⊗ dx+ dy ⊗ dy
(1− |w|2)2

and

ω = 4 dx ∧ dy
(1− |w|2)2

in these coordinates and the orientation defined by (1, j). Let us to introduce
the kernel

k(z, w) = (1− zw)2

for any elements z and w in A. The following result, which is straightforward
to verify, shows that k captures some of the geometry of Σ.

Proposition 5.2 Let w0 be a point in B and let p = ϕ−1(w0) be the corre-
sponding point on Σ. If w is another point in B then k(w0, w) is invertible if
and only if ϕ−1(w) does not lie on a null-line through −p.

The situation is similar to what we found for the Riemann sphere. If w = ϕ(p)
is a point in B, then w is invertible if and only if −p lies in the domain of ϕ,
and in this case ϕ(−p) = w−1. We refer to this point as the antipodal point
of w or p, where it is understood that if w is not invertible it only has an
antipodal point when considered as point on Σ.
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5. The Hyperboloid

Figure 8: Several geodesics connecting j and −j.

The geodesics on Σ are mapped under ϕ to hyperbolas in A. In particular,
geodesics through p0 are mapped to straight lines through 0.

Inspired by the geometry of the unit disc in C we define the group

G =
{(

a b
b a

)
∈M2(A) : |a|2 − |b|2 = 1

}
consisting of 2 × 2 matrices with paracomplex entries. This is a Lie group
under the usual matrix multiplication rules, and we define a partial action of
G on D by

g(w) = aw + b

bw + a
, g =

(
a b
b a

)
∈ G,

wherever (bw + a) is invertible. Note that the transformation defined by g is
paraholomorphic and

g′(w) = ∂

∂w
g(w) = (bw + a)−2. (5.1)

Suppose that g(w1) and g(w2) are both defined. Then

1− g(w1)g(w2) = (bw1 + a)−1(1− w1w2)(bw2 + a)−1,

and we have the following transformation rule

k(g(w1), g(w2)) = g′(w1)k(w1, w2)g′(w2), (5.2)

which together with the observation that

g = −2dw ⊗ dw + dw ⊗ dw
(1− |w|2)2
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I I . Four Elementary Symmetric Spaces

shows that elements of G act on B as isometries.

Remark 5.3 The group G is actually SL(2,R) in disguise. For if
(
a b
b a

)
∈ G

we may write (
a b
b a

)
=
(
a+ b+
b− a−

)
E+

(
a− b−
b+ a+

)
E

using the ()± coordinates a = a+E+ a−E and b = b+E+ b−E. Then
(
a+ b+
b− a−

)
is an element of SL(2,R) and the action of g on w ∈ A may be written as

g(w) = a+w+ + b+
b−w+ + a−

E+ a−w− + b−
b+w− + a+

E

at every point w ∈ A where g(w) is defined. Conversely, if
(
a b
c d

)
is an element

of SL(2,R), then

g =
(
aE+ dE bE+ cE
cE+ bE dE+ aE

)
is an element of G and

g(xE+ yE) = ax+ b

cx+ d
E+ dy + c

by + a
E

shows how the action ofG is just two different linear fractional transformations
of R. ♦

5.C Area of Geodesic Triangles
We now return to the volume form ω. It is related to the kernel k via

ωw = −j ∂
∂w

∂

∂w
log k(w,w)dw ∧ dw

at every point w ∈ B. Note that k(z, w) is a square in A and that log k(z, w)
thus makes sense whenever |k(z, w)|2 6= 0. We introduce the operator dA =
j(∂ − ∂). Then

ωz = 1
2ddA log k(z, z)

holds for all z ∈ B.

Definition 5.4 Let γ : [a, b]→ B be a smooth curve segment such that k(γ(a), γ(b))
is invertible. Then we define a cocycle α by

α(γ) = arg k(γ(a), γ(b)) + 1
2

∫
γ
dA log k,

where arg k(γ(a), γ(b)) denotes the paracomplex imaginary part of log k(γ(a), γ(b)).

The main feature of the cocycle α is that it is G-invariant.
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Proposition 5.5 Suppose that γ : [a, b]→ B is a smooth curve segment con-
necting the points w1 = γ(a) and w2 = γ(b) such that k(w1, w2) is invertible.
Assume that g ∈ G is an element such that the action of g is defined on all
points of γ. Then α(γ) = α(gγ).

Proof. It follows from (5.2) that α is defined on the curve gγ. Using (5.1) we
see that log g′(w1) and log g′(w2) are defined, whence

log k(g(w1), g(w2)) = log g′(w1) + log k(w1, w2) + log g′(w2)

holds. Comparing the paracomplex imaginary parts yields

arg k(g(w1), g(w2)) = arg g′(w1) + arg k(w1, w2)− arg g′(w2).

Furthermore, for all w ∈ A where g(w) is defined

log k(g(w), g(w)) = log(
∣∣g′(w)

∣∣2 k(w,w))

= log
∣∣g′(w)

∣∣2 + log k(w,w),

and thus ∫
gγ
dA log k =

∫
γ
dAg

∗ log k

=
∫
γ
dA log

∣∣g′(w)
∣∣2 +

∫
γ
dA log k,

as g∗dA log k = dAg
∗ log k. The real part of the paraholomorphic function

log g′(w) is 1
2 log |g′(w)|2 and

dA log
∣∣g′(w)

∣∣2 = 2d arg g′(w)

since d = ∂ + ∂. Thus∫
γ
dA log

∣∣g′(w)
∣∣ = 2(arg g′(w2)− arg g′(w1))

and putting the above together we find

α(gγ) = arg k(g(w1), g(w2)) + 1
2

∫
gγ
dA log k

= arg g′(w1) + arg k(w1, w2)− arg g′(w2)

+
∫
γ
dA log k + arg g′(w2)− arg g′(w1)

= α(γ)

as claimed.
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Remark 5.6 Let w be a point in B with |w|2 < 1. Consider the matrix

gw =


√

1− |w|2
−1

w
√

1− |w|2
−1

w
√

1− |w|2
−1 √

1− |w|2
−1

 ,
which is an element of G. Then gw maps 0 to w so its inverse, which is the
element g−w, maps w to 0. Notice that g−w is defined for exactly those z ∈ A

where 1 − zw is invertible. Note also that the inversion map w 7→ −w−1

coincides with the action of

g =
(

0 j
−j 0

)
∈ G,

on the invertible elements of A.
Suppose now that γ : [a, b]→ B is a smooth curve with the property that

k(γ(a), γ(t)) is invertible for all t in [a, b]. Then if |γ(a)| < 1 it follows that
g−γ(a)γ is defined and starts at 0. If on the other hand γ(a) has modulus
greater than 1, then so does γ(t) for all t and thus gγ(t) = −γ(t)−1 is a well-
defined smooth curve of modulus less than 1. This curve can be mapped to a
curve starting at 0 using G as we have just seen. We conclude that given any
curve γ : [a, b]→ B satisfying the assumption that k(γ(a), γ(t)) is invertible
for all t ∈ [a, b], there exists an element g of G such that gγ is defined and
has starting point at 0. ♦

Theorem 5.7 Let γ : [a, b] → B be a geodesic segment and suppose that γ
does not pass through the antipodal point of γ(a). Then α(γ) is defined and
vanishes, that is

1
2

∫
γ
dA log k = − arg k(γ(a), γ(b)).

Proof. We first show that k(γ(a), γ(t)) is invertible for every t in [a, b]. Let
γ̃ = ϕ−1 ◦ γ : [a, b]→ Σ denote the lift of γ to Σ. By assumption γ̃ does not
pass through the antipodal point of γ̃(a) regardless of wether γ(a) is invertible
or not. And since γ̃ is a geodesic it follows from Proposition 5.1 that γ̃ cannot
pass through the null-lines at the antipodal point of γ̃(a). Thus k(γ(a), γ(t))
is invertible for all t in [a, b] by Proposition 5.2. Hence, as we have already
remarked, it is possible to find an element g of G such that the action of g is
defined on all points of γ and gγ(a) = 0. Now gγ is a geodesic starting at 0
so it is a line segment. From

dA log k(w,w) = 2jwdw − wdw
1− |w|2

it is easy to see that the curve integral of dA log k vanishes along any segment
of a line containing 0. This concludes the proof.
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Corollary 5.8 Let γ : [a, b]→ B be a segment of a null or time-like geodesic.
Then α(γ) = 0.

Proof. Indeed, it follows from Proposition 5.1 that a null or time-like γ does
not pass through a pair of antipodal points.

Using the above results we may easily prove an area formula for geodesic
triangles in B. To be precise, an oriented geodesic triangle ∆(w0, w1, w2) in B
with vertices w0, w1, and w2 is a domain ∆ bounded by a piecewise smooth
simple closed curve consisting of three geodesic segments in B connecting the
vertices. The ordering (w0, w1, w2) of the vertices determines the orientation
of ∆.

Figure 9: A time-like, a space-like, and a null geodesic bounding a geodesic triangle
∆ with vertices w0, w1, and w2.

Theorem 5.9 Let ∆ be an oriented geodesic triangle in B with vertices w0,
w1, and w2 and assume that the vertices are traversed in that order. Assume
furthermore that each of the segments satisfy the conditions of Theorem 5.7.
Then the oriented area of ∆ is given by∫

∆

ω = −(arg k(w0, w1) + arg k(w1, w2) + arg k(w2, w0)).

Proof. Let γ0, γ1, and γ2 denote the geodesic segments that form the boundary
of ∆, enumerated so that γ0 starts at w0 and ends at w1 from where γ1 starts
and so on. Then it follows from Stoke’s theorem and 5.7 that∫

∆

ω = 1
2

∫
ddA log k

= 1
2

2∑
i=0

∫
γi

dA log k

= −(arg k(w0, w1) + arg k(w1, w2) + arg k(w2, w0)),
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as claimed.

Remark 5.10 At this point we have seen three similar theorems (3.1, 4.4, and
5.9) on geodesic triangles in three different geometries. In the case of the
unit disc the theorem was proved using group invariance of both sides of the
formula (3.4) and the Gauss-Bonnet theorem. That same theorem was used
to prove Theorem 4.3 for spherical triangles and this latter theorem may be
viewed as an analogue of Theorem 5.7 concerning the cocycle α. The vanishing
of α was of course instrumental in the proof of Theorem 5.9, which did not
rely on the Gauss-Bonnet theorem even though versions of this theorem for
two dimensional spacetimes such as Σ exists, see e.g. [BN84].

The common trend in these examples is the kernel functions k that trans-
form in a suitable manner under the involved groups. From these k’s we
constructed the volume forms which were all of the form 1

2dρ where ρ is a
1-form related to log k in each case. After applying Stoke’s theorem everything
comes down to relating arg k to path integrals of ρ over geodesic segments.
This was done explicitly in the case of the cocycle α. This last approach
focused more on group theory and less on the geometry, in particular the
constant curvature, of the space Σ. In the next section we will explore this
point of view further for all three spaces. ♦

§6 The Complex Picture
In the preceeding sections we have studied three homogeneous spaces

SU(1, 1)/U(1), SU(2)/U(1), SL(2,R)/R∗, (6.1)

and in each case the relation between the geometry of the space and a suitable
kernel function. This section is devoted to an attempt at unifying these three
examples by considering the complex homogeneous space

X = SL(2,C)/KC,

where we use KC to denote the subgroup of diagonal matrices in SL(2,C). As
we have SU(2)∩KC = U(1) = SU(1, 1)∩KC and SL(2,R)∩KC = R∗, we may
view each of the spaces in (6.1) as subspaces of X by considering the orbits
of SU(2), SU(1, 1) and SL(2,R) through the identity coses o = KC ∈ X.

Another way of thinking about this is to consider the spaces (6.1) as
surfaces in R3 given by the equations x2 + y2 + z2 = 1,−x2 + y2 + z2 = 1,
and x2 − y2 − z2 = 1, x > 0. We can find each of these spaces in the complex
quadratic variety given by z2

1 + z2
2 + z2

3 = 1. And this space is an orbit of
the adjoint group of SL(2,C) acting on the three dimensional complex vector
space sl(2,C).
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Notice that X is a symmetric space with respect to the involution σ : SL(2,C)→
SL(2,C) given by

σ

(
a b
c d

)
=
(
a −b
−c d

)
whose fixed point set is KC. The differential of σ is dσ : sl(2,C) → sl(2,C),
but we will also denote this map by σ. Let us introduce some notation

k = Lie algebra of KC =
{(

a 0
0 −a

)
: a ∈ C

}
,

q = −1 eigenspace of σ =
{(

0 z
w 0

)
: z, w ∈ C

}
,

p+ =
{(

0 z
0 0

)
: z ∈ C

}
,

p− =
{(

0 0
w 0

)
: w ∈ C

}
,

and
P± = exp(p±),

such that sl(2, C) = k + q and q = p+ + p−. Note that k normalizes both p+

and p−. There is a SL(2,C)-invariant complex-valued tensor Q on X given a
the identity coset o = KC by

Qo(X,Y ) = 4tr(XY ), X, Y ∈ q,

where we have identified q and ToX. Under this identification, Q is the Killing
form of sl(2,C) times a factor 1/2. Restricting Q to one of the three subspaces
(6.1) yields (up to a sign in the case of the Riemann sphere) the invariant metric
on each of these spaces. The real part of Q provides a pseudo-Riemannian
structure on X.

Lemma 6.1 Define a map m : P+ ×KC × P− → SL(2,C) by

m(p, k, q) = pkq

for p ∈ P+, k ∈ KC, q ∈ P−. Then m is a diffeomorphism onto its image
which is open and dense in SL(2,C). The same holds for the map m̌ defined
by multiplying the elements (p, k, q) in reverse order.

Proof. Since sl(2,C) = k + p+ + p−, it follows that m is everywhere regular
and hence has open image. The image of m is also dense because we have(

α β
γ δ

)
=
(

1 βδ−1

0 1

)(
α− βδ−1γ 0

0 δ

)(
1 0

δ−1γ 1

)
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whenever δ 6= 0 and the claim for m̌ follows if we transpose and invert the
above formula. To see that m and m̌ is injective it is enough to observe that
P+ ∩KCP

− = {I}.

We introduce coordinates on X by first embedding it into the cartesian
product of one-dimensional complex projective space with itself CP1 × CP1;
under the usual homographic SL(2,C)-action we have CP1 = SL(2,C)/KCP

−

or CP1 = SL(2,C)/KCP
+ depending on the choice of base-point. As KCP

−∩
KCP

+ = KC we may now view X as the orbit of SL(2,C) on the coset pair
(KCP

−,KCP
+) in SL(2,C)/KCP

− × SL(2,C)/KCP
+ = CP1 × CP1. This

orbit is precisely the set of pairs (`1, `2) of distinct complex lines. In terms of
homogeneous coordinates we have realized our space X as

X =
{

([z0 : z1], [w0 : w1]) ∈ CP1 × CP1 : det
(
z0 z1
w0 w1

)
6= 0

}
. (6.2)

Map p+ × p− into SL(2,C)/KCP
− × SL(2,C)/KCP

+ by

(( 0 z
0 0 ), ( 0 0

w 0 )) 7→
(
( 1 z

0 1 )KCP
−, ( 1 0

w 1 )KCP
+
)
,

and this map is an embedding of p+ × p− into an open and dense subset of
SL(2,C)/KCP

− × SL(2,C)/KCP
+ by 6.1. In order to ease the notation and

rewrite this embedding in terms of homogeneous coordinates we introduce
the map ξ : C2 → CP1 × CP1 given by

ξ(z, w) = ([z : 1], [1 : w])

for (z, w) ∈ C2. From the description of X given by (6.2) we are led to define

X=
{

(z, w) ∈ C2 : 1− zw 6= 0
}
,

and one can think of the restriction ξ : X → X as inverse stereographic
projection. The partial action of SL(2,C) on X is then given by(

α β
γ δ

)
.(z, w) =

(
αz + β

γz + δ
,
γ + δw

α+ βw

)
,

(
α β
γ δ

)
∈ SL(2,C),

for all points (z, w) ∈ X where this expression makes sense.
Inside X we find the planar models of (6.1) discussed in the previous

sections. Namely, the unit disc

D =
{

(z, z) ∈ C2 : |z| < 1
}

= ξ−1(SU(1, 1).o),
the complex plane

C =
{

(z,−z) ∈ C2 : z ∈ C
}

= ξ−1(SU(2).o),
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and the space
B =

{
(x, y) ∈ C2 : x, y ∈ R, xy 6= 1

}
= ξ−1(SL(2,R).o),

where (x, y) ∈ B corresponds to the paracomplex number xE+ yE. Define a
’metric’ on X by

H(z,w) = 4
(1− zw)2dz ⊗ dw.

Then each of the constant curvature metrics on D, C and B in X are just the
restrictions of H (up to a sign on C).

Definition 6.2 (A common kernel) Define a function kC : X→ C by

kC(z, w) = 1− zw,

and another function κC by

κC[(z1, w1), (z2, w2)] = kC(z1, w2)
kC(z2, w1) = 1− z1w2

1− z2w1
,

whereever this makes sense.

The restriction of kC to B, C, and D is the kernels of the past sections up to
a power of 2. For points (z, z) and (w,w) in D we find

κC[(z, z), (w,w)] = 1− zw
1− zw

and similarly

κC[(z,−z), (w,−w)] = 1 + zw

1 + zw
for points in C and

κC[(x, y), (u, v)] = 1− xv
1− uy

for points in B. A straightforward computation gives

1− αz + β

γz + δ

γ + δw

α+ βw
= (γz + δ)−1(1− zw)(α+ βw)−1 (6.3)

whenever αδ − βγ = 1. So if

g =
(
α β
γ δ

)

is an element of SL(2,C), then

κC[g(z1, w1), g(z2, w2)] = (γz1 + δ)−1(γz2 + δ)(α+ βw1)(α+ βw2)−1

· κC[(z1, w1), (z2, w2)],
(6.4)
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if the action of g is defined on (z1, w1) and (z2, w2). The differential

dg(z, w) : C2 → C2

of the action of g at (z, w) is given by

dg(z, w) : (u, v) 7→ ((γz + δ)−2u, (α+ βw)−2v),

for u, v ∈ C. Put together with (6.3), this shows that H is invariant under the
action of g. The alternating part of H is the form Ω given as

Ω = 2
(1− zw)2dz ∧ dw,

at a point (z, w) ∈ X. This form is also invariant under the SL(2,C) action.
Define

ρ = zdw − wdz
1− zw , (6.5)

which is a complex-valued, holomorphic 1-form on X satisfying dρ = Ω. The
parahermitian structure on X is pulled back under ξ to an SL(2,C)-invariant
complex (1, 1)-tensor field J on X given at the origin by the linear map
(z, w) 7→ (z,−w) and everywhere else by the same formula after identifying
T(z,w)X = C2 in the usual fashion. Thus J acts on the holomorphic 1-forms
by J(dz) = dz and J(dw) = −dw. Given a point (z, w) ∈ X we find that

ρ(z,w) = Jd log kC(z, w)

for any choice of continuous logarithm of kC at (z, w).

Lemma 6.3 Let I be some compact interval and let γ : I → X be a smooth
curve with starting point p1 = (z1, w1) and endpoint p2 = (z2, w2). Suppose
that g ∈ SL(2,C) is an element such that the action of g is defined on all
points of γ. Assume furthermore that κC(p1, p2) is defined and non-zero. Then
κC(gp1, gp2) is defined and

exp
(∫

gγ
ρ−

∫
γ
ρ

)
= κC(p1, p2)
κC(gp1, gp2) (6.6)

holds.

Proof. It follows from (6.4) that κC(gp1, gp2) is defined and that

κC(p1, p2)
κC(gp1, gp2) = (cz1 + d)(a+ bw2)

(cz2 + d)(a+ bw1) ,

where we have written g as
(
a b
c d

)
. Write γ(t) = (γ+(t), γ−(t)). By our assump-

tion on g, neither of (cγ+(t) + d)−1 and (a+ bγ−(t))−1 vanishes as t runs in
I. Therefore, we choose continuous logarithms for (cz + d)−1 along γ+ and
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for (a+ bz)−1 along γ−. Finally, pick a logarithm of k along γ. From (6.3) we
may define

log kC(gγ(t)) = log(cγ+(t) + δ)−1 + log kC(γ(t)) + log(a+ bγ−(t))−1,

as a logarithm of kC along gγ. Now we compute∫
gγ

ρ =
∫
γ

g∗ρ

=
∫
γ

Jdg∗ log kC

=
∫
γ

Jd log kC +
∫
γ

[
− ∂

∂z
log(cz + d)dz + ∂

∂w
log(a+ bw)dw

]

=
∫
γ

ρ+
∫
γ

d(log(a+ bw)− log(cz + d))

=
∫
γ

ρ+ log(a+ bw2) + log(cz1 + d)− log(a+ bw1)− log(cz2 + d),

and the claim follows.

Lemma 6.4 Let γ be a segment of a geodesic passing through (0, 0) ∈ X.
Then ρ(γ̇) vanishes everywhere.

Proof. Geodesics through (0, 0) are all of the form t 7→ exp(tX)(0, 0) for some
X ∈ q. Write

X =
(

0 z
w 0

)
for some z, w ∈ C. Then

exp(tX) =
(
e1(t) e2(t)z
e2(t)w e1(t)

)

where e1(t) =
∑∞
n=0 t

2n (zw)n

(2n)! and e2(t) =
∑∞
n=0 t

2n+1 (zw)n

(2n+1)! for all t ∈ R.
Thus

exp(tX)(0, 0) = e2(t)
e1(t) (z, w)

whenever e1(t) is non-zero. So the image of the geodesic is a line through
(0, 0). Now it is straightforward to see that ρ(γ̇) vanishes along γ.

Definition 6.5 (Antipodal points and null-planes) Given two distinct
lines (`1, `2) ∈ CP1 × CP1 we define the antipodal point of (`1, `2) to be
(`2, `1). Let Q1 and Q2 denote the stabilizers of `1 and `2 for the SL(2,C)
action on CP1. Then we define the null-planes through (`1, `2) as the orbits
Q1(`1, `2) = {`1} ×Q1`2 and Q2(`1, `2) = Q2`1 × {`2} in CP1 × CP1.
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Remark 6.6 When (`1, `2) is considered as a pair (g1KCP
−, g2KCP

+) of cosets,
the antipodal point is (g2$KCP

−, g1$KCP
+) where $ is the matrix

$ =
(

0 1
1 0

)
,

which normalizes KC and conjugates P+ to P− and vice versa. In coordinates,
the antipodal point of (z, w) ∈ X is (w−1, z−1) when both z and w are non-
zero. For a point (z,−z) ∈ C we see that its antipodal point is (−z−1, z−1) in
accordance with our previous use of this term, and similarly for (x, y) ∈ B. If
(`1, `2) = ξ(z, w) for some (z, w) ∈ X, then the preimages of the null-planes
through (`1, `2) consist of all points in X of the form (z + η, w) or (z, w + η)
for some η ∈ C.

Lastly, if (z0, w0) is a point in X with both z0 and w0 non-zero, then
κC[(z0, w0), (z, w)] is defined and non-zero precisely when (z, w) is not of the
form (w−1+η, z−1) or (w−1, z−1+η) for some η ∈ C. That is,κC[(z0, w0), (z, w)]
is defined and non-zero whenever (z, w) does not lie on one of the null-planes
through the antipodal point of (z0, w0). ♦

Lemma 6.7 Let (`1, `2) ∈ X be a pair of distinct lines and let N1, N2 denote
the null-planes through the antipodal point (`2, `1). There is at most one point
on N1 ∪N2 which is connected to (`1, `2) by a geodesic in X and this point is
(`2, `1).

Proof. Using SL(2,C)-invariance it suffices to prove this claim when (`1, `2) =
([0 : 1], [1 : 0]) = ξ(0, 0). In this case N1 ∪N2 is consists of all pairs of lines of
the form ([1 : 0], [η : 1]) or ([1 : η], [0 : 1]) and a geodesic γ : R → X through
ξ(0, 0) may be written as

γ(t) = ([e2(t)z : e1(t)], [e1(t) : e2(t)w]), t ∈ R,

for some z, w ∈ C and with e1, e2 given as in the proof of Lemma 6.4. If this
curve passes through N1∪N2 at some time t0, then e1(t0) = 0. But then γ(t0)
equals ([1 : 0], [0 : 1]) which is the antipodal point of ξ(0, 0).

Theorem 6.8 Let γ : [a, b]→ X be a geodesic segment such that γ does not
pass through the anitpodal point of γ(a). Then

exp
∫
γ

ρ = κC(γ(a), γ(b))−1.

Proof. This result will follow from Lemmas 6.3 and 6.4 once we show that
there exists a g ∈ SL(2,C) such that the action of g is defined on all points
of γ and gγ(a) = (0, 0). Write γ(a) = (z0, w0) and define g0 by

g0 =
(

1 −z0
−w0(1− z0w0)−1 (1− z0w0)−1

)
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and observe that g0 belongs to SL(2,C). Furthermore, g0 maps (z0, w0) to
(0, 0). If (z, w) is any other point in X, then it is easy straightforward to check
that g0(z, w) is defined if and only if κC[(z0, w0), (z, w)] is defined and non-zero.
But this holds whenever (z, w) is a point on γ by our assumption and Lemma
6.7.

Remark 6.9 Let us apply this theorem to reprove Theorem 3.1. Let ι : D→ X

be the embedding ι(z) = (z, z) of the unit disc into X. The map ι is merely the
embedding of SU(1, 1)/U(1) into SL(2,C)/KC written in terms of coordinates
given by ξ and hence totally geodesic. So let z0, z1 and z2 be points in D and
consider the oriented geodesic triangle ∆ = ∆(z0, z1, z2) in D. Rewriting the
volume form ω on D as

ω = −2i
(1− |z|2)2

dz ∧ dz,

it becomes clear that the pull-back ι∗Ω equals −iω. Thus

∫
∆

ω = i
3∑

k=1

∫
γk

ι∗ρ

= i
3∑

k=1

∫
ιγk

ρ,

where γ1, γ2 and γ3 are the geodesic segments constituting the sides of ∆. Now
we apply Theorem 6.8 and obtain

exp
( 3∑
k=1

∫
ιγk

ρ

)
= C(z0, z1, z2)−1,

with C defined by (3.1). Since C takes values of modulus one, the conclusion is
that the area of ∆(z0, z1, z2) is an argument forC(z0, z1, z2). But this argument
vanishes whenever the zi’s are not distinct and hence it follows by continuity
that it must be the argument defined by (3.2). ♦
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Chapter I I I

HERMITIAN SYMMETRIC SPACES OF
THE NON-COMPACT TYPE

As previously mentioned, the unit disc D is the basic example of a Hermitian
symmetric space of the non-compact type. In [CØ03], the results of §1 were
generalized to this class of spaces, expanding on previous work in [DT87]. The
main technical tool to be used here is Harish-Chandra’s embedding which
realizes a Hermitian symmetric spaces of the non-compact type as a bounded
symmetric domain.

§7 Structure Theory
In order to be able to explain the results in [CØ03], and because we will
need the notation and the technical machinery later, we give an overview of
Harish-Chandra’s embedding including some detailed structure theory. Proofs
for these classical results will be omitted, but can be found in the books
[Hel01] and [Sat80] which have slightly different points of view. The article of
A. Korányi in [FKK+00] contains a very thorough exposition as well. A good
overview of the classical examples of bounded symmetric domains, among
many other results, appear in [Wol72].

7.A Bounded Symmetric Domains
Definition 7.1 A bounded symmetric domain Ω is an open and connected
(i.e. a domain) subset of a complex vector space V such that each point z ∈ Ω
is an isolated fixed point of an involutive holomorphic map sz : Ω→ Ω.

It follows from a classical theorem of H. Cartan that there is at most one
involution sz at z ∈ Ω. A bounded symmetric domain Ω is a priori a symmetric
space in the sense of [Loo69]. However, once a non-trivial Lebesgue measure
dλ on V is chosen, Ω becomes equipped with a Bergman kernel k : Ω×Ω→ C

with the properties

1. For every fixed w the function kw(z) = k(z, w) is an element of H2(Ω);
the space of holomorphic square-integrable functions on Ω.

2. For every f ∈ H2(Ω) and w ∈ Ω we have f(w) =
∫
Ω
f(z)kw(z)dλ(z).
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The existence and uniqueness of a function with these properties follows
at once from the fact that pointwise evaluation evw : H2(Ω) → C given by
evw(f) = f(w) is continuous and that H2(Ω) is a closed subspace of L2(Ω).
Furthermore it may be proved that k(z, w) = k(w, z) and that k(z, z) > 0.
It follows that k(z, w) is holomorphic. If φ : Ω → Ω is an automorphism, i.e.
a holomorphic bijection with holomorphic inverse, the change of variables
formula gives

k(φ(z), φ(w)) = j(φ, z)−1k(z, w)j(φ,w)−1
, z, w ∈ Ω

with j(φ, z) being the Jacobian determinant of φ at z. If the measure dλ is
scaled by a factor c, the Bergman kernel is scaled by c−1.

Picking coordinates z1, . . . , zN on V , we define a tensor Hz for z ∈ Ω by

Hz =
∑
i,j

2 ∂2

∂zi∂zj
log k(z, z)dzi ⊗ dzj ,

and H is independent of the choice of Lebesgue measure. Then we may write
H = h− iω where h is a Riemannian structure on Ω and induces the Bergman
metric on Ω. The imaginary part of H is a Kähler form ω and is given by

ωz = i∂∂ log k(z, z)

= i
∑
i,j

∂2

∂zi∂zj
log k(z, z)dzi ∧ dzj

or simply ωz = 1
2ddC log k(z, z) where dC = −i(∂ − ∂). Any automorpism

φ : Ω→ Ω preserves H; that is, φ∗H = H. Thus Ω is a Hermitian symmetric
space and it may furthermore be shown to be of the non-compact type. Con-
versely, the Harish-Chandra embedding shows that any Hermitian symmetric
space of the non-compact type is holomorphically isometric to a bounded
symmetric domain with the Bergman metric.

7.B Harish-Chandra Realization

LetM be a Hermitian symmetric space of the non-compact type. Let (g0, k0, θ)
denote the associated effective symmetric Lie algebra. We will assume that
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g0 is simple. We introduce the following notation:

k0 : 1-eigenspace of θ,
p0 : (−1)-eigenspace of θ,
J : adp0k0-invariant complex structure on p0,

H0 : unique central element of k0 such that adp0H0 = J,

h0 : maximal abelian subspace of k0,

g : complexification of g0,

B : Killing form of g,
k, p, h : complex subalgebras of g spanned by k0, p,h0,

p± : (±i)-eigenspace of adpH0,

u = k0 + ip0 : compact real form of g,
τ, σ : conjugations of g with respect to u and g0 respectively,

and it is known that

1. h is a Cartan subalgebra of g,

2. p± are abelian,

3. the Riemannian structure on p0 coming from M is proportional to the
killing form B restricted to p0 × p0,

4. g is simple and the center of k0 is spanned by H0.

We let ∆ denote the set of roots of g with respect to h. From the relations
[k, p±] ⊂ p± it follows that for every α ∈ ∆ the root space gα is contained in
either p+, p−, or k; this partitions the roots into compact and non-compact
roots according to wether gα lies in k or not. By choosing a suitable ordering
we can assume that p+ is the sum of the positive non-compact root spaces.

Definition 7.2 Two roots α, β ∈ ∆ are strongly orthogonal if neither α+ β
or α− β is a root.

It is possible to choose a maximal set Γ = {γ1, . . . , γr} of positive non-compact
roots, by taking γk to be the lowest compat positive root which is strongly
orthogonal to all of γ1, . . . , γk−1. Then

a =
r∑

k=1
C(Xγk

+X−γk
),

is a maximal abelian subspace of p for any choice of non-zero elements X±γk
∈

g±γk . We make a specific choice of elements X±k ∈ g±γk satisfying

Xk −X−k ∈ u, i(Xk +X−k) ∈ u, [Xk, X−k] = 2
γk(Hk)

Hk,
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where Hk ∈ h satisfying B(Hk, H) = γk(H) for all H ∈ h. In this case, if a is
defined as above, the space

a0 =
r∑

k=1
R(Xk +X−k),

equals a ∩ p0 and is thus a maximal abelian subspace of p0.
Now let G be the simply connected complex Lie group with Lie algebra

g, and let G0,K0,K, P
+, P−, and U denote the analytic subgroups of G with

Lie algebras g0, k0, k, p
+, p−, and u respectively. We will abuse notation and

write σ and τ for the involutions of G whoose differentials at the identity are
σ and τ . With the complex structure J and Riemannian structure from M
on p0, G0/K0 is holomorphically isometric to M .

Lemma 7.3 The following holds:

1. The exponential map of G induces a diffeomorphism of p+ onto P+ and
similarily for p− and P−.

2. The map P+ ×K × P− → G given by (p+, k, p−) 7→ p+kp− is injective,
holomorphic and has a dense open image in G containing G0.

3. G0KP
− is open and contained in P+KP− and G0 ∩KP− = K0. Fur-

thermore, KP− is a parabolic subgroup of G.

The Harish-Chandra embedding is the holomorphic map ξ : G0/K0 → p+

given by
exp ξ(gK0) ∈ gKP−, g ∈ G0.

The Borel embedding (see [Wol72])G0/K0 → G/KP− is then given by gK0 7→
gKP−. The compact group U may be shown to act transitively on G/KP−
with U ∩KP− = K0; this gives a way of embedding G0/K0 into its compact
dual U/K0 as an open subset. Define Ξ: p+ → G/KP− by

Ξ(X) = exp(X)KP−, X ∈ p+,

and note that the Borel embedding is given as the composition of Ξ with the
Harish-Chandra embedding ξ.

We consider the domain D = ξ(G0/K0) ⊂ p+. Equivalently, D is the
preimage under Ξ of the G0-orbit G0KP

− in G/KP−. We use the decompo-
sition G0 = K0 exp(a0)K0 to show that D is bounded in p+. Every g ∈ G0
may be written as g = k1 exp(Z)k2 with k1, k2 ∈ K0 and Z ∈ a0, and since
K0 normalizes P+ we find

ξ(gK0) = Adp+(k1)ξ(exp(Z)K0).
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If we write Z =
∑r
k=1 tk(Xk+X−k) with tk real, then it follows from SL(2,C)-

computations that

exp(Z) = exp(X) exp(H) exp(Y ),

where

X =
r∑

k=1
tanh(tk)Xk,

H =
r∑

k=1
− log(cosh ti)[Xk, X−k],

Y =
r∑

k=1
tanh(tk)X−k,

are elements of p+, k, and p− respectively. Hence

ξ(exp(Z)K0) =
r∑

k=1
tanh(tk)Xk,

so that

D =
{
Ad(k)

∑
k=1

tanh(tk)Xk : k ∈ K0, t1, . . . , tr ∈ R

}
, (7.1)

and thus D is bounded. G0 acts on D as automorphisms, and in particular
Adp+ exp(πH0) equals −idp+ , whence it follows thatD is a bounded symmetric
domain. What is more, D is star-like with respect to the origin in p+ and
circular because Ad exp(tH0) acts as multiplication by eit, t ∈ R.

7.C Polydisc Embedding
Using the K0 exp(a0)K0-decomposition of G0 we saw, (7.1), that D was swept
out by K0 acting on the ’cube’ in p+ consisting of all elements of the form∑r
k=1 skXk with sk ∈ (−1, 1). Let

g0(γk) = R(Xk +X−k) + R(iXk − iX−k) + iRHk

and

g0(Γ) =
r∑

k=1
g0(γk),

so that g0(Γ) is a sum of commuting subalgebras of g0 each of which is
isomorphic to su(1, 1). Let G0(Γ) denote the analytic subgroup of G0 with
Lie algebra g0(Γ). This group is a covering group of PSU(1, 1)r and the orbit
of 0 ∈ p+ is

G0(Γ).0 =
{∑
k=1

zkXk : |zk| < 1
}
,
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by elementary SL(2,C)-computations.
The differential of the Harish-Chandra embedding ξ at eK0 ∈ G0/K0 is

given by
deK0ξ(X) = 1

2(X − i[H0, X]), X ∈ p0,

and this expression is a real linear, Ad(K0)-equivariant isomorphism between
p0 and p+. We let a+

0 denote the image of a0 in p+, and we let a+ denote the
complex subspace spanned by a+

0 , that is

a+
0 =

r∑
k=1

RXk,

a+ =
r∑

k=1
CXk.

Note that
D ∩ a+ =

{∑
k=1

zkXk : |zk| < 1
}

= G0(Γ).0

is a product of r unit discs D. The holomorphic embedding f : Dr → D given
by

f(z1, . . . , zr) =
∑
k=1

zkXk, (7.2)

is called the polydisc embedding. Putting this together yields

Proposition 7.4 (Polydisc Embedding Theorem) The embedding

f : Dr → D

is totally geodesic. What is more, there exists a surjective homomorphism of
G0(Γ) onto PSU(1, 1)r such that f is equivariant with respect to the action of
G0(Γ) on Dr and D. For any z ∈ p+ there exists a k ∈ K0 such that Ad(k)(z)
lies in a+

0 ∩D.

7.D Šilov Boundary
The action of G0 extends to the topological closure D of D and the decompo-
sition of the boundary ∂D into G0-orbits was found by Wolf and Korányi in
[WK65]. There are r orbits and only one of them is closed; this is the orbit of

Xr = X1 + · · ·Xr ∈ ∂D,

and in fact G0(Xr) = AdK0(Xr). This is the only G0-orbit which is also a
K0-orbit. The remaining orbits are the G0 orbits of

Xj :=
r∑

k=1
Xk,

for 1 ≤ j < r.
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Definition 7.5 Let Ω ⊂ V be a bounded domain in the complex vector space
V . The Šilov boundary of Ω is the smallest closed subset S of ∂Ω such that

max
z∈Ω
|f(z)| ≤ max

s∈S
|f(s)| ,

for every continuous function f : Ω→ C which is holomorphic on Ω.

It is clear from the definition that the Šilov boundary of D is made up of
G0-orbits. This leads to

Theorem 7.6 The Šilov boundary S of D ⊂ p+ is the G0-orbit of Xr, i.e
S = G0(Xr) = AdK0(Xr). In particular, S contains the r-torus G0(Γ)(Xr)
consisting of the points

∑r
k=1 ζkXk, |ζk| = 1.

7.E Restricted Roots and Cayley Transform
We return to the strongly orthogonal roots Γ = {γ1, . . . , γr} and define

xk = Xk +X, yk = Jxk = iXk − iX−k,

which allows us to write a0 as the R-span of the xk and g0(γk) as the R-span
of xk, yk and [xk, yk]. Next write

h−0 = [a0, Ja0] =
r∑

k=1
iRHk,

and
h0+ = {H ∈ h0 : [H, a0] = 0} ,

so that h0 is the orthogonal direct sum of h−0 and h+
0 . Observe that the strongly

orthogonal roots vanish on h+
0 and are as such determined by their restriction

to h−0 . Let π(∆) denote the set of roots restricted to h−0 with the strongly
orthogonal roots identified with their restriction.

Theorem 7.7 [Restricted Roots] There are only two possibilities for the re-
stricted roots π(∆):

1. The restricted roots are
{
±1

2γs ±
1
2γt : 1 ≤ s, t ≤ r

}
, this is the Cr-case,

2. or the restricted roots are
{
±1

2γs ±
1
2γt,

1
2γt : 1 ≤ s, t ≤ r

}
, the BCr-

case.

In both cases, the Weyl group of the restricted root system consists of all signed
permutations of the strongly orthogonal roots Γ. The multiplicity of γk is 1,
and the multiplicity of 1

2(γt± γs), s 6= t, is a, and the multiplicity of 1
2γt is 2b.
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Given a root γ ∈ Γ, the Cayley element cγk
∈ U is given by

cγk
= exp

(
i
π

4 yk
)
,

and the Cayley transform is the element

c =
r∏

k=1
cγk

= exp
(
i
π

4

r∑
k=1

yk

)
,

or rather, its adjoint action Ad(c). Another routine SL(2,C)-calculation shows
that Ad(c) maps ih−0 to a0 while fixing h+

0 . Theorem 7.7 now gives the structure
of the restricted roots ∆(g0, a0). Now, the order of c is either 4 or 8 and
σc = c−1, so Ad(c4) is an involution (possibly the identity) which preserves
g0. Furhtermore, Ad(c4) commutes with the Cartan involution θ so that the
fixed point set g0,T ⊂ g0 of g0 decomposes

g0,T = k0,T + p0,T ,

where k0,T = k0 ∩ g0,T and p0,T = p0 ∩ g0,T . The subalgebra g0,T contains h0
and a0. Hence, if G0,T and K0,T denote the subgroups of G0 corresponding to
g0,T and k0,T respectively, the space G0,T /K0,T is Hermitian symmetric and
the inclusion of G0,T into G0 gives a totally geodesic embedding of G0,T /K0,T
into G0/K0. Both p+ and p− are invariant under Ad(c4) and we denote
the 1-eigenspaces by p±T . The image of G0,T /K0,T under the Harish-Chandra
embedding is DT = D ∩ p+

T .

Proposition 7.8 The following are equivalent:

1. Ad(c4) is the identity.

2. H0 =
∑r
k=1Hk ∈ ih−0 .

3. The restricted roots of h−0 form a root system of type Cr.

4. The real dimension of the manifold S equals the complex dimension of
p+.

5. D is biholomorphically equivalent to a tube-domain T = V + iC, where
V is a real vector space and C is a symmetric cone in V .

If either of the above conditions are fulfilled, we say that G0/K0 and D is of
tube-type.

It may be shown that G0,T /K0,T = DT is of the non-compact type and a
tube-type domain.
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§8 Kernel Functions
We keep the notation introduced in the previous section. The following mate-
rial is from [Sat80].

Definition 8.1 (The P +KP − decomposition) For any g ∈ P+KP− we
define elements g+, g0, g− in P+, K and P− respectively by

g = g+g0g−

i.e. we factorize g into components according to the inverse map P+KP− →
P+ ×K × P−.

With this definition, we can define the partial action of G on p+ by

g(z) = (g exp z)+,

meaning that g(z) is defined whenever g exp(z) ∈ P+KP−. For g ∈ G0 and
z ∈ D, g(z) equals ξ(gξ−1(z)).

Definition 8.2 (Canonical automorphy factor) For g ∈ G and z ∈ p+

such that g(exp z) ∈ P+KP− we define the canonical factor of automorphy
J(g, z) by

J(g, z) = (g exp z)0.

Proposition 8.3 For each g ∈ G, the Jacobian (i.e. complex linear differen-
tial) at z0 ∈ p+ of the map z 7→ g(z) is given by Adp+J(g, z0). If h is another
element of G and both g(z0) and h(g(z0)) are defined, then (hg)(z0) is defined
and equals h(g(z0)). Furthermore

J(hg, z0) = J(h, g(z0))J(g, z0).

Definition 8.4 (Kernel of automorphy) For z, w ∈ p+ such that

exp(−σw) exp(z) ∈ P+KP−

we define the canonical automorphy kernel K(z, w) as

K(z, w) = ((exp(−σw) exp(z))0)−1, (8.1)

i.e. K(z, w) = J(exp(−σw), z)−1.

We list some properties of the kernel:

Proposition 8.5 The automorphy kernel K satisfies

1. K(z, w) is defined for all z, w ∈ D
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2. K(w, z) = σK(z, w)−1

3. If g ∈ G and z, w ∈ p+ are elements such that g(z), (σg)(w) and K(z, w)
is defined, then K(g(z), (σg)(w)) is defined and equals

K(g(z), (σg)(w)) = J(g, z)K(z, w)σJ(σg,w)−1. (8.2)

4. If z =
∑r
i=1 ziXi and w =

∑r
i=1wiXi for complex zk and wk of modulus

< 1, then

K(z, w) = exp(
r∑

k=1
log(1− zkwk)[Xk, X−k]). (8.3)

For g ∈ G and z ∈ p+ such that g(z) is defined, we introduce

j(g, z) = detAdp+J(g, z),

and if K(z, w) is defined for z, w ∈ p+ we let

k(z, w) = detAdp+K(z, w). (8.4)

Now if g ∈ G0 then (8.2) says

k(g(z), g(w)) = j(g, z)k(z, w)j(g, w), (8.5)

and hence the restriction of k(z, w)−1 to D×D obeys the same transformation
rule as the Bergman kernel of D. Since k(z, 0) = 1 it follows that k(z, w)−1 is
the Bergman kernel kD of D with respect to the Lebesgue measure λ on p+

normalized by λ(D) = 1.
If z and w are points in p+ we define the Bergman operator b(x, y) ∈

End(p+) by
b(z, w) = id− ad[z, σw] + 1

4(adz)2(adσw)2, (8.6)

where the right-hand side is restricted to p+. It is straightforward to check
that b(z, w) maps p+ to itself.

Proposition 8.6 Let z, w be points in p+ and suppose that K(z, w) is defined.
Then

Adp+K(z, w) = b(z, w) (8.7)

holds.

Proposition 8.7 The Hermitian form on D coming from the Bergman kernel
is given by

〈X,Y 〉z = −B(AdK(z, z)−1X, τY )

for z ∈ D and X,Y ∈ TzD = p+. The corresponding G0-invariant Rieman-
nian structure on M = G0/K0 is given by 1

2B on p0.
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The corresponding Kähler form ω is given by

ωz = −i∂∂ log k(z, z), z ∈ D, (8.8)

and we have ωz = −1
2ddC log k(z, z) where dC = −i(∂ − ∂).

Remark 8.8 Using the above results, the Bergman kernel kD of the unit disc
is easily computed to be

kD(z, w) = (1− zw)−2, z, w ∈ D,

and hence the Bergman kernel of the polydisc Dr is

kDr (z, w) =
r∏

k=1
(1− zkwk)−2,

for z = (z1, . . . , zr) and w = (w1, . . . , wr) in Dr. Applying the structure of the
restricted roots given by Theorem 7.7 we then find

kD(f(z), f(w))2 = kDr (z, w)p, z, w ∈ Dr,

where f is the polydisc embedding (7.2) and p = (r − 1)a + b + 2 as in
[FKK+00, pp 237-238]. Furthermore, there exists an Ad(K0)-invariant poly-
nomial h : p+ × p+ → C such that

h(z, w)p = k(z, w), z, w ∈ p+,

and h is given explicitly by

h(z, w) =
r∏

k=1
(1− zkwk),

for z =
∑r
k=1 zkXk and w =

∑r
k=1wkXk in a+. We define the the normalized

Bergman kernel k̃D(z, w) as

k̃D(z, w) = h(z, w)−2, z, w ∈ D,

even though it is not a Bergman kernel in the strict sense of the term. This
does not prevent us from defining a Kähler form

ω̃ = i∂∂ log k̃D(z, z),

on D. Now ω̃ = 2
pω, and a computation in [CØ03] proves that the minimal

holomorphic sectional curvature of D equipped with ω̃ is −1. This explains
the use of the word ’normalized’. ♦
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§9 Symplectic Area of Geodesic Triangles
Since D is simply connected and k : D ×D → C has no zeroes and is strictly
positive on the diagonal, we may define a continuous logarithm log k : D×D →
C satisfying log k(z, z) = 0 for all z ∈ D. The logarithm of the Bergman kernel
kD is thus − log k. Following [Wie04] we introduce the singular cochain

α(γ) = arg kD(γ(0), γ(1)) + 1
2

∫
γ

dC log kD(z, z),

where γ : [0, 1]→ D is a C1 curve segment. We claim that α is a G0-invariant
cochain. To see this let g ∈ G0 and observe that∫

gγ

dC log kD(z, z) =
∫
γ

dCg
∗ log kD(z, z),

and apply (8.5) to see

g∗ log kD(z, z) = log kD(gz, gz)
= − log |j(g, z)|2 + log kD(z, z),

which, after fixing some continuous logarithm of j(g, z) along γ, gives

1
2

∫
gγ

dC log kD(z, z)− 1
2

∫
γ

dC log kD(z, z) = −
∫
γ

dC log |j(g, z)| kD(z, z)

= −
∫
γ

dC< log j(g, z)

= −
∫
γ

d= log j(g, z)

= arg j(g, γ(0))− arg j(g, γ(1)).

However (8.5) also says

arg kD(gγ(1), gγ(0)) = − arg j(g, γ(1)) + arg kD(γ(0), γ(1)) + arg j(g, γ(0)),

using the same argument for j(g, z) along γ, and this shows that α(gγ) = α(γ).
From a cohomolgy point of view, we have proven the following: If Σ is a C1

simplex in D with vertices z0, z1, and z2, then the G0-invariant cocycles

c1(Σ) =
∫
Σ

ω

and
c2(Σ) = −(arg kD(z0, z1) + arg kD(z1, z2) + arg kD(z2, z0))
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define the same G0-invariant singular cohomology class, as their difference if
the boundary of α.

By an oriented geodesic triangle ∆ = ∆(z0, z1, z2) in D with vertices
z0, z1, and z2 in D we mean the broken geodesic curve consisting of the three
geodesic segments connecting the vertices z0, z1 and z2 and traversed in that
order. If Σ ⊂ D is a smooth oriented surface with ∆ as boundary, we may
define the integral

∫
∆ ω to be

∫
Σ ω. This is well-defined since ω is closed, and∫

∆ ω is called the symplectic area of ∆.

Theorem 9.1 ([DT87],[CØ03]) Let ∆(z0, z1, z2) be a geodesic triangle with
vertices z0, z1, and z2. Then∫

∆(z0,z1,z2)

ω = −(arg kD(z0, z1) + arg kD(z1, z2) + arg kD(z2, z0)). (9.1)

Proof. It follows from Stoke’s theorem that is suffices to show α(γ) = 0
whenever γ : [0, 1] → D is a geodesic segment in D. As α is G0-invariant it
also suffices to consider the case when γ is a geodesic segment through 0.
Using a suitable element of K0, we may further assume that γ̇(0) lies in the
totally geodesic subspace a+

0 . Then γ = f(σ1, . . . , σr) where f is the polydisc
embedding (7.2) and σ : [0, 1] → Dr is a geodesic segment starting at the
origin. It follows that

dC log kD(γ̇) = f∗(dC log kD)(σ̇)
= (dCf∗ log kD)(σ̇)

= p

2dC log kDr (σ̇)

= p

2

r∑
k=1

dC log kD(σ̇k),

whence it suffices to check that α vanishes in the special case when D is the
unit disc. This is a special case of Lemma 6.4.

Remark 9.2 Iin the proof of Theorem 9.1 it would also have been sufficient
to prove that ∫

∆(0,z1,z2)

ω = − arg kD(z, w),

for any z and w in D, and this result is stated in a somewhat different form
in [DG78]. ♦

Multiplying both sides of (9.1) by 2
p leads to∫

∆(z0,z1,z2)

ω̃ = −(arg k̃D(z0, z1) + arg k̃D(z1, z2) + arg k̃D(z2, z0)), (9.2)

where we use −2/p log k(z, w) as a logarithm for k̃D.
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Theorem 9.3 ([DT87],[CØ03]) The normalized symplectic area is bounded,∫
∆(z0,z1,z2 )̃

ω ∈ (−rπ, rπ) ,

and this bound is optimal in the sense that

inf
(z0,z1,z2)∈D3

∫
∆(z0,z1,z2 )̃

ω = −rπ, sup
(z0,z1,z2)∈D3

∫
∆(z0,z1,z2 )̃

ω = rπ,

holds.

This result shows that the normalized Kähler form ω̃ defines a bounded con-
tinuous 2-cocycle on the group G0. This topic is discussed in [Wie04] and will
not play a role in this thesis.

9.A Ideal Triangles
It is also possible to consider triangles whose vertices lie on ∂D. For the
unit disc D, three pairwise distinct points on the boundary ∂D determined a
unique oriented ideal triangle with area ±π. Since kD(z, w) is well-defined for
distinct points on the boundary it was also possible to extend the continuous
argument arg kD(z, w) to distinct points z, w ∈ ∂D. These ideas also work for
the bounded symmetric domain D and its boundary ∂D, albeit with some
necessary modifications.

Three pairwise distinct points ζ0, ζ1, ζ2 on ∂D form an ideal triangle ∆
if there exists three geodesics γ0, γ1 and γ2 in D connecting ζ1, ζ2 and ζ3.
To be precise, we require that ζk = limt→∞ γk(−t) and ζk+1 = limt→∞ γk(t)
with the index k taken mod 3. In general, given three boundary points, these
geodesics may neither exists nor be unique. For ζ0 and ζ1 to be connected
by a geodesic it is necessary that both points lie in the same G0-orbit on the
boundary. However, if ζ0 and ζ1 are connected by a geodesic, then h(ζ0, ζ1) is
non-zero.

Definition 9.4 Two points z and w in p+ are said to be transverse if h(z, w) 6=
0. This relation is symmetric and will be denoted z>w.

If we let D2
> denote the set of transverse pairs in D ×D, then it is clear that

D
2
> is star-shaped with respect to 0 and hence that the argument arg h(z, w)

extends to D2
>. Then we may of course also extend arg k̃D to D2

>. We therefore
define the symplectic area of an ideal triangle ∆(ζ0, ζ1, ζ2) as∫

∆

ω̃ = −(arg k̃D(ζ0, ζ1) + arg k̃D(ζ1, ζ2) + arg k̃D(ζ2, ζ0)),
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which makes sense because the vertices of an ideal triangle are pairwise
transversal.

One way to produce ideal triangles whose symplectic area reach the maxi-
mal values of ±rπ is to consider the diagonal polydisc embedding ρ : D→ D

ρ(z) = z
r∑

k=1
Xk

= f(z, . . . , z), z ∈ D,

which is holomorphic and totally geodesic and extends to a complex linear
map of C into p+. Now the image of an ideal triangle ∆(ζ0, ζ1, ζ2) in D under
ρ is an ideal triangle ρ(∆) = ∆(ρ(ζ0), ρ(ζ1), ρ(ζ2)) in D. Using Remark 8.8 it
is easy to prove that ∫

ρ(∆)

ω̃ = ±rπ,

where the sign depends on the orientation of ∆(ζ0, ζ1, ζ2). Note that the
vertices of ρ(∆) lie on the Šilov boundary of D. There is a converse statement
for ideal triangles with maximal symplectic area.

Theorem 9.5 ([CØ03]) Let ∆ ⊂ D be an ideal triangle with vertices ζ0, ζ1, ζ2 ∈
∂D, and suppose that

∫
∆ ω̃ = rπ. Then it is possible to move ∆ with an element

of g ∈ G0 in such a way that

g(ζ0) = ρ(1), g(ζ1) = ρ(−1), g(ζ2) = ρ(−i).

The stabilizer of the three vertices is a compact subgroup of G0 whose fixed
points are exactly g−1(ρ(D)).

In particular, ζ0, ζ1, ζ2 lie on the Šilov boundary. It follows from [Wie04,
Chp. 4,Lemma 4.5] that any triple (ζ0, ζ1, ζ2) or pairwise transverse points
ζ0, ζ1, ζ2 on the Šilov boundary S are the vertices of some ideal triangle ∆ ⊂ D.
We conclude with a result about ideal triangles with vertices on the Šilov
boundary.

Proposition 9.6 ([Wie04]) As (ζ0, ζ1, ζ2) varies over all triples of pairwise
transversal points on S, the corresponding symplectic area

∫
∆(ζ0,ζ1,ζ2) ω̃ takes

the values π(r − 2k), k = 0, 1, . . . , r, if D is of tube-type, or all values in the
interval [−rπ, rπ] if D is not of tube-type.
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Chapter IV

HERMITIAN SYMMETRIC SPACES OF
THE COMPACT TYPE

We turn our attention to Hermitian symmetric spaces of the compact type
with the goal of generalizing the results obtained for the Riemann sphere
CP1 in §2. We will keep the notation from the previous chapter and consider
the compact Hermitian symmetric space U/K0 where U is simply connected,
simple, and compact with Lie algebra u = k0 + ip0. We let g = uC denote
the complexification and G the associated simply connected complex Lie
group. There are complex subalgebras k, p+ and p− of g and corresponding
subgroups K, P+, and P− of G . Furthermore, U may be considered as a
subgroup of G and U/K0 = G/KP−. The map Ξ: p+ → G/KP− given by
Ξ(x) = exp(x)KP− is an embedding with dense image.

We will use p+ to provided coordinates for almost all of U/K0 and to
prove generalizations of Theorems 4.3 and 4.4.

§10 Polysphere Embedding
We will need the compact analogue of the polydisc embedding. Recall that
we picked a Cartan subalgebra h of g contained in k and chose a maximal set
Γ = {γ1, . . . , γr} of strongly orthogonal non-compact positive roots together
with representatives X±k ∈ g±γk satisfying

Xk −X−k ∈ u, i(Xk +X−k) ∈ u, [Xk, X−k] = 2
γk(Hk)

Hk,

where Hk ∈ h satisfies B(Hk, H) = γk(H) for all H ∈ h. Thus each of the r
subalgebras

gc(γk) = R(Xk −X−k) + iR(Xk +X−k) + iR[Xk, X−k]

is isomorphic to su(2) and any two of them commute. Define

gc(Γ) =
r∑

k=1
gc(γk)

and let Gc(Γ) denote the corresponding connected subgroup of U . Then Gc(Γ)
is covered by r copies of SU(2). We define the subspaces a+ and a+

R of p+ by

a+ =
r∑

k=1
CXk,
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and

a+
R =

r∑
k=1

RXk.

Note that a0 and a+
R are isomorphic under the restriction of the Ad(K0)-

equivariant R-isomorphism X 7→ 1
2(X − iad(H0)X) between p0 and p+. If

Z =
∑r
k=1 itk(Xk +X−k) is an element of ia0 and tk /∈ π

2 +πZ, then it follows
from SL(2,C)-computations that

exp(Z) = exp(X) exp(H) exp(Y ),

where

X =
r∑

k=1
tan(tk)Xk,

H =
r∑

k=1
− log(cos ti)[Xk, X−k],

Y =
r∑

k=1
tan(tk)X−k,

are elements of p+, k, and p− respectively.
The following theorem from [Wol72] is the compact analogue of the poly-

disc embedding.

Theorem 10.1 The orbit of Gc(Γ) through o = eK0 is a submanifold of
U/K0 and it is the image of a holomorphic and totally geodesic embedding
of the product (CP1)r of r copies of the Riemann sphere. This embedding is
equivariant with respect to the covering SU(2)r → Gc(Γ) and the action of
SU(2)r on (CP1)r.

If we write CP1 = C ∪ {∞}, then the embedding F : (CP1)r → G/KP− is
given by

F (z1, . . . , zr) = Ξ
( r∑
k=1

zkXk

)
(10.1)

for zk ∈ C.
If Ac = exp(ia0), then we have U = K0AcK0 and the orbit of Ac through

0 ∈ p+ is a+
R . We will need this decomposition several times as it allows us

to move any pair of points on U/K0 into the embedded polysphere Gc(Γ).o.

Lemma 10.2 (Polysphere Lemma) Let p and q be arbitrary points in
U/K0 and γ any geodesic segment connecting these two points. Then there
exist an element of U that maps p, q, and γ into Ξ(a+).
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11. The Compact Kernel

Proof. We can use U to move p to Ξ(0) and then use K0 to make sure the
tangent of γ at Ξ(0) lies in a+. Thus γ lies in Gc(Γ).o, whence q ∈ Gc(Γ).o
as well. We write p = F (0, . . . , 0) and q = F (z1, . . . , zr) with zi ∈ C ∪ {∞}.
If we write γ in coordinates as F (γ1, . . . , γr) where each γk is a geodesic on
CP1 connecting pk and qk. Now there is an element of SU(2) which maps pk,
qk, and γk to the ’equator’ of CP1. Repeating this procedure for each of the
factors of (CP1)r shows that we can arrange for p, q and γ to lie in Ξ(a+).

Corollary 10.3 Given any two points x and y on Gc(Γ).o, there exists a
geodesic in the embedded polysphere Gc(Γ).o which realizes the distance between
x and y considered as points in U/K0.

Proof. Suppose that γ : [0, 1]→ U/K0 realizes the distance between x and y.
By the previous lemma there exists a u ∈ U such that u(x), u(y), and u(γ(t))
lie in Gc(Γ).o. Now, since the embedding is SU r-equivariant, there exists an
element u′ of Gc(Γ) such that x = u′u(x) and y = u′u(y). It follows that
u′u(γ(t)) is a geodesic in Gc(Γ).o which realizes the distance between x and
y.

§11 The Compact Kernel
We will introduce the compact analogue of the kernel K and show that it
carries some information about the geometry of U/K0. We will make heavy use
of the same ideas that worked in the non-compact case. Recall that τ : g→ g

is the conjugation of g with respect to the compact real form u.

Definition 11.1 (Compact kernel of automorphy) Let z and w be points
in p+ such that exp(−τw) exp(z) belongs to P+KP− ⊂ G. Then we define
the compact automorphy kernel Kc(z, w) as

Kc(z, w) = ((exp(−τw) exp(z))0)−1, (11.1)

and we denote by Dom(Kc) the set of pairs (z, w) ∈ p+ × p+ where Kc is
defined.

Proposition 11.2 The kernel Kc satisfies

1. Kc(z, w) = K(z,−w), where K is the kernel of automorphy defined by
(8.4).

2. For all (z, w) ∈ Dom(Kc)

Adp+Kc(z, w) = idp+ − adp+ [z, τw] + 1
4(adz)2(adτw)2|p+ ,
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IV. Hermitian Symmetric Spaces of the Compact Type

3. If (z, w) ∈ Dom(Kc), then (w, z) ∈ Dom(Kc) and

Kc(z, w) = τKc(w, z)−1.

4. If z =
∑r
k=1 zkXk and w =

∑r
k=1wkXk are points in a+, then (z, w) ∈

Dom(Kc) if and only if 1 + zkwk 6= 0 for each k. If this holds, then
Kc(z, w) is given by

Kc(z, w) = exp
( r∑
k=1

log(1 + zkwk)[Xk, X−k]
)

(11.2)

regardless of the choice of logarithms.

5. For every z ∈ p+ we have (z, z) ∈ Dom(Kc) and Kc(z, z) is an element
of exp(ik0),

6. Let g ∈ G and (z, w) ∈ Dom(Kc) and suppose that both g(z) and (τg)(w)
are defined. Then (g(z), (τg)(w)) ∈ Dom(Kc) and the transformation
rule

Kc(g(z), (τg)(w)) = J(g, z)Kc(z, w)τJ(τg, w)−1 (11.3)

holds.

7. As a special case of 6.,

Kc(Ad(k)z,Ad(k)w) = kKc(z, w)k−1

for all k ∈ K0 and (z, w) ∈ Dom(Kc).

Proof. To see that the first statement holds, observe that the two conjugations
σ and τ differ by a sign on pC. Then 2. follows from the corresponding formula
(8.7) for Adp+K(z, w). And if (z, w) ∈ Dom(Kc), then we write

exp(−τw) exp(z) = pKc(z, w)−1q

for some p ∈ P+ and q ∈ P−. Then

exp(−τz) exp(w) = τ(exp(−τw) exp(z))−1

= τq−1τKc(z, w)τp−1,

and now 3. follows since τp ∈ P− and τq ∈ P+. Strong orthogonality reduces
4. to an SL(2,C) computation.

In order to prove 6., we assume that (z, w) ∈ Dom(Kc) and that g ∈ G is
an element such that g(z) and (τg)(w) are both defined. Put

g exp(z) = exp(g(z))J(g, z)p
τ(g) exp(w) = exp((τg)(w))J(τg, w)p′
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with p, p′ ∈ P−. Then

exp(−τw) exp(z) = τ(τ(g) exp(w))−1g exp(z)
= (τp′)−1τJ(τg, w)−1 exp(−τ(τ(g)(w))) exp(g(z))J(g, z)p.

As exp(−τw) exp(z) belongs to P+KP− we must have

P+K exp(−τw) exp(z)KP− ⊂ P+KP−

and thus exp(−τ(τ(g)(w))) exp(g(z)) must belong to P+KP− as well. Using
the fact that K normalizes both P+ and P− we compare K-parts and find

Kc(z, w)−1 = σJ(τg, w)−1Kc(g(z), (τg)(w))−1J(g, z),

which leads to the desired identity. Now 5. follows from 7. and (11.2).

The kernel Kc stores some geometric information about the space U/K0 as
shown below. The main tool is Lemma 10.2 together with (11.3) and (11.2),
which allows us to simply consider the polysphere (CP1)r where the results
of §4 can be applied.

Proposition 11.3 Let x, y be points in p+. Kc(x, y) is defined if and only if
there is a unique shortest geodesic curve between Ξ(x) and Ξ(y).

Proof. Suppose first that Kc(x, y) is defined. It follows from Lemma 10.2 and
the transformation rule (11.3) that we may assume that x and y belong to
a+. So write x =

∑r
j=1 xjXj and y =

∑r
j=1 yjXj where xj and yj are complex

numbers. As Kc(x, y) is defined we have 1 + xjyj 6= 0 for each j. This implies,
see Proposition 4.1, that there is a unique shortest geodesic path γj in CP1

between xj and yj . Hence the path (γ1, . . . , γr) is a shortest path between x
and y considered as points in (CP1)r. Then it follows from Corollary 10.3 that
this path is also a shortest path in U/K0.

On the other hand, if x and y are connected by a unique shortest geodesic
path γ in U/K0, we may once again use Lemma 10.2 and assume that x and
y lie in a+ and that γ runs in Gc(Γ)K0. Thus we view γ as a shortest geodesic
in (CP1)r connecting the points (x1, . . . , xr) and (y1, . . . , yr). If 1 + xjyj = 0
for some j then γ would not be unique and hence Kc(x, y) is defined.

There is another interpretation of Dom(Kc) in terms of cut points. Given a
point x on a Riemannian manifold and a geodesic starting at x, the cut point
y is the point on the geodesic where it ceases to be the shortest path to x.
On a compact manifold, any geodesic starting at x has a cut point. We write
C(x) for the set of cut points of x and C(x) is also called the cut locus of x.

Proposition 11.4 Let x, y be points in p+. Then Kc(x, y) is defined if and
only if y is not a cut point of x.
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IV. Hermitian Symmetric Spaces of the Compact Type

Proof. Suppose that γ is a geodesic segment between x and y. Then we may
once again assume that x and y and γ lie on the polysphere (CP1)r. Write
x = (x1, . . . , xr) and y = (y1, . . . , yr) where xj , yj ∈ C. If y is the cut point it
follows that 1 + xjyj = 0 for at least one j, 1 ≤ j ≤ r. Hence Kc(x, y) is not
defined. If, on the other hand, y is not the cut point, then 1 + xjyj 6= 0 for all
1 ≤ j ≤ r and it follows that Kc(x, y) is defined.

Given a point z ∈ p+, we construct an element gz of exp(ip0) ⊂ U such that
gz(0) = z by setting

gz = exp(z)Kc(z, z)
1
2 exp(τz), (11.4)

where the square root is well-defined since Kc(z, z) ∈ exp(ik0). A priori gz is
only an element of G, but in the case z =

∑r
i=1 ziXi ∈ a+ the element gz is

given explicitly by

gz = exp
(

r∑
i=1

zi
|zi|

arctan(|zi|)Xi −
zi
|zi|

arctan(|zi|)X−i

)
∈ exp(ia0),

and as the definition of gz shows that kgzk1 = gAd(k)z for all k ∈ K0 we have
gz ∈ exp(ip0) in general.

Lemma 11.5 Let x ∈ p+ be an arbitrary point. Define gx ∈ U by (11.4).
Then the action of gx on a point y ∈ p+ is defined if and only if (−x, y) ∈
Dom(Kc).

Proof. Given x and y in p+ we calculate

gx exp(y) = exp(x)Kc(x, x)1/2 exp(τx) exp(y)

and since exp(x)Kc(x, x)1/2 is in P+K, it follows that gx exp(y) belongs to
P+KP− if and only if exp(τx) exp(y) belongs to P+KP−. In other words
gx(y) is defined if and only if Kc(y,−x) is defined and the claim follows since
(y,−x) ∈ Dom(Kc) if and only if (−x, y) ∈ Dom(Kc).

Definition 11.6 (The compact kernel function) For (z, w) ∈ Dom(Kc)
we define the compact kernel kc as

kc(z, w) = detAdp+Kc(z, w), z, w ∈ p+ (11.5)

where det denotes the complex-valued determinant of the complex linear map
Adp+Kc(z, w) : p+ → p+.

Note that kc(z, w) is the determinant of b(z,−w) and hence defined on all of
p+ × p+. From the transformation rule (11.3) we get the formula

kc(g(z), g(w)) = j(g, z)kc(z, w)j(τg, w), (11.6)
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for any g ∈ G and z, w ∈ p+ such that g(z) and (τg)(w) are both defined.
Recall that k : p+ × p+ → C denotes the kernel function defined by (8.4). By
Proposition 11.2 we have

kc(z, w) = k(z,−w)

for all z, w ∈ p+. Recall the Ad(K0)-invariant polynomial h(z, w) determined
by

h(z, w) =
r∏

k=1
(1− zkwk)

for points z =
∑r
k=1 zkXk and w =

∑r
k=1wkXk in a+. Then, for z, w ∈ a+,

kc(z, w) = h(z,−w)p

with the positive integer p = a(r − 1) + b + 2 given by the theorem of the
restricted roots, 7.7.

There is a U -invariant Kä hler form on p+ given by

ωz = i∂∂ log kc(z, z)

for z ∈ p+. Furthermore, ω = 1
2dρ where

ρz = dC log kc(z, z) (11.7)

for z ∈ p+.

§12 Geodesics and Triangles in p+

Inspired by Proposition 4.1 we define a certain subset S of p+ × p+. We
will consider the pairs of points which, when considered as points in U/K0,
are connected by a unique shortest geodesic segment in U/K0 and we will
furthermore require that this segment is contained in Ξ(p+).

Definition 12.1 Let S be the set of all pairs (x, y) ∈ p+×p+ for which there
exists a unique geodesic segment γ : [0, 1]→ p+ such that γ(0) = x, γ(1) = y,
and such that γ realizes the distance between x and y.

Proposition 12.2 Let (x, y) ∈ S. Then

1. (x, y) ∈ Dom(Kc).

2. The pair (y, x) belongs to S.

3. If k ∈ K0 then (Ad(k)x,Ad(k)y) ∈ S.

4. For any z ∈ p+ we have (0, z) ∈ S.
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IV. Hermitian Symmetric Spaces of the Compact Type

5. If x and y are connected by γ : R → U/K0, then any pair of points on
γ lying between x and y also belong to S.

Proof. The first statement follows from Proposition 11.3. The second follows
since elements of K0 acts as isometries on all of p+. Then 3. follows by
reduction to the case z ∈ a+. The fourth statement follows from the definition
of S.

It follows that S is a contractible subset of p+× p+ with respect to the origin
(0, 0). Since S is a subset of Dom(Kc) it follows that kc is non-vanishing on S.
Thus there is a unique continuous logarithm log kc(z, w) defined on Swhich
is real when z = w.

Now we return to the 1-form ρ defined by (11.7). As our main interest will
be path integrals of ρ we need the following lemmas.

Lemma 12.3 Let γ : [a, b] → p+ be a smooth curve segment, and suppose
that kc(γ(a), γ(b)) is defined. Assume that g ∈ U is an element such that the
action of g is defined on all points of γ, that is, gγ is another smooth curve
segment in p+. Then we have

kc(gγ(a), gγ(b))
kc(gγ(b), gγ(a)) exp i

∫
gγ

ρ = kc(γ(a), γ(b))
kc(γ(b), γ(a)) exp i

∫
γ

ρ (12.1)

Proof. Let z be any point on γ. It follows from (11.6) that

kc(g(z), g(z)) = j(g, z)kc(z, z)j(g, z)

and hence
log kc(g(z), g(z)) = log |j(g, z)|2 + log kc(z, z).

Now from dC log k(z, z) = ρz and the above we see that∫
gγ

ρ =
∫
γ
dcg
∗ log kc(z, z)

=
∫
γ

dc log |j(g, z)|2 +
∫
γ

dc log k(z, z),

and since the action of g is defined along γ we may choose a holomorphic
logarithm of z 7→ j(g, z) along γ. This logarithm, denoted log j(g, z), has
real part log |j(g, z)| and it follows from the Cauchy-Riemann equations that
dC log |j(g, z)| = d= log j(g, z). Hence, dC log |j(g, z)|2 = 2d= log j(g, z) and∫

gγ

ρ = 2= log j(g, γ(b))− 2= log j(g, γ(a)) +
∫
γ

ρ
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12. Geodesics and Triangles in p+

follows. After taking exponentials we obtain

exp i
∫
gγ

ρ = j(g, γ(b))
j(g, γ(b))

j(g, γ(a))
j(g, γ(a)) exp i

∫
γ

ρ. (12.2)

Using (11.6) again, we see that

kc(gγ(a), gγ(b))
kc(gγ(b), gγ(a)) = j(g, γ(a))

j(g, γ(a))
kc(γ(a), γ(b))
kc(γ(b), γ(a))

j(g, γ(b))
j(g, γ(b)) (12.3)

and upon combining (12.2) with (12.3) we obtain (12.1).

Lemma 12.4 Let γ : [a, b] → p+ be a geodesic segment passing through 0.
Then ργ(t)(γ̇(t)) = 0 for all t.

Proof. This proof is a variation of the proof of Theorem 9.1 in which a similar
statement played a key role. Since kc(z, w) is Ad(K0)-invariant, so if ρ and we
may therefore assume that γ runs in a+. Write γ(t) =

∑r
k=1 γk(t)Xk where

γk : [a, b]→ C is a geodesic in the Riemann sphere CP1. Put

kCr (z, w) =
r∏

k=1
(1 + zkwk)2

for z = (z1, . . . , zr), w = (w1, . . . , wr) in Cr. Then

(dC log kc)(γ̇) = p

2(dC log kCr )(γ̇1, . . . , γ̇r)

= p

2

r∑
k=1

(dC log kC)(γ̇k)

and the calculation reduces to the situation CP1. Here each γk is a line through
the origin and kC(z, z) = (1 + |z|2)2 and it is straightforward to verify that
(dC log kC(z, z))(γ̇) vanishes.

Theorem 12.5 Let (z, w) ∈ S and let γ : [0, 1] → p+ denote the geodesic
segment in p+ connecting z = γ(0) and w = γ(1). Then

exp 1
i

∫
γ

ρ = kc(z, w)
kc(w, z)

(12.4)

and
1
2

∫
γ

ρ = − arg kc(z, w), (12.5)

where arg kc(z, w) is the imaginary part of the continuous logarithm of kc
defined on S by log kc(0, 0) = 0.
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Proof. Since (z, w) belongs to S it follows from Proposition 12.2(5) and Propo-
sition 11.3 that (z, γ(t)) ∈ Dom(Kc) for all t ∈ [0, 1]. Thus g−z is defined on
all points of γ by Lemma 11.5. As g−zγ starts at 0 we combine Lemma 12.4
and 12.3 to obtain

1 = kc(z, w)
kc(w, z)

exp i
∫
γ

ρ,

proving (12.4). As kc(w, z) = kc(z, w) we have

kc(z, w)
kc(w, z)

= exp 2i arg kc(z, w),

where arg is the imaginary part of log kc defined on S. Since both sides of
(12.4) depend continuously on (z, w) ∈ Swe conclude that (12.5) holds.

Now, if we are given a triple (z0, z1, z2) of points in p+ such that each of the
pairs (zi, zj) belong to S, then we may form an oriented geodesic triangle
∆ = ∆(z0, z1, z2) as follows: The triangle ∆ is made up of the three unique
shortest geodesic segments connecting the three vertices z0, z1, and z2 with
orientation given by traversing the boundary in the order z0 → z1 → z2 → z0.
If Σ is a smooth surface in p+ with ∆ = ∂Σ, then

∫
Σ ω only depends on the

boundary ∆ and therefore we will not specify any particular ’interior’ of ∆;
the triangle is just a broken geodesic loop.

Theorem 12.6 Let (z0, z1, z2) be a triple of points in p+ and suppose that
each pair (zi, zj) belongs to S. Construct the oriented geodesic triangle ∆(z0, z1, z2)
as above. Then∫

Σ

ω = −
(

arg kc(z0, z1) + arg kc(z1, z2) + arg kc(z2, z0)
)

holds for any smooth surface Σ ⊂ p+ with ∆ as its boundary.

Proof. We have ω = 1
2ρ so the result follows after an application of Stoke’s

theorem and (12.5) on each of the three geodesic segments of ∆.

In particular, for a geodesic triangle ∆(0, z1, z2) with (z1, z2) ∈ Swe see that
the symplectic area of ∆ is given by − arg kc(z1, z2). This result essentially
appears in several articles by S. Berceanu, see e.g. [Ber99] and [Ber04]. It is
proven by direct calculation for the complex Grassmannian. See also [BS00]
where the authors use an embedding of U/K0 into projective space CPN and
give an interpretation of the argument of kc in terms of the symplecitc area
of geodesic triangles in the ambient space CPN . Hangan and Masala [HM94]
already proved an exponentiated version of Theorem 12.6.
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§13 A Spectral Argument
It would be interesting to give a description of S similar to the way we
introduced this set for CP1. In the hopes of doing so we will now describe
how to construct a set R ⊂ p+ × p+ with certain similarities to S.

To begin this construction, let sj be the j’th elementary symmetric poly-
nomial in r variables, i.e. sj , 1 ≤ j ≤ r are determined by the relation

r∏
j=1

(X − λj) =
r∑
j=0

(−1)jsj(λ1, . . . , λr)Xj ,

in the polynomial ring C[X] for any λ1, . . . , λr ∈ C. Now we define polynomials
hj : a+

R → R by
hj(z) = sj(1 + t21, . . . , 1 + t2r),

where z =
∑r
k=1 tkXk is an arbitrary element of a+

R . Chevalley’s theorem
ensures that hj is the restriction to a+

R of an Ad(K0)-invariant real-valued
polynomial on p+ which we will also denote hj . We may then polarize hj
to obtain a polynomial hj(z, w) on p+ × p+ such that hj(z, z) = hj(z) for
all z ∈ p+. Furthermore, hj(z, w) is holomorphic and antiholomorphic as a
function of z and w, respectively. When z =

∑r
k=1 zkXk and w =

∑r
k=1wkXk

are in a+ we have

hj(z, w) = sj(1 + z1w1, . . . , 1 + zrwr),

and hence
r∏

k=1
(X− 1− zkwk) =

r∑
k=0

(−1)khk(z, w)Xk,

and the right-hand side makes sense for any (z, w) ∈ p+ × p+. In the case
when z, w both belong to a+ Proposition 4.1 and Corollary 10.3 say (z, w) lies
in S if and only if all roots of the polynomial

∑r
k=0(−1)khk(z, w)Xk ∈ C[X]

lie in C \ (−∞, 0].

Definition 13.1 Let R be the subset of p+× p+ consisting of all pairs (x, y)
such that the polynomial

px,y(X) =
r∑

k=1
(−1)khk(z, w)Xk ∈ C[X],

has all of its roots in C \ (−∞, 0].

As we have just seen,

R∩ (a+ × a+) = S∩ (a+ × a+).
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Using the Ad(K0)-invariance of each hj it is easy to prove that for each x ∈ p+

both (x, x) and (x, 0) belong to R. Since hj(y, x) = hj(x, y) we also see that
(x, y) is in R if and only if (y, x) is in R. It should also be observed that
kc(x, y) = h0(x, y)p and hence that there is a continuous logarithm of kc on
R defined as follows: Let λ1, . . . , λr be the r roots of px,y(X) counted with
multiplicity. We define

arg h0(x, y) =
r∑

k=1
Argλk

and
arg kc(x, y) = p arg h0(x, y)

using the usual main argument. Since h0 is the product of r roots, its argument
lies in the interval (−rπ/2, rπ/2).

The polynomial px,y(X) appears in [Loo75, §16] as the generic minimum
polynomial for the Jordan Pair (p+, p−). If we write y = τ(y′) where y′ ∈ p−

we have m(X + 1, x, y′) = px,y(X). The polynomial px,y(X) is in some sense
determined completely by the maximal tube-type subdomain p+

T . Namely, the
restriction of Ξ to p+

T gives the Harish-Chandra embedding of p+
T into the

compact Hermitian symmetric space UT /K0,T .

Proposition 13.2 Suppose that zT ∈ p+
T lies in the maximal tube-type sub-

domain and w ∈ p+ is any point. Let P : p+ → p+
T denote the orthogonal

projection. Then
pzT ,w(X) = pzT ,Pw(X),

holds.

Proof. The coefficients of px,y(X) are K0-invariant polynomials on p+ × p+

which are holomorphic and anti-holomorphic in the first and second variable
respectively. Now the claim follows from [CØ03, Lemma 1.2].

13.A Example: Complex Projective Space
Let us compare the sets R and S for the complex projective space CPn =
SU(n+ 1)/S(U(n)×U(1)) where the rank r is 1. In this case, u is su(n+ 1)
and ip0 consists of all matrices of block form(

0 z
−z∗ 0

)
,

where z is an n-dimensional complex column vector and z∗ is the transpose
conjugate. Then

p+ =
{(

0 z
0 0

)
: z ∈Mn,1(C)

}
,
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and if we think of elements of Cn as column vectors we make the identification

Cn 3 z 7→
(

0 z
0 0

)
,

between Cn and p+. The map Ξ is then given by

Ξ(z) =
[(
z
1

)]
, z ∈ Cn,

where, ifw ∈ Cn+1, [w] denotes the line Cw in CPn. Next setX1 = (1, 0, . . . , 0)t ∈
Cn,

a+ =
{

(z, 0, . . . , 0)t ∈ Cn : z ∈ C
}
,

and define h : Cn × Cn → C by

h(z, w) = 1 + w∗z, z, w ∈ Cn,

still thinking of z andw as column vectors. Now h is invariant under the adjoint
action of K0 = S(U(n)×U(1)) on Cn and h(xX1, yX1) = 1 + xy for x, y ∈ C.
Hence R consists of those pairs (z, w) ∈ Cn×Cn where 1+w∗z ∈ C\ (−∞, 0].

Let us show that R = S. Let γ be a geodesic through 0 in Cn. Then γ is
a line through 0 and is given by

γ(t) = tan(‖z‖t)
‖z‖

z,

for some z ∈ Cn and for t in the interval I = (− π
2‖z‖ ,

π
2‖z‖). Now if w is

an arbitrary element in Cn and gw ∈ SU(n + 1) is defined by (11.4), then
(gw(γ(t0)), w) belongs to S if and only if the action of gw is defined on γ(t)
for all t ∈ [0, t0]1. In this setting FiXme Note!

gw =
( √

In + ww∗
−1 √

1 + ‖w‖2−1
w

−
√

1 + ‖w‖2−1
w∗

√
1 + ‖w‖2−1

)
∈ SU(n+ 1),

so that

gw(γ(t)) =
√

1 + ‖w‖2
1− w∗γ(t) (

√
In + ww∗

−1
γ(t) +

√
1 + ‖w‖2

−1
w)

for all t ∈ I where w∗γ(t) 6= 1. Hence

h(gw(γ(t)), w) = 1 + w∗γ(t) + ‖w‖2

1− w∗γ(t)

= 1 + ‖w‖2

1− w∗γ(t) ,

1FiXme Note: this could be a general lemma
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and we may argue as follows: If h(gw(γ(t0)), w) /∈ (−∞, 0] for some t0 ≥ 0
then 1 − w∗γ(t0) /∈ (−∞, 0]. But as we have w∗γ(t) = ‖z‖−1 tan(‖z‖t)w∗z,
this implies that 1−w∗γ(t) /∈ (−∞, 0] for all t ∈ [0, t0], in particular gw(γ(t))
is defined for t ∈ [0, t0]. If, on the other hand, gw(γ(t)) is defined for all t in
[0, t0], then 1 − w∗γ(t) does not vanish. Since 1 − w∗γ(0) = 1 we see that
1− w∗γ(t) avoids (−∞, 0] for t ∈ [0, t0] and hence so does h(gw(γ(t0)), w).

From Proposition 13.2 together with the above we learn the following:
Suppose z and w are two points in Cn and w′ is the orthogonal projection of
w onto z. Then (z, w) belongs to S if and only if (z, w′) belongs to S.

13.B The Other Rank 1 Space
We consider the space SO(6)/U(3). It was already known to E. Cartan that
this space is isomorphic to CP3, see [Hel01, p. 519]. Indeed, SU(4) is a dou-
ble cover of SO(6) and S(U(1) × U(3)) is isomorphic to U(3). We give the
calculation that R = S nonetheless.

In geometric terms SO(6)/U(3) is the space of all 3-dimensional complex
subspaces of C6 that are isotropic under a fixed symmetric bilinear form S. It
is convenient to assume that

S(z, w) =
3∑

k=1
(zkw6+k + wkz6+k), z, w ∈ C6

rather than taking the usual symmetric form on Cn. Then S has matrix

S =
(

0 1
1 0

)

and G = SO(6,C) is realized as the group

SO(6,C) =
{
g ∈ SL(6,C) : gtSg = S

}
for which G ∩ SU(6) is a maximal compact subgroup isomorphic to SO(6).
With these choice we have

p+ =
{(

0 z
0 0

)
: z ∈M3(C), zt = −z

}

and we will identify p+ with the complex vector spaceA3(C) of skew-symmetric
complex 3× 3 matrices. The isotropy subgroup U(3) acts on A3(C) by

U.z = UzU t

for U ∈ U(3) and z ∈ A3(C). The function

h(z, w) = 1 + 1
2tr(zw∗), z, w ∈ A3(C),
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is invariant under this action. We put

E =

 0 1 0
−1 0 0
0 0 0

 ∈ A3(C),

and define
a+ = {zE : z ∈ C} ,

and observe that
h(zE,wE) = 1 + zw,

for z, w ∈ C. Thus R consists of those pairs matrices z and w for which
1 + 1

2tr(zw∗) lies in C \ (−∞, 0]. We will prove that R = S using the same
approach that worked for CPn.

Let γ be a geodesic through 0. There is no loss of generality in assuming
that γ runs in a+

R and is, possibly after reparametrization, given by

γ(t) = tan(t)E

where t runs in the interval I = (−π
2 ,

π
2 ). If w = (wij) ∈ A3(C) is any matrix,

then gw ∈ SO(6,C) ∩ SU(6) is given as

gw =
( √

In + ww∗
−1 √

1 + ‖w‖2−1
w

−
√

1 + ‖w‖2−1
w∗

√
1 + ‖w‖2−1

)
,

and the action gw(γ(t)) is defined for those t ∈ I where 1−w∗γ(t) is invertible.
Now some elementary matrix computations show that

h(gw(γ(t)), w) = 1 + tr(ww∗)
1− 1

2tr(γ(t)w∗)

and that the denominator is a square root of the determinant of 1− γ(t)w∗.
Since

1− 1
2tr(γ(t)w∗) = 1− tan(t)w12

we can argue just as in the previous example that h(gw(γ(t), w) is negative
for some t ∈ I if and only if 1− 1

2tr(γ(t0)w∗) vanishes at some t0 between 0
and t.
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Chapter V

PARAHERMITIAN SYMMETRIC SPACES

S. Kaneyuki has studied semisimple parahermitian symmetric spaces in great
detail in [Kan03], [Kan87], and [Kan85]. The article [KK85] with M. Kozai is a
well-written introduction to these spaces. Using ideas found in these papers we
will give a generalization of the results obtained in §2 for the two-dimensional
hyperboloid of one sheet.

§14 A Parahermitian Kernel Function
Let M = G/H be a semisimple parahermitian symmetric space. A canoni-
cal kernel function for M is introduced and studied in [Kan85] as well as a
generalized Borel embedding for M . To M corresponds an effective semisim-
ple symmetric triple {g, h, σ} where g is a semisimple Lie algebra with an
involution σ whose fixed points in g is exactly h. Furthermore, h contains a
unique element Z0 such that the centralizer of Z0 in g is h and that ad(Z0)
is semisimple with 0,±1 as eigenvalues. Now M is a symmetric coset space
G/H where

1. G is a connected Lie group with Lie algebra g such that σ extends to
an involution of G, and

2. H is an open subgroup of C(Z0)∩Gσ where Gσ is the group of fixpoints
of σ and C(Z0) is the centralizer of Z0 in G.

Two examples to keep in mind are the hyperboloid SL(2,R)/R∗, which we
have already met, and its double cover SL(2,R)/R∗>0.

We let m± denote the (±1)-eigenspaces of ad(Z0), hence

g = m+ + h + m−,

is a direct sum decomposition of g and q = m+ + m− is the (−1)-eigenspace
of σ. Now the closed and simply connected subgroups expm± are normalized
by H, so we define

U± = H expm±,

which are parabolic subgroups of G. It is well-known that U+ ∩ U− = H.
Furthermore, the multiplication map

expm+ ×H × expm− → G
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V. Parahermitian Symmetric Spaces

is everywhere regular and has open image in G, and similarly if one inter-
changes the expm± factors. We will let Ω = expm+H expm− and Ω′ =
expm−H expm+ denote the open and dense subsets. If g ∈ Ω then g may
be written in a unique way as a product g = g+g0g− where g0 ∈ H and
g± ∈ expm±. If g lies in Ω′ we write g = g′−g

′
0g
′
+ for the corresponding

decomposition.
Consider now the compact homogeneous spaces M± = G/U±. Let o±

denote the identity cosets in M± and consider the product M− ×M+. The
group G acts on this product by acting simultaneous on each factor and
the G-orbit of (o−, o+) is G/H. Thus M− ×M+ becomes a G-equivariant
compactification of M . Next we define embeddings

ξ1 : m+ →M−, ξ2 : m− →M+,

by
ξ1(x) = exp(x).o−, x ∈ m+,

ξ2(y) = exp(y).o+, y ∈ m−.

And it follows from the preceeding discussion that both ξ1 and x2 have open
images. These embeddings define partial actions of G on m±. If x ∈ m+ and
g ∈ G are such that g exp(x) ∈ Ω, then g(x) ∈ m+ is defined by

exp g(x) ∈ g exp(x)U−,

or equivalently by g(x) = ξ−1
1 (gξ1(x)). The partial action of G on m− is

defined in similar fashion by g(y) = ξ−1
2 (gξ2(y)) for all g ∈ G and y ∈ m−

such that gξ2(y) lies in the image of ξ2.

Remark 14.1 Carrying out this construction for SL(2,R)/R∗ gives an embed-
ding into two copies of real projective space RP1 × RP1. The open orbit of
SL(2,R) are all pairs of distinct lines. The covering space SL(2,R)/R∗>0 is
embedded into two copies of the space of rays in R2 emanating at the origin.
The orbit of SL(2,R) are the pairs of distinct rays. ♦

Definition 14.2 (Automorphy factors) Let x ∈ m+ and g ∈ G. Sup-
pose that g(x) is defined. Then we define the canonical automorphy factor
J+(g, x) ∈ H by

J+(g, x) = (g exp(x))0. (14.1)
If y ∈ m− is an element such that g(y) is defined, we define J−(g, y) ∈ H by

J−(g, y) = (g exp(y))′0, (14.2)

and we define j+(g, x) and j−(g, y) by

j+(g, x) = detAdm+J+(g, x),
j−(g, y) = detAdm+J−(g, y),

for all g and where J+(g, x), J−(g, y) are defined.
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Remark 14.3 The adjoint action of H leaves each m± invariant and hence
detAdm± defines characters of H. It follows from h = [m+,m−] that these
two characters are inverses of each other. ♦

Proposition 14.4 Let x ∈ m+ and g ∈ G. Suppose that g(x) is defined.
Then the action of g maps a neighborhood of x into m+ and its differential
dxg : m+ → m+ is given by

dx(g) = Adm+J+(g, x).

If the action of g is defined on some y ∈ m−, then the differential dyg : m− →
m− is given by

dyg = Adm−J−(g, y).

Proof. The proof is the same as the one given in [Sat80, page 65].

Taking both ξ1 and ξ2 together we obtain an embedding

ξ : m+ + m− →M− ×M+,

defined by
ξ(z+ + z−) = (ξ1(z+), ξ2(z−)), z± ∈ m±.

The image of ξ is open and dense, but does not in general contain the orbit
G.(o−, o+). In fact, g(o−, o+) lies in the image of ξ if and only if g lies in both
expm+H expm− and expm−H expm+. We put

M=
{
z = z+ + z− ∈ m+ + m− : (ξ1(z+), ξ2(z−)) ∈ G(o−, o+)

}
, (14.3)

and the set M is the truncated orbit of 0 ∈ m+ + m− under G.

Definition 14.5 (Parahermitian automorphy kernel) Let z = z+ + z−

be an element of m+ +m− and suppose that exp(−z−) exp(z+) is in Ω. Then
we define the automorphy kernel K(z) ∈ H by

K(z)−1 = (exp(−z−) exp(z+))0. (14.4)

The kernel function k(z) is then given by

k(z) = detAdm+K(z) (14.5)

for all z ∈ m+ + m− where K(z) is defined. Lastly, we define the ’mixed
kernel’ κ(z, w) ∈ H as

κ(z, w) = k(z+ + w−)k(w+ + z−)−1, (14.6)

for all points z = z+ + z− and w = w+ + w− where the right hand side is
defined.
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Proposition 14.6 Let z = z+ +z− be an element of m+ +m− and let g ∈ G.
If g(z) and K(z) are both defined, then K(g(z)) is defined and

K(g(z)) = J+(g, z+)K(z)J−(g, z−)−1, (14.7)

and, as a consequence,

k(g(z)) = j+(g, z+)k(z)j−(g, z−)−1, (14.8)

holds.

Proof. Write

g exp(z+) = exp g(z+)J+(g, z+)p−,
g exp(z−) = exp g(z−)J−(g, z−)p+,

where p± ∈ expm±. Then

exp(−z−) exp(z+) = (p+)−1J−(g, z−)−1 exp(−g(z−)) exp(g(z+))p−,

where exp(−z−) exp(z+) ∈ Ω by assumption. Hence exp(−g(z−)) exp(g(z+))
is in Ω and the H factor is

(exp(−g(z−)) exp(g(z+)))0 = J−(g, z−)K(z)−1J+(g, z+)−1,

and (14.7) follows immediately.

Definition 14.7 For z = z+ + z− in m+ + m− we define the Bergman
operator b(z) ∈ End(m+) by

b(z) = id− adm+ [z+, z−] + 1
4(adz+)2(adz−)2

|m+ ,

so that b(z) is an endomorphism of m+.

Lemma 14.8 If z such that K(z) is defined, then

b(z) = Adm+K(z),

holds. In particular
det b(z) = k(z)

and we may therefore extend the kernel function k to all of m+ + m−.

Proof. This follows by the same argument as in [Sat80].
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§15 Parahermitian Geometry
The space M = G/H has a pseudoriemannian structure Q given by

Qo(X,Y ) = 1
2B(X,Y ), X, Y ∈ q,

at the base point o = eH and under the usual identification ToM = q. The
associated parakähler form ω is given by

ω(X,Y ) = 1
2B(X, [Z0, Y ]), X, Y ∈ q,

at the point o ∈ M . Taking the pull-back of ω under ξ : M→ G(o−, o+) =
G/H yields a 2-form on M and we shall also refer to this form as ω.

Let z ∈ M. Then (14.7) implies that K(z) is defined since z = g(0) for
some g ∈ G. Hence k(z) is defined and non-zero. For X ∈ q we let DX denote
the directional derivative, i.e.

DXf(p) = lim
t→0

f(p+ tX)− f(p)
t

p ∈ q,

for a differentiable function f : q → C. Consider then, as an analogue of a
Hermitian form, the form

Hz(U, V ) = 2DU+DV − log k(z), U, V ∈ q,

where log k(z) is a logarithm of k near z; Hz does not depend on the particular
choice. Suppose that U = U+ ∈ m+ and V = V − ∈ m−. Then we have at
z = 0

H0(U, V ) = 2 lim
t,s→0

log det(id− (st)adm+ [U, V ] + (st)2

4 (adU)2(adV )2
|m+)

st

= −2tr (adm+ [U, V ])
= −B(U, V ),

and it follows that for general U, V ∈ q we have

H0(U, V ) = −B(U+, V −) = −(Qo(U, V )− ωo(U, V )), (15.1)

since both m+ and m− are isotropic subspaces under B.

Proposition 15.1 The form H is invariant under the partial action of G
and is given by

Hz(U, V ) = −B(Adm+K(z)−1(U+), V −), U, V ∈ q, (15.2)

at the point z ∈M.
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Proof. Let z ∈ M and g ∈ G and assume that g(z) is defined. Let U, V ∈ q

be tangent vectors at z. Since g acts as a parahermitian transformation we
have dzg(U)± = dzg(U±). Thus

Hg(z)(dzg(U), dzg(V )) = Ddzg(U+)Ddzg(V −) log k(g(z))
= DU+DV −(g∗ log k)(z)

by the chain rule. It follows from the transformation rule (14.8) that

DU+DV −(g∗ log k)(z) = DU+DV − log k(z) = Hz(U, V )

and this shows the invariance of H.
By (15.1), H0 provides a perfect pairing of m+ with m−. As each z ∈M

is of the form z = g(0) for some g ∈ G, it follows from the invariance that Hz

provides a perfect pairing of m+ and m−. Hence we may write

Hz(U+, V −) = −B(Φ(z)U+, V −), U+ ∈ m+, V − ∈ m−,

where Φ(z) is a uniquely determined linear endomorphism ofm+ where Φ(0) =
id. Proposition 14.4 says that

dzg(U+) = AdJ+(g, z+)(U+),

and similarly dzg(V −) = AdJ−(g, z−)(V −). Therefore, the invariance of H
forces

Φ(g(z)) = Adm+J−(g, z−)−1Φ(z)Adm+J+(g, z+) (15.3)
for any g ∈ G and z ∈M where g(z) is defined. Comparing (15.3) and (14.7)
we find

Φ(z) = Adm+K(z)−1

for all z ∈ M since this equation holds at z = 0 and both sides satisfy the
same transformation rule under the action of G.

Let J denote the paracomplex structure on M . We introduce the operator
dJ : C∞(M)→ Ω1(M) by

(dJf)(X) = df(JX),

where f ∈ C∞(M) is a smooth function and X ∈ X(M) is a vector field on
M . In terms of the coordinates given by M we have at any point p ∈M

(dJf)p(Z) = (df)p([Z0, Z]),

for Z ∈ q = Tp(M).

Proposition 15.2 The G-invariant symplectic form ω on M satisfies

ωz = −1
2ddJ log k(z), (15.4)

where z ∈M.
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Proof. Indeed, let X,Y ∈ q be tangent vectors at z. Then

ddJ log k(z) = −2DX+DY − log k(z) + 2DY +DX− log k(z)
= −Hz(X,Y ) +Hz(Y,X),

whence it follows that ddJ log k(z) is invariant underG and that ddJ log k(0) =
−2ω0 by (15.1). This proves the claim.

§16 Symplectic Area
We can now state and prove a result connecting the mixed kernel κ defined
by (14.6) with curve integrals of the 1-form dJ log k.

Lemma 16.1 Let γ : [0, 1]→M be a smooth curve segment and suppose that
κ(γ(0), γ(1)) is defined. If g is any element of G such that the action of g is
defined on all points of γ, then

exp
(∫
γ

dJ log k −
∫
gγ

dJ log k
)

= κ(γ(0), γ(1))
κ(gγ(0), gγ(1)) (16.1)

holds.

Proof. Let us write γ(t) = γ(t)+ +γ(t)− where γ(t)± ∈ m± for every t ∈ [0, 1].
It follows from Proposition 14.6 that κ(gγ(0), gγ(1)) is defined and equals

κ(gγ(0), gγ(1)) = j+(g, γ(0)+)
j+(g, γ(1)+)

j−(g, γ(0)−)
j−(g, γ(1)−)κ(γ(0), γ(1)).

On the other hand we have∫
gγ

dJ log k =
∫
γ

g∗dJ log k

=
∫
γ

dJg
∗ log k,

as the action of g is a paraholomorphic map. The transformation rule for k
gives

dJg
∗ log k(γ(t)) = dJ log j+(g, γ(t)+) + dJ log k(γ(t))− dJ log j−(g, γ(t)−)

for every t ∈ [0, 1]. As the functions log j±(g, z±) only depend on m± re-
spectively, we have dJ log j−(g, z−) = −d log j−(g, z−) and dJ log j+(g, z+) =
d log j+(g, z+), thus∫

γ

dJ log k −
∫
gγ

dJ log k = −
∫
γ

[
d log j+(g, z+) + d log j−(g, z−)

]
= log j+(g, γ(0)+)− log j+(g, γ(1)+)

+ log j−(g, γ(0)−)− log j−(g, γ(0)+)

and (18.2) follows.
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Theorem 16.2 Let γ : I → M be a geodesic curve passing through 0. Then
dJ log k(γ̇) vanishes.

Proof. We may assume that γ is of the form γ(t) = exp(tX).0 for some X ∈ q

and for t in some interval I containing 0. We will write γ(t) = γ(t)+ + γ(t)−
where γ(t)± ∈ m±. Let us put gt = exp(tX) and decompose

gt = pthtqt, (16.2)

where pt ∈ m+, ht ∈ H and qt ∈ m−. By definition pt = exp(γ(t)+) and if we
apply σ and take inverses on both sides of (16.2) we obtain

gt = qth
−1
t pt,

whence qt = exp(γ(t)−). For n ∈ N, the symbol Oa(tn) denotes a smooth
curve, defined for t close to 0, in the subspace a ⊂ g with the property that
t−nOa(tn) is bounded. With this in mind we have for small t

pt = exp(tX+ +Om+(t2)),
ht = exp(Oh(t2)), (16.3)
qt = exp(tX− +Om−(t2)),

as the derivative of gt at 0 is X = X+ + X−. Next define the family δt0 of
curves

δt0(t) = γ(t0 + t)+ + γ(t0 − t)−

= ξ−1
1 (gt0+t(o−)) + ξ−1

2 (gt0−t(o+))

for t0 ∈ I and for all t sufficiently close to 0. The curves δt0 satisfy

d

dt
δt0(t) = [Z0, γ̇(t)]

whence
d

dt |t=t0
log k(δt0(t)) = (dJ log k)(γ̇(t0)),

for all t0 ∈ I. Hence we are going to consider k(δt0(t)) and its derivative with
respect to t at 0. As δt0(t) = gt0(δ0(t)) we get

k(δt0(t)) = j+(gt0 , gt(0)+)k(δ0(t))j−(gt0 , g−t(0)−)−1, (16.4)

and the chain rule for derivatives show

j+(gt0 , gt(0)+) = j+(gt0+t, 0)j+(gt, 0)−1,

j−(gt0 , g−t(0)−)−1 = j−(gt0−t, 0)−1j−(g−t, 0),
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and hence

j+(gt0 , gt(0)+) = detAdm+ht0+t detAdm+h−1
t ,

j−(gt0 , g−t(0)−)−1 = detAdm+ht0−t detAdm+h−1
−t ,

since (gt)0 = h−1
t . From (16.3) we see that

detAdm+h−1
t = 1 +O(t2), detAdm+h−1

−t = 1 +O(t2),

and thus taking d/dt of both sides of (16.4) gives

d

dt |t=0
k(δt0(t)) = d

dt |t=0
detAdm+ht0+t + d

dt |t=0
detAdm+ht0−t

+ (detAdm+ht0)2 d

dt |t=0
k(δ0(t))

=(detAdm+ht0)2 d

dt |t=0
k(δ0(t)).

Now k(δ0(t)) = k(γ(t)+ + γ(−t)−). As previously noted exp(γ(t)+) = pt and
exp(γ(−t)−) = q−t, so the Baker-Campbell-Hausdorff formula gives

exp(−γ(−t)−) exp(γ(t)+) = q−1
−t pt

= exp(tX− +Om−(t2)) exp(tX+ +Om+(t2))

= exp(tX + t2

2 [X−, X+] +Og(t3)),

for small t. Decomposing with respect to expm+ ×H × expm− shows that

K(δ0(t)) = exp
(
t2

2 [X+, X−] +Oh(t3)
)
,

and thus d
dtk(δ0(t)) vanishes at t = 0. This completes the proof of the theorem.

Corollary 16.3 Let γ : [0, 1]→M be a geodesic segment. Suppose that there
exists an element g ∈ G such that the action of g is defined on all points of γ
and such that gγ passes through 0. Then

c(γ(0), γ(1)) = −
∫
γ

dJ log k,

defines a logarithm of κ(γ(0), γ(1)).

An oriented geodesic triangle ∆ ⊂ M with vertices z0, z1 and z2 consists of
three geodesic segments in M connecting the three vertices. The orientation
is given by the ordering of the vertices. Since ω is exact, we may speak of
the integral

∫
∆ ω instead of

∫
Σ ω where Σ ⊂ M is any smooth surface with

boundary ∂Σ = ∆.
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Corollary 16.4 Suppose that ∆ is an oriented geodesic triangle in M with
vertices and orientation (z0, z1, z2) and whose sides satisfy the conditions of
Corollary 16.3. Then

exp
(
− 2

∫
∆

ω

)
= κ(z0, z1)κ(z1, z2)κ(z2, z0),

holds.
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Chapter VI

COMPLEX HERMITIAN SYMMETRIC
SPACES

The kernel and the generalized embedding in the past chapter can also be
constructed in the complex setting, that is, when the symmetric Lie algebra
(g, h, σ) associated with a parahermitian symmetric space is complex. The
ideas are the same as in Chapter II where SL(2,C)/C∗ is an example of this
type of parahermitian space. An alternative formulation would be to say that
we are dealing with a complex semisimple symmetric space GC/HC which is
both para- and pseudohermitian. In particular, the results of the previous
chapter applies to the space but taking the complex structure into account
will yield further results.

§17 The Complex Kernel
We consider a complex simple Lie algebra g which is 3-graded:

g = g−1 + g0 + g1,

where each gλ is a complex subspace of g and [gλ, gµ] ⊂ gλ+µ. Let Z0 denote
the unique element of g0 such that ad(Z0)Xλ = λX for Xλ ∈ gλ, and let σ
denote the involutive automorphism of g given by σ(Xλ) = (−1)λXλ, Xλ ∈
gλ. Then (g, g0, σ) is a symmetric Lie algebra which is both parahermitian
and pseudohermitian, the corresponding structure is given by Z0 and iZ0
respectively. The (−1)-eigenspace of σ is q = g−1 +g1. Let GC be any complex
Lie group with Lie algebra g and let HC be a Lie subgroup of GC which
centralizes Z0 and has Lie algebra g0. Then GC/HC is a complex manifold in
two ways: It has a pseudohermitian structure induced by iZ0 and a complex
structure as a coset space of a complex Lie group. When we speak of a complex
structure in the following, we shall always mean the latter of these two.

Remark 17.1 We remark that HC is connected and contains the center of GC.
For HC contains a maximal torus of GC; pick any maximal abelian subalgebra
t ⊂ g0. Then Z0 is contained in t and hence t is a Cartan subalgebra of g. It
follows that T = exp(t) contains the center of GC. The semidirect product
HC exp(g1) is a parabolic subgroup of GC and hence connected. But this
implies that HC is connected. ♦

We will now use the embedding considered in Section 14, but we will include the
complex structure. The results of that section provide us with an embedding
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GC/HC ⊂ GC/P
− ×GC/P

+. Here

P± = HC exp(g±1),

are parabolic subgroups of GC and hence M± = GC/P
± are homogeneous

compact Kähler manifolds. Furthermore, P+ ∩ P− = HC and thus GC/HC is
holomorphically embedded as a GC-orbit inM−×M+. There is a holomorphic
embedding

ξ : g1 × g−1 →M− ×M+,

given by ξ(x, y) = (exp(x)P−, exp(y)P+) for x ∈ g1, y ∈ g−1. As in Section
14, the image of ξ is open, but in this case the image is also dense, see [Bor91,
Proposition 14.21]. The partial actions of GC on both g1 and g−1 are now
holomorphic. We define M⊂ g1 + g−1 by (14.3) and

Ω = exp(g1)P−, Ω′ = exp(g−1)P+,

are open and dense subsets of GC.
The next definition repeats the definitions of K(z) and J±(g, x) given by

(14.1), (14.2), and (14.4).

Definition 17.2 (Complex Automorphy Factor & Kernel) Let x and
y be points in g1 and g−1 respectively and put z = x+ y. Let g be an element
of GC. If g(x) is defined, we put

J+(g, x) = (g exp(x))0 ∈ HC. (17.1)

If g(y) is defined, we put

J−(g, y) = (g exp(y))′0, (17.2)

and if exp(−y) exp(x) belongs to exp(g1)HC exp(g−1), we define K(z) ∈ HC

by
K(z)−1 = (exp(−y) exp(x))0. (17.3)

The complex structure comes enters the picture via the complex linear action
of Ad(HC) on each g±1 and the holomorphic characters detC Adg±1 : HC → C∗,
which we will use to define the complex kernel functions kC and κC.

Definition 17.3 (The complex kernel functions) Suppose that z = z+ +
z− ∈ g1 +g−1 is a point such that K(z) is defined. Then we define the complex
automorphy kernel kC by

kC(z) = det
C

Adg1K(z), (17.4)

and if w = w+ + w− is another point of g1 + g−1, we put

κC(z, w) = kC(z+ + w−)
kC(w+ + z−) , (17.5)
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if the right-hand side is defined. We also define

j±C (g, z±) = det
C

Adg±1J
±(g, x±),

for all g ∈ GC and z = z+ + z− where J±(g, z±) is defined.

It follows from Proposition 14.4 that j±C (g, x±) is the complex Jacobian of the
differential dx±g : g±1 → g±1 at x± ∈ g±1. From Proposition 14.6 we obtain
the transformation rule

kC(g(z)) = j+
C (g, z+)kC(z)j−C (g, z−), (17.6)

valid for any g ∈ GC and z = z+ + z− ∈ g1 + g−1 such that kC(z) and g(z)
are both defined. It should be noted that κC(z, w) is holomorphic in both
variables.

Remark 17.4 When applied to the complex symmetric space SL(2,C)/C∗,
this embedding is the same as the one considered in §6, but the kernels differ
slightly. The kernels kC and κC introduced above are the squares of k and K
from §6. ♦

§18 Complex Symplectic Area
We wil also introduce a GC-invariant complex valued holomorphic 2-form Ω
on MC = GC/HC by

Ωo = 1
2B(X, [Z0, Y ]), X, Y ∈ q,

at the identity coset o = eHC. Here B is the (complex-valued) Killing form
of g. The pull-back to M is also denoted by Ω. Recall the operator dJ from
§15. We may extend the definition of dJ to complex-valued smooth functions
f on MC by

(dJf)(X) = df(JX),
where J is the parahermitian structure and X is a complex vector field on
MC.

Proposition 18.1 Let z ∈M be an arbitrary point. Then

Ωz = −1
2ddJ log kC(z), (18.1)

where the right-hand side is independent of the particular choice of logarithm
of kC near z.

Proof. The proof is similar to the proof of Proposition 15.2. One proves that
the right-hand side of (18.1) is invariant under the partial action of GC and
that equality holds in (18.1) at 0 ∈M.
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The analogues of Lemma 16.1 and Theorem 16.2 as well as its corollaries hold
in this setting.

Lemma 18.2 Let γ : [0, 1]→M be a smooth curve segment and suppose that
κC(γ(0), γ(1)) is defined. If g is any element of GC such that the action of g
is defined on all points of γ, then

exp
(∫
γ

dJ log kC −
∫
gγ

dJ log kC
)

= κC(γ(0), γ(1))
κC(gγ(0), gγ(1)) (18.2)

holds.

Proof. The proof is the same as the proof of Lemma 16.1.

Theorem 18.3 Let γ : I → M be a geodesic curve passing through 0. Then
dJ log kC(γ̇) vanishes.

Proof. The proof of Theorem 16.2 works here as well.

Corollary 18.4 Let γ : [0, 1]→M be a geodesic segment. Suppose that there
exists an element g ∈ GC such that the action of g is defined on all points of
γ and such that gγ passes through 0. Then

c(γ(0), γ(1)) = −
∫
γ

dJ log kC,

defines a logarithm of κC(γ(0), γ(1)).

Corollary 18.5 Suppose that ∆ is an oriented geodesic triangle in M with
vertices and orientation (z0, z1, z2) and whose sides satisfy the conditions of
Corollary 18.4. Then

exp
(
− 2

∫
∆

Ω
)

= κC(z0, z1)κC(z1, z2)κC(z2, z0), (18.3)

holds.

We will proceed to show how this result is related to the previous computations
of symplectic area of geodesic triangles.
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§19 Restriction to Real Forms
Consider now a real form gr of g such that gr is invariant under σ. The
decomposition of gr under σ is

gr = g0 ∩ gr︸ ︷︷ ︸
hr

+ q ∩ gr︸ ︷︷ ︸
qr

,

and (gr, hr, σ|gr ) is a simple symmetric Lie algebra.

Lemma 19.1 Let gr be a real form of g such that σ(gr) = gr. The simple
symmetric Lie algebra (gr, hr, σ|gr ) is either parahermitian or pseudohermi-
tian.

Proof. It suffices to show that hr contains either Z0 or iZ0, but not both. Now
hr is a real form of g0 and hence has one-dimensional center overR and contains
an element of the form αZ0 with α a non-zero complex number. As qr is a
real form of the complex vector space q and invariant under α(adZ0) we must
have α2 ∈ R. After scaling and changing signs if needed, we find that either
iZ0 or Z0 belongs to hr. Consequently, (gr, hr, σ|gr ) is eiher pseudohermitian
or parahermitian.

Now let us suppose that the conjugation τr : g → g of g with respect to gr
defines an involution of GC which we also denote by τr. Let Gr be the analytic
subgroup of GC with Lie algebra gr and putHr = HC∩Gr. ThenMr = Gr/Hr

is a symmetric space which is either pseudohermitian or parahermitian and the
inclusion Gr ⊂ GC induces a totally geodesic embedding Gr/Hr → GC/HC.

Proposition 19.2 The preimage ξ−1(Gr/Hr) in M is contaied in qr.

Proof. If z = z+ + z− belongs to ξ−1(Gr/Hr) then z = g(0) for some g ∈ Gr.
Thus g belongs to both exp(g1)HC exp(g−1) and exp(g−1)HC exp(g1) and we
have two decompositions

g = exp(z+)h exp(w−)
= exp(z−)h′ exp(w+),

where h, h′ ∈ HC and w± ∈ g±1. Applying τr to g we find

g = τrg

= exp(τrz+)τrh exp(τrw−),
and

g = exp(τrz−)τrh′ exp(τrw+),

and there are now two cases to consider. If (gr, hr, σ|gr ) is pseudohermitian
then τr maps g1 to g−1 and vice versa. The uniqueness of the decompositions
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of g implies that τz+ = z− and hence that z = z+ + τrz
+ is fixed by τr. Thus

z belongs to qr. If (gr, hr, σ|gr ) is parahermitian we have τrg±1 = g±1 instead,
and it follows that τrz+ = z+ and similarly τrz− = z−. Hence z ∈ qr.

It is well-known, see e.g. [KN64, Lemma 4], that there exists a compact real
form u of g such that u is invariant under σ. Let θ denote the conjugation
of g with respect to u. Put k = g0 ∩ u. Then θZ0 = −Z0 as adqZ0 has real
eigenvalues and thus (u, k, σ|u) is a simple Hermitian symmetric Lie algebra
of the compact type. Let gnc be the non-compact dual and let U , G be the
corresponding subgroups of GC and putK = U∩HC. Both U/K and G/K has
a complex structure induced by iZ0. In terms of the notation of Chapter III
we have g1 = p+. Now recall the Harish-Chandra embedding ξHC : G/K → g1
and the compact version Ξ: g1 → GC/P

− = U/K given by

exp ξHC(gK) ∈ gP−

and
Ξ(x) = exp(x)P−,

for g ∈ G and x ∈ g1.

Proposition 19.3 Let π+ : q → g1 denote the projection along g−1. Then
π+ ◦ ξ−1 restricted to G/K ⊂ GC/HC is the Harish-Chandra embedding.
Restricting ξ to g1 and projecting onto the first factor of M−×M+ yields the
embedding Ξ of Chapter IV.

Proof. This is a straightforward verification.

It should be observed that the action of GC on g1 is the same as the action
defined in Chapter III.

Put p = q ∩ gnc. Then p consists of all elements of the form x− θx where
x is an element of g1 and ip consists of all elements of the form x + θx, x
again in g1. Now let us write KC(z) for the canonical kernel defined by (17.3)
and compute its restriction to p and ip. We find

KC(x− θx)−1 = (exp(θx) exp(x))0 = K(x, x)−1,

KC(x+ θx)−1 = (exp(−θx) exp(x))0 = Kc(x, x)−1,

for x ∈ g1 and by (8.4) and (11.1). Recall that k(z, w) and kc(z, w) are the
kernels defined on g1 = p+ by (8.4) and (11.5) respectively. From the above
it is immediate that

kC(x− θx) = k(x, x)
and

kC(x+ θx) = kc(x, x)
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for x ∈ g1. If z, w are points in g1, then

κC(z − θz, w − θw) = k(z, w)
k(w, z)

and

κC(z + θz, w + θw) = kc(z, w)
kc(w, z)

whenever k(z, w) resp. kc(z, w) are defined. Notice that κC(x ± θx,w ± θw)
has modulus one.

Let us now think of p+ as g1 together with the non-compact Kähler form
ω = 1

2ddC log k(z, z) for z ∈ D, compare (8.8). Let ι : p+ → p denote the
R-linear map

ι(z) = z − θz

for z ∈ p+ = g1. We will compute the pull-back ι∗Ω. Let X,Y ∈ p+ and
consider them as tangent vectors at the origin 0 ∈ p+. Then

ι∗Ω0(X,Y ) = Ω0(X − θX, Y − θY )

= 1
2B(X − θX, Y + θY )

= 1
2
(
B(X, θY )−B(Y, θX)

)
= −i=〈X,Y 〉0
= iω0(X,Y )

in terms of the Hermitian form 〈 , 〉 on p+ given in Proposition 8.7. It follows
from G-equivariance that ι∗Ω = iω. If ∆ ⊂ D is a geodesic triangle with
vertices z0, z1 and z2, then

exp
(
− 2i

∫
∆

ω

)
= κC(ι(z0), ι(z1))κC(ι(z1), ι(z2))κC(ι(z2), ι(z0))

= k(z0, z1)
k(z0, z1)

k(z1, z2)
k(z1, z2)

k(z2, z0)
k(z2, z0)

by (18.3). As both sides of the above depend continuously on z0, z1 and z2
we conclude that∫

∆

ω = −(arg k(z0, z1) + arg k(z1, z2) + arg k(z0, z2))

where arg k(z, z) = 0 for z ∈ p+. We have thus proven Theorem 9.1 once
more.
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