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Abstract

We consider a Markov chain of point processes such that each state is a super
position of an independent cluster process with the previous state as its cen-
tre process together with some independent noise process. The model extends
earlier work by Felsenstein and Shimatani describing a reproducing popula-
tion. We discuss when closed term expressions of the first and second order
moments are available for a given state. In a special case it is known that
the pair correlation function for these type of point processes converges as the
Markov chain progresses, but it has not been shown whether the Markov chain
has an equilibrium distribution with this, particular, pair correlation function
and how it may be constructed. Assuming the same reproducing system, we
construct an equilibrium distribution by a coupling argument.

Keywords: Coupling; equilibrium; independent clustering; Markov chain; pair
correlation function; reproducing population; weighted determinantal and per-
manental point processes.

1 Introduction

This paper deals with a discrete time Markov chain of point processes Gy, Gy, ...
in the d-dimensional Euclidean space RY, where the chain describes a reproducing
population and we refer to GG, as the nth generation (of points). We make the
following assumptions. Any point process considered in this paper will be viewed
as a random subsets of R? which is almost surely locally finite, that is, the point
process has almost surely a finite number of points within any bounded subset of
R? (for measure theoretical details, see e.g. Daley and Vere-Jones (2003) or Mgller
and Waagepetersen (2004)). Recall that a point process X C R? is stationary if its
distribution is invariant under translations in R¢, and then its intensity px € [0, oc]
is the mean number of points in X falling in any Borel subset of R? of unit volume.
Now, for generation 0, G is stationary with intensity pg, € (0,00). Further, for
generation n = 1,2,..., conditional on the previous generations Gy,...,G,_1, we
obtain G,, by three basic operations for point processes:



(a) Independent clustering: To each point = € G,,_; is associated a (non-centred)
cluster Y, ., C R?. These clusters are independent identically distributed (IID)
finite point processes and they are independent of Gy, ..., G,_1. The cardinal-
ity of Y,, , has finite mean 3, and finite variance v,, and is independent of the
points in Y, , which are IID, with each point following a probability density
function (PDF) f,. We refer to x + Y, (the translation of Y,, , by x) as the
offspring /children process generated by the ancestor/parent z, and we let

Vo= |J (@+Yu) (1.1)

2€Gn—_1

be the independent cluster process given by the superposition of all offspring
processes generated by the points in the previous generation G,,_.

(b) Independent thinning: For all y € R?, let B,, , be IID Bernoulli variables which
are independent of Y, Gy,...,G,_1, and all previously generated Bernoulli
variables. Let p, = P(B,, = 1). For all x € G,,_, let

Wn,x - {y cxr+ Yn,x . Bn,y - 1}

be the independent p,-thinned point process of x + Y, ., and let

Wo= {J W (1.2)

z€Gn—1

be the independent p,-thinned point process of Y,,.

(c) Independent noise: Let Z, C R? be a stationary point process with finite
intensity pz, and which is independent of W,,, Gy, ...,G,_1. Finally, let

G,=W,uUZ, (1.3)
where we interpret Z, as noise.

Our model is an extension of the model in Shimatani (2010), which in turn is
an extension of Malécot’s model studied in Felsenstein (1975) (we return to this
in Section 2, item (vii) and (viii)). In particular, our extension allows us to model
cluster centres exhibiting clustering or regularity, and similarly the noise processes
can be clustered or regular. For statistical applications, we have in mind that G,, may
be observable (at least for some values of n > 1) whilst Gy and the cluster, thinning,
and superpositioning procedures in item (a)—(c) are unobservable. Our model may
be of relevance for applications in population genetics and community ecology (see
Shimatani (2010) and the references therein), for analyzing tropical rain forest point
pattern data with multiple scales of clustering (see Wiegand et al. (2007)), and for
modelling proteins with multiple noisy appearances in PhotoActivated Localization
Microscopy (PALM) (see Andersen et al. (2017)). However, we leave it for other
work to study the statistical applications of our model and results.

The paper is organized as follows. A discussion of the assumptions in items
(a)—(c) and the related literature is given in Section 2. Section 3 focuses on the first
and second order moment properties of GG,,, that is, its intensity and pair correla-
tion function (PCF); we extend results in Shimatani (2010) and show that tractable
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model cases for the PCF of G (extending cases considered in Shimatani (2010)) are
meaningful in terms of Poisson, weighted permanental, and weighted determinantal
point processes (which was not observed in Shimatani (2010)). Section 4 discusses
limiting cases of the PCF of G,, as n — oo when we have the same reproduction
system and under weaker conditions than in Shimatani (2010). In particular, when
natural conditions are satisfied, we establish ergodicity of the Markov chain by us-
ing a coupling construction and by giving a constructive description of the chain’s
unique invariant distribution when extending the Markov chain backwards in time.
Finally, Appendix A provides background knowledge on weighted permanental and
determinantal point processes, Appendix B verifies some technical details, and Ap-
pendiks C specifies an algorithm for approximate simulation of the Markov chins
invariant distribution.

2 Assumptions and related work

Items (i)—(iv) below comment on the model assumptions in items (a)—(c).

(i) The process Y,, is a stationary independent cluster process (Daley and Vere-
Jones (2003)) and we have the following special cases: If G,,_; is a stationary
Poisson process, Y,, is a Neyman-Scott process (Neyman and Scott (1958)).
If in addition #Y,,, follows a Poisson distribution, then 3, = v, and Y,, is a
shot-noise Cox process (SNCP; Mgller (2003)) driven by

A (z) = By Z folz —v), r € R (2.1)

yeGn—l

This is a (modified) Thomas process (Thomas (1949)) if f,, is the density of
d 1ID zero-mean normally distributed variates with variance o2 — we denote
this distribution by Ny(o?) — and it is a Matérn cluster process (Matérn (1960,
1986)) if instead f,, is a uniform density of a d-dimensional ball with centre
at the origin. However, in many applications a Poisson centre process is not
appropriate. For instance, Van Lieshout & Baddeley (2002) considered a re-
pulsive Markov point process model for the centre process, whereby it is easier
to identify the clusters than under a Poisson centre process.

(i) When 5, < v, we may restrict attention to the general case of a stationary
generalised shot-noise Cox process (GSNCP) as studied in Mgller and Torrisi
(2005): In this model (2.1) is extended to the case where G,_; is a general
stationary point process and Y,, is a Cox process driven by

Ma(2) = D whkal{(x =)0 /b, e R, (2.2)

yeanl

where k, is a PDF on R?, the v, and the b, for all y € G,,_; are independent
positive random variables which are independent of G,,_1, and the v, are identi-
cally distributed with mean 3, and variance v, — 3, (as #Y,, , has mean /3,, and
variance v, = E{var(#Y,,.|7,)} + var{E(#Y, |7y)} = Bn + var(y,)). Further,
by has an interpretation as a random band-width and f,,(z) = E{k,(x/b,)/b]}.
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The general results for the intensity and PCF of G, in Section 3 will be un-
changed whether we consider this stationary GSNCP or the more general case
in item (a)

(iii) Clearly, there is no noise (Z, is empty with probability one) if pz, = 0. The case
pz, > 0 may be relevant when not all points in a generation can be described
as resulting from independent clustering and thinning. Note that in item (c) we
could without loss of generality assume 73, Zs, . .. are independent, however, it
will first be in Section 4 that we assume they are I[ID. Further, we introduce the
thinning of Y,, in item (b) only for modelling purposes; from a mathematical
point of view the thinning could be omitted if in item (a) we replace each
cluster Y, , by what happens after the independent thinning: Namely that
independent thinned clusters Y% appear so that #Y, has mean g = £,p,
and variance v'™® = B,p, — B.p2 + v,p? and is independent of the points in
V" which are IID with PDF f,, whereby W, and Y, := Useq,_, (z + Y1)
are identically distributed.

(iv) Assuming no thinning (p, = 1), an equivalent description of items (a) and (c)
is given in terms of the Voronoi tessellation generated by G,,_1: For x € G,,_1,
let C(z|G,—1) be the Voronoi cell associated to « and consisting of all points
in RY which are at least as close to x than to another other point in G,_;
(with respect to usual distance in RY). With probability one, since G,,_; is
stationary and non-empty, each Voronoi cell is bounded and hence is volume
is finite (see e.g. Mpller (1989, 1994)). Thus we can set

Gon=|J (@+Gua)

2EGn -1

where conditional on G,_;, for all x € G,_;, the G,,, are IID finite point
processes with a distribution as follows: #G,, , has mean f,, + |C(x|G,—1)|pz,
variance v, +|C(2|G,-1)|pz,, and is independent of the points in G,, ,; and the
points are IID, each following a mixture distribution so that with probability
Bn/(Bn + |C(x|Gn-1)|pz,) the PDF is f, and else it is a uniform distribution
on C'(z|Gp-1).

In items (v)—(vi) below we discuss earlier work on the model for Gy, G, ...,
where G is a stationary Poisson process, all G,, = Y, (no thinning and no noise)
forn>1, f, = f and 5, =  do not depend on n > 1. We may refer to this as a
replicated SNCP. Frequently in the literature, a so-called replicated Thomas process
is considered, that is, f ~ Ny(o?).

(v) Apperently this replicated SNCP was originally studied by Malécot, see the
discussion and references in Felsenstein (1975) where the following three con-
ditions are stated: “(I) individuals are distributed randomly on the line with
equal expected density everywhere; (II) each individual reproduces indepen-
dently, the number of offspring being drawn from a Poisson distribution with
a mean of one; and (III) each offspring migrates independently, the displace-
ments being drawn from some distribution m(x), which we will take to be a
normal distribution.” (In our notation, d = 1, 8 = 1, and f ~ N;(¢?), but
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Felsenstein (1975) considered also more general offspring densities f and the
cases d = 2,3.) Felsenstein (1975) showed that “(I) is incompatible with (II)-
(III)” because G1, Gy, ... are not stationary Poisson processes and “a model
embodying (IT) and (III) will lead to the formation of larger and larger clumps
of individuals separated by greater and greater distances”, and then he con-
cluded “This model is therefore biologically irrelevant”.

(vi) Kingman (1977) considered the case where [ is replaced by a non-negative
function b which is allowed to depend on the cluster centre x and the previ-
ous generation, so a cluster with centre x is a Poisson process with intensity
function b(z, G,,—1) f(- —x); e.g., as in the Voronoi case discussed in item (iv),
b(x,G,_1) may depend on G,,_; in a neighbourhood of z. Then G, is a Cox
process: GG, conditional on GG,,_; is a Poisson process with intensity function

An(z)= > by, Gu)f(x—y), xeR” (2.3)

yEGn—l

In this setting Kingman (1977) verified that it is impossible for G,, to be a
stationary Poisson process, however, replacing f(z — y) in (2.3) by a more
general density which may depend on C,,_; — z, Kingman (1977) noticed that
it is possible for G,, to be a stationary Poisson process. A trivial example is
the Voronoi case in item (iv) when G,, = Z,, for n > 1.

Recently, Shimatani (2010) considered first the case of items (a)—(b) and no noise,
when d = 2 and there is the same reproduction system so that f, = f, 8, =5 >0,
v, =, and p, = p € (0,1] do not depend on n > 1.

(vii) In particular, Shimatani (2010) considered the case f ~ Ny(¢?) and when
Bp = 1 or equivalently when the intensities pg, = pg, = ... are invariant
over generations, and then he showed that as n — oo, the PCF for G,, di-
verges and “all offspring will eventually have the same ancestor”. It follows
from item (iii) that the model is equivalent to a replicated Neyman-Scott
process; this becomes a replicated Thomas process when each cluster size is
Poisson distributed, and hence Shimatani (2010) result agrees with the results
in Felsenstein (1975) and Kingman (1977). Note that Shimatani (2010) im-
plicitly assumed that a cluster can have more than one point. Otherwise the
PCF of GG,, becomes equal to 1; we discuss this rather trivial case again in
Section 3.2.2 and 4; see also Section 3 in Kingman (1977).

Next Shimatani (2010) extended the model by including noise as in item (c¢) and
by making the following assumptions: The noise processes Z,, are stationary Poisson
processes, satisfying 0 < pz, = pz, = ... and pg, = pg, = ..., meaning that Sp < 1.
As there is no noise if fp = 1 it is also assumed that Sp < 1.

(viii) Then Shimatani (2010) showed that the PCF of G,, converges uniformly as
n — oo and he argued that this limiting case may be “biologically valid”

(Shimatani, 2010, Section 2.4). However, there are some flaws in the paper by
Shimatani (2010) which we address:
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e He was not showing that there exists an underlying point process having
this limiting case as its PCF, although he claimed that “this modified
replicated Neyman-Scott process reaches an equilibrium state”. In Sec-
tion 4, for our more general model, we prove the existence of such an
underlying point process.

e When Gy is not a stationary Poisson process but its PCF is of a particular
form (which we specify later in connection to (3.4)), he did not argue
that there exists an underlying point process and what it could be. In
Section 3, we verify this existence under our more general model.

Finally, we remark on a few related cases.

(ix) Whilst we study the processes G,, for all n = 1,2,..., often in the spatial
point process literature the focus is on either G; or Go, assuming p, = 1 and
pz, = 0 for n = 1 or n = 1,2, respectively. Wiegand et al. (2007) studied
this in the special case of a double Thomas cluster process Gy when d = 2,
i.e., when Gy is a stationary Poisson process, (2.1) holds for both G; = Y}
and Gy = Y,, and f,, ~ Ny(02) for n = 1,2; see also Andersen et al. (2017)
for more general functions f,,. Moreover, Wiegand et al. (2007) extended the
double Thomas process to the case where pz, = 0 and pyz, > 0; this type of
model is also considered in Andersen et al. (2017). In any case, our general
results for intensities and PCFs in Section 3 will cover all these cases.

(x) Incidentally, when py = ps = ... =1, pz, = pz, = ... =0, 51 = B = ...,
and f; = fo = ..., the superposition | J - G, is known as a spatial Hawkes
process, see Mgller and Torrisi (2007) and the references therein.

3 First and second order moment properties

In this section we determine the intensity and the PCF of G, for n = 1,2,...,
under more general assumptions than in Shimatani (2010). Specifically, the noise is
an arbitrary stationary point process (not necessarily a stationary Poisson process
as in Shimatani (2010)) and we do not assume the same reproduction system.

3.1 Intensities

By induction G, is seen to be stationary for n = 0,1, ... Its intensity is determined
in the following proposition where for notational convenience we define Zy; = Gg so

that pz, = pa,-

Proposition 3.1. Forn = 1,2,..., we have that G,, is stationary with a positive
and finite intensity given by
n—1 n
PGn = PG 1PnPn + Pz, = Pz, + Z Pz, H Bip;. (3.1)
=0  j=itl
Proof. Using induction for n = 1,2,..., the proposition follows immediately from
items (a)—(c), where the term pz, [[;_;,, Bjp; is the contribution to the intensity
caused by the clusters with centres Z; and after independent thinning. O]
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3.2 Pair correlation functions

3.2.1 Preliminaries.

Recall that a stationary point process X C R? with intensity px € (0,00) has
a translation invariant PCF (pair correlation function) (u,v) — ¢gx(u — v) with
(u,v) € R? x R? if for any bounded Borel function h : R? x R? — [0,00) with
compact support,

E Z h(z1,22) = px // h(z1,x9)gx (21 — x2) doy dzg < 00. (3.2)

r1,22€X: x17£22

Equivalently, for any bounded and disjoint Borel sets A, B C R?, denoting N (A) the
cardinality of X N A, the covariance between N(A) and N(B) exists and is given by

cov{N(A),N(B)} = pﬁ/A/B{gX(ml — z9) — 1} day das.

Some remarks are in order. Note that gy is uniquely determined except for
nullsets with respect to Lebesgue measure on R, but we ignore such nullsets in the
following. Thus the translation invariance of the PCF is implied by the stationarity
of X. Our results below are presented in terms of gx — 1 rather than gy, and gx = 1
if X is a Poisson process. It is convenient when gy is isotropic, not at least when
considering plots of this function: This means that gx(z) = gx.(||z|) for all x € R%.
With a slight abuse of terminology, we also refer to gx and gx, as PCFs.

For a PDF h on RY, let h(z) := h(—x) and let

hoxh(z) —x9) = /h(xl —y)h(xe —y)dy (3.3)

be the convolution of h and h. Not~e that if U and V are IID random variables with
PDF h, then U — V has PDF h % h. In the following section we consider the case

gx —1l=ahxh (3.4)

for real constants a, where X in particular, may refer to the initial generation process,
G, or the noise process, Z,. This corresponds to X being a Poisson process if
a = 0, a point process with positive association between its points (attractiveness,
clustering, or clumping) if @ > 0, and a point process with negative association
between its points (repulsiveness or regularity) if a < 0. In Shimatani (2010), for
the initial generation process Gy, he briefly discussed the special case of (3.4) when
h ~ Ny(12/2) (so h*h ~ Ny(72)) whilst the noise processses are stationary Poisson
processes. However, if a # 0 he did not argue if an underlying point process with PCF
gx exists. Indeed, as detailed in Appendix A, there exist a-weighted determinantal
point processes satisfying (3.4) if « = —1/a is a positive integer, and there exist
Cox processes given by a-weighted permanental point processes satisfying (3.4) if
a = 1/a is a positive half-integer. Additionally, h needs not to be Gaussian when
dealing with weighted determinantal and permanental point processes; e.g. h may
be the density of a normal-variance mixture distribution (Barndorff-Nielsen et al.,

7



1982). Notice also that (3.4) holds for many other cases of point process models for
X: If the Fourier transform F (gg, — 1) is well-defined and non-negative, if h = h,
and if a == [(gx — 1) € (0,00), then (3.4) holds with

h=F {VFlgx -1}/ Va

provided this inverse transform is well-defined.
The following lemma is needed in Section 3.2.3.

Lemma 3.2. Suppose gx is of the form (3.4). Then for any function f

//{gx(xl —x9) = 1} f(u — 21) f(v — @2) doy dag = ah * h x J* f(u —v)  (3.5)

for any u,v € R%,

Proof. Follows from (3.3) and (3.4) using Fubini’s theorem and the fact that the
convolution operation is commutative and associative. O
3.2.2 First main result.

This section concerns our first main result, Theorem 3.3. We use the following no-
tation. Define

Cn = E{#Y oo (# Yoo — 1)}/ Br = (u + 87 = Ba) /By if B >0, (3.6)

with ¢, = 0if 8, = 0. If B, = v, > 0, as in the case when #Y,, , follows a
(non-degenerated) Poisson distribution, then ¢, = 1. The case of overdispersion
(underdispersion), that is, v,, > 3, (v, < B,) corresponds to ¢, > 1 (¢, < 1).

Theorem 3.3. Suppose ga, and ga, are of the form (3.4), that is, ga,—1 = afox fo
and gz, —1 =b,fz, *fzn forn=1,2,.... Then, forallu € R andn=1,2,...,

n 2
9c,(u) — 1= (Zzo Hﬁipi) afox fox - fux fulu) (3.7)
n et
n ) n 2 B B
—l—zclzgil (H/ijj) fix fixeoox fox fu(u) (3.8)
i=1 no Njsi

n—1 n 2
+ Z(p_z H 5]’293') bifz, * ];Zz' * fiy1 * fz’+1 ek f fn(u) (3.9)
i=1

Gn jZif1

+ (pzn) bufz, * [z, (u) (3.10)

PG,
where the sum in (3.9) is interpreted as zero if n = 1.

The terms in (3.7)—(3.10) have the following interpretations: The right side of
(3.7) corresponds to pairs of n-th generation points with different 0-th generation
ancestors; the i-th term in (3.8) corresponds to such pairs when they have a common
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(1 — 1)-th generation ancestor; the i-th term in (3.9) corresponds to pairs of n-
th generation points with different i-th generation ancestors initiated by the noise
process Z;; and the term in (3.10) corresponds to point pairs in Z,.

Later in Section 4.1, our main interest is in the behaviour of g¢, as n — oo when
we have the same reproduction system, but for the moment, it is worth noticing the
flexibility of our model for G; and the effect of the choice of its centre process Gy:
Suppose there is no noise and G is stationary and either a Poisson or an weighted
determinantal or permanental point process with a Gaussian kernel. Specifically,
d = 2, Gy has intensity pg, = 100, and using a notation as in Appendix A, the
Gaussian kernel has an auto-correlation function of the form R(z) = exp(—||z/7||?),
where the value of 7 depends on the type of process: For the a-weighted determi-
nantal point process, we consider the most repulsive case, that is, a determinantal
point process (o = 1) and 7 = 1/,/pg,7 is largest possible to ensure existence of
the process (Lavancier et al. (2015)); for the a-weighted permanental point process,
a = 1/2 (the most attractive case when it is also a Cox process, see Appendix A)
and 7 = 0.1 is an arbitrary value (any positive number can be used). Note that
R? = (\/77)2fo* fo where fy ~ Ny(7%/8), which by (A.1) and (A.2) mean that (3.4)
is satisfied with a = 2(y/77)? and a = —(y/77)? for the weighted permanental and
determinantal point processes, respectively, and a = 0 in case of the Poisson process.
Moreover, let the number of points in a cluster be Poisson distributed with mean
B1 =10, p1 =1, and f; ~ Nyo(0?), with ¢ = 0.01. Then, by Theorem 3.3,

_ a ex _&
gor(u) =1 = V27 (202 + 72/4) p{ 2(202% + 72/4)}

+—1 exp{—HuH2}.
PG, VAaTo? 4o

Figure 1 shows the isotropic PCF gg, o(7) = g, (u) as a function of the inter-
point distance r = ||u|| in case of each of the three models of Gy, where using an
obvious notation, g&*, < &% < gee - Most notable is the fact that g& ,(r) exhibits
repulsion at midrange distances r. For g/, we see a high degree of clustering, which
is persistent for large values of r; this will of course be even more pronounced if we
increase the value of 7; whilst decreasing o will increase the peak at small values
of r. Figure 2 shows simulations of Gy in each of the three cases of the model of Gy.
As expected, we clearly see a higher degree of repulsion when Gy is a determinantal
point process (the left most plot) and a higher degree of clustering when Gy is a
weighted permanental point process (the right most plot). In particular, the clusters
are more distinguishable when G| is a determinantal point process, and this will be
even more pronounced if decreasing o because the spread of clusters then decrease.
When G| is a weighted permanental point process, the clusters overlap more.

3.2.3 Proof of Theorem 3.3.

Shimatani (2010) verified Theorem 3.3 when both by = by = --- = 0 (as is the
case if Zy,Zs, ... are stationary Poisson processes) and ¢; = ¢y = -+ > 0, in which
case the terms in (3.9)-(3.10) are zero. If ¢; = ¢; = -+ = 0, then (3.8) is zero

and by (3.6), with probability one, #Y,,, € {0,1} for all z € G,,_; and n = 1,2,. ..
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Figure 1: The PCFs of G; when Gy is a determinantal, Poisson, or weighted permanen-
tal point process (dashed, solid, and dotted respectively), with parameters and Gaussian
offspring PDF as specified in the text. The solid horizontal line is the theoretical PCF for
a Poisson process.
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Figure 2: Simulations of G restricted to a unit square when Gy is a determinantal (left
panel), Poisson (middle panel), or weighted permanental (right panel) point process, see
Figure 1 and the text.

Consequently, the proof of Theorem 3.3 is trivial if ¢; = ¢y = - - - = 0 and both G and
Z1, 2, ... are stationary Poisson processes, because then a =0, by = by = -+ = 0,
(GG1, (o, . .. are stationary Poisson processes, and 11D random shifts of the points in a

stationary Poisson process generate a stationary Poisson process. The general proof
of Theorem 3.3 follows by induction from the following Lemma 3.4 when applying
Lemma 3.2.

Lemma 3.4. If pg, , > 0, pg, >0, and g, , and gz, exist, then gg, exists and
s given by

2
g, (u—v) =1 = (w)

PG,
. |:/ {an71<LL'1 — :L‘Q) — 1}fn(u — xl)fn(v — {L‘Q) diL‘l dl’g (311)

Cn

+

Fo s fulu — v)] + (pZ”)2{an(u — )~ 1}

panl pGn

for any u,v € R,
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Proof. Note that Y,, is stationary with intensity

PY, = PGy Pn- (3.12)

It follows straightforwardly from (1.1), (3.2), and Fubini’s theorem that its PCF is
given by

Py, gy, (u—v) = pg B2 // 96— (T1 — 12) fu(u — 21) fr(v — 22) dzy Ao

+ pGn_1cnﬁ721fn * fn(u - U)

(3.13)

for any u,v € R, where the two terms on the right hand side correspond to pairs
of points from Y, belonging to different clusters and the same cluster, respectively.
Hence by (1.2) and (3.12), W, is stationary with intensity

PW,. = DY, = PGy 1 BnDn (3.14)
and PCF
gw, (u —v) = gy, (u — )
_ // G2 (@1 — 22) falt — 21) (v — 22) dzy Ay (3.15)

+ En fn*fn(u_v)

panl

where the first identify follows from the fact that PCFs are invariant under indepen-
dent thinning, and where (3.13) is used to obtain the second identity. Furthermore,
it follows straightforwardly from (1.3), (3.2), and Fubini’s theorem that G,, has PCF
given by

P96, (%) = piv, 9w, (x) + 2pw, Pz, + 97,92, (x)

where the three terms on the right hand side correspond to pairs of points from W,
from W, and Z, (which can be ordered in two ways), and from Z,,, respectively.
Combining this with the first identity in (3.1) and (3.14), we easily obtain

g () — 1 = (M) (o, ()~ 1)+ (22 ) () — 1)

PG,

n

which combined with (3.15) imply (3.11). O

3.2.4 Extension.

More generally than in Section 3.2.2 we may consider the case where the PCF of
the initial generation Gy and the noise Z,, are affine expressions:

gco, — 1= ag + a1f071 * ];0,1 + -+ akfo,k * fO,k (316>

and
9z, —1=buo+bpifz,1* fzn,1 oA bpafzau* on,l, n=12,..., (3.17)
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for real constants ao, ..., ax, by1,...,by; and PDFs fo1,..., fox, 2,15+, [z, For
instance, the superposition of k independent Poisson, weighted permanental, or
weigthed determinantal point processes has a PCF of the form (3.16). Then we
have

n 2 k
an(U) —-1= (% Hﬁipz‘) (ao + Zaifo,i * fo,z‘ * f1 % f~1 coox [ x fn(u))
i=1 i=1

n s

n . n 2 = ¢
+ z; Clzg“ (H@'Pﬂ') fix fixooox fox fu(w)

n—1 n 2
+z(§— I1 5n)

noj—it1

!
: <bi,o + Z bij fz.5 % Fa.g % Fovr % Jigr % o ox fu % fn(u))
j=1

2 !
+ (pzn) (bn,O + Z bn,j [z, * on,j(U)) :
=1

PG

Essentially, this follows from Theorem 3.3 by replacing a fq * fo in (3.7) by 3.16, and
bifz. * fz, in (3.9) and (3.10) by 3.17.

4 Same reproduction system

Throughout this section we assume the same reproduction system over generations,
that is, in items (a)-(c), 8, = B, vp = v, fo = f, pn = p do not depend on n,
Z1,Zy, ... are 1ID stationary point processes, so pz, = pz forn = 1,2,..., and
PG, = Pcy = -+ = pe > 0. Note that the noise process Z,, and the initial generation
process Gg need not be Poisson processes and the offspring densities need not be
Gaussian as in Shimatani (2010). By (3.1), this implies either

fp=1 and pz=0, (4.1)
or
fp<1 and pz>0. (4.2)
In case of (4.2),
pa = pz/(1 = Pp). (4.3)

12



4.1 Limiting pair correlation function

Under the assumptions above and in Theorem 3.3, the PCF simplifies such that
96, (u) — 1= (Bp)* afo * fo * T f*n(u)
c - —1 *(n—1 rx(n—1i
o DB O O

=1

2 n
’O_Z 2(n—1) * £ " *(n—1i) " Fx(n—i) U
+(2) SO foe SO0 PO
= (Bp)*"afo * fox [ f(u) + p% > (Bp)* £ i (u)

=1

2 n—1
- (p_z) bfz * [z Z(ﬁp)%f*i * [7(w),
PG i=0

forn=1,2,..., where

c=w+pB*-p)/B* if B3>0, c=0 if =0,

and where f*" is the n-th convolution power of f. For instance, consider the case
fo~ Na(7%), f ~ Na(0®), and fz ~ Na(x*). Then

go(u) —1:= lim gg, (u) — 1

IR SN/ G
" 25 o o (i) (4.5)
2 oo .
Pz (Bp)* {_ ul® }
+b(pa> 2 Tir o+ ) P T4 )

is finite if and only if Sp < 1 or both Sp = 1 and d > 3. Shimatani (2010) considered
this special case for d = 2, b = 0, and ¢ > 0; he noticed that (4.1) implies divergence
of gg, as n — oo whilst (4.2) implies convergence, where in the latter case, when
fp ~ 1, he discussed an approximation of gg(u) that depends on whether |jul| is
close to 0 or not.

In general, if we assume (4.2) and that gg, — 1 has a finite limit, we have

ga(u)—1= < Z(ﬁp)%f*i s [ (u) + <p—Z> bfz* fz *Z(ﬁp)%f*i « f*(u) (4.6)
ra PG 0

which does not depend on a or fy. Here, as Bp T 1, the second term goes to zero,
meaning that the less noise we consider, the less it matters which type of noise
process we choose. On the other hand, as 8p | 0, g — 1 tends to bfy * f, which
simply is the PCF of the noise process Z,.

Considering the situation at the end of Section 3.2.2, assume that d = 2, f ~
Ny(02), and gz, — 1 = bfy % f5 (corresponding to (3.4)) with f; ~ Ny(x2/8) and
b=0,b=—(y/7K)? and b = 2(\/7k)? for the Poisson, determinantal, and weighted
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permanental point process, respectively. Then gg(u) is given by (4.5), where d = 2
and 2 is replaced by x?/8. Also assume that p = 1, ¢ = 0.1, pg = 100, and the
number of points in a cluster is Poisson distributed (implying ¢ = 1) with mean
B = 0.8, so pzy = 20. Finally, assume x = 0.1 in case of weighted permanental
noise and k£ = 1/,/pz7 in case of determinantal noise (the most repulsive Gaussian
determinantal point process). Shimantani Shimatani (2010) discussed the case where
Bp = 0.99 — a plot (omitted here) shows that the limiting PCFs corresponding
to the three models of noise processes are then effectively equal. By lowering Gp,
the reproduction system is diminished, and hence depending on the model type, a
higher degree of regularity or clustering is obtained. This will also increase the rate
of convergence because the number of generations initialized by a single point will
be fewer. Note that in Figure 3 the convergence is already rapid as gg, and g,
are practically indistinguishable. Figure 3 further shows that it is only for small
inter-point distances that the three limiting PCFs differ — and only slightly.
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Figure 3: The PCFs of (G,, when the noise processes are either determinantal, Poisson
or weighted permanental point processes (left to right), with parameters and Gaussian
offspring PDF as specified in the text. The solid horizontal line is the theoretical PCF for
a Poisson process.

4.2 Second main result

Although Shimatani (2010) showed convergence of gg, in the special case consid-
ered above, he did not clarify whether the Markov chain Gg,Gy,... converges in
distribution to a limit so that this limiting distribution (also called the equilibrium,
invariant, or stationary distribution) has a PCF given by (4.6). In order to show
that Gy, Gy, ... is indeed converging to a limiting distribution under more general
conditions, and to specify what this is, we construct in accordance with items (a)—(c)
a Markov chain ..., G, G, G, ... with times given by all integers n and so that
this chain is time-stationary (its distribution is invariant under discrete time shifts),
as follows. First, we generate noise processes as in item (c): Let ..., 7 1, Zy, Z1, . ..
be independent stationary Poisson processes on R¢ with intensity p. Second, for
any integer n and point x € Z,,, we consider the family of all generations initiated
by the ancestor x, that is, the family

Fo.= G wim)

m=1
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where W,S%,Z = W, is defined by the reproduction mechanism of independent cluster-
ing and independent thinning given in items (a)—(b) (with 8, = 8 and v,, = v), Wﬁ%
is the retained offspring generated by the points in W,ﬁlg (using the same reproduc-
tion mechanism as before), and so on. In other words, W™ is the set of (m+n)-th
generation points with common ancestor n-th generation ancestor x € Z,,. Moreover,
we assume that conditional on ..., Z_4, Zy, Z;, ..., the families F), , for all integers
n and x € Z, are independent (and hence IID). Finally, for all integers n, we let

Gr=wiuz, withwr={J) |J W, (4.7)

m=1xEZ,_m

For completeness, we show in Appendix B that any G%f has intensity pg given
by (4.3) and PCF g¢ given by (4.6), although this should be evident from Theo-
rem 4.2 below. The proof of Theorem 4.2 is based on a coupling construction between
G1,Go, ... and G5, GY, . .. together with the following result.

Lemma 4.1. Suppose B, = B, v, =v, fr=f, pn = p, and pz, = pz do not depend
onn > 1, where fp <1 and py; > 0. Let K C R? be a compact set and let

Tot =sup{m € {1,2,.. }: Wéj:) NK #0 for some z € Gy } (4.8)

be the last time a point in K is a member of a family initiated by some point in the
0-th generation G%. Then

Bp
1—-8p

E (TStK) < |Kl|pa

is finite, and so T§% < 0o almost surely.

Proof. Let K C RY be compact and define

N=> #F.NnK).

st
z€GY

We have

E(N) = pc/{gl /K(ﬁp)mf*m(y — ) dy} dr = |Klpey fpﬁp

using Fubini’s theorem in the last identity. Further, the families initiated by the
points in G are almost surely pairwise disjoint, so N is almost surely the number
of points in K belonging to some family initiated by a point x € Gf'. Consequently,
P(T3'x < N) =1, whereby the lemma follows. O

15



We are now ready to state our second main result.

Theorem 4.2. Suppose ..., 7Z 1,7y, %y ... are IID stationary point processes and
Bn =08, Un =V, fn= [, pn =p, and pz, = pz do not depend on n > 1, where
Bp <1 and pz > 0. Then ..., G G G5, ... is a time-stationary Markov chain
constructed in accordance to items (a)—(c). Let 11 be the distribution of any G5 and
let N be the space of all locally finite subsets of RY. Then there exists a (measurable)
subset  C N so that I1(Q) = 1 and for any compact set K C R¢ and allw € ), con-
ditional on Gy = w, there is a coupling between G1,Gs, ... and ..., G , Gy, G, .. .,
and there exists a random time Tk (w) € {0,1,...} so that G, N K = G N K for
all integers n > Tk (w). In particular, for any w € Q0 and conditional on Gy = w,
G, converges in distribution to Il as n — oo, and so Il is the unique nvariant
distribution of the chain Go, Gy, . . ..

Proof. Obviously, ...,G* G5, G5, ... is a time-stationary Markov chain construc-
ted in accordance to items (a)—(c). To verify the remaining part of the theorem, we
may assume that Gy and G§' are independent. Then, conditional on Gy, we have
a coupling between G1,Gs,... and ..., G G G5, ... because GY',GY,... and
G1, G, . .. are generated by the same noise processes Z1, Zs, . .., the same offspring
processes Yy, , for all times n = 1,2,... and all ancestors = € G,,—1 N G%'_|, and the
same Bernoulli variables B, , for all times n = 1,2,... and all offspring y € Y,, ,
with ancestor z € G,,_1 NG5 . Let K C R? be compact. In accordance with (4.8),
let
Tk(w) =sup{m € {1,2,...}: Wéz) N K # 0 for some = € w}

be the last time a point in K is a member of a family initiated by some point in w,
and let Q = {w € N : Tx(w) < oo}. By Lemma 4.1 and the coupling construction,
I1(Q) =1 and G, N K = G N K whenever n > Tk (w), so for any w € Q,

lim P(G,NK =0|Gy=w) = lim P (G NK =0,n > Tg(w))
n—00 n—00
because Gy is independent of (Gf, Tk (w)). Since the sequence of events {w : 1 >
Tk(w)} C{w:2>Tk(w)} C ... increases to (2, we obtain
lim P(G,NK =0|Go=w) = lim P (G NK =0)=P(GynK =0).
n—oo n—oo
Thus, recalling that the distribution of a random closed set X C R? (including
a locally finite point process) is uniquely characterized by the void probabilities
P(X N K = () for all compact sets K C R? we have verified that conditional
on Gy = w, the chain G1,G, ... converges in distribution towards II. In turn, this
implies uniqueness of the invariant distribution II. O]

In Theorem 4.2, under mild conditions, we can take Q = A. For instance, this
is easily seen to be the case if there exists € > 0 so that f(z) > 0 whenever ||z] <.
In the special case ¢ = 0, II is just a stationary Poisson process, and so Q = N.

Moreover, the integral
= / (96 — 1)
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is a rough measure of the amount of positive/negative association between the points
in G5. Note that comparing v with the corresponding measure for another stationary
point process makes only sense if the processes have equal intensities, see Lavancier
et al. (2015). Under the assumptions in both Theorem 3.3 and 4.2, by (4.6),

_ ) by 1 feBp?
YT e T- B - B 1+6p{ pz ol Bp)}

which does not depend on f or f. Furthermore, v may take any positive value and
some negative values depending on how we choose the parameter (3, v,p,b, pz). This
means we may have an equilibrium distribution exhibiting any degree of clustering
or some degree of regularity. In fact, v can only be negative when b is negative, e.g
when Z,, is a determinantal point process. In this case b has a lower bound, b,,;,,, that
ensures the existence of the determinantal point process (Lavancier et al., 2015) and
consequently, ¥ > byin. The case v = by, happens exactly when Sp = 0 (i.e. when
no points are retained from the previous generation process) and thus G,, = Z,, is a
determinantal point process.

For approximate simulation of G§f under each of the three models of the noise
processes, we use the algorithm described in Appendix C. Simulation was initially
done with parameters and set-up corresponding to that of Figure 3. However, the
resulting point patterns were not distinguishable from a stationary Poisson process
when comparing empirical estimates of the PCF, L-function, or J-function of the
simulations to 95% global rank envelopes under each model (for definition of L- and
J-functions, see e.g. Mgller and Waagepetersen (2004), and for the envelopes, see
Myllymaéki et al. (2016)). Therefore, in order to better distinguish the three models,
we consider two cases as follows.

Case 1:
This case is based on minimizing v under determinantal noise and on max-
imizing v under weighted permanental noise. Let d = 2, f ~ Ny(0?), with
o =0.1, fz ~ Ng(x*/8), pc = 100, p = 1, B = 0.3, and consequently pz = 70.

e In case of determinantal noise: Let x = 1/,/pz7 (the most repulsive
Gaussian determinantal point process) and the number of points in a
cluster be Bernoulli distributed with parameter §, implying ¢ = 0 (each
point has at most one offspring). Then v &~ —5.38 x 1073.

e In case of Poisson noise: Let the number of points in a cluster be Poisson
distributed with intensity 3, implying ¢ = 1. Then v ~ 9.89 x 107

e In case of weighted permanental noise: Let x = 1 and the number of
points in a cluster be negative binomially distributed with probability of

success equal to 0.12 and dispersion parameter equal to 0.11, implying
¢ =10. Then v ~ 3.39.
Case 2:
This case is such that the clusters are more separated. Let d = 2, f ~ Ny(o?),
with 0 = 0.01, fz ~ Na(k?/8), pg = 100, p = 1, B = 0.95, and consequently
pz = 5. Also, let the number of points in a cluster be negative binomially
distributed with probability of success equal to 0.208 and dispersion parameter
equal to 0.25, implying ¢ = 5.
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e In case of determinantal noise: Let kK = 1/,/pzm. Then v ~ 0.463.
e In case of Poisson noise: 7 ~ 0.463.
e In case of weighted permanental noise: Let k = 1. Then v ~ 0.624.

Figure 4 shows simulations of G§ under each of the three models of the noise pro-
cesses (left to right) in Case 1 and 2 (top and bottom). Based on these simulations,
Figure 5 shows empirical estimates of functional summary statistics based on the
simulated point patterns from Figure 4 along with 95% global rank envelopes based
on 2499 simulations (as recommended in Myllyméki et al. (2016)) of a stationary
Poisson process with the same intensity as used in Figure 4. The first simulated
point pattern of Case 1 looks slightly less clustered than the second, whilst the last
looks more clustered. This is in accordance with the values of v and the correspond-
ing functional summary statistics in Figure 5. Additionally, Figure 5 reveals that
the case of Poisson noise is not distinguishable from the stationary Poisson process,
while the case of weighted permanental noise is more clustered. The case of determi-
nantal noise is not distinguishable from the stationary Poisson process by the PCF
or L-function, but is shown to be more regular by the J-function. In Case 2, the clus-
ters of the point pattern simulated under determinantal noise looks more separated
than the clusters of the point pattern simulated under Poisson noise. The clusters of
the point pattern simulated under weighted permanental noise are clustered to such
a degree that it gives the illusion of few highly separated clusters. All three models
of Case 2 are as expected significantly different from the stationary Poisson process.
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Figure 4: Simulations of G5! restricted to a unit square when the noise processes are either
determinantal (left panel), Poisson (middle panel), or weighted permanental (right panel)
point processes, with parameters as specified in the text. The rows corresponds to Case 1
and 2, respectively.
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ulations of G! from Figure 4 when the noise processes are either determinantal (dashed),
Poisson (solid), or weighted permanental (dotted). The rows corresponds to Case 1 and 2,
respectively. The grey regions are 95% global rank envelopes based on 2499 simulations of
a stationary Poisson process with the same intensity as Gf.
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A Weighted determinantal and permanental point
processes

When defining stationary weighted determinantal /permanental point processes, the
main ingredients are a symmetric function C' : R? — R and a real number a. Before
giving the definitions of these point processes we recall the following.

For a real n x n matrix A with (4, j)-th entry a; ;, the a-weighted permanent of
A is defined by

peI‘a(A) = Z O{#gaLa_l “ .. anﬂ_n
g

where ¢ denotes a permutation of {1,...,n} and #o is the number of its cycles.
This is the usual permanent of A if & = 1. Moreover, the a-weighted determinant
of A is given by

dst(A) = per_,(—A).

This is the usual determinant of A if & = —1. Often we just write per, A for per,(A),
and det, A for det,(A).

For any Gy,...,G, € R% the n x n matrix with (¢,7)-th entry C(G; — G;) is
denoted by [C](GY,...,G,). Thus

per,[C(Gh,...,Gy) =Y o C(G1 = Gy,) -+ C(Gn — Go,).

Note that the weighted permanent/determinant can be negative if the mapping
R x R? 5 (u,v) = C(u — v) is not positive semi-definite. When this mapping is
positive semi-definite, C' is an auto-covariance function, with corresponding auto-
correlation function R(z) = C(z)/C(0) provided C(0) > 0.

A locally finite point process X C R? has n-th order joint intensity pg?) for
n =1,2,... if for any bounded and pairwise disjoint Borel sets Ay, ..., A, C R,

E[N(Al)---N(An)]:/ / P (G, ..., Gy) dGy -+ dG, < oo
Al JA,

Note that pg?) is unique except for a Lebesgue nullset in R (we ignore nullsets in
the following). Thus, if X is stationary, p§) is constant and agrees with the intensity
px, and px > 0 implies that gx(u —v) = pg?)(u, v)/p% is the PCF.

If for all n = 1,2, ..., the n-th order joint intensity exists and is given by
PGy, ..., Gy) = pery[C (G, ..., G)

we say that X is a stationary a-weighted permanental point process with kernel C
and write X ~ PPP,(C). Conditions are need to ensure the existence of PPP,(C),
see Shirai and Takahashi (2003) and McCullagh and Mgller (2006). To exclude the
trivial case where X is empty we assume aC(0) > 0. Note that C' must be an
auto-covariance function and a > 0 because px = aC'(0) and

gx(z) — 1 = R(z)*/a. (A.1)
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This reflects that the process exhibits a positive association between its points. In

fact, if C' is an auto-covariance function and k£ = 2« is a positive integer, then X ~

PPP,(C) exists and it is a Cox process: Conditional on IID zero-mean stationary

Gaussian processes @1, ..., P, on R? with auto-covariance function C'/2, we can let

X be a Poisson process with intensity function A(z) = ®(z)?+- - -+ ®x(2)?, x € R,

In particular, if « = 1, then X is the boson process introduced by Macchi (1975).
If for all n = 1,2, ..., the n-th order joint intensity exists and is given by

PGy, ..., Gy) = deto[C](Gh, . ... G)

we say that X is a stationary a-weighted determinantal point process with kernel C
and write X ~ DPP,(C). To exclude the trivial case where X is empty we assume
aC(0) > 0. Again C needs to be an auto-covariance function and a > 0 because
px = aC(0) and

gx(r) — 1= —R(2)*/a. (A.2)

If « =1, then X is the fermion process introduced by Macchi (1975) (it is usually
called the determinantal point process). We have the following existence result: If
C' is continuous and square integrable, existence of X ~ DPP;(C) is equivalent to
that the Fourier transform of C' is bounded by 0 and 1 (Lavancier et al. (2015)).
When « is a positive integer, X ~ DPP,(C) can be identified with the superposition
G1U--- UG, of independent processes G; ~ DPP,(C/a), i =1,...,«. In general,
the process is not well-defined if 0 < a < 1, cf. McCullagh and Mgller (2006).

B The intensity and PCF of the invariant
distribution
Let the situation be as in Theorem 4.2. Below we verify (4.2) and (4.6).

Note that the G,, are identically distributed and G = W' U Zy where W§* =
Un—1 Uscs . Wo, cf. (4.7). Hence, for Borel sets A € R? with |A] < oo,

BT 0 A} = [ p{fj [ty ao

. , (B.1)
P
= |Al ) _ pz(Bp)™ = |Alpz
I; ( |[Alpz— 5
using Fubini’s theorem in the second identity, so W' has intensity
Bp

pPw = pz B.2
- (B2)

whereby it follows that G§' has intensity p as given by (4.2).
Let Ay, Ay C R? be disjoint Borel sets with |A4;] < oo, i = 1,2. Using similar
arguments as in (B.1) and exploiting the fact that Z,, Z_1, ... are IID point processes
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with a PCF of the form gz = 1+ bfy = f4 as well as the independence between Z,
and W we obtain

E{#(Gy N A1) #(Gy N Az)}

A1 JAs

Y D> pBp) ™A A (B.4)

mi1=1mgo=1: m1#ms

+ 3 5 (Bp)"" Au| Ayl
mt (B.5)
+ZP2Z(5P)2m/ fz % fz 5 [ % ™ (g1 — yo) dyr dyo

A1 J Az

+ Z { D #(Woa N ANHWoa mAQ)} (B.6)

TEL _m

Here, the first two term of (B.3) corresponds to pairs of points from Z; with one
point falling in A; and the other in A,, the second term corresponds to pairs of
points either from Zy N A; and W§' N Ay or from Zy N Ay and W' N A;. Moreover,
the term in (B.4) corresponds to pairs of points, with one point falling in A; and the
other in A, of two families initiated by ancestors from different generations, while the
term in (B.5) corresponds to such pairs of points in two different families initiated
by ancestors from the same generation, and finally the term in (B.6) corresponds to
pairs of points from the same family, falling in A; and A,, respectively. Using (4.3)
and (B.2), we observe that (B.3)—(B.5) simplify to

g+ S (B / Fux Fox £ P — ) dys dy,
m=0

A

whilst the term in (B.6) is equal to

3 / ns sty - sy’

m=1 i=0 (B.7)
: /A ’ (Bp)2m=1=0 =0y — ) 7 (yy — ) dyy dyo dy da

where y corresponds to a i-th generation point in the family initiated by =z € Z_,,,,
and where ¢3%p? is the expected number of pairs of points y; and y, which are
(m —1—1)-th generation points of that ancestor. By Fubini’s theorem, (B.7) reduces
to

m—1

PZCZZ 5p 2m Z/A : f*(m z)*f m—i (yl y2)dy1dy2

m=1 =0

= pae ) (Bp)* / Fox fR gy — yo) dyn dys
k=1 A

1 J Az
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where (4.3) has been used. Combining these results we finally see that G§ has PCF
gc as given by (4.6).

C Simulating the limiting process

This appendix presents an approximate simulation procedure for simulating G§' on
a bounded region R C R%. It is available in R through the package icpp, which can
be obtained at https://github.com/adchSTATS/icpp. The implementation utilizes
existing functions from the packages spatstat and RandomFields to simulate the
noise process.

We make the following assumptions. Let the situation be as in Theorem 4.2 and
let f ~ Ny(0o?) with o > 0. Also, without loss of generality, assume no thinning (i.e.
p=1). Let Ry, = {£ € RY: b(&,7) N R # 0} where b(E,7) is a closed ball with
centre ¢ and radius r > 0. Denote n the number of iterations in our approximate
simulation algorithm, that is, —n is the starting time when ignoring what happens
previously. Note that \/no is the standard deviation of the nth convolution power
of f. To account for edge effects, let r = 4,/no where 4 is an arbitrary non-negative
value ensuring that a point of G*, \ R, would generate a nth generation offspring
in R with very low probability, at most 1/15787. In the approximate simulation
procedure, we ignore those points of G§'N R which are generated by an ith generation
ancestor x when i < —n or both —n <i <0 and x € R, /,. This is our algorithm
in pseudocode where “parallel-for” means a parallel for loop:

parallel-for : = —n to 0 do
simulate Zj := Z; N Rey /=,
end parallel-for
set O:=27",
if n # 0 then
fori=—(n—1)to0do
parallel-for x € O do
simulate the 1st generation offspring process, O,, with parent x
end parallel-for

set O := Z;|J (UxGO Oz N R@%ﬂa)
end for

end if
return O

Note that pz >"" ,(Bp)’ is the intensity of the stationary point process obtained
by ignoring those points of G§' which are generated by an ith generation ances-
tor with ¢ < —n. We base the choice of n on this fact by considering a precision
parameter € > 0 and letting

n= Sup{m €{1,2,...}: szi(ﬁp)i —PG” < 5}.

1=
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To exemplify, let po = 100 and Bp = 0.8 implying that py; = 20, and let ¢ =
2.22 x 10716, then n = 159. If instead Sp = 0.99, then n = 3609.
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