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Abstract

We consider a Markov chain of point processes such that each state is a super
position of an independent cluster process with the previous state as its cen-
tre process together with some independent noise process. The model extends
earlier work by Felsenstein and Shimatani describing a reproducing popula-
tion. We discuss when closed term expressions of the first and second order
moments are available for a given state. In a special case it is known that
the pair correlation function for these type of point processes converges as the
Markov chain progresses, but it has not been shown whether the Markov chain
has an equilibrium distribution with this, particular, pair correlation function
and how it may be constructed. Assuming the same reproducing system, we
construct an equilibrium distribution by a coupling argument.

Keywords: Coupling; equilibrium; independent clustering; Markov chain; pair
correlation function; reproducing population; weighted determinantal and per-
manental point processes.

1 Introduction

This paper deals with a discrete time Markov chain of point processes G0, G1, . . .
in the d-dimensional Euclidean space Rd, where the chain describes a reproducing
population and we refer to Gn as the nth generation (of points). We make the
following assumptions. Any point process considered in this paper will be viewed
as a random subsets of Rd which is almost surely locally finite, that is, the point
process has almost surely a finite number of points within any bounded subset of
Rd (for measure theoretical details, see e.g. Daley and Vere-Jones (2003) or Møller
and Waagepetersen (2004)). Recall that a point process X ⊂ Rd is stationary if its
distribution is invariant under translations in Rd, and then its intensity ρX ∈ [0,∞]
is the mean number of points in X falling in any Borel subset of Rd of unit volume.
Now, for generation 0, G0 is stationary with intensity ρG0 ∈ (0,∞). Further, for
generation n = 1, 2, . . . , conditional on the previous generations G0, . . . , Gn−1, we
obtain Gn by three basic operations for point processes:
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(a) Independent clustering: To each point x ∈ Gn−1 is associated a (non-centred)
cluster Yn,x ⊂ Rd. These clusters are independent identically distributed (IID)
finite point processes and they are independent of G0, . . . , Gn−1. The cardinal-
ity of Yn,x has finite mean βn and finite variance νn and is independent of the
points in Yn,x which are IID, with each point following a probability density
function (PDF) fn. We refer to x + Yn,x (the translation of Yn,x by x) as the
offspring/children process generated by the ancestor/parent x, and we let

Yn =
⋃

x∈Gn−1

(x+ Yn,x) (1.1)

be the independent cluster process given by the superposition of all offspring
processes generated by the points in the previous generation Gn−1.

(b) Independent thinning: For all y ∈ Rd, let Bn,y be IID Bernoulli variables which
are independent of Yn, G0, . . . , Gn−1, and all previously generated Bernoulli
variables. Let pn = P(Bn,y = 1). For all x ∈ Gn−1, let

Wn,x = {y ∈ x+ Yn,x : Bn,y = 1}

be the independent pn-thinned point process of x+ Yn,x, and let

Wn =
⋃

x∈Gn−1

Wn,x (1.2)

be the independent pn-thinned point process of Yn.

(c) Independent noise: Let Zn ⊂ Rd be a stationary point process with finite
intensity ρZn and which is independent of Wn, G0, . . . , Gn−1. Finally, let

Gn = Wn ∪ Zn (1.3)

where we interpret Zn as noise.

Our model is an extension of the model in Shimatani (2010), which in turn is
an extension of Malécot’s model studied in Felsenstein (1975) (we return to this
in Section 2, item (vii) and (viii)). In particular, our extension allows us to model
cluster centres exhibiting clustering or regularity, and similarly the noise processes
can be clustered or regular. For statistical applications, we have in mind that Gn may
be observable (at least for some values of n ≥ 1) whilst G0 and the cluster, thinning,
and superpositioning procedures in item (a)–(c) are unobservable. Our model may
be of relevance for applications in population genetics and community ecology (see
Shimatani (2010) and the references therein), for analyzing tropical rain forest point
pattern data with multiple scales of clustering (see Wiegand et al. (2007)), and for
modelling proteins with multiple noisy appearances in PhotoActivated Localization
Microscopy (PALM) (see Andersen et al. (2017)). However, we leave it for other
work to study the statistical applications of our model and results.

The paper is organized as follows. A discussion of the assumptions in items
(a)–(c) and the related literature is given in Section 2. Section 3 focuses on the first
and second order moment properties of Gn, that is, its intensity and pair correla-
tion function (PCF); we extend results in Shimatani (2010) and show that tractable
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model cases for the PCF of G0 (extending cases considered in Shimatani (2010)) are
meaningful in terms of Poisson, weighted permanental, and weighted determinantal
point processes (which was not observed in Shimatani (2010)). Section 4 discusses
limiting cases of the PCF of Gn as n → ∞ when we have the same reproduction
system and under weaker conditions than in Shimatani (2010). In particular, when
natural conditions are satisfied, we establish ergodicity of the Markov chain by us-
ing a coupling construction and by giving a constructive description of the chain’s
unique invariant distribution when extending the Markov chain backwards in time.
Finally, Appendix A provides background knowledge on weighted permanental and
determinantal point processes, Appendix B verifies some technical details, and Ap-
pendiks C specifies an algorithm for approximate simulation of the Markov chins
invariant distribution.

2 Assumptions and related work

Items (i)–(iv) below comment on the model assumptions in items (a)–(c).

(i) The process Yn is a stationary independent cluster process (Daley and Vere-
Jones (2003)) and we have the following special cases: If Gn−1 is a stationary
Poisson process, Yn is a Neyman-Scott process (Neyman and Scott (1958)).
If in addition #Yn,x follows a Poisson distribution, then βn = νn and Yn is a
shot-noise Cox process (SNCP; Møller (2003)) driven by

Λn(x) = βn
∑

y∈Gn−1

fn(x− y), x ∈ Rd. (2.1)

This is a (modified) Thomas process (Thomas (1949)) if fn is the density of
d IID zero-mean normally distributed variates with variance σ2

n – we denote
this distribution by Nd(σ

2
n) – and it is a Matérn cluster process (Matérn (1960,

1986)) if instead fn is a uniform density of a d-dimensional ball with centre
at the origin. However, in many applications a Poisson centre process is not
appropriate. For instance, Van Lieshout & Baddeley (2002) considered a re-
pulsive Markov point process model for the centre process, whereby it is easier
to identify the clusters than under a Poisson centre process.

(ii) When βn ≤ νn, we may restrict attention to the general case of a stationary
generalised shot-noise Cox process (GSNCP) as studied in Møller and Torrisi
(2005): In this model (2.1) is extended to the case where Gn−1 is a general
stationary point process and Yn is a Cox process driven by

Λn(x) =
∑

y∈Gn−1

γykn({(x− y)/by})/bdy, x ∈ Rd, (2.2)

where kn is a PDF on Rd, the γy and the by for all y ∈ Gn−1 are independent
positive random variables which are independent ofGn−1, and the γy are identi-
cally distributed with mean βn and variance νn−βn (as #Yn,x has mean βn and
variance νn = E{var(#Yn,x|γy)}+ var{E(#Yn,x|γy)} = βn + var(γn)). Further,
by has an interpretation as a random band-width and fn(x) = E{kn(x/by)/b

d
y}.
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The general results for the intensity and PCF of Gn in Section 3 will be un-
changed whether we consider this stationary GSNCP or the more general case
in item (a)

(iii) Clearly, there is no noise (Zn is empty with probability one) if ρZn = 0. The case
ρZn > 0 may be relevant when not all points in a generation can be described
as resulting from independent clustering and thinning. Note that in item (c) we
could without loss of generality assume Z1, Z2, . . . are independent, however, it
will first be in Section 4 that we assume they are IID. Further, we introduce the
thinning of Yn in item (b) only for modelling purposes; from a mathematical
point of view the thinning could be omitted if in item (a) we replace each
cluster Yn,x by what happens after the independent thinning: Namely that
independent thinned clusters Y th

n,x appear so that #Y th
n,x has mean βth

n = βnpn
and variance νthn = βnpn − βnp

2
n + νnp

2
n and is independent of the points in

Y th
n,x which are IID with PDF fn, whereby Wn and Y th

n := ∪x∈Gn−1(x + Y th
n,x)

are identically distributed.

(iv) Assuming no thinning (pn = 1), an equivalent description of items (a) and (c)
is given in terms of the Voronoi tessellation generated by Gn−1: For x ∈ Gn−1,
let C(x|Gn−1) be the Voronoi cell associated to x and consisting of all points
in Rd which are at least as close to x than to another other point in Gn−1
(with respect to usual distance in Rd). With probability one, since Gn−1 is
stationary and non-empty, each Voronoi cell is bounded and hence is volume
is finite (see e.g. Møller (1989, 1994)). Thus we can set

Gn =
⋃

x∈Gn−1

(x+Gn,x)

where conditional on Gn−1, for all x ∈ Gn−1, the Gn,x are IID finite point
processes with a distribution as follows: #Gn,x has mean βn+ |C(x|Gn−1)|ρZn ,
variance νn+ |C(x|Gn−1)|ρZn , and is independent of the points in Gn,x; and the
points are IID, each following a mixture distribution so that with probability
βn/(βn + |C(x|Gn−1)|ρZn) the PDF is fn and else it is a uniform distribution
on C(x|Gn−1).

In items (v)–(vi) below we discuss earlier work on the model for G0, G1, . . .,
where G0 is a stationary Poisson process, all Gn = Yn (no thinning and no noise)
for n ≥ 1, fn = f and βn = β do not depend on n ≥ 1. We may refer to this as a
replicated SNCP. Frequently in the literature, a so-called replicated Thomas process
is considered, that is, f ∼ Nd(σ

2).

(v) Apperently this replicated SNCP was originally studied by Malécot, see the
discussion and references in Felsenstein (1975) where the following three con-
ditions are stated: “(I) individuals are distributed randomly on the line with
equal expected density everywhere; (II) each individual reproduces indepen-
dently, the number of offspring being drawn from a Poisson distribution with
a mean of one; and (III) each offspring migrates independently, the displace-
ments being drawn from some distribution m(x), which we will take to be a
normal distribution.” (In our notation, d = 1, β = 1, and f ∼ N1(σ

2), but
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Felsenstein (1975) considered also more general offspring densities f and the
cases d = 2, 3.) Felsenstein (1975) showed that “(I) is incompatible with (II)–
(III)” because G1, G2, . . . are not stationary Poisson processes and “a model
embodying (II) and (III) will lead to the formation of larger and larger clumps
of individuals separated by greater and greater distances”, and then he con-
cluded “This model is therefore biologically irrelevant”.

(vi) Kingman (1977) considered the case where β is replaced by a non-negative
function b which is allowed to depend on the cluster centre x and the previ-
ous generation, so a cluster with centre x is a Poisson process with intensity
function b(x,Gn−1)f( · −x); e.g., as in the Voronoi case discussed in item (iv),
b(x,Gn−1) may depend on Gn−1 in a neighbourhood of x. Then Gn is a Cox
process: Gn conditional on Gn−1 is a Poisson process with intensity function

Λn(x) =
∑

y∈Gn−1

b(y,Gn−1)f(x− y), x ∈ Rd. (2.3)

In this setting Kingman (1977) verified that it is impossible for Gn to be a
stationary Poisson process, however, replacing f(x − y) in (2.3) by a more
general density which may depend on Cn−1− x, Kingman (1977) noticed that
it is possible for Gn to be a stationary Poisson process. A trivial example is
the Voronoi case in item (iv) when Gn = Zn for n ≥ 1.

Recently, Shimatani (2010) considered first the case of items (a)–(b) and no noise,
when d = 2 and there is the same reproduction system so that fn = f , βn = β > 0,
νn = ν, and pn = p ∈ (0, 1] do not depend on n ≥ 1.

(vii) In particular, Shimatani (2010) considered the case f ∼ N2(σ
2) and when

βp = 1 or equivalently when the intensities ρG0 = ρG1 = . . . are invariant
over generations, and then he showed that as n → ∞, the PCF for Gn di-
verges and “all offspring will eventually have the same ancestor”. It follows
from item (iii) that the model is equivalent to a replicated Neyman-Scott
process; this becomes a replicated Thomas process when each cluster size is
Poisson distributed, and hence Shimatani (2010) result agrees with the results
in Felsenstein (1975) and Kingman (1977). Note that Shimatani (2010) im-
plicitly assumed that a cluster can have more than one point. Otherwise the
PCF of Gn becomes equal to 1; we discuss this rather trivial case again in
Section 3.2.2 and 4; see also Section 3 in Kingman (1977).

Next Shimatani (2010) extended the model by including noise as in item (c) and
by making the following assumptions: The noise processes Zn are stationary Poisson
processes, satisfying 0 < ρZ1 = ρZ2 = . . . and ρG0 = ρG1 = . . . , meaning that βp ≤ 1.
As there is no noise if βp = 1 it is also assumed that βp < 1.

(viii) Then Shimatani (2010) showed that the PCF of Gn converges uniformly as
n → ∞ and he argued that this limiting case may be “biologically valid”
(Shimatani, 2010, Section 2.4). However, there are some flaws in the paper by
Shimatani (2010) which we address:
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• He was not showing that there exists an underlying point process having
this limiting case as its PCF, although he claimed that “this modified
replicated Neyman-Scott process reaches an equilibrium state”. In Sec-
tion 4, for our more general model, we prove the existence of such an
underlying point process.
• When G0 is not a stationary Poisson process but its PCF is of a particular

form (which we specify later in connection to (3.4)), he did not argue
that there exists an underlying point process and what it could be. In
Section 3, we verify this existence under our more general model.

Finally, we remark on a few related cases.

(ix) Whilst we study the processes Gn for all n = 1, 2, . . ., often in the spatial
point process literature the focus is on either G1 or G2, assuming pn = 1 and
ρZn = 0 for n = 1 or n = 1, 2, respectively. Wiegand et al. (2007) studied
this in the special case of a double Thomas cluster process G2 when d = 2,
i.e., when G0 is a stationary Poisson process, (2.1) holds for both G1 = Y1
and G2 = Y2, and fn ∼ N2(σ

2
n) for n = 1, 2; see also Andersen et al. (2017)

for more general functions fn. Moreover, Wiegand et al. (2007) extended the
double Thomas process to the case where ρZ1 = 0 and ρZ2 > 0; this type of
model is also considered in Andersen et al. (2017). In any case, our general
results for intensities and PCFs in Section 3 will cover all these cases.

(x) Incidentally, when p1 = p2 = . . . = 1, ρZ1 = ρZ2 = . . . = 0, β1 = β2 = . . . ,
and f1 = f2 = . . . , the superposition

⋃∞
n=0Gn is known as a spatial Hawkes

process, see Møller and Torrisi (2007) and the references therein.

3 First and second order moment properties

In this section we determine the intensity and the PCF of Gn for n = 1, 2, . . . ,
under more general assumptions than in Shimatani (2010). Specifically, the noise is
an arbitrary stationary point process (not necessarily a stationary Poisson process
as in Shimatani (2010)) and we do not assume the same reproduction system.

3.1 Intensities

By induction Gn is seen to be stationary for n = 0, 1, . . . Its intensity is determined
in the following proposition where for notational convenience we define Z0 = G0 so
that ρZ0 = ρG0 .

Proposition 3.1. For n = 1, 2, . . . , we have that Gn is stationary with a positive
and finite intensity given by

ρGn = ρGn−1βnpn + ρZn = ρZn +
n−1∑

i=0

ρZi

n∏

j=i+1

βjpj. (3.1)

Proof. Using induction for n = 1, 2, . . . , the proposition follows immediately from
items (a)–(c), where the term ρZi

∏n
j=i+1 βjpj is the contribution to the intensity

caused by the clusters with centres Zi and after independent thinning.
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3.2 Pair correlation functions

3.2.1 Preliminaries.

Recall that a stationary point process X ⊂ Rd with intensity ρX ∈ (0,∞) has
a translation invariant PCF (pair correlation function) (u, v) 7→ gX(u − v) with
(u, v) ∈ Rd × Rd if for any bounded Borel function h : Rd × Rd 7→ [0,∞) with
compact support,

E
∑

x1,x2∈X:x1 6=x2
h(x1, x2) = ρ2X

∫∫
h(x1, x2)gX(x1 − x2) dx1 dx2 <∞. (3.2)

Equivalently, for any bounded and disjoint Borel sets A,B ⊂ Rd, denoting N(A) the
cardinality of X ∩A, the covariance between N(A) and N(B) exists and is given by

cov{N(A), N(B)} = ρ2X

∫

A

∫

B

{gX(x1 − x2)− 1} dx1 dx2.

Some remarks are in order. Note that gX is uniquely determined except for
nullsets with respect to Lebesgue measure on Rd, but we ignore such nullsets in the
following. Thus the translation invariance of the PCF is implied by the stationarity
of X. Our results below are presented in terms of gX−1 rather than gX , and gX = 1
if X is a Poisson process. It is convenient when gX is isotropic, not at least when
considering plots of this function: This means that gX(x) = gX,o(‖x‖) for all x ∈ Rd.
With a slight abuse of terminology, we also refer to gX and gX,o as PCFs.

For a PDF h on Rd, let h̃(x) := h(−x) and let

h ∗ h̃(x1 − x2) =

∫
h(x1 − y)h(x2 − y) dy (3.3)

be the convolution of h and h̃. Note that if U and V are IID random variables with
PDF h, then U − V has PDF h ∗ h̃. In the following section we consider the case

gX − 1 = a h ∗ h̃ (3.4)

for real constants a, whereX in particular, may refer to the initial generation process,
G0, or the noise process, Zn. This corresponds to X being a Poisson process if
a = 0, a point process with positive association between its points (attractiveness,
clustering, or clumping) if a > 0, and a point process with negative association
between its points (repulsiveness or regularity) if a < 0. In Shimatani (2010), for
the initial generation process G0, he briefly discussed the special case of (3.4) when
h ∼ N2(τ

2/2) (so h ∗ h̃ ∼ N2(τ
2)) whilst the noise processses are stationary Poisson

processes. However, if a 6= 0 he did not argue if an underlying point process with PCF
gX exists. Indeed, as detailed in Appendix A, there exist α-weighted determinantal
point processes satisfying (3.4) if α = −1/a is a positive integer, and there exist
Cox processes given by α-weighted permanental point processes satisfying (3.4) if
α = 1/a is a positive half-integer. Additionally, h needs not to be Gaussian when
dealing with weighted determinantal and permanental point processes; e.g. h may
be the density of a normal-variance mixture distribution (Barndorff-Nielsen et al.,
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1982). Notice also that (3.4) holds for many other cases of point process models for
X: If the Fourier transform F (gG0 − 1) is well-defined and non-negative, if h = h̃,
and if a :=

∫
(gX − 1) ∈ (0,∞), then (3.4) holds with

h = F−1
{√
F(gX − 1)

}/√
a

provided this inverse transform is well-defined.
The following lemma is needed in Section 3.2.3.

Lemma 3.2. Suppose gX is of the form (3.4). Then for any function f
∫∫
{gX(x1 − x2)− 1}f(u− x1)f(v − x2) dx1 dx2 = ah ∗ h̃ ∗ f ∗ f̃(u− v) (3.5)

for any u, v ∈ Rd.

Proof. Follows from (3.3) and (3.4) using Fubini’s theorem and the fact that the
convolution operation is commutative and associative.

3.2.2 First main result.

This section concerns our first main result, Theorem 3.3. We use the following no-
tation. Define

cn = E{#Yn,x(#Yn,x − 1)}/β2
n = (νn + β2

n − βn)/β2
n if βn > 0, (3.6)

with cn = 0 if βn = 0. If βn = νn > 0, as in the case when #Yn,x follows a
(non-degenerated) Poisson distribution, then cn = 1. The case of overdispersion
(underdispersion), that is, νn > βn (νn < βn) corresponds to cn > 1 (cn < 1).

Theorem 3.3. Suppose gG0 and gGZn
are of the form (3.4), that is, gG0−1 = af0∗f̃0

and gZn − 1 = bnfZn ∗ f̃Zn for n = 1, 2, . . .. Then, for all u ∈ Rd and n = 1, 2, . . .,

gGn(u)− 1 =

(
ρG0

ρGn

n∏

i=1

βipi

)2

af0 ∗ f̃0 ∗ · · · ∗ fn ∗ f̃n(u) (3.7)

+
n∑

i=1

ciρGi−1

ρ2Gn

( n∏

j=i

βjpj

)2

fi ∗ f̃i ∗ · · · ∗ fn ∗ f̃n(u) (3.8)

+
n−1∑

i=1

(
ρZi

ρGn

n∏

j=i+1

βjpj

)2

bifZi
∗ f̃Zi

∗ fi+1 ∗ f̃i+1 ∗ · · · ∗ fn ∗ f̃n(u) (3.9)

+

(
ρZn

ρGn

)2

bnfZn ∗ f̃Zn(u) (3.10)

where the sum in (3.9) is interpreted as zero if n = 1.

The terms in (3.7)–(3.10) have the following interpretations: The right side of
(3.7) corresponds to pairs of n-th generation points with different 0-th generation
ancestors; the i-th term in (3.8) corresponds to such pairs when they have a common
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(i − 1)-th generation ancestor; the i-th term in (3.9) corresponds to pairs of n-
th generation points with different i-th generation ancestors initiated by the noise
process Zi; and the term in (3.10) corresponds to point pairs in Zn.

Later in Section 4.1, our main interest is in the behaviour of gGn as n→∞ when
we have the same reproduction system, but for the moment, it is worth noticing the
flexibility of our model for G1 and the effect of the choice of its centre process G0:
Suppose there is no noise and G0 is stationary and either a Poisson or an weighted
determinantal or permanental point process with a Gaussian kernel. Specifically,
d = 2, G0 has intensity ρG0 = 100, and using a notation as in Appendix A, the
Gaussian kernel has an auto-correlation function of the form R(x) = exp(−‖x/τ‖2),
where the value of τ depends on the type of process: For the α-weighted determi-
nantal point process, we consider the most repulsive case, that is, a determinantal
point process (α = 1) and τ = 1/

√
ρG0π is largest possible to ensure existence of

the process (Lavancier et al. (2015)); for the α-weighted permanental point process,
α = 1/2 (the most attractive case when it is also a Cox process, see Appendix A)
and τ = 0.1 is an arbitrary value (any positive number can be used). Note that
R2 = (

√
πτ)2f0 ∗ f̃0 where f0 ∼ N2(τ

2/8), which by (A.1) and (A.2) mean that (3.4)
is satisfied with a = 2(

√
πτ)2 and a = −(

√
πτ)2 for the weighted permanental and

determinantal point processes, respectively, and a = 0 in case of the Poisson process.
Moreover, let the number of points in a cluster be Poisson distributed with mean
β1 = 10, p1 = 1, and f1 ∼ N2(σ

2), with σ = 0.01. Then, by Theorem 3.3,

gG1(u)− 1 =
a√

2π(2σ2 + τ 2/4)
exp

{
− ‖u‖2

2(2σ2 + τ 2/4)

}

+
1

ρG0

√
4πσ2

exp

{
−‖u‖

2

4σ2

}
.

Figure 1 shows the isotropic PCF gG1,o(r) = gG1(u) as a function of the inter-
point distance r = ‖u‖ in case of each of the three models of G0, where using an
obvious notation, gdet

G1,o
< gPois

G1,o
< gwper

G1,o
. Most notable is the fact that gdet

G1,o
(r) exhibits

repulsion at midrange distances r. For gwper
G1,o

, we see a high degree of clustering, which
is persistent for large values of r; this will of course be even more pronounced if we
increase the value of τ ; whilst decreasing σ will increase the peak at small values
of r. Figure 2 shows simulations of G1 in each of the three cases of the model of G0.
As expected, we clearly see a higher degree of repulsion when G0 is a determinantal
point process (the left most plot) and a higher degree of clustering when G0 is a
weighted permanental point process (the right most plot). In particular, the clusters
are more distinguishable when G0 is a determinantal point process, and this will be
even more pronounced if decreasing σ because the spread of clusters then decrease.
When G0 is a weighted permanental point process, the clusters overlap more.

3.2.3 Proof of Theorem 3.3.

Shimatani (2010) verified Theorem 3.3 when both b1 = b2 = · · · = 0 (as is the
case if Z1, Z2, . . . are stationary Poisson processes) and c1 = c2 = · · · > 0, in which
case the terms in (3.9)-(3.10) are zero. If c1 = c2 = · · · = 0, then (3.8) is zero
and by (3.6), with probability one, #Yn,x ∈ {0, 1} for all x ∈ Gn−1 and n = 1, 2, . . .
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Figure 1: The PCFs of G1 when G0 is a determinantal, Poisson, or weighted permanen-
tal point process (dashed, solid, and dotted respectively), with parameters and Gaussian
offspring PDF as specified in the text. The solid horizontal line is the theoretical PCF for
a Poisson process.

Figure 2: Simulations of G1 restricted to a unit square when G0 is a determinantal (left
panel), Poisson (middle panel), or weighted permanental (right panel) point process, see
Figure 1 and the text.

Consequently, the proof of Theorem 3.3 is trivial if c1 = c2 = · · · = 0 and bothG0 and
Z1, Z2, . . . are stationary Poisson processes, because then a = 0, b1 = b2 = · · · = 0,
G1, G2, . . . are stationary Poisson processes, and IID random shifts of the points in a
stationary Poisson process generate a stationary Poisson process. The general proof
of Theorem 3.3 follows by induction from the following Lemma 3.4 when applying
Lemma 3.2.

Lemma 3.4. If ρGn−1 > 0, ρGn > 0, and gGn−1 and gZn exist, then gGn exists and
is given by

gGn(u− v)− 1 =

(
ρGn−1βnpn

ρGn

)2

·
[ ∫∫

{gGn−1(x1 − x2)− 1}fn(u− x1)f̃n(v − x2) dx1 dx2

+
cn

ρGn−1

fn ∗ f̃n(u− v)

]
+

(
ρZn

ρGn

)2

{gZn(u− v)− 1}

(3.11)

for any u, v ∈ Rd.

10



Proof. Note that Yn is stationary with intensity

ρYn = ρGn−1βn. (3.12)

It follows straightforwardly from (1.1), (3.2), and Fubini’s theorem that its PCF is
given by

ρ2YngYn(u− v) = ρ2Gn−1
β2
n

∫∫
gGn−1(x1 − x2)fn(u− x1)fn(v − x2) dx1 dx2

+ ρGn−1cnβ
2
nfn ∗ f̃n(u− v)

(3.13)

for any u, v ∈ Rd, where the two terms on the right hand side correspond to pairs
of points from Yn belonging to different clusters and the same cluster, respectively.
Hence by (1.2) and (3.12), Wn is stationary with intensity

ρWn = pnρYn = ρGn−1βnpn (3.14)

and PCF

gWn(u− v) = gYn(u− v)

=

∫∫
gGn−1(x1 − x2)fn(u− x1)fn(v − x2) dx1 dx2

+
cn

ρGn−1

fn ∗ f̃n(u− v)

(3.15)

where the first identify follows from the fact that PCFs are invariant under indepen-
dent thinning, and where (3.13) is used to obtain the second identity. Furthermore,
it follows straightforwardly from (1.3), (3.2), and Fubini’s theorem that Gn has PCF
given by

ρ2Gn
gGn(x) = ρ2Wn

gWn(x) + 2ρWnρZn + ρ2Zn
gZn(x)

where the three terms on the right hand side correspond to pairs of points from Wn,
from Wn and Zn (which can be ordered in two ways), and from Zn, respectively.
Combining this with the first identity in (3.1) and (3.14), we easily obtain

gGn(x)− 1 =

(
ρGn−1βnpn

ρGn

)2

{gWn(x)− 1}+

(
ρZn

ρGn

)2

{gZn(x)− 1}

which combined with (3.15) imply (3.11).

3.2.4 Extension.

More generally than in Section 3.2.2 we may consider the case where the PCF of
the initial generation G0 and the noise Zn are affine expressions:

gG0 − 1 = a0 + a1f0,1 ∗ f̃0,1 + · · ·+ akf0,k ∗ f̃0,k (3.16)

and

gZn − 1 = bn,0 + bn,1fZn,1 ∗ f̃Zn,1 + · · ·+ bn,lfZn,l ∗ f̃Zn,l, n = 1, 2, . . . , (3.17)

11



for real constants a0, . . . , ak, bn,1, . . . , bn,l and PDFs f0,1, . . . , f0,k, fZn,1, . . . , fZn,l. For
instance, the superposition of k independent Poisson, weighted permanental, or
weigthed determinantal point processes has a PCF of the form (3.16). Then we
have

gGn(u)− 1 =

(
ρG0

ρGn

n∏

i=1

βipi

)2(
a0 +

k∑

i=1

aif0,i ∗ f̃0,i ∗ f1 ∗ f̃1 . . . ∗ fn ∗ f̃n(u)

)

+
n∑

i=1

ciρGi−1

ρ2Gn

( n∏

j=i

βjpj

)2

fi ∗ f̃i ∗ . . . ∗ fn ∗ f̃n(u)

+
n−1∑

i=1

(
ρZi

ρGn

n∏

j=i+1

βjpj

)2

·
(
bi,0 +

l∑

j=1

bi,jfZi,j ∗ f̃Zi,j ∗ fi+1 ∗ f̃i+1 ∗ . . . ∗ fn ∗ f̃n(u)

)

+

(
ρZn

ρGn

)2(
bn,0 +

l∑

j=1

bn,jfZn,j ∗ f̃Zn,j(u)

)
.

Essentially, this follows from Theorem 3.3 by replacing af0 ∗ f̃0 in (3.7) by 3.16, and
bifZi

∗ f̃Zi
in (3.9) and (3.10) by 3.17.

4 Same reproduction system

Throughout this section we assume the same reproduction system over generations,
that is, in items (a)–(c), βn = β, νn = ν, fn = f , pn = p do not depend on n,
Z1, Z2, . . . are IID stationary point processes, so ρZn = ρZ for n = 1, 2, . . . , and
ρG0 = ρG1 = · · · = ρG > 0. Note that the noise process Zn and the initial generation
process G0 need not be Poisson processes and the offspring densities need not be
Gaussian as in Shimatani (2010). By (3.1), this implies either

βp = 1 and ρZ = 0, (4.1)
or

βp < 1 and ρZ > 0. (4.2)

In case of (4.2),
ρG = ρZ/(1− βp). (4.3)

12



4.1 Limiting pair correlation function

Under the assumptions above and in Theorem 3.3, the PCF simplifies such that

gGn(u)− 1 = (βp)2naf0 ∗ f̃0 ∗ f ∗n ∗ f̃ ∗n(u)

+
c

ρG

n∑

i=1

(βp)2(n−i+1)f ∗(n−i+1) ∗ f̃ ∗(n−i+1)(u)

+

(
ρZ
ρG

)2 n∑

i=1

(βp)2(n−i)bfZ ∗ f̃Z ∗ f ∗(n−i) ∗ f̃ ∗(n−i)(u)

= (βp)2naf0 ∗ f̃0 ∗ f ∗n ∗ f̃ ∗n(u) +
c

ρG

n∑

i=1

(βp)2if ∗i ∗ f̃ ∗i(u)

+

(
ρZ
ρG

)2

bfZ ∗ f̃Z ∗
n−1∑

i=0

(βp)2if ∗i ∗ f̃ ∗i(u),

(4.4)

for n = 1, 2, . . ., where

c = (ν + β2 − β)/β2 if β > 0, c = 0 if β = 0,

and where f ∗n is the n-th convolution power of f . For instance, consider the case
f0 ∼ Nd(τ

2), f ∼ Nd(σ
2), and fZ ∼ Nd(κ

2). Then

gG(u)− 1 := lim
n→∞

gGn(u)− 1

=
c

ρG

∞∑

i=1

(βp)2i

(4πiσ2)d/2
exp

(
−‖u‖

2

4iσ2

)

+ b

(
ρZ
ρG

)2 ∞∑

i=0

(βp)2i

{4π (iσ2 + κ2)}d/2
exp

{
− ‖u‖2

4 (iσ2 + κ2)

}
(4.5)

is finite if and only if βp < 1 or both βp = 1 and d ≥ 3. Shimatani (2010) considered
this special case for d = 2, b = 0, and c > 0; he noticed that (4.1) implies divergence
of gGn as n → ∞ whilst (4.2) implies convergence, where in the latter case, when
βp ≈ 1, he discussed an approximation of gG(u) that depends on whether ‖u‖ is
close to 0 or not.

In general, if we assume (4.2) and that gGn − 1 has a finite limit, we have

gG(u)− 1 =
c

ρG

∞∑

i=1

(βp)2if ∗i ∗ f̃ ∗i(u) +

(
ρZ
ρG

)2

bfZ ∗ f̃Z ∗
∞∑

i=0

(βp)2if ∗i ∗ f̃ ∗i(u) (4.6)

which does not depend on a or f0. Here, as βp ↑ 1, the second term goes to zero,
meaning that the less noise we consider, the less it matters which type of noise
process we choose. On the other hand, as βp ↓ 0, gG − 1 tends to bfZ ∗ f̃Z , which
simply is the PCF of the noise process Zn.

Considering the situation at the end of Section 3.2.2, assume that d = 2, f ∼
Nd(σ

2), and gZn − 1 = bfZ ∗ f̃Z (corresponding to (3.4)) with fZ ∼ Nd(κ
2/8) and

b = 0, b = −(
√
πκ)2, and b = 2(

√
πκ)2 for the Poisson, determinantal, and weighted

13



permanental point process, respectively. Then gG(u) is given by (4.5), where d = 2
and κ2 is replaced by κ2/8. Also assume that p = 1, σ = 0.1, ρG = 100, and the
number of points in a cluster is Poisson distributed (implying c = 1) with mean
β = 0.8, so ρZ = 20. Finally, assume κ = 0.1 in case of weighted permanental
noise and κ = 1/

√
ρZπ in case of determinantal noise (the most repulsive Gaussian

determinantal point process). Shimantani Shimatani (2010) discussed the case where
βp = 0.99 – a plot (omitted here) shows that the limiting PCFs corresponding
to the three models of noise processes are then effectively equal. By lowering βp,
the reproduction system is diminished, and hence depending on the model type, a
higher degree of regularity or clustering is obtained. This will also increase the rate
of convergence because the number of generations initialized by a single point will
be fewer. Note that in Figure 3 the convergence is already rapid as gG8 and gG16

are practically indistinguishable. Figure 3 further shows that it is only for small
inter-point distances that the three limiting PCFs differ – and only slightly.

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

●

●

●

● ●
●

●
● ● ●

●

●

●

●
●

●

●
●

●
●

●

●

n = 1
n = 2
n = 4
n = 8
n = 16

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

● ●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

n = 1
n = 2
n = 4
n = 8
n = 16

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

n = 1
n = 2
n = 4
n = 8
n = 16

Figure 3: The PCFs of Gn when the noise processes are either determinantal, Poisson
or weighted permanental point processes (left to right), with parameters and Gaussian
offspring PDF as specified in the text. The solid horizontal line is the theoretical PCF for
a Poisson process.

4.2 Second main result

Although Shimatani (2010) showed convergence of gGn in the special case consid-
ered above, he did not clarify whether the Markov chain G0, G1, . . . converges in
distribution to a limit so that this limiting distribution (also called the equilibrium,
invariant, or stationary distribution) has a PCF given by (4.6). In order to show
that G0, G1, . . . is indeed converging to a limiting distribution under more general
conditions, and to specify what this is, we construct in accordance with items (a)–(c)
a Markov chain . . . , Gst

−1, G
st
0 , G

st
1 , . . . with times given by all integers n and so that

this chain is time-stationary (its distribution is invariant under discrete time shifts),
as follows. First, we generate noise processes as in item (c): Let . . . , Z−1, Z0, Z1, . . .
be independent stationary Poisson processes on Rd with intensity ρZ . Second, for
any integer n and point x ∈ Zn, we consider the family of all generations initiated
by the ancestor x, that is, the family

Fn,x =
∞⋃

m=1

W (m)
n,x

14



whereW (1)
n,x = Wn,x is defined by the reproduction mechanism of independent cluster-

ing and independent thinning given in items (a)–(b) (with βn = β and νn = ν),W (2)
n,x

is the retained offspring generated by the points in W (1)
n,x (using the same reproduc-

tion mechanism as before), and so on. In other words, W (m)
n,x is the set of (m+n)-th

generation points with common ancestor n-th generation ancestor x ∈ Zn. Moreover,
we assume that conditional on . . . , Z−1, Z0, Z1, . . . , the families Fn,x for all integers
n and x ∈ Zn are independent (and hence IID). Finally, for all integers n, we let

Gst
n = W st

n ∪ Zn with W st
n =

∞⋃

m=1

⋃

x∈Zn−m

W
(m)
n−m,x. (4.7)

For completeness, we show in Appendix B that any Gst
n has intensity ρG given

by (4.3) and PCF gG given by (4.6), although this should be evident from Theo-
rem 4.2 below. The proof of Theorem 4.2 is based on a coupling construction between
G1, G2, . . . and Gst

1 , G
st
2 , . . . together with the following result.

Lemma 4.1. Suppose βn = β, νn = ν, fn = f , pn = p, and ρZn = ρZ do not depend
on n ≥ 1, where βp < 1 and ρZ > 0. Let K ⊂ Rd be a compact set and let

T st
0,K = sup

{
m ∈ {1, 2, . . .} : W

(m)
0,x ∩K 6= ∅ for some x ∈ Gst

0

}
(4.8)

be the last time a point in K is a member of a family initiated by some point in the
0-th generation Gst

0 . Then

E
(
T st
0,K

)
≤ |K|ρG

βp

1− βp

is finite, and so T st
0,K <∞ almost surely.

Proof. Let K ⊂ Rd be compact and define

N =
∑

x∈Gst
0

#(F0,x ∩K).

We have

E(N) = ρG

∫ { ∞∑

m=1

∫

K

(βp)mf ∗m(y − x) dy

}
dx = |K|ρG

βp

1− βp

using Fubini’s theorem in the last identity. Further, the families initiated by the
points in Gst

0 are almost surely pairwise disjoint, so N is almost surely the number
of points in K belonging to some family initiated by a point x ∈ Gst

0 . Consequently,
P(T st

0,K ≤ N) = 1, whereby the lemma follows.
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We are now ready to state our second main result.

Theorem 4.2. Suppose . . . , Z−1, Z0, Z1 . . . are IID stationary point processes and
βn = β, νn = ν, fn = f , pn = p, and ρZn = ρZ do not depend on n ≥ 1, where
βp < 1 and ρZ > 0. Then . . . , Gst

−1, G
st
0 , G

st
1 , . . . is a time-stationary Markov chain

constructed in accordance to items (a)–(c). Let Π be the distribution of any Gst
n and

let N be the space of all locally finite subsets of Rd. Then there exists a (measurable)
subset Ω ⊆ N so that Π(Ω) = 1 and for any compact set K ⊂ Rd and all ω ∈ Ω, con-
ditional on G0 = ω, there is a coupling between G1, G2, . . . and . . . , Gst

−1, G
st
0 , G

st
1 , . . .,

and there exists a random time TK(ω) ∈ {0, 1, . . .} so that Gn ∩ K = Gst
n ∩ K for

all integers n > TK(ω). In particular, for any ω ∈ Ω and conditional on G0 = ω,
Gn converges in distribution to Π as n → ∞, and so Π is the unique invariant
distribution of the chain G0, G1, . . ..

Proof. Obviously, . . . , Gst
−1, G

st
0 , G

st
1 , . . . is a time-stationary Markov chain construc-

ted in accordance to items (a)–(c). To verify the remaining part of the theorem, we
may assume that G0 and Gst

0 are independent. Then, conditional on G0, we have
a coupling between G1, G2, . . . and . . . , Gst

−1, G
st
0 , G

st
1 , . . . because Gst

1 , G
st
2 , . . . and

G1, G2, . . . are generated by the same noise processes Z1, Z2, . . ., the same offspring
processes Yn,x for all times n = 1, 2, . . . and all ancestors x ∈ Gn−1 ∩Gst

n−1, and the
same Bernoulli variables Bn,y for all times n = 1, 2, . . . and all offspring y ∈ Yn,x
with ancestor x ∈ Gn−1 ∩Gst

n−1. Let K ⊂ Rd be compact. In accordance with (4.8),
let

TK(ω) = sup
{
m ∈ {1, 2, . . .} : W

(m)
0,x ∩K 6= ∅ for some x ∈ ω

}

be the last time a point in K is a member of a family initiated by some point in ω,
and let Ω = {ω ∈ N : TK(ω) < ∞}. By Lemma 4.1 and the coupling construction,
Π(Ω) = 1 and Gn ∩K = Gst

n ∩K whenever n > TK(ω), so for any ω ∈ Ω,

lim
n→∞

P (Gn ∩K = ∅|G0 = ω) = lim
n→∞

P
(
Gst
n ∩K = ∅, n > TK(ω)

)

because G0 is independent of (Gst
0 , TK(ω)). Since the sequence of events {ω : 1 >

TK(ω)} ⊆ {ω : 2 > TK(ω)} ⊆ . . . increases to Ω, we obtain

lim
n→∞

P (Gn ∩K = ∅|G0 = ω) = lim
n→∞

P
(
Gst
n ∩K = ∅

)
= P

(
Gst

0 ∩K = ∅
)
.

Thus, recalling that the distribution of a random closed set X ⊆ Rd (including
a locally finite point process) is uniquely characterized by the void probabilities
P(X ∩ K = ∅) for all compact sets K ⊂ Rd, we have verified that conditional
on G0 = ω, the chain G1, G2 . . . converges in distribution towards Π. In turn, this
implies uniqueness of the invariant distribution Π.

In Theorem 4.2, under mild conditions, we can take Ω = N . For instance, this
is easily seen to be the case if there exists ε > 0 so that f(x) > 0 whenever ‖x‖ ≤ ε.
In the special case c = 0, Π is just a stationary Poisson process, and so Ω = N .
Moreover, the integral

γ :=

∫
(gG − 1)
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is a rough measure of the amount of positive/negative association between the points
in Gst

n . Note that comparing γ with the corresponding measure for another stationary
point process makes only sense if the processes have equal intensities, see Lavancier
et al. (2015). Under the assumptions in both Theorem 3.3 and 4.2, by (4.6),

γ =
c(βp)2

ρG {1− (βp)2} +
bρ2Z

ρ2G {1− (βp)2} =
1

1 + βp

{
c(βp)2

ρZ
+ b(1− βp)

}

which does not depend on f or fZ . Furthermore, γ may take any positive value and
some negative values depending on how we choose the parameter (β, ν, p, b, ρZ). This
means we may have an equilibrium distribution exhibiting any degree of clustering
or some degree of regularity. In fact, γ can only be negative when b is negative, e.g
when Zn is a determinantal point process. In this case b has a lower bound, bmin, that
ensures the existence of the determinantal point process (Lavancier et al., 2015) and
consequently, γ ≥ bmin. The case γ = bmin happens exactly when βp = 0 (i.e. when
no points are retained from the previous generation process) and thus Gn = Zn is a
determinantal point process.

For approximate simulation of Gst
0 under each of the three models of the noise

processes, we use the algorithm described in Appendix C. Simulation was initially
done with parameters and set-up corresponding to that of Figure 3. However, the
resulting point patterns were not distinguishable from a stationary Poisson process
when comparing empirical estimates of the PCF, L-function, or J-function of the
simulations to 95% global rank envelopes under each model (for definition of L- and
J-functions, see e.g. Møller and Waagepetersen (2004), and for the envelopes, see
Myllymäki et al. (2016)). Therefore, in order to better distinguish the three models,
we consider two cases as follows.

Case 1:
This case is based on minimizing γ under determinantal noise and on max-
imizing γ under weighted permanental noise. Let d = 2, f ∼ Nd(σ

2), with
σ = 0.1, fZ ∼ Nd(κ

2/8), ρG = 100, p = 1, β = 0.3, and consequently ρZ = 70.

• In case of determinantal noise: Let κ = 1/
√
ρZπ (the most repulsive

Gaussian determinantal point process) and the number of points in a
cluster be Bernoulli distributed with parameter β, implying c = 0 (each
point has at most one offspring). Then γ ≈ −5.38× 10−3.
• In case of Poisson noise: Let the number of points in a cluster be Poisson

distributed with intensity β, implying c = 1. Then γ ≈ 9.89× 10−4.
• In case of weighted permanental noise: Let κ = 1 and the number of

points in a cluster be negative binomially distributed with probability of
success equal to 0.12 and dispersion parameter equal to 0.11, implying
c = 10. Then γ ≈ 3.39.

Case 2:
This case is such that the clusters are more separated. Let d = 2, f ∼ Nd(σ

2),
with σ = 0.01, fZ ∼ Nd(κ

2/8), ρG = 100, p = 1, β = 0.95, and consequently
ρZ = 5. Also, let the number of points in a cluster be negative binomially
distributed with probability of success equal to 0.208 and dispersion parameter
equal to 0.25, implying c = 5.
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• In case of determinantal noise: Let κ = 1/
√
ρZπ. Then γ ≈ 0.463.

• In case of Poisson noise: γ ≈ 0.463.
• In case of weighted permanental noise: Let κ = 1. Then γ ≈ 0.624.

Figure 4 shows simulations of Gst
0 under each of the three models of the noise pro-

cesses (left to right) in Case 1 and 2 (top and bottom). Based on these simulations,
Figure 5 shows empirical estimates of functional summary statistics based on the
simulated point patterns from Figure 4 along with 95% global rank envelopes based
on 2499 simulations (as recommended in Myllymäki et al. (2016)) of a stationary
Poisson process with the same intensity as used in Figure 4. The first simulated
point pattern of Case 1 looks slightly less clustered than the second, whilst the last
looks more clustered. This is in accordance with the values of γ and the correspond-
ing functional summary statistics in Figure 5. Additionally, Figure 5 reveals that
the case of Poisson noise is not distinguishable from the stationary Poisson process,
while the case of weighted permanental noise is more clustered. The case of determi-
nantal noise is not distinguishable from the stationary Poisson process by the PCF
or L-function, but is shown to be more regular by the J-function. In Case 2, the clus-
ters of the point pattern simulated under determinantal noise looks more separated
than the clusters of the point pattern simulated under Poisson noise. The clusters of
the point pattern simulated under weighted permanental noise are clustered to such
a degree that it gives the illusion of few highly separated clusters. All three models
of Case 2 are as expected significantly different from the stationary Poisson process.
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Figure 4: Simulations of Gst
0 restricted to a unit square when the noise processes are either

determinantal (left panel), Poisson (middle panel), or weighted permanental (right panel)
point processes, with parameters as specified in the text. The rows corresponds to Case 1
and 2, respectively.
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Figure 5: Empirical PCFs, L-functions, and J-functions (left to right) based on the sim-
ulations of Gst

0 from Figure 4 when the noise processes are either determinantal (dashed),
Poisson (solid), or weighted permanental (dotted). The rows corresponds to Case 1 and 2,
respectively. The grey regions are 95% global rank envelopes based on 2499 simulations of
a stationary Poisson process with the same intensity as Gst

0 .
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A Weighted determinantal and permanental point
processes

When defining stationary weighted determinantal/permanental point processes, the
main ingredients are a symmetric function C : Rd 7→ R and a real number α. Before
giving the definitions of these point processes we recall the following.

For a real n× n matrix A with (i, j)-th entry ai,j, the α-weighted permanent of
A is defined by

perα(A) =
∑

σ

α#σa1,σ1 · · · an,σn

where σ denotes a permutation of {1, . . . , n} and #σ is the number of its cycles.
This is the usual permanent of A if α = 1. Moreover, the α-weighted determinant
of A is given by

det
α

(A) = per−α(−A).

This is the usual determinant of A if α = −1. Often we just write perαA for perα(A),
and detαA for detα(A).

For any G1, . . . , Gn ∈ Rd, the n × n matrix with (i, j)-th entry C(Gi − Gj) is
denoted by [C](G1, . . . , Gn). Thus

perα[C](G1, . . . , Gn) =
∑

σ

α#σC(G1 −Gσ1) · · ·C(Gn −Gσn).

Note that the weighted permanent/determinant can be negative if the mapping
Rd × Rd 3 (u, v) 7→ C(u − v) is not positive semi-definite. When this mapping is
positive semi-definite, C is an auto-covariance function, with corresponding auto-
correlation function R(x) = C(x)/C(0) provided C(0) > 0.

A locally finite point process X ⊂ Rd has n-th order joint intensity ρ
(n)
X for

n = 1, 2, . . . if for any bounded and pairwise disjoint Borel sets A1, . . . , An ⊂ Rd,

E [N(A1) · · ·N(An)] =

∫

A1

∫

An

ρ
(n)
X (G1, . . . , Gn) dG1 · · · dGn <∞.

Note that ρ(n)X is unique except for a Lebesgue nullset in Rdn (we ignore nullsets in
the following). Thus, if X is stationary, ρ(1)X is constant and agrees with the intensity
ρX , and ρX > 0 implies that gX(u− v) = ρ

(2)
X (u, v)/ρ2X is the PCF.

If for all n = 1, 2, . . ., the n-th order joint intensity exists and is given by

ρ
(n)
X (G1, . . . , Gn) = perα[C](G1, . . . , Gn)

we say that X is a stationary α-weighted permanental point process with kernel C
and write X ∼ PPPα(C). Conditions are need to ensure the existence of PPPα(C),
see Shirai and Takahashi (2003) and McCullagh and Møller (2006). To exclude the
trivial case where X is empty we assume αC(0) > 0. Note that C must be an
auto-covariance function and α > 0 because ρX = αC(0) and

gX(x)− 1 = R(x)2/α. (A.1)
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This reflects that the process exhibits a positive association between its points. In
fact, if C is an auto-covariance function and k = 2α is a positive integer, then X ∼
PPPα(C) exists and it is a Cox process: Conditional on IID zero-mean stationary
Gaussian processes Φ1, . . . ,Φk on Rd with auto-covariance function C/2, we can let
X be a Poisson process with intensity function Λ(x) = Φ1(x)2+ · · ·+Φk(x)2, x ∈ Rd.
In particular, if α = 1, then X is the boson process introduced by Macchi (1975).

If for all n = 1, 2, . . ., the n-th order joint intensity exists and is given by

ρ
(n)
X (G1, . . . , Gn) = detα[C](G1, . . . , Gn)

we say that X is a stationary α-weighted determinantal point process with kernel C
and write X ∼ DPPα(C). To exclude the trivial case where X is empty we assume
αC(0) > 0. Again C needs to be an auto-covariance function and α > 0 because
ρX = αC(0) and

gX(x)− 1 = −R(x)2/α. (A.2)

If α = 1, then X is the fermion process introduced by Macchi (1975) (it is usually
called the determinantal point process). We have the following existence result: If
C is continuous and square integrable, existence of X ∼ DPP1(C) is equivalent to
that the Fourier transform of C is bounded by 0 and 1 (Lavancier et al. (2015)).
When α is a positive integer, X ∼ DPPα(C) can be identified with the superposition
G1 ∪ · · · ∪Gα of independent processes Gi ∼ DPPα(C/α), i = 1, . . . , α. In general,
the process is not well-defined if 0 < α < 1, cf. McCullagh and Møller (2006).

B The intensity and PCF of the invariant
distribution

Let the situation be as in Theorem 4.2. Below we verify (4.2) and (4.6).
Note that the Gn are identically distributed and Gst

0 = W st
0 ∪ Z0 where W st

0 =⋃∞
m=1

⋃
x∈Z−m

W0,x, cf. (4.7). Hence, for Borel sets A ⊆ Rd with |A| <∞,

E{#(W st
0 ∩ A)} =

∫
ρZ

{ ∞∑

m=1

∫

A

(βp)mf ∗m(y − x) dy

}
dx

= |A|
∞∑

m=1

ρZ(βp)m = |A|ρZ
βp

1− βp

(B.1)

using Fubini’s theorem in the second identity, so W st
0 has intensity

ρW = ρZ
βp

1− βp (B.2)

whereby it follows that Gst
0 has intensity ρG as given by (4.2).

Let A1, A2 ⊆ Rd be disjoint Borel sets with |Ai| < ∞, i = 1, 2. Using similar
arguments as in (B.1) and exploiting the fact that Z0, Z−1, . . . are IID point processes
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with a PCF of the form gZ = 1 + bfZ ∗ f̃Z as well as the independence between Z0

and W st
0 , we obtain

E{#(Gst
0 ∩ A1)#(Gst

0 ∩ A2)}

= ρ2Z |A1||A2|+ ρ2Z

∫

A1

∫

A2

bfZ ∗ f̃Z(x1 − x2) dx1 dx2 + 2ρZρW |A1||A2| (B.3)

+
∞∑

m1=1

∞∑

m2=1:m1 6=m2

ρ2Z(βp)m1+m2|A1||A2| (B.4)

+
∞∑

m=1

ρ2Z(βp)2m|A1||A2|

+
∞∑

m=1

ρ2Z(βp)2m
∫

A1

∫

A2

fZ ∗ f̃Z ∗ f ∗m ∗ f̃ ∗m(y1 − y2) dy1 dy2

(B.5)

+
∞∑

m=1

E

{ ∑

x∈Z−m

#(W0,x ∩ A1)#(W0,x ∩ A2)

}
(B.6)

Here, the first two term of (B.3) corresponds to pairs of points from Z0 with one
point falling in A1 and the other in A2, the second term corresponds to pairs of
points either from Z0 ∩ A1 and W st

0 ∩ A2 or from Z0 ∩ A2 and W st
0 ∩ A1. Moreover,

the term in (B.4) corresponds to pairs of points, with one point falling in A1 and the
other in A2 of two families initiated by ancestors from different generations, while the
term in (B.5) corresponds to such pairs of points in two different families initiated
by ancestors from the same generation, and finally the term in (B.6) corresponds to
pairs of points from the same family, falling in A1 and A2, respectively. Using (4.3)
and (B.2), we observe that (B.3)–(B.5) simplify to

ρ2G +
∞∑

m=0

ρ2Z(βp)2m
∫

A1

∫

A2

fZ ∗ f̃Z ∗ f ∗m ∗ f̃ ∗m(y1 − y2) dy1 dy2,

whilst the term in (B.6) is equal to

∞∑

m=1

∫
ρZ

m−1∑

i=0

∫
(βp)if ∗i(y − x)cβ2p2

·
∫

A1

∫

A2

(βp)2(m−1−i)f ∗(m−i)(y1 − y)f ∗(m−i)(y2 − y) dy1 dy2 dy dx

(B.7)

where y corresponds to a i-th generation point in the family initiated by x ∈ Z−m,
and where cβ2p2 is the expected number of pairs of points y1 and y2 which are
(m−1− i)-th generation points of that ancestor. By Fubini’s theorem, (B.7) reduces
to

ρZc
∞∑

m=1

m−1∑

i=0

(βp)2m−i
∫

A1

∫

A2

f ∗(m−i) ∗ f̃ ∗(m−i)(y1 − y2) dy1 dy2

= ρGc
∞∑

k=1

(βp)2k
∫

A1

∫

A2

f ∗k ∗ f̃ ∗k(y1 − y2) dy1 dy2
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where (4.3) has been used. Combining these results we finally see that Gst
0 has PCF

gG as given by (4.6).

C Simulating the limiting process

This appendix presents an approximate simulation procedure for simulating Gst
0 on

a bounded region R ⊂ Rd. It is available in R through the package icpp, which can
be obtained at https://github.com/adchSTATS/icpp. The implementation utilizes
existing functions from the packages spatstat and RandomFields to simulate the
noise process.

We make the following assumptions. Let the situation be as in Theorem 4.2 and
let f ∼ Nd(σ

2) with σ > 0. Also, without loss of generality, assume no thinning (i.e.
p = 1). Let R⊕r = {ξ ∈ Rd : b(ξ, r) ∩ R 6= ∅} where b(ξ, r) is a closed ball with
centre ξ and radius r ≥ 0. Denote n the number of iterations in our approximate
simulation algorithm, that is, −n is the starting time when ignoring what happens
previously. Note that

√
nσ is the standard deviation of the nth convolution power

of f . To account for edge effects, let r = 4
√
nσ where 4 is an arbitrary non-negative

value ensuring that a point of Gst
−n \R⊕r would generate a nth generation offspring

in R with very low probability, at most 1/15787. In the approximate simulation
procedure, we ignore those points of Gst

0 ∩R which are generated by an ith generation
ancestor x when i < −n or both −n ≤ i < 0 and x 6∈ R⊕4√−iσ. This is our algorithm
in pseudocode where “parallel-for” means a parallel for loop:

parallel-for i = −n to 0 do
simulate Z ′i := Zi ∩R⊕4√−iσ

end parallel-for
set O := Z ′−n
if n 6= 0 then

for i = −(n− 1) to 0 do
parallel-for x ∈ O do

simulate the 1st generation offspring process, Ox, with parent x
end parallel-for
set O := Z ′i

⋃(⋃
x∈O Ox ∩R⊕4√−iσ

)

end for
end if
return O

Note that ρZ
∑n

i=0(βp)
i is the intensity of the stationary point process obtained

by ignoring those points of Gst
0 which are generated by an ith generation ances-

tor with i < −n. We base the choice of n on this fact by considering a precision
parameter ε > 0 and letting

n = sup

{
m ∈ {1, 2, . . .} :

∥∥∥ρZ
m∑

i=0

(βp)i − ρG
∥∥∥ ≤ ε

}
.
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To exemplify, let ρG = 100 and βp = 0.8 implying that ρZ = 20, and let ε =
2.22× 10−16, then n = 159. If instead βp = 0.99, then n = 3609.
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