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Abstract

Gaussian process (GP) regression is a powerful tool in non-parametric regres-
sion providing uncertainty estimates. However, it is limited to data in vector
spaces. In fields such as shape analysis and diffusion tensor imaging, the data
often lies on a manifold, making GP regression non-viable, as the resulting
predictive distribution does not live in the correct geometric space. We tackle
the problem by defining wrapped Gaussian processes (WGPs) on Riemannian
manifolds, using the probabilistic setting to generalize GP regression to the
context of manifold-valued targets. The method is validated empirically on dif-
fusion tensor imaging (DTI) data and in the Kendall shape space, endorsing
WGP regression as an efficient and flexible tool for manifold-valued regression.

1 Introduction

Regressing curves when the training data {(xi, yi)}Ni=1 is Euclidean is well studied.
When yi are manifold-valued, on the other hand, poses difficulties, due to the lack
of the vector space structure. Applying Euclidean statistical methods to manifold-
valued data does not respect the intrinsic structure, hence the product of inference
might not represent the same object category anymore. For example, see Fig. 1,
where not all the points on the linearly regressed curve live on the disc anymore.

Sometimes the data observed is inherently uncertain. In this case, it is favorable
to estimate a distribution over possible regressed functions, which is what Gaussian
process (GP) regression achieves, yielding uncertainty estimates of the resulting in-
ference in a tractable manner. Furthermore, GP regression is an example of Bayesian
inference, where it is possible to incorporate prior knowledge to aid the inference.
These qualitative properties are the main motivation for us to consider a general-
ization of GP regression to Riemannian manifolds.

Related work: Fletcher [5] generalized linear regression to handle manifold-valued
data with one dimensional Euclidean covariates by geodesic regression. Geodesic
regression was then extended to include multiple dimensional covariates [11, 18].
Furthermore, [18] considered a kriging (GP regression) method, that takes advan-
tage of the multivariate geodesic regression model to form a reference coordinate
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Figure 1: Why geometrically intrinsic regression is important. Imagine your data
points (black dots) lie on the grey disc. The blue line is the result of carrying out linear
regression viewing the data points as elements in a Euclidean space. This clearly escapes
the natural geometric space the data objects lie in. Therefore intrinsic geodesic regression
(red curve) should be considered.

system, which is used to compute residuals of the manifold-valued data points. Reg-
ular GP regression is then applied on the residuals and the result is mapped back
onto the manifold. The procedure, however, depends heavily on the localization of
the problem to a single tangent space, and does not offer an intrinsic probabilistic
interpretation.

This paper extends the aforementioned work by allowing kriging that is not
localized to a single tangent space, also providing a probabilistic framework of-
fering interpretability. Furthermore, the kriging method in [18] took advantage of
the geodesic submanifold regression to initialize a reference coordinate system. Our
method, instead, enables the user to take advantage of more general priors, including
the use of geodesic submanifold regression.

Other examples of work on regression on manifolds with Euclidean indepen-
dent variables include kernel-based approaches [2, 3], generalized polynomial regres-
sion [8], and regression model that is stochastically developed onto the manifold [12].
Steinke and Hein [23] consider the problem of approximating a function between
manifolds via minimizing regularized empirical risk. In this setting, also the inde-
pendent variables are manifold-valued. The WGP regression proposed in this paper
can be extended to this setting, as long as a kernel can be defined on the domain.

The contribution can be summarized as follows: We generalize GPs to Rie-
mannian manifolds as wrapped Gaussian procesess (WGPs), and provide a novel
framework for non-parametric regression with uncertainty estimates using WGP re-
gression. We demonstrate the methond in Section 5 on a toy-example on a 2-sphere,
in the context of diffusion tensor imaging (DTI), and on a data set of Corpus Callo-
sum shapes. The method is analytically tractable for manifolds with infinite injec-
tivity radius, such as manifolds with non-positive curvature. Otherwise, we suggest
the approximation in Remark 2. Computationally, the method is relatively cheap,
as the only addition compared to GP regression is the computation of exponential
and logarithmic maps.
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2 Preliminaries

We briefly summarize the mathematical prerequisities needed. First, we recall how
GPs are used in non-parametric regression in the Euclidean case, after which we turn
to basic concepts in Riemannian geometry and briefly discuss geodesic submanifold
regression.

2.1 Gaussian process regression

Denote by N (µ,Σ) the multivariate Gaussian distribution with mean vector µ ∈ Rn

and covariance matrix Σ ∈ Rn×n, and write the probability density function p as
p(v) = N (v | µ,Σ) for v ∈ Rn.

A Gaussian process (GP) [19] is a collection f of random variables, such that any
finite subcollection (f(ωi))

N
i=1 has a joint Gaussian distribution, where ωi ∈ Ω ⊂ Rl,

and Ω is the index set. A GP is entirely characterized by the pair

m(ω) = E[f(ω)], (2.1)
k(ω, ω′) = E[(f(ω)−m(ω))(f(ω′)−m(ω′))T ], (2.2)

where m and k are called the mean function and covariance function, respectively.
We denote such a GP by f ∼ GP(m, k). It follows from the definition that the
covariance function (kernel) k is symmetric and positive semidefinite.

Let D = {(xi, yi) | xi ∈ x ⊂ Rl, yi ∈ y ⊂ Rn} be the training data. The GP
predictive distribution for outputs y∗ at the test inputs x∗, given in vector form, is

p(y∗ |D,x∗) = N (µ∗,Σ∗), (2.3)
µ∗ = kT∗ (k +Kerr)

−1y, (2.4)
Σ∗ = k∗∗ − kT∗ (k +Kerr)

−1k∗, (2.5)

where, given a kernel k : R×R→ R we use the notation k = k(x,x), k∗ = k(x,x∗),
k∗∗ = k(x∗,x∗) and Kerr is the measurement error variance. In the notation above,
the function and k is applied elementwise on the vectors x,x∗.

Typically in model selection, the kernel k is picked from a parametric family {kθ |
θ ∈ Θ} of covariance functions, such as the radial basis function (RBF) kernels

kσ2,λ(x, y) = σ2 exp

(
−‖x− y‖

2

2λ

)
, σ2, λ > 0, (2.6)

choosing the parameters (σ2, λ) so that the marginal likelihood P{y | (σ2, λ)} is
maximized.

2.2 Riemannian geometry

To fix notation, we briefly present the essentials of Riemannian geometry. For a
thorough presentation, see [4]. A Riemannian manifold is a smooth manifold M
with a smoothly varying inner product gp(·, ·) (we will often use the notation 〈·, ·〉p)
on the tangent space TpM at each p ∈ M , called a Riemannian metric, inducing
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the distance function d between points on theM . Each element (p, v) in the tangent
bundle TM =

⋃
p∈M (p× TpM) defines a geodesic γ (a curve locally minimizing

distance between two points) on M , so that γ(0) = p and d
dt
γ(t)|t=0 = v. The

exponential map Exp : TM → M given by (p, v) 7→ Expp(v) = γ(1), where γ is the
geodesic corresponding to (p, v). The exponential map Expp at p is a diffeomorphism
between a neighborhood 0 ∈ U ⊂ TpM and neighbourhood p ∈ V ⊂ M , which is
chosen in a maximal way, so if V ( V ′, then a diffeomorphism between V ′ and a
neighborhood in the tangent space cannot be defined anymore. We also call V the
area of injectivity.

We can define the inverse map Logp : V → TpM , characterized by Expp(Logp(p
′))

= p′. Outside of V , we use Logp(p
′) to denote a smallest v ∈ TpM chosen in a

measurable, consistent way. We call the the minimun distance from p to the boundary
of a maximal V the injectivity radius of Expp and the complement of V in M the
cut-locus at p denoted by Cp. The manifolds with non-positive curvature form an
important class of manifolds with infinite injectivity radius, that is, they have an
empty cut-locus Cp for every p ∈M .

Let Mi be Riemannian manifolds with metrics gi, exponential maps Expi and
logarithmic maps Logi for i = 1, 2. Then M = M1 ×M2 turns into a Riemannian
manifold when endowed with the metric g = g1 + g2, which has the component-wise
computed exponential map Exp(p1,p2)

(
(v1, v2)

)
=
(
Exp1

p1
(v1),Exp2

p2
(v2)

)
, akin to the

logarithmic map Log on the product manifold.

2.2.1 Probabilistic notions

Let X be a random point on a Riemannian manifold M , the set

E[X] :=
{
p
∣∣ p ∈ arg min

q∈M
(E[d(q,X)2])

}
. (2.7)

is called the Fréchet means of X. If there is a unique mean p̄, then by abuse of
notation we write E[X] = p̄. Given a data set p = {pi ∈ M}Ni=1, an empirical
Fréchet mean is a minimizer of the quantity

min
q∈M

N∑

i=1

d(q, pi)
2. (2.8)

The set of empirical Fréchet means is denoted by E[p].
Given two probability spaces (Xi,Si, νi) for i = 1, 2 and a measurable map F :

X1 → X2, we say that the measure ν2 is the push-forward of the measure ν1 with
respect to F , if ν2(A) = ν1(F−1(A)) for every A in the sigma-algebra S2. We denote
this by ν2 = F#ν1.

For more about intrinsic statistics on manifolds, see [16].

2.2.2 Geodesic submanifold regression

Geodesic regression on a Riemannian manifold M was introduced by Fletcher [5].
It is a generalization of linear regression, that seeks the geodesic parametrized by
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(p, v) ∈ TM that minimizes the quantity

E(p, v) =
1

2

N∑

i=1

d(Expp(tiv), pi)
2, (2.9)

given the training data (ti, pi) ∈ R×M for i = 1, . . . , N .
This framework has been generalized to deal with more covariates [11]; assume

we are given data (xi, pi) ∈ Rl×M for i = 1, . . . , N . Then, we want to solve for the
submanifold γ parametrized by (p, v1, . . . , vl) that minimizes

E(p, v1, . . . , vl) =
1

2

N∑

i=1

d
(
Expp

( l∑

j=1

xi(j)vj

)
, pi
)2
. (2.10)

This is analogous to fitting a hyperplane in the Euclidean case. Another general-
ization for multiple independent variables was carried out in [18]. Later on in this
work, we propose a way to construct priors for the GP regression on manifolds by
regressing a geodesic model.

Tangent space geodesic regression is a Naïve generalization of linear regression,
achieved by linearizing the space by picking p ∈ M , transforming the data set
(xi, pi) ∈ Rl ×M for i = 1, . . . , N into images of the Riemannian logarithmic map
at p. Then, one can carry out linear regression in the tangent space and map the
result onto the manifold using the exponential map, yielding a quick approximation
of geodesic submanifold regression.

3 Wrapped Gaussian processes

We are now ready to introduce wrapped Gaussian distributions (WGDs), computing
the conditional distribution of two jointly WGD random points on the manifold. This
is an essential part of wrapped Gaussian process (WGP) regression on manifolds
introduced in the next chapter, alike in the Euclidean case. In this chapter we also
introduce WGPs in a formal way, without studying their properties further.

3.1 Wrapped Gaussian distributions

Wrapped Gaussian distributions (WGDs) originated in directional statistics [13].
There exist multiple different ways of generalizing Gaussian distributions to mani-
folds. For example, Sommer [21] uses an instrinsic, anisotropic diffusion process for
the generalization. Pennec [15], on the other hand, generalizes the Gaussian as the
distribution maximizing entropy with a fixed mean and covariance. WGDs rely on
linearizing the manifold through a wrapping function, in our case the Riemannian
exponential map.

Let (M,d) be an n-dimensional Riemannian manifold. We say that a random
point X on M follows a wrapped Gaussian distribution (WGD), if for some µ ∈ M
and symmetric positive definite matrix K ∈ Rn×n

X ∼
(
Expµ

)
#

(N (0, K)) , (3.1)
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denoted by X ∼ NM(µ,K). To sample from this distribution, draw v from N (0, K)
and map the sample to the manifold by Expµ(v). Now, define the basepoint and
tangent space covariance of X as

µNM (X) := µ, CovNM (X) := K. (3.2)

In the case of infinite injectivity radius µNM (X) ∈ E[X], but not in general [14,
Prop. 2.11]. The random points Xi ∼ NMi

(µi, Ki), i = 1, 2, are jointly WGD, if the
random point (X1, X2) on M1 ×M2 is WGD, that is,

(X1, X2) ∼ NM1×M2

((
µ1

µ2

)
,

(
K1 K12

K21 K2

))
, (3.3)

for some matrix K12 = KT
21.

We now compute the conditional distribution of two jointly WGD random points,
which is the core of WGP regression in Section 4.

Theorem 1. Assume X1, X2 are jointly WGD as in (3.3), then we have the condi-
tional distribution

X1 | (X2 = p2) ∼ (Expµ1)#

(∑

v∈A
λvN (µv, Kv)

)
, (3.4)

where
µv = K12K

−1
2 v,

Kv = K1 −K12K
−1
2 KT

12,

λv =
N (v | 0, K2)

P{A} ,

A = {v ∈ Tµ2M | Expµ2(v) = p2},
P{A} =

∑

v∈A
N (v | 0, K2).

(3.5)

Proof. Pick p1 ∈ M . Let B = Exp−1
µ1

(p1) be the preimage of p1 in Tµ1M , similarly
A = Exp−1

µ2
(p2) as above for p2, and furthermore K be the tangent space covariance

of (X1, X2) given in (3.3), then

P{X1 = p1 | (X2 = p2)}

=
P{u ∈ B, v ∈ A}

P{v ∈ A}

=
∑

v∈A,u∈B

N (v | 0, K2)

P{A}
N
(
(u, v) | 0, K

)

N (v | 0, K2)

=
∑

v∈A,u∈B
λvN (u | µv, Kv)

= P{Z = p1},

(3.6)

where Z ∼ (Expµ1)#

(∑
v∈A λvN (µv, Kv)

)
, and N (u | µv, Kv) is the predictive dis-

tribution calculated as in the Euclidean case in (2.3).
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Remark 2. If the injectivity radius of the exponential map is infinite, then

X1 | (X2 = p2)

∼ (Expµ1)#

(
N (µLogµ2 (p2), KLogµ2 (p2))

)
,

(3.7)

following the notation in (3.5). Furthermore, if the probability mass on the area of
injectivity of the exponential map is large enough, we can use this expression as a
reasonable approximation for the predictive distribution, as the Gaussian mixture
distribution in the tangent space can be well approximated by a single Gaussian.

3.2 Wrapped Gaussian processes

A collection f of random points on a manifold M indexed over a set Ω is a wrapped
Gaussian process (WGP), if every finite subcollection (f(ωi))

N
i=1 is jointly WGD

on MN . We define
m(ω) := µNM (f(ω)) (3.8)

k(ω, ω′) := CovNM (f(ω), f(ω′)), (3.9)

called the basepoint function (BPF) and tangent space covariance function (TSCF)
of f , respectively. The restriction we have on Ω, is being able to define a kernel on it.

A WGP f can be viewed as a WGD on the possibly infinite-dimensional product
manifold M |Ω|. To elaborate, formally one can state

f ∼ (Expm)#

(
GP(0, k)

)
. (3.10)

The difference is, that the tangent space distribution is a GP instead of a GD. The
WGP is entirely characterized by the pair (m, k), similar to the Euclidean case.
Therefore, we introduce the notation f ∼ GPM(m, k).

4 Gaussian process inference on manifolds

In the following, we discuss two different methods of GP regression on a Riemannian
manifoldM with infinite injectivity radius (or using the approximation in Remark 2),
given the noise-free training data

DM = {(xi, pi) | xi ∈ Rl, pi ∈M, i = 1, . . . , N}. (4.1)

For shorthand notation, we denote x = (xi)
N
i=1 and p = (pi)

N
i=1. Additionally, x∗ is

used for the test inputs, and p∗ for the test outputs. Later, we remark that the first
approach is actually a special case of the latter one, see Fig. 2.

4.1 Naïve tangent space approach

Choose p ∈M (typically p ∈ E[p]), and transfrom the training data DM into DTpM

by
DTpM = (x,y) := {(xi, yi) | yi = Logp(pi)}, (4.2)
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Figure 2: a) Tangent space GP data transformation. Data point pi (in black) is trans-
formed into Logp(pi) ∈ TpM . This can be seen as a special case of WGP regression, with a
fixed prior BPF m(x) = p. In b), the data transformation is visualized with a more general
prior BPF m (black curve).
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see Fig. 2 a). As DTpM ⊂ Rl × TpM now lives in a Euclidean space, fit a GP
feuc ∼ GP(meuc, keuc) to the data using GP regression, resulting in the predictive
distribution y∗ | y ∼ N (µ∗,Σ∗). Then, reversing the previous data transformation,
we can map the random vector to a random point p∗ |p on the manifoldM , resulting
in

p∗ | p = Expp(y∗) ∼ (Expp)#

(
N (µ∗,Σ∗)

)
. (4.3)

4.2 Wrapped Gaussian process regression

Now we generalize GP regression inside a probabilistic framework, relying on the
results presented in Section 3 , by assuming a WGP prior fprior ∼ GPM(m, k).
According to the prior, the joint distribution between the training outputs p and
test outputs p∗ at x∗ is given by

(
p∗
p

)
∼ NM1×M2

((
m∗
m

)
,

(
k∗∗ k∗
kT∗ k

))
, (4.4)

where m = m(x), m∗ = m(x∗), k = k(x,x), k∗ = k(x∗,x), and k∗∗ = k(x∗,x∗).
Therefore, by Theorem 1 and using the approximation in Remark 2 (if necessary)

p∗ | p ∼ (Expm∗)#

(
N (µ∗,Σ∗)

)
,

µ∗ = k∗k
−1Logmp,

Σ∗ = k∗∗ − k∗k−1kT∗ .

(4.5)

The predictive distribution p∗ | p is not necessarily WGD, as µ∗ might be non-
zero. The distribution can be sampled from, but computing exactly quantities such
as E[p∗ |p] is not trivial. As in [7, Sect. 3.1.1], the distribution can be approximated
via Riemannian unscented transform or by using a WGD with the basepoint at
Expm∗(µ∗) and parallel transporting the tangent space covariance to this point
along the geodesic γ(t) = Expm∗(tµ∗).

Remark 3. Expm∗(µ∗) is not necessarily a Fréchet mean of p∗ | p. However, it is
the maximum a posteriori (MAP) estimate. For this reason, we will use Expm∗(µ∗)
as a point prediction in Section 5.

4.2.1 Choosing a prior

The prior WGP fprior ∼ GPM(m, k) indexed over Ω is chosen by picking a kernel k
on Ω to be the TSCF, and picking a BPF m so that p and m(xi) live in the same
connected component of M for every data-point (xi, pi).

In Section 5, two kinds of prior BPFs are used. The first BPF m1 is a generaliza-
tion of a centered GP, given by m1(ω) = p̄, for all x ∈ Ω and a p̄ ∈ E[p]. The second
kind m2, uses a previous regression (such as geodesic submanifold regression) γ on
the dataset DM . That is, m2(ω) = γ(ω) for all ω ∈ Ω. For computational reasons,
we only consider TSCFs that assume each tangent space coordinate independent,
resulting in the diagonal RBF kernel

k(x,x′) = diag
(
k1(x,x′), k2(x,x′), . . . , kn(x,x′)

)
, (4.6)
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where each ki are chosen to be RBF kernels, diag(A,B) is a block-diagonal ma-
trix with blocks A and B, x,x′ ⊂ Ω, and n is the dimension of M . The diagonal
RBF yields uncertainty estimates, but not a generative model, as this would need
covariance between coordinates.

Optimizing hyperparameters. We choose the TSCF from a parametric family
of kernels {kθ}θ∈Θ maximizing the marginal likelihood, as in the Euclidean case. In
the setting of WGPs, the marginal likelihood becomes

P{p | θ} =
∑

v∈Exp−1
m (p)

N (v | 0, Kθ), (4.7)

where Kθ = kθ(x,x). To improve the approximation discussed in Remark 2, we
propose to maximize the quantity

P{p | θ} ≈ N (Logm(y) | 0, Kθ), (4.8)

as maximizing this quantity increases the probability mass given by the prior dis-
tribution to the area of injectivity. The diagonal RBF kernel (Eq. (4.6)) can be
optimized by choosing each ki to maximize the marginal likelihood of the respec-
tive tangent space coordinate independently. That is, ki is chosen to maximize the
marginal likelihood of the data set {(xj, πi(Logm(xj)

(pj)))}Nj=1, where πi is the pro-
jection onto the ith component.

A part of engineering the kernel is to pick a frame for the manifold. A frame is a
smooth map ρ : M → Rn×n, so that the columns of ρ(p) form an orthonormal basis
for TpM . This way, there is a relation between tangent vectors in different tangent
spaces, and so the covariance becomes meaningful.

The WGP regression process is summarized in Alg. 4.

Algorithm 4 (WGP regression.). The following describes step-by-step how to carry
out WGP regression.

Input Manifold-valued training data DM = {(xi, pi)}ni=1.

Output Predictive distribution for p∗ | p at x∗.

i. Choose a prior BPF m.

ii. Transform DTmM ← {(xi,Logm(xi)
(pi))}Ni=1.

iii. Choose a prior TSCF k from a parametric family by optimizing the hy-
perparameters.

iv. Using GP prior GP(0, k), carry out Euclidean GP regression for the
transformed data DTmM , yielding the mean and covariance (µ∗,Σ∗).

vi. End with the predictive distribution p∗ | p ∼ (Expm∗)#

(
N (µ∗,Σ∗)

)
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4.2.2 Observations with noise

A difficulty arises, when introducing a noise model on our observations. In the Eu-
clidean case, a popular noise model on the observations (xi, pi) is given by pi =
f(xi) + ε, where f is the function we approximate and ε ∼ N (0, Kerr) is the noise
term. In [5], this model is generalized to the manifold setting implicitely as

pi = Expf(xi)
(ε), (4.9)

which is also supported by the central limit theorem provided in [10]. However, this
makes the WGP analytically intractable. To allow computations, we propose the
error model Logm(xi)

(pi) = Logm(xi)
(f(xi)) + ε, that is, the error lives in the tangent

space of the prior mean at xi. This can be viewed as a first order approximation of
(4.9) around m(xi). Introduction of this error changes the regression procedure only
slighty; the joint distribution of p and p∗ changes into

(
p∗
p

)
∼ NM1×M2

((
m∗
m

)
,

(
k∗∗ k∗
kT∗ k +Kerr

))
. (4.10)

Rest of the computations are then carried out similarly, with the replacement of k
with k +Kerr everywhere.

5 Experiments

We demonstrate WGP regression in three different contexts; on a manufactured
data set on the 2-sphere, on data from a DTI slice, and finally on Corpus Callosum
shapes.

5.1 Data on 2-sphere

For an easy visualization, we show results of WGP regression on two different man-
ufactured datasets on a 2-sphere labeled by univariate independent variables, see
Fig. 3. Note, how the curves sampled from the predictive distribution given by the
WGP regression lie on the manifold, respecting the intrinsic geometry. The metric
used for the 2-sphere is the one with Euclidean inner product as the Riemannian
metric at each tangent space. As this Riemannian manifold does not have infinite
injectivity radius, we use the approximation explained in Remark 2.

In Fig. 3 a) geodesic regression γ is computed to be used as the prior BPF, and
a diagonal RBF kernel (described in Eq. (4.6)) with optimized hyperparameters is
chosen as the prior TSCF.

In Fig. 3 b), we view the independent variables to live on the 1-sphere S1, so
that samples from the predictive distribution are loops. To compute the geodesic
regression, we treat the independent variables as elements of R, not S1. The prior
TSCF is chosen to be the diagonal RBF on S1, that is, each component is of the form
k(t, t′) = σ2 exp

(
−d(t,t′)2

2λ

)
, where t, t′ ∈ S1 and d(t, t′) = min(‖t− t′‖, 2π − ‖t− t′‖).

This kernel is not positive-definite for all σ2, λ, as is implied in [7]. However, for the
data set in Fig. 3, the pairs (σ2, λ) maximizing the marginal likelihood were feasible
pairs for each coordinate. For more on periodic kernels, see [20].
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Figure 3: Depicted in a) is WGP regression using a prior BPF given by geodesic regression
(white curve) on a manufactured data set (white dots) on a 2-sphere S2. The predictive
distribution is visualized using the MAP estimate (thick black line, see Remark 3) and
multiple samples from the distribution (in gray) with three samples emphasized (in red,
green and blue). In b), a data set going all around the sphere was used, and the index set
of the prior WGP considered as S1, so that the sampled paths are closed loops.

12



Figure 4: WGP regression on DTI data. Colors depict the direction of the largest eigen-
vector of the respective tensor. First row: a) The original DTI data set, b) MAP estimate
of the predictive distribution of WGP regression on the original data set, c) relative error
in b) (white = maximum error). Second row: d) 20% of data points in a) randomly sub-
sampled to be the training set, e) MAP estimate of the predictive distribution, f) relative
error in e). Third row: g) Geodesic submanifold regression on d), h) MAP estimate of the
predictive distribution using g) as prior BPF, i) relative error in h).
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5.2 Diffusion tensor imaging data

Now, we consider a DTI coronal slice of a HCP data set [6, 22, 24], which lives on the
manifold R2×PD(3), where PD(n) is the set of positive definite matrices of dimen-
sion n. PD(n) forms a Riemannian manifold when endowed with the affine-invariant
metric [17]. The manifold has non-positive curvature, thus the WGP regression is
exact. The original data set consists of 15× 19 tensors (elements of PD(3)) sampled
isotropically, see Fig. 4 a). For another experiment, we subsample the original data
set picking only a fifth of the original data points randomly, see Fig. 4 d). Then, for
both data sets the interpolation is carried out on a 30 × 30 grid. As a measure of
uncertainty of the result, we calculate the sum of variances of each tangent space
coordinate at the interpolated points. In Figs. 4 b), e) are shown the correspond-
ing MAP estimates of the predictive distribution (see Remark 3). Empirical Fréchet
means were used as the prior BPFs and diagonal RBFs with optimized hyperparam-
eters as the prior TSCFs.

In the next experiment, the prior BPF is chosen to be the geodesic submanifold
regression on the subsampled dataset of the DTI coronal slice, see Fig. 4 g), h). The
MAP estimates in Figs. 4 e) and h) do not differ vastly, although different BPFs
were used. They yield a different result in the upper-left corner area, where the
subsampled dataset is not dense, hence the regressed result approaches the prior
BPF. In the middle, where we also lack information, the resulting tensor fields look
similar. The error structures are very similar, seen in Figs. 4 f), i). Both MAP
estimates grasp the general trend of the original tensor field, as can be seen by
comparing Figs. 4 a), b), e) and h).

5.3 Corpus Callosum data

Next, we turn to a dataset of landmark representations of Corpus Callosum (CC)
shapes [5]. A landmark representation is a set of k points in R2, so that length,
translation and rotation factors have been quotiented out, resulting in a point in the
Kendall’s shape space [9], that is equivalent to the complex projective plane CP k−1.
The dataset consists of 65 shapes, of which we pick randomly 6 to be the test set,
the rest are used for training.

Results are presented in Fig. 5. A tangent space geodesic regression is used
as the prior BPF, and a diagonal RBF kernel with optimized hyperparameters is
used as the prior TSCF. As the CC shapes vary considerably even in the same age
group, the WGP predictive mean does not yield notable gains on the tangent space
geodesic regression used as prior BPF. However, it provides uncertainty estimates
of the shape. Notably, the results imply that aging brings about wider variation in
the upper-right part of the CC.
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Figure 5: WGP regression applied to a population of Corpus Callosum shapes labeled by
age. Red shapes are data points from the test set, not used for training. In black, the MAP
estimates of the predictive distributions, in green values of the prior BPF at corresponding
ages. Drawn in blue are 20 samples from the predictive distribution.

6 Conclusion and discussion

This paper introduced WGP regression on Riemannian manifolds in a novel Bayesian
inference framework. The method relies on WGPs, defined using WGDs. The condi-
tional distribution of two jointly WGD random points was computed to be used in
WGP regression. The method was demonstrated in three cases; on toy data lying on
2-sphere, tensor data originating from DTI and on a set of Corpus Callosum shapes.
The results of the experiments imply that WGP regression can be used effectively
on Riemannian manifolds, providing meaningful uncertainty estimates.

This being the first step, there are still open questions; how to engineer prior
distributions effectively, and how to treat the predictive distribution. The predictive
distribution admits an explicit expression, but the prediction is not a WGP anymore.
Therefore, we do not have same closure properties of the family of distributions as
in the Euclidean case. This leaves open the question, whether one should consider
other generalizations of GDs than the wrapped one when carrying out GP regression
on manifolds.

We suggested an approximation in Remark 2, not quantifying how reliable it is
in the case of non-infinite injectivity radius. In practice the approximation seems
plausible (see Fig. 3), but should be studied in more detail. Furthermore, it is of
interest, in which cases the computations can be carried out analytically, when the
injectivity radius is non-infinite.

The central limit theorem presented in [10] suggests to use WGD distributed
error terms, but this poses the difficulty of incorporating the noise term into the
prior, when the noise term might live in a different tangent space. The workaround
used in this paper was to approximate this error term linearly in the tangent space
of the prior BPF, however, other models should also be considered.
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Finally, GP regression could be generalized to a broader family of spaces than
Riemannian manifolds. In WGP regression, the key is having a wrapping function
from a model vector space onto the manifold. For example, another context where
such structure appears, is the weak Riemannian structure of the space of probability
measures under the Wasserstein metric [1].
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