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Abstract

For a determinantal point processX with a kernelK whose spectrum is strictly
less than one, André Goldman has established a coupling to its reduced Palm
processXu at a point u withK(u, u) > 0 so that in distributionXu is obtained
by removing a finite number of points from X. The intensity function of the
difference X \ Xu is known, but apart from special cases the distribution of
X \Xu is unknown. Considering the restriction XS of X to any compact set
S, we establish a coupling of XS and its reduced Palm process Xu

S so that
the difference is at most one point. Specifically, we assume K restricted to
S × S is either (i) a projection or (ii) has spectrum strictly less than one. In
case of (i), we have in distribution that Xu

S is obtained by removing one point
from XS , and we can specify the distribution of this point. In case of (ii), in
distribution we obtain Xu

S either by moving one point in X or by removing
one point from XS , and to a certain extent we can describe the distribution
of these points. We discuss how Goldman’s and our results can be used for
quantifying repulsiveness in X.
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1 Introduction

Determinantal point processes (DPPs) have been of much interest over the last many
years in mathematical physics and probability theory (see e.g. Borodin and Olshanski
(2000); Hough et al. (2009); Macchi (1975); Shirai and Takahashi (2003); Soshnikov
(2000) and the references therein) and more recently in other areas, including statis-
tics Lavancier et al. (2015); Møller and Rubak (2016), machine learning Kulesza
and Taskar (2012), signal processing Deng et al. (2015), and neuroscience Snoek
et al. (2013). They are models for regularity/inhibition/repulsiveness, but there is
a trade-off between repulsiveness and intensity Lavancier et al. (2014, 2015). This
paper sheds further light on this issue by studying various couplings between a DPP
and its reduced Palm distributions.

Section 2.1.1 provides our general setting for a DPP X defined on a locally
compact Polish space Λ and specified by a so-called kernel K : Λ × Λ → C which
satisfies certain mild conditions given in Section 2.1.2. Also, for any u ∈ Λ with
K(u, u) > 0, if Xu follows the reduced Palm distribution of X at u – intuitively, this
is the conditional distribution ofX\{u} given that u ∈ X – thenXu is another DPP;
Section 2.1.3 provides further details. Furthermore, Section 2.2 discusses Goldman’s
Goldman (2000) result that if for any compact set S ⊆ Λ, denotingKS the restriction
of K to S × S, we have that the spectrum of KS is < 1, then X stochastically
dominates Xu (in the sense of Section 3.3) and hence by Strassen’s theorem there
exists a coupling so that Xu ⊆ X in distribution. The difference κu := X \Xu is a
finite point process with a known intensity function which can be used for quantifying
repulsiveness in X as discussed in Section 3.1. In particular, for a standard Ginibre
point process Ginibre (1965), which is a special case of a DPP in the complex
plane, Goldman showed that κu consists of a single point which follows NC(u, 1),
the complex Gaussian distribution with mean u and unit variance. However, apart
from this and other special cases, the distribution of κu is unknown.

Considering the restriction XS of X to any compact set S ⊆ Λ, we show in Sec-
tion 3 that more can be said: Section 3.4 concerns the case where KS is a projection
kernel of finite rank n. Then, in fact, XS consists of n points almost surely, and if
n > 0 we show there is a coupling so that Xu

S ⊂ X in distribution, where XS \Xu
S

consists of one point whose distribution can be specified. This result together with
the fact that a DPP on a compact set can be viewed as a DPP with a random
projection kernel (cf. (Hough et al., 2006, Theorem 7)) is used in Section 3.5 to
establish another kind of coupling when the spectrum of KS is strictly less than one.
In this case, it is shown that there exists a point process ξuS consisting of at most one
point and a point process ηuS consisting of one point so that Xu

S = (XS ∪ ξuS) \ ηuS in
distribution, where XS∩ξuS = ∅ almost surely. Furthermore, we specify the marginal
distributions of ξuS and ηuS, and discuss how these can be used for describing the
repulsiveness in X. If for all u ∈ Λ with K(u, u) > 0, ξuS tends in distribution to
the empty set as S increases to Λ, we call X a most repulsive DPP; both in Sec-
tion 3.4 and Section 3.5 we discuss this definition in connection to most repulsive
stationary DPPs on Rd as specified in Lavancier et al. (2015); Biscio and Lavancier
(2016). For example, if X is a Ginibre point process, we obtain a similar result as
in Goldman (2000): X is a most repulsive DPP and the point in ηuS tends in distri-
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bution to NC(u, 1) as S increases to C. Moreover, we compare with most repulsive
isotropic DPPs on Sd, the d-dimensional unit sphere in Rd+1, as studied in Møller
et al. (2018).

Some further results and all proofs of our results in Section 3 are given in Sec-
tion 4. As in Goldman (2000) we only verify the existence of the various couplings.
We leave it as open research problems, for any compact set S ⊆ Λ,

• to provide specific coupling constructions or simulation procedures for the pair
(XS, X

u
S), including the case in Goldman (2000) and the case considered in the

present paper;

• in general, i.e. not only when KS is a finite rank projection kernel, to find a
coupling so that in distribution, XS = ζSu ∪ XS

u and ζSu ∩ XS
u = ∅, where ζSu

contains a single point when XS 6= ∅;
• or even better, in general to obtain a coupling so that X = ζu ∪ Xu and
ζu ∩Xu = ∅ in distribution, where ζu contains a single point when X 6= ∅.

2 Background

This section provides the background material needed in this paper.

2.1 Setting

Below we give the definition of a DPP, specify our assumptions, and recall that the
reduced Palm distribution of a DPP is another DPP.

2.1.1 Definition of a DPP

Let X be a point process defined on a locally compact Polish space Λ equipped with
its Borel σ-algebra B and a Radon measure ν which is used as a reference measure
in the following. We assume that X is a DPP with kernel K : Λ2 7→ C, which by
definition means that X has no multiple points, so dependent on the context we
view X as a random subset of Λ or as a random counting measure. Also, if X(B)
denotes the cardinality of XB := X ∩ B for B ∈ B, then the following property
has to be satisfied: For any n = 1, 2, . . . and any mutually disjoint bounded sets
B1, . . . , Bn ∈ B,

E [X (B1) · · ·X (Bn)] =

∫

B1×···×Bn
det {K (ui, uj)}ni,j=1 dνn (u1, . . . , un)

is finite, where νn denotes the n-fold product measure of ν. This means that X has
n-th order intensity function ρ(u1, . . . , un) (also sometimes in the literature called
n-th order correlation function) given by the determinant

ρ (u1, . . . , un) = det {K (ui, uj)}ni,j=1 , u1, . . . , un ∈ Λ, (2.1)

and this function is locally integrable. In particular, ρ(u) = K(u, u) is the intensity
function of X, and XB is almost surely finite when B ∈ B is bounded.

3



In the special case where K(u, v) = 0 whenever u 6= v, the DPP X is just
a Poisson process with intensity function ρ(u) conditioned on that there are no
multiple points in X (if ν is diffuse, it is implicit that there are no multiple points).
For other examples when Λ is a countable set and ν is counting measure, see Kulesza
and Taskar (2012); when Λ = Rd and ν is Lebesgue measure, see Hough et al. (2009);
Lavancier et al. (2015); and when Λ = Sd (the d-dimensional unit sphere) and ν
is surface/Lebesgue measure, see Møller et al. (2018). Examples are also given in
Section 3.2.

2.1.2 Assumptions

We always make the following assumptions (a)–(c):

(a) K is Hermitian, that is, K(u, v) = K(v, u) for all u, v ∈ Λ;

(b) K ∈ L2(Λ2), the space of square integrable (w.r.t. ν2) complex functions de-
fined on Λ2;

(c) K is of locally trace class, that is, for any compact set S ⊆ Λ, the integral∫
S
K(u, u) dν(u) is finite.

This ensures the existence of a spectral representation for the kernel restricted to
any compact set S ⊆ Λ: By Mercer’s theorem, excluding a ν2-nullset, we can assume
that

K(u, v) =
∞∑

k=1

λSkφ
S
k (u)φSk (v) u, v ∈ S, (2.2)

where the eigenvalues λSk are real numbers and the eigenfunctions φSk constitute an
orthonormal basis of L2(S), cf. (Hough et al., 2009, Section 4.2.1). We denote K
restricted to S × S by KS. Note that (c) means EX(S) =

∑∞
k=1 λ

S
k <∞. Thus XB

is almost surely finite when B ∈ B is bounded.
We also always assume that

(d) for any compact set S ⊆ Ω, all eigenvalues satisfy 0 ≤ λSk ≤ 1.

In fact, under (a)–(c), the existence of the DPP with kernelK is equivalent to (d) (see
e.g. (Hough et al., 2009, Theorem 4.5.5)), and the DPP is then unique (Hough et al.,
2009, Lemma 4.2.6). If Λ = Rd, ν is Lebesgue measure, and K(u, v) = K0(u − v)
is stationary, where K0 ∈ L2(Rd) and K0 is continuous, we denote the Fourier
transform of K0 by K̂0. Then (d) is equivalent to 0 ≤ K̂0 ≤ 1 (Hough et al., 2009,
Proposition 3.1).

We sometimes assume one of the following conditions:

(e) For a given compact set S ⊆ Λ, KS is a projection of finite rank n. Thus,
without loss of generality, we can assume

K(v, w) =
n∑

k=1

φSk (v)φSk (w), v, w ∈ S. (2.3)

(f) For all compact S ⊆ Λ, all eigenvalues satisfy that λSk < 1.
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2.1.3 Reduced Palm distributions

Consider an arbitrary point u ∈ Λ with K(u, u) > 0. Recall that the reduced Palm
distribution of X at u is a point process Xu on Λ with n-th order intensity function

ρu(u1, . . . , un) = ρ(u, u1, . . . , un)/ρ(u).

This combined with (2.1) easily shows that Xu is a DPP with kernel

Ku(v, w) = K(v, w)− K(v, u)K(u,w)

K(u, u)
v, w ∈ Ω, (2.4)

see (Shirai and Takahashi, 2003, Theorem 6.5). For any compact set S ⊆ Λ, it follows
that the restriction Xu

S := Xu∩S follows the reduced Palm distribution of XS at u.
Similarly, for any u1, . . . , un ∈ Λ with ρ(u1, . . . , un) > 0, the reduced Palm

distribution of X at u1, . . . , un has k-th order intensity function

ρu1,...,un(x1, . . . , xk) = ρ(u1, . . . , un, x1, . . . , xk)/ρ(u1, . . . , un).

Recall Schur’s determinant identity:

det

(
A B
C D

)
= det(D) det(A−BD−1C) (2.5)

provided D is invertible. Hence by induction and using (2.4)–(2.5), it follows that
Xu1,...,un is a DPP with kernel

Ku1,...,un(v, w)

=

det




K(v, w) K(v, u1) . . . K(v, un)
K(u1, w) K(u1, u1) . . . K(u1, un)

...
... . . . ...

K(un, w) K(un, u1) . . . K(un, un)




det



K(u1, u1) . . . K(u1, un)

... . . . ...
K(un, u1) . . . K(un, un)




, v, w ∈ Λ, (2.6)

cf. (Shirai and Takahashi, 2003, Corollary 6.6). For convenience, set Ku1,...,un = 0
if ρ(u1, . . . , un) = 0. Note that ρ(u1, . . . , un), ρu1,...,un , Xu1,...,un , and Ku1,...,un are
invariant under permutation of u1, . . . , un, and Xu1,...,un

S := Xu1,...,un ∩ S follows the
reduced Palm distribution of XS at u1, . . . , un.

2.2 Goldman’s results

Goldman Goldman (2000) made similar assumptions as in our assumptions (a)-(d),
and he assumed condition (f) throughout his paper. Two of his main results were
the following.

(G1) For any u ∈ Λ with K(u, u) > 0, there is a coupling of X and Xu so that in
distribution Xu ⊆ X.
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(G2) Suppose X is a standard Ginibre point process, that is, the DPP on Λ = C ≡
R2, with ν being Lebesgue measure, and with kernel

K(v, w) =
1

π
exp

(
vw − |v|

2 + |w|2
2

)
, v, w ∈ C. (2.7)

Then, for the coupling in (G1) and any u ∈ C, Xu \ X consists of a single
point which follows NC(u, 1).

It follows from (G1) and (2.4) that κu := X \Xu is a finite point process with
intensity function

ρκu(v) = |K(u, v)|2/K(u, u), v ∈ Λ. (2.8)

Note that the standard Ginibre point process is stationary and isotropic with inten-
sity 1/π, but its kernel is only isotropic. In accordance with (G2), combining (2.7)
and (2.8), ρκu is immediately seen to be the density of NC(u, 1).

3 Main results and discussion of repulsiveness in
DPPs

From (2.1) and the fact that the determinant of a complex covariance matrix is less
than or equal to the product of its diagonal elements we obtain that

ρ (u1, . . . , un) ≤
n∏

i=1

ρ (ui) ,

where the equality holds if and only if the DPP is a Poisson process. This inequal-
ity shows that DPPs are indeed repulsive. In this section we try to quantify how
repulsive they can be by studying the repulsive effect of a fixed point contained in
a DPP.

3.1 A measure of repulsiveness

The results in (G1)-(G2) suggest to use ρκu when quantifying the repulsive effect
of having a point of X at u when K(u, u) > 0. Note that ρκu = ρ(v) − ρu(v)
is the difference of the intensity functions of X and Xu. Considering (G1), ρκu
is the intensity function for the points in X “pushed out" by u under the Palm
distribution. Setting 0/0 = 0, recall that the pair correlation function of X is defined
by g(v, w) = ρ(v, w)/(ρ(v)ρ(w)) for v, w ∈ Λ, so it satisfies

1− g(u, v) = |r(u, v)|2,

where r(v, w) = K(v, w)/
√
K(v, v)K(w,w) is the correlation function obtained

from K. Then
ρκu(v) = ρ(v)(1− g(u, v)), (3.1)
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which shows a trade-off between intensity and repulsiveness (see also Lavancier et al.
(2015, 2014)). Because of (3.1), when using ρκu to compare repulsiveness in two
DPPs, they should share the same intensity function. Taking this into account,
small/high values of ρκu correspond to small/high degree of repulsiveness.

As a global measure of repulsiveness in X when having a point of X at u, we
suggest

pu :=

∫
|K(u, v)|2/K(u, u) dν(v).

This is the expected number of points in κu. Apart from a constant (given by the
intensity of X), pu is in agreement with the measure introduced in Lavancier et al.
(2015, 2014) for stationary DPPs on Rd; see also Biscio and Lavancier (2016); Bac-
celli and O’Reilly (2017). The following proposition shows that pu is a probability
which relates to the spectral decomposition of K restricted to a compact set increas-
ing towards Λ.

Proposition 3.1. Assume (a)–(d) and let u ∈ Λ with K(u, u) > 0. Then 0 ≤
pu ≤ 1. Moreover, pu = 1 if and only if for an increasing sequence of compact sets
S1 ⊆ S2 ⊆ . . . so that u ∈ S1 and Λ = ∪∞i=1Si, for all the eigenvalues in the spectral
decomposition of KSi we have that λSik tends to 0 or 1 when φSik (u) 6= 0, or more
precisely

lim
i→∞

∑

k

λSik (1− λSik )|φSik (u)|2 = 0.

Consequently, if pu = 1 for all u ∈ Λ with K(u, u) > 0, we say that X is a
globally most repulsive DPP. This is the case if K is a projection, that is, for all
v, w ∈ Λ,

K(v, w) =

∫
K(v, y)K(y, w) dν(y).

For short we then say that X is a projection DPP. The standard Ginibre point
process given by (2.7) is globally most repulsive but its kernel is not a projection.
At the other end, if ν is diffuse and X is a Poisson process with intensity function ρ,
then pu = 0 for all u ∈ Λ with ρ(u) > 0, and so X is a globally least repulsive DPP.

If Λ is compact, then it follows from the proof of Proposition 3.1 that

pu =

∑
k(λ

Λ
k )2|φΛ

k (u)|2∑
k λ

Λ
k |φΛ

k (u)|2 . (3.2)

In this case, projection DPPs are the only globally most repulsive DPPs. Such a
process has a fixed number of points which agrees with the rank of the kernel. In
Section 3.4, we establish a coupling for any projection DPP on a compact set and
with a non-zero kernel so that Xu ⊆ X in distribution and X \Xu consists almost
surely of one point whose density then agrees with ρκu .

3.2 Examples

This section shows specific examples of our measure pu and the distribution of a
point in κu.
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3.2.1 DPPs defined on a finite set

Assume Λ = {1, . . . , n} is finite and ν is counting measure; this is the simplest
situation. Then L2(Λ) ≡ Cn, the class of possible kernels for DPPs corresponds to
the class of n × n complex covariance matrices with all eigenvalues ≤ 1, and the
eigenfunctions simply correspond to normalized eigenvectors for such matrices.

The projection DPPs are given by complex projection matrices, ranging between
the degenerated cases whereX = ∅ andX = Λ. For example, consider the projection
kernel of rank two given byK(v, w) = 1

n
+tvtw, where

∑n
i=1 ti = 0 and

∑n
i=1 |ti|2 = 1.

For any u ∈ {1, . . . , n}, we have pu = 1 and

ρκu(v) =
| 1
n

+ tutv|2
1
n

+ |tu|2
, v ∈ {1, . . . , n},

is a probability mass function. This shows the repulsive effect of having a point of
X at u; in particular, ρκu(v) has a global maximum point at v = u.

The kernel of a Poisson process with intensity function ρ ≤ 1 and conditioned
on having no multiple points is given by a diagonal covariance matrix with diagonal
entries ρ(1), . . . , ρ(n). If ρ(u) > 0, then pu = ρ(u).

This is a much different result as when we consider a Poisson process on a space
Λ where the reference measure ν is diffuse: If ρ(u) > 0, then pu = 0 and X = Xu

almost surely.

3.2.2 Ginibre point processes

From the standard Ginibre point process given by (2.7), other stationary point
processes can be obtained. First, independently thinning the process with a retention
probability β ∈ (0, 1], and second, multiplying each of the retained points by

√
β

gives a new stationary DPP. Third, multiplying the kernel of this new DPP with a
parameter α ∈ (0, 1/β], this result in a stationary DPP X with kernel

K(v, w) =
α

π
exp

(
vw

β
− |v|

2 + |w|2
2β

)
, v, w ∈ C, (3.3)

and if fu = ρκu/pu denotes the density of a point in κu = X \Xu, we have

ρ = α/π, pu = αβ, fu(v) =
exp (−|v − u|2/β)

πβ
∼ NC(u, β). (3.4)

The case where α = 1 and 0 < β ≤ 1 is mentioned in Goldman’s paper Goldman
(2000), and the results in (3.4) match those in (Goldman, 2000, Remark 24). Deng
et al. (2015) called the DPP with kernel (3.3) the scaled β-Ginibre point process but
the bound αβ ≤ 1 was not noticed. For any fixed value of ρ > 0, as the value of β
increases to its maximum min{1, 1/(πρ)}, the more repulsive the process becomes,
whilst as β decreases to 0, in the limit a Poisson process with intensity ρ is obtained.

3.2.3 DPPs on Rd with a stationary kernel

Suppose Λ = Rd, ν is Lebesgue measure, and K(u, v) = K0(u − v) is stationary,
where K0 ∈ L2(Rd) and K0 is continuous. Then it follows from Parseval’s identity
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that pu = 1 if and only if K̂0 is an indicator function whose integral agrees with
the intensity of X, cf. (Lavancier et al., 2014, Appendix J). A natural choice for the
support of this indicator function is a ball centred at the origin in Rd, and if (as in
the standard Ginibre point process) we let the intensity be 1/π, then the globally
most repulsive DPP has a stationary and isotropic kernel given by

K(v, w) =

∫

|y|d≤dΓ(d/2)/(2π1+d/2)

exp
(
2πi(v − w) · y

)
dy, v, w ∈ Rd, (3.5)

where x·y denotes the usual inner product for x, y ∈ Rd and |y| is the usual Euclidean
distance. For instance, for d = 1 this kernel is the sinc function and for d = 2 it is
the jinc-like function

K(v, w) = J1(2|v − w|)/(π|v − w|), (3.6)

where J1 is the Bessel function of order one. We straightforwardly obtain the fol-
lowing proposition, where the moments in (3.7) follow from (DLM, Eq. 10.22.57).

Proposition 3.2. For the globally most repulsive DPP on Rd with kernel given by
(3.5) and for any u ∈ C, we have that ρκu(v) = π|K(u, v)|2 is a probability density
function. In particular, for d = 2,

ρκu(v) = J1(2|v − u|)2/
(
π|v − u|2

)
, v ∈ R2,

and the moments of |Zu − u| with Zu ∼ ρκu satisfy

E
(
|Zu − u|k

)
=

Γ(1 + k/2)Γ(1− k)

Γ(2− k/2)Γ(1− k/2)2
, k ∈ (−2, 1), (3.7)

and are infinite for k ≥ 1.

For comparison consider a standard Ginibre point process, where we can define
Zu in a similar way as in Proposition 3.2. In both cases, |Zu − u| is independent of
(Zu − u)/|Zu − u|, which is uniformly distributed on the unit circle. However, the
distribution of |Zu − u| is very different in the two cases: For the standard Ginibre
point process, |Zu − u|2 is exponentially distributed and |Zu − u| has a finite k-th
moment for all k > −2 given by Γ(1 + k/2)/(πρ)k/2; whilst for the DPP on R2 with
jinc-like kernel (3.6), |Zu − u| is heavy-tailed and has infinite k-th moments for all
k ≥ 1.

For any DPP X with kernel K and defined on Rd, using independent thinning
and scale transformation procedures similar to those in Section 3.2.2 (replacing

√
β

by β1/d when transforming the points in the thinned process), we obtain a new DPP
with kernel

Knew(v, w) = αK(v/β1/d, w/β1/d), v, w ∈ Rd,

where β ∈ (0, 1] and α ∈ (0, 1/β]. The existence of this new DPP follows from the
fact that the eigenvalues of Knew restricted to a compact set S ⊂ Rd are given by
αβλ

S/β1/d

k ∈ [0, 1], where λS/β
1/d

k is an eigenvalue for KS/β1/d . For instance, if K is
the jinc-like kernel for the globally most repulsive DPP given by (3.6), the new DPP
satisfies the same equations for its intensity and the value of pu as in (3.4). Hence,

9



if ρ and β are the same for this new DPP and the scaled β-Ginibre point process,
the two DPPs are equally repulsive in terms of pu. However, the probability density
function for a point in κu now becomes

fu(v) = J1

(
2|v − u|2/β

)
/
(
π|v − u|2/β

)
. (3.8)

The reach of the repulsive effect of the point at u is much different when comparing
the densities in (3.4) and (3.8), in particular if β is large.

3.2.4 DPPs on Sd with an isotropic kernel

Suppose Λ = Sd is the d-dimensional unit sphere, ν is Lebesgue measure, and
K(v, w) = K0(v · w) is isotropic for all v, w ∈ Sd. Then the DPP with kernel K
is isotropic, and ρ = K0(1) and pu do not depend on the choice of u ∈ Λ. By a
classical result of Schoenberg Schoenberg (1942) and by (Møller et al., 2018, The-
orem 4.1), we have the following. The normalized eigenfunctions will be complex
spherical harmonic functions, and K0 will be real and of the form

K0(t) = ρ
∞∑

`=0

β`,d
C

( d−1
2

)

` (t)

C
( d−1

2
)

` (1)
, −1 ≤ t ≤ 1,

where C( d−1
2

)

` is a Gegenbauer polynomial of degree ` and the sequence β0,d, β1,d, . . .
is a probability mass function. Further, letting σd = ν(Sd) = 2π(d+1)/2/Γ((d+ 1)/2),
the eigenvalues of K are

λ`,d = ρσdβ`,d/m`,d, ` = 0, 1, . . . ,

with multiplicities

m0,1, m`,1 = 2, ` = 1, 2, . . . , if d = 1,

and

m`,d =
2`+ d− 1

d− 1

(`+ d− 2)!

`!(d− 2)!
, ` = 0, 1, . . . , if d ∈ {2, 3, . . .}.

So the DPP exists if and only if ρ ≤ inf`:β`,d>0m`,d/(σdβ`,d). Now, applying (3.2),
we obtain

pu = ρσd

∞∑

`=0

β2
`,d/m`,d. (3.9)

There is a lack of flexible parametric DPP models on the sphere where K0 is
expressible on closed form, see (Møller et al., 2018, Section 4.3). For instance, let
d = 2 and consider the special case of the multiquadric model given by

K0(t) = ρ
1− δ√

1 + δ2 − 2δt
, −1 ≤ t ≤ 1,

with δ ∈ (0, 1) a parameter and 0 < ρ ≤ 1/(4π(1 − δ)). Then, as shown in (Møller
et al., 2018, Section 4.3.2), the sequence

β`,2 = (1− δ)δ`, ` = 0, 1, . . . , (3.10)

10



specifies a geometric distribution and

λ`,2 = 4πρδ`(1− δ)/(2`+ 1) ≤ δ`/(2`+ 1), ` = 0, 1, . . .

As δ → 0, then λ0,2 → 4πρ and λ`,2 → 0 if ` ≥ 1, corresponding to the uninteresting
case of a DPP with at most one point if ρ < 1/(4π) and with exactly one point if
ρ = 1/(4π). From (3.9) and (3.10) we obtain

pu = 4πρ(1− δ)/(1 + δ) ≤ 1/(1 + δ),

with this upper bound obtained for the maximal value of ρ = 1/(4π(1−δ)). Therefore
the DPP with the multiquadric kernel is far from being globally most repulsive unless
the expected number of points is very small.

Instead a flexible parametric model for the eigenvalues λ`,d is suggested in (Møller
et al., 2018, Section 4.3.4) so that globally most repulsive DPPs as well as Poisson
processes are obtained as limiting cases. However, the disadvantage of that model is
that we can only numerically calculate ρ and pu.

3.2.5 Remark

The considerations in Section 3.1 and in Section 3.2.1-3.2.4 are strictly for DPPs.
For example, the intensity function of a Gibbs point process can be both smaller and
larger than the intensity function of its Palm distribution at a given point; whilst
for a DPP, ρ ≥ ρu. Furthermore, a globally most repulsive stationary point process
on R2 should be of the form Y = LZ := {x+Z : x ∈ L}, where L is the vertex set of
a regular triangular lattice (the centres of a honeycomb structure) with one lattice
point at the origin, and where Z is a uniformly distributed point in the hexagonal
region given by the Voronoi cell of the lattice and centred at the origin (in other
words, Y may be considered as the limit of a stationary Gibbs hard core process
when the packing fraction of hard discs increases to the maximal value ≈ 0.907, see
e.g. Döge et al. (2004); Mase et al. (2001)). However, the reduced Palm process at
u ∈ R2 will be degenerated and given by Y u = Lu \ {u}, which is a much different
situation as compared to DPPs.

3.3 Coupling and stochastic domination of point processes

Before stating our main results in Section 3.4-3.5 we need to recall what is meant
by coupling and stochastic domination of point processes.

The state space for a DPP is the set N of all locally finite subsets of Λ. This state
space is equipped with the σ-algebra F generated by all events {x ∈ N |x(B) = m}
for bounded B ∈ B and m = 0, 1, . . ., where x(B) is the cardinality of x ∩ B. An
event A ∈ F is called decreasing if x ∈ A implies y ∈ A whenever y ⊂ x. Let Fd ⊂ F
denote the collection of events consisting of finite unions of elementary decreasing
events of the form

{x ∈ N |x(Ai) ≤ ki, i = 1, . . . ,m},
wherem is a positive integer, k1, . . . , km are non-negative integers, and A1, . . . , Am ∈
B are disjoint and bounded.
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Consider two point processes (e.g. DPPs) Y and Z with state space N . Then Z
is said to stochastically dominate Y if P(Z ∈ A) ≤ P(Y ∈ A) for every decreasing
event A ∈ F . By Strassen’s theorem Lindvall (1999), this is equivalent to the exis-
tence of a coupling between Y and Z, that is, a joint distribution for (Y, Z) so that
Y ⊆ Z almost surely; we call this a monotone coupling of Y w.r.t. Z. The following
lemma is well-known, where an outline of the proof is given in the Appendix of
Goldman (2000).

Lemma 3.1. The point process Y is stochastically dominated by the point process
Z if and only if, for every A ∈ Fd,

P(Z ∈ A) ≤ P(Y ∈ A).

3.4 Coupling for projection DPPs on a compact set

In this section we assume that S ⊆ Λ is a given compact set and that KS is a
projection, cf. (2.3). The restriction of the reference measure ν to S is denoted νS.
The following theorem is our first main result.

Theorem 3.1. Assume S ⊆ Λ is compact and let {φSk}nk=1 be an orthonormal set of
functions in L2(S) with 1 ≤ n <∞. Let X and Y be DPPs with kernels K and L,
respectively, so that

K(v, w) =
n∑

k=1

φSk (v)φSk (w), L(v, w) =
n−1∑

k=1

φSk (v)φSk (w), v, w ∈ S

(setting L(v, w) = 0 if n = 1). Then there exists a monotone coupling of YS w.r.t.
XS such that ηS := XS \ YS consists of one point almost surely and ηS has density
|φn(·)|2 w.r.t. νS.

Theorem 3.1 immediately implies the following special case.

Corollary 3.1. Assume S ⊆ Λ is compact, u ∈ S with K(u, u) > 0, and X is a
DPP with a kernel K so that KS is a projection of finite rank. Then there exists a
monotone coupling of Xu

S w.r.t. XS such that ηuS := XS \ Xu
S consists of one point

almost surely and ηuS has density |KS(·, u)|2/
√
KS(u, u) w.r.t. νS.

3.5 Coupling for DPPs on a compact set with eigenvalues
< 1

Our second main result is Theorem 3.2 below, which applies when a DPP is restricted
to a compact set so that its kernel has all eigenvalues < 1. Compared to the case of a
projection DPP, our coupling construction for XS and Xu

S in Theorem 3.2 becomes
more complicated as we not only remove but may also move a point in XS – basically
because now in general KS(·, u) is not an eigenfunction of KS, and hence Ku

S and
KS −Ku

S are not L2(S)-orthogonal.
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3.5.1 The random projection DPP construction

Theorem 3.2 relies on Proposition 3.3 below together with the following fact for a
general DPP restricted to a compact set: Let S ⊆ Λ be compact, and recall that the
DPP X has a kernel K which is assumed to satisfy (a)-(d). Then we construct a
point process YS as follows. Consider the spectral representation (2.2) forKS, and let
BS

1 , B
S
2 , . . . be independent Bernoulli variables with means λS1 , λS2 , . . ., respectively.

By (d), with probability one,
∑∞

k=1B
S
k is finite. For integers n1, . . . , nk with k ≥ 0,

define the Bernoulli variable

BS
n1,...,nk

=
( k∏

i=1

BS
ni

) ∏

j∈N\{n1,...,nk}
(1−BS

nj
),

where BS
n1,...,nk

= BS
∅ =

∏∞
j=1(1 − BS

nj
) if k = 0. Conditional on BS

n1,...,nk
= 1, let

YS = XS,n1,...,nk be the projection DPP with kernel

KS,n1,...,nk =
k∑

i=1

φSni(u)φSni(v), u, v ∈ S, (3.11)

which is equal to 0 if k = 0. Then XS and YS are identically distributed, cf. (Hough
et al., 2006, Theorem 7). We refer to this doubly stochastic construction of YS as
the random projection DPP construction. For S ⊂ Rd and S = Sd, Lavancier et al.
(2014, 2015); Møller and Rubak (2016) provides a simple simulation algorithm based
on this construction, but it will not be needed in the following.

By Corollary 3.1, if k > 0, there exists a point process ηun1,...,nk
which is given by

a point in Xn1,...,nk such that in distribution,

Xu
n1,...,nk

= Xn1,...,nk \ ηun1,...,nk
. (3.12)

Further, for n ∈ N \ {n1, . . . , nk}, by Theorem 3.1, there is a point process ξn1,...,nk;n

which consists of one point such that in distribution, ξn1,...,nk;n ∩Xn1,...,nk = ∅ and

Xn1,...,nk,n = Xn1,...,nk ∪ ξn1,...,nk;n. (3.13)

Finally, there is a joint distribution for Xn1,...,nk , Xn1,...,nk,n, and Xu
n1,...,nk,n

: Condi-
tional onXn1,...,nk,n, let ξn1,...,nk;n and ηun1,...,nk,n

be independent. Thus, in distribution,

Xu
n1,...,nk,n

= {Xn1,...,nk ∪ ξn1,...,nk;n} \ ηun1,...,nk,n
. (3.14)

Note that ξn1,...,nk;n has density |φn(·)|2 w.r.t. νS, and ηun1,...,nk
conditioned on

Xn1,...,nk has density |Kn1,...,nk(·, u)|2/
√
Kn1,...,nk(u, u) w.r.t. νS. The semicolon is

there to emphasize that ξn1,...,nk;n has the same distribution for all permutations
of n1, . . . , nk but not for all permutations of n1, . . . , nk, n. Also note that we sup-
press in the notation that Kn1,...,nk , Xn1,...,nk , Xu

n1,...,nk
, ηun1,...,nk

, and ξn1,...,nk depend
on S and the choice of orthonormal basis functions for the spectral representation
of K.
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3.5.2 Coupling results

We need the following coupling results for the counts X(S) and Xu(S).

Proposition 3.3. Assume (a)–(d) and (f) are satisfied, and let u ∈ Λ with
K(u, u) > 0. For any compact set S ⊆ Λ with u ∈ S, there is a coupling of X(S)
and Xu(S) so that 0 ≤ X(S)−Xu(S) ≤ 1. Specifically,

P(BS
n1,...,nk

= 1) =
(∏

`

(1− λS` )
) k∏

i=1

λSni
1− λSni

, (3.15)

and for k = 0, 1, . . . and P(BS
n1,...,nk

= 1) > 0, we have

P
(
X(S) = Xu(S) = k |BS

n1,...,nk
= 1
)

=

∑
n6∈{n1,...,nk} λ

S
n|φSn(u)|2

K(u, u)
(3.16)

and

P
(
Xu(S) = k,X(S) = k + 1 |BS

n1,...,nk+1
= 1
)

=

∑k+1
i=1 λ

S
ni
|φSni(u)|2

K(u, u)
. (3.17)

Now, the coupling procedure for XS and Xu
S is as follows.

(i) Generate the independent Bernoulli variables BS
1 , B

S
2 , . . . Suppose this gives

the realization BS
n1,...,nk

= 1, with k ≥ 1, and condition on that realization in
the following steps (if BS

∅ = 1, then return XS = ∅ and Xu
S = ∅).

(ii) Generate Xn1,...,nk and return XS = Xn1,...,nk .

(iii) Set X(S) = k. Generate Xu(S) conditional on X(S) = k, cf. (3.16)–(3.17).

(iv) The case Xu(S) 6= X(S): Conditional on Xn1,...,nk , generate ηun1,...,nk
in accor-

dance to (3.12). Return Xu
S = Xn1,...,nk \ ηun1,...,nk

.

(v) The case Xu(S) = X(S): Let Nn1,...,nk be a discrete random variable with
distribution

P(Nn1,...,nk = n) =
λSn|φSn(u)|2∑

m/∈{n1,...,nk} λ
S
m|φSm(u)|2 , n ∈ N \ {n1, . . . , nk}. (3.18)

Generate first a realization Nn1,...,nk = n and next ξn1,...,nk;n in accordance to
(3.13). Set Xn1,...,nk,n = Xn1,...,nk ∪ ξn1,...,nk;n and generate ηun1,...,nk,n

, cf. (3.12).
Return Xu

S = Xn1,...,nk,n \ ηun1,...,nk,n
.

Note that we are assuming the following.

• Conditional on BS
n1,...,nk

= 1, in (ii) and (iii), Xn1,...,nk and (X(S), Xu(S)) are
independent.

• Conditional on BS
n1,...,nk

= 1, in (v), Nn1,...,nk is independent of (Xn1,...,nk , X(S),
Xu(S)).

• Conditional on both BS
n1,...,nk

= 1, Xn1,...,nk , Xu(S) = X(S), and Nn1,...,nk = n,
in (v), the point in ξn1,...,nk;n has density |φSn(·)|2 w.r.t. νS, and this density
depends only on n.
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• Conditional on both BS
n1,...,nk

= 1,Xu(S) = X(S), Nn1,...,nk = n, andXn1,...,nk∪
ξn1,...,nk;n, in (v), ηun1,...,nk,n

is independent of ξn1,...,nk;n.

Though ξn1,...,nk;n does not depend on u, both ξuS and ηuS introduced in the
following theorem will depend on u, because we let ξuS = ∅ and ηuS = ηun1,...,nk

if
Xu(S) 6= X(S), and let ξuS = ξn1,...,nk;n and ηuS = ηun1,...,nk,n

if Xu(S) = X(S).

Theorem 3.2. Assume (a)–(d) and (f) are satisfied. Let u ∈ Λ with K(u, u) > 0.
For any compact set S ⊆ Λ with u ∈ S, the coupling procedure (i)–(v) correctly
returns the DPP XS with kernel KS and the DPP Xu

S with kernel Ku. Further, it
establishes a coupling such that Xu

S is obtained by either removing or moving a point
in XS, that is, there exist point processes ξuS and ηuS such that almost surely ξuS is
either empty or consists of a single point, ηuS consists of a single point, and

Xu
S = {XS ∪ ξuS} \ ηuS, ξuS ∩XS = ∅, ηuS ⊆ XS ∪ ξuS. (3.19)

For the coupling construction in Theorem 3.2, there is a positive probability that
no change happens, i.e. ηuS = ξuS and hence XS = Xu

S . Note that there may be a lack
of consistency unless XS 6= ∅ implies Xu

S ( XS: For compact subsets A ( B of Λ,
suppose we claim there is a consistent coupling of (XA, X

u
A) and (XB, X

u
B), meaning

that XA ⊆ XB and Xu
A ⊆ Xu

B. Then, if both (XA, X
u
A) and (XB, X

u
B) satisfy (3.19),

ηuA becomes the restriction of ηuB to A, and ξA becomes the restriction of ξB to A. It is
impossible to have ξB ∩A 6= ∅ and ηuB ∩B \A 6= ∅, because if this does happen, then
Xu
A will have one more point than XA which is impossible for our joint distribution

of (XA, X
u
A). Increasing A to B implies that ξB = ∅, and hence Xu

B is included in
XB, the difference being ηuB if XB 6= ∅. Similarly, assuming Λ is unbounded and
there is a coupling as in (3.19) but with S replaced by Λ, unless X 6= ∅ implies
Xu ( X, we face the same problem of inconsistency when restricting X and Xu to
a compact subset of Λ.

Despite this inconsistency, Theorem 3.2 provides interesting insight into the re-
pulsive behaviour of DPPs as discussed after establishing the following corollary.

Corollary 3.2. Under the conditions in Theorem 3.2, we have

puS := P (ξuS = ∅) =

∫

S

|K(u, v)|2
K(u, u)

dν(v) =

∑
n≥1 |λSnφSn(u)|2
K(u, u)

. (3.20)

Further, conditional on ξuS 6= ∅, ξuS has a density fξuS (· | ξuS 6= ∅) w.r.t. νS so that

(1− puS) fξuS (v | ξuS 6= ∅) =
∞∑

k=1

λSk (1− λSk )|φSk (u)|2
K(u, u)

|φSk (v)|2, v ∈ S. (3.21)

Furthermore, ηuS has a density w.r.t. νS given by

fηuS(v) =
∞∑

k=1

λSk (1− λSk )|φSk (u)|2
K(u, u)

|φSk (v)|2 +
|K(u, v)|2
K(u, u)

, v ∈ S. (3.22)
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In general, by the proof of (3.21)–(3.22) in Section 4.6, fξuS(v, ξuS 6= ∅) is different
from fηuS(v, ξuS 6= ∅). However, the marginal distributions of ξuS and ηuS are related as
follows. Note that

puS = P(Xu(S) = X(S)) = P(ξuS = ∅),
so there is a conditional density fS(· | ξuS = ∅) w.r.t. νS so that

puSfS(v | ξuS = ∅) = |K(u, v)|2/K(u, u), v ∈ S.

Then, by (3.20)–(3.22),

fηuS(v) = puSfS(v | ξuS = ∅) + (1− puS)fξuS(v | ξuS 6= ∅), (3.23)

where fξuS(· | ξuS 6= ∅) is the conditional density of the point to be added to XS when
obtaining Xu

S and given that ξuS 6= ∅. Thus, we can view the distribution of ηuS, the
part to be removed from XS when obtaining Xu

S , as a mixture distribution: With
probability puS, ηuS follows fS(· | ξuS = ∅), and else with probability 1− puS, ηuS follows
fξuS(· | ξuS 6= ∅).

We can quantify repulsiveness in a DPP X by, for any given compact subset
S ⊆ Λ and any given point u ∈ S with K(u, u) > 0, comparing the marginal
distribution of ηuS with that of ξuS. Referring to the mixture distribution for ηuS given
by (3.23) lead us to consider the case (iv) and to quantify repulsiveness in terms
of the intensity function κu(v) = |K(u, v)|2/K(u, u) for v ∈ Λ, which we studied in
Section 3.1–3.2 and which gave rise to the measure pu. As S increases to Λ and if
K(u, u) > 0, then pu is the limiting probability of the event that Xu

S as obtained
in (i)–(v) is given by deleting a point in XS (i.e. the case (iv)), and this point has
limiting density ρκu(·)/pu.

On the other hand, we can also as in (v) condition on BS
n1,...,nk

= 1, ξuS 6= ∅, and
Nn1,...,nk = n. Then the point to be added has density |φSn(·)|2, whilst the point to
be taken away has density

|Kn1,...,nk,n(u, ·)|2
Kn1,...,nk,n(u, u)

=
|∑`∈{n1,...,nk,n} φ

S
` (u)φS` (·)|2

∑
`∈{n1,...,nk,n} |φS` (u)|2 .

Observe that

|Kn1,...,nk,n(u, u)|2
Kn1,...,nk,n(u, u)

=
k∑

i=1

|φSni(u)|2 + |φSn(u)|2 ≥ |φSn(u)|2.

Thus, if the eigenfunctions are continuous, there will be a neighbourhood of u such
that the point taken away is more likely to be inside the neighbourhood than the
point removed. This provides evidence that conditioning on XS having a point at u
has the effect of pushing a point in XS farther away.

4 Further results and proofs

In this section we collect our proofs for the main results in Section 3 and we add
some technical results.

16



4.1 Proof of Proposition 3.1

Let S ⊆ Λ be compact. As S increases, the integral
∫
S
|K(u, v)|2 dν(v) is non-

decreasing. From the spectral representation (2.2) and condition (d) we obtain
∫

S

|K(u, v)|2 dν(v) =
∑

k

∑

`

λSkλ
S
l φ

S
k (u)φS` (u)

∫

S

φSk (v)φS` (v) dν(v)

=
∑

k

(λSk )2|φSk (u)|2 ≤
∑

k

λSk |φSk (u)|2 = K(u, u).

Thereby Proposition 3.1 follows.

4.2 Some results for projection DPPs

Lemma 4.1. Suppose S ⊆ Λ is compact, n is a non-negative integer, X is a simple
point process on S consisting of n points almost surely, and A ∈ Fd. Then there
exists a finite partition S =

⋃m
i=1 Bi such that each Bi ∈ B and P(X ∈ A) can be

expressed as a finite sum, up to the sign, of terms of the form

P
( m⋂

i=1

{X(Bi) = ki}
)
,

where
∑m

i=1 ki = n.

Proof. For simplicity, let A ∈ Fd be such that x ∈ A if and only if
⋃r
i=1{x(Ai) ≤ ki}.

A more complicated but similar argument as given below applies for general events
in Fd.

By the inclusion-exclusion principle,

P
( r⋃

i=1

{X(Ai) ≤ ki}
)

= (−1)0
∑

i

P(X(Ai) ≤ ki)

+ (−1)1
∑

i<j

P({X(Ai) ≤ ki} ∩ {X(Aj) ≤ kj})

+ · · ·+ (−1)r−1P
( r⋂

i=1

{X(Ai) ≤ ki}
)
.

Set A =
⋃r
i=1 Ai. Let {Bj}m−1

j=1 be a collection of disjoint Borel sets such that⋃m−1
j=1 Bj = A and for every Ai, there exists Ii ⊆ {1, . . .m − 1} such that Ai =
∪j∈IiBj. Then, for any I ⊆ {1, . . . , n},

P
(⋂

i∈I
{X(Ai) ≤ ki}

)

=
∑

(`1,...,`m−1):∑
j∈Ii `j≤ki ∀i∈I

P
(m−1⋂

j=1

{X(Bj) = `j} ∩ {X(S \ A) = n− `}
)
,

where in each term, ` =
∑m−1

i=1 `i, and the term is a probability of X being in an
elementary increasing event. Thus the conclusion holds.
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Assume S is finite, ν is counting measure, and X is a projection DPP with
kernel Q. Then the matrix {Q(u, v)}u,v∈S is complex, Hermitian, has eigenvalues 0
or 1, and its rank is equal to the cardinality ofX almost surely. So Q can be identified
with the linear subspace H ⊆ CS spanned by the columns of Q. We also write XH

for X. The following is a relevant result taken from Russell Lyon’s paper (Lyons,
2003, Theorem 6.2) but using our terminology and notation.

Lemma 4.2. Let S be finite, let H1 ⊂ H2 be linear subspaces of CS. Then XH2

stochastically dominates XH1.

4.3 Proof of Theorem 3.1

By Lemma 3.1, for the existence of a monotone coupling of Y w.r.t. X, it suffices
to show that for any event A ∈ Fd,

P(X ∈ A) ≤ P(Y ∈ A). (4.1)

In (Goldman, 2000, Theorem 3), Goldman proved this in the case where all
eigenvalues of the associated kernels K and L are strictly less than one and the
difference kernel K −L is positive definite. The proof can be modified as follows for
the case of projection DPPs, where all eigenvalues are exactly one.

So fix an event A ∈ Fd. By Lemma 4.1, there exists a finite partition of S into
Borel sets, S =

⋃m
i=1 Bi, such that P(X ∈ A) can be expressed as a finite sum, up

to the sign, of terms of the form

P
( m⋂

i=1

{X(Bi) = ki}
)
, (4.2)

where n =
∑m

i=1 ki. Similarly, P(Y ∈ A) can be expressed as a finite sum, up to the
sign, of terms of the form

P
( m⋂

i=1

{Y (Bi) = ki}
)
,

where
∑m

i=1 ki = n− 1. For i = 1, . . . ,m, define the subspaces

Vi = span{φSk1Bi}nk=1

and let ni = dim(Vi). Then, there exist orthonormal vectors

zk = (zk1 , . . . , z
k
M) ∈

M∏

i=1

Cni , k = 1, . . . , n,

such that for all integers 1 ≤ i ≤ m, 1 ≤ k ≤ n, and 1 ≤ ` ≤ n,

ni∑

j=1

zki (j)z`i (j) =

∫

Bi

φSk (v)φS` (v) dν(v), (4.3)
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where zki = (zki (1), . . . , zki (ni)). Indeed, let {eij}nij=1 be an orthonormal basis of Vi ⊂
L2(S). Then

φSk1Bi =

ni∑

j=1

αki,je
i
j for some {αki,j} ⊂ C.

Letting zki (j) = αki,j gives (4.3).
Let Ei = {(i, j) | j ∈ {1, . . . , ni}} and define the finite space E =

⋃m
i=1Ei with

counting measure λE. Define DPPs XE and YE on E with projection kernels

KE((i1, j1), (i2, j2)) =
n∑

k=1

zki1(j1)zki2(j2)

and

LE((i1, j1), (i2, j2)) =
n−1∑

k=1

zki1(j1)zki2(j2),

respectively. Then XE = XH1
E and YE = Y H2

E , where

H1 = span{z1, . . . , zn}, H2 = span{z1, . . . , zn−1} ⊂ H1.

Thus, by Lemma 4.2, XE stochastically dominates YE, meaning that for any de-
creasing event AE ⊆ 2E,

P(XE ∈ AE) ≤ P(YE ∈ AE). (4.4)

Now, let σ = (σ1, . . . , σn) be a permutation of (1, . . . , n). Note that

det (K(xi, xj))
n
i,j=1 =

n∏

i=1

K(xi, xσ(i)) =
n∑

k1,...,kn=1

n∏

i=1

φSki(xi)φ
S
kσ−1(i)

(xi)

and

det (KE((i`, j`), (im, jm)))n`,m=1 =
n∏

`=1

KE((i`, j`), (iσ(`), jσ(`)))

=
n∑

k1,...,kn=1

n∏

`=1

zk`(i`, j`)z
kσ−1(`)(i`, j`),

where zk(i, j) = zki (j). By (4.3), for sets Bi and integers ki ≥ 0 as in (4.2),
∫
∏M
i=0B

ki
i

n∏

i=1

φSki(xi)φkSσ−1(i)
(xi) dν(xi)

=

∫
∏m
i=1 E

ki
i

n∏

`=1

zk`(i`, j`)z
kσ−1(`)(i`, j`)dλE((i`, j`)), (4.5)

where n =
∑m

i=1 ki. Expanding the determinants below and using (4.5) gives
∫
∏m
i=1B

ki
i

det(K(xi, xj))
n
i,j=1

n∏

i=1

dν(xi)

=

∫
∏M
i=0 E

ki
i

det(KE((i`, j`), (ik, jk))
n
`,k=1

n∏

`=1

dλE((i`, j`)),
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and so

P
( m⋂

i=1

{X(Bi) = ki}
)

= P
( m⋂

i=1

{XE(Ei) = ki}
)
.

Similarly,

P
( m⋂

i=1

{Y (Bi) = ki}
)

= P
( m⋂

i=1

{YE(Ei) = ki}
)
,

where here n− 1 =
∑m

i=1 ki.
Consequently,

P(XE ∈ AE) = P(X ∈ A) and P(YE ∈ AE) = P(Y ∈ A)

for a decreasing event AE. Thus, by (4.4),

P(X ∈ A) ≤ P(Y ∈ A),

and hence (4.1) is verified. Therefore, there is a coupling such that Y ⊆ X almost
surely. As Y has cardinality one less than X, η := Y \X consists of one point almost
surely, and for any A ⊆ S,

P(η ∈ A) = E
[
1{Y (A)−X(A)=1}

]
= E[Y (A)]− E[X(A)] =

∫

A

|φSn(·)|2 dx.

Thus, the result follows.

4.4 Proof of Proposition 3.3

Equation (3.15) follows immediately from the independence of the Bernoulli vari-
ables BS

1 , B
S
2 , . . . We have

P (X(S) = 0) =
∏

`

(
1− λS`

)

and by (Goldman, 2000, Equation (34)),

P (Xu(S) = k) =
P (X(S) = 0)

K(u, u)

∑

n

|φSn(u)|2 λSn
1− λSn

∑

n1<...<nk:
n6∈{n1,...,,nk}

k∏

`=1

λS`
1− λS`

.

Switching the sums above and observing that

λSn/
(
1− λSn

)
= λSn +

(
λSn
)2
/
(
1− λSn

)
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gives

P(Xu(S) = k) =

∏
`(1− λS` )

K(u, u)

∑

n1<···<nk

k∏

i=1

λSni
1− λSni

∑

n6∈{n1,...,nk}

λSn
1− λSn

|φSn(u)|2

=

∏
`(1− λS` )

K(u, u)

( ∑

n1<···<nk

k∏

i=1

λSni
1− λSni

∑

n 6∈{n1,...,nk}
λSn|φSn(u)|2

+
∑

n1<···<nk

k∏

i=1

λSni
1− λSni

∑

n6∈{n1,...,nk}

(λSn)2

1− λSn
|φSn(u)|2

)

=
∑

n1<···<nk
P(BS

n1,...,nk
= 1)

∑
n6∈{n1,...,nk} λ

S
n|φSn(u)|2

K(u, u)

+
∑

n1<···<nk+1

P(BS
n1,...,nk+1

= 1)

∑k+1
i=1 λ

S
ni
|φSni(u)|2

K(u, u)
.

By the random projection DPP construction, BS
n1,...,nk

= 1 implies X(S) = k, and
so (3.16)–(3.17) follow.

4.5 Proof of Theorem 3.2

By the random projection DPP construction, the procedure (i)–(v) gives the correct
marginal for XS, and it establishes the coupling in (3.19), so it only remains to
prove that it generates the correct marginal distribution of Xu

S . Note that under
the assumptions in Theorem 3.2, λSn < 1 for n = 1, 2, . . . , so XS has a density fS
and Xu

S has a density fuS w.r.t. exp(ν(S)) times the probability measure for the
Poisson process on S with intensity measure νS, see Macchi (1975) and (Shirai and
Takahashi, 2003, Lemma 3.4). Defining

K̃(v, w) =
∞∑

k=1

λSk
1− λSk

φSk (v)φSk (w), v, w ∈ S, (4.6)

then for multiple distinct points x1, . . . , xn ∈ S,

fS({x1, . . . , xn}) =
( ∞∏

k=1

(1− λSk )
)

det{K̃(xi, xj)}ni,j=1

and
fuS ({x1, . . . , xn}) = fS({x1, . . . , xn, u})/K(u, u).

First, assume for an integer M > 1, λSn = 0 whenever n > M , so

K(v, w) =
M∑

n=1

λSnφ
S
n(v)φSn(w), v, w ∈ S.
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Then XS has at most M points. For k = 0, . . . ,M − 1 and {x1, . . . , xk} ⊆ S,

fuS ({x1, . . . , xk})K(u, u)/
M∏

`=1

(
1− λS`

)
= det(AB),

where A is the (k+1)×M matrix with ijth entry λSj
1−λSj

φSj (xi) and B is theM×(k+1)

matrix with ijth entry φSi (xj), where in both cases, xk+1 = u. Define the sum
notation

∑M
(ni)k1

:=
∑

1≤n1<···<nk≤M , that is, the sum over all ordered subsets of size
k in {1, . . . ,M}. Then the Cauchy-Binet formula gives

fuS ({x1, . . . , xk})K(u, u)
/ M∏

`=1

(1− λS` )

=
M∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

)
det(B∗) det(B)

=
M∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

)
fn1,...,nk+1

({x1, . . . , xk, u}),

where fn1,...,nk+1
is the density of the DPP on S with projection kernel Kn1,...,nk+1

.
Further, since

fun1,...,nk+1
({x1, . . . , xk}) = fn1,...,nk+1

({x1, . . . , xk, u})/Kn1,...,nk+1
(u, u),

we have

M∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

)
fn1,...,nk+1

({x1, . . . , xk, u})

=
M∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

) k+1∑

i=1

|φSni(u)|2fun1,...,nk+1
({x1, . . . , xk})

=
M∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

) k+1∑

i=1

(1− λSni)|φSni(u)|2fun1,...,nk+1
({x1, . . . , xk})

+
M∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

) k+1∑

i=1

λSni |φSni(u)|2fun1,...,nk+1
({x1, . . . , xk})

=
M∑

(ni)
k+1
1

k+1∑

i=1

( ∏

j=1,...,k+1:
j 6=i

λSnj
1− λSnj

)
λSni |φSni(u)|2fun1,...,nk+1

({x1, . . . , xk}) (4.7)

+
M∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

) k+1∑

i=1

λSni |φSni(u)|2fun1,...,nk+1
({x1, . . . , xk}),
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where the term in (4.7) is interpreted as zero when k = 0. Therefore,

fuS ({x1, ..., xk})
/ M∏

`=1

(1− λS` )

=
M∑

(ni)k1

( k∏

j=1

λSnj
1− λSnj

)
∑

n=1,...,M :
n6∈{n1,...,nk}

λSn|φSn(u)|2fun1,...,nk,n
({x1, . . . , xk})

K(u, u)

+
M∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

)∑k+1
i=1 λ

S
ni
|φSni(u)|2

K(u, u)
fun1,...,nk+1

({x1, . . . , xk}). (4.8)

Second, letting M →∞, (4.8) gives

fuS ({x1, ..., xk})

=
∏

`≥1

(
1− λS`

)∑

(ni)k1

k∏

j=1

λSnj
1− λSnj

∑

n≥1:
n6∈{ni}ki=1

λSn|φSn(u)|2
K(u, u)

fun1,...,nk,n
({x1, . . . , xk})

+
∏

`≥1

(
1− λS`

)

·
∑

(ni)
k+1
1

(k+1∏

j=1

λSnj
1− λSnj

)∑k+1
i=1 λ

S
ni
|φSni(u)|2

K(u, u)
fun1,...,nk+1

({x1, . . . , xk})

=
∑

(ni)k1

P
(
BS
n1,...,nk

= 1
) ∑

n≥1:
n6∈{ni}ki=1

λSn|φSn(u)|2
K(u, u)

fun1,...,nk,n
({x1, . . . , xk}) (4.9)

+
∑

(ni)
k+1
1

P(BS
n1,...,nk+1

= 1)

∑k+1
i=1 λ

S
ni
|φSni(u)|2

K(u, u)
fun1,...,nk+1

({x1, . . . , xk}), (4.10)

where the term (4.9) is interpreted as zero if k = 0. Further, by (3.16) and (3.18),
for any k ∈ N,

λSn|φSn(u)|2
K(u, u)

= P
(
X(S) = Xu(S) = k |BS

n1,...,nk
= 1
)

· P
(
Nn1,...,nk = n |BS

n1,...,nk
= 1, X(S) = Xu(S) = k

)
,

whilst
∑k+1

i=1 λ
S
ni
|φSni(u)|2/K(u, u) is given by (3.17). Combining this with (4.9)–
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(4.10), it follows that

fuS ({x1, . . . , xk})
=
∑

(ni)k1

P(BS
n1,...,nk

= 1)

·
∑

n≥1:
n6∈{n1,...,nk}

P(Nn1,...,nk = n,X(S) = Xu(S) = k |BS
n1,...,nk

= 1)

· fun1,...,nk,n
({x1, . . . , xk})

+
∑

(ni)
k+1
1

P(BS
n1,...,nk+1

= 1)P
(
Xu(S) = k,X(S) = k + 1 |BS

n1,...,nk+1
= 1
)

· fun1,...,nk+1
({x1, . . . , xk}).

Hence, by (3.12)–(3.14), the output in (iv)–(v) generates the correct marginal dis-
tribution of Xu

S .

4.6 Proof of Corollary 3.2

As
puS = P (X(S)−Xu(S) = 1)

we obtain immediately the first result in (3.20), and thereby the second result using
the spectral representation of K restricted to S × S.

As in step (v), assume that we have conditioned on BS
n1,...,nk

= 1, X(S) = Xu(S),
and N = n. Then, as noticed just before Theorem 3.2, ξuS = ξn1,...,nk;n (the “added
point”) has density |φSn(·)|2 w.r.t. νS. If we also condition on Xn1,...,nk,n, which is
given by Xn1,...,nk ∪ ξuS, the distribution of ηuS = ηn1,...,nk,n ∈ Xn1,...,nk,n (the “deleted
point”) is independent of ξuS, and ηuS has density

fηuS(v |BS
n1,...,nk

= 1, Xu(S) = X(S) = k,N = n) =
|Kn1,...,nk,n(u, v)|2
Kn1,...,nk,n(u, u)

w.r.t. νS.
Consequently, the density of ηuS when X(S) = Xu(S) is

fηuS(v,X(S) = Xu(S))

=
∑

k≥0

∑

(ni)k1

fη(v,B
S
n1,...,nk

= 1, X(S) = Xu(S) = k,N = n)

=
∑

k≥0

∑

(ni)k1

∑

n/∈{ni}ki=1

P(BS
n1,...nk

= 1)P(X(S) = Xu(S) = k |BS
n1,...nk

= 1)

· P(N = n |BS
n1,...nk

= 1, X(S) = Xu(S) = k)
|Kn1,...,nk,n(u, v)|2
Kn1,...,nk,n(u, u)

,

where
∑

(ni)k1

∑
n/∈{ni}ki=1

is interpreted as
∑∞

n=1 when k = 0. Setting
∏k

i=1 · · · = 1
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when k = 0, we have

P(BS
n1,...nk

= 1) =
(∏

`≥1

(1− λS` )
) k∏

i=1

λSni
1− λSni

,

P(X(S) = Xu(S) = k |BS
n1,...nk

= 1) =

∑
m/∈{n1,...,nk} λ

S
m|φSm(u)|2

K(u, u)
,

P(N = n |BS
n1,...nk

= 1, X(S) = Xu(S) = k) =
λSn|φSn(u)|2∑

m/∈{n1,...,nk} λ
S
m|φSm(u)|2 ,

so

fηuS(v,X(S) = Xu(S))
/∏

`≥1

(1− λS` )

=
∑

k≥0

∑

(ni)k1

( k∏

i=1

λSni
1− λSni

) ∑

n≥1,n/∈{n1,...,nk}

λSn|φSn(u)|2
K(u, u)

|Kn1,...,nk,n(u, v)|2
Kn1,...,nk,n(u, u)

=
∑

k≥0

∑

(ni)k1

∑

n/∈{ni}ki=1

( k∏

i=1

λSni
1− λSni

) λSn
1− λSn

(1− λSn)|φSn(u)|2
K(u, u)

|Kn1,...,nk,n(u, v)|2
Kn1,...,nk,n(u, u)

=
∑

k≥0

∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) k+1∑

i=1

(1− λSni)|φSni(u)|2
K(u, u)

|Kn1,...,nk+1
(u, v)|2

Kn1,...,nk+1
(u, u)

.

Similarly, the density of ηuS when X(S) 6= Xu(S) is given by

fηuS(v,X(S) 6= Xu(S))
/∏

`≥1

(1− λS` )

=
∑

k≥0

∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) k+1∑

i=1

λSni |φSni(u)|2
K(u, u)

|Kn1,...,nk+1
(u, v)|2

Kn1,...,nk+1
(u, u)

.

Thus, the density of ηuS is given by

fηuS(v) = fη(v,X(S) = Xu(S)) + fη(v,X(S) 6= Xu(S))

=
(∏

`≥1

(1− λS` )
)∑

k≥0

∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) k+1∑

i=1

|φSni(u)|2
K(u, u)

|Kn1,...,nk+1
(u, v)|2

Kn1,...,nk+1
(u, u)

=
(∏

`≥1

(1− λS` )
)∑

k≥0

∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) |Kn1,...,nk+1
(u, v)|2

K(u, u)
,

where the last equality follows from the fact that Kn1,...,nk+1
(u, u) =

∑k+1
i=1 |φSni(u)|2.
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Further,

∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) |Kn1,...,nk+1
(u, v)|2

K(u, u)

=
∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) |∑k+1
i=1 φ

S
ni

(u)φSni(v)|2
K(u, u)

=
∑

(ni)
k+1
1

(k+1∏

i=1

λSni
1− λSni

) k+1∑

j=1

φSnj(u)φSnj(v)

∑k+1
i=1 φ

S
ni

(u)φSni(v)

K(u, u)

=
∑

(ni)k1

∑

n≥1:
n/∈{n1,...,nk}

( k∏

i=1

λSni
1− λSni

) λSn
1− λSn

(
φSn(u)φSn(v)

)

·

(
φSn(u)φSn(v) +

∑k
i=1 φ

S
ni

(u)φSni(v)
)

K(u, u)

=
1

K(u, u)

∑

n≥1

λSn
1− λSn

|φSn(u)|2|φSn(v)|2
∑

n1<···<nk:
ni 6=n,i=1,...,k

( k∏

i=1

λSni
1− λSni

)

+
1

K(u, u)

∑

n≥1

λSn
1− λSn

φSn(u)φSn(v)

·
∑

n1<···<nk:
ni 6=n,i=1,...,k

( k∏

i=1

λSni
1− λSni

) k∑

i=1

φSni(u)φSni(v).

Hence, using the fact that for any multiple distinct m1, . . . ,mj ∈ N,

∑

k≥0

∑

n1<···<nk:
ni /∈{m1,...,mj}

( ∏

`≥1:
` 6=m1,...,mj ,n1,...,nk

(1− λS` )
) k∏

i=1

λSni

=
∑

k≥0

∑

n1<···<nk:
ni /∈{m1,...,mj}

P
( k⋂

i=1

{Bni = 1} ∩
⋂

`6=m1,...,mj ,n1,...,nk

{B` = 0}
)

= 1,
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we obtain

fηuS(v)

=
1

K(u, u)

∑

n≥1

λSn|φSn(u)φSn(v)|2
∑

k≥0

∑

n1<···<nk:
ni 6=n

( ∏

`≥1:
`6=n,n1,...,nk

(1− λS` )
) k∏

i=1

λSni

+
∑

n≥1

λSnφ
S
n(u)φSn(v)

( ∏

`≥1,`6=n
(1− λS` )

)∑

k≥0

∑

n1<···<nk:
ni 6=n

( k∏

i=1

λSni
1− λSni

)

·
∑k

i=1 φ
S
ni

(u)φSni(v)

K(u, u)

=

∑
n≥1 λ

S
n|φSn(u)φSn(v)|2
K(u, u)

+

∑
n≥1 λ

S
nφ

S
n(u)φSn(v)

∑
m≥1:
m 6=n

λSmφ
S
m(u)φSm(v)

K(u, u)

·
∑

k≥0

∑

n1<···<nk−1:
ni 6=n,m

( ∏

`≥1:
`6=n,m,n1,...,nk−1

(1− λS` )
) k−1∏

i=1

λSni

=

∑
n≥1 λ

S
n|φSn(u)φSn(v)|2
K(u, u)

+

∣∣∑
n≥1 λ

S
nφ

S
n(u)φSn(v)

∣∣2

K(u, u)
−
∑

n≥1(λSn)2|φSn(u)φSn(v)|2
K(u, u)

=

∑
n≥1 λ

S
n(1− λSn)|φSn(u)φSn(v)|2

K(u, u)
+
|K(u, v)|2
K(u, u)

.

Thus (3.22) is verified.
If X(S) 6= Xu(S), then ξuS = ∅. When X(S) = Xu(S), ξuS consists of a single

point with density

fξuS(v,X(S) = Xu(S))

=
∑

k≥0

∑

(ni)k1

∑

n/∈{ni}ki=1

P(BS
n1,...nk

= 1)P(Xu(S) = X(S) = k |BS
n1,...nk

= 1)

· P(N = n |BS
n1,...nk

= 1, Xu(S) = X(S) = k)

· fξuS(v |N = n,Xu(S) = X(S) = k,BS
n1,...,nk

= 1).
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Then, by (3.15)–(3.16) and step (v), we obtain

fξuS(v,X(S) = Xu(S))

=
∑

k≥0

∑

(ni)k1

( k∏

i=1

λSni

) ∏

`≥1:
`/∈{ni}ki=1

(1− λS` )
∑

n≥1:
n/∈{ni}ki=1

λSn|φSn(u)|2
K(u, u)

|φSn(v)|2

=
∑

n≥1

λSn|φSn(u)|2
K(u, u)

|φSn(v)|2
∑

k≥0

∑

n1<···<nk:
ni 6=n

( k∏

i=1

λSni

) ∏

`≥1,`/∈{n1,...,nk}
(1− λS` )

=
∑

n≥1

λSn(1− λSn)|φSn(u)|2
K(u, u)

|φSn(v)|2
∑

k≥0

∑

n1<···<nk:
ni 6=n

( k∏

i=1

λSni

)

·
∏

`≥1,`/∈{n1,...,nk,n}
(1− λS` )

=
∑

n≥1

λSn(1− λSn)|φSn(u)|2
K(u, u)

|φSn(v)|2.

Thereby, (3.21) follows.
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