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Abstract

Statistical inference for highly multivariate point pattern data is challenging
due to complex models with large numbers of parameters. In this paper we
develop numerically stable and efficient parameter estimation and model se-
lection algorithms for a class of multivariate log Gaussian Cox processes. The
methodology is applied to a highly multivariate point pattern data set from
tropical rain forest ecology.
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1 Introduction

Highly multivariate point pattern data are becoming increasingly common. Tropical
rain forest ecologists, for example, collect data on locations of thousands of trees
belonging to hundreds of species. Likewise, huge space-time data sets regarding
scene, time and type of crimes are recorded and made publicly available for many
major cities across the world. The basic tools for inferring dependencies from mul-
tivariate point pattern data are bivariate summary statistics like cross K and cross
pair correlation functions (e.g. Møller and Waagepetersen, 2003; Lan et al., 2012).
However, for highly multivariate point patterns it becomes very difficult to grasp the
joint information in the resulting very large number of bivariate summary statistics.
To better understand the multivariate dependence structure, parametric modeling
strategies are needed since such strategies enable researchers to formulate and as-
sess qualitative assumptions regarding the dependence structure. Moreover, concise
quantitative conclusions can be obtained from the estimated model parameters. See
also Section 2.4 in this paper.

Research on statistical modeling of multivariate point patterns has mainly con-
sidered bivariate or trivariate point patterns. Some exceptions are Diggle et al.
(2005) and Baddeley et al. (2014) who considered four- and six-variate multivariate
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Poisson processes and more recently, Jalilian et al. (2015) who considered five-variate
product shot-noise Cox processes and Waagepetersen et al. (2016) who considered
nine-variate log Gaussian Cox processes (LGCPs). To the best of our knowledge,
the only truly high-dimensional analysis was conducted by Rajala et al. (2018) who
introduced a multivariate Gibbs point process and applied it to a point pattern data
set containing locations of 83 species of rain forest trees.

Gibbs and Cox point processes are very different and complementary model
classes which each have their virtues, see e.g. the review in Møller and Waagepeter-
sen (2007). Gibbs models have clear interpretations in terms of their Papangelou
conditional intensities while their intensity functions are not tractable. In contrast,
shot-noise Cox processes and LGCPs have tractable intensity and second order joint
intensity functions which is advantageous in terms of marginal interpretations. Sim-
ilar to generalized linear mixed models, the specific type of multivariate LGCP
considered by Waagepetersen et al. (2016) further enables decomposition of the log
random intensity function into different sources of variation with natural interpre-
tations.

A particular challenge regarding modeling of highly multivariate point patterns
is that models easily become very complex with large numbers of parameters. This
leads to considerable computational challenges. Waagepetersen et al. (2016) em-
ployed a standard quasi-Newton optimization algorithm which is not very fast nor
computationally stable and this is the main reason why they did not analyse more
than nine species jointly. Their discussion section mentioned the possibility of using
regularization to enhance interpretability of fitted models and numerical stability
of estimation. This is the approach followed by Rajala et al. (2018) who used the
group LASSO in the context of Gibbs processes.

The objective of this paper is to expand the applicability of the multivariate
LGCP models defined by Waagepetersen et al. (2016) by developing a numerically
stable and efficient parameter estimation methodology. This significally adds to
the toolbox of spatial statistics since users are then free to choose among highly
multivariate Gibbs and Cox processes according to their preferences. We achieve
this by introducing regularization for certain parts of the multivariate LGCP and
by constructing efficient convex optimization algorithms exploiting the particular
structure of the estimation objective function.

The rest of the article is organized as follows. In Section 2, we detail the multi-
variate LGCP model considered in this study. The new estimation methodology is
developed in Section 3 and in Appendices A-B, and we test it in a simulation study in
Section 4 and on tropical rain forest data in Section 5. In particular we demonstrate
the potential for highly multivariate point patterns by analyzing a point pattern
of locations of 86 species of rain forest trees. Section 6 contains some concluding
remarks.

2 Multivariate log Gaussian Cox processes

A multivariate LGCP (see Møller et al., 1998) is a multivariate point process X =
(X1, . . . , Xp), p > 1, where each component Xi, i = 1, . . . , p, is a Cox process driven
by a log Gaussian random intensity function Λi. Conditionally on the Λi, the Xi
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are independent Poisson point processes each with intensity function Λi. As in
Waagepetersen et al. (2016), we assume that the random intensity functions are of
the form Λi(u) = exp[Zi(u)] with

Zi(u) = µi(u) + Yi(u) + Ui(u), u ∈ R2. (2.1)

The terms µi are deterministic and typically given in terms of regressions on observed
covariates. The terms Yi and Ui are zero-mean Gaussian fields. The Yi can be
mutually correlated while the Ui are assumed to be independent. The Ui are assumed
to be stationary with variances σ2

i > 0 and correlation functions ci, i = 1, . . . , p. For
the Yi we assume that

Yi(u) =

q∑

l=1

αilEl(u)

where q ≥ 1, α = [αij]ij is a p × q real valued coefficient matrix, and the El,
l = 1, . . . , q, are independent zero-mean stationary Gaussian fields with variance
one. In our applications we also consider the case q = 0 meaning that the Yi
are omitted in (2.1). The Yi can be interpreted as effects of unobserved spatial
covariates while the Ui represent sources of clustering which are specific to each
type of points. We denote by rl the correlation function of El. For the correlation
functions rl and ci we introduce isotropic parametric models rl(·;φl) = r(‖·‖/φl) and
ci(·;ψi) = c(‖ · ‖/ψi), where φl and ψi are correlation scale parameters. Specifically,
we consider in this paper exponential correlation functions r(t) = c(t) = exp(−t),
t ≥ 0, although many other choices are available (Chilès and Delfiner, 1999).

2.1 Intensity function and pair correlation function

Let αi· denote the ith row of α. Following Møller et al. (1998), the intensity function
ofXi is ρi(u) = exp

[
µi(u)+αi·αT

i·/2+σ2
i /2
]
while the cross pair correlation function

for the pair Xi and Xj is

gij(t) = exp
[ q∑

l=1

αilαjlrl(t;φl) + 1(i = j)σ2
i ci(t;ψi)

]
(2.2)

for t ≥ 0. Consider two spatial locations u and v. Then ρj(v)gij(‖v−u‖) represents
the cross-Palm intensity function (Coeurjolly et al., 2017) and can be interpreted as
the intensity function of Xj conditional on that u ∈ Xi. Hence gij(‖v − u‖) > 1
(< 1) implies that presence of a point fromXi at u increases (decreases) the intensity
of Xj at v. Thus

∑q
l=1 αilαjlrl(t) < 0 (> 0) implies repulsion (attraction) between

points of Xi and Xj at lag t. Similarly, a large value of
∑q

l=1 α
2
ilrl(t) + σ2

i ci(t) leads
to strong attraction among points of Xi separated by a lag t.

2.2 Kernel estimation of cross pair correlation functions

Non-parametric kernel estimates of the gij are given by

ĝij(t) =
1

2πt

∑

u∈Xi∩W,
v∈Xj∩W,

u6=v

kb(t− ‖u− v‖)
ρ̂i(u)ρ̂j(v)|W ∩Wu−v|

, t > 0, (2.3)
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where W is the observation window, kb is a kernel function depending on a band-
width b > 0, | · | denotes area and Wh denotes the translate of W by the vector
h ∈ R2 (Møller and Waagepetersen, 2003). The quantities ρ̂i and ρ̂j are estimates
of the intensity functions of Xi and Xj, typically obtained from regression mod-
els depending on observed covariates through maximizing the composite likelihood
(see e.g. Waagepetersen, 2007; Møller and Waagepetersen, 2007) or its regularized
versions (e.g. Thurman et al., 2015; Choiruddin et al., 2018).

We use the non-parametric kernel estimates as response variables in a least
squares estimation object function (Section 2.3) and in this context we believe that
bias is more of a concern than variance. Hence bandwidths should be chosen in or-
der to avoid oversmoothing. For the simulation studies in Section 4 the bandwidth
was chosen after visual inspection of kernel estimates confirmed that the resulting
estimates were not oversmoothed. The same was done for the estimates of the gij,
i 6= j, in the data examples in Section 5. In case of i = j the data-driven method
in Jalilian and Waagepetersen (2018) was used for choosing the bandwidths. Unfor-
tunately a similar method is not yet available in case of the cross pair correlation
functions with i 6= j.

2.3 Least squares estimation

Let θ be the parameter vector consisting of the components of α, σ2 = (σ2
1, . . . , σ

2
p)

T,
φ = (φ1, . . . , φq)

T, and ψ = (ψ1, . . . , ψp)
T. Let further

βij(α,σ
2) = (αi1αj1, . . . , αiqαjq)

T, i 6= j,

βii(α,σ
2) = (α2

i1, . . . , α
2
iq, σ

2
i )

T. (2.4)

The objective function used by Waagepetersen et al. (2016) for parameter estimation
is of the form

Q(θ) =

p∑

i,j=1

‖Yij −Xij(φ,ψ)βij(α,σ
2)‖2, (2.5)

where
Yij = (

√
wij1 log ĝij(t1), . . . ,

√
wijL log ĝij(tL))T,

ĝij(tk), k = 1, . . . , L, are obtained using (2.3) for lags 0 < t1 < t2 < . . . < tL
and the wij ≥ 0 are non-negative weights. The matrix Xij(φ,ψ) is L × q (i 6= j)
or L × (q + 1) (i = j) with rows √wijkr(tk;φ) (i 6= j) or

√
wiik[r(tk;φ), ci(tk;ψi)]

(i = j), k = 1, . . . , L, where

r(tk;φ) = (r1(tk;φ1), . . . , rq(tk;φq)).

Waagepetersen et al. (2016) minimizedQ(θ) using a standard quasi-Newton method.

2.4 Inference regarding multivariate dependence structure

The model (2.1) enables us to decompose the covariances of the latent Gaussian
fields Zi into contributions from the common fields El and the type-specific fields
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Ui. Specifically, Waagepetersen et al. (2016) considered for each type i and lag t the
proportion of variance (PV) due to the common fields:

PVi(t) =
cov{Yi(u), Yi(u + h)}
cov{Zi(u), Zi(u + h)}

=

∑q
l=1 α

2
ilrl(t;φl)∑q

l=1 α
2
ilrl(t;φl) + σ2

i ci(t;ψi)
, ‖h‖ = t.

These are useful e.g. for grouping species based on how much of the variation is
due to common factors respectively type-specific factors. Furthermore, from α and
σ2 we can compute the matrix of lag zero inter-type covariances ααT due to the
common latent fields with ijth entry

cov{Yi(u), Yj(u)} = αi.α
T
j.

as well as the lag zero covariances between the fields including both common and
type-specific effects,

cov{Zi(u), Zj(u)} = αi.α
T
j. + 1[i = j]σ2

i . (2.6)

A row αi· informs on the dependence of Xi on the common latent fields. Considering
the norms of differences ‖αi.−αj.‖, we are able to group the different types of point
patterns according to their dependence on the latent factors El.

As discussed in Waagepetersen et al. (2016), the distribution of our multivariate
LGCP is invariant to 1) simultaneous permutation of columns in α and correspond-
ing φi’s and 2) multiplication of a column in α by −1. Thus we can not identify
individual parameters αil and φl without imposing constraints on the parameter
space.

In our simulation studies in Section 4, we therefore follow Waagepetersen et al.
(2016) by restricting attention to identifiable functions of α and ψ such as the
aforementioned proportions of variances and covariances and norms of differences
between rows of α. In the application, we also consider the percentage of zero entries
when α is estimated using elastic net regularization with ξ > 0, see next section.
The more zeros, the less complex is the dependence structure of the multivariate
LGCP.

3 Regularized least squares estimation

The parameter vector θ is of potentially very high dimension, especially due to the
many components of the p×q parameter matrix α. To enhance interpretability and
numerical stability of estimation we suggest to introduce regularization and thus
consider the regularized least squares criterion

Qλ(θ) = Q(θ) + λ

p∑

i=1

q∑

l=1

p(αil) (3.1)

whereQ(θ) is given by (2.5), λ is a nonnegative tuning parameter and p(·) is a convex
penalty function. We consider in the following the elastic net penalization (Zou and
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Hastie, 2005) p(αil) = (1 − ξ)α2
il/2 + ξ|αil|, 0 ≤ ξ ≤ 1, which embraces LASSO

(Tibshirani, 1996) and ridge regression (Hoerl and Kennard, 1988) techniques by
setting ξ = 1 or ξ = 0 respectively.

Using regularization in a related factor analysis was previously suggested by
Choi et al. (2010). Their simpler setting corresponds to directly observing vectors
(Zi(uk))

p
i=1, k = 1, . . . , n, where Zi(uk) is modeled as in (2.1) but with zero spatial

correlation. In contrast, our Zi are unobserved with spatial correlation modeled via
the correlation functions rl and ci. Thus the computational methodology suggested
by Choi et al. (2010) is not applicable in our situation.

To minimize (3.1) with respect to θ, we employ a cyclical block descent algorithm
where σ2, α, φ and ψ are updated in turn. The updating is iterated until relative
function convergence of the criterion (3.1). The details of the block updates are
given in the following two sections and Appendices A–B. Pseudo-code for the full
algorithm is given in Appendix B.3.

3.1 Update for σ2 and α

Our strategy for updating σ2 and α is to use a least squares update of σ2
i for i =

1, . . . , p followed by an update of αi· using a cyclical coordinate descent algorithm.
The motivation for updating rows αi· instead of other subsets of α is that the update
of αi·, keeping all other parameters fixed, is quite close to a standard least squares
problem, as will be evident in the following.

The relevant part of the objective function for the updates of σ2
i and αi· given

all other parameters is

Qλ,i(αi·, σ
2
i ) = 2

p∑

j=1
j 6=i

‖Yij − X̃ijαi·‖2

+ ‖Yii −Xiiβii(α,σ
2)‖2 + λ

q∑

l=1

p(αil) (3.2)

where the lth column of X̃ij is the lth column of Xij multiplied by αjl. In other
words, for i 6= j, X̃ij = XijDiag(αj1, . . . , αjq) where Diag(αj1, . . . , αjq) is the diag-
onal matrix with diagonal entries αj1, . . . , αjq. For ease of notation we here omit
the dependence of X̃ij and Xii on the fixed parameters ψ and φ. Note that (3.2)
is equivalent to a standard least squares objective function for αi· except for the
middle term that depends on α2

il, l = 1, . . . , q, cf. (2.4).
The minimization of Qλ,i with respect to σ2

i only involves the middle term
in (3.2). This is a standard least squares problem except that we require σ2

i to
be non-negative. Thus,

σ̂2
i = max{0, arg min

σ2
i

Qλ,i(αi·, σ
2
i )}.

An explicit formula for this update is given in Appendix B.1.
To update αi· (given σ2

i and all other parameters), we use a so-called proximal
Newton update (Lee et al., 2014, and Appendix A) where the middle term in (3.2) is
replaced by a quadratic approximation around the current value α(k)

i· . We denote by
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Q̂λ,i(αi·, σ2
i |α(k)

i· ) the resulting approximate objective function (to be detailed in the
next paragraph). Since Q̂λ,i(αi·, σ2

i |α(k)
i· ) is a regularized linear least squares objec-

tive function, minimization can be performed using a standard coordinate descent
algorithm (see e.g. Hastie et al., 2015).

A very simple quadratic approximation of the middle term of (3.2) is

‖Yii −Xiiβii(α,σ
2)‖2 ≈ ‖Yii − X̃k

ii[α
T
i· , σ

2
i ]

T‖2,

where X̃k
ii = XiiDiag

{
α(k)
i1 , . . . , α

(k)
iq , 1

}
. Nevertheless, the curvature of this quadratic

approximation does not match the curvature of the original term at α(k)
i· . Instead

we use a second-order Taylor approximation as detailed in the Appendix A.1 which
results in the explicit expression for Q̂λ,i(αi·, σ2

i |α(k)
i· ) given by

Qλ,i(αi·, σ
2
i ) ≈ Q̂λ,i(αi·|α(k)

i· )

=

p∑

j=1

‖Y ∗ij −X∗ijαi·‖2 + λ

q∑

l=1

p(αil), (3.3)

where
Y ∗ij =

√
2Yij, for i 6= j,

X∗ij =
√

2XijD(α(k)
j· ), for i 6= j,

Y ∗ii = Yii +Xii,·(1:q)α
2,(k)
i· −Xii,·(q+1)σ

2
i ,

X∗ii = 2Xii,·(1:q)D(α(k)
i· ) (3.4)

and Xii,·(1:q) denotes the first q columns in Xii.
We obtain

α̂i· = arg min
αi·

Q̂λ,i(αi·|α(k)
i· )

using coordinate descent with an explicit formula for the updates given in Ap-
pendix B.2. Further, define for some t > 0,

α(k+1)
i· = α(k)

i· + t(α̂i· −α(k)
i· ). (3.5)

Thus, α(k+1)
i· is obtained using (α̂i· − α(k)

i· ) as a search direction with step size
controlled by t. Following Lee et al. (2014, Proposition 2.3), one can show (see
Appendix A.2) that Qi,λ(α

(k+1)
i· ) < Qi,λ(α

(k)
i· ) if t is small enough. That is, if the

minimization of Q̂i,λ is combined with a line search the resulting update is guaranteed
to decrease the objective function Qi,λ written in (3.2).

3.2 Update for ψ and φ

To update φ and ψ given all other parameters, we first reparameterize the objective
function in terms of f = (log φ1, . . . , log φq)

T and s = (logψ1, . . . , logψp)
T. We then

update f and s in turn using a standard quasi-Newton update as implemented in
the optim routine in the R language with method bfgs (Broyden-Fletcher-Goldfarb-
Shanno update). Finally, we transform back using the exponential to get updates
of φ and ψ.
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We also tried other options: joint update of (φ,ψ) without log-transformation
but introducing box constraints to avoid negative values and joint quasi-Newton
update of the log-transformed parameters (f , s). For simulated data examples, the
option with separate updates of f and s performed best.

3.3 Initialization

We initialize the components α by a sample of independent random normals with
mean zero and standard deviation 0.05 while we choose 1 for the initial values of
the components in σ2. For φ and ψ we choose initial values that depend on the
scale of the observation window to avoid that the corresponding covariance functions
become essentially constant equal to zero (too small initial values) or to one (too
large initial values). For the unit square observation window, for example, the
initial values for φ and ψ were chosen randomly from the uniform distribution on
[0.01, 0.05]. Regarding the choice of weights wijk introduced in Section 2.3, we follow
arguments by Waagepetersen et al. (2016) and fix wijk = ĝij(tk)/2 for i 6= j and
wiik = ĝii(tk) for i, j = 1, . . . , p and k = 1, . . . , L.

3.4 Strategy to determine q and regularization parameters
λ and ξ

In our applications we consider just a few values ξ = 0 (ridge), ξ = 0.5 (mix of ridge
and LASSO, i.e. elastic net) and ξ = 1 (LASSO). For each of the values of ξ we use
a two-dimensional K-fold cross validation (CV) approach to select optimal values
λopt and qopt among prespecified values λ1, . . . , λM and q1, . . . , qN (e.g. Hastie et al.,
2013, Chapter 7). The procedure is as follows.

1. We split indices ijk (i, j = 1, . . . , p and k = 1, . . . , L) into K sets S1, . . . , SK
(see details below).

2. For each λ ∈ {λ1, . . . , λM} and q ∈ {q1, . . . , qN}, we obtain an estimate θ̂c by
minimizing equation (3.1) with wijk replaced by 0 for ijk ∈ Sc, c = 1, . . . , K.
The CV score for λ and q is then obtained by

CV(λ, q) =
1

K

K∑

c=1

CVc, (3.6)

where CVc =
∑

ijk∈Sc(Yijk − Ŷijk(θ̂c))2 and Ŷij(θ̂c) = Xij(φ̂c, , ψ̂c)βij(α̂c, σ̂
2
c).

3. To obtain λopt and qopt, we minimize CV(λ, q) w.r.t λ and q, i.e.,

(λopt, qopt) = arg min
m=1,...,M
n=1,...,N

CV(λm, qn). (3.7)

The sets Sc in Step 1 need to be chosen carefully. First, since log(ĝijk) and log(ĝijk′)
are strongly correlated when k and k′ are close, we leave out blocks of consecutive
indices. Second, we do not include diagonal indices iik in the sets Sc since values
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Yiik include contributions from the type-specific random fields. The diagonal values
thus do not provide so much information about q and omission of these values
further makes the estimation procedure less stable regarding σ2 and ψ. So, to
determine each subset Sc, we arrange the ijk with i < j lexicographically in a
vector (121, 122, . . .) and split this vector into consecutive blocks of length b. These
blocks are then assigned to the different Sc at random.

The one standard error (1-SE) rule is an alternative way to select λ and q based
on the CV scores obtained from (3.6) (e.g. Hastie et al., 2013). In case of q fixed, the
1-SE rule chooses the largest λ for which the CV score is less than the smallest CV
score plus one standard deviation. In the case where both λ and q is to be selected,
we adapt the 1-SE rule by starting with (λopt, qopt) given by (3.7) and then choosing
(λ, q) to be the smallest q and largest λ possible such that the following condition
holds:

CV(λ, q) ≤ CV(λopt, qopt) + SE(λopt, qopt),

where

SE(λopt, qopt) =

√∑K
c=1(CVc − CV(λ, q))2

(K − 1)K
.

Hence, the 1-SE rule attempts to select the most simple model whose CV score is
within one standard error of the minimal CV score.

Finally, note that when ξ = 0.5 or ξ = 1 and λ > 0 is chosen, the resulting
estimate of α may contain columns that consist entirely of zeros. The effective
number qeff of columns in α then becomes smaller than qopt.

4 Simulation study

We conduct simulations under two settings of varying complexity with p either 5 or
10 as detailed in the following subsections. The aim is to evaluate the regularized
least squares technique for parameter estimation and the CV method to select q
and λ. The first setting is identical to the one used for the simulation study in
Waagepetersen et al. (2016). Under this setting, our objective in Section 4.1 is
to compare the estimates obtained using the new cyclical block descent (CBD)
algorithm developed in Section 3 with the method proposed by Waagepetersen et al.
(2016). In this regard, we consider values of q = 1, . . . , 5 and fix λ = 0 since
regularization was not used in Waagepetersen et al. (2016). Next, we consider in
Section 4.2 only the new algorithm with the objective of comparing different CV
options for selecting q and λ, cf. Section 3.4, and to study the effect of regularization.
Section 4.3 has the same objective as Section 4.2 but now under the more complex
second setting. In both simulation studies we use K = 8 for the CV and we only
consider the LASSO option (ξ = 1) for regularization.

To assess the parameter estimates, we consider the root mean squared errors
(RMSEs) of the estimates. For a real parameter ω and estimate ω̂, the RMSE is

RMSE(ω̂) =
√

E
(
(ω̂ − ω)2

)
.
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For each of the parameter matrices/vectors ααT, σ2, ψ, or the vector of proportions
of variances at lag 0 (PV), we evaluate the average of RMSEs for the components
in these quantities. For example, we compute the average of RMSEs for each entry
in the p× p matrix ααT.

4.1 Comparison of methods for least squares estimation

The first study follows the one in Waagepetersen et al. (2016) for which 200 point
patterns in W = [0, 1]2 are generated from a multivariate LGCP as defined in
Section 2, with p = 5 and q = 2. The true parameters are: σ2 = (1, 1, 1, 1, 1), φ =
(0.02, 0.1), ψ = (0.01, 0.02, 0.02, 0.03, 0.04) and

αT =

[√
0.5 1 −1 0 0
0 0 1 −1 0.5

]
.

The trend models µi(u) = mi are set such that the expected number of points is 1000
for each i = 1, . . . , 5. A uniform kernel with bandwidth 0.005 is used for the non-
parametric estimation of the cross pair correlation function at L = 25 equispaced
lags between 0.025 and 0.25.

For each simulation we compare two methods for minimizing (3.1) with λ = 0
and q ∈ {1, . . . , 5}:

1. The standard quasi-newton (SQN) optimization algorithm considered by Waa-
gepetersen et al. (2016) and implemented in the R package optimx. This algo-
rithm updates all parameters jointly.

2. The new CBD algorithm described in Section 3.

The comparison is in terms of minimization of the objective function, computing
time and RMSEs.

Table 1 reports the averages of the values of the minimized objective functions
and the computational times over the 200 simulations. All timings are carried out
on a Dell R740 2 x 14 cores (Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz) 768 GB

Table 1: Averages of the minimized objective function Q(θ) given by (2.5) and the com-
puting time (in seconds) based on 200 simulations from a multivariate LGCP (p = 5, q = 2),
modeled with q ∈ {1, 2, 3, 4, 5}, for two optimization methods.

Method q

1 2 3 4 5

Minimized objective function

SQN 6.61 4.76 5.39 6.32 4.51
CBD 3.55 1.96 1.73 1.62 1.57

Timings (seconds)

SQN 0.96 1.98 3.97 6.45 8.99
CBD 1.99 3.11 4.26 5.30 5.92
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RAM 2x200gb SSD 960 GB NVME. CBD performs considerably better in terms of
minimizing the objective function than SQN. SQN is somewhat faster than CBD for
small q but slower for larger q. The computing times for SQN grow quite quickly
with increasing q while the computing times seems more stable for CBD.

The RMSE results are shown in Table 2. For the calculation of the RMSEs, we
exclude small percentages of very extreme parameter estimates. These percentages
are reported in the last column of Table 2. CBD performs better than SQN since
smaller RMSEs are obtained and there are no outlying parameter estimates. For
SQN quite large percentages of extreme parameter estimates are observed.

Table 2: Average RMSEs for α̂α̂T, σ̂2, and ψ̂ (see explanation in text) obtained from 200
simulations from a multivariate LGCP (p = 5, q = 2), modeled with q ∈ {1, 2, 3, 4, 5}. The
estimates are obtained by minimizing (2.5) with two optimization methods. Last column
shows the percentages of outlying parameter estimates removed in the RMSE calculation.

Method q Outliers (%)
1 2 3 4 5

α̂α̂T

SQN 0.41 0.93 1.10 1.17 1.09 10.3
CBD 0.41 0.25 0.29 0.32 0.39 0

σ̂2

SQN 0.58 0.54 0.44 0.89 0.98 1.1
CBD 0.34 0.18 0.28 0.39 0.50 0

ψ̂

SQN 0.0791 0.1752 0.1337 0.4091 0.4566 11.5
CBD 0.0050 0.0091 0.0110 0.0005 0.0004 0

4.2 Assessment of cross validation and regularization with
p = 5

In this section we continue with the simulations from the previous setting but restrict
attention to CV selection of q and λ using CBD for optimization with the LASSO
regularization (ξ = 1). We select values of q in q = {1, 2, 3, 4, 5} and values of λ
in λ = {0, 10−3, . . . , 5} which has 20 elements and where the non-zero values of λ
grow log-linearly from log 10−3 to log 5. We consider three situations: (1) we select
q from q with λ = 0 fixed, thus least squares estimation (LSE) is performed; (2) we
search for the jointly optimal (q, λ); (3) we fix q = 5 and select λ from λ. Recall
that the selection of a relatively big λ may lead to zero columns in the α estimate.
We therefore consider the effective qeff as defined in Section 3.4. Thereby we can
also evaluate the selection of q in situation (3). In case of (2) we both consider the
minimum CV (Min) and the 1-standard error (1-SE) rules to select q and λ.

Table 3 shows the distribution of absolute distance between qeff and the true
q = 2. For LSE, using the Min rule, qeff coincides with the true q for 47% of the
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Table 3: Distribution of |qeff − 2| (in %) over 200 simulations from a multivariate LGCP
(p = 5, q = 2) using CBD for minimization.

LSE LASSO LASSO
q ∈ q, λ = 0 q ∈ q, λ ∈ λ q = 5 ;λ ∈ λ

|qeff − 2| 0 1 2 3 0 1 2 3 0 1 2 3

Min 47 28 13 12 42 32 21 5 16 37 30 17
1-SE 46 32 22 0 15 20 65 0 10 22 65 3

Table 4: Average RMSEs obtained from 200 simulations from a multivariate LGCP (p = 5,
q = 2) for different methods of selecting q and λ.

q = 2 LSE LASSO LASSO
λ = 0 λ ∈ λ q ∈ q, λ = 0 q ∈ q, λ ∈ λ q = 5, λ ∈ λ
Min Min Min 1-SE Min 1-SE Min 1-SE

α̂α̂T 0.26 0.33 0.33 0.40 0.36 0.54 0.40 0.54
σ̂2 0.42 0.54 0.54 0.58 0.56 0.75 0.63 0.76
ψ̂ 0.04 0.05 0.05 0.02 0.03 0.01 0.04 0.01
P̂V 0.28 0.31 0.32 0.35 0.33 0.41 0.37 0.42

simulations and differs at most by 1 from the true q in 75% of the simulations. The
results with the 1-SE rule are similar with percentages 46 and 78. LASSO with Min
rule for joint selection of (q, λ) performs similarly to LSE with the corresponding
percentages 42 and 74 %. With fixed q = 5 the percentages are reduced to 16% and
53 %. Using 1-SE rule, the LASSO forces many columns to be zero leading to quite
small percentages where |qeff − 2| ≤ 1.

RMSEs are reported in Table 4 for all three situations. In addition, in the first
columns, we consider the case fixed q = 2 assuming the true q is known. We first
note that LASSO gives worse results than LSE when q = 2 is fixed. In general, for
unknown q, LSE and LASSO perform quite similarly when the Min rule is used. The
results are worse when 1-SE is used and in particular for LASSO. When q is fixed
to 5 and only λ is selected the results are worse than for LASSO with q selected by
the Min rule while the results with q = 5 are similar to LASSO with q selected by
the 1-SE rule.

The overall impression is that LSE performs slightly better than LASSO, espe-
cially in estimating ααT. This may indicate that when p is relatively small, selection
of q with λ = 0 (LSE) already gives sparse results. Another reason that LASSO
does not improve RMSE may be that the true α is not that sparse having only 40%
zero components. Thus the bias introduced by regularization is not counterbalanced
by a reduction in variance. On the other hand, the performance of LSE and LASSO
are quite similar showing that the CV does a good job in selecting a small λ for the
LASSO. Following a comment by a referee, we also tried out a more sparse scenario
with

αT =

[
0.1 1 −1 0 0
0 0 1 0 −0.1

]
.
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In this case, as expected, LASSO outperforms LSE both in terms of selecting q and
in terms of RMSE for ααT (see supplementary material, page 26) when the Min rule
is used. In the next section we further explore LASSO and LSE in a more complex
setting with p = 10.

4.3 Assessment of cross validation and regularization with
p = 10

In this experiment, we study a more complex situation with a higher p and more
variation in the parameters. We simulate 200 point patterns from a multivariate
LGCP with p = 10, q = 4, W = [0, 1]2, and parameters

α =




√
0.5 0.10 −1 0
0 0 −0.70 1

0 −0.15
√

0.5 0.10
−1 0 0 0
−0.70 1 0 −0.15√

0.5 0.10 −1 0
0 0 −0.70 1

0 −0.15
√

0.5 0.10
−1 0 0 0
−0.70 1 0 −0.15




,

φ = (0.02, 0.03, 0.03, 0.05),

σ2 = (1, 1, 1.5, 1, 0.2, 0.2, 1, 1.5, 1.5, 1.5)T,

and
ψ = (0.01, 0.02, 0.02, 0.03, 0.04, 0.04, 0.05, 0.06, 0.06, 0.07)T.

The settings for the trend models, the kernel estimation and the CV are as in the
previous simulation study except that q = {0, . . . , 8}. In α, 40% of the components
are zeros and 20% are of absolute value less than 0.15. The remaining components
have absolute value greater than 0.7.

Table 5 shows the distribution of the absolute distance |qeff − 4| between qeff

and the true q = 4. Considering first the Min rule, with LSE, qeff concurs with the
true q in 19% of the simulations and differs at most by 2 from the true q in 58% of
the simulations. The corresponding percentages are 14% and 65 % for LASSO, and
6% and 41 % for LASSO with q = 8 fixed. In this situation, the 1-SE rule seems
advantageous for selecting q. For example, the percentage of qeff ’s which differ from
the true q by at most 2 improves from 58% to 83 % for LSE, from 65% to 80 % for
LASSO, and from 41% to 68 % for LASSO with fixed q = 8.

Table 6 details the RMSE results. The superiority of the 1-SE rule when selecting
q does not translate into better results in terms of RMSE except for LASSO with
fixed q = 8 where better results are obtained with 1-SE than with Min. The best
results are obtained with LASSO using the Min rule for selecting q and λ. This
indicates that regularization is indeed helpful in complex settings with relatively
large p.
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Table 5: Distribution of |qeff − 4| from 200 simulations of a multivariate LGCP (p = 10
and q = 4).

LSE LASSO LASSO
q ∈ q, λ = 0 q ∈ q, λ ∈ λ q = 8 ;λ = λ

|qeff − 4| 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Min 19 21 18 19 23 14 31 20 19 16 6 15 20 21 38
1-SE 27 36 20 12 5 22 37 21 8 12 21 22 25 11 21

Table 6: Average of RMSEs obtained from 200 simulations from a multivariate LGCP
(p = 10, q = 4) for different methods of selecting q and λ.

LSE LASSO q = 8 (LASSO)

Min 1-SE Min 1-SE Min 1-SE

α̂α̂T 0.50 0.67 0.44 0.48 0.78 0.51
σ̂2 0.58 0.89 0.54 0.70 0.88 0.76
ψ̂ 0.02 0.02 0.01 0.02 0.02 0.02
P̂V 0.35 0.35 0.34 0.39 0.35 0.40

Based on the simulation studies, for analyzing highly multivariate point pattern
data, we recommend to use regularization with the Min rule for selecting q and λ.

5 Application

In a 50-hectare 1000 m× 500 m region of the tropical moist forest of Barro Colorado
Island (BCI) in central Panama, censuses have been carried out where all free-
standing woody stems with at least 10 mm diameter at breast height were identified,
tagged, and mapped, resulting in maps of over 350 000 individual trees with around
300 species (see e.g. Hubbell and Foster, 1983; Condit et al., 1996; Condit, 1998). In
addition, 13 spatial covariates are also available containing topological attributes and
soil nutrients (see supplementary material, page 26). Our main objective is to study
the impact of regularization and the computational feasibility of our method. We
first consider 9 tree species, Psychotria, Protium t., Capparis, Protium p., Swartzia,
Hirtella, Tetragastris, Garcinia, Mourmiri, with intermediate abundances ranging
from 2500 to 7500 and previously analyzed byWaagepetersen et al. (2016). The plots
of locations of each species are shown in Figure 1 in the supplementary material.
The main aim of this analysis is to compare the results with our new algorithm to
those obtained by Waagepetersen et al. (2016). Secondly, to test our algorithm in a
more challenging situation, we analyze a highly multivariate point pattern involving
species of trees with at least 400 individuals, resulting in 86 species.

For each species, we use maximum composite likelihood to fit log-linear regres-
sion models involving the spatial covariates for the µi-terms in (2.1). We then
estimate the cross pair correlation function using (2.3). Therefore, the variation due
to observed covariates are filtered out and the non-parametric estimates of cross
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pair correlation function hence capture the residual correlation due to unobserved
covariates, species-specific factors, and any other sources. The bandwidths for the
gii were chosen using the data-driven method in Jalilian and Waagepetersen (2018).
The bandwidth 2 was chosen for the gij, i 6= j, after visual inspection of kernel
estimates to avoid oversmoothing of the resulting estimates (see discussion in Sec-
tion 2.2).
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Figure 1: CV scores for 9-species data analysis. Left: minλ∈λ log CV(q, λ) against q for
ridge, elastic net and LASSO and log CV(q, 0) against q for LSE. Middle: image plot of
CV(q, λ) in case of ridge (lighter color corresponds to smaller CV score). Right: CV(6, λ)
plotted against log λ in case of ridge.
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Figure 2: Left: Estimated inter-species correlations corr{Zi(u), Zj(u)} at lag zero. Right:
9-species clustering based on ‖α̂i. − α̂j.‖.

5.1 Application with 9 species

For each value of ξ = 0, 0.5, 1 we apply 8-fold CV to select q and λ where λ ∈ λ =
{0, 10−3, . . . , 5} as in the simulation studies and q ∈ q = {0, . . . , 9}. The upper
left plot in Figure 1 shows for each ξ, minλ∈λ log CV(q, λ) as a function of q. For
comparison with Waagepetersen et al. (2016) we also show in this plot log CV(q, 0)
against q (LSE). A general pattern for ridge, elastic net and LASSO is that the
CV scores decrease quite quickly as a function of q until around q = 4 and after
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that the CV scores stabilize or decrease slowly. The CV scores for ridge (ξ = 0)
are consistently smaller than those for elastic net (ξ = 0.5) and LASSO (ξ = 1).
Hence we select ξ = 0. The minimal CV score for ξ = 0 is obtained with q = 6 and
λ = 0.4693.

For comparison, the minimal CV score with LASSO is obtained with q = 8 and
λ = 0.11. However, in this case, the resulting effectively selected qeff is three since
the resulting estimate of α has 5 zero columns. In case of LSE (λ = 0), the CV
procedure chooses q = 1. The second-smallest CV score with LSE is obtained with
q = 4 which was the value chosen in Waagepetersen et al. (2016). The difference in
CV results for LSE compared with Waagepetersen et al. (2016) may be due to our
new more efficient optimization algorithm, cf. the comparison in Section 4.1.

The middle plot in Figure 1 is an image plot of the CV scores for ridge (ξ = 0)
where darker color corresponds to smaller CV score. The development of the CV
scores across values of q for fixed λ appears quite erratic with several local minima.
In contrast, for each q there appears to be a well-defined minimum for λ. As an
example, the right plot in Figure 1 shows CV(6, λ) plotted against log λ (where we
replace the undefined log 0 by log 5× 10−4). The computing time required to run
the CV method with ξ = 0 is 2.4 hours with the same processor as used in the
simulation study. Approximately 16 seconds is required to estimate the parameters
for the 9-species application using ridge with q = 6 and λ = 0.4693.
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Figure 3: CV scores for 86-species data analysis. Left: minλ∈λCV(q, λ) against q for
ridge, elastic net and LASSO and CV(q, 0) against q for LSE. Middle: image plot of
CV(q, λ) in case of ridge (lighter color corresponds to smaller CV score). Right: CV(4, λ)
plotted against log λ in case of ridge.

The results regarding the multivariate dependence structure of the 9 species are
qualitatively rather similar to those obtained by Waagepetersen et al. (2016). The
estimated inter-species correlations corr{Zi(u), Zj(u)}, cf. (2.6), are shown in the left
plot of Figure 2. Most of the pairs of species have a positive correlation. However,
the correlations between Psychotria and the other species are mainly close to zero.
The right plot in Figure 2 shows a hierarchical clustering of the species based on the
estimated coefficient rows αi·. Compared with Waagepetersen et al. (2016) where
Psychotria was isolated, it forms a cluster with Capparis in the current analysis.
The clustering pattern may have some relation to the families of species as shown
by the cluster of Protium p., Protium t. and Tetragastris which come from the same
family (see Table 9 in the supplementary material).
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5.2 Application with 86 tree species

For the 86-species application, we apply the 8-fold CV procedure with ξ = 0, 0.5, 1
and λ ∈ {0, 10−3, . . . , 5} as in the previous section and q ∈ {0, . . . , 10}. Figure 3 is
similar to Figure 1. The left plot shows that the CV scores for LASSO, ridge and
elastic net are very similar for all q while LSE tends to have worse CV scores for
large q. For all types of regularization, the smallest CV score is obtained for q = 4
with slightly smallest CV score for ridge. The remaining plots are obtained with
ξ = 0. The image plot of CV scores in the middle plot looks much smoother than
in the 9 species case. The right plot shows a minimum for λ = 5 given q = 4. Note
that to check that λ = 5 is indeed a (local) minimum we extended the CV for ridge
and q = 4 to additional values of λ ranging from 6 to 10. For LASSO and elastic
net the optimal λ values are 1.21 and 1.94, respectively, given q = 4.

The computing time for the CV is 6.2 hours for ξ = 0 and the computing
time to estimate the parameters for the chosen q = 4 and λ = 5 is 3.3 minutes.
Considering the ridge results, we model 86 × 87/2 = 3741 distinct pair and cross
pair correlation functions using only 6 × 86 + 4 = 520 parameters. For LASSO or
elastic net respectively 507 or 510 parameters are used since 13 or 10 parameters
were set to zero in the estimated α with LASSO or elastic net. Thus we can indeed
obtain a sparse model for the given data.

Table 7 shows the distribution of estimated inter-species correlations due to
common latent fields and the combination of common and species-specific fields (see
Section 2.4) across 6 intervals. Most estimated correlations are positive. However,
the correlations decrease a lot in absolute value when the species-specific fields are
included (last row of Table 7).

The distribution of estimated PVs is shown in Table 8. Most species (48%) have
estimated proportions of variances due to common factors less than 0.25.

Table 7: Distribution (in %) of estimated inter-species correlations corr[Yi(u), Yj(u)] and
corr[Zi(u), Zj(u)], i 6= j, over different intervals [Lower,Upper] for the 86 species applica-
tion using ridge (ξ = 0) with q = 4 and λ = 5.

Lower −1 −0.5 −0.2 0 0.2 0.5
Upper −0.5 −0.2 0 0.2 0.5 1

corr[Yi(u), Yj(u)] 2 8 10 13 22 45
corr[Zi(u), Zj(u)] 0 2 19 58 19 3

Table 8: Distribution of estimated PVi(0) for 86 species application using ridge (ξ = 0)
with q = 4 and λ = 5.

Interval 0–0.25 0.25–0.5 0.5–0.75 0.75–1

Species (%) 48 30 9 13
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6 Conclusion

We developed in this study a regularized estimation method for highly multivariate
point patterns modeled by multivariate LGCPs. The procedure is numerically stable
and performs well both in the considered simulations and applications. In our truly
highly multivariate second application, we were able to fit a sparse model for a
multivariate point pattern with 86 types of points.

Our method requires selection of tuning parameters q, λ and ξ as well as the
bandwidths for the kernel estimates of cross pair correlation functions. Our CV
procedure provides a useful solution for the choice of tuning parameters. Regarding
the choice of bandwidths, it would be desirable and should be quite feasible to
generalize the methods in Guan (2007) and Jalilian and Waagepetersen (2018) to
cover also data-driven choice of bandwidth in case of cross pair correlation functions.
One limitation of our method is that we choose a fixed class of correlation models
for the latent Gaussian fields. We believe that the exact shape of the correlation
models is not very crucial but choosing among different correlation models could be
a topic for further research.

The results of the CV are somewhat sensitive to Monte Carlo error due to the
random allocation of observations into K folds. This is especially the case where the
CV score curve is quite flat as for large values of q in the left plots in Figures 1-3.
At the expense of a higher computational load, the sensitivity can be reduced by
averaging CV scores over several replications of K-fold CV.

An interesting application of obtained estimates is to group types of points ac-
cording to their estimated dependence on common latent fields as expressed by
the rows αi·. Hence a further development could be to consider an extension of the
so-called fused LASSO (Tibshirani et al., 2005) by introducing regularization for dif-
ferences αi·−αj·. A further possibility would be to consider a sparse group LASSO
(Simon et al., 2013) to obtain estimates of α with some zeros of αil as developed
in this paper and, in addition, with entire rows of zeros implying independence of
corresponding types of points and all other types of points.
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A Proximal Newton Method

Suppose we want to find the solution of

min
θ∈Rn

f(θ) := a(θ) + c(θ), (A.1)

where the function f(·) can be separated into two parts: the function a(·) which is a
convex and twice continuously differentiable loss function and the function c(·) which
is a convex but not necessarily differentiable penalty function. The proximal-Newton
method is an iterative optimization algorithm that uses a quadratic approximation
of the differentiable part a(·):

f(θ) ≈ f̂(θ)

= â(θ) + c(θ)

= a(θ(k)) +∇a(θ(k))T(θ − θ(k))
+ (θ − θ(k))TH(θ(k))(θ − θ(k)) + c(θ), (A.2)

where θ(k) is the current value of θ, ∇a(·) is the first derivative of a(·) and H(·)
is an approximation to the Hessian matrix ∇2a(·). Letting θ̃ = arg minθ f̂(θ), the
next value of θ is obtained as

θ(k+1) = θ(k) + t(θ̃ − θ(k))

for some t > 0. That is, θ̃ is used to construct a search direction for the k + 1th
value of θ. Theoretical results in Lee et al. (2014) show that t can be chosen so that
f(θ(k+1)) < f(θ(k)). The matrix H(·) can be chosen in various ways, see Lee et al.
(2014) and Hastie et al. (2015) for more details.

In the following sections, we adapt the proximal Newton method to minimization
of our objective function.
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A.1 Quadratic approximation for updating αi·

Let us first regard (3.2) as a function of αi·,

Qλ,i(αi·, σ
2
i ) = 2

p∑

j=1
j 6=i

‖Yij − X̃ijαi·‖2

+ ‖Yii −Xiiβii(α,σ
2)‖2 + λ

q∑

l=1

p(αil)

= a(αi·) + b(αi·) + c(αi·). (A.3)

To minimize (3.2), we consider the proximal Newton method stated in (A.2). In
particular, we approximate b(αi·) by a quadratic approximation around the current
value α(k)

i· :
b(αi·) ≈ b̂(αi·)

= b(α(k)
i· ) +∇b(α(k)

i· )T(αi· −α(k)
i· )

+ 1
2
(αi· −α(k)

i· )TH(α(k)
i· )(αi· −α(k)

i· ). (A.4)

Here, the first derivative is

∇b(α(k)
i· ) = −4D(α(k)

i· )XT
ii,·(1:q)

(
Yii −Xiiβii(α

(k),σ2)
)

while H(α(k)
i· ) is an approximation of the second derivative,

∇2b(α(k)
i· ) = 8D(α(k)

i· )XT
ii,·(1:q)Xii,·(1:q)D(α(k)

i· )− C(α(k)
i· ),

where D(α(k)
i· ) = Diag(α(k)

i1 , . . . , α
(k)
iq ), Xii,·(1:q) denotes the first q columns in Xii,

and C(α(k)
i· ) = 4Diag

(
XT
ii,·(1:q)

(
Yii −Xiiβii(α

(k),σ2)
))
. Specifically,

H(α(k)
i· ) = 8D(α(k)

i· )XT
ii,·(1:q)Xii,·(1:q)D(α(k)

i· )

≈ ∇2b(α(k)
i· ).

To ease the presentation and computation, we write b̂(αi·) from (A.4) in the
form of a least squares problem

b̂(αi·) = ‖Yii −Xiiβii(α
(k),σ2)‖2

− 2
(
Yii −Xiiβii(α

(k),σ2))
)T

× [2Xii,·(1:q)D(α(k)
i· )](αi· −α(k)

i· )

+ 1
2
(2)(αi· −α(k)

i· )T[2D(α(k)
i· )XT

ii,·(1:q)]

× [2Xii,·(1:q)D(α(k)
i· )](αi· −α(k)

i· )

= vTv − 2vTX∗iiγ + γT(X∗ii)
TX∗iiγ

= ‖v −X∗iiγ‖2

= ‖Y ∗ii −X∗iiαi·‖2
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where

v = Yii −Xiiβii(α
(k),σ2),

X∗ii = 2Xii,·(1:q)D(α(k)
i· ),

γ = αi· −α(k)
i· ,

Y ∗ii = Yii +Xii,·(1:q)α
2,(k)
i· −Xii,·(q+1)σ

2
i .

Replacing b in (A.3) with b̂ we obtain the approximate objective function Q̂λ,i(αi·|α(k)
i· )

given in (3.3). Since (3.3) is a standard regularized least squares problem, we min-
imize (3.3) using a coordinate descent algorithm to obtain α̂i· as detailed in Sec-
tion B.2.

A.2 Theoretical result regarding proximal Newton update

Let ∆(α(k)
i· ) = α̂i·−α(k)

i· where α̂i· is the minimizer of (3.3) and according to a line
search strategy let

α(k+1)
i· = α(k)

i· + t∆(α(k)
i· )

for some t > 0. Following the proof of Proposition 2.3 in Lee et al. (2014), we can
verify the following theorem.

Theorem 1 Let H(α(k)
i· ) = 8D(α(k)

i· )XT
iiXiiD(α(k)

i· ). Then

Qi,λ(α
(k+1)
i· , σ2

i ) ≤ Qi,λ(α
(k)
i· , σ

2
i )− t∆(α(k)

i· )TH(α(k)
i· )∆(α(k)

i· ) +O(t2).

Thus, by Theorem 1, if H(α(k)
i· ) is positive definite, we can choose t > 0 so that

Qi,λ(α
(k+1)
i· , σ2

i ) < Qi,λ(α
(k)
i· , σ

2
i ). That is, the update of αi· results in a decrease of

the objective function (3.2).

B Algorithm

In our block descent algorithm, we minimize (3.1) with respect to σ2,α,φ, and ψ
in turn. For i = 1, . . . , p, we first update σ2

i by minimizing (3.2) using least squares
estimation followed by an update of αi· by minimizing (3.3) using a coordinate
descent method. We denote by Xij,·k the kth column of Xij for k = 1, . . . , q (i 6= j)
or k = 1, . . . , q + 1 (i = j). We detail, respectively in Appendices B.1 and B.2, the
updates of σ2

i and the coordinate descent updates of αil for l = 1, . . . , q. A summary
of the final algorithm is given by Appendix B.3.

B.1 Update of σ2i
The parameter σ̂2

i is updated using least squares methods. More precisely, the
gradient of (3.2) with respect to σ2

i is

∂Qλ,i(αi·, σ2
i )

∂σ2
i

= −2XT
ii,·(q+1)(Yii −Xiiβii(α,σ

2)).
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By solving ∂Qλ,i(αi·,σ2
i )

∂σ2
i

= 0, we obtain the update

σ2
i ← max

{
XT
ii,·(q+1) (Yii −

∑q
l=1Xii,·lα2

il)

XT
ii,·(q+1)Xii,·(q+1)

, 0

}
(B.1)

where max{a, 0} is used to avoid negative results of the update.

B.2 Update of αil
Let rij = Y ∗ij −

∑q
k=1
k 6=l

X∗ij,·kαik, where Y ∗ij and X∗ij are specified in (3.4). Then we

rewrite (3.3) as

Q̂λ,i(αi·) =

p∑

j=1

‖rij −X∗ij,·lαil‖2

+ λ

q∑

k=1
k 6=l

(
(1− ξ)1

2
α2
ik + ξ|αik|

)

+ λ
(
(1− ξ)1

2
α2
il + ξ|αil|

)
.

The gradient with respect to αil is

∂Q̂λ,i(αil)

∂αil
= − 2

p∑

j=1

(X∗ij,·l)
T(rij −X∗ij,·lαil)

+ λ
(
(1− ξ)αil + ξ sign(αil)

)
.

Following the main argument by Friedman et al. (2010), the coordinate-wise update
for αil is of the form

αil ←
S
(
2
∑p

j=1(X∗ij,·l)
Trij, λξ

)

2
∑p

j=1(X∗ij,·l)
TX∗ij,·l + λ(1− ξ) , (B.2)

where S(A, λξ) = sign(A)(|A| − λξ)+.

B.3 Algorithm to update α,σ2,φ,ψ

For a given q and sequence of λ values 0 ≤ λ1, . . . , λM , the overall procedure to
estimate the parameters: α,σ2,φ,ψ is described by Algorithm 1. Note that es-
timates obtained with λs−1 are used as initial values for the estimation with λs,
s = 2, . . . ,M .
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Algorithm 1 Cyclical block descent method for minimization of regularized least
squares objective function (3.1).

Set initial values α̂(0), σ̂2,(0), φ̂(0) and ψ̂(0)

for s = 1 to M do
σ2 := σ̂2,(s−1)

α := α̂(s−1)

φ := φ̂
(s−1)

ψ := ψ̂
(s−1)

while Relative function convergence not achieved do
for i = 1 to p do

Update σ2
i using (B.1)

Update αi· using cyclical descent over αil, l = 1, . . . , q using (B.2)
Apply line search for αi·

end for
update φ using quasi-Newton
update ψ using quasi-Newton

end while
σ̂2,(s) := σ2

α̂(s) := α
φ̂

(s)
:= φ

ψ̂
(s)

:= ψ2

end for
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Supplementary material

S.1 Plots and detail information of BCI data used in the
analysis

Figure 4 shows locations of the 9 selected tree species. Plots of 13 spatial covariates
used for analysis are depicted in Figure 5. Finally, information regarding family,
seed dispersal mode, life form, as well as the abundance of each of the 86 selected
tree species is reported in Table 9.

Figure 4: Locations of 9 selected tree species (from top to bottom): 1st column: Cap-
paris frondosa, Hirtella triandra, Protium tenuifolium, Mouriri myrtilloides, and Tetra-
gastris panamensis; 2nd column: Garcinia intermedia, Psychotria horizontalis, Protium
panamense, and Swartzia simplex.
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Figure 5: Covariates involved in the analysis (from left to right): 1st row: Copper content
(mg/kg of soil) in the surface soil, mineralization needs for Nitrogen (mg/kg of soil) after a
30-day incubation period and Phosphorus content (mg/kg of soil) in the surface soil; 2nd
row: Potassium content (mg/kg of soil) in the surface soil, pH content in the surface soil,
and incoming mean annual solar radiation; 3rd row: elevation, slope, and multiresolution
index of valley bottom flatness; 4th row: topographic wetness index, difference from the
mean value in 15 pixels search radius, and deviation from mean value in 15 pixels search
radius; 5th row: convergence index (search radius) with direction to the center cell.
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Table 9: Family, mode of seed dispersal, life form and abundance of each of the selected
86 species of tree in BCI data.

No. Mnemonic Species Family Seed dispersal Life form Abundance
(Per plot)

1 acaldi Acalypha diversifolia Euphorbiaceae Explosion Shrub 1146
2 alibed Alibertia edulis Rubiaceae Big Bird-Mammals Shrub 450
3 alsebl Alseis blackiana Rubiaceae Wind Understory 8983
4 annoac Annona acuminata Annonaceae Bird-Mammals Understory 556
5 aspicr Aspidosperma spruceanum Apocynaceae Wind Tree 524
6 beilpe Beilschmiedia pendula Lauraceae Big Bird-Mammals Tree 2252
7 brosal Brosimum alicastrum Moraceae Bat-Mammals Tree 878
8 calolo Calophyllum longifolium Clusiaceae Bat-Mammals Tree 1878
9 cappfr Capparis frondosa Capparaceae Bird-Mammals Shrub 3112
10 caseac Casearia aculeata Salicaceae Bird-Mammals Understory 546
11 cassel Cassipourea elliptica Rhizophoraceae Bird-Mammals Understory 1149
12 cecrin Cecropia insignis Urticaceae Bat-Bird-Mammals Tree 894
13 chr1ec Chrysochlamys eclipes Clusiaceae Bird-Mammals Understory 423
14 chr2ar Chrysophyllum argenteum Sapotaceae Big Bird-Mammals Tree 775
15 coccma Coccoloba manzinellensis Polygonaceae Bird-Mammals Midstory 479
16 cordbi Cordia bicolor Boraginaceae Bird-Mammals Midstory 693
17 cordla Cordia lasiocalyx Boraginaceae Bird-Mammals Understory 1188
18 cou2cu Coussarea curvigemmia Rubiaceae Bird-Mammals Understory 2111
19 crotbi Croton billbergianus Euphorbiaceae Explosion Understory 635
20 cupasy Cupania seemannii Sapindaceae Bird-Mammals Understory 1609
21 des2pa Desmopsis panamensis Annonaceae Big Bird-Mammals Understory 11654
22 drypst Drypetes standleyi Putranjivaceae Bat-Mammals Tree 2210
23 eugeco Eugenia coloradoensis Myrtaceae Big Bird-Mammals Understory 653
24 eugega Eugenia galalonensis Myrtaceae Bird-Mammals Midstory 2095
25 eugene Eugenia nesiotica Myrtaceae Big Bird-Mammals Understory 634
26 eugeoe Eugenia oerstediana Myrtaceae Bird-Mammals Understory 1956
27 faraoc Faramea occidentalis Rubiaceae Big Bird-Mammals Understory 25739
28 gar2in Garcinia intermedia Clusiaceae Big Bird-Mammals Tree 5036
29 gar2ma Garcinia madruno Clusiaceae Mammals Tree 420
30 guargu Guarea guidonia Meliaceae Big Bird-Mammals Midstory 1993
31 guarsp Guarea bullata Meliaceae Bird-Mammals Tree 793
32 guatdu Guatteria dumetorum Annonaceae Bird-Mammals Tree 941
33 gustsu Gustavia superba Lecythidaceae Big Bird-Mammals Understory 745
34 hassfl Hasseltia floribunda Salicaceae Bird-Mammals Understory 424
35 heisco Heisteria concinna Erythropalaceae Big Bird-Mammals Midstory 900
36 herrpu Herrania purpurea Malvaceae Big Bird-Mammals Shrub 601
37 hirttr Hirtella triandra Chrysobalanaceae Big Bird-Mammals Midstory 4552
38 hybapr Hybanthus prunifolius Violaceae Explosion Shrub 30130
39 ingama Inga marginata Fabaceae-mimosoideae Big Bird-Mammals Understory 804
40 ingaqu Inga nobilis Fabaceae-mimosoideae Big Bird-Mammals Understory 598
41 ingas1 Inga acuminata Fabaceae-mimosoideae unknown Understory 619
42 ingaum Inga umbellifera Fabaceae-mimosoideae Big Bird-Mammals Understory 823
43 laciag Lacistema aggregatum Lacistemataceae Bird-Mammals Shrub 1395
44 laetth Laetia thamnia Salicaceae Bird-Mammals Understory 432
45 loncla Lonchocarpus heptaphyllus Fabaceae-papilionoideae Wind Tree 712
46 malmsp Mosannona garwoodii Annonaceae Bird-Mammals Midstory 530
47 maquco Maquira guianensis Moraceae Bird-Mammals Midstory 1352
48 micoaf Miconia affinis Melastomataceae Bird-Mammals Shrub 469
49 micoar Miconia argentea Melastomataceae Bird-Mammals Understory 688
50 micone Miconia nervosa Melastomataceae Bird-Mammals Shrub 412
51 mourmy Mouriri myrtilloides Melastomataceae Bird-Mammals Shrub 7241
52 ocotce Ocotea cernua Lauraceae Bird-Mammals Midstory 477
53 ocotwh Ocotea whitei Lauraceae Big Bird-Mammals Tree 406
54 oenoma Oenocarpus mapora Arecaceae Big Bird-Mammals Midstory 2049
55 ouralu Ouratea lucens Ochnaceae Bird-Mammals Shrub 1401
56 paligu Palicourea guianensis Rubiaceae Bird-Mammals Shrub 1119
57 picrla Picramnia latifolia Picramniaceae Bird-Mammals Understory 1131
58 poular Poulsenia armata Moraceae Bat-Mammals Tree 996
59 poutre Pouteria reticulata Sapotaceae Big Bird-Mammals Tree 1327
60 pri2co Prioria copaifera Fabaceae-caesalpinioideae Mammals-Water Tree 1353
61 protco Protium costaricense Burseraceae Big Bird-Mammals Tree 748
62 protpa Protium panamense Burseraceae Big Bird-Mammals Tree 3119
63 protte Protium tenuifolium Burseraceae Big Bird-Mammals Tree 3091
64 psycho Psychotria horizontalis Rubiaceae Bird Shrub 2639
65 psycma Psychotria marginata Rubiaceae Bird Shrub 834
66 pterro Pterocarpus rohrii Fabaceae-papilionoideae Wind Tree 1406
67 quaras Quararibea asterolepis Malvaceae Bat-Mammals Tree 2227
68 randar Randia armata Rubiaceae Big Bird-Mammals Understory 951
69 simaam Simarouba amara Simaroubaceae Bird-Mammals Understory 1600
70 sipapa Siparuna pauciflora Siparunaceae Bird-Mammals Shrub 481
71 sloate Sloanea terniflora Elaeocarpaceae Bird-Mammals Tree 469
72 socrex Socratea exorrhiza Arecaceae Mammals Midstory 500
73 soroaf Sorocea affinis Moraceae Bird-Mammals Shrub 2404
74 stylst Stylogyne turbacensis Myrsinaceae Bird-Mammals Understory 833
75 swars1 Swartzia simplex Fabaceae-papilionoideae Big Bird-Mammals Understory 3189
76 swars2 Swartzia simplex Fabaceae-papilionoideae Big Bird-Mammals Understory 3185
77 tab2ar Tabernaemontana arborea Apocynaceae Bird-Mammals Tree 1818
78 tachve Tachigali versicolor Fabaceae-caesalpinioideae Wind Tree 2135
79 taline Talisia nervosa Sapindaceae Big Bird-Mammals Understory 746
80 talipr Talisia croatii Sapindaceae Big Bird-Mammals Understory 881
81 tet2pa Tetragastris panamensis Burseraceae Big Bird-Mammals Tree 4961
82 tri2pa Trichilia pallida Meliaceae Big Bird-Mammals Midstory 499
83 tri2tu Trichilia tuberculata Meliaceae Big Bird-Mammals Tree 11293
84 unonpi Unonopsis pittieri Annonaceae Big Bird-Mammals Midstory 667
85 virose Virola sebifera Myristicaceae Big Bird-Mammals Tree 1289
86 xyl1ma Xylopia macrantha Annonaceae Bird-Mammals Midstory 1698
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S.2 Additional simulation study for p = 5

This section repeats the study in Section 4.2 in the main article except that a more
sparse αT is used, that is

αT =

[
0.1 1 −1 0 0
0 0 1 0 −0.1

]
.

Table 10: Distribution of |qeff − 2| (in %) over 200 simulations from a multivariate log
Gaussian Cox process (p = 5, q = 2) using CBD for minimization.

LSE LASSO
q ∈ q, λ = 0 q ∈ q, λ ∈ λ

|qeff − 2| 0 1 2 3 0 1 2 3

Min 10 17 69 5 12 33 53 2
1-SE 1 6 93 0 1 3 96 0

Table 11: Average RMSEs obtained from 200 simulations from a multivariate log Gaussian
Cox process (p = 5, q = 2) for different methods of selecting q and λ.

LSE LASSO
q ∈ q, λ = 0 q ∈ q, λ ∈ λ
Min 1-SE Min 1-SE

α̂α̂T 0.48 0.31 0.43 0.30
σ̂2 0.62 0.62 0.59 0.63
ψ̂ 0.01 0.01 0.01 0.01
P̂V 0.37 0.37 0.37 0.37
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