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Preface

This dissertation concludes my PhD studies at the Department of Mathematics,
Aarhus University, carried out from February 2017 to July 2020 under the supervision
of Associate Professor Markus Kiderlen (main supervisor) and Associate Professor
Anders Rønn-Nielsen (co-supervisor). My studies were funded jointly by the Graduate
School of Natural Sciences (GSNS formerly known as GSST) and the Centre for
Stochastic Geometry and Advanced Bioimaging (CSGB) through a grant from the
Villum Foundation.

The dissertation consists of the following four self-contained papers in addition
to a note to Paper A:

Paper A Asymptotic variance of Newton-Cotes quadratures based on randomized
sampling points. To appear in Advances in Applied Probability.

Paper B Improving the Cavalieri estimator under non-equidistant sampling and
dropouts. Submitted to Image Analysis and Stereology.

Paper C Tail asymptotics of an infinitely divisible space-time model with convolu-
tion equivalent Lévy measure. To appear in Journal of Applied Probability.

Paper D Extreme value theory for spatial random fields – with application to a
Lévy-driven field. Submitted to Extremes.

Besides layout and minor insignificant adjustments, all papers correspond to their
submitted version. However, in contrast to their appearance in this dissertation,
Papers A and C will be published without supplementary materials, but with these
available online. Furthermore, to ease reading, references between papers will be
with respect to the enumeration of the dissertation and not the enumeration of the
submitted papers.

An initial draft of Paper A was included in my progress report used for the
qualification examination in June 2018. The paper has however improved significantly
since then. Papers B–D are the result of the last two years of my studies and have
thus not appeared in the progress report in any form. I have contributed extensively
in both the research phase and the writing of all papers A–D with the exception of
(Section B.5, Paper B), which is the work of my supervisor Markus Kiderlen.

The first chapter is an introduction to the topics of the dissertation. The purpose
of the introduction is twofold. Firstly, it provides the reader with some basic theory,
which is beneficial when reading the papers of the dissertation. Secondly, it gives an
overview of results from the literature and relates these to the results of the papers.

I owe my supervisors Markus and Anders a dept of thanks for giving me the
opportunity to do a PhD, for the many enriching discussions, for bearing with my
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– at times – stupid questions, and for the general interest in my well-being. Due to
their help and guidance, both professionally and personally, these last three and a
half years have been an absolute pleasure. I am deeply grateful to Markus and Eva B.
Vedel for wanting me as a PhD student in such a stimulating and interdisciplinary
research environment that is CSGB.

I would also like to thank Professor Gennady Samorodnitsky from Cornell Uni-
versity. In addition to being a great host when I visited him and his department in
Ithaca (NY), his helpful comments and suggestions concerning Paper D are greatly
appreciated. Furthermore, I am grateful to all colleagues of Aarhus University and
CSGB for creating such a nice working environment, and to the local LATEXpert Lars
Madsen for the immense help in setting up this dissertation. In particular I thank
Julie Thøgersen, Mikkel Slot Nielsen, Thorbjørn Grønbæk, Victor Rohde, Mathias
Ljungdahl, Louis Gammelgaard Jensen, Stine Hasselholt, Mathias Højgaard Jensen,
and, last but not least, my office mate through three years Rikke Krog Eriksen for
laughs, beers, housing and discussions.

Finally, my family and friends, and especially my girlfriend Sara, deserve enor-
mous gratitude for their amazing support and willingness to listen to my mathemati-
cal blabbering. Most importantly, I thank you all for simply being the best anyone
could ask for – and for accompanying me on Roskilde Festival every year!

Mads Stehr
Copenhagen, July 2020
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Summary

Using the so-called Cavalieri estimator, the volume of a bounded 3-dimensional object
can be unbiasedly estimated from area measurements on parallel section profiles.
Mathematically, this corresponds to the problem of numerical integration on R when
the integrand is known at a the points of a stationary and equidistant point process.
Previously it has been shown that the variance of the Cavalieri estimator, which is
simply a Riemann sum approximation, exhibits a slower decrease rate when the
sampling nodes are not equidistant.

The first part of the dissertation concerns an alternative numerical estimation
approach suitable for stationary and non-equidistant sampling. By using the infor-
mation on the increments of the sampling points, we suggest using Newton-Cotes
quadrature rules to approximate the integrand by a polynomial of a certain degree. It
turns out that the variance inflation of the Cavalieri estimator under non-equidistant
sampling can be avoided by this estimation approach. We investigate its variance
properties under different sampling models, and we also suggest estimates of its
variance based on sampling in a bounded interval in R.

The second part of the dissertation mainly concerns spatial Lévy-driven moving
average fields, which are integrals of a deterministic kernel function with respect
to a Lévy basis. Throughout the dissertation we assume that the underlying Lévy
measure is convolution equivalent, and we investigate the extremal behavior of the
fields relative to that of the Lévy measure.

Firstly, we consider a space-time model, where the field is thought of as having a
space and time component. Under reasonable assumptions on the Lévy measure and
the integration kernel, we show that the tail of certain functionals (applied to the
field) asymptotically equals the tail of the Lévy measure. As a complementary result
we obtain that the field is continuous in the space component and càdlàg in time.

Secondly, we generalize classical extreme value results in R to higher-dimensional
Euclidean space. In particular, assuming mixing conditions for a stationary random
field, we show that an extremal types theorem holds for its normalized maximum on
a large class of expanding sets. Furthermore, using similar proof techniques, we show
that the normalized supremum of the Lévy-driven field converges to the Gumbel
distribution as the index sets increase.
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Resumé

Ved at bruge den såkaldte Cavalieri-estimator kan man estimere rumfanget af et
begrænset, 3-dimensionelt objekt ud fra arealmålinger i parallele snitflader. Mate-
matisk set svarer dette til et spørgsmål om numerisk integration, hvor integranden
er kendt i punkterne fra en stationær og ækvidistant punktproces. Det er tidligere
vist, at variansen af Cavalieri-estimatoren – som i øvrigt er en Riemann sum approk-
simation – aftager langsommere, når positionerne, der udgør punktprocessen, ikke
er ækvidistante.

Den første del af afhandlingen omhandler en alternativ estimationsprocedure,
der er tilpasset situationen med ikke-ækvidistante positioner. Ved at bruge deres
indbyrdes afstande foreslår vi at anvende såkaldte Newton-Cotes kvadraturregler til
at approksimere integranden med et polynomium af en passende grad. Det viser sig,
at den forøgede varians af Cavalieri estimatoren kan undgås med denne estimations-
procedure. Vi undersøger Newton-Cotes-estimatorens variansegenskaber under to
realistiske punktprocesmodeller, og vi foreslår variansestimater baseret på positioner
i et begrænset interval.

Afhandlingens anden del er koncentreret om rumlige Lévy-drevne felter, der er
givet som integralet af en deterministisk kernefunktion med hensyn til en Lévy basis.
I afhandlingen antager vi, at det underliggende Lévy mål er foldningsækvivalent, og
vi undersøger ekstremhændelser for felterne relativt til ekstremhændelser for deres
Lévy mål.

Først undersøger vi et stokastisk felt, der både har en rum- og tidskomponent.
Under rimelige antagelser om Lévy målet og kernefunktionen viser vi, at halen af
visse funktionaler (anvendt på feltet) er asymptotisk ækvivalent med halen af Lévy
målet. Vi viser desuden, at feltet er kontinuert i rumkomponenten og càdlàg i tid.

Efterfølgende generaliserer vi klassiske endimensionelle ekstremværdi resultater
til højdimensionelle rum. Under visse uafhængighedslignende antagelser viser vi, at
det normaliserede maximum af et stationært felt konvergerer mod en ekstremværdi-
fordeling, når indeksmængden vokser passende. Ved at bruge lignende bevisteknikker
viser vi tilsvarende, at det normaliserede supremum af et Lévy-drevet felt konvergerer
mod Gumbel-fordelingen.
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Introduction

This chapter serves as an introduction to the topics and main results of the disserta-
tion. Seen as a whole, the dissertation lies within the area of spatial statistics, however
it constitutes two separate and unrelated parts: Volume estimation in stereology
and extremal probabilities for Lévy-based random fields. In Section 1 we present
results from the literature on volume estimation and (more precisely) numerical
integration in general, which in particular include results on the so-called (classical)
Cavalieri estimator. This naturally leads to a presentation of the main findings of
Papers A and B along with a conclusion of their applications. In Section 2 we give a
short introduction to Lévy-based random fields, including the definition of infinitely
divisible distributions and Lévy bases, before presenting results from the literature
on tail asymptotics of such fields. After a description of the main results of Paper C,
we introduce basic concepts and results from classical extreme value theory, relate
these to results for Lévy-based fields, and conclude with a presentation of Paper D.

1 Numerical integration with application to volume estimation

Systematic sampling is a widely used technique in classical stereology to estimate for
instance geometric quantities of biological tissues with an inhomogeneous structure;
see [2] and the references therein. In particular, uniform systematic sampling on R
can be used to unbiasedly estimate the volume of a bounded object Y ⊆R3 through
area measurements on parallel sections normal to some convenient sampling axis:
Let the unit vector ν ∈ S2 be fixed and define f (x) = area(Y ∩Hx) as the area of
the intersection of Y with the plane Hx = {z ∈ R3 : z · ν = x}, which is normal to
ν and positioned at a signed distance x from the origin along ν. For instance, if
Y = {z ∈ R3 : |z| ≤ 1} is the unit ball in R3 centered at the origin and ν = (1,0,0),
f (x) is the area of the circle obtained as the intersection of the ball and the plane
Hx = {(x,y1, y2) ∈R3 : y1, y2 ∈R}, and hence

f (x) = π(1− x2)1[−1,1](x) (1.1)

in this case. We will return to this example later in the introduction. With f defined
as above for general Y ,

Λ =
∫
R
f (x)dx (1.2)

coincides with the volume of Y ⊆R3, and, if U is a uniform random variable on the
interval (0,1), it can be unbiasedly estimated using

Λ̂ = t
∑
k∈Z

f (tU + tk) (1.3)

1



Introduction

with the (section-)spacing t > 0. This estimator is commonly known as the Cavalieri
estimator, and it serves as an important application of the estimation of quantities
given as (1.2) for some integrable function f : R→R, which is usually referred to as
the measurement function.

The first part of this dissertation is devoted to the estimation of Λ =
∫
R
f (x)dx and,

to be more accurate, the precision of such estimators. The variance V arΛ̂ of Λ̂ given by
(1.3) is not trivially derived due to the correlation between observations, i.e f (tU + tk)
for varying k. In the classical work [21] and the subsequent adaption to stereology in
e.g. [6], the transitive theory of Matheron was used to give a representation of the
variance

V arΛ̂ = t
∑
k∈Z

g(kt)−
∫
R
g(y)dy (1.4)

based on the Euler-MacLaurin formula. Above, g : y 7→
∫
R
f (x + y)f (x)dx is the so-

called (geometric) covariogram of f , which when evaluated at y ∈ R intuitively de-
scribes the correlation between observations a distance y apart. In [16] the expression
(1.4) is refined to a variance representation involving jumps and jump-locations of
derivatives of f and consequently of g; see also [17]. It is assumed that f is (m,p)-
piecewise smooth, meaning that f is Cm−1, compactly supported and that the kth
derivative f (k) for k =m,. . . ,m+ p only has finitely many discontinuities with finite
associated jumps (see Sections A.1 and A.2 of Paper A for more details). If f (m) in fact
is discontinuous, it is shown that

V arΛ̂ = V arEΛ̂+Z(t) + r(t), (1.5)

where the extension term V arEΛ̂ of order t2m+2 explains the overall behavior of the
variance, the Zitterbewegung Z(t) of order O(t2m+2) fluctuates around 0, and the
remainder r(t) is of order o(t2m+2) as t ↓ 0. All three terms in (1.5) depend on the
derivatives f (m), f (m+1) and their jumps; see Figure 1 for a depiction of the variance.

There are multiple extensions to the classical formulation just described. One
obvious example is to allow for measurement functions in (1.3) which are not (m,p)-
piecewise smooth for instance due to infinite jumps of the mth derivative. In [11, 13]
such functions are considered, where the smoothness condition m-smooth is defined
for all real m ≥ 0 with (m,p)-piecewise smoothness as a special case. The theory
makes use of fractional calculus, and, using a refined version of the Euler-MacLaurin
formula, it is shown that the trend of the variance is of order t2m+2 (typically with
0 < m < 1 in practice).

Another extension to the classical case is to allow for non-equidistant sampling
nodes. Replacing {tU + tk}k∈Z in (1.3) with a stationary point process X ⊆ R with
intensity (expected number of points per unit interval) 1/t, the unbiased estimator Λ̂
is commonly known as the generalized Cavalieri estimator; see [1]. In [29, 30] the
estimator is considered under some, practically realistic, sampling models inspired
by studies on the structure of the brain; see e.g. [7] and Paper A for definitions of the
models. It turns out that the precision of Λ̂ based on non-equidistant sampling is in-
ferior to that of equidistant sampling, as the variance is shown to decrease at a slower
rate. For instance, if the sampling process X is derived from the equidistant process
{tU + tk}k∈Z by having small independent and non-degenerate perturbations of each
point, the variance V arΛ̂ is of order t3 for all (m,p)-piecewise smooth functions f

2



1 · Numerical integration with application to volume estimation
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Figure 1: Variance of the classical Cavalieri estimator Λ̂ for the volume estimation of the unit ball in
R3 on a log− log scale. The measurement function is given by (1.1), and it is (1,∞)-piecewise smooth.
Furthermore, V arEΛ̂ = t4π2/90; see e.g. [16, Exercise 9].

with m ≥ 1. This should be compared with the order t2m+2 = o(t3) as t ↓ 0 under
equidistant sampling. Moreover, the order of the variance depends on the underlying
sampling model, as, for instance, sampling based on a renewal process on R yields an
order of t for all m ≥ 0. Throughout this introduction, the two mentioned sampling
models will be referred to as the perturbed and cumulative models, respectively.

In addition to finding an asymptotic variance representation, it is naturally de-
sirable to estimate the variance from observed data. Due to the decomposition (1.5),
a widely used approach is simply to estimate the extension term V arEΛ̂ as it may
constitute a good approximation of the variance. In addition to depending on incre-
ments of the underlying sampling points, the extension term V arEΛ̂ only depends on
jumps of f (m) and not on their (relative) locations, making this estimation approach
relatively easy whenm is known; see e.g [2],[16] and [17], and [30] for non-equidistant
sampling. When the smoothness constant m is unknown a similar estimation tech-
nique is described in [16] when the sampling points are equidistant. Due to the
oscillation of the Zitterbewegung and the underlying structure of derivatives of f , it
can be argued that an estimation of the variance based solely on the extension term
can underestimate the variance substantially for a certain sample, in which case a
better estimation can be obtained by taking some terms of the Zitterbewegung into
account; see e.g. [12] and (Section B.5, Chapter B). Related to the question of variance
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Introduction

estimation for the Cavalieri estimator, the paper [10] addresses the construction of
confidence intervals for

∫
R
f dx based on an equidistant sample, and it is among other

results concluded that an asymptotic distribution of a standardized version of (1.3)
exists when f (m) for m ∈N has exactly one discontinuity.

Paper A

Motivated by the fact that V arΛ̂ has a substantially worse precision when Λ̂ is based
on non-equidistant sampling points, this paper investigates an alternative estimation
procedure of

∫
R
f dx adapted to such a scenario. Assuming that the measurement

function f is measured at the points of a stationary point process X ⊆R, we suggest
using Newton-Cotes quadrature rules (of sufficiently high order) to better suit the
smoothness of f . The construction, which was initially suggested in [15], is as follows:
Let X = {xk}k∈Z and let n ∈N be fixed. On all intervals [xk ,xk+n], k ∈Z, the function
f is approximated by a piecewise polynomial of degree at most n passing through
the points {xj , f (xj )}k+n

j=k . The nth order Newton-Cotes estimator V̂n(f ) is then defined
as the sum of integrals of such approximating polynomials, averaged with respect to
the chosen starting point.

In contrast to the generalized Cavalieri estimator, it turns out that the Newton-
Cotes estimator exploits the smoothness of the integrand f to a degree similar as
for equidistant sampling, as long as the order n of the estimator is sufficiently high
relative to the smoothness of f . The theorem below constitutes (some of) the main
findings of the paper. It is formulated in terms of (m,1)-piecewise smooth functions,
but the result holds true for all (m,p)-piecewise smooth functions with p ≥ 1.

Theorem (Theorems A.2.2 and A.2.8, Paper A). Let n ∈N be given and assume that
X is a stationary point process with intensity 1/t > 0 such that its typical point-increment
has finite absolute moments of any order. Then V̂n(f ) is unbiased for

∫
R
f (x)dx for all

integrable, real-valued and compactly supported functions f . If f is (m,1)-piecewise smooth
with m ≤ n, the variance of V̂n(f ) obeys

V ar(V̂n(f )) ≤ ct2m+2

for some constant c, which does not depend on t.

If m > n the theorem above only provides an order of O(t2n+2) for the variance
(this is due to the fact than an (m+ 1,1)-piecewise smooth function in particular is
(m,1)-piecewise smooth), however, by introducing the covariance concept strong ad-
missibility, we have shown the following additional result: If X is strongly admissible
and m > n, then V arV̂n(f ) =O(t2n+3) as t ↓ 0. We show that both the perturbed and
cumulative models are strongly admissible, and we also characterize the variance of
the first-order Newton-Cotes estimator V̂1(f ) under these models explicitly.

In proving the theorem above we show a Peano kernel representation of the error
of V̂n(f ) for piecewise smooth functions f . More precisely, let f be (m,1)-piecewise
smooth, Df (m) denote the set of jump-locations of the mth derivative f (m) of f , and let
Jf (m) be the associated jumps; see (Section A.2, Paper A). Then, for any n, m ≤ n and
realization X, there is function Km such that

V̂n(f )−
∫
R
f (x)dx =

∫
R
f (m+1)(x)Km(x)dx+

∑
a∈Df (m)

Jf (m) (a)Km(a). (1.6)

4



1 · Numerical integration with application to volume estimation

The Peano kernel Km is a piecewise polynomial of order at most m+ 1 with coefficients
determined by X, and most importantly it does not depend on the function f . When
X and thus Km are considered random, the stationarity of X turns Km into a stationary
stochastic process. In fact, the admissibility property of X mentioned above is given
by covariance conditions on its associated Peano kernel Km.

Paper B

As a natural continuation of the work on Newton-Cotes estimators, this paper deals
with the following topics: dropouts of the underlying point process, the construction
of variance estimators, and the application to volume estimation of convex bodies. An
observation showed in the appendix of the paper is the fact that the requirements on
the measurement functions considered in Paper A can be relaxed a bit. We show that
the results of Paper A hold under the assumption of weakly (m,1)-piecewise smooth
functions, meaning (compared to (m,1)-piecewise smoothness) that the (m + 1)st
derivative is allowed to have infinite jumps.

In [29, 30] the generalized Cavalieri estimator based on sampling with dropouts
was investigated. Dropouts are eliminated points of the point process modeled by
independent thinning. It is among other things shown that perturbed sampling with
dropouts results in an even worse decrease rate than perturbed sampling alone. One
of the strengths of the Newton-Cotes estimators is the fact that they function with
equal precision for all stationary point processes if m ≤ n. Since a stationary process
with dropouts is again stationary, the problem caused by the generalized Cavalieri
estimator for sampling with dropouts does not apply to the Newton-Cotes estimators.
In Paper B we give explicit expressions for the extension term V arEV̂1(f ) of the
first-order Newton-Cotes estimator based on the perturbed and cumulative models
with dropouts. The expression depends on model-specific parameters and on the
thinning probability. Moreover, we show that these models are strongly admissible
when combined with independent thinning, and thus the conclusions of the theorem
above apply to these models as well.

In Paper A it is concluded that the variance of V̂n(f ) decomposes similarly as
(1.5). We therefore approximate the variance by the extension term V arEV̂n(f ), which
is a product of factors depending on the jumps of f (m) and on the point process,
respectively. Based on information of the point process X in a bounded interval
containing the support of f , we propose an estimation procedure for V arEV̂n(f ) with
a bias of (approximately) order o(1) as t ↓ 0; see (Proposition B.4.1, Paper B). The
strength of this estimation procedure is its generality, as it applies to any stationary
point process. If the underlying sampling model is known, and in particular if it
arises by dropouts from a known initial model with accessible increments, initial
simulations indicate that a model-specific estimation may be preferred as it appears
to have a smaller variance and to be more robust for varying intensity.

We apply our results to the stereological problem of estimating the volume of a
strict convex body Y ⊆R3 (compact, strictly convex set with non-empty interior) with
sufficiently smooth boundary from parallel section profiles. For a fixed sampling axis,
we show that the variance of V̂n is given in terms of principal curvatures of Y . More-
over, we consider the situation where the direction of the sampling axis is uniformly
randomized and show that the variance of V̂n is then essentially proportional to the
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Introduction

surface area of Y . This is well-known for the classical Cavalieri estimator (1.3) based
on equidistant points (see [2, 6, 21]), but exact conditions on the convex body for this
statement to hold have not been specified before.

Applications

As described from a theoretical perspective in Paper B, the Newton-Cotes estima-
tors can be used to construct a superior estimate for the volume of a bounded ob-
ject Y ⊆R3, as compared to using the generalized Cavalieri estimator. However, in
contrast to previous procedures, it requires information on the increments of the
underlying sampling points. From a practical point of view, the object at hand is cut
into slabs (sections), and the estimation procedure thus requires that the thickness of
these slabs is accessible. Hence, if the slabs are measured and are of uneven thick-
ness, the theory really finds its justification in both volume and associated variance
estimation. If furthermore the (approximate) model of the location of the slabs is
known, the Newton-Cotes theory can be used to achieve improved variance estimates
(as indicated in Paper B).

The results also contribute to the theory of Monte Carlo integration on the real
line R. In particular, by following the proof in Paper A, the error representation (1.6)
can be adopted to a wide range of approximation schemes by changing the kernel Km
appropriately.

2 Extremes for Lévy-based random fields

The second part of the dissertation concerns extremal probabilities of Lévy-based
random fields, which are collections of random variables given as integrals with
respect to so-called Lévy bases. Although the majority of Paper D deals with such
fields it also extends to more general random objects as it shows classical extreme
value results in a high-dimensional setting.

2.1 Infinitely divisible distributions and Lévy bases

A random variable Θ is said to be infinitely divisible if for all n ∈ N there are
i.i.d. variables Θ1, . . . ,Θn such that

∑n
i=1Θi equals Θ in distribution. Another very

convenient characterization of infinitely divisible distributions is by the famous Lévy-
Khintchine representation (see [27] for a detailed description of infinitely divisible
distributions and processes): A random variable Θ is infinitely divisible if and only if
the cumulant function λ 7→ C(λ †Θ) = logEeiλΘ satisfies

C(λ †Θ) = iaλ− 1
2θλ

2 +
∫
R

(
eiλx − 1− iλx1[−1,1](x)

)
ρ(dx) (2.1)

for some triple (a,θ,ρ), where a ∈R, θ ≥ 0 and ρ is a measure on R satisfying ρ({0}) = 0
and

∫
R

(1∧x2)ρ(dx) <∞. The measure ρ is most often referred to as the Lévy measure.
The class of infinitely divisible distributions covers many important distributions, for
instance the Gaussian, lognormal, gamma, generalized inverse Gaussian, generalized
hyperbolic and Gumbel, to name a few; see [18] and the references therein.

Any infinitely divisible process is associated to a Lévy process L = (Lt)t≥0, which
is a stochastic process possessing the following properties: L0 = 0, the sample paths
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of L are càdlàg, and L has stationary and independent increments. These properties
imply that the cumulant function of L satisfies C(λ † Lt) = tC(λ † L1), where L1 is
infinitely divisible and thus C(λ †L1) is of the form (2.1); see e.g. [27, Corollary 11.6].
A natural extension of Lévy processes are the so-called Lévy bases, which for instance
generalize the distributional properties to objects indexed by Rd , d ∈N. A Lévy basis
M on Rd is a random measure such that (M(An))n∈N are independent, M(∪n∈NAn) =∑
n∈NM(An), andM(A1) is infinitely divisible for all disjoint Borelsets A1,A2, · · · ⊆Rd ;

see [26] for an exposition of infinitely divisible random measures and infinitely
divisible stochastic integrals as in (2.2) below. In particular, if d = 1 and M on [0,∞)
is stationary, we obtain a Lévy process as defined above by setting Lt =M([0, t]). In
this dissertation we only consider stationary and isotropic Lévy bases, which are
characterized by their Lévy-Khintchine representation

C(λ †M(A)) = iaλ|A| − 1
2θλ

2|A|+ |A|
∫
R

(
eiλx − 1− iλx1[−1,1](x)

)
ρ(dx)

for all A ⊆Rd , where | · | denotes the Lebesgue measure. A similar but more involved
representation for bases which are not stationary and isotropic can be found in [26].

Lévy bases can be used to construct a wide range of random fields indexed by Rd .
If f : Rd →R is a measurable integration kernel, necessary and sufficient conditions
for the Lévy-driven (moving average) field

Xv =
∫
Rd
f (v −u)M(du) (v ∈Rd) (2.2)

to exist are found in [22, Theorem 2.7]. Lévy-driven models as in (2.2) form a very rich
modeling framework used for a variety of purposes, including modeling of financial
assets ([4]), turbulent flows ([3]), brain imaging data ([14]) and wind power prices
([5]).

In [24, 25] such a field is studied, where the integration kernel is assumed to be
positive and isotropic. Thus, the field under consideration is defined as

Xv =
∫
Rd
f (|v −u|)M(du) (v ∈Rd), (2.3)

where f : [0,∞)→ [0,∞). The aim of the papers is to describe extremal probabilities
of the field under the assumption that the Lévy measure ρ of M is convolution equiv-
alent, meaning that it has an exponential (right) tail of strictly positive index, and
that the tail of the convolution of ρ with itself is asymptotically of the same order
as the tail of ρ; see ((C.2.2) and (C.2.3), Paper C) for the definition of a convolution
equivalent measure. In this dissertation all Lévy measures are assumed convolution
equivalent, and thus the Lévy measures mentioned in the remainder of this introduc-
tion will also be assumed to be convolution equivalent. For a comparison to results
under the assumption of more general Lévy measures, see the introductory section of
Paper C. Under mild assumptions on f it is shown in [24] that

P
(
sup
v∈B

Xv > x
)
∼ K |B|ρ((x,∞)) as x→∞, (2.4)

for all compact and full-dimensional sets B ⊆ Rd , where K is a computable con-
stant. Here, ∼ denotes asymptotic equivalence, that is, g(x) ∼ h(x) as x → ∞ if
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limx→∞ g(x)/h(x) = 1. In [25] an equivalence similar to (2.4) is obtained, where the
left-hand side is replaced with the probability that there is a translation and rota-
tion of a fixed spatial object of indices in which (Xv) is larger than x. These papers
constitute the motivation for Paper C, in which a time-dependence is added to the
field.

In [9] a similar field

Xt =
∫
R+×R

f (r, t − s)M(dr,ds) (t ≥ 0) (2.5)

is studied under the assumption of an underlying convolution equivalent Lévy mea-
sure. In contrast to the field in (2.3), the index set here is one-dimensional, and
furthermore the kernel f is assumed to satisfy f (r, s) = 0 for all s < 0. It is shown
that an equivalence similar to (2.4) holds true for P(supt∈[0,T ]Xt > x) in the limit
x → ∞. The proof is based on convergences of marked point processes, which, as
an additional result, shows that the running supremum of (Xt) (when normalized)
converges to the Gumbel distribution as T →∞. We will return to and elaborate on
this result shortly.

Paper C

In this paper we extend the results of [24, 25] to apply to space-time fields of the
form

Xv,t =
∫
Rd×R

f (|v −u|, t − s)M(du,ds),

where M is a Lévy basis on Rd+1 with a convolution equivalent Lévy measure, and
where we think of v ∈Rd as the position in space and t ≥ 0 as time. At a first glance,
the field seems not to differ much from that defined in (2.3), however, by defining
f (r, s) = 0 for all s < 0, the field (Xv,t) only depends on noise from the past, i.e. of noise
accounted for by M up to time t. This is in contrast to the field in (2.3).

The main result of Paper C is a generalization of the asymptotic equivalence (2.4):
If B ⊆Rd and [0,T ] are compact and full-dimensional index sets, then, under mild
assumptions on the kernel f and the underlying Lévy measure,

P
(
Ψ ((Xv,t)v∈B,t∈[0,T ]) > x

)
∼ Cρ((x/c,∞)) as x→∞, (2.6)

for a large class of functionals Ψ , where the constants C,c depend on Ψ . In particular,
if Ψ ((xv,t)) = supv∈B supt∈[0,T ] xv,t , then (2.6) reads

P
(
sup
v∈B

sup
t∈[0,T ]

Xv,t > x
)
∼ KT |B|ρ((x,∞)) as x→∞,

for some computable K .
Necessary to the proof of (2.6) is a result on continuity properties of the field (Xv,t)

which also has a value of its own. Under certain continuity assumptions of the kernel
f , we show that the field admits paths which are continuous in the space component
and càdlàg in time.
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2.2 Extreme value theory

In classical extreme value theory an i.i.d. sequence (ξn)n∈N is considered, and the aim
is to characterize the asymptotic distribution of Mn = max{ξ1, . . . ,ξn} as n→∞. One
of the main results is the Extremal Types Theorem, stating that if there are sequences
(an) and (bn) such that

P(Mn ≤ anx+ bn)→ G(x) for all x ∈R, (2.7)

where G is a non-degenerate distribution function, then G is one of three so-called
extreme value distributions; see [8, 19, 23] for detailed treatments of classical extreme
value theory. One such distribution is the Gumbel distribution, which is also infinitely
divisible. Very conveniently, it is possible to conclude the asymptotic distribution of
the maximum from the distribution of the individual ξ-variables: The convergence
(2.7) is satisfied if and only if

nP(ξ1 > anx+ bn)→− logG(x) for all x ∈R,
as n→∞. This equivalence between the tail of a single variable and the running
maximum holds for more general limits and when replacing anx + bn with more
general sequences (see [19, Theorem 1.5.1]). Results as the one just mentioned can
also be obtained for dependent sequences. In particular, if a stationary sequence (ξn)
satisfies certain mixing and anti-clustering conditions, then the conclusions above
remain true; see e.g. [8, Section 4.4] for the definition of these conditions and for
examples of stationary sequences satisfying one or both conditions.

In [20] a spatial random field indexed by R2 is considered with the purpose of
obtaining an extremal types theorem similar as above. More specifically, if a stationary
(continuously indexed) field (Zv)v∈R2 satisfies some coordinate-wise mixing condition,
then the convergence

P
(
M(Cn) ≤ anx+ bn

)
→ G(x) for all x ∈R,

where M(Cn) = supv∈Cn Zv for an an increasing sequence of boxes Cn ⊆ R2, implies
that G is of extreme value type.

As mentioned above, it is shown in [9] that the running supremum of the Lévy-
based field (Xt)t≥0 defined in (2.5) converges to the Gumbel distribution: There are
sequences (aT ) and (bT ) such that

P
(

sup
t∈[0,T ]

Xt ≤ aT x+ bT
)
→ exp

(
e−xK

)
for all x ∈R,

as T → ∞, where K is a computable constant. Generalizing this result to spatial
Lévy-based objects as defined by (2.3) was the original motivation of Paper D.

Paper D

The aim of this paper is firstly to expand classical, one-dimensional extreme value
results to the d-dimensional Euclidean space. Secondly, we apply similar techniques
to describe the distribution function of (a normalization of) supv∈CnXv , where (Xv)
is a stationary Lévy-driven moving average given by (2.3) and (Cn) is a sequence of
sufficiently nice increasing sets in Rd .
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Before turning to the probabilistic setup, we present conditions under which
the deterministic sets (Cn) increase appropriately. We need the sets to expand in
a particularly nice way such that they can be approximated by a certain class of
expanding cubes. We require that Cn is a union of a fixed number of connected
convex bodies (convex and compact sets with non-empty interior), which, due to the
Steiner formula ([28]) from classical convex geometry, guarantees the appropriate
set-expansion if only the so-called intrinsic volumes of Cn are sufficiently bounded
relative to the volume of Cn; see (Assumption D.2.4, Paper D) for details. This is very
desirable as the assumption (as expected) is then associated to the geometry of the
sets at hand.

The first part of the paper concerns the distribution ofM(Dn) = maxv∈Dn ξv , where
(ξv)v∈Zd is a stationary random field and (Dn) is a sequence of sets in Zd increasing
appropriately (meaning that there are continuous index sets Cn as above such that
Dn = Cn ∩Zd). More precisely, for a given real sequence (xn), we formulate mixing
and anti-clustering conditions such that, when satisfied,

|Dn|P(ξv > xn)→ τ if and only if P(M(Dn) ≤ xn)→ e−τ

for all 0 ≤ τ < ∞, where |Dn| denotes the number of points in Dn. Furthermore,
assuming the mixing and anti-clustering conditions, an extremal types theorem holds
under the additional assumption |Dn+1|/ |Dn| → 1, which ensures that the growth of
the sequence (Dn) is not too explosive. All of the assumptions will in particular be
satisfied if Cn = rnC for a union of convex bodies C and a sequence (rn), where rn→∞
and rn+1/rn→ 1. Hence, if there are sequences (an) and (bn) such that

P
(
M(Dn) ≤ anx+ bn

)
→ G(x) for all x ∈R,

for a non-degenerate distribution G, then G is an extreme value distribution. Assum-
ing only the mixing condition, we show that the same conclusion holds if in fact
|Dn| ∼ a ·n for a finite constant a.

In the second part of the paper, we consider the Lévy-driven field (Xv)v∈Rd given
by (2.3), and we show that supv∈CnXv (when normalized) converges to the Gumbel
distribution, i.e.

P
(
sup
v∈Cn

Xv ≤ anx+ bn
)
→ exp

(
e−xK

)
for all x ∈R, (2.8)

for appropriate norming constants (an), (bn), where K is again a computable constant.
Actually, the proof techniques used to show this immediately gives the following
complementary result: If (Yv)v∈Rd is a stationary and ergodic field independent of
(Xv)v∈Rd with sufficiently light tail, then the normalization of the running supremum
supv∈Cn(Xv +Yv) converges to the Gumbel distribution (in the sense of (2.8)).
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Abstract

We consider the problem of numerical integration when the sampling nodes form
a stationary point process on the real line. In previous papers it was argued that
a naïve Riemann sum approach can cause a severe variance inflation when the
sampling points are not equidistant. We show that this inflation can be avoided
using a higher order Newton-Cotes quadrature rule which exploits smoothness
properties of the integrand. Under mild assumptions, the resulting estimator is
unbiased and its variance asymptotically obeys a power law as a function of the
mean point distance. If the Newton-Cotes rule is of sufficiently high order, the
exponent of this law turns out to only depend on the point process through its
mean point distance. We illustrate our findings with the stereological estimation
of the volume of a compact object, suggesting alternatives to the well-established
Cavalieri estimator.
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A.1 Introduction

Let f : R→R be an integrable function with compact support. We intend to approxi-
mate the integral of f based on its values at finitely many random sampling points. If
X ⊂R is a stationary point process with intensity 1/t > 0, the random variable

V̂0(f ) = t
∑
x∈X

f (x), (A.1.1)

is unbiased for
∫
f (x)dx due to Campbell’s theorem; see, e.g. [10, Chap. 3]. The

simplest situation is that of equidistant sampling points. In this case, we can write
X = t(U +Z), where U is a uniform random variable in the interval (0,1), and the
estimator becomes

V̂ (f ) = t
∑
k∈Z

f
(
t(U + k)

)
. (A.1.2)

The estimator (A.1.2) corresponds to systematic sampling with randomized start. Its
variance behavior is well understood; see e.g. [7]. It was remarked in [2] and [12] that
the variance of (A.1.1) can be substantially larger in the non-equidistant case. The
purpose of the present paper, following an idea in [6], is to show and quantify that
this variance increase can be reduced – essentially to the level of the equidistant case
– using Newton-Cotes quadrature approximations of sufficiently high order n ∈N
instead of the crude sum (A.1.1).

The resulting Newton-Cotes estimator V̂n(f ) is unbiased under mild assumptions;
see Theorem A.2.2. To analyze the variance of V̂n(f ), the refined Euler-MacLaurin
theory in [7] appears no longer to be sufficient, and we therefore extend the clas-
sical Peano kernel theorem ([11, Theorem 3.2.3]) to locally finite, not necessarily
equidistant sets of nodes in Theorem A.2.3. This allows us to give explicit variance
bounds in Theorem A.2.8 depending on the smoothness of the measurement function
f . These bounds follow a power law as functions of t. Interestingly, if the order of
the Newton-Cotes estimator is large enough (compared to the smoothness of f ), the
exponent of this power law coincides with the exponent in the equidistant case –
independently of the covariance structure of X. However, if the Newton-Cotes order
is too small, the exponent may be worse than in the equidistant case, and it may
depend on X. We introduce the notion of strongly n-admissible point processes (see
Definition A.2.7 for details) and show that the exponent for the variance bound is
better for such point processes when n is not large enough; see (A.2.7). In Theorems
A.2.9 and A.2.10 this general theory is applied to particular point process models:
a model with i.i.d. perturbations of the equidistant case and a renewal process. In
both cases, explicit variance expansions are derived for Newton-Cotes estimators of
order n = 1 showing in particular that the power law exponents in Theorem A.2.8 in
general can not be improved.

The paper is organized as follows. The main results, as outlined above, are stated
rigorously in the next section. In Section A.3 more relevant notation is introduced,
the nth order Newton-Cotes estimator is formally derived, and the refined Peano
kernel theorem is proven. In Section A.4 we derive integrability statements which
will be of relevance when proving the main results, Theorems A.2.2 and A.2.8, in
Sections A.5 and A.6, respectively. In Section A.7 we show that point processes from
the perturbed and cumulative model (renewal process) are strongly n-admissible for
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all n ∈N, and we derive the exact variance expressions presented in Theorems A.2.9
and A.2.10. Section A.8 applies our findings to the stereological problem of volume
estimation of a compact set in R3 and contains a simulation study. Conclusions and
ideas for future work can be found in Section A.9.

A.2 Main results

As for the estimators (A.1.1) and (A.1.2), throughout this paper we consider a point
process X with intensity 1/t and we apply Newton-Cotes quadratures to functions
evaluated at the points of X.

Let n ∈N be given. We recall the definition of the nth order Newton-Cotes estimator
V̂n(f ) from [6] for a fixed realization of X. On the interval from a point x0 ∈ X to its
nth right neighbour in X, say xn, the function f is approximated by a polynomial of
degree at most n ∈N passing through the points {xj , f (xj )}nj=0, where x1 < · · · < xn−1

are the ordered points in X ∩ (x0,xn). V̂n(f ) is then an average of the integral of the
concatenation of such approximations (composite rule) with respect to the starting
point chosen. The estimator V̂n(f ) turns out to be a weighted average of f over all
points in X,

V̂n(f ) =
∑
x∈X

α(x;X)f (x), (A.2.1)

where the weights satisfy α(x;X) = tα(x/t;X/t) for all x ∈ X, where (when considered
random) X/t is of unit intensity; see (A.3.4) for details. We will see in Remark A.5.1
that α(x;X) = t when X = t(U +Z) is an equidistant process, and therefore, Newton-
Cotes estimators of any order coincide with (A.1.2) in the equidistant case.

When applying the estimator on randomized sampling points, we work under the
general assumption that a typical distance between two consecutive points has finite
positive and negative moments of all orders:

Assumption A.2.1.
E0h

j
1 <∞ for all j ∈Z. (A.2.2)

Here E0 is the expectation under the Palm-distribution of X, that is, the distribution
of X given that 0 ∈ X (see e.g. [10, Sec. 3.3]), and h1 is the lag between 0 and its right
neighbor in X. Note that (A.2.2) holds for X if and only if it holds for aX for all a > 0.
Assumption A.2.1 is certainly not necessary for the results to hold for a given n, but
finding a necessary and sufficient condition appears to be quite technical. Our first
result shows the unbiasedness of V̂n(f ).

Theorem A.2.2. Let n ∈N and t > 0 be given and assume that X is a stationary point
process such that Assumption A.2.1 is satisfied. Then V̂n(f ) is unbiased:

EV̂n(f ) =
∫
R
f (x)dx

for all integrable and real-valued functions f with compact support.

This will be shown in Section A.5, where we also argue that Assumption A.4.1 below,
which is weaker than Assumption A.2.1, is sufficient to ensure unbiasedness. We also
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remark that unbiasedness is known to hold for n = 1 without integrability conditions
and for n = 2 under a condition weaker than Assumption A.4.1; see [6, Ex. 1 and
Cor. 3].

Like in the case of classical quadrature, high order quadrature is reducing the dis-
cretization error when the measurement function is smooth. We adopt a smoothness
condition which is in widespread use in stereological applications. Form,p ∈N0∪{∞},
we say that a measurable function f with compact support is (m,p)-piecewise smooth
if it is in Ck(R) for k = max{m−1,0}, and all derivatives up to orderm+p exist and are
continuous except in at most finitely many points, where they may have finite jumps.
Hence, if f is (m,p)-piecewise smooth,m is the smallest order of derivative of f which
may have jumps; see e.g. [7] for details on such functions. For our results to hold, we
require that p ≥ 1, however, the exact value of p is otherwise irrelevant. We therefore
state all results for (m,1)-piecewise smooth functions. We say that a function f is
exactly (m,1)-piecewise smooth if it is (m,1)-piecewise smooth with discontinuous mth
derivative. We let Df (m) denote the finite set of discontinuity points of f (m), with

a 7→ Jf (m) (a) = lim
x→a+

f (m)(x)− lim
x→a− f

(m)(x)

denoting the corresponding jump-function.
Our second result expresses the discretization error

R(n)(f ) = V̂n(f )−
∫
R
f (x)dx (A.2.3)

in terms of higher order derivatives of f . We state it for a realization of X, that is, we
consider X as a deterministic, locally finite set of distinct points with convex hull
Conv(X) = R.

Theorem A.2.3 (Refined Peano kernel theorem for Newton-Cotes estimation).
Let n ∈N be fixed. Given X and m ≤ n there exists a function Km such that

R(n)(f ) =
∫
R
f (m+1)(r)Km(r)dr +

∑
a∈Df (m)

Jf (m) (a)Km(a)

for all (m,1)-piecewise smooth functions f : R→R.

Remark A.2.4. The function Km will be called the mth Peano kernel. It is a piecewise
polynomial of order at most m + 1 with coefficients given in terms of X. The mth
Peano kernel is explicitly given by (A.3.7), below. It is shown in Lemma A.4.2 that
for a stationary point process X satisfying Assumption A.2.1, Km is a stationary
stochastic process on the real line with finite absolute moments of any (positive)
order. In particular, the mean EKm(0) = EKm(r) and the covariance function Hm(s) =
Cov(Km(r),Km(s+ r)) are both finite and independent of r ∈R.

As initially considered and shown in [9], the variance of (A.1.2) in the equidistant
case depends on jumps of high order derivatives of the measurement function; see
also [7, Chapter 5]. This is outlined in the following for comparison with the general
case. Let ∗ denote the convolution operator and let the reflection f̌ of f be defined as
f̌ (x) = f (−x). When the measurement function f is (m,1)-piecewise smooth, it can
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be shown [7, Corollary 5.8] that the so-called covariogram g = f ∗ f̌ of f is (2m+ 1,1)-
piecewise smooth. When f is exactly (m,1)-piecewise smooth, one usually decomposes
the variance of V̂ (f ) as

V ar(V̂ (f )) = V arE(V̂ (f )) +Z(t) + o(t2m+2) (A.2.4)

when t ↓ 0. The Zitterbewegung Z(t), which is of order t2m+2, is a finite sum of terms
oscillating around 0, o(t2m+2) is a low-order remainder and the extension term

V arE(V̂ (f )) = t2m+2g(2m+1)(0+)cm (A.2.5)

explains the overall trend of the variance. Here cm = − 2B2m+2
(2m+2)! , 0, where Bk is the kth

Bernoulli number (see Section A.6 below), and as such cm does not depend on t or
the function f , other than through its order of smoothness.

Motivated by stereological applications, and adopting the naming from [12], we
will mainly work with two classes of point process models. Both models are defined
as scalings of unit-intensity processes.

Example A.2.5 (Perturbed model). A stationary point process X with intensity 1/t
is from the perturbed model if it is derived from equidistant points by having i.i.d.
perturbations tEk , k ∈Z, of every point, i.e. X = {t(U + k +Ek)}k∈Z; see Section A.7.1.
Note that the perturbations may have a degenerate distribution concentrated at 0,
and hence the equidistant model is a particular instance of the perturbed model.

Example A.2.6 (Model with cumulative errors). A stationary point process X with
intensity 1/t is from the model with cumulative errors if X = tXu , where Xu is a
unit-intensity two-sided stationary renewal process on the real line with holding
times ωi , i ∈Z. In particular, the holding times {tωi} between two consecutive points
of X form an i.i.d. sequence; see Section A.7.2.

If X is from the perturbed model (with non-degenerate perturbations), the vari-
ance of (A.1.1) satisfies V ar(V̂0(f )) = t2c′ +Z0(t) + o(t2) when m = 0 and V ar(V̂0(f )) =
t3c′′+o(t3) whenm ≥ 1 as t ↓ 0. This was shown in [12, Prop. 1] apart from the missing
Zitterbewegung term Z0(t) of order t2 in the first equation, which was omitted there
as it was erroneously claimed that the last term in [12, Eq. (A3)] is of order o(t2m+2).
Hence, for allm ≥ 1, the rate of decrease of V0(f ) in the non-equidistant case is strictly
smaller than in the equisdistant case; cf. (A.2.5) for the latter. The behavior is even
worse in the model with cumulative errors, as V ar(V̂0(f )) = tc′′′ + o(t) for all m ≥ 0;
see [12, Prop. 2].

In order to formulate corresponding rates of decrease for Newton-Cotes estimators,
we need the notion of an admissible point process. The Peano kernel in the definition
of an admissible point process is explicitly given in (A.3.7) with m = n.

Definition A.2.7 (Admissible point process). Let X be a stationary point process sat-
isfying Assumption A.2.1. For n ∈N let Hn be the covariance function of Kn. Then X is
called strongly n-admissible if

∫ z
0 Hn(s)ds is uniformly bounded in z ≥ 0. X is called weakly

n-admissible if limz→∞ 1
z

∫ z
0 Hn(s)ds = 0.

17
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From the definition (A.3.7) of Km it is easily seen that X is weakly/strongly
admissible if and only if aX is weakly/strongly admissible for all constants a > 0.
Admissibility is closely related to ergodicity properties of the stationary field Kn, and
hence to those of X. In fact, if Kn has an exponentially decaying α-mixing coefficient
(see, for instance, [5, Subsection 1.3.2] for the definition of this coefficient), then
[5, Theorem 3.(1), p. 9] and the fact that EKn(0)2+ε < ∞, ε > 0, imply that Hn(s) is
exponentially decaying, and hence, X is strongly n-admissible for all n ∈N.

The covariance functionHn need not be decaying forX to be strongly n-admissible.
When X is from the perturbed model, the covariance function is closely related to
Bernoulli functions (see Section A.6), which are 1-periodic functions integrating to 0
on an interval of unit length. This is used in Lemma A.7.1 to show that X is strongly
n-admissible for all n ∈N. Concerning the model with cumulative errors, we show
in Lemma A.7.3 that Hn is indeed exponentially decaying when assuming that the
holding times of the process have finite exponential moments. The proof relies on
a result from [1] concerning the convergence rate of convolutions of the renewal
measure of a pure renewal process.

Theorem A.2.8. Let n ∈N be given and assume that X is a stationary point process with
intensity 1/t > 0 such that Assumption A.2.1 holds. If f is (m,1)-piecewise smooth and
k = min{m,n}, the variance of the estimator (A.2.1) obeys

V ar(V̂n(f )) ≤ ct2k+2 (A.2.6)

for some constant c, which does not depend on t.
If m > n and X is strongly n-admissible, then

V ar(V̂n(f )) ≤ c′t2n+3 (A.2.7)

for some constant c′ , which does not depend on t.

If f is exactly (m,1)-piecewise smooth with m < n, the decrease rate in (A.2.6)
is optimal. This is also true in the case m = n if X is weakly n-admissible; see Re-
mark A.6.2.

When using the trapezoidal estimator, that is n = 1, we have exact expressions of
the asymptotic behavior of the variance when X is from the perturbed model and
the model with cumulative errors. In the perturbed case, the rate of decrease of the
upper bound in (A.2.7) is optimal if the perturbations Ei are non-degenerate.

Theorem A.2.9. Let X be from the perturbed model with intensity 1/t, and let µk be the
kth moment of the perturbations Ei . Assume that the measurement function f is exactly
(m,1)-piecewise smooth with covariogram g = f ∗ f̌ . Then, for t ↓ 0,

V ar(V̂1(f )) = −t2g ′(0+)(µ2 + 1
6 ) +Z0(t) + o(t2), for m = 0, (A.2.8)

V ar(V̂1(f )) = t4g(3)(0+) 1
12 (2µ2 + 2µ4 + 1

30 ) +Z1(t) + o(t4), for m = 1, (A.2.9)

V ar(V̂1(f )) = t5g(4)(0) 1
8 (2µ4 +µ2µ4 −µ3

2 −µ2
3) + o(t5), for m ≥ 2, (A.2.10)

where the Zitterbewegung Zm(t) is given by (A.7.7). It is of order t2m+2, and it is a finite
sum of terms oscillating around 0. Moreover, if Ei has a density with a finite number of
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finite jumps and m ≥ 2, the remainder o(t5) is explicitly given by

t6g(5)(0+) 1
720

(
−34µ2 − 90µ2

2 + 110µ4 + 180µ2µ4

− 180µ3
2 − 170µ2

3 + 8µ6 − 1
21

)
+Z2(t) + o(t6).

(A.2.11)

We compare these findings with the equidistant case. The Zitterbewegung in
(A.2.4) is not present in the decomposition of Theorem A.2.9 when m ≥ 2, or rather it
is of lower order and thus part of the low-order remainder. As the Bernoulli numbers
satisfy B2 = 1

6 , B4 = − 1
30 and B6 = 1

42 , the extension term (A.2.5) becomes V arEV̂ (f ) =
−t2g ′(0+) 1

6 , V arEV̂ (f ) = t4g(3)(0+) 1
12

1
30 and V arEV̂ (f ) = −t6g(5)(0+) 1

21
1

720 for m =
0,1,2, respectively. Hence, the extension term of the trapezoidal estimator with
perturbed sampling can come arbitrarily close to (A.2.5) if the errors Ei are sufficiently
small. Under the model with cumulative errors, a corresponding statement holds as a
consequence of the following result.

Theorem A.2.10. Let X be from the model with cumulative errors with intensity 1/t and
let the i.i.d. holding times ωi (of the unit-intensity process) satisfy Eeηω1 <∞ for some
η > 0. Define νk as the kth moment of ω1. Let the measurement function f be exactly
(m,1)-piecewise smooth with covariogram g = f ∗ f̌ . Then, for t ↓ 0,

V ar(V̂1(f )) = −t2g ′(0+) 1
6ν3 + o(t2), for m = 0, (A.2.12)

V ar(V̂1(f )) = t4g(3)(0+) 1
12

1
30 (6ν5 − 5ν2

3 ) + o(t4), for m = 1 . (A.2.13)

A.3 The Peano kernel representation

In this section we consider a locally finite set X ⊂ R such that Conv(X) = R, and
an integrable function f : R → R with compact support which is known at all
points in X. For any x ∈ X and j ∈ Z we define sj(x) = sj(x;X) as the jth successor
(predecessor for j < 0) of x in X, with s0(x) = x by definition. Hence, for j ≥ 1, sj(x)
and s−j (x) are the unique points in X ∩ (x,∞) and X ∩ (−∞,x), respectively, such that
#(X ∩ (x,sj (x)]) = #(X ∩ [s−j (x),x)) = j. Note that

sj (x+ t;X + t) = sj (x;X) + t (A.3.1)

for all t ∈ R. For all x ∈ X and j ∈ Z we let hj(x) = hj(x;X) = sj(x;X) − sj−1(x;X) be
the distance from the jth successor (predecessor) of x to its left neighbour in X. By
(A.3.1),

hj (x+ t;X + t) = hj (x;X) (A.3.2)

for all t ∈R. We now recall the principle of Newton-Cotes quadrature, adapted to an
infinite set of nodes; see [6] for details. On the interval [x,sn(x)], x ∈ X, the function f
is approximated by a polynomial of degree at most n ∈N passing through the points
{sj (x), f (sj (x))}nj=0. The integral of this polynomial on [x,sn(x)] is

I
(n)
x (f ) = I (n)

x (f ;X) =
n∑
j=0

β
(n)
j (x)f (sj (x))
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where

β
(n)
j (x) = β(n)

j (x;X) =
∫ sn(x)

x

n∏
k=0
k,j

y − sk(x)
sj (x)− sk(x)

dy (A.3.3)

for x ∈ X. The approximation V̂n(f ) = 1
n

∑
x∈X I

(n)
x (f ) =

∑
x∈X α(x)f (x) is then an aver-

age of the sum of the integral-approximations I (n)
x with respect to the starting point

chosen. Here

α(x) = α(x;X) =
1
n

n∑
j=0

β
(n)
j (s−j (x)). (A.3.4)

Remark A.3.1. From [11, Theorem 2.1.1.1] the integral approximation on an interval

[x,sn(x)] is exact whenever f = p is a polynomial of degree at most n. That is, R(n)
x (p) =

0, with the discretization error R(n)
x defined by

R
(n)
x (f ) = R(n)

x (f ;X) = I (n)
x (f )−

∫ sn(x)

x
f (y)dy, (A.3.5)

x ∈ X.

As shown in Lemma A.I.1, β(n)
j is a rational function of point-increments, and (A.3.2)

then implies that

β
(n)
j (x+ t;X + t) = β(n)

j (x;X) and α(x+ t;X + t) = α(x;X) (A.3.6)

for all t ∈R and x ∈ X.
We are now ready to prove the refined Peano kernel theorem as stated in The-

orem A.2.3. Given n, X, and m ∈N0, the mth Peano kernel from Theorem A.2.3 is
defined as

Km(r) = Km(r;X) =
1
m!n

∑
x∈X

1(x,sn(x)](r)R
(n)
x ((· − r)m+ ) . (A.3.7)

The mapping x 7→ (x − r)m+ should be understood as

(x − r)m+ =

(x − r)m for x > r,

0 for x ≤ r.

Hence, Km is a piecewise polynomial of degree at most m+ 1 with coefficients deter-
mined by X.

Proof of Theorem A.2.3. Fix n ∈ N and note that nR(n)(f ) =
∑
x∈X R

(n)
x (f ) due to

(A.2.3) and (A.3.5). For all x ∈ X and y ∈ [x,sn(x)], an induction argument using the
refined partial integration formula [7, Lemma 4.1] yields

f (y−) =
m∑
k=0

f (k)(x+)
k!

(y − x)k

+
1
m!

∑
a∈Df (m)∩(x,y)

Jf (m) (a)(y − a)m +
1
m!

∫ y

x
f (m+1)(t)(y − t)mdt,
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for all (m,1)-piecewise smooth functions f , m ∈N0. We now assume m ≤ n. Using the

linearity of R(n)
x , the fact that all polynomials of order at most n are integrated exactly,

and the fact that R(n)
x commutes with integration, we find that (with all expressions

considered as functions of y)

m!R(n)
x (f )

= R(n)
x

( ∑
a∈Df (m)∩(x,y)

Jf (m) (a)(y − a)m +
∫ y

x
f (m+1)(t)(y − t)mdt

)

=
∑

a∈Df (m)∩(x,sn(x)]

Jf (m) (a)R(n)
x

(
(y − a)m+

)
+
∫ sn(x)

x
f (m+1)(t)R(n)

x

(
(y − t)m+

)
dt.

Changing the summation order, (A.3.7) implies that

R(n)(f ) =
1
n

∑
x∈X

R
(n)
x (f ) =

∑
a∈Df (m)

Jf (m) (a)Km(a) +
∫
R
f (m+1)(t)Km(t)dt,

as claimed. �

Before proceeding, we state a useful lemma on continuity properties of the Peano
kernel. For r ∈R we have

Km(r) =
1
m!n

∑
x∈X

1(x,s1(x)](r)
0∑

i=1−n
R

(n)
si (x) ((· − r)m+ ) .

The following result is a simple consequence of this representation and the fact that
polynomials of degree at most n are approximated exactly.

Lemma A.3.2. Fix n ∈N and a locally finite point-set X with Conv(X) = R. Then, for
all x ∈ X and m ∈N, the function Km is differentiable on (x,s1(x)) with derivative −Km−1
and jump

JKm(x) =
1
m!n

R
(n)
x

(
( · − x)m

)
.

In particular, Km is (m− 1)-times continuously differentiable for all 1 ≤m ≤ n.

A.4 Integrability properties

To argue that V̂n(f ) is an unbiased estimator for
∫
f (x)dx when applied to randomized

sampling points, we recall the notion of the Palm distribution of a stationary point
process X ⊂R. It can be interpreted as the conditional distribution of X given that
0 ∈ X. We denote it by P0 with the corresponding expectation denoted by E0. When
considering the point process X under its Palm distribution, we will often suppress
the dependence on the point 0 ∈ X in the various expression, i.e. under P0 we for
instance write

si = si(0), hi = hi(0), β
(n)
j = β(n)

j (0)

for all i ∈ Z and j = 0, . . . ,n. In addition we write h = (h1, . . . ,hn) and, for i ∈ Z,
h(si) = (h1(si), . . . ,hn(si)) = (hi+1, . . . ,hi+n) under P0. As mentioned in Section A.1,
a weaker assumption than (A.2.2) is sufficient to ensure the unbiasedness of the
estimator.
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Assumption A.4.1. For a given n ∈N we assume that

E0
[

hm

hm′

]
<∞ (A.4.1)

for all multi-indices m,m′ ∈ Nn
0 with |m| ∈ {n + 1,n + 2} and |m′ | = n, where |m| =

|(m1, . . . ,mn)| = ∑n
k=1mk .

Using Hölder’s inequality and [6, Eq. (13)], one shows that Assumption A.2.1 is

stronger than Assumption A.4.1. In Lemma A.I.1 it is shown that the weight β(n)
j (x) is a

rational function of the point-increments (h1(x), . . . ,hn(x)), x ∈ X, where the numerator
is a homogeneous polynomial of degree n+1, and the denominator is a non-vanishing
homogeneous polynomial of degree n with non-negative coefficients. From the fact
that the Palm distribution is invariant under bijective point shifts [6, Eq. (13)], it

is easily seen that E0|β(n)
j (s−j )| < ∞ for all j ∈ {0, · · · ,n} when Assumption A.4.1 is

satisfied, and consequently
E0|α(0)| <∞, (A.4.2)

see Lemma A.I.2. We conclude that either of the two assumptions is sufficient to
guarantee the Palm-integrability of α(0), which will be used in the proof of Theo-
rem A.2.2.

To argue for the variance bounds presented in Theorem A.2.8 we need higher-
order moment and translation invariance properties of the Peano kernel Km defined
in (A.3.7).

Lemma A.4.2. Let n ∈N be given and assume that X is a stationary point process. Then,
for all m ∈N0, Km is a stationary stochastic process. If Assumption A.2.1 holds, Km(0) has
finite absolute moments of all (positive) orders. Moreover, if X has intensity γ , Km satisfies

EKm(0) = γE0JKm+1
(0) =

γ

(m+ 1)!n
E0R

(n)
0

(
( · )m+1

)
(A.4.3)

for all m ∈N0. In particular, EKm(0) = 0 for all m < n.

Proof. Fix n ∈N. For any r, s ∈R and any locally finite pointset X, the Peano kernel
satisfies

Km(r + s;X) = Km(r;X − s). (A.4.4)

This follows from the definition of Km and

R
(n)
x ((· − (r + s))m+ ;X) = R(n)

x−s ((· − r)m+ ;X − s) , x ∈ X,

which in turn is a consequence of (A.3.1) and (A.3.6). Due to (A.4.4) the stationarity
of Km is inherited from the stationarity of the point process X.

We now prove that Km(0) has finite absolute moments. Let k ∈N be given. For
arbitrary r ∈ R put Ir = {x ∈ X : r ∈ (x,sn(x)]}. Using Hölder’s inequality and some
rather crude upper bounds we obtain from (A.3.5) and (A.3.7)

∣∣∣Kkm(0)
∣∣∣ ≤∑

x∈I0

∣∣∣R(n)
x ((·)m+ )

∣∣∣k ≤∑
x∈I0

(sn(x))km
( n∑
j=0

|β(n)
j (x)|+ sn(x)

)k
.
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By the refined Campbell Theorem [10, Theorem 3.5.3], (A.3.1) and (A.3.6) it follows
that

E
∣∣∣Kkm(0)

∣∣∣ ≤ γE0
∫ sn

0
xkm

( n∑
j=0

|β(n)
j |+ x

)k
dx ≤ γE0skm+1

n

( n∑
j=0

|β(n)
j |+ sn

)k
,

where γ is the intensity of X. By Lemma A.I.1, Assumption A.2.1 and the fact that

sn =
∑n
j=1 hj under P0, the variables sn and β(n)

j have finite absolute moments of all

orders under P0. This implies that E|Kkm(0)| <∞.
Equation (A.4.3) is a simple consequence of the refined Campbell Theorem [10,

Theorem 3.5.3], Lemma A.3.2 and [6, Eq. (13)]. �

A.5 Unbiasedness of Newton-Cotes estimators

Proof of Theorem A.2.2. Fix n ∈N and let X ⊆R be a stationary point process with
finite and positive intensity γ . As α satisfies (A.3.6) and α(0) is Palm-integrable by
(A.4.2), [6, Theorem 1] can be applied. It states that

EV̂n(f ) = γE0[α(0)]
∫
R
f (x)dx (A.5.1)

holds for all integrable functions f : R→R with compact support. Hence, if we can
show that E0[α(0)] = γ−1, we have shown that V̂n(f ) is unbiased.

For s ∈R reuse the notation Is from the end of the previous section. When f is an
integrable function and |f | ≤ 1, (A.3.5) implies∑

x∈Is
|R(n)
x (f )| ≤

∑
x∈Is

( n∑
j=0

|β(n)
j (x)|+ (sn(x)− x)

)
.

The refined Campbell theorem [10, Theorem 3.5.3], (A.3.1) and (A.3.6) imply

E
∑
x∈Is
|R(n)
x (f )| ≤ γE0

∫ s

s−sn

( n∑
j=0

|β(n)
j |+ sn

)
dx = γE0

[
sn

n∑
j=0

|β(n)
j |+ s2n

]
<∞,

where the finiteness follows from Lemma A.I.1 and Assumption A.4.1, which is
weaker than Assumption A.2.1. Note that the finite upper bound is independent of s.

Now let r > 0 be given and consider the function fr = 1[0,r]. Recall that

R(n)(fr ) = V̂n(fr )−
∫
R
fr (x)dx =

1
n

∑
x∈X

R
(n)
x (fr )

is the error of the nth Newton-Cotes estimator. The Newton-Cotes approximation on
an interval [x,sn(x)] is exact for all polynomials of degree at most n, and in particular,

it is exact for constant functions. Hence, R(n)
x (fr ) = 0 whenever [x,sn(x)]∩ {0, r} = ∅.

This implies

|ER(n)(fr )| ≤ E
∑
x∈I0
|R(n)
x (f )|+E

∑
x∈Ir
|R(n)
x (f )| ≤ 2C,

for some finite C ∈R which is independent of r. Equation (A.5.1) now implies

0 = lim
r→∞

1
rER

(n)(fr ) = γE0α(0)− 1,

so E0α(0) = 1/γ as asserted. �
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Remark A.5.1. If X = t
(
U +Z

)
is the equidistant point process, α(x) = t for all x ∈ X.

In fact, the Palm version of X is the deterministic set tZ, and (A.3.6) yields

α(x;X) = α(x − x;X − x) = α(0; tZ)

for all x ∈ X. Hence α = α(x) is deterministic, and V̂n(f ) = α
∑
x∈X f (x). Assump-

tion A.2.1 is trivially satisfied, so Theorem A.2.2 implies the well-known fact that
V̂n(f ) is unbiased for

∫
f dx. This is equivalent to α = t.

A.6 Asymptotic variance behavior of Newton-Cotes estimators

In this and the following section we derive variance expressions showing the exact
dependence on the mean point distance t > 0. To this end, we will consider the Peano
kernel and its associated covariance function applied to the unit-intensity scaling of
the process X: Let the point process of interest X have intensity 1/t and define its unit-
intensity scaled process by Xu = X/t. Hence the Peano kernel Km( · ;Xu) with respect
to Xu remains unchanged when X is rescaled. To avoid intricate notation, we will
write Eu , Covu , V aru when expectation, covariance and variance are understood with
respect to Xu ; for instance EuKm(r) = EKm(r;Xu). Similarly, the Palm-distribution of
Xu and its expectation are denoted P0

u and E0
u , respectively. Lastly, the covariance

function of Km applied to Xu is denoted by Hu
m(s) = Covu

(
Km(s + r),Km(r)

)
for all

s, r ∈R.
Before proving Theorem A.2.8, we recall the variance decomposition of the es-

timator (A.1.2) in the equidistant case, as it shows great resemblance to the new
non-equidistant set-up. First we introduce the periodic Bernoulli functions Pm, which
we define as in [8, Paragraph 297]: Let (P̃m)∞m=0 be the sequence of rescaled Bernoulli
polynomials, which are defined inductively by P̃0(x) = 1, P̃1(x) = x − 1

2 and P̃ ′m+1 = P̃m,
P̃m+1(0) = P̃m+1(1) = 1

(m+1)!Bm+1, for m ∈N, where Bm is the mth Bernoulli number.
This normalization is chosen as in [7] in order to ease comparison with the results
there. Then Pm(x) = P̃m(x − bxc) is the mth Bernoulli polynomial, evaluated at the frac-
tional part of x ∈R. Note that Pm is continuous for all m , 1. When the measurement
function f is (m,1)-piecewise smooth, the variance decomposes as [7, Chap. 5]

V ar(V̂ (f )) = −t2m+2
∑

a∈Dg (2m+1)

Jg (2m+1) (a)P2m+2( at ) + o(t2m+2) (A.6.1)

as t ↓ 0. Here, g = f ∗ f̌ is the covariogram of f , and the term o(t2m+2) can explicitly be
given as −t2m+2

∫
R
g(2m+2)(s)P2m+2( st )ds. When the point process X is not equidistant,

we find a similar variance representation involving the Peano kernels instead of the
periodic Bernoulli functions.

Proposition A.6.1. Let n ∈N be given and assume that X is a stationary point process
with intensity 1/t such that Assumption A.2.1 holds. If f is (m,1)-piecewise smooth and
k = min{m,n}, then

(−1)k+1V ar(V̂n(f )) = t2k+2
∑

a∈Dg (2k+1)

Jg (2k+1) (a)Hu
k ( at )

+ t2k+2
∫
R
g(2k+2)(s)Hu

k ( st )ds.

(A.6.2)
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If k =m < n or X is weakly n-admissible, the variance behavior is determined by the first
term, as ∫

R
g(2k+2)(s)Hu

k ( st )ds = o(1)

for t ↓ 0.

Proof. The definition of α(x) and elementary calculations give

α(x;X) = tα(x/t;Xu)

for x ∈ X, so putting ft(x) = f (tx) we see that

V̂n(f ) = tV̂n(ft ;X
u), (A.6.3)

where the latter estimator is given in terms of the unit-intensity process Xu . As k ≤ n,
Theorem A.2.3 implies

R(n)(ft ;X
u) =

∫
R
f

(k+1)
t (s)Kk(s;X

u)ds+
∑
a∈D

f
(k)
t

Jf (k)

t
(a)Kk(a;X

u).

Using f ′t (x) = tf ′(tx) whenever the derivative is defined, we arrive at

R(n)(ft ;X
u) = tk

∫
R
f (k+1)(s)Kk(

s
t ;X

u)ds+ tk
∑
a∈Df (k)

Jf (k) (a)Kk(
a
t ;Xu).

Hence, using (A.6.3) and the unbiasedness of V̂n, we get

V ar(V̂n(f )) = t2V aru(V̂n(ft)) = t2Eu(R(n)(ft))
2

= t2k+2Eu

(∫
R
f (k+1)(s)Kk(

s
t )ds+

∑
a∈Df (k)

Jf (k) (a)Kk(
a
t )
)2
. (A.6.4)

An application of [7, Prop. 5.7] yields

f (k+1) ∗ ˇf (k+1)(x) = (−1)k+1g(2k+2)(x)

−
∑
a∈Df (k)

Jf (k) (a)f (k+1)(a− x)−
∑
a∈Df (k)

Jf (k) (a)f (k+1)(a+ x), (A.6.5)

and furthermore the jumps of g(2k+1) are given by Jg (2k+1) = (−1)k+1Jf (k) ∗ ˇJf (k) , see [7,
Eq. (5.12)]. The stationarity and square integrability of Kk from Lemma A.4.2 implies
that EuKk(r) and Hu

k (s) = Covu(Kk(r),Kk(s + r)) are both finite and independent of
r ∈R. Equation (A.6.2) now follows by expanding (A.6.4), applying (A.6.5), and using
the structure of Jg (2k+1) together with Fubini’s theorem. The latter may be applied due
to the square integrability of Kk and the fact that f (k+1) is bounded with compact
support.

We now show limt↓0
∫
R
g(2k+2)(s)Hu

k ( st )ds = 0 if k = m < n or X is weakly n-
admissible. The weak admissibility assumption yields

lim
t↓0

∫ 1

0
Hu
k ( st )ds = 0 (A.6.6)
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for k = n. Equation (A.6.6) also holds for k =m < nwithout additional assumptions. In
fact, for k < n we have K ′k+1 = −Kk by Lemma A.3.2 and thus using Fubini’s Theorem,∣∣∣∣∫ t

0
Hu
k (s)ds

∣∣∣∣ =
∣∣∣∣Covu

(
Kk(0),Kk+1(0)

)
−Covu

(
Kk(0),Kk+1(t)

)∣∣∣∣ ≤ c <∞,
where Hölder’s inequality and the stationarity of the Peano kernels have been used to
show that the constant c is independent of t. A substitution allows to derive (A.6.6)
from this.

Now fix k ≤ n and let ε > 0 be given. As g(2k+2) is integrable and bounded, there is
a simple function φ such that φ ≤ g(2k+2) and

0 ≤
∫
R
g(2k+2)(s)ds −

∫
R
φ(s)ds <

ε
2C

,

where the finite constant C > 0 satisfies sups∈R |Hu
k (s)| ≤ C. This implies that∣∣∣∣∣∫

R
g(2k+2)(s)Hu

k ( st )ds −
∫
R
φ(s)Hu

k ( st )ds
∣∣∣∣∣ < ε2 .

As φ is simple, (A.6.6) implies that limt↓0
∫
R
φ(s)Hu

k ( st )ds = 0. We conclude that
|
∫
R
φ(s)Hu

k ( st )ds| < ε
2 for sufficiently small t > 0, and hence∣∣∣∣∣∫

R
g(2k+2)(s)Hu

k ( st )ds
∣∣∣∣∣ < ε

for such small t > 0. �

Proof of Theorem A.2.8. Recall that k = min{m,n}. Due to Lemma A.4.2 there exists
C <∞ such that sups∈R |Hu

k (s)| ≤ C, and we immediately see from (A.6.2) that

V ar(V̂n(f )) ≤ t2k+2
(
C‖g(2k+2)‖∞λ(suppg) +C

∑
a∈Dg (2k+1)

|Jg (2k+1) (a)|
)
,

where λ(suppg) <∞ is the Lebesgue measure of the support of g. As g is (2k + 1,1)-
piecewise smooth by [7, Corollary 5.8], the t-independent constant is finite, and
(A.2.6) therefore follows.

For the stronger result (A.2.7), note that m > n and hence g is (2n+ 3,1)-piecewise
smooth, and in particular g(2n+2) is continuous. An application of Proposition A.6.1
to the (n,1)-piecewise smooth function f and a substitution gives

(−1)n+1V ar(V̂n(f )) = t2n+3
∫
R
g(2n+2)(st)Hu

n (s)ds. (A.6.7)

Let b > 0 satisfy suppg ⊂ [−b,b]. As g(2n+3) is bounded and measurable, g(2n+2) is
absolutely continuous. As Hu

n is bounded and hence integrable on [−b/t,b/t] for any
t > 0, also the function V given by V (s) =

∫ s
−b/tH

u
n (y)dy is absolutely continuous on

[−b/t,b/t] with derivative Hu
n almost everywhere; see e.g. [4, Section 9.3] for details

on absolutely continuous functions. Furthermore, as X and therefore Xu are assumed
strongly n-admissible, V is bounded by a t-independent constant C′, say. Partial
integration for absolutely continuous functions [4, Theorem 9] shows∫

R
g(2n+2)(st)Hu

n (s)ds =
∫ b/t

−b/t
g(2n+2)(st)Hu

n (s)ds = −t
∫ b/t

−b/t
g(2n+3)(st)V (s)ds,
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where we used that g(2n+2) vanishes at ±b. Returning to (A.6.7) we find

V ar(V̂n(f )) ≤ t2n+3t

∫ b/t

−b/t
|g(2n+3)(st)||V (s)|ds ≤ t2n+32b‖g(2n+3)‖∞C′ .

This proves the assertion. �

Remark A.6.2. If f is exactly (m,1)-piecewise smooth with m ≤ n and (A.6.6) is
satisfied with k =m, the variance

V ar(V̂n(f )) = (−1)m+1t2m+2
∑

a∈Dg (2m+1)

Jg (2m+1) (a)Hu
m( at ) + o(t2m+2)

is exactly of order t2m+2. This is easily seen by assuming that∑
a∈Dg (2m+1)

Jg (2m+1) (a)Hu
m( at )→ 0

as t → 0, and using that g(2m+1) has a jump at 0. Applying (A.6.6) yields a contra-
diction. In particular, the decrease rate in (A.2.6) is optimal if m < n or X is weakly
n-admissible.

A.7 Variance behavior under perturbed and cumulative sampling

In this section the general findings will be exemplified and made more explicit for the
perturbed model and the model with cumulative errors introduced in Examples A.2.5
and A.2.6, respectively.

A.7.1 Perturbed sampling

To construct the perturbed model, we let U be uniform on (0,1) and independent of
the sequence of i.i.d. variables {Ei}i∈Z, where |Ei | < 1

2 almost surely and EE1 = 0. The
perturbed model is the stationary point process X = {xi}i∈Z for which xi = t

(
U +i+Ei

)
,

for all i ∈Z. Under its Palm distribution, we have

hk = t
(
1 +Ek −Ek−1

)
≤ 2t, (A.7.1)

k ∈Z, so (A.2.2) is equivalent to

E(1 +E1 −E0)−j <∞ (A.7.2)

for all j ∈N. For instance, (A.7.2) holds if there is ε > 0 such that |E0| ≤ 1
2 − ε almost

surely. For the scaled perturbed model Xu we define the shifted kernel K∗m by

K∗m(r) = Km(r +U ;Xu) = Km(r;Xu −U )

for m ∈N0. Note that it only depends on the perturbations {Ei} and not on the initial
uniform translation, and thus it is not (necessarily) a stationary process. However,

by the i.i.d. structure of {Ei} and the fact that β(n)
j is a rational function of point-

increments, we see that
K∗m(r) D= K∗m(r + k) (A.7.3)

for all k ∈ Z. This can be used to show that Xu (and equivalently X) is strongly
admissible.
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Lemma A.7.1. Let n ∈ N be given and assume that X is a stationary point process
from the perturbed model such that (A.7.2) holds. Then, for all m ∈N0 and r ≥ 2n+ 2,
Hu
m(r) =Hu

m(r + 1) and
∫ r+1
r

Hu
m(s)ds = 0. In particular, X is strongly n-admissible.

Proof. Fix n ∈N and r ≥ 2n+ 2. For such r, the independence between U and {Ei}
yields

Eu[Km(0)Km(r)] =
∫ 1

0
E[K∗m(−u)K∗m(r −u)]du

=
∫ 1

0
E[K∗m(−u)]E[K∗m(r −u)]du.

(A.7.4)

Equations (A.7.3) and (A.7.4) imply that Eu[Km(0)Km(r)] = Eu[Km(0)Km(r + 1)] and
by stationarity of Km we conclude that Hu

m(r) =Hu
m(r + 1).

Returning to (A.7.4), we find by Fubini’s theorem, a substitution and the station-
arity of Km that∫ r+1

r
Eu[Km(0)Km(s)]ds

=
∫ 1

0
E[K∗m(−u)]

∫ 1

0
E[K∗m(r + 1−u − s)]dsdu

=
∫ 1

0
E[K∗m(−u)]Eu[Km(r + 1−u)]du = (EuKm(0))2,

which yields the asserted properties of Hu
m. This clearly implies that Xu and hence

also X are strongly n-admissible. �

In order to obtain explicit leading terms in Theorem A.2.9 we state in the following
a connection between the covariance function Hu

m and certain periodic Bernoulli
functions. For our purpose, it is enough to consider m ∈ {0,1}, but we also state that
the result holds for all m, when no perturbations are present.

Lemma A.7.2. Let n = 1 and let X be from the perturbed model. Then

Hu
m(r) = (−1)mE[P2m+2(r +E1 −E0)] (A.7.5)

for m = 0,1 and all |r | ≥ 4.
If X = t

(
U +Z

)
(hence Xu =U +Z) is the equidistant model, then

Hu
m(r) = (−1)mP2m+2(r) (A.7.6)

for all n ∈N, m ≤ n and r ∈R.

The proof of Lemma A.7.2 can be found in the supplementary material; see
Corollaries A.II.2 and A.II.3. As a consequence of (A.7.6), for the equidistant model
X = t

(
U +Z

)
, the variance representation (A.6.2) found using the Peano kernels coin-

cides with the classical variance representation (A.6.1) found using Euler-McLaurin
formulae.

Before turning to the proof of Theorem A.2.9, we emphasize that the integrability
condition (A.2.2), or equivalently, condition (A.7.2), was omitted in the statement of
the Theorem as we work with the trapezoidal rule. In fact, the unbiasedness of V̂1(f )

28



A.7 · Variance behavior under perturbed and cumulative sampling

for all stationary point processes and integrable, compactly supported functions f
was already remarked in the paragraph following the statement of Theorem A.2.2.
Due to (A.7.1), the weights satisfy

β
(1)
0 (x) = β(1)

1 (x) = 1
2h1(x) ≤ t,

x ∈ X, which replaces condition (A.2.2) in all the arguments in Sections A.5 and A.6.
The assumptions of Proposition A.6.1 are thus satisfied.

Proof of Theorem A.2.9. Let m ∈ {0,1}. The (2m+ 1)st derivative of the covariogram
g is an odd function, implying Jg (2m+1) (0) = 2g(2m+1)(0+). As X is strongly admissible,
Proposition A.6.1 in combination with (A.7.5) yields the variance decomposition

V ar(V̂1(f )) = (−1)m+1t2m+22g(2m+1)(0+)Hu
m(0) +Zm(t) + o(t2m+2),

where the Zitterbewegung Zm(t) is given by

Zm(t) = −t2m+2
∑

a∈Dg (2m+1)\{0}
Jg (2m+1) (a)E[P2m+2( at +E1 −E0)]. (A.7.7)

The facts that Zm is a finite sum of terms each oscillating around 0 and that it is
of order t2m+2 follow from arguments similar to those of [7, Section 5.2] as f is
assumed to be exactly (m,1)-piecewise smooth. By the refined Campbell Theorem

[10, Theorem 3.5.3] and the facts that EuK0(0) = 0 and EuK1(0) = 1
2E

0
u[R(1)

0 ((·)2)] by
(A.4.3), we find that Hu

m(0) = V aru(Km(0)) satisfies

Hu
0 (0) = E0

u

∫ h1

0
( 1

2h1 − y)2dy = 1
12E

0
uh

3
1 , (A.7.8)

Hu
1 (0) = E0

u

∫ h1

0
( 1

2h1y − 1
2y

2)2dy − ( 1
12E

0
uh

3
1)2 = 1

120E
0
uh

5
1 − 1

144 (E0
uh

3
1)2. (A.7.9)

Using (A.7.1), it is elementary to conclude (A.2.8) and (A.2.9).
Now let m ≥ 2 be given and define H̃u

1 by H̃u
1 (s) =Hu

1 (s) +E[P4(s+E1 −E0)]. Due
to Lemma A.7.2, H̃u

1 (s) vanishes for |r | > 4. Since g(4) is continuous, an application of
Proposition A.6.1 to the (1,1)-piecewise smooth function f , Fubini’s theorem and the
refined partial integration formula [7, Lemma 4.1] yield

V ar(V̂1(f )) = t5
∫
R
g(4)(st)H̃u

1 (s)ds − t6
∫
R
g(6)(s)E[P6( st +E1 −E0)]ds

− t6
∑
a∈Dg (5)

Jg (5) (a)E[P6( at +E1 −E0)].
(A.7.10)

As the last two terms in (A.7.10) are of order o(t5), we only have to simplify the first
term.

For all sufficiently small t > 0 and all s ∈R with |s| ≤ 4 the function g(4) is differ-
entiable on the open interval with endpoints 0 and st, so there is a point ξst in this
interval such that

g(4)(st) = g(4)(0) + g(5)(ξst)st
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by the mean value theorem. Inserting this into the first term of (A.7.10), and using
the fact that g(5) and H̃u

1 are bounded, yields

V ar(V̂1(f )) = t5g(4)(0)
∫ 4

−4
H̃u

1 (s)ds+ o(t5) (A.7.11)

as t ↓ 0.
Noting that P4 integrates to 0 on each interval of unit length, another application

of Fubini’s theorem, the refined partial integration formula [7, Lemma 4.1] and
Lemma A.3.2 gives∫ 4

−4
H̃u

1 (s)ds =
∫ 4

−4
Hu

1 (s)ds

= Eu

([
K2(−4) +

∑
x∈Xu∩[−4,4]

JK2
(x)−K2(4)

](
K1(0)−EuK1(0)

))
. (A.7.12)

The arguments that lead to (A.7.4) in combination with (A.7.3) where r = −4 and
k = 8 imply Eu[K2(−4)K1(0)] = Eu[K2(4)K1(0)], and the two marginal terms in the
last expression of (A.7.12) cancel. Hence, by the refined Campbell Theorem [10,
Theorem 3.5.3] and the translation covariance of JK2

,∫ 4

−4
H̃u

1 (s)ds = Eu
∑

x∈Xu∩[−4,4]

JK2
(x)

(
K1(0)−EuK1(0)

)
= E0

uJK2
(0)

∫ 4

−4

(
K1(x)−EuK1(0)

)
dx =

2∑
j=−3

θj +Q.

(A.7.13)

where θj = E0
uJK2

(0)
∫ sj+1

sj

(
K1(x)−EuK1(0)

)
dx and

Q = E0
uJK2

(0)
∫ s−3

−4

(
K1(x)−EuK1(0)

)
dx+E0JK2

(0)
∫ 4

s3

(
K1(x)−EuK1(0)

)
dx.

Here we have used the fact that s3 ≤ 4, s5 ≥ 4, s−3 ≥ −4 and s−5 ≤ −4 under P0
u

(the Palm-distribution of Xu). Using Lemma A.4.2, it is seen that JK2
(0) = (1/12)h3

1
and consequently that θj evaluates to E0

u(1/144)h3
1(h3

j+1 − hj+1E
0
uh

3
1). As hj+1 only

depends on the perturbations Ej+1 and Ej , we conclude by independence that θj = 0
for all |j | > 1. Moreover, a coupling argument shows that Q = θ3 +θ4 = 0. The Palm
expectation of JK2

(0)
∫ s−3

−4

(
K1(x) −EuK1(0)

)
dx is unchanged when we put E−3 = E5,

E−4 = E4 and E−5 = E3. Under this coupling assumption, s−3 = s5 − 8, s−4 = s4 − 8,
s−5 = s3 − 8, h−3 = h5, and h−4 = h4, and hence

Q = E0
uJK2

(0)
∫ s5−8

−4

(
K1(x+ 8)−EuK1(0)

)
dx+E0

uJK2
(0)

∫ 4

s3

(
K1(x)−EuK1(0)

)
dx

= E0
uJK2

(0)
∫ s5

s3

(
K1(x)−EuK1(0)

)
dx = θ3 +θ4.

Summarizing, we obtain from (A.7.13) that∫ 4

−4
H̃u

1 (s)ds = 1
144

1∑
j=−1

E0
uh

3
1(h3

j+1 − hj+1E
0
uh

3
1)

= 1
8 (2µ4 +µ2µ4 −µ3

2 −µ2
3),
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where the last equality follows from lengthy and tedious –but elementary– calcula-
tions. Inserting this into (A.7.11) yields the assertion (A.2.10).

The expression (A.2.11) of the remainder is found by different arguments which
will be detailed in the appendix following this paper. �

A.7.2 Cumulative sampling

Before turning to the proof of Theorem A.2.10, we state in Lemma A.7.3 below that
the covariance function of the Peano kernel decreases exponentially, from which
admissibility follows.

The unit-intensity scaled cumulative process Xu is a stationary point process with
i.i.d. holding times {ωi}i∈Z. We assume that ω1 has cumulative distribution function
F with density wrt. Lebesgue measure such that F(0) = 0. Moreover, since Xu has
intensity 1, the holding times satisfy Eωi = 1. To explicitly construct the point process
Xu , the first point X0 of Xu ∩ (0,∞) is chosen with cumulative distribution function
G,

G(x) =
∫ x

0
F̄(y)dy, x ≥ 0,

where F̄(y) = 1−F(y); see eg. [1, Chap. V: Cor. 3.6]. Note that the distribution G has
density F̄. Given X0, the last point X−1 of X ∩ (−∞,0) (i.e. largest point) is chosen
according to X−1 = X0 −ω∗, where ω∗ is the conditional distribution of ω0 given
ω0 > X0. This assures that X−1 < 0, and corrects [12], where ω0 was used instead of
ω∗. Having chosen increments {ωi}i,0 independent of X−1,X0, and setting x0 = X0,
xi = X0 +

∑i
`=1ω` and x−i = X−1 +

∑i−1
`=1ω−`, for all i ∈ N, we obtain a realization

Xu = {xi}i∈Z of the cumulative point process. This construction implies that the point
interval containing the origin has the length weighted distribution, as expected.

The following lemma is stated in terms of the scaled unit-intensity cumulative
process Xu , but it is easily seen that it might as well have been formulated in terms
of the process X with intensity 1/t.

Lemma A.7.3. Let n ∈ N be given, and let the unit-intensity process Xu be from the
cumulative model such that Eeηω1 <∞ for some η > 0, and such that Assumption A.2.1 is
satisfied. Then

Hu
m(s) =O(e−εs), s→∞, (A.7.14)

for some ε > 0. In particular, Xu and X are strongly n-admissible.

Proof. The admissibility claim obviously follows from (A.7.14).
In the case of the trapezoidal estimator we can state the theorem without the

integrability assumption (A.2.2). This is because finite moments of the Peano kernel
only require (A.2.2) to be true for j ∈ N. As we assume that the increments have
exponential moments, they in particular have finite moments of any positive order,
and hence, all integrability results of the Peano kernels apply.

The proof relies on exponential decays in renewal theory, and we refer to [1,
Chapter V] for an introduction. Moreover, for fixed n ∈N and all m ∈N0, we will
explicitly use the fact that Km(s) depends on n points of the underlying point process
to each side of s.
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Let n ∈N and m ∈N0 be given. Let N = (N (s))s≥0 be a pure renewal process with
increments {ωi}i∈N, and let U be the corresponding renewal measure. Also, let y0 = 0
and yi =

∑i
`=1ω` for i ∈N, that is, Xu ∩ (0,∞) = {X0 + yi}i∈N0

. Then yi ∼ F∗i for all
i ∈N. Define ψ : [0,∞)→ R by ψ(s) = E[Km(s;N )1yn−1≤s] = E0

u[Km(s)1sn−1≤s], and let
ψ̃ : [0,∞)→R be given by

ψ̃(s) = E[Km(s;N )1yn−1≤s1yn>s] = E0
u[Km(s)1sn−1≤s1sn>s].

Then ψ(s) =U ∗ ψ̃(s). This can be seen by a renewal argument obtaining the renewal
equation ψ = ψ̃ + ψ ∗ F, which has the desired solution. Another rather intuitive
approach is to condition on the nth to last point of N prior to s happening at time x ∈
[0, s), which has probabilityU (dx)F̄∗F∗(n−1)(s−x). Now we initialize a new independent
pure renewal process at time x and we obtain, integrating over [0, s],

ψ(s) =
∫ s

0
E[Km(s − x;N ) | yn−1 ≤ s − x, yn > s − x]F̄ ∗F∗(n−1)(s − x)U (dx)

=
∫ s

0
ψ̃(s − x)U (dx)

=U ∗ ψ̃(s).

The exponential moment assumption implies F̄(s) =O(e−ηs), which in turn implies
that also Ḡ(s) =O(e−ηs), as s→∞. Moreover, G ∗F∗i(s) =O(e−ηs), s→∞, for all i ∈N.
We consider

EuKm(0)Km(s) = EuKm(s)Km(0)1X0+y2n−2≤s +EuKm(s)Km(0)1X0+y2n−2>s,

and an application of Cauchy-Schwarz inequality yields

EuKm(s)Km(0)1X0+y2n−2>s ≤ [EuK
2
m(s)K2

m(0)]1/2P(X0 + y2n−2 > s)
1/2

≤ C
(
G ∗F∗(2n−2)(s)

)1/2

for some finite C. Hence EuKm(s)Km(0)1X0+y2n−2>s =O(e−ηs/2) as s→∞, and (A.7.14)
therefore follows once we show that

EuKm(s)Km(0)1X0+y2n−2≤s = (EuKm(0))2 +O(e−εs) (A.7.15)

for some ε > 0, as s → ∞. We apply a renewal argument conditioning on the nth
arrival in Xu ∩ (0,∞), that is, conditioning on the value of X0 + yn−1 ∼ G ∗F∗(n−1), and
then initializing a new independent pure renewal process,

EuKm(s)Km(0)1X0+y2n−2≤s

=
∫ s

0
Eu

[
Km(0)Km(s)1X0+y2n−2≤s | X0 + yn−1 = v

](
G ∗F∗(n−1)

)
(dv)

=
∫ s

0
E
[
Km(s − v;N )1yn−1≤s

]
Eu

[
Km(0) | X0 + yn−1 = v

](
G ∗F∗(n−1)

)
(dv)

=
∫ s

0
ψ(s − v)Eu

[
Km(0) | X0 + yn−1 = v

](
G ∗F∗(n−1)

)
(dv).
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Since EuKm(0) = E0
uJKm+1

(0) due to (A.4.3), an application of Fubini’s theorem yields∫ ∞
0
ψ̃(s)ds = E

∫ yn

yn−1

Km(s;N )ds

= EKm+1(y+
n−1;N )−EKm+1(y−n ;N ) = EuKm(0),

and consequently, by [1, Chapter VII: Thm. 2.10(iii)],

ψ(s) =U ∗ ψ̃(s) = EuKm(0) +O(e−ε
′s) (A.7.16)

for some 0 < ε′ < η, as s→∞. Furthermore, by another application of Cauchy-Schwarz
inequality, we conclude that∫ s

0
Eu

[
Km(0) | X0 + yn−1 = v

](
G ∗F∗(n−1)

)
(dv)

= EuKm(0)−EuKm(0)1X0+yn−1>s

= EuKm(0) +O(e−ηs/2)

(A.7.17)

as s→∞. Combining (A.7.16) and (A.7.17) yields (A.7.15). �

As for the perturbed model, Theorem A.2.10 is stated without Assumption A.2.1.
This is because the strong admissibility and the variance decomposition are satis-
fied for the trapezoidal rule, when assuming (A.2.2) for j ∈ N only. This relaxed
assumption is ensured by the finite exponential moments of the increments.

Proof of Theorem A.2.10. Let m ∈ {0,1}. As X is strongly admissible, we find by
Proposition A.6.1 in combination with the decrease rate (A.7.14) that the variance
decompose as

V ar(V̂1(f )) = (−1)m+1t2m+22g(2m+1)(0+)Hu
m(0) + o(t2m+2).

From (A.7.8) and (A.7.9) and the fact that E0
uh

j
1 = νj , we conclude that (A.2.12)

and (A.2.13) are satisfied. �

A.8 An application in stereology

To illustrate the general theory, we describe a geometric application that also was
the original motivation for this work. In stereology, the volume of a compact object
Y ⊂R3 can be approximated from sections with equidistant and parallel planes with
joint normal direction ν in the unit sphere S2, if the area of each intersection profile
is accessible; see [3, Chap. 7].

Formally, if f (x) is the area of the intersection of Y with the plane {y ∈R3 : νT y = x}
positioned at a signed distance x ∈ R from the origin along ν, the integral

∫
f dx

coincides with the volume of Y by Fubini’s theorem. If f (x) is available at all points
of the equidistant stationary point process X = t(U +Z), the volume-estimator (A.1.2)
can be used and is called the (classical) Cavalieri estimator. When f (x) is known at the
points of a stationary point process X with intensity 1/t, the so-called (generalized)
Cavalieri estimator (A.1.1) can be used. However, as outlined above, the generalized
Cavalieri estimator does not exploit the smoothness of f and thus has a suboptimal
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decrease rate as t ↓ 0. We therefore suggest employing Newton-Cotes estimators (of
appropriate order) instead.

This section is devoted to Monte Carlo simulations illustrating the advantage of
the new estimators when the sampling points are not equidistant. For illustration
purposes we start considering the Euclidean unit ball Y = {z ∈R3 : ‖z‖ ≤ 1}. In this
case, the measurement function is

f (x) = 1[−1,1](x)π(1− x2),

which is a (1,∞)-piecewise smooth function as f ′ has jumps and is piecewise linear.
Applying the classical Cavalieri estimator to such a function yields the extension
term V arE(V̂ (f )) = π2

90 t
4 due to (A.2.5). Using sampling by the perturbed model or

the model with cumulative errors we expect that the generalized Cavalieri estimator
decreases at a rate of 3 and 1, respectively, whereas the trapezoidal estimator (n = 1)
and Simpson’s estimator (n = 2) decreases at a rate of 4 in both point-models, an
asymptotic behavior visible in Figure 2 below. It shows the empirical variances of
those three estimators based on 2000 Monte Carlo simulations as functions of the
mean number of sections, that is 2/t, with the variance plot including the extension
term of the classical Cavalieri estimator and the extension term of the trapezoidal
estimator as given by the dominating terms in (A.2.9) and (A.2.13) for the perturbed
and cumulative model, respectively. The variances in this and the following figures
are shown in a double-logarithmic scale with α and α̂ being the theoretical and
approximate rates of decrease (α̂ has been found by the least squares method applied
to the datapoints where 15 ≤ 2/t ≤ 40).
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Perturbed sampling: Variance for the ball

Generalized Cavalieri (α̂ = 3.18)
Trapezoidal rule (α̂ = 4)
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Trapezoidal extension term (α = 4)

(a) Perturbed sampling
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Cumulative sampling: Variance for the ball

Generalized Cavalieri (α̂ = 1.01)
Trapezoidal rule (α̂ = 3.97)
Simpson’s rule (α̂ = 3.97)
Classical extension term (α = 4)
Trapezoidal extension term (α = 4)

(b) Cumulative sampling

Figure 2: Empirical variance for the volume estimation of the unit ball in R3 based on perturbed sampling
with Ei ∼Unif((−s, s)) and sampling with cumulative errors with ωi ∼Unif((1− c,1 + c)). We choose s and
c such that the average relative deviation (the coefficient of error) of the point-increment from the ideal
increment 1 is 5%. In both figures, the graph of the trapezoidal estimator (blue) is almost completely
hidden by the graph of Simpson’s estimator (red), and the trapezoidal extension term (green) is almost
identical to the classical extension term (black).

The graphs of Figure 2 are characteristic for the behavior of variances and ex-
tensions terms for objects with (1,1)-piecewise smooth measurement functions. For
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instance ellipsoids, or, more generally, strictly convex bodies lead to the same variance
behavior apart from the facts that intercepts of these curves may be shifted and the
Zitterbewegung may differ.

For comparison, we therefore give another example, where the measurement
function exhibits a higher order of smoothness. The measurement function

f (x) = 1[−1,1](x)
π
2

(1 + cosπx),

is obtained from a spindle shaped body of revolution, if all section planes are orthog-
onal to the rotation axis. The corresponding convex body is illustrated in [6, Fig. 4].
The measurement function f is (2,∞)-piecewise smooth. Using this measurement
function, the extension term of the classical estimator is V arE(V̂ (f )) = π6

60480 t
6. Fig-

ure 3 shows empirical variances based on perturbed sampling with the two extension
terms included, where the extension term of the trapezoidal estimator is given as
the sum of the dominating terms in (A.2.10) and (A.2.11). In Figure 3a we use small
perturbations to illustrates the fact that the dominating term in (A.2.10) can be made
arbitrarily small. Hence, a decrease rate of 6 for the variance of the trapezoidal es-
timator can be a good approximation with small perturbations, as the trapezoidal
extension term is approximately given by 1.7 · 10−4t5 + 3.0 · 10−2t6 here. Even when
we consider 100 ≤ 2/t ≤ 200, we only obtain an approximate decrease rate of α̂ = 5.66.
For comparison, Figure 3b gives a better illustration of the actual asymptotic rate of
decrease which corresponds to the bound from Theorem A.2.8, that is, α = 5. Here we
use larger perturbations, which in turn gives an approximate trapezoidal extension
term of 0.043t5 + 0.25t6. Increasing the number of intersecting planes to 2/t ≤ 100
the actual rate is even more apparent, as we here obtain an approximate decrease
rate of α̂ = 5.19.
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(a) 5% CE (small perturbations)
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Perturbed sampling: Variance for the spindle

Generalized Cavalieri (α̂ = 3)
Trapezoidal rule (α̂ = 5.47)
Simpson’s rule (α̂ = 6.05)
Classical extension term (α = 6)
Trapezoidal extension term (α = 5)

(b) 20% CE (large perturbations)

Figure 3: Empirical variance for the volume estimation of a spindle shaped body of revolution in R3 based
on perturbed sampling with Ei ∼ Unif((−s, s)). We choose s such that the coefficient of error (CE) of the
point-increments are 5% (left) and 20% (right).

The last two simulations are meant to illustrate the findings in Theorem A.2.8
for point process models where we do not have explicit formulae for the extension
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term. The first is the already discussed model with accumulated errors. To illustrate
the wide range of point process models to which our results apply, we also simulated
from the Matérn hard core process of type II; see [10, sec. 3.5 pp. 93-94], which
satisfies the strong integrability assumption (A.2.2). The empirical variances for the
aforementioned spindle shaped body are depicted in Figure 4. It is worth noticing that
the variance of the trapezoidal estimator under the Matérn model seem to satisfy the
strong bound of Theorem A.2.8, that is (A.2.7). Increasing the number of intersecting
planes to 2/t ≤ 100 the result is more clear, as we find approximate decrease rates
of α̂ = 4.94 and α̂ = 6.07 for the trapezoidal estimator and Simpson’s estimator,
respectively.
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Cumulative sampling: Variance for the spindle

Generalized Cavalieri (α̂ = 1)
Trapezoidal rule (α̂ = 5.05)
Simpson’s rule (α̂ = 5.98)
Classical extension term (α = 6)

(a) Cumulative sampling
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Matérn sampling: Variance for the spindle

Generalized Cavalieri (α̂ = 1)
Trapezoidal rule (α̂ = 4.82)
Simpson’s rule (α̂ = 6.59)
Classical extension term (α = 6)

(b) Matérn sampling

Figure 4: Empirical variance for the volume estimation of a spindle shaped body in R3 based on sampling
with cumulative errors with ωi ∼Unif((1− c,1 + c)) and sampling with a Matérn hard core process of type
II with intensity 1 and a hard core distance of 0.4. The value of c is chosen such that the coefficient of error
of the increment is 5%.

A.9 Conclusions and future work

Estimating integrals based on known randomized sampling points with unequal
increments, we have shown that higher order Newton-Cotes quadratures are to be
preferred over naïve Riemann sums, as they are unbiased and have a faster decrease
in variance for decreasing average point-increment. In particular, if the measure-
ment function is exactly (n,1)-piecewise smooth, applying nth order Newton-Cotes
estimation yields an upper bound of the variance decreasing at the same rate as the
variance based on equidistant sampling, that is, a rate of 2n+ 2. Applying nth order
estimation to a function with smoothness of order, say, m > n, the variance has an
upper bound with a rate of decrease of 2n+ 2 in the general case, whereas the bound
decreases at the rate 2n+ 3 if the set of sampling points is strongly n-admissible. We
have shown that point processes from the perturbed and cumulative models are
strongly admissible and thus the strong bound holds in these cases. Based on a simu-
lation study of the trapezoidal estimator it appears that also sampling from Matérn’s
hard core model of the second kind satisfies the strong bound. From a practical point
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of view the trapezoidal estimator is very interesting as the unbiasedness does not
require any integrability conditions of the underlying sampling model. Applying this
estimator to perturbed and cumulative sampling we have found asymptotic variance
expressions, with an overall trend arbitrarily close to the trend of the equidistant
case if the perturbations are small and the increments are close to 1, respectively.
This asymptotic trend can be calculated if only the derivatives of the covariogram of
the measurement function is known at 0, and if moments of the perturbations and
increments, respectively, can be computed. This observation allows in principle to
estimate the extension term of the variance from measurements of sampling positions
and sampled areas in analogy to established methods in the classical, equidistant
case. We intend to carry out this program in a future study.

It is an open question if the variance bounds in Theorem A.2.8 are optimal
in all cases. As the rate of decrease in (A.2.6) is optimal if the model is weakly
admissible or the order of the estimator exceeds the order of smoothness of the
measurement function, we expect that the rate in (A.2.6) is optimal for any stationary
point process satisfying the assumptions of the theorem. Similarly we know that
the bound presented in (A.2.7) yields the optimal decay-rate when n = 1 under the
perturbed model (assuming non-degenerate perturbations), and thus it is of interest
to investigate whether this is the case for all n in perturbed sampling and in general
for any admissible point process with unequal increments.
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Supplementary material

A.I Integrability properties

As mentioned in Section A.4 the weight β(n)
j (x) is particularly simple.

Lemma A.I.1. For all n ∈ N, x ∈ X and j = 0, . . . ,n, the weight β(n)
j (x) is a rational

function of point-increments,

β
(n)
j (x) =

q
(n)
j (h1(x), . . . ,hn(x))

p
(n)
j (h1(x), . . . ,hn(x))

where q(n)
j : (0,∞)n→R is a homogeneous polynomial of degree n+ 1, and p(n)

j : (0,∞)n→
R is a non-vanishing homogeneous polynomial of degree n with non-negative coefficients.

Proof. Fix x ∈ X, n ∈N and j ∈ {0, . . . ,n}, and consider β(n)
j (x) as defined by (A.3.3).

Recall that points in X are distinct and therefore all point-increments are strictly
positive. At first we note that the denominator of the integrand in (A.3.3) is constant
with each term in the product satisfying

sj (x)− sk(x) =


∑j
`=k+1 h`(x) for j > k,

−∑k
`=j+1 h`(x) for j < k,

and hence
n∏
k=0
k,j

(
sj (x)− sk(x)

)
= (−1)n−jp(n)

j (h1(x), . . . ,hn(x)),

where p(n)
j : (0,∞)n→R is the polynomial defined by

p
(n)
j (y1, . . . , yn) =

( j−1∏
k=0

j∑
`=k+1

y`

)( n∏
k=j+1

k∑
`=j+1

y`

)
.

The definition of p(n)
j implies that it is non-vanishing with non-negative coefficients

and that p(n)
j (λy1, . . . ,λyn) = λnp(n)

j (y1, . . . , yn) for any λ ∈ (0,∞). That is, it is homoge-
neous of degree n.

With the abbreviation s̃k(x) = sk(x)− x =
∑k
`=1 h`(x), a substitution yields∫ sn(x)

x

n∏
k=0
k,j

(y − sk(x))dy =
∫ s̃n(x)

0

n∏
k=0
k,j

(y − s̃k(x))dy,

for k ≥ 0. The right side of this equation is a polynomial of degree at most n+ 1 in
(s̃0(x), . . . , s̃n(x)), as all its derivatives of order n+ 2 vanish. We therefore can define the

polynomial q(n)
j : (0,∞)n→R by

q
(n)
j (h1(x), . . . ,hn(x)) = (−1)n−j

∫ s̃n(x)

0

n∏
k=0
k,j

(y − s̃k(x))dy.
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A substitution argument shows that the right side is homogeneous of degree n+ 1
as a function of (s̃0(x), . . . , s̃n(x)) and thus also as a function of (h1(x), . . . ,hn(x)). This
shows the assertion. �

Assuming either Assumption A.2.1 or Assumption A.4.1, this representation
ensures the Palm integrability of α(0), which is used in the proof of Theorem A.2.2.

Lemma A.I.2. Fix n ∈N. If X is a stationary point process such that (A.4.1) is satisfied,
then

E0|β(n)
j (s−j )| <∞ (A.I.1)

for all j = 0, . . . ,n, and consequently E0|α(0)| <∞.

Proof. From Lemma A.I.1 we find real constants {c(n,j)
m } and non-negative constants

{a(n,j)
m′ } such that

|β(n)
j (s−j )| =

∣∣∣∣ ∑
m∈Nn

0
|m|=n+1

c
(n,j)
m h(s−j )m

∣∣∣∣
∑

m′∈Nn
0

|m′ |=n

a
(n,j)
m′ h(s−j )m′

≤
∑

m∈Nn
0

|m|=n+1

|c(n,j)
m |h(s−j )m

a
(n,j)
m′0

h(s−j )m′0
,

where m′0 is a multi-index such that a(n,j)
m′0

> 0 which exists by Lemma A.I.1. By

linearity (A.I.1) is satisfied whenever

E0
[

h(s−j )m

h(s−j )m′

]
= E0

[
hm

hm′

]
<∞, (A.I.2)

for all multi-index m and m′ in Nn
0 with |m| = n+1 and |m′ | = n, where the equality is

a consequence of the fact that the Palm distribution is invariant under bijective point
shifts; see [6, Eq. (13)]. The right side of (A.I.2) is finite by Assumption A.4.1. �

A.II Peano kernels, Bernoulli functions and variance in
perturbed sampling

In this section we consider the relation between the Peano kernels Km and the
Bernoulli functions Pm when we sample Xu = {U + Ek + k}k∈Z from the perturbed
model (recall that Xu is scaled to have unit-intensity). Note that the unit-intensity
equidistant model is obtained with degenerate perturbations concentrated at 0. As in
Section A.7 we work with the shifted kernel, K∗m, defined by

K∗m(r) = Km(r +U ) = Km(r;X∗),

where X∗ = Xu −U = {Ek +k}k∈Z is the shifted process. From (A.7.3) the shifted kernel
is periodic in law with period 1. Recall that the 1st Bernoulli function is given by
P1(r) = P̃1(r − brc), with P̃1(r) = r − 1

2 for r ∈R.
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Lemma A.II.1. Let n ∈N be given and let Xu be a unit-intensity process from the per-
turbed model such that (A.2.2) is satisfied. Let X∗ = {xk}k∈Z, with xk = Ek +k, be its shifted
process. For all r ∈R, K∗0 satisfies

EK∗0(r) = −EP1(E0 − r) +E
[1
n

n∑
j=0

β
(n)
j (x0)j

]
− n

2
+Q(r), (A.II.1)

where

Q(r) =

E1E0≥r [
1
n

∑n
j=0β

(n)
j (x−j )− 1] for r − brc < 1

2 ,

E1E0≥r−1[ 1
n

∑n
j=0β

(n)
j (x−j )− 1] for r − brc ≥ 1

2 .

Furthermore, if EK∗0(r) = −EP1(E0 − r) for all r ∈R, then

Hu
m(r) = (−1)mE[P2m+2(r +E1 −E0)] (A.II.2)

for m ≤ n and all |r | ≥ 2n+ 2. If the perturbations are degenerate, that is Xu is the unit-
intensity equidistant model, (A.II.2) is true for all r ∈R.

Proof. By (A.7.3) it is enough to consider r ∈ [0,1). Let n ∈N and r ∈ [0,1) be given.
Recall that

nK∗0(r) =
∑
i∈Z

1xi<r≤xi+1

0∑
`=1−n

R
(n)
xi+` ((· − r)0

+).

Only the summands with i = −1,0,1 can be non-zero, and thus

nK∗0(r) = 1E0≥rA−1(r) + 1E0<r1E1≥r−1A0(r) + 1E1<r−1A1(r),

where, for i = −1,0,1,

Ai(r) =
0∑

`=1−n
R

(n)
xi+` ((· − r)0

+) =
0∑

`=1−n

n∑
j=0

β
(n)
j (xi+`)1`+j≥1 −

n∑
`=1

(xi+` − r).

We let q0 and q1 be the i.i.d. variables defined by q0 = (E0 − r) − bE0 − rc and q1 =
(E1 − r)− bE1 − rc. We will consider the cases r < 1

2 and r ≥ 1
2 separately.

Let r < 1
2 be given. As E1 ≥ r − 1 the kernel simplifies as

nK∗0(r) = 1E0≥rA−1(r) + 1E0<rA0(r).

Note that q0 = E0 − r when E0 ≥ r, and q0 = E0 − r + 1 when E0 < r. Using the indepen-
dence of the perturbations, EEi = 0, and the representation of the second power sum,
we find

E1E0≥rA−1(r) = E1E0≥r
( n∑
j=0

0∑
`=1−j

β
(n)
j (x`−1)−nP̃1(q0) + (n− 1)E0 − n

2

2

)
,

E1E0<rA0(r) = E1E0<r

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`)−nP̃1(q0) +nE0 − n

2

2

)
.
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Constant functions are approximated exactly, and hence
∑n
j=0β

(n)
j (x0) = xn − x0 =

En −E0 +n. An index-shift in the former term above then implies

EK∗0(r) = −EP̃1(q0) +E
[1
n

n∑
j=0

0∑
`=1−j

β
(n)
j (x`)

]

− n
2

+E1E0≥r
[1
n

n∑
j=0

β
(n)
j (x−j )− 1

]

= −EP1(E0 − r) +E
[1
n

n∑
j=0

β
(n)
j (x0)j

]

− n
2

+E1E0≥r
[1
n

n∑
j=0

β
(n)
j (x−j )− 1

]
,

where the last equality follows as β(n)
j (x`) equals β(n)

j (x0) in law, as they are rational
functions of identically distributed increments.

Now let r ≥ 1
2 be given. Then E0 < r and the kernel simplifies as

nK∗0(r) = 1E1≥r−1A0(r) + 1E1<r−1A1(r).

Note that q1 = E1 − r + 1 when E1 ≥ r − 1, and q1 = E0 − r + 2 when E1 < r − 1. With
similar arguments as above we find that

E1E1≥r−1A0(r) = E1E1≥r−1

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`)−nP̃1(q1) + (n− 1)E1 − n

2

2

)
,

E1E1<r−1A1(r) = E1E1<r−1

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`+1)−nP̃1(q1) +nE1 − n

2

2

)
.

By the i.i.d. property of the perturbations and the exact arguments as above we
conclude that

EK∗0(r) = −EP1(E0 − r) +E
[1
n

n∑
j=0

β
(n)
j (x0)j

]

− n
2

+E1E0≥r−1

[1
n

n∑
j=0

β
(n)
j (x−j )− 1

]
when r ≥ 1

2 . This proves the first part of the lemma.
To show (A.II.2), we note that

EK∗m(r)−EuKm(0) = −EPm+1(E0 − r) (A.II.3)

for all r ∈R. This is seen by induction using Fubini’s theorem, the relations P ′m = Pm−1
and K ′m = −Km−1, the fact that EuKm(0) = 0 for all m < n (see Lemma A.4.2), and the
continuity properties of the kernels and polynomials. For |r | ≥ 2n+2, the perturbations
in Km(r;Xu) = K∗m(r −U ) and Km(0;Xu) = K∗m(−U ) are independent. With EU , EX∗
and EE0,E1

denoting the expectations with respect to the given variables, (A.II.3) and
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independence then implies

Hu
m(r) = EUEX∗ [K

∗
m(r −U )−EuKm(0)]EX∗ [K

∗
m(−U )−EuKm(0)]

= EE0,E1
EU [Pm+1(U +E0 − r)Pm+1(U +E1)]

= (−1)mE[P2m+2(r +E1 −E0)],

(A.II.4)

where the last equality is shown in the proof of [7, Prop. 5.2]. This shows (A.II.2). If
the model has degenerate perturbations concentrated at 0, (A.II.4) is true for all r ∈R
with X∗ = Z deterministic. This concludes the proof. �

Corollary A.II.2. Let n ∈ N be given. If Xu = U + Z is the unit-intensity equidistant
model, then

Hu
m(r) = (−1)mP2m+2(r)

for m ≤ n and all r ∈R.

Proof. Fix n ∈N. Note that X∗ = Z and therefore it is deterministic. We have from
Lemma A.II.1 that it suffices to show K∗0(r) = −P1(−r) for r ∈ [0,1). Also, the weights

β
(n)
j (x) do not depend on x ∈ X∗, and we therefore denote the common weights by β(n)

j .
As polynomials of degree 1 are approximated exactly, we find that

1
n

n∑
j=0

β
(n)
j = 1 and

1
n

n∑
j=0

β
(n)
j j =

n
2
.

Returning to (A.II.1), we conclude that K∗0(r) = −P1(−r). �

Corollary A.II.3. Let n = 1. If Xu is from the unit-intensity perturbed model, then

Hu
m(r) = (−1)mE[P2m+2(r +E1 −E0)]

for m ∈ {0,1} and all |r | ≥ 4.

Proof. Since β(1)
0 (x) = β(1)

1 (x) = 1
2h1(x), x ∈ Xu , holds for all point processes Xu , it is

easily seen that Eβ(n)
1 (E0) = 1

2 and Q(r) = 0. The result follows from (A.II.1). �
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A note to Paper A

This appendix is devoted to the proof of equation (A.2.11) of (Theorem A.2.9, Paper A); a
proof, which was not included in the original paper due to its length. It turns out that (A.2.11)
holds true under weaker assumptions than given in Theorem A.2.9, and we therefore restate
the theorem in full after which we prove the expression for the remainder under the weaker
assumptions. This appendix should be read in the context of Paper A, and we thus refer to
Paper A for definitions, descriptions of notation, formulas, etc.

AA.1 Proof of (A.2.11) under weaker assumptions

In the formulation of Theorem A.2.9 concerning the variance of V̂1 under the per-
turbed model, the expression (A.2.11) (or (AA.1.2) below) for the remainder holds
true under the additional assumption that the perturbations have a density with
finitely many finite jumps. This is due to the fact that we initially used a relation
obtained in [3], where, under the mentioned assumption, the difference between∑
k∈Z g(tk + t(Ek − E0)) and the integral

∫
gdx were given in terms of the periodic

Bernoulli functions Pm; see in particular [3, Eq. (A2)]. As seen below, this can be
obtained without the extra assumption, and Theorem A.2.9 may thus be formulated
as follows.

Theorem AA.1.1 (Theorem A.2.9 restated). Let X be from the perturbed model with
intensity 1/t, and let µk be the kth moment of the perturbations Ei . Assume that the
measurement function f is exactly (m,1)-piecewise smooth with covariogram g = f ∗ f̌ .
Then, for t ↓ 0,

V ar(V̂1(f )) = −t2g ′(0+)(µ2 + 1
6 ) +Z0(t) + o(t2), for m = 0,

V ar(V̂1(f )) = t4g(3)(0+) 1
12 (2µ2 + 2µ4 + 1

30 ) +Z1(t) + o(t4), for m = 1,

V ar(V̂1(f )) = t5g(4)(0) 1
8 (2µ4 +µ2µ4 −µ3

2 −µ2
3) + o(t5), for m ≥ 2, (AA.1.1)

where the Zitterbewegung Zm(t) is given by (A.7.7). It is of order t2m+2, and it is a finite
sum of terms oscillating around 0. Moreover, if m ≥ 2, the remainder o(t5) is explicitly
given by

t6g(5)(0+) 1
720

(
−34µ2 − 90µ2

2 + 110µ4 + 180µ2µ4

− 180µ3
2 − 170µ2

3 + 8µ6 − 1
21

)
+Z2(t) + o(t6).

(AA.1.2)

Proof of the remainder (AA.1.2). To ease notation, we will when possible consider
X under its Palm-distribution, where we recall that the Palm-version X0 of X is
given by X0 = {t(k +Ek −E0)}k∈Z. When it is necessary or beneficial to use the exact
representation of X0 we will do so.
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From Theorem A.2.2 we have that the trapezoidal estimator V̂1(f ) =
∑
x∈X α(x)f (x),

with α(x) = (h1(x) + h0(x))/2, is unbiased for the integral of f , and consequently(
EV̂1(f )

)2
=

∫
R
g(x)dx.

By the refined Campbell Theorem [2, Theorem 3.5.3] we therefore find that

V ar(V̂1(f )) = E
(∑
x∈X

α(x)f (x)
)2
−
∫
R
g(x)dx

= 1
t

∑
k∈Z

E0[α(0)α(sk)g(sk)]−
∫
R
g(x)dx.

(AA.1.3)

First we investigate the difference

t
∑
k∈Z

E0g(sk)−
∫
R
g(x)dx (AA.1.4)

be means of a refined Euler-MacLaurin formula. For all k , 0 we may write E0g(sk) =
Eg(tk + t(E1 − E0)), and, noting that

∫
R
g(x)dx = E

∫
R
g(x + t(E1 − E0))dx, equation

(AA.1.4) reads

E
[
t
∑
k∈Z

g(tk + t(E1 −E0))−
∫
R
g(x+ t(E1 −E0))dx

]
+ tg(0)− tE[g(t(E1 −E0))].

(AA.1.5)

Since g is (2m+ 1,1)-piecewise smooth by [1, Corollary 5.8], also the function x 7→
g̃(x) = g(x+ t(E1 −E0)) is (2m+ 1,1)-piecewise smooth. Since g̃ clearly depends on t,
the refined Euler-MacLaurin formula [1, Proposition 4.2] cannot be used directly on
the first term in (AA.1.5), however, following its proof we conclude that

t
∑
k∈Z

E0g(sk)−
∫
R
g(x)dx = tg(0)− tE[g(t(E1 −E0))]

− t2m+2
∑

a∈Dg (2m+1)

Jg (2m+1) (a)E[P2m+2( at +E1 −E0)]

− t2m+2
∫
R
g(2m+2)(s)E[P2m+2( st +E1 −E0)]ds.

(AA.1.6)

By dominated convergence and arguments as in the proof of [1, Proposition 4.2], the
last term above is seen to be of order o(t2m+2) as t ↓ 0.

Now we turn to the sum

1
t

∑
k∈Z

E0[(α(0)α(sk)− t2)g(sk)] = t
∑
k∈Z

E0
u[(α(0)α(sk)− 1)g(tsk)],

where E0
u denotes the expectation with respect to the Palm distribution of X/t, i.e.

the expectation with respect to X0/t. We see that α(0), α(sk) and sk are independent
for |k| ≥ 3, and since E0

uα(sk) = 1 for all k (seen directly or shown in the proof of
Theorem A.2.2) the sum simplifies as

t
2∑

k=−2

E0
u[(α(0)α(sk)− 1)g(tsk)].
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Since g is (2m+ 1,1)-piecewise smooth, we find for all k and sufficiently small t that

g(tsk) =
m∑
j=0

g(2j)(0)
(2j)!

(tsk)
2j +

g(2m+1)(ξk,t)
(2m+ 1)!

(tsk)
2m+1,

where ξk,t is in the open interval with endpoints 0 and tsk . Here it has been used
that g(j) is odd and continuous for all odd j ≤ 2m, and hence g(j)(0) = 0. Moreover,
as g(2m+1) is odd and has a jump in 0 by [1, Corollary 5.8], we obtain g(2m+1)(0+) =
−g(2m+1)(0−). Hence, as |sk | = |k +Ek −E0| ≤ |k|+ 1,

g(tsk) =
m∑
j=0

g(2j)(0)
(2j)!

t2js
2j
k +

g(2m+1)(0+)
(2m+ 1)!

t2m+1|sk |2m+1 + o(t2m+1)

as t ↓ for all |k| ≤ 2. Similarly we see that

g(0)−Eg(t(E1 −E0)) = −
m∑
j=0

g(2j)(0)
(2j)!

t2jE(E1 −E0)2j

− g
(2m+1)(0+)
(2m+ 1)!

t2m+1E|E1 −E0|2m+1 + o(t2m+1)

by dominated convergence. Let the Zitterbewegung be given by

Zm(t) = −t2m+2
∑

a∈Dg (2m+1)\{0}
Jg (2m+1) (a)E[P2m+2( at +E1 −E0)].

Combining (AA.1.3) and (AA.1.6), and using the fact that Jg (2m+1) (0) = 2g(2m+1)(0+), we
now conclude by dominated convergence that

V ar(V̂1(f )) =
m∑
j=0

t2j+1 g
(2j)(0)
(2j)!

( 2∑
k=−2

E0
u[s2jk (α(0)α(sk)− 1)]− 1j≥1E[(E1 −E0)2j ]

)

+ t2m+2 g
(2m+1)(0+)
(2m+ 1)!

( 2∑
k=−2

E0
u[|sk |2m+1(α(0)α(sk)− 1)]

−E|E1 −E0|2m+1 − 2(2m+ 1)!E[P2m+2(E1 −E0)]
)

+Zm(t) + o(t2m+2)

(AA.1.7)
as t ↓ 0. Using the fact that sk can be represented as k +Ek −E0, lengthy but otherwise
elementary calculations show that

2∑
k=−2

E0
u[s2jk (α(0)α(sk)− 1)]− 1j≥1E[(E1 −E0)2j ] = 0

for j ∈ {0,1}.
Now let m = 2. It can be seen that the 6th periodic Bernoulli function is given by

P6(x) = 1
6!

(
x6 − 3|x|5 + 5

2x
4 − 1

2x
2 + 1

42

)
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for all x ∈ [−1,1]. Since |Ei | < 1/2 almost surely, we conclude that the variance is given
by

V ar(V̂1(f )) = t5
g(4)(0)

4!

( 2∑
k=−2

E0
u[s4k (α(0)α(sk)− 1)]−E[(E1 −E0)4]

)

+ t6
g(5)(0+)

5!

( 2∑
k=−2

E0
u[|sk |5(α(0)α(sk)− 1)]

− 1
3!E

[
(E1 −E0)6 + 5

2 (E1 −E0)4 − 1
2 (E1 −E0)2 + 1

42

])
+Z2(t) + o(t2m+2)

(AA.1.8)

as t ↓ 0. Using the representation of sk again, we see by lengthy but straightforward
calculations that (AA.1.1) and (AA.1.2) follow from (AA.1.8).

The case m > 2 follows from (AA.1.7) and by the realization that g(5) is continuous
and odd, hence g(5)(0+) = 0 and Z2(t) = 0 for all t, and thus the remainder (AA.1.2)
simply reads o(t6). �
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Non-Equidistant Sampling and Dropouts
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Abstract

Motivated by the stereological problem of volume estimation from parallel sec-
tion profiles, the so-called Newton-Cotes integral estimators based on random
sampling nodes are analyzed. These estimators generalize the classical Cavalieri
estimator and its variant for non-equidistant sampling nodes, the generalized Cav-
alieri estimator, and have typically a substantially smaller variance than the latter.
The present paper focuses on the following points in relation to Newton-Cotes
estimators: the treatment of dropouts, the construction of variance estimators,
and, finally, their application in volume estimation of convex bodies.

Dropouts are eliminated points in the initial stationary point process of sam-
pling nodes, modeled by independent thinning. Among other things, exact rep-
resentations of the variance are given in terms of the thinning probability and
increments of the initial points under two practically relevant sampling models.

The paper presents a general estimation procedure for the variance of Newton-
Cotes estimators based on the sampling nodes in a bounded interval. Finally,
the findings are illustrated in an application of volume estimation for three-
dimensional convex bodies with sufficiently smooth boundaries.

Keywords: Newton-Cotes quadrature; numerical integration with random nodes; sta-
tionary point process; variance estimation,; dropouts; Cavalieri estimator; weakly
(m,p)-piecewise smooth function
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B.1 Introduction

In the present paper we consider variance behavior and variance approximations
of the so-called Newton-Cotes estimators defined in [6] and investigated further in
Paper A. The estimators can be seen as generalizations of the well-known classical
Cavalieri volume estimator, and as an improvement of the generalized Cavalieri
estimator defined initially in [1] and described further in [12, 13]. We will give a short
introduction to all estimators but refer to (Sections A.1 and A.2, Paper A) for a more
thorough description and comparison. As all the above-mentioned estimators can be
seen as instances of Monte Carlo integration schemes for a function on the real axis,
we adopt this more general setting in the following.

Throughout this paper we assume that a compactly supported and integrable
function f is known at all points of a stationary point process X ⊆R (random locally
finite collection of points in R with a translation-invariant distribution). The aim is
to estimate the integral

∫
R
f (x)dx from this data. From now on we refer to f as the

measurement function.
In the classical setting the sampling points X = {xk}k∈Z are equidistant and satisfy

xk = t(U + k), k ∈Z, where t > 0 and U is a uniform random variable on the interval
(0,1), turning X into a stationary point process. Its intensity (expected number of
points per unit interval) is 1/t. The classical Cavalieri estimator is then defined by

V̂ (f ) = t
∑
x∈X

f (x), (B.1.1)

as described in [1]. The estimator (B.1.1) can also be used if the points of the sta-
tionary point process X with intensity 1/t are not equidistant, in which case it is
referred to as the generalized Cavalieri estimator. Both estimators are unbiased for
the integral

∫
R
f (x)dx [1, Theorem 1], however, as indicated in [1] and quantified in

[12], the variance of the generalized Cavalieri estimator may be substantially higher
than in the equidistant case. [12, 13] also consider the practically relevant situation
where the f -values at some of the points of X are unavailable (dropouts). This situa-
tion is modeled as independent p-thinning, where independently for each point its
corresponding function value is discarded with probability p ∈ [0,1) before (B.1.1)
is applied to the remaining observations. [13] suggests a better alternative to (B.1.1)
under independent p-thinning where discarded function values are approximated
by the average of the closest two neighboring known measurements before (B.1.1) is
applied. In either case, the variance is higher than in the equidistant case.

Given that the increments of X are available, [6] suggest using Newton-Cotes
quadrature rules to avoid the above-described variance inflation. For fixed n ∈N,
on the interval from x0 ∈ X to its nth neighbor xn ∈ X, the function f is approxi-
mated by a piecewise polynomial of degree at most n passing through the points
{xj , f (xj )}nj=0, where x1 < · · · < xn−1 are the ordered points in X∩(x0,xn). The nth (order)

Newton-Cotes estimator V̂n(f ) is then obtained as the sum of integrals of such function
approximations averaged with respect to the starting point. By this construction,
V̂n(f ) is given as the weighted sum

V̂n(f ) =
∑
x∈X

αn(x)f (x), (B.1.2)
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where αn(x) = αn(x;X) is a rational function of n point increments to the left and
right of x ∈ X; see (Eq.’s (A.3.3) and (A.3.4), A). In particular, α1(x) = (h1(x) +h0(x))/2,
where h0(x) and h1(x) denotes the increment to the left and right of x, respectively.
This gives the trapezoidal estimator

V̂1(f ) =
∑
x∈X

h1(x) + h0(x)
2

f (x),

which will be of particular interest throughout this paper. As for the classical and
generalized Cavalieri estimators, the nth Newton-Cotes estimator (B.1.2) is unbiased
for the integral

∫
R
f (x)dx as long as the typical increments satisfy certain integrability

conditions; see (B.2.1) below and (Theorem A.2.2, Paper A). Interestingly, Newton-
Cotes estimators of any order coincide with the classical Cavalieri estimator when
the points in X are equidistant, and moreover, the trapezoidal estimator applied
to the equidistant process combined with independent p-thinning coincides with
the correction method of [13]. The latter claim will be shown in the section on
independent p-thinning. One great advantage of Newton-Cotes estimators is that
they can be applied to any stationary point process satisfying (B.2.1) with a variance-
order independent of the underlying point process. This will be clarified in the next
paragraph. In particular, the variances of estimators applied to a stationary point
process or a thinning hereof are of the same order; see the section on independent
p-thinning.

The order of the variance depends not only on the order n of V̂n but also on the
smoothness of the measurement function f . The smoothness concepts described
below are given in terms of jumps of a function, which we define as follows: The
function h : R→R jumps at the point a ∈R if the limits and the difference in

Jh(a) = h(a+)− h(a−) = lim
x↓a

h(x)− lim
x↑a

h(x)

are defined on R∪ {−∞,∞} and Jh(a) , 0. We refer to Jh as the jump-function of h
and we let Dh denote the set of jump-points of h. The classical smoothness concept
is that of (m,1)-piecewise smoothness, and this is used first and foremost in [7] and
subsequently in Paper A. For a given m ∈ N0, a compactly supported function is
said to be (m,1)-piecewise smooth if it is (m− 1)-times continuously differentiable
and if the mth and (m+ 1)st derivatives exist and are continuous except in at most
finitely many points, where they may have finite jumps. However, the condition on
the (m + 1)st derivative turns out to be rather restrictive from a practical point of
view: In the section on stereological volume estimation below, we give an example
of a practically relevant measurement function whose second derivative has infinite
jumps at the boundary of its support. It turns out that this less restrictive smoothness
property actually suffices for the variance results presented in this paper to hold;
in particular, the entire Paper A could have been formulated under this milder
smoothness property. We refer to the appendix for a justification. For this reason,
from now on we consider what we call weakly (m,1)-piecewise smooth functions,
which differ from (m,1)-piecewise smooth functions by the less restrictive property
that the (m+ 1)st derivative is allowed to have finitely many (possibly infinite) jumps.
As the variance of V̂n is essentially given by the order of the first non-continuous
derivative of the measurement function, we assume throughout the following that
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m is chosen largest possible for a given f , that is, we assume that the mth derivative
has at least one jump. It is not difficult to see that the (m+ 1)st derivative of a weakly
(m,1)-piecewise smooth function is integrable.

It should be mentioned that a third smoothness concept for measurement func-
tions has been introduced in the literature by [3]. In that paper (q,1)-piecewise
smoothness has been extended to allow for arbitrary real q ≥ 0, and functions with
this property are called q-smooth (for p = 1). Their theory is based on fractional
derivatives. Form ∈N0 an (m,1)-piecewise smooth function is alsom-smooth, but the
converse is false. The function f (x) = 1[0,1]x log(x) is weakly (0,1)-piecewise smooth,
but neither (0,1)-piecewise smooth nor 0-smooth, showing that our new notion covers
previously intractable measurement functions. On the other hand, even when apply-
ing the theory to the problem of estimating the volume of a compact convex object,
one cannot avoid fractional smoothness; see [3]. Although smoothness assumptions –
like the one we will impose in the section on volume estimation – can avoid fractional
smoothness of the measurement function, a unifying approach is still missing but
beyond the scope of the present paper.

The variance of V̂n(f ) is given in terms of the jumps of the (2m+ 1)st derivative
of the covariogram g(z) =

∫
R
f (x)f (x+ z)dx, z ∈R, associated to f . Here we make use

of the fact that g is weakly (2m + 1,1)-piecewise smooth by Corollary B.6.3 in the
appendix (an adaption of [7, Corollary 5.8] to weakly piecewise smooth functions)
and, since the mth derivative has non-zero jumps, the fact that (2m+ 1) is the order
of the first discontinuous derivative of g. If the measurement function is weakly
(m,1)-piecewise smooth, a decomposition of the variance of the classical Cavalieri
estimator (B.1.1), known for (m,1)-piecewise smooth functions, holds:

V ar(V̂ (f )) = V arE(V̂ (f )) +Z(t) + r(t). (B.1.3)

Here, the extension term V arE(V̂ (f )) explains the general behavior of the variance and
is given by V arE(V̂ (f )) = t2m+2g(2m+1)(0+)cm for a non-zero constant cm independent
of t and the measurement function f . For instance, c0 = −1/6 and c1 = 1/360. The
Zitterbewegung Z(t), which is also of order t2m+2, is a finite sum of terms oscillating
around 0 with the oscillation given in terms of the jumps a ∈Dg (2m+1) , a , 0, of g(2m+1)

away from the origin, and r(t) is a lower-order remainder. The main message here
is that the variance decreases at a rate of t2m+2 when f is weakly (m,1)-piecewise
smooth and this rate of decrease is not achievable with the generalized Cavalieri
estimator in the non-equidistant case; see e.g. [12, Proposition 1]. However, as shown
in (Theorem A.2.8, Paper A), if X is stationary with intensity 1/t, applying a Newton-
Cotes estimator of order m also yields a decrease rate of t2m+2 for the variance.
Moreover, under certain assumptions on the covariance structure of X, the variances
of Newton-Cotes estimators decompose similar to (B.1.3) but with the Zitterbewegung
not necessarily being oscillating. This is the result presented in Lemma B.2.4 below.

Two point models will receive particular interest in this paper as they did in
[12, 13] and Paper A, namely the perturbed and cumulative models. Note that the
perturbed model is formulated in terms of perturbations from the equidistant model,
and hence it includes the equidistant model if the perturbations have a degenerate
distribution concentrated at 0.
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Definition B.1.1 (Perturbed model). A stationary point process X = {xk}k∈Z with in-
tensity 1/t is from the perturbed model if xk = t(U + k + Ek), where U is a uniform
random variable on (0,1) and the perturbations {Ek}k∈Z are independent and identically
distributed with EEk = 0 and |Ek | < 1/2 almost surely. Moreover, U and {Ek} are assumed
to be stochastically independent.

Definition B.1.2 (Cumulative model). A stationary point process X with intensity 1/t
is from the cumulative model if it has independent and identically distributed increments
{ωk}k∈Z, where ωk (necessarily) has expectation t. Furthermore, the increments are as-
sumed to have a continuous distribution and a moment-generating function η 7→ Eeηωk

which is finite in a neighborhood of 0.

Note that the cumulative model is defined slightly differently than the model
with cumulative errors in Paper A, hence the different naming. In contrast to that
paper, we always require the condition on the moment-generation function. In fact,
all variance results in Paper A for the model with cumulative errors also require the
latter condition.

The purpose of this paper is to extend the results of Paper A on Newton-Cotes
estimation. The first goal is to allow for independently p-thinned point processes;
in particular, we will state explicit variance expressions in terms of the thinning
probability p for the trapezoidal estimator when sampling from the perturbed or
cumulative models. By letting p = 0 the exact expressions (Theorems A.2.9 & A.2.10,
Paper A) for the original models are recovered. Secondly, we derive and present
statistical estimates for the variance of Newton-Cotes estimators applied to any
point process. In the special cases of sampling from the perturbed or cumulative
model with potential thinning alternative estimates are suggested which appear to
be particularly robust. Finally, we substantiate our findings by application to the
stereological problem of estimating the volume of a compact convex set Y ⊂R3 from
parallel section profiles. We will state variance relations for V̂n in terms of principal
curvatures of the boundary of Y . We will also discuss the case where the joint direction
of the section planes is isotropically randomized and show among other things that
the variance of the Newton-Cotes estimator then is essentially proportional to the
surface area of the object. This is well-known for the classical Cavalieri estimator
based on equidistant points (see [2, 9]) but exact conditions on Y for this statement
to hold have not been specified before, not even in the classical case.

The paper is organized as follows. First we introduce relevant notation and
rephrase two important results on the variance of Newton-Cotes estimators in general
and in particular of the trapezoidal estimator. We introduce independent p-thinning
to model dropouts, show that the results for Newton-Cotes estimators also apply to a
thinned process and give explicit variance expressions for V̂n when sampling from the
perturbed or cumulative model with potential thinning. Next, we give an overview of
techniques to estimate the variance of Newton-Cotes estimators, concluding with a
section on stereological volume estimation.
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B.2 Variance of Newton-Cotes estimators

In this section we introduce the notation used throughout the paper, and we give a
brief overview of the results on Newton-Cotes estimators presented in Paper A.

For a function f : R → R, we let f (k) denote its kth derivative whenever it is
defined. At times, we will also use the notation f ′ and f ′′ for the first and second
derivative, respectively.

For any finite-intensity stationary point process X on R we define points and
increments in X relative to x ∈ X as follows: For any j ∈Z, sj (x) = sj (x;X) denotes the
jth successor (predecessor for j < 0) of x in X with s0(x) = x by definition, and hj (x) =
hj (x;X) = sj (x)− sj−1(x) denotes the distance from the jth successor (predecessor) of x
to its left neighbor in X.

Throughout the paper, a subscript u on a point process indicates a scaling to unit
intensity, i.e. Xu = X/t has intensity 1 when X has intensity 1/t, t > 0.

We let P0
X denote the Palm distribution of X, that is, the conditional distribution

of X given that it contains the origin (see e.g. [11, Section 3.3]), and we let E0
X denote

the expectation with respect to the Palm measure. When considering a point process
under its Palm distribution, we suppress the dependence on the origin 0, writing for
instance sj (0) = sj and hj (0) = hj , j ∈Z.

The results in Paper A are formulated under the overall assumption of finite
positive and negative moments of the typical point increment, and for completeness
we include it here. Note that (Assumption A.2.1, Paper A) is slightly stronger than
Assumption B.2.1 below, but the arguments and comments in that paper show that
(B.2.1) is actually sufficient for all results to hold.

Assumption B.2.1. For fixed Newton-Cotes order n ∈N, we have

E0
Xh

j
1 <∞ for all

j ∈N if n = 1,

j ∈Z if n ≥ 2.
(B.2.1)

Before proceeding to the results on Newton-Cotes estimators, we introduce a
stochastic process Km(·) = Km(· ;X) on R, m ∈ N0. It is commonly referred to as
the (mth) Peano kernel, as it appears as an integration kernel in a Peano-type error
representation of the Newton-Cotes estimator for a weakly (m,1)-piecewise smooth
function f (adaption of (Theorem A.2.3, Paper A)):

V̂n(f )−
∫
R
f (x)dx =

∫
R
f (m+1)(r)Km(r)dr +

∑
a∈Df (m)

Jf (m) (a)Km(a) (B.2.2)

for m ≤ n. For details on Km and the summarized properties below, see (Sections A.3
& A.4, Paper A). The Peano kernel is a piecewise polynomial of order at most (m+ 1)
with coefficient given in terms of the underlying point process X and the order n
of the Newton-Cotes estimator. More specifically, Km(r) depends on the n points
in X to the left and right of r ∈ R. It is translation covariant, i.e. Km(r + s;X + s) =
Km(r;X) for all s, r ∈R. When X is a stationary point process satisfying (B.2.1), Km is
a stationary stochastic process with finite absolute moments of any positive order, i.e.
E|Km(r)|j = E|Km(0)|j <∞ for all j ∈N and r ∈R. We let Hm(·) =Hm(· ;X) denote the
covariance function of Km associated to X, that is, Hm(s) = Cov(Km(r),Km(r + s)). It is
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independent of r ∈R and, by Cauchy-Schwarz inequality, Hm(s) ≤Hm(0) for all s ∈R
where equality cannot hold on non-degenerate intervals; see Lemma B.2.2 below.
Moreover, Km is co-homogeneous of degree m+ 1, and, thus

Hm(tr; tX) = t2m+2Hm(r;X) = t2m+2Hm(r) (B.2.3)

for all r ∈R and 0 < t <∞.

Lemma B.2.2. Let n ∈N,m ≤ n and a compact interval I ⊂R be given. If Hm(s) =Hm(0)
for all s ∈ I , then I is a singleton.

Proof. For contradiction, assume thatHm(s) =Hm(0) for all s ∈ I , where I is a compact
interval of positive length r > 0. Without loss of generality we may assume that I has
rational endpoints. For j ∈Z and s ∈Q∩I , we have Km(jr+s) = Km(jr) for all s ∈Q∩I ,
almost surely. Here we used the assumed equality, stationarity and the fact that Q
is countable. As the intervals in {jr + I : j ∈ Z} cover R, and any two neighboring
intervals have rational endpoints in common, we conclude that

Km(s) = Km(0) for all s ∈Q, (B.2.4)

almost surely. As K0 is linear on each connected component of R \X by (Eq. (A.3.7),
Paper A), Equation (B.2.4) implies Km ≡ Km(0) on R\X almost surely whenm = 0. For
m ≥ 1, the process Km(·) has continuous paths by (Lemma A.3.2, Paper A), so (B.2.4)
implies Km ≡ Km(0) on R almost surely. In either case (B.2.2) yields V̂n(f ) =

∫
R
f (x)dx

for almost all realizations of X and all weakly (m,1)-piecewise smooth functions f .
Taking two such functions f1, f2 coinciding on all points of X but with

∫
R
f1(x)dx ,∫

R
f2(x)dx we obtain a contradiction. �

An important property introduced in Paper A is that of admissibility of a point
process. Strong admissibility improves the order of the variance when the degree of
smoothness of the measurement function exceeds the order of the estimator (Theo-
rem A.2.8, Paper A), and weak admissibility ensures a variance decomposition similar
to (B.1.3) as seen in Lemma B.2.4 below. Note that the class of admissible point
processes is closed under scaling.

Definition B.2.3. Let n ∈N be given and let X be a stationary point process satisfying
(B.2.1). X is called strongly n-admissible if

∫ z
0 Hn(s)ds is uniformly bounded in z ≥ 0. X

is called weakly n-admissible if limz→∞ 1
z

∫ z
0 Hn(s)ds = 0.

Lemma B.2.4. Let n ∈N be given and assume that X is a stationary point process satis-
fying (B.2.1) and with intensity 1/t > 0. If f is weakly (m,1)-piecewise smooth with m ≤ n
and covariogram g, then

V ar(V̂n(f )) = V arE(V̂n(f )) +Zm(t) + r(t), (B.2.5)

where the extension term V arE(V̂n(f )) is of order t2m+2 and is given by

V arE(V̂n(f )) = (−1)m+12g(2m+1)(0+)Hm(0), (B.2.6)

the Zitterbewegung Zm(t) is of order O(t2m+2) and satisfies

Zm(t) = (−1)m+1
∑

a∈Dg (2m+1)\{0}
Jg (2m+1) (a)Hm(a), (B.2.7)

and the remainder r(t) is of order O(t2m+2). If m < n or X is weakly n-admissible, r(t) is of
order o(t2m+2).
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Proof. Applying (B.2.3), we may write

Hm(r) =Hm(r;X) = t2m+2Hm(r/t;Xu) (B.2.8)

for all r ∈ R, where Xu = X/t is a unit-intensity point process. By properties of the
Peano kernel, Hm(0;Xu) is independent of t and Hm(r/t;Xu) is uniformly bounded in
t. The result now follows from an adaption of (Proposition A.6.1, Paper A) to weakly
piecewise smooth functions. �

Both the perturbed and cumulative models are strongly n-admissible for all n ∈N
and, in particular, the remainder r(t) in Lemma B.2.4 is of order o(t2m+2). Even
stronger, if X is from the perturbed model then r 7→Hm(r;Xu) is periodic with period
1 for all m ∈ N0 and sufficiently large |r |, and

∫ r+1
r

Hm(s;Xu)ds = 0 (Lemma A.7.1,
Paper A). Hence, if X has intensity 1/t, the Zitterbewegung (B.2.7) is of order t2m+2

and it is a finite sum of terms each oscillating around 0. If X is from the cumulative
model there is ε > 0 such that Hm(r/t;Xu) = O(e−εr/t) for all r ∈ R as t ↓ 0, due to
(Lemma A.7.3, Paper A). Hence, by (B.2.8), it follows that the Zitterbewegung Z(t) is
o(t2m+2) and thus (B.2.5) reads

V ar(V̂n(f )) = V arE(V̂n(f )) + o(t2m+2) (B.2.9)

as t ↓ 0 in this case.
In (Eq.’s (A.7.8) and (A.7.9), Paper A) Hm(0;Xu) is simplified for n = 1 and

m ∈ {0,1}. Using these representations, the following corollary to Lemma B.2.4 is a
consequence of the fact that E0

Xh
j
1 = tjE0

Xu
h
j
1 for all j ∈N.

Corollary B.2.5. Let X be a stationary point process satisfying (B.2.1) and with intensity
1/t > 0, and let f be weakly (m,1)-piecewise smooth with covariogram g. For m = 0 we
have

V arE(V̂1(f )) = −g(1)(0+) 1
6

1
tE

0
Xh

3
1

= −t2g(1)(0+) 1
6E

0
Xu
h3

1,
(B.2.10)

and for m = 1 we have

V arE(V̂1(f )) = g(3)(0+) 1
360

(
6 1
tE

0
Xh

5
1 − 5( 1

tE
0
Xh

3
1)2

)
= t4g(3)(0+) 1

360

(
6E0

Xu
h5

1 − 5(E0
Xu
h3

1)2
)
.

B.3 Independent p-thinning

In this section we consider the point process X to be obtained by so-called indepen-
dent p-thinning, where 0 ≤ p < 1 denotes the probability of an initial point being
removed. We let X̃ = {x̃k}k∈Z denote the underlying stationary point process on R
with finite intensity 1/ t̃ > 0, and we define X by X = {x̃k ∈ X̃ : Uk > p}, where {Uk}k∈Z
denotes an i.i.d. sequence of uniform (0,1) variables independent of X̃. Hence, Uk
is the thinning variable associated to the point x̃k ∈ X̃, and therefore x̃k ∈ X with
probability P(Uk > p) = 1−p. We refer to X̃ as the initial process and X as the observed
or thinned process. If p = 0 no dropouts occur and naturally X̃ = X. If X has intensity
1/t, it is not difficult to see that t = t̃/(1−p). As in the previous section we let Xu = X/t
denote the scaled unit-intensity process of X.
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As mentioned previously, the correction method introduced in [13, Section 4]
coincides with the trapezoidal estimator applied to the thinned process X if the
initial process X̃ is equidistant. To see this, recall that α1(x) = (h1(x) + h0(x))/2 for
all x ∈ X, where, for some k ∈ Z, x = x̃k . If X̃ has intensity 1/ t̃ and x ∈ X we have
h1(x) = t̃min{j ≥ 1 : Uk+j > p} and h0(x) = t̃min{j ≥ 1 : Uk−j > p}. Consequently, the
trapezoidal estimator reads

V̂1(f ) = t̃
∑
k∈Z

ψkf (x̃k),

with the weight

ψk = 1
2 1(Uk>p)

(
min{j ≥ 1 : Uk+j > p}+ min{j ≥ 1 : Uk−j > p}

)
.

This is exactly the estimator introduced in [13, Section 4]. Note that the estimators
only coincide when the underlying point process is equidistant, and if this is not the
case, the trapezoidal estimator is superior. For instance, the correction method of
[13] is of order t̃ 3 when the underlying process is from the perturbed model and the
measurement function is weakly (1,1)-piecewise smooth, whereas the trapezoidal
estimator is always of order t4 (and hence also of order t̃ 4) for weakly (1,1)-piecewise
smooth functions; see [13, Proposition 4] and Lemma B.2.4 above.

We now aim for variance expressions of Newton-Cotes estimators when applied
to the observed process X. As the results in the previous section rest on Assumption
B.2.1, we have to assure that this condition is satisfied by the observed process X.
Lemma B.3.1 below shows that this is in fact the case if the initial process satisfies
Assumption B.2.1. Subsequently, we find explicit variance expressions for the trape-
zoidal estimator applied to the observed process X, when the initial process X̃ is
from the perturbed or cumulative model. We show that X is strongly n-admissible
in either case, and hence it satisfies (B.2.5) with the remainder r(t) of order o(t2m+2).
V arE(V̂n(f )) is given by (B.2.6) for arbitrary n and explicitly in Corollary B.2.5 for
the trapezoidal estimator.

Lemma B.3.1. If the initial process X̃ satisfies (B.2.1), then so does the thinned process X.

Proof. Between two consecutive points in the thinned process X, the number of
removed points from the initial process X̃ follows a geometric distribution on N0
with success probability (1− p). By independence, this implies

E0
Xh

j
1 =

∞∑
k=1

(1− p)pk−1E0
X̃
s
j
k . (B.3.1)

As E0
Xh

j
1 ≤ E0

X̃
h
j
1 < ∞ for all j < 0 we may assume j ≥ 0. By an application of the

multinomial theorem and Hölder’s inequality, E0
X̃
s
j
k has the upper bound

E0
X̃

(
h1 + · · ·+ hk

)j ≤ ∑
j1+···+jk=j

(
j

j1, . . . , jk

)
E0
X̃

[
h
j
1

]
= kjE0

X̃

[
h
j
1

]
,

and we conclude the proof as E0
Xh

j
1 ≤ E0

X̃

[
h
j
1

]
(1 − p)

∑∞
k=1 k

jpk−1 < ∞, due to the
assumption on X̃. �
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As mentioned, a point process from the perturbed model is strongly n-admissible
for any n ∈N, and this is also the case under independent thinning.

Lemma B.3.2. Let the initial process X̃ be from the perturbed model and let X be the
observed process. For all n,j ∈N and m ∈N0, X satisfies

(i) Hm(r;Xu) =Hm(r + 1;Xu) + o(r−j ),

(ii)
∫ r+1
r

Hm(s;Xu)ds = o(r−j ),

as r→±∞. Furthermore,

(iii) X is strongly n-admissible .

Proof. As r 7→Hm(r) is an even function due to stationarity, it is enough to show the
claims (i) and (ii) for positive r→∞.

Before proving (i)–(iii) we introduce some notation which will be used throughout
the proof. First, to simplify notation, we will write Km(r) = Km(r;Xu) and Hm(r) =
Hm(r;Xu), as we do not consider the observed process but only the associated unit-
scaled process. For s ∈R and r ≥ 0 let

A−(s) = A−(s;Xu) =
{
#
(
Xu ∩ [s − r

3 , s)
)
≥ n

}
, and

A+(s) = A+(s;Xu) =
{
#
(
Xu ∩ [s, s+ r

3 )
)
≥ n

}
be the events that Xu has at least n points to the left and right of s, respectively,
within a distance of at most r/3. Furthermore define I±(s) = I±(s;Xu) = 1A±(s;Xu ) as the
associated indicator functions, and note that they are vanishing for small r. We also
define the shifted process X∗ = Xu −U = {k +Ek : Uk > p, k ∈Z} and correspondingly
K∗m(s) = Km(s;X∗) and I ∗±(s) = I±(s;X∗). Due to the i.i.d. property of perturbations and
thinning variables, the distributional equivalence

K∗m(s)I ∗±(s) D= K∗m(s+ 1)I ∗±(s+ 1) (B.3.2)

holds for all s ∈R, where the translation covariance of Km(s;X) and I±(s;X) was used.
Furthermore, by construction, K∗m(s)I ∗−(s) and K∗m(s)I ∗+(s) only depend on the variables

{(Ei ,Ui) : i +Ei ≥ s − r/3} ⊆ {(Ei ,Ui) : i ≥ s − r/3− 1/2},

and

{(Ei ,Ui) : i +Ei < s+ r/3} ⊆ {(Ei ,Ui) : i < s+ r/3 + 1/2},

respectively. In particular, K∗m(s)I ∗−(s) and K∗m(s′)I ∗+(s′) are stochastically independent
for s − s′ ≥ 2r/3 + 1.

Let n ∈ N and m ∈ N0 be fixed and consider r ≥ 0. To prove (i) we observe by
stationarity that P((A−(s)∩A+(0))c) ≤ 2P(A+(0)c) = 2P(#(Xu ∩ [0, r/3)) < n), and thus

P
(
(A−(s)∩A+(0))c

)
= o(r−j ) (B.3.3)

for all j ∈N and s ∈ R, as r →∞. This is seen as follows: With b·c denoting integer
part, there are at least Nr = br/3c − 2 points in X̃u ∩ [0, r/3), and the number B of
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these points also in Xu is a binomial random variable with Nr trials and success
probability 1− p. As p < 1 it is not difficult to see that P(B < n) is of order o(N−jr ) for
any j ∈N, and hence also of order o(r−j ) as r→∞. Equation (B.3.3) now follows as
P(#(Xu ∩ [0, r3 )) < n) ≤ P(B < n).

By the Cauchy-Schwarz inequality and the fact that EK4
m(r) = EK4

m(0) <∞, (B.3.3)
implies that

E[Km(r)Km(0)] = S(r) + o(r−j ) (B.3.4)

for all j ∈N, where
S(r) = E[Km(r)I−(r)Km(0)I+(0)]

is defined for notational convenience. Conditioning on U and using the translation
covariance of Km and I±, S(r) reads

S(r) =
∫ 1

0
E[K∗m(r −u)I ∗−(r −u)K∗m(−u)I ∗+(−u)]du

=
∫ 1

0
E[K∗m(r −u)I ∗−(r −u)]E[K∗m(−u)I ∗+(−u)]du

for r ≥ 3, where it has been used that K∗m(r − u)I ∗−(r − u) and K∗m(−u)I ∗+(−u) are inde-
pendent for such r. Equation (B.3.2) now implies that

S(r) = S(r + 1)

for all j ∈N and r ≥ 3. Using this and (B.3.4) with r and r + 1 yields (i).
Defining R∗±(s) = E[K∗m(s)I ∗±(s)], we note that∫ 1

0
R∗±(s −u)du = E[Km(s)I±(s)] = E[Km(0)I±(0)] = E[Km(0)] + o(r−j ) (B.3.5)

for all s ∈ R, as r →∞. The first equality is seen by conditioning on U , the second
equality is due to stationarity, and the third equality is obtained by Cauchy-Schwarz’
inequality using the fact that P(A±(0)c) = o(r−j ) and EK2(0) <∞. Equations (B.3.4)–
(B.3.5), Fubini’s theorem and a substitution now yield∫ r+1

r
E[Km(0)Km(s)]ds =

∫ 1

0
R∗+(−u)

∫ 1

0
R∗−(r + 1−u − s)dsdu + o(r−j )

= (E[Km(0)])2 + o(r−j ),

which proves (ii).
That Xu (and consequently X by (B.2.3)) is strongly n-admissible is easily seen by

(ii) as

∣∣∣∣∫ z

0
Hn(r)dr

∣∣∣∣ =
∣∣∣∣bzc−1∑
i=0

∫ i+1

i
Hn(s)ds+

∫ z

bzc
Hn(s)ds

∣∣∣∣
≤
∞∑
i=0

∣∣∣∣∫ i+1

i
Hn(s)ds

∣∣∣∣+V ar(Kn(0)) <∞.

This is exactly assertion (iii). �

59



Paper B · Improving the Cavalieri estimator under non-equidistant sampling and dropouts

Theorem B.3.3. Let the initial process X̃ be from the perturbed model with intensity 1/ t̃
and let X be the observed process with intensity 1/t. Let θk = E(E1 − E0)k be the kth
moment of the difference in perturbations. If f is weakly (m,1)-piecewise smooth with
covariogram g, then V arE(V̂1(f )) coincides with

− t̃ 2g(1)(0+)
1
6

(
1 + 3θ2 +

6p
(1− p)2

)
, (B.3.6)

for m = 0, and

t̃ 4g(3)(0+)
1

360

(
1 +

120p3 + 300p2 + 120p
(1− p)4 + 30θ2

p2 + 4p+ 1
(1− p)2 − 45θ2

2 + 30θ4

)
, (B.3.7)

for m = 1. Moreover, the Zitterbewegung Zm(t) is of order t2m+2 (hence t̃ 2m+2) and it is a
finite sum of terms each oscillating around 0.

Before proving this result, we make a few comments on the extension term. As
mentioned, the trapezoidal estimator and the correction method of [13] coincide when
the initial point process is equidistant. In particular, when θk = 0 for all k ∈N, the
result above should match [13, Proposition 3]. However, according to [13], the second
summand in (B.3.7) is erroneously claimed to be (120p3 + 390p2 + 120p)/(1− p)4.

Considering perturbed sampling without thinning (p = 0), how much do we
underestimate the extension term if we use the classical variance, that is, if we
disregard the perturbations by setting θk = 0 above? In the rather extreme case where
E1 is uniform on (−1/2,1/2) the extension term equals 3/2 and 27/4 times the classical
extension term for m = 0,1, respectively. By comparison, the extension term of the
generalized Cavalieri estimator equals 2 times the classical extension term when
m = 0; see [13, p. 190]. In the worst case where the errors Ei are arbitrarily close to
±1/2, the extension term equals 5/2 and 79/4 times the classical extension term for
m = 0,1, respectively.

Proof. As processes from the perturbed model satisfy (B.2.1), also X satisfies (B.2.1)
due to Lemma B.3.1. Recall that θk = E(Ej −E0)k = E(E1−E0)k for all j , 0, with θk = 0
for all odd k. It is not difficult to see that E0

X̃
s5j = t̃ 5E(j+Ej−E0)5 = t̃ 5(j5+10θ2j

3+5θ4j)
for all j ∈N, and consequently, using (B.3.1),

E0
Xh

5
1 =

∞∑
j=1

pj−1(1− p)E0
X̃
s5j

= t̃ 5
∞∑
j=1

pj−1(1− p)(j5 + 10θ2j
3 + 5θ4j)

= t̃ 5
(p4 + 26p3 + 66p2 + 26p+ 1

(1− p)5 + 10θ2
p2 + 4p+ 1

(1− p)3 + 5θ4
1

1− p
)
.

By similar arguments it is shown that E0
Xh

3
1 = t̃ 3((1 + 3θ2)/(1− p) + 6p/(1− p)3). Since

t = t̃/(1−p), (B.3.6) and (B.3.7) follow by applying Corollary B.2.5 to X. The claim on
the Zitterbewegung is a consequence of Lemma B.3.2 and (B.2.7). �

Next we turn to the cumulative model from Definition B.1.2. Interestingly, this
model class is closed under independent thinning. In the following, {ω̃k} and {ωk}
denotes the increments of the initial process X̃ and the thinned processX, respectively.
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Lemma B.3.4. If the initial process X̃ is from the cumulative model, then so is the thinned
process X. In this case, for all n ∈N and m ∈N0, there is some ε > 0 such that Hm(s) =
O(e−εs) as s→∞. In particular, X is strongly n-admissible.

Proof. Let F̃ be the continuous distribution function of the initial increments. The
independence of these increments and the thinning variables show that X has inde-
pendent and identically distributed increments with continuous distribution function
F given by F(x) =

∑∞
k=1(1−p)pk−1F̃∗k(x). Here F̃∗k denotes the k-fold convolution of F̃,

that is, the distribution of ω̃1 +· · ·+ω̃k . Furthermore, Eeηω1 =
∑∞
k=1(1−p)pk−1(Eeηω̃1 )k ,

which is finite if Eeηω̃1 < 1/p. Since there is η̃ > 0 such that Eeη̃ω̃k <∞, a dominated
convergence argument shows that Eeηω̃1 < 1/p if we choose η > 0 small enough.
The claim on the convergence rate of Hm is now a consequence of (Lemma A.7.3,
Paper A). �

Theorem B.3.5. Let the initial process X̃ be from the cumulative model with intensity
1/ t̃ and let X be the observed process with intensity 1/t. Define ν̃k = Eω̃k1/ t̃

k as the kth
moment of the increments in the initial unit-intensity scaled process X̃u . If f is weakly
(m,1)-piecewise smooth with covariogram g, then V arE(V̂1(f )) coincides with

−t̃ 2g(1)(0+)
1
6

(
ν̃3 + ν̃2

6p
1− p +

6p2

(1− p)2

)
,

for m = 0, and

t̃ 4g(3)(0+)
1

360

(
6ν̃5 − 5ν̃2

3 +
60p(ν̃4 + ν̃3ν̃2)

1− p +
60p2(5ν̃3 + 6ν̃2

2 )
(1− p)2 +

ν̃21080p3

(1− p)3 +
540p4

(1− p)4

)
,

for m = 1. Moreover, Zm(t) is of order o(t2m+2), that is o(t̃ 2m+2), for m = 0,1.

Proof. By definition, the cumulative model has finite exponential expectation and
in particular (B.2.1) is satisfied for both the initial and the observed model. By the
multinomial theorem, the independence and identical law of the increments, and by
the fact that ν̃1 = 1,

E(ω̃1 + · · ·+ ω̃j )5/ t̃ 5 =
∑

k1+···+kj=5

(
5

k1, . . . , kj

) j∏
i=1

ν̃kj

=
(
j
1

)
ν̃5 +

(
j
2

)(
2
1

)
(5ν̃4 + 10ν̃3ν̃2) +

(
j
3

)(
3
2

)
(20ν̃3 + 30ν̃2

2 ) +
(
j
4

)(
4
3

)
60ν̃2 +

(
j
5

)
120

= jν̃5 + j(j − 1)(5ν̃4 + 10ν̃3ν̃2) + j(j − 1)(j − 2)(10ν̃3 + 15ν̃2
2 )

+ j(j − 1)(j − 2)(j − 3)10ν̃2 + j(j − 1)(j − 2)(j − 3)(j − 4)

for all j ∈N. Consequently,

E0
Xh

5
1 =

∞∑
j=1

pj−1(1− p)E0
X̃
s5j =

∞∑
j=1

pj−1(1− p)E(ω̃1 + · · ·+ ω̃j )5

= t̃ 5
( ν̃5

1− p +
(10ν̃4 + 20ν̃3ν̃2)p

(1− p)2 +
(60ν̃3 + 90ν̃2

2 )p2

(1− p)3 +
240ν̃2p

3

(1− p)4 +
120p4

(1− p)5

)
.
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Similarly, it is seen that E(ω̃1 + · · ·+ ω̃j )3/ t̃ 3 = jν̃3 + 3j(j − 1)ν̃2 + j(j − 1)(j − 2) for all

j ∈N and hence E0
Xh

3
1 = t̃ 3

(
ν̃3/(1−p) + ν̃26p/(1−p)2 + 6p2/(1−p)3

)
. Since the relation

t = t̃/(1− p) holds, the lemma is concluded by Corollary B.2.5 (applied to X), Lemma
B.3.4 and (B.2.9). �

B.4 Variance estimation

Traditionally, the variance of the classical Cavalieri estimator is approximated by its
extension term, and hence an estimation of the extension term serves as an estimation
of the variance as a whole. It is debatable if this is appropriate, as a particular sample
may result in a large Zitterbewegung. Hence, using the extension term only, one
risks actually underestimating the variance. However, at least in the stereological
application that is discussed at the end of this paper, we see that the Zitterbewegung
never can exceed the extension term, see (B.5.6), so 2V arE(V̂n) is an upper bound for
the variance, only neglecting the remainder term in this application. The extension
term is (relatively) easy to estimate and is traditionally used as an approximation
for the unknown variance of the classical Cavalieri estimator (B.1.1). In view of the
variance decomposition (B.2.5) we can follow these lines also for the new Newton-
Cotes estimators and focus therefore on the estimation of the extension term. The
estimation naturally depends on the available information on the sampling points. In
this section we discuss a general estimation approach based on the observed process,
and, if we sample from the perturbed or cumulative models with information on the
initial process available, we mention another approach for the trapezoidal estimator
exploiting the exact representations from Theorems B.3.3 and B.3.5.

Throughout this section we assume that the measurement function f is weakly
(m,1)-piecewise smooth with known m ∈N0, and we estimate the variance based on
the points X ∩ L of the observed process X falling inside a bounded interval L ⊆ R.
We assume that f is known at the points X ∩L and that L contains the support of f .
We let the observed process X have intensity 1/t.

Before proceeding, we introduce an estimation procedure for the Palm expectation
of a function of increments as this will be of great relevance below. More precisely,
for the point process X and a fixed n ∈N, we aim to estimate Θ = t−1E0

XF(h1, . . . ,hn),
where F : Rn→R is an integrable function. For the n largest points in X ∩L, some of
the subsequent n point increments are not accessible from the information of X in L.
To correct for this censoring close to the boundary of L, we use the following Hanisch
estimator, where we only consider points x in X ∩L for which all of the subsequent n
increments h1(x), . . . ,hn(x) are observed:

Θ̂ =
∑
x∈X∩L
sn(x)∈L

F
(
h1(x), . . . ,hn(x)

)
H1

(
L∩ (L− sn(x) + x)

) . (B.4.1)

Here H1 denotes the 1-dimensional Hausdorff measure, that is, the length measure.
By the refined Campbell theorem [11, Theorem 3.5.3] it is seen that Θ̂ is unbiased for
Θ. To estimate the intensity 1/t we simply use the unbiased estimator #(X ∩L)/H1(L).

As the extension term (B.2.6) factorizes similar to the classical case, we can esti-
mate the contribution from the point process (through Hm) and from the measure-
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ment function (through g) separately. We first estimate the variance Hm(0) depending
on the point process X only. More specifically, if n ∈N is the order of the Newton-
Cotes estimator, using (Eq.’s (A.3.6) and (A.3.7), Paper A) and the refined Campbell
theorem [11, Theorem 3.5.3], it is not difficult to see that there are (known) rational
functions pm,qm : Rn→R such that

Hm(0) = EK2
m(0)− (EKm(0))2

= 1
tE

0
Xpm(h1, . . . ,hn)− ( 1

tE
0
Xqm(h1, . . . ,hn))2,

where the latter term vanishes for all m < n; see (Lemma A.4.2, Paper A). For n = 1,
comparing with Corollary B.2.5, we see that p0(h1) = h3

1/12, p1(h1) = h5
1/120 and

q1(h1) = h3
1/12. Applying (B.4.1) with F substituted by pm and qm, Hm(0) can be

estimated by the information of X in L.
Secondly, we estimate the derivative g(2m+1)(0+). To do so, we apply similar tech-

niques as in [7, Section 6.2], where we explicitly use the fact that the covariogram g is
weakly (2m+ 1,1)-piecewise smooth. An induction argument using Lemma B.6.1 in
the appendix (an adaption of the refined partial integration formula [7, Lemma 4.1]
to weakly piecewise smooth functions) yields

g(y) =
2m+1∑
j=0

g(j)(0+)
j!

yj +R2m+1(y;g) (B.4.2)

for all y > 0, where the remainder R2m+1 satisfies

R2m+1(y;g) =
∑

a∈Dg (2m+1)∩(0,y)

(y − a)2m+1

(2m+ 1)!
Jg (2m+1) (a) +

1
(2m+ 1)!

∫ y

0
g(2m+2)(t)(y − t)2m+1dt.

For k ∈N0, we estimate the covariogram g using

ĝ(k, t) = t
∑
x∈X∩L

f (x)f (sk(x)), (B.4.3)

which, by the refined Campbell theorem [11, Theorem 3.5.3] and the fact that L con-
tains the support of f , satisfies Eĝ(k, t) = E0

Xg(sk). Let βk be given by βk = g(k)(0+)/k!.
As g(j) is odd and continuous for all odd j ≤ 2m, we find using (B.4.2) that

ĝ(k, t) =
m∑
j=0

E0
X [s2jk ]β2j +E0

X [s2m+1
k ]β2m+1 + εk,t , (B.4.4)

where the error εk,t arises from a Taylor expansion and the covariogram estimation.
Consequently, Eεk,t = E0

XR2m+1(sk ;g), and hence

Eεk,t = E0
X

[ ∑
a∈Dg (2m+1)

a>0

(sk − a)2m+1
+

(2m+ 1)!
Jg (2m+1) (a) +

1
(2m+ 1)!

∫ ∞
0
g(2m+2)(r)(sk − r)2m+1

+ dr
]
,

where (x− r)k+ = 1x>r (x− r)k . By definition, sjk(0) = tjsjk(0;Xu), and as E0
Xu
s
j
k <∞ for all

k, j ∈N0 and g2m+2 is integrable by assumption, we conclude by dominated conver-
gence that Eεk,t = o(t2m+1) as t ↓ 0. Applying this convergence rate, the proposition
below follows from (B.4.4).
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Proposition B.4.1. Let X be the observed process with intensity 1/t and let f be weakly
(m,1)-piecewise smooth with covariogram g. For N ≥m+ 1 define the (N + 1)× (m+ 2)
matrix QX = (E0

Xs
j
i )i∈{0,...,N },j∈{0,2,...,2m,2m+1}. If the linear system QXη = (0, . . . ,0,1)> has

a solution η = {ηk}Nk=0, then, with ĝ(k, t) given by (B.4.3),

β̂2m+1 =
N∑
k=0

ĝ(k, t)ηk (B.4.5)

estimates g(2m+1)(0+)/(2m+ 1)! with a bias of order o(1) as t ↓ 0.

In the corollary below we present estimators for the extension term of the trape-
zoidal estimator when m ∈ {0,1}. To use Proposition B.4.1 for m = 1, we require the
denominator in (B.4.7) to be non-zero. This ensures that the linear system has a
solution, and it is for instance always satisfied for the perturbed model. Note that
for m = 0 we choose N = 2 larger than necessary since this is traditionally used in
equidistant sampling; see e.g. [7, Formula (6.9)] and recall (B.2.10). If we instead
choose N = 1 we estimate g ′(0+) by (−ĝ(0, t) + ĝ(1, t))/t.

Corollary B.4.2. Let X be the observed process with intensity 1/t and let f be weakly
(m,1)-piecewise smooth. Define g̃(k, t) = ĝ(k, t)/t, with ĝ(k, t) given by (B.4.3), and γi,j =
1
tE

0
Xs
j
i . The extension term V arE(V̂1(f )) of the trapezoidal estimator is estimated with a

bias of order o(1) by: (
1
4 g̃(0, t)− 1

3 g̃(1, t) + 1
12 g̃(2, t)

)
γ1,3 (B.4.6)

for m = 0, and

g̃(0, t)(γ2,2 −γ1,2)− g̃(1, t)γ2,2 + g̃(2, t)γ1,2

γ1,2γ2,3 −γ2,2γ1,3

(
1

10γ1,5 − 1
12 (γ1,3)2

)
(B.4.7)

for m = 1, if the denominator in (B.4.7) is non-zero. All γi,j can be unbiasedly estimated
using X ∩L by the Hanish estimator (B.4.1).

We have described a general estimation approach where the only requirement on
the observed process X (other than stationarity) is the existence of a solution to the
linear system in Proposition (B.4.1). However, if the model of X is known this can
also be used to construct other estimates for Hm(0) and the weights {ηk} in (B.4.5).
In particular, if both the observed process X and its underlying initial process X̃
are accessible, a decomposition of the extension term similar to Theorems B.3.3 and
B.3.5 can be constructed, representing the Palm expectations in terms of the thinning
probability p and increments of the initial process. Preliminary simulations for the
trapezoidal estimator under perturbed and cumulative sampling indicate that such
a model-specific estimation has a smaller variance than the general approach, and
furthermore it appears to be much more robust for varying intensity, especially when
thinning is present. This will be investigated further in a future paper.

B.5 An application to volume estimation

We now specialize the above results to stereological volume estimation. This had
been the original starting point of our research and extends the settings of the well-
established Cavalieri estimator and its generalizations. The target is the volume of a
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compact set Y ⊂Rd . For a unit vector ω ∈ Sd−1 let ω⊥ be the hyperplane with normal
ω and let Hk be the k-dimensional Hausdorff-measure in Rd . We assume that the
measurement function

f (x) =Hd−1
(
Y ∩ (xω+ω⊥)

)
(B.5.1)

is available at all points x of a stationary point process X in R. In order to apply
the theory of Newton-Cotes estimators we assume throughout the following that
Assumption B.2.1 is satisfied for a given n ∈N. Then, the Newton-Cotes estimator of
order n is unbiased for

∫
R
f (x)dx, which is equal toHd(Y ) by Fubini’s theorem. In the

special case where the points in X are equidistant, Newton-Cotes estimators of any
order coincide with the classical Cavalieri volume-estimator.

We recall a number of fundamental notions from convex geometry; see e.g. [10]. A
set Y ⊂Rd is called a convex body, if it is non-empty, compact and convex. We say that
a hyperplane H in Rd supports the convex body Y , if H ∩ Y , ∅ and one of the two
open half-spaces generated by H does not contain any points of Y . If H = xω +ω⊥
supports Y and ω points in the direction of the open half-space that is disjoint from
Y , the unit vector ω is called an outer normal vector of Y at the support set H ∩ Y .
We say that Y is strictly convex if its boundary does not contain any non-degenerate
line-segments. A convex body is of class C2

+ if its boundary is a regular submanifold
of Rd that is twice continuously differentiable (in the sense of differential geometry)
and all principal curvatures are positive at all boundary points. In particular, if Y is
of class C2

+, it is strictly convex.
If the convex body Y ⊂ Rd and a unit vector ω ∈ Sd−1 are given, the support of

the measurement function (B.5.1) is a compact interval [x−,x+]. The hyperplanes
H− = x−ω +ω⊥ and H+ = x+ω +ω⊥ support Y at support sets Y− and Y+ with outer
unit normals −ω and ω, respectively. The number d(ω) = x+ − x− is called the width
of Y in direction ω. The function ω 7→ d(ω) is continuous on Sd−1. If the width d(ω)
does not depend on ω, the set Y is called a body of constant width. Clearly, any ball is
of constant width with d = d(ω) being its diameter, but there are other convex bodies
of constant width in Rd . However, among all point symmetric bodies Y (meaning that
there is a point z ∈ Rd with Y − z = {−x : x ∈ Y − z}) balls can be characterized by
having constant width. These and further results on bodies of constant width can be
found in [5, p. 3.2]; see in particular Theorem 3.2.7 of this monograph.

The asymptotic variance behavior depends on the smoothness of f , which in
turn reflects properties of the set Y . To illustrate how basic geometric regularity
of a set Y yields smoothness properties of f , we restrict considerations to convex
objects in three-dimensional space (d = 3), but note that generalizations to sets of
higher dimension and with a boundary being a smooth manifold are also possible.
As a consequence of the Brunn-Minkowski inequality [4, p. 361], the measurement
function f 1/2 for a given Y ⊂R3 is concave on its support [x−,x+]. If the support set
Y+ (Y−) is a singleton or a line-segment, the function f is continuous in x+ (x−). In
particular, f is continuous when Y is strictly convex.

If Y is of class C2
+ the principal radii r1(ω), r2(ω) of curvature exist at the support

point of Y with outer normal vector ω. The second normalized symmetric function
s2(ω) = r1(ω)r2(ω) of the principal radii is continuous and has integral∫

S2
s2(ω)H2(dω) =H2(∂Y ), (B.5.2)
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where the right side is the surface area of the boundary ∂Y of Y ; see [10, (4.26) and
(4.32)]. For later use, we also remark that the function s2 determines the convex set Y
of class C2

+ uniquely up to translations; see [10, (4.26) and Theorem 8.1.1].

Proposition B.5.1. Let Y ⊂ R3 be a convex body of class C2
+. Then the measurement

function f in (B.5.1) is twice continuously differentiable on R \ {x−,x+}, and f ′ jumps
exactly at the endpoints x− < x+ of the support of f . The jump at x+ is 2π

√
s2(ω) and the

jump at x− is 2π
√
s2(−ω).

If f ′′ has a right sided limit at x− and a left sided limit at x+ then f is weakly (1,1)-
piecewise smooth.

Proof. We first set out to prove that f is twice continuously differentiable on R \
{x−,x+}, and can restrict attention to the interior of its support. Translating Y ap-
propriately, it is enough to show that f is twice continuously differentiable in a
neighborhood of x = 0 when the origin is an interior point of Y . Assuming 0 ∈ intY ,
we show first that the radial function ρY (u) = max{t ≥ 0 : tu ∈ Y }, u ∈ S2, is a twice
continuously differentiable function on the sphere S2. It is enough to show this claim
in the neighborhood of one unit vector, which we may assume to coincide with the
last standard basis vector e3. As Y is of class C2

+ and 0 is an interior point of Y , there
is an open ball U in e⊥3 centered at 0 (and with a radius strictly smaller than 1) and a
local C2-parametrization h :U →R such that (x,h(x)), x ∈U , parametrizes a patch of
the boundary of Y close to (0,h(0)). Any point u in a neighborhood of e3 in S2 can be
written as u = (x,

√
1− ‖x‖2), x ∈U , and thus tu is a boundary point of Y if and only

if t
√

1− ‖x‖2 = h(tx). The implicit definition of ρY (u) = t through

F(x, t) = h(tx)− t
√

1− ‖x‖2 = 0

shows that ρY is C2 in a neighborhood of e3 in S2 by the implicit function theorem.
As the origin is an interior point of Y , this implies that the Minkowski functional ρ−1

Y
of Y is in C2(S2) and Y is therefore 2-smooth in the sense of [8]. Like in [8, Lemma
2.4] one now shows that f is twice continuously differentiable in a neighborhood of
x = 0, noting that the origin-symmetry required in the statement of the lemma is not
needed for the proof.

We have already seen that strict convexity implies continuity of f . We now show
that the first derivative of f has finite jumps at the endpoints x− and x+ of its support.
Without loss of generality, we may now assume ω = e3, that Y is rescaled and that
the origin 0 ∈ Y is chosen such that e3 is the boundary point of Y where the support
plane at position x+ = 1 meets Y . As we have already seen, there is a local C2-
parametrization h :U →R with U as above, such that (x,h(x)), x ∈U , parametrizes a
patch of the boundary of Y close to (0,h(0)) = e3. A first order Taylor expansion with
a second order remainder term, using the fact that the gradient of h must be zero at
x = 0, shows

h(x) = 1− 1
2x
>A(ξx)x (B.5.3)

in U , where A(·) is the Hessian matrix of −h and ξx is a point on the line segment
with endpoints 0 and x.

The eigenvalues λ1 and λ2 of A(0) are the principal curvatures of Y at e3 and thus
coincide with 1/r1(e3) and 1/r2(e3) up to permutation [10, Section 2.5] and are positive
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by assumption. As A(·) is continuous, there is a compact neighborhood V of 0 in U
such that x>A(ξx)x ≥ min{λ1,λ2}

2 ‖x‖2 for all x ∈ V . This and the convexity of Y imply
the existence of a constant ε0 such thatMε = {x ∈U : h(x) ≥ 1−ε} ⊂ V for all 0 < ε < ε0.
We claim that for such ε, the orthogonal projection of Yε = Y ∩

(
(1− ε)e3 + e⊥3

)
onto e⊥3

coincides with Mε, so

f (1− ε) =H2
(
Mε

)
. (B.5.4)

In fact, if this was not the case, there would be a point (x′ , t) ∈ Yε with x′ < U . The
convexity of Y implies that all points x ∈ U of the line segment s between x′ and 0
are in Mε. But s∩ (U \V ) , ∅, so Mε contains points outside V , a contradiction.

In view of (B.5.4) and (B.5.3) we have

1
ε
f (1− ε) =H2

( 1√
ε
Mε

)
=H2

(
{x ∈ 1√

ε
U : x>A(ξ√εx)x ≤ 2}

)
→H2

(
{x ∈ e⊥3 : x>A(0)x ≤ 2}

)
,

as ε ↓ 0, where the continuity of A(·) was used again. The limit set in the last displayed
formula is an ellipse in e⊥3 with half axes

√
2/λi , i = 1,2 and area 2π/

√
λ1λ2. This

implies

f ′(1−) = − 2π√
λ1λ2

= −2π
√
s2(e3),

which is the negative of the jump of f ′ at x+ = 1, as f ′(x) = 0 for x > x+. Replacing ω
by −ω, the above arguments show a corresponding equality for the jump at x−.

As f ′′ exists and is continuous on R \ {x−,x+}, this function can at most have
two discontinuities. Under the assumption in the last claim of the theorem, these
discontinuities are points where f ′′ has jumps, so f is weakly (1,1)-piecewise smooth.
This concludes the proof. �

As mentioned in the introduction, there are practically relevant examples of
measurement functions with unbounded second derivative. In particular, there are
convex bodies of class C2

+ with a measurement function f which is not (1,1)-piecewise
smooth but only weakly (1,1)-piecewise smooth. An example can be constructed by
modifying the measurement function π(1− (1− x)2) = π(x(2− x)), 0 ≤ x ≤ 2, of the
unit ball centered at the point ω. We consider the measurement function

f (x) = π(x+ x3/2)(2− x) = π(2x+ 2x3/2 − x2 − x5/2),

0 ≤ x ≤ 2 (and zero elsewhere), of a body of revolution Y with axisω. Because f ′′(0+) =
∞, the function f is not (1,1)-piecewise smooth, but only weakly (1,1)-piecewise
smooth. For the corresponding surface of revolution, the principal curvatures at a
boundary point with level x are known to be

κ1(x) =
1

ρ(x)
√

1 + ρ′(x)2

=
2√

(2ρ)2(x) + (2 + 3x1/2 − 2x − 5
2x

3/2)2
,
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and

κ2(x) = − ρ′′(x)√
1 + ρ′(x)23 = −ρ3(x)ρ′′(x)κ3

1(x),

where ρ(x) =
√
f (x)/π is the radius of the section disk of Y at level x. This can be used

to show that Y is a convex body of class C2
+.

In the last statement of the proposition, we assumed that all discontinuity points
of f ′′ are jump points. It is an open problem if this condition can be replaced by
a more geometric assumption on Y . But it is well-known that the measurement
function of any ellipsoid in R3 has a second derivative which satisfies this property
for any direction ω. In addition, f ′′ is uniformly bounded in ω in this case; see, for
instance, [7, Appendix B.1].

Corollary B.5.2. For ω ∈ S2 assume that Y ⊂ R3 is a convex body of class C2
+ with

measurement function f supported by [x−,x+], and such that f ′′ has one-sided limits
at x− and x+. Then the covariogram g of the measurement function (B.5.1) is weakly
(3,1)-piecewise smooth and g(3) has three jumps. These jumps have positions −d(ω), 0 and
d(ω) = x+ − x− and their heights are

Jg (3) (0) = 4π2(s2(ω) + s2(−ω)), and Jg (3)

(
±d(ω)

)
= 4π2

√
s2(ω)s2(−ω).

Proof. That g is weakly (3,1)-piecewise smooth follows from Corollary B.6.3 of the
appendix. The relation

Jg (3) (c) =
∑
b−a=c

Jf ′ (a)Jf ′ (b), c ∈R,

which is a special case of (B.6.3), in combination with Proposition B.5.1 yields the
remaining claims. �

Note that 2g(3)(0+) = Jg (3) (0) as g(3) is odd. Hence, g(3)(0+) = 2π2(s2(ω) + s2(−ω)).
When Y is point symmetric, we have s2(ω) = s2(−ω) for all ω ∈ S2 and thus

Jg (3) (0) = 2Jg (3)

(
±d(ω)

)
= 8π2s2(ω).

Theorem B.5.3. Let n ∈N be given. Assume that Xu is a unit-intensity stationary point
process satisfying Assumption B.2.1, and that Y ⊂R3 is a convex body of class C2

+ whose
measurement function supported by [x−,x+] in direction ω ∈ S2 has a second derivative
with one-sided limits at x− and x+. If Vn(Y ) = Vn,ω(Y ) is the nth Newton-Cotes estimator
based on intersections of Y with the hyperplanes {xω+ω⊥ : x ∈ tXu} with t > 0, then

V ar(Vn,ω(Y )) = V arE(Vn,ω(Y )) +Zω(t) + rω(t), (B.5.5)

where the extension term is given by

V arE(Vn,ω(Y )) = 4π2
(
s2(ω) + s2(−ω)

)
H1(0;Xu)t4,

and the Zitterbewegung

Zω(t) = 8π2
√
s2(ω)s2(−ω)H1

(
d(ω)
t ;Xu

)
t4

satisfies
Zω(t) ≤ V arE(Vn,ω(Y )). (B.5.6)

The remainder rω(t) is of order O(t4). If Xu is weakly 1-admissible, rω(t) is of order o(t4).
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We remark that (B.5.6) also holds for more general objects Y , as long as its measure-
ment function f is weakly (1,1)-piecewise smooth and f ′ has exactly two jumps.

Proof. The explicit forms of V arE(Vn,ω(Y )) and Zω(t) are obtained by inserting the
jumps of the third derivative of the covariogram g(3) given in Corollary B.5.2 into the
corresponding equations of Lemma B.2.4, taking (B.2.3) into account. The asymptotic
behavior of rω(t) has also been established in Lemma B.2.4. The bound (B.5.6) follows
from H1(·;Xu) ≤H1(0;Xu) and the inequality of arithmetic and geometric means. �

The explicit expression for the extension term in Theorem B.5.3 also shows which
directions ω ∈ S2 are best possible in terms of asymptotic variance when the Zitterbe-
wegung is neglected. If possible, one should choose ω in the set of all unit vectors for
which the average (s2 + š2)/2 attains its minimum, where š2 denotes the reflection of
s2. When Y is point symmetric, this is the set where the second normalized symmetric
curvature function s2 is minimal. Of course, s2 is not available in applications, but
with this in mind, one might want to choose ω such that the corresponding support
point has large curvature (that is, the vicinity is ‘peaked’).

A common strategy to determine the orientation of the hyperplane stack in ap-
plications is to randomize the direction ω in an isotropic way. We will write Eω for
the expectation with respect to ω in this case. The assumptions of the following
corollary are for instance satisfied if Y is an ellipsoid; see the comment right before
Corollary B.5.2.

Corollary B.5.4. Let the assumptions of Theorem B.5.3 be satisfied for allω ∈ S2. Assume
in addition that the second derivative of the measurement function is uniformly integrable
in ω ∈ S2. If ω is a uniform random unit vector which is independent of Xu , then (B.2.5)
with m = 1 holds with

V arE(Vn(Y )) = 2πH2(∂Y )H1(0;Xu)t4. (B.5.7)

The term corresponding to the Zitterbewegung is

Z(t) = 8π2Eω
[√
s2(ω)s2(−ω)H1

(
d(ω)
t ;Xu

)]
t4,

and satisfies
Z(t) ≤ V arE(Vn(Y )) (B.5.8)

with equality if and only if Y is a ball with diameter d0, say, and H1(d0/t;Xu) =H1(0;Xu).
The remainder is of order O(t4), and even of order o(t4) when Xu is weakly 1-admissible.

Proof. Due to the law of total variance and the fact that Vn,ω(f ) is unbiased for all
ω, we have V ar(Vn(Y )) = EωV ar

[
Vn,ω(Y ) | |ω

]
, where the latter variance has been

described in Theorem B.5.3. Hence, taking expectations in (B.5.5) shows

V ar(Vn(Y )) = EωV arE(Vn,ω(Y )) +EωZω(t) +Eωrω(t).

The first term on the right equals (B.5.7) due to (B.5.2) and the second term is
obviously Z(t).

Now let gω denote the covariogram of the measurement function f = fω with
respect to the direction ω ∈ S2. By (Proposition A.6.1, Paper A)

rω(t) = t4
∫
R
g

(4)
ω (s)H1( st ;Xu)ds,
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and, for allω, it is of order o(t4) if Xu is weakly 1-admissible. AsH1(·;Xu) is uniformly
bounded and independent of ω, the asserted lower order properties of r(t) = Eωrω(t)
follow by dominated convergence if

Eω

∫
R
|g(4)
ω (s)|ds <∞. (B.5.9)

The function g(4)
ω is uniformly integrable in ω ∈ S2 by (B.6.1) and the assumption that

f ′′ω is uniformly integrable in ω. Thus (B.5.9) follows.
We now fix t > 0. Inequality (B.5.8) clearly holds due to (B.5.6) and (B.5.2). If the

former holds with equality for a given t, we must have

H1

(
d(·)
t ;Xu

)
=H1(0;Xu) (B.5.10)

almost surely, and s2 = š2, almost surely. The function s2 is continuous by assumption,
so this implies s2 = š2 on S2, which shows that Y must be point symmetric, as Y
is determined by s2 up to translation. As the width d(·) is continuous and positive
on S2, its range is a compact interval in (0,∞), which, by the almost sure equality
(B.5.10) and Lemma B.2.2, implies that the range is degenerate and hence Y has
constant width. This means that d(ω) does not depend on ω, so there is a constant
d0 > 0 such that d = d0 on S2. But the only origin symmetric convex bodies with
constant width d0 are balls with diameter d0. This and (B.5.10), which now reads
H1(d0/t;Xu) = H1(0;Xu), shows one of the implications of the characterization of
equality in (B.5.8). The other is trivially satisfied. �

Under the assumptions of Corollary B.5.4 one can also show Z(t) ≥ −V arE(Vn(Y )).
However, this lower bound is not sharp even in the equidistant case.

B.6 Appendix

In this appendix we list generalizations of important results from [7] such that they
now apply not only to functions with finitely many finite jumps, but also to integrable
functions with finitely many, possibly infinite jumps. With these generalizations in
mind, it is easily seen that all the results of Paper A involving (m,1)-piecewise smooth
functions also apply for weakly (m,1)-piecewise smooth functions. One simply has to
note that integrability of f (m+1) and g(2m+2) actually suffice where their boundedness
was used in previous papers (here f denotes the measurement function and g its
associated covariogram).

To state the results below, we follow the notation in [7], and let CK be the set of
all compactly supported piecewise continuous functions with finitely many finite
jumps, and we let Cb be the set of all piecewise continuous bounded functions with
locally finitely many and finite jumps. Furthermore, we define CK to be the set of
compactly supported piecewise continuous and integrable functions with finitely
many (possibly infinite) jumps. In particular, if h ∈ CK such that h′ is continuous in
all but finitely many points with possibly infinite jumps, then h′ is integrable by the
first fundamental theorem of calculus, and thus h′ ∈ CK .

The following generalization of [7, Lemma 4.1] follows simply by noticing that
the integrability of h′ is enough to guarantee the integrability of h′φ in its proof.
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Lemma B.6.1 (Generalization of [7, Lemma 4.1]). Let h ∈ CK and φ ∈ Cb such that
h′ ∈ CK and φ′ ∈ Cb. Then∫

R
h(x)φ′(x)dx+

∫
R
h′(x)φ(x)dx = −

∑
a∈Dhφ

Jhφ(a).

In the proposition below, f̌ means the reflection of f , i.e. f̌ (x) = f (−x), and ∗
denotes convolution. Similarly, f̌ (k) is the kth derivative of f̌ , and ˇJf (k) is the reflection
of the jump-function associated to f (k).

Proposition B.6.2 (Generalization of [7, Proposition 5.7]). Let f be a function with
all derivatives up to orderm in CK and derivative of orderm+1 in CK . Then all derivatives
up to order 2m+ 1 of its covariogram g are in CK , and the derivative of order 2m+ 2 of g
is in CK with

g(2k) =f (k) ∗ f̌ (k) +
∑

0≤`<k
Jf (`) ∗ f̌ (2k−`−1) +

∑
0≤`<k

(−1)`+1 ˇJf (`) ∗ f (2k−`−1), (B.6.1)

g(2k+1) =f (k) ∗ f̌ (k+1) +
∑

0≤`<k
Jf (`) ∗ f̌ (2k−`−1) +

∑
0≤`≤k

(−1)`+1 ˇJf (`) ∗ f (2k−`−1) (B.6.2)

for all 2k and 2k + 1 less than or equal to 2m+ 2.

Proof. The claim for 2k and 2k + 1 less than or equal to 2m is exactly [7, Proposi-
tion 5.7]. The expression (B.6.2) for k =m and the claim that g(2m+1) ∈ CK follow by
differentiation from [7, Proposition 5.6] realizing that this proposition holds true
even under the weaker assumption f1, f2 ∈ CK and f ′2 ∈ CK , where the notation of this
proposition has been adopted. One simply has to realize that f1 ∗ f ′2 is continuous also
for f ′2 ∈ CK .

The expression (B.6.1) for k = m + 1 follows by differentiation using another
generalization of [7, Proposition 5.6]: Let f1 ∈ CK and f2 ∈ CK such that f ′2 ∈ CK . Then
f1 ∗ f2 ∈ CK is continuous, f1 ∗ f ′2 ∈ CK and (f1 ∗ f2)′ ∈ CK coincides with f1 ∗ f ′2 + Jf2 ∗ f1
outside D(f1∗f2)′ . Moreover, Jf2 ∗ f1 = Jf2 ∗ Jf1 . The proof follows along the same lines as
that of [7, Proposition 5.6] using Lemma B.6.1 and the appropriate generalizations of
[7, Lemmas 5.4 and 5.5]. �

The following corollary generalizes the claims of [7, Corollary 5.8] relevant for
this paper and for Paper A.

Corollary B.6.3 (Generalization of [7, Corollary 5.8]). If the function f is weakly
(m,1)-piecewise smooth then its covariogram g is weakly (2m+1,1)-piecewise smooth with

Jg (2m+1) = (−1)m+1 ˇJf (m) ∗ Jf (m) . (B.6.3)

Proof. The fact that g(k) is continuous for k ≤ 2m is shown in the original corollary.
The fact that g is then weakly (2m+ 1,1)-piecewise smooth with the given jumps of
g(2m+1) follows easily from Proposition B.6.2. �
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Abstract

We consider a space-time random field on Rd ×R given as an integral of a kernel
function with respect to a Lévy basis with a convolution equivalent Lévy measure.
The field obeys causality in time and is thereby not continuous along the time-
axis. For a large class of such random fields we study the tail behavior of certain
functionals of the field. It turns out that the tail is asymptotically equivalent to the
right tail of the underlying Lévy measure. Particular examples are the asymptotic
probability that there is a time-point and a rotation of a spatial object with fixed
radius, in which the field exceeds the level x, and that there is a time-interval and
a rotation of a spatial object with fixed radius, in which the average of the field
exceeds the level x.
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C.1 Introduction

In the present paper we investigate the extremal behavior of a space-time random
field (Xv,t)(v,t)∈B×[0,T ] defined by

Xv,t =
∫
Rd×(−∞,t]

f (|v −u|, t − s)M(du,ds), (C.1.1)

where M is an infinitely divisible, independently scattered random measure on
Rd+1, d ∈N, f is some kernel function, and B and [0,T ] are compact index sets. We
think of v and t as the position in space and time, respectively. Similarly, the first d
coordinates ofM refers to the spatial position, while the last coordinate is interpreted
as time. The random field defined in (C.1.1) is a causal model in the sense that Xv,t
only depends on the noise, accounted for by M, up to time t, i.e. the restriction of
M to Rd × (−∞, t]. We shall make continuity assumptions on f ensuring that X is
continuous in the space-direction. Discontinuities in the time-direction will however
be possible, and we therefore have to pay particular attention to the assumptions on
f to obtain sample paths that are both continuous in space and càdlàg in time; see
Definition C.2.1, Assumption C.2.3, and Theorem C.5.7 below.

Lévy-driven moving average models, where a kernel function is integrated with
respect to a Lévy basis, provide a flexible and tractable modeling framework and
have been used for a variety of modeling purposes. Recent applications that, similarly
to (C.1.1), include both time and space are modeling of turbulent flows ([5]) and
growth processes ([13]). Spatial models without an additional time axis have e.g.
been applied to define Cox point processes ([11]) and have served as a modeling
framework for brain imaging data ([12, 22]). Lévy-based models for a stochastic
process in time have gained recent popularity in finance. A simple example is a
Lévy-driven Ornstein-Uhlenbeck process, with f (t) = e−λt , that has e.g. been used as
a model for option pricing as illustrated in [6]. In [21] estimators for the mean and
variogram in Lévy-driven moving average models are proposed, and central limit
theorems for these estimators are derived.

In this paper, we will assume that the Lévy measure ρ of the random measure M
has a convolution equivalent right tail ([8, 9, 16]) with index β > 0, with the notation
Sβ for this class of probability measures; see (C.2.2) and (C.2.3) below. Measures
with a convolution equivalent tail cover the important cases of an inverse Gaussian
and a normal inverse Gaussian (NIG) basis, respectively; see [19] and in particular
examples 2.1 and 2.2. We derive that certain functionals of the field will have a right
tail that is equivalent to the tail of the underlying Lévy measure. More precisely, we
show that for a functional Ψ satisfying Assumptions C.3.1, C.3.5 and C.3.8 given
below, there exist known constants C and c such that

P(Ψ (X) > x) ∼ Cρ((x/c,∞)) as x→∞.

We give three important examples of the functional Ψ to illustrate the generality
of the setting. The simplest is Ψ (X) = supv,tXv,t , where it is concluded that under
appropriate assumptions on f it holds that supv,tXv,t asymptotically has the same
right tail as ρ.
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A second example, see Example C.3.3, involves the spatial excursion set at level x
and time t

Ax,t = {v ∈ B : Xv,t > x}. (C.1.2)

Under some further regularity conditions we show that the asymptotic probability
that there exists a t for which the excursion set at level x contains some rotation of an
object D with a fixed radius has a tail that is equivalent with the tail of ρ. An asymp-
totic result for this probability will give information about the size of the excursion
sets in the asymptotic scenario where x→∞. Studying the asymptotic behavior of
excursion sets has previously appeared in the literature in various contexts. In [26]
an overview is given of central limit theorem results concerning the volume of the
excursion set for a broad class of stationary processes. Note however that statements
on the volume are different from statements about excursion sets given here. As
explained in the paragraph on convolution equivalence below, the literature offers
some, although different, asymptotic results for excursion sets in the Gaussian and
the subexponential case.

In concrete applications with spatial data, possibly observed over time, it is often
of interest to detect locations where the observations are significantly large. A result
for the probability defined above will make it possible to detect whether a cluster
of neighboring locations, all with large observations, experienced at a certain time
point within some period jointly constitutes an extreme observation. A specific
application could be observations of temperatures in time and space. See e.g. [25] for
an application of excursion sets to climate data.

In the last example, see Example C.3.4, we show a similar result for the probability
that there is a time-interval and a translation and rotation of some fixed spatial
object D such that the field in average, over both the time-interval and the resulting
spatial object, exceeds the level x. While Example C.3.3 studied the probability of
the excursion set being large enough to contain (a rotation and translation of) the set
D, the present example has a slightly different scope. Here we are concerned with
the probability that the field in some area (in time or space) in average is large. In a
climate application this could be the existence of a 24–hour–average or a land area of
a certain size with an average above a certain level.

In [7] sub–additive functionals of similar random fields, also with convolution
equivalent tails, are studied. Here it is shown that under appropriate regularity
conditions there exists constants C1 < C2 and a constant c such that

C1ρ((x/c,∞)) ≤ P(Ψ (X) > x) ≤ C2ρ((x/c,∞)).

Note that the functional Ψ in the present paper is not necessarily required to be sub–
additive. In particular, the functional corresponding to the excursion set framework
is indeed not sub–additive.

In [19] and [20] the extremal behavior of spatial random fields of the form

Xv =
∫
Rd
f (|v −u|)M(du) (v ∈ B)

is studied, when M is assumed to have a convolution equivalent Lévy measure. Here
assumptions are imposed on the kernel function f to ensure that v 7→ Xv is continuous.
Under some further regularity conditions it is shown in [19] that supv∈BXv has a tail
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that is asymptotically equivalent with the tail of the underlying Lévy measure. In
[20] this result is extended to the asymptotic probability that there exists a rotation of
a fixed spatial object that is contained in the excursion set Ax = {v ∈ B : Xv > x}. The
present paper extends the results of [19, 20] leading towards the generality of [7], as it
includes a time-dependence in X and furthermore shows the asymptotic tail behavior
for a certain class of functionals Ψ acting on X, including the ones considered in
[19, 20]. By including the time-dependence, time-discontinuity and asymmetry are
imposed on the kernel function, which necessitates particular care in the arguments.
However, a few proofs are of structure similar to those of [19, 20] and are therefore
found in the supplementary material.

In [10], results for a moving average process on R, obtained as an integral with
respect to a Lévy process with convolution equivalent tail, are derived. Here the
process (Xt)t∈[0,T ] is given by

Xt =
∫ t

−∞
f (t − s)M(ds) ,

where, again, M has a convolution equivalent Lévy measure. In agreement with the
similar but more general result of the present paper for the field defined in (C.1.1) it
is derived in [10] that suptXt has a tail that asymptotically is equivalent with this.

Note that convolution equivalent distributions, as studied in the present paper,
have heavier tails than Gaussian distributions and lighter tails than those of subexpo-
nential distributions (including regularly varying), that is, distributions in S0. For
Gaussian random fields it is known that the distribution of the supremum of the
field can be approximated by the expected Euler characteristic of an excursion set
(see [4] and references therein). The extremal behavior of a non-Gaussian random
field given by integrals with respect to an infinitely divisible random measure with
a subexponential Lévy measure has already been studied in the literature. Results
for the asymptotic distribution of the supremum are found in [23], and these results
are refined to results on asymptotics for more high level geometric properties in [2]
and [3]. The proofs rely heavily on the assumption of subexponential tails, where,
asymptotically, the tail of a sum of independent variables is completely given in terms
of that of one variable. For distributions in Sβ with β > 0 this is not the case and the
proofs can therefore not be applied in this context.

The paper is organised as follows. In Section C.2 we formally define the ran-
dom field (C.1.1) and introduce some necessary assumptions for the field to be well
defined and to have sample paths that are continuous in space and càdlàg in time.
In Section C.3 we state and prove the main result for a general functional Ψ and
introduce two specific examples of the functional. Some of the proofs in this section
will apply many of the same techniques as in [19] and [20] and are therefore deferred
to the supplementary material. In Section C.4 we state conditions for each of the
two examples under which we afterwards show that the main result can be obtained.
Section C.5 is devoted to showing that under appropriate regularity conditions, the
field defined in (C.1.1) is continuous in space and càdlàg in time.
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C.2 Preliminaries and initial assumptions

We define a Lévy basis to be an infinitely divisible and independently scattered
random measure. Then the random measure M on Rd+1 is independently scattered,
such that for all disjoint Borel sets (An)n∈N ⊆Rd+1, the random variables (M(An))n∈N
are independent and furthermore satisfy M(∪n∈NAn) =

∑
n∈NM(An). Furthermore,

M(A) is infinitely divisible for all Borel sets A ⊆Rd+1.
Moreover, in this paper we assume M to be a stationary and isotropic Lévy basis

on Rd+1. With m(·) denoting the Lebesgue measure, and C(λ † Y ) = logEeiλY the
cumulant function for a random variable Y , this means that the random variable
M(A) has Lévy-Khintchine representation

C(λ†M(A)) = iλam(A)− 1
2
λ2θm(A)+

∫
A×R

(
eiλx −1− iλx1[−1,1](x)

)
F(du,dx), (C.2.1)

where a ∈R, θ ≥ 0 and F is the product measure m⊗ ρ of the Lebesgue measure and
a Lévy measure ρ. The notion of the so-called spot variable M ′ will be useful. It is a
random variable equivalent in distribution to M(A) when m(A) = 1.

We assume that the Lévy basis M has a convolution equivalent Lévy measure ρ
with index β > 0, by which we formally mean that the probability measure ρ1, the
normalized restriction of ρ to (1,∞), is in Sβ . This means that ρ1 ∈ Lβ , the class of
probability measures with an exponential right tail β, i.e.

ρ1((x − y,∞))
ρ1((x,∞))

→ eβy as x→∞, (C.2.2)

for all y ∈R, and that it furthermore satisfies the convolution property

(ρ1 ∗ ρ1)((x,∞))
ρ1((x,∞))

→ 2
∫
R

eβyρ1(dy) <∞ as x→∞, (C.2.3)

where ∗ denotes convolution. To ease notation, we write ρ ∈ Sβ when ρ1 ∈ Sβ .
For later reference, we list the mentioned properties as part of Assumption C.2.2

below.
We write the tail of ρ as ρ((x,∞)) = L(x)exp(−βx), so for all y ∈R, (C.2.2) implies

that
L(x − y)
L(x)

→ 1 as x→∞. (C.2.4)

Equation (C.2.4) implies that the mapping x 7→ L(log(x)) is slowly varying. A conse-
quence is (see formula (3.6) in [20]) that for all γ > 0 there exist x0 > 0 and C0 > 0
such that

L(αx)
L(x)

≤ C0 exp((α − 1)γx) for all x ≥ x0, α ≥ 1. (C.2.5)

Before we define the kernel function f and consequently the field X, we introduce
a continuity property called t-càdlàg which is of importance in this paper. Under
assumptions on the basis M and the integration kernel f (appearing below), the
entire field X = (Xv,t) exhibits this regularity, thus ensuring that the supremum of
such fields on bounded sets behaves nicely; see e.g. the proof of Lemma C.3.12 in the
supplementary material. Moreover, this continuity property will explicitly be used in
the proofs of Section C.4.
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Definition C.2.1 (t-càdlàg). A field (yv,t)(v,t) is t-càdlàg if it for all (v, t) satisfies

lim
(u,s)→(v,t−)

yu,s exists in R, and lim
(u,s)→(v,t+)

yu,s = yv,t . (C.2.6)

In defining the field X = (Xv,t)(v,t)∈B′×T ′ below, we make the following assumptions
on the Lévy basis M and the integration kernel f . The assumptions are stronger
than needed to ensure the existence of the integral (C.2.10) defining Xv,t : By [18,
Theorem 2.7] the integral is well-defined if only the stationary and isotropic basis has
a Lévy measure ρ satisfying

∫
|y|>1|y|ρ(dy) <∞, and if the bounded integration kernel f

is integrable in the sense of (C.2.8). However, we make the stronger assumptions below
as these also guarantee the existence of a t-càdlàg version of X; see Theorem C.5.7.

Assumption C.2.2. The Lévy basis M on Rd+1 is stationary and isotropic with a Lévy
measure ρ ∈ Sβ , β > 0. Moreover, ρ satisfies∫

|y|>1
|y|kρ(dy) <∞ ∀k ∈N. (C.2.7)

Note that the integrability along the right tail is already given from the exponential
tail property, and since ρ is a Lévy measure it also satisfies

∫
[−1,1] y

2ρ(dy) <∞. Also,

by [24, Theorem 25.3], (C.2.7) is equivalent to finite moments E|M ′ |k <∞ of the spot
variable. This is explicitly used when showing that there is a t-càdlàg version of X.
Here we use a result from [1] which requires finite moments of a certain high order.
In Sections C.2 to C.4, it is assumed that Assumption C.2.2 is satisfied.

Assumption C.2.3. The kernel f : [0,∞)×R→ [0,∞) is bounded, it satisfies f (x,y) = 0
for all x ∈ [0,∞) and y < 0, it is integrable in the sense that∫

Rd

∫
R
f (|u|, s)dsdu <∞, (C.2.8)

and it is Lipschitz continuous on [0,∞)× [0,∞), that is, there is CL ∈ (0,∞) such that

|f (x1, y1)− f (x2, y2)| ≤ CL|(x1, y1)− (x2, y2)| (C.2.9)

for all (x1, y1), (x2, y2) ∈ [0,∞)× [0,∞).

Let B ⊆Rd be a compact set with strictly positive Lebesgue measure, and consider
[0,T ] for deterministic 0 < T <∞. For r,` ≥ 0 fixed, define the expanded sets B′ =
B⊕Cr (0) = {x+y : x ∈ B, |y| ≤ r} and T ′ = [0,T+`]. HereCr (u) ⊆Rd is the d-dimensional
closed ball with radius r and center in u ∈Rd . Under Assumptions C.2.2 and C.2.3
we define the random field X = (Xv,t)(v,t)∈B′×T ′ by

Xv,t =
∫
Rd×R

f (|v −u|, t − s)M(du,ds). (C.2.10)

Note that alternatively we can write

Xv,t =
∫
Rd×(−∞,t]

f (|v −u|, t − s)M(du,ds)
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due to the assumptions on f . Thus X has a causal structure in the time direction in
the sense that Xv,t only depends on M restricted to the subset Rd × (−∞, t].

We are ultimately interested in extremal probabilities of the form

P
(
Ψ ((Xv,t)(v,t)∈B′×T ′ ) > x

)
, (C.2.11)

where Ψ : RB
′×T ′ →R is a functional satisfying some assumptions that will be given

in Section C.3. For notational convenience, we usually write Ψ (yv,t), when applying Ψ

to a field (yv,t)(v,t)∈B′×T ′ , however, when it is necessary to clarify the indices of the field,
we write it fully. For the type of functionals Ψ we shall consider, it will be convenient
to make some further assumptions on the kernel. The following Assumption C.2.4
clearly implies Assumption C.2.3 above. In Sections C.2 to C.4, Assumption C.2.4 is
assumed satisfied.

Assumption C.2.4. The kernel f : [0,∞)×R→ [0,∞) satisfies f (0,0) = 1 and f (x,y) = 0
for all x ∈ [0,∞) and y < 0. Moreover,∫

Rd

∫
R

sup
v∈B′

sup
t∈T ′

f (|v −u|, t − s)dsdu <∞, (C.2.12)

and f is Lipschitz on [0,∞)× [0,∞), i.e. it satisfies (C.2.9).

It turns out that the infinite divisibility of M is inherited to the field X. We shall
spend the remainder of this section establishing this property and use it to obtain
a useful representation of the field as an independent sum of a compound Poisson
term and a term with a lighter tail than exponentials. The procedure is inspired by a
similar technique used in [19], [20] and [23]. Here, we present the procedure fully to
introduce all relevant notation.

The cumulant function of Xv,t takes the form, cf. [18, Theorem 2.7],

C(λ †Xv,t) = iλa
∫
Rd

∫
R
f (|v −u|, t − s)dsdu − 1

2
θλ2

∫
Rd

∫
R
f (|v −u|, t − s)2dsdu

+
∫
Rd

∫
R

∫
R

(
eif (|v−u|,t−s)λz − 1− if (|v −u|, t − s)λz1[−1,1](z)

)
ρ(dz)dsdu.

A similar expression can be obtained for any finite linear combination of Xv,t’s by
substitution f with a relevant linear combination of f ’s. Thus, all finite-dimensional
distributions of (Xv,t)(v,t)∈B′×T ′ are infinitely divisible, and consequently any countably
indexed field (Xv,t) is infinitely divisible. Define the countable set K = (B′×T ′)∩Qd+1,
and let ν = (m⊗m⊗ ρ) ◦H−1 be the measure on (RK,B(RK)) defined as the image-
measure of H on m⊗m⊗ ρ, where H : Rd ×R×R→RK is given by

H(u,s,z) = (zf (|v −u|, t − s))(v,t)∈K.

Then direct manipulations show that ν is the Lévy measure of (Xv,t)(v,t)∈K, and fur-
thermore the Lévy-Khintchine representation is

C(β † (Xv,t)(v,t)∈K) = i
∑
(v,t)

βv,tav,t − 1
2
θ

∫
Rd

∫
R

(∑
(v,t)

βv,tf (|v −u|, t − s)
)2

dsdu

+
∫
RK

(
ei

∑
(v,t) βv,tzv,t − 1− i

∑
(v,t)

βv,tzv,t1[−1,1]K(z)
)
ν(dz)
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for suitable (av,t)(v,t)∈K ∈ RK. Here β ∈ RK with βv,t , 0 for at most finitely many
(v, t) ∈K. From the infinite divisibility, (Xv,t)(v,t)∈K can be represented as the indepen-
dent sum

Xv,t = X1
v,t +X2

v,t .

The field (X1
v,t)(v,t)∈K is a compound Poisson sum

X1
v,t =

N∑
n=1

V nv,t ,

where N is Poisson distributed with intensity ν(A) <∞ and

A =
{
z ∈RK : sup

(v,t)∈K
zv,t > 1

}
.

The finiteness of ν(A) follows from arguments similar to those of [19, Lemma A.1]
using (C.2.12). The fields ((V nv,t)(v,t)∈K)n∈N are i.i.d. with common distribution ν1 =
νA/ν(A), that is, the normalization of the restriction of ν to A. Also (X2

v,t)(v,t)∈K is
infinitely divisible and has Lévy measure νAc , the restriction of ν to Ac.

It will be essential that there exist extensions of the fields (X1
v,t) and (X2

v,t) to
B′ × T ′ with t-càdlàg sample paths. In law, each of the fields (V nv,t) can be represented
by (Zf (|v − U |, t − S))(v,t)∈K, where (U,S,Z) ∈ Rd ×R × R has distribution F1, the
normalized restriction of F to the set

H−1(A) =
{
(u,s,z) ∈Rd ×R×R : sup

(v,t)∈K
zf (|v −u|, t − s) > 1

}
.

Hence, clearly a t-càdlàg extension (Vv,t)(v,t)∈B′×T ′ exists, and it is represented by
(Zf (|v−U |, t−S))(v,t)∈B′×T ′ . As X1 is a finite sum of such fields it also has an extension
to B′ × T ′ which is t-càdlàg. As mentioned above and shown in Theorem C.5.7, the
entire field (Xv,t)(v,t)∈B′×T ′ has a version with t-càdlàg sample paths, and hence also
X2 has en extension with such paths.

C.3 Functional assumptions and main theorem

In this section we introduce assumptions on Ψ and related functionals, and we
derive the main theorem on the asymptotic behavior of the extremal probability
P(Ψ (Xv,t) > x) as x→∞. As the proofs of some of the results follow the same ideas
as in [19] and [20], we refer to the supplementary material for these.

Throughout this section we shall assume the following.

Assumption C.3.1. The functional Ψ : RB
′×T ′ →R satisfies

(i) For all deterministic fields (yv,t)(v,t)∈B′×T ′ and all a ≥ 0 and b ∈R it holds that

Ψ (ayv,t + b) = aΨ (yv,t) + b.

(ii) Ψ is increasing, i.e.
Ψ (yv,t + zv,t) ≥ Ψ (yv,t)

whenever the field (zv,t)(v,t)∈B′×T ′ satisfies that zv,t ≥ 0 for all (v, t) ∈ B′ × T ′ .
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(iii) For all x > 0, u ∈Rd and s ∈R, there is a functional ψx,u,s,f : RB
′×T ′ →R such that

Ψ
(
af (|v −u|, t − s) + yv,t

)
> x if and only if ψx,u,s,f (yv,t) < a

for all a ≥ 0 and all fields (yv,t).

Proposition C.3.2. The functionals Ψ and ψx,u,s,f satisfy

(i) ψx,u,s,f is decreasing, that is, for all x > 0, u ∈Rd and s ∈R and all fields (yv,t)

ψx,u,s,f (yv,t) ≥ ψx,u,s,f (yv,t + zv,t)

if zv,t ≥ 0 for all (v, t) ∈ B′ × T ′ .
(ii) For all fields (yv,t) and any constant y ∈R,

ψx,u,s,f (yv,t + y) = ψx−y,u,s,f (yv,t).

(iii) For all x > 0, u ∈Rd and s ∈R and all fields (yv,t),

ψx,u,s,f (yv,t) ≥ ψx,u,s,f (y∗) =
x − y∗

Ψ ((f (|v −u|, t − s))(v,t))
,

where y∗ = sup(v,t)∈B′×T ′ yv,t .

Proof. Statement (i) is seen as follows: Let x,u,s be fixed, and assume for contradic-
tion the existence of ε > 0 such that ψx,u,s,f (yv,t) + ε = ψx,u,s,f (yv,t + zv,t). Now choose
a such that a − ε ≤ ψx,u,s,f (yv,t) < a, and therefore ψx,u,s,f (yv,t + zv,t) ≥ a. However,
appealing to Assumption C.3.1(ii) and Assumption C.3.1(iii) we also conclude that

x < Ψ (af (|v −u|, t − s) + yv,t) ≤ Ψ (af (|v −u|, t − s) + yv,t + zv,t),

so also ψx,u,s,f (yv,t + zv,t) < a; a contradiction.
Part (ii) and (iii) are seen using Assumption C.3.1(i) and Assumption C.3.1(iii). �

Before giving two examples of functionals easily seen to satisfy Assumption C.3.1,
we introduce some notation. Let D ⊆ Cr(0) ⊆ Rd be a fixed spatial object, and for
all rotations R ∈ SO(d) and translations v ∈Rd , define DR(v) = RD + v. Similarly, let
D(v) =D + v. Furthermore, let I(t) = [t, t + `] for all t ≥ 0. In Example C.3.3 below we
assume that the set D in fact has radius r/2 ≥ 0, by which we mean there is α ∈ Sd−1

such that {−αr/2,αr/2} ⊆D ⊆ Cr/2(0).

Example C.3.3. Suppose we are interested in the probability that there exist a time-
point t, a translation v0 and a rotation R of a given setD such that the field exceeds the
level x on the entire set {t} ×DR(v0). More formally, we assume that D ⊆ Cr/2(0) ⊆Rd

has radius r/2 and study the probability

P
(
there exist t ∈ [0,T ],v0 ∈ B,R ∈ SO(d) : Xv,t > x for all v ∈DR(v0)

)
.

To put this within the more general framework introduced in (C.2.11), we define Ψ

by
Ψ (yv,t) = sup

t∈[0,T ]
sup
v0∈B

sup
R∈SO(d)

inf
v∈DR(v0)

yv,t .
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Consequently (obtained by straightforward manipulations),

ψx,u,s,f (yv,t) = inf
t∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x − yv,t
f (|v −u|, t − s) .

Note that the probability above can be reformulated in terms of the excursion set
Ax,t , defined in (C.1.2), as

P
(
there exist t ∈ [0,T ],v0 ∈ B,R ∈ SO(d) :DR(v0) ⊆ Ax,t

)
.

Example C.3.4. Suppose we are interested in the probability that there is a time-
interval and a location and rotation of the fixed spatial object D, in which the average
of the field exceeds the level x. For this, let D ⊆ Cr (0) ⊆Rd be given and consider the
probability

P
(
there exist t0 ∈ [0,T ],v0 ∈ B,R ∈ SO(d) : 1

K

∫
DR(v0)

∫
I(t0)

Xv,tdtdv > x
)
,

where K =
∫
D

∫ `
0 1dtdv. The set D can both be of full dimension in Rd and a subset of

some lower dimensional subspace. In either case, dv refers to the relevant version of
the Lebesgue measure. The special cases of

P
(
there exist t ∈ [0,T ],v0 ∈ B,R ∈ SO(d) : 1

K

∫
DR(v0)

Xv,tdv > x
)
,

with a time-point instead of an interval (and K defined appropriately), and

P
(
there exist t0 ∈ [0,T ],v ∈ B : 1

K

∫
I(t0)

Xv,tdt > x
)
,

with a single spatial point, will be covered by the general formulation of the example,
simply be defining

∫
I(t0)Xv,tdt = Xt0,v when ` = 0, and

∫
DR(v0)Xv,tdv = Xt,v0

when

D = {0} and hence DR(v0) = {v0}. In the same spirit, the special case of

P
(
there exist t ∈ [0,T ],v ∈ B : Xv,t > x

)
corresponds to letting ` = 0 and D = {0}. Note that this probability alternatively could
be formulated as

P
(

sup
t∈[0,T ]

sup
v∈B

Xv,t > x
)
.

To put this example in the framework of functionals, we define

Ψ (yv,t) = sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫
DR(v0)

∫
I(t0)

yv,t dtdv,

leading to

ψx,u,s,f (yv,t) = inf
t0∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

x − 1
K

∫
DR(v0)

∫
I(t0) yv,t dtdv

1
K

∫
DR(v0)

∫
I(t0) f (|v −u|, t − s)dtdv

.
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For the further arguments to hold it will be important that ψx,u,s,f converges in a
particular way as x→∞. The following assumption is satisfied under further case
specific assumptions on the kernel f in each of the Examples C.3.3 and C.3.4 as
illustrated in Section C.4.

Assumption C.3.5. With the functionals Ψ and ψx,u,s,f as in Assumption C.3.1, there
exists c such that

c = Ψ ((f (|v −u|, t − s))(v,t)) (C.3.1)

for all (u,s) ∈ B× [0,T ], and Ψ ((f (|v −u|, t − s))(v,t)) < c for all (u,s) < B× [0,T ]. Further-
more, for all (u,s) ∈ B× [0,T ] there is a functional λu,s : RB

′×T ′ →R, such that

ψx,u,s,f (yv,t)− xc +λu,s
(
yv,t

)→ 0 (C.3.2)

as x→∞, holds for all t-càdlàg fields (yv,t)(v,t)∈B′×T ′ .

The following proposition is easily seen from Assumption C.3.1 and Proposi-
tion C.3.2.

Proposition C.3.6. With c and λu,s as in Assumption C.3.5 it holds that

(i) If the field (yv,t)(v,t)∈B′×T ′ is constantly equal to y ∈R, then

λu,s
(
yv,t

)
= λu,s(y) =

y

c
.

(ii) For all constants y ∈R and fields (yv,t),

λu,s
(
yv,t + y

)
= λu,s

(
yv,t

)
+
y

c
.

(iii) λu,s is increasing.

In the remainder of this section, it as assumed that also Assumption C.3.5 is
satisfied.

The first step in proving the asymptotic behavior of the extremal probability
P(Ψ (Xv,t) > x) is to consider the asymptotic behavior of extremal sets of a single
jump-field V = (Vv,t)(v,t)∈B′×T ′ with distribution ν1.

Theorem C.3.7. Let (Vv,t)(v,t)∈B′×T ′ have distribution ν1 and let (yv,t)(v,t)∈B′×T ′ be t-
càdlàg. As x→∞, it holds that

P(Ψ (Vv,t + yv,t) > x)
L(x/c)exp(−βx/c) →

1
ν(A)

∫
B

∫ T

0
exp

(
βλu,s

(
yv,t

))
dsdu. (C.3.3)

Proof. For sufficiently large x > 0 we find

ν(A)P(Ψ (Vv,t + yv,t) > x)

= F
({

(u,s,z) ∈Rd ×R×R+ : Ψ
(
zf (|v −u|, t − s) + yv,t

)
> x

})
= F

({
(u,s,z) ∈Rd ×R×R+ : ψx,u,s,f (yv,t) < z

})
=

∫
B×[0,T ]

L
(
ψx,u,s,f (yv,t)

)
exp

(
−βψx,u,s,f (yv,t)

)
m(du,ds)

+
∫

(B×[0,T ])c
L
(
ψx,u,s,f (yv,t)

)
exp

(
−βψx,u,s,f (yv,t)

)
m(du,ds).

(C.3.4)
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First we show that the latter integral is of order o(L(x/c)exp(−βx/c)) as x →∞.
Let y∗ = sup(v,t)∈B′×T ′ yv,t . Using Proposition C.3.2(iii) and that x 7→ L(x)exp(−βx) is
decreasing, we obtain that the second integral in (C.3.4) is bounded from above by∫

(B×[0,T ])c
L

(
x − y∗

Ψ (f (|v −u|, t − s))
)

exp
(
−β x − y∗

Ψ (f (|v −u|, t − s))
)
m(du,ds).

Let h(u,s;x) denote the integrand. For all (u,s) ∈ (B×[0,T ])c we have Ψ (f (|v−u|, t−s)) <
c. In combination with (C.2.4) and (C.2.5), this implies the existence of γ > 0 and
C > 0 such that

h(u,s;x)
L(x/c)exp(−βx/c) ≤ C exp(−γx)

for sufficiently large x. Thus, h(u,s;x) is of order o(L(x/c)exp(−βx/c)) at infinity. By
dominated convergence, also the integral is of order o(L(x/c)exp(−βx/c)) if we can
find an integrable function g : Rd ×R→R such that

h(u,s;x)
L(x/c)exp(−βx/c) ≤ g(u,s)

for all (u,s) ∈Rd ×R. Returning to (C.2.5) we see that for all 0 < γ < β/c there is C > 0
and x0 > y

∗ such that

h(u,s;x)
L(x/c)exp(−βx/c) ≤ C exp

(
−(x0 − y∗)(β −γc)

( 1
Ψ (f (|v −u|, t − s)) −

1
c

))
(C.3.5)

for all x ≥ x0. Independent of (u,s) there is a constant C̃ such that the right hand side
of (C.3.5) is bounded by

C̃Ψ (f (|v −u|, t − s)) ≤ C̃ sup
(v,t)∈B′×T ′

f (|v −u|, t − s),

where we used Assumption C.3.1(i) and (ii). By Assumption C.2.4, this is integrable.
It remains to show that the first integral in (C.3.4) has the desired mode of

convergence. For this, we have from (C.3.2), the representation of L, and the fact that
ρ has an exponential tail, that for any (u,s) ∈ B× [0,T ],

L
(
ψx,u,s,f (yv,t)

)
exp

(
−βψx,u,s,f (yv,t)

)
L
(
x
c

)
exp

(
−β xc

) → exp
(
βλu,s

(
yv,t

))
as x→∞. Since x 7→ L(x)exp(−βx) is decreasing, we find using Proposition C.3.2(iii)
that for sufficiently large x,

L
(
ψx,u,s,f (yv,t)

)
exp

(
−βψx,u,s,f (yv,t)

)
L
(
x
c

)
exp

(
−β xc

) ≤
L
(
x−y∗
c

)
exp

(
−β x−y∗c

)
L
(
x
c

)
exp

(
−β xc

) ≤ C exp(βy∗/c),

for any (u,s) ∈ B× [0,T ], where, according to (C.2.4), C is such that L
(
x−y∗
c

)
/L

(
x
c

)
≤ C.

As B× [0,T ] is compact, the upper bound is integrable over B× [0,T ] and (C.3.3) then
follows by dominated convergence. �
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C.3 · Functional assumptions and main theorem

The next step is to extend the relation (C.3.3) to an asymptotic result for P(Ψ (V 1
v,t+

· · · + V nv,t + yv,t) > x), where, for i = 1, . . . ,n, V i are independent and identically dis-
tributed with common distribution ν1. Here it will be useful to recall that each V i can
be represented by (Z if (|v −U i |, t−S i))(v,t)∈B′×T ′ , where (U i ,S i ,Z i) has distribution F1.
Before being able to extend (C.3.3), we need a final assumption on the existence of a
function φ ensuring sufficient integrability properties.

For the assumption we need some notation representing a deterministic version
of the sum V 1

v,t + · · ·+V nv,t . Thus let for each i = 1, . . . ,n the field (yiv,t)(v,t)∈B′×T ′ be given
by

yiv,t = zif (|v −ui |, t − si),
where all zi ≥ 0, ui ∈Rd and si ∈R.

Assumption C.3.8. There exists a Lebesgue integrable function φ : Rd ×R→ [0,∞) such
that

φ(u,s)

= c for (u,s) ∈ B′ × T ′
< c for (u,s) < B′ × T ′ , (C.3.6)

where c > 0 is the constant defined in (C.3.1).
The function φ satisfies

Ψ
( n∑
i=1

yiv,t

)
≤

n∑
i=1

ziφ(ui , si), (C.3.7)

and

sup
s∈[0,T ]

sup
u∈B

λu,s

( n∑
i=1

yiv,t

)
≤ 1
c

n∑
i=1

ziφ(ui , si). (C.3.8)

The definition of φ ensures that the tail of Zφ(U,S) is asymptotically equivalent
to ρ((x/c,∞)) and hence, Zφ(U,S) is convolution equivalent with index β/c; see
Lemma C.3.9 below. Equation (C.3.7) then provides a convolution equivalent upper
bound of the extremal probability for the functional Ψ of a sum of jump-fields.
Finally, finiteness of relevant exponential moments of λu,s applied to jump-fields is
ensured by (C.3.8). This result is seen in Theorem C.3.10 below.

When showing the convolution equivalence of Zφ(U,S), we use the integrability
ofφ, although the weaker assumption that exp(−γ/φ(u,s)) is integrable for some γ > 0
is sufficient; see the proof of Lemma C.3.9 in the supplementary material. However,
as seen in Section C.4, in practice φ(u,s) is often bounded by sup(v,t) f (|v − u|, t − s)
and hence its integrability follows from that of sup(v,t) f (|v −u|, t − s).

In the remainder of this section it is also assumed that Assumption C.3.8 is
satisfied. The proof of Lemma C.3.9 below follows by similar arguments as the proof
of Theorem C.3.7 above, however, for completeness the proof can be found in the
supplementary material.

Lemma C.3.9. Let (U,S,Z) have distribution F1. Then, as x→∞,

P(Zφ(U,S) > x)
L(x/c)exp(−βx/c) →

1
ν(A)

m(B′ × T ′). (C.3.9)

In particular, the distribution of Zφ(U,S) is convolution equivalent with index β/c and

E
[
exp

(β
c
Zφ(U,S)

)]
<∞. (C.3.10)
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As mentioned, the convolution equivalence of Zφ(U,S) is translated into a con-
volution equivalent upper bound for the extremal probability of a sum of jump-

fields. Here (C.3.7) is applied together with the relation F∗n(x) ∼ nF(x)
(∫

eβyF(dy)
)n−1

,
x→∞, when F is a convolution equivalent distribution with index β, F∗n is its n-fold
convolution, and F is its tail. For this relation see e.g. [9, Corollary 2.11].

In Theorem C.3.10 below, a similar convolution equivalence for the sum of jump-
fields is obtained.

Theorem C.3.10. Let V 1,V 2, . . . be i.i.d. fields with common distribution ν1, and assume
that (yv,t)(v,t)∈B′×T ′ is t-càdlàg. For all n ∈N it holds that

P(Ψ (V 1
v,t + · · ·+V nv,t + yv,t) > x)

P(Ψ (V 1
v,t) > x)

→ n
m(B× [0,T ])

∫
B

∫ T

0
E

[
exp

(
βλu,s

(
V 1
v,t + · · ·+V n−1

v,t + yv,t
))]

dsdu

as x→∞.

Recall that the field X1 is defined as the compound Poisson sum with i.i.d. jump-
fields V 1,V 2, . . . and an independent Poisson distributed variable N with intensity
ν(A) <∞. The following result on the extremal behavior of X1 follows from Theo-
rem C.3.10 by conditioning on the value of N .

Theorem C.3.11. For each (u,s) ∈ B× [0,T ] it holds that E
[
exp

(
βλu,s

(
X1
v,t

))]
<∞. For

a field (yv,t)(v,t)∈B′×T ′ satisfying (C.2.6),

P(Ψ (X1
v,t + yv,t) > x)

L(x/c)exp(−βx/c) →
∫
B

∫ T

0
E

[
exp

(
βλu,s

(
X1
v,t + yv,t

))]
dsdu

as x→∞.

Now recall that we write the field X = (Xv,t)(v,t)∈B′×T ′ defined in (C.2.10) as the
independent sum X = X1 + X2, where X1 is the compound Poisson sum of fields
with distribution ν1. Also, the fields in the decomposition can be assumed to be
t-càdlàg. One can show that the tail of sup(v,t)X

2
v,t is lighter than that of Ψ (X1

v,t),
which is equivalent to the tail of ρ by Theorem C.3.11. Combining this fact with [16,
Lemma 2.1], an argument based on independence and dominated convergence can
be used to conclude Theorem C.3.13 below from Theorem C.3.11.

Lemma C.3.12. For all (u,s) ∈ B× [0,T ] it holds that E
[
exp

(
βλu,s

(
Xv,t

))]
<∞.

Theorem C.3.13. Let the field X be given by (C.2.10), where the Lévy basis M satisfies
Assumption C.2.2 and the kernel function f satisfies Assumption C.2.4. Let the functionals
Ψ and λu,s satisfy Assumptions C.3.1 and C.3.5, respectively. Then

lim
x→∞

P(Ψ (Xv,t) > x)
ρ((x/c,∞))

=
∫
B

∫ T

0
E

[
exp

(
βλu,s

(
Xv,t

))]
dsdu.
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C.4 Example results

In this section we return to Examples C.3.3 and C.3.4 to show versions of The-
orem C.3.13 when Ψ is specifically given as in the examples. We make further
assumptions on the kernel f that guarantee Assumptions C.3.5 and C.3.8.

In the setting of Example C.3.3 we assume the following.

Assumption C.4.1. The kernel f : [0,∞)×R→ [0,∞) is decreasing in both coordinates
on [0,∞)× [0,∞), and it is strictly decreasing in the point (r/2,0) in the sense that

f (x,y) < f (r/2,0) for all (x,y) ∈
(
[r/2,∞)× [0,∞)

)
\
{
(r/2,0)

}
. (C.4.1)

Moreover, the derivative f1(x) = ∂f
∂x (x,0) exists for all x ≥ 0, and there is a function g such

that
g(x) = f1(r/2)(x − r/2) + f (r/2,0) (C.4.2)

for all x ∈ [0, r], where also f (x,0) ≤ g(x) for all x ∈ [0, r].

Such a g exists in particular when f is concave on [0, r]. The following lemma
shows that Assumption C.3.5 is satisfied when the kernel satisfies Assumption C.4.1.

Lemma C.4.2. If Ψ and ψx,u,s,f are given as in Example C.3.3 and f satisfies Assump-
tion C.4.1, then Assumption C.3.5 is satisfied with c = f (r/2,0). Furthermore, for a t-càdlàg
field y = (yv,t)(v,t)∈B′×[0,T ], the functional λu,s takes the form

λu,s
(
(yv,t)(v,t)∈B′×[0,T ]

)
= λu

(
(yv,s)v∈B′

)
for a functional λu : RB

′ →R.

Proof. From [20, Lemma 3.1] we have, for fixed s ∈ [0,T ] and for all u ∈ B, a functional
λu such that

inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x − yv,s
f (|v −u|,0)

− x
f (r/2,0)

+λu((yv,s)v∈B′ )→ 0 (C.4.3)

as x→∞. With λu,s defined by λu,s
(
(yv,t)(v,t)∈B′×[0,T ]

)
= λu((yv,s)v∈B′ ), we claim that

Assumption C.3.5 is satisfied. For notational convenience, we write C = −λu(yv,s).
For all sufficiently large x, we can choose tx ∈ [s,T ], vx ∈ B and Rx ∈ SO(d) such

that
sup

v∈DRx (vx)

x − yv,tx
f (|v −u|, tx − s)

= inf
t∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x − yv,t
f (|v −u|, t − s) .

With y∗ = sup(v,t)∈B′×[0,T ] yv,t and y∗ = inf(v,t)∈B′×[0,T ] yv,t , we then find

x − y∗
infv∈DRx (vx) f (|v −u|, tx − s)

≤ sup
v∈DRx (vx)

x − yv,tx
f (|v −u|, tx − s)

≤ sup
v∈DRx (u)

x − yv,s
f (|v −u|,0)

≤ x − y∗
f (r/2,0)

.

Going to the limit x→∞ and using that infv∈DR(v0) f (|v − u|, t − s) ≤ f (r/2,0), shows
infv∈DRx (vx) f (|v − u|, tx − s)→ f (r/2,0) as x→∞. For all (v0, t) , (u,s) and R ∈ SO(d)
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we in fact have that infv∈DR(v0) f (|v − u|, t − s) < f (r/2,0), and thus the convergence
implies that also vx→ u and tx→ s. We will show the desired convergence

sup
v∈DRx (vx)

x − yv,tx
f (|v −u|, tx − s)

− x
f (r/2,0)

→ C (x→∞)

by contradiction. Since

sup
v∈DRx (vx)

x − yv,tx
f (|v −u|, tx − s)

≤ inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x − yv,s
f (|v −u|,0)

,

we assume the existence of ε > 0 and a sequence (xn), xn→∞, such that

sup
v∈DRn (vn)

xn − yv,tn
f (|v −u|, tn − s)

− xn
f (r/2,0)

≤ C − ε (C.4.4)

for all n, where tn = txn , vn = vxn and Rn = Rxn . By t-càdlàg properties of the y-field,
we can find n0 such that

sup
v∈B′

∣∣∣∣∣ yv,tn − yv,sf (|v −u|,0)

∣∣∣∣∣ ≤ ε2
for all n ≥ n0. Consequently and using that f is decreasing and (C.4.4)

sup
v∈DRn (vn)

xn − yv,s
f (|v −u|,0)

− xn
f (r/2,0)

≤ sup
v∈DRn (vn)

xn − yv,tn
f (|v −u|,0)

− xn
f (r/2,0)

+
ε
2

≤ sup
v∈DRn (vn)

xn − yv,tn
f (|v −u|, tn − s)

− xn
f (r/2,0)

+
ε
2
≤ C − ε

2
,

which contradicts the limit relation (C.4.3). �

Theorem C.4.3. Let the field X be given by (C.2.10), where the Lévy basis M satisfies
Assumption C.2.2 and the kernel function f satisfies Assumptions C.2.4 and C.4.1. Let
D ⊆ Cr/2(0) have radius r/2 > 0 and let Ψ be defined by

Ψ (yv,t) = sup
t∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

inf
v∈DR(v0)

yv,t .

Furthermore, let λu,s be the functional given in Lemma C.4.2 and write c = f (r/2,0). Then

lim
x→∞

P(Ψ (Xv,t) > x)
ρ((x/c,∞))

=
∫
B

∫ T

0
E

[
exp

(
βλu,s(Xv,t)

)]
dsdu.

Proof. The result follows from Theorem C.3.13 and Lemma C.4.2 once we show the
existence of a function φ satisfying Assumption C.3.8. Now define φ as

φ(u,s) = f (r/2,0)1B′×[0,T ](u,s) + sup
t∈[0,T ]

sup
v∈B⊕Cr/2

f (|v −u|, t − s)1(B′×[0,T ])c (u,s),

which is integrable by (C.2.12) and satisfies (C.3.6) by (C.4.1). By a combination of
Lemma C.4.2 and [20, Lemma 3.2] we find that

λu,s
(
yv,t

)
=

1
2f (r/2,0)

sup
α∈Sd−1

(yu+αr/2,s + yu−αr/2,s) (C.4.5)
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for all (u,s) ∈ B× [0,T ], if D = {−αr/2,αr/2} for some α ∈ Sd−1. Adapting the proof of
[20, Lemma 3.3] to this time-dependent setting, it is seen using (C.4.5) that (C.3.7)
and (C.3.8) follow when it is shown that

1
2

(
yiu+αr/2,s + yiu−αr/2,s

)
≤ ziφ(ui , si) ∀(u,s) ∈ B× [0,T ] ,α ∈ Sd−1, (C.4.6)

with yiv,t defined as just before Assumption C.3.8. Since f is decreasing in both
coordinates,

1
2

(
yiu+αr/2,s + yiu−αr/2,s

)
≤ z

i

2

(
f (|u +αr/2−ui |,0) + f (|u −αr/2−ui |,0)

)
.

Using the upper bound g assumed by (C.4.2), arguments as in [20, Lemma 3.3] show
that (C.4.6) is satisfied when (ui , si) ∈ B′ × [0,T ]. When (ui , si) ∈ (B′ × [0,T ])c it is
immediately seen that

1
2

(
yiu+αr/2,s + yiu−αr/2,s

)
≤ zi sup

t∈[0,T ]
sup

v∈B⊕Cr/2
f (|v −ui |, t − si) = ziφ(ui , si).

This concludes the proof. �

In the setting of Example C.3.4 the following is assumed.

Assumption C.4.4. For the set D ⊆ Cr (0) ⊆Rd the kernel function f satisfies∫
D(v0)

∫
I(t0)

f (|v −u|, t − s)dtdv <
∫
D

∫ `

0
f (|v|, t)dtdv (C.4.7)

for all (v0, t0) , (u,s) ∈Rd ×R.

Lemma C.4.5. Let y = (yv,t)(v,t)∈B′×T ′ be a t-càdlàg field. For all (u,s) ∈ B× [0,T ] it holds
that

inf
t0∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

x − 1
K

∫
DR(v0)

∫
I(t0) yv,t dtdv

1
K

∫
DR(v0)

∫
I(t0) f (|v −u|, t − s)dtdv

− x
c

+ sup
R∈SO(d)

1
c

1
K

∫
DR(u)

∫
I(s)
yv,tdtdv→ 0

(C.4.8)

as x→∞, where c = 1
K

∫
D

∫ `
0 f (|v|, t)dtdv. That is, with Ψ andψx,u,s,f as in Example C.3.4,

and with λu,s
(
yv,t

)
= supR

1
c

1
K

∫
DR(u)

∫
I(s) yv,tdtdv, Assumption C.3.5 is satisfied.

Proof. For all sufficiently large x > 0, choose tx ∈ [s,T ], vx ∈ B and Rx ∈ SO(d) with

inf
t0,v0,R

x − 1
K

∫
DR(v0)

∫
I(t0) yv,t dtdv

1
K

∫
DR(v0)

∫
I(t0) f (|v −u|, t − s)dtdv

=
x − 1

K

∫
DRx (vx)

∫
I(tx) yv,t dtdv

1
K

∫
DRx (vx)

∫
I(tx) f (|v −u|, t − s)dtdv

.
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By definition of tx and vx we find that

x − y∗
1
K

∫
DRx (vx)

∫
I(tx) f (|v −u|, t − s)dtdv

≤
x − 1

K

∫
DRx (vx)

∫
I(tx) yv,t dtdv

1
K

∫
DRx (vx)

∫
I(tx) f (|v −u|, t − s)dtdv

≤ inf
R∈SO(d)

x − 1
K

∫
DR(u)

∫
I(s) yv,t dtdv

1
K

∫
D(u)

∫
I(s) f (|v −u|, t − s)dtdv

=
x − supR∈SO(d)

1
K

∫
DR(u)

∫
I(s) yv,t dtdv

c
,

where y∗ = supyv,t . Rearranging and noting that 1
K

∫
DR(v0)

∫
I(t0) f (|v −u|, t − s)dtdv < c

for all (v0, t0) , (u,s) and any R ∈ SO(d), we conclude that 1
K

∫
DRx (vx)

∫
I(tx) f (|v −u|, t −

s)dtdv → c and consequently vx → u and tx → s as x→∞. Since the field (yv,t) is
t-càdlàg, we furthermore find that, as x→∞,

sup
R∈SO(d)

∫
DR(vx)

∫
I(tx)

yv,t dtdv→ sup
R∈SO(d)

∫
DR(u)

∫
I(s)
yv,t dtdv.

Recalling that 1
K

∫
DRx (vx)

∫
I(tx) f (|v − u|, t − s)dtdv ≤ c for all x, and turning to the in-

equalities above, we conclude (C.4.8) by

0 ≤
x − supR

1
K

∫
DR(u)

∫
I(s) yv,t dtdv

c
−

x − 1
K

∫
DRx (vx)

∫
I(tx) yv,t dtdv

1
K

∫
DRx (vx)

∫
I(tx) f (|v −u|, t − s)dtdv

≤
1
K

∫
DRx (vx)

∫
I(tx) yv,t dtdv − supR

1
K

∫
DR(u)

∫
I(s) yv,t dtdv

c

≤
supR

1
K

∫
DR(vx)

∫
I(tx) yv,t dtdv − supR

1
K

∫
DR(u)

∫
I(s) yv,t dtdv

c
→ 0

as x→∞. �

Theorem C.4.6. Let the field X be given by (C.2.10), where the Lévy basis M satisfies
Assumption C.2.2 and the kernel function f satisfies Assumptions C.2.4 and C.4.4. Let
D ⊆ Cr (0) ⊆Rd for r ≥ 0 be given, and let Ψ be defined by

Ψ (yv,t) = sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫
DR(v0)

∫
I(t0)

yv,t dtdv,

where K =
∫
D

∫ `
0 1dtdv. Furthermore, let c = 1

K

∫
D

∫ `
0 f (|v|, t)dtdv. Then

lim
x→∞

P(Ψ (Xv,t) > x)
ρ((x/c,∞))

=m(B× [0,T ])E
[
exp

(
β sup
R∈SO(d)

1
c

1
K

∫
DR(u)

∫
I(s)
Xv,tdtdv

)]
,

where (u,s) ∈ B× [0,T ] is chosen arbitrarily.

Proof. The result follows from Theorem C.3.13 and Lemma C.4.5 once we show the
existence of a function φ satisfying Assumption C.3.8. Note that the integrand in the
limit in Theorem C.3.13 is constant due to the stationarity of X and λu,s. Define

φ(u,s) = c1B′×T ′ (u,s) + sup
t0∈[0,T ]

sup
v0∈B

1
K

∫
D(v0)

∫
I(t0)

f (|v −u|, t − s)dtdv1(B′×T ′)c (u,s),
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which is integrable by (C.2.12) and satisfies (C.3.6) by (C.4.7). Now let n ∈N be fixed,
and let (yiv,t)(v,t)∈B′×T ′ for i = 1, . . . ,n be t-càdlàg fields. Then

Ψ
( n∑
i=1

yiv,t

)
= sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫
DR(v0)

∫
I(t0)

n∑
i=1

yiv,t dtdv

≤
n∑
i=1

sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫
DR(v0)

∫
I(t0)

yiv,t dtdv =
n∑
i=1

Ψ (yiv,t).

Furthermore, if yiv,t = zif (|v −ui |, t − si), it is easily seen that Ψ (yiv,t) ≤ ziφ(ui , si), and
hence, (C.3.7) is satisfied. Since

sup
s∈[0,T ]

sup
u∈B

λu,s
(
yiv,t

)
=

1
c
Ψ (yiv,t),

(C.3.8) is also satisfied, which concludes the proof. �

As mentioned in Example C.3.4, the case of P(supt∈[0,T ] supv∈BXv,t > x) follows
from Theorem C.4.6 by letting ` = 0 and D = {0}. In this case, the constant c =
f (0,0) = 1 and (C.4.7) translates into f (|v0 −u|, t0 − s) < f (0,0) for all (v0, t0) , (u,s), or
equivalently f (x,y) < f (0,0) for all (x,y) , (0,0).

Theorem C.4.7. Let the field X be given by (C.2.10), where the Lévy basis M satisfies
Assumption C.2.2 and the kernel function f satisfies Assumption C.2.4 and f (x,y) < f (0,0)
for all (x,y) , (0,0). Then

lim
x→∞

P(supt∈[0,T ] supv∈BXv,t > x)

ρ((x,∞))
=m(B× [0,T ])E

[
exp

(
βXu,s

)]
,

where (u,s) ∈ B× [0,T ] is chosen arbitrarily.

C.5 Continuity properties

The main purpose of this section is to show that the field defined in (C.2.10) has a
version with t-càdlàg sample paths. This result will be obtained in Theorem C.5.7
below. However, the proof involves showing two other results on continuity properties
of related random fields of independent value. Therefore these results are formulated
as separate theorems; see Theorems C.5.2 and C.5.4 below. Only the main results,
Theorems C.5.2, C.5.4 and C.5.7, are stated fully with all assumptions included in
the statement. The rest are to be understood in relation to the context. As stated in
Section C.2, Assumption C.2.2 on the Lévy basis is partly used to guarantee that the
field is t-càdlàg. However, if the aim is solely to obtain the t-càdlàg property, we can
relax the assumption. In this section we therefore consider Assumption C.5.1 below.
It will both be referred to with the dimension of the Lévy basis being d and d + 1.
Thus, both the assumption and the subsequent Theorem C.5.2 will be formulated
with m ∈N indicating the dimension.

Assumption C.5.1. The Lévy basisM on Rm is stationary and isotropic satisfying (C.2.1).
Moreover, the Lévy measure, denoted ρ, satisfies∫

|y|>1
|y|kρ(dy) <∞ ∀k ∈N. (C.5.1)
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For the first result in this section, consider a compact set K ⊆Rm and define the
random field Y = (Yv)v∈K by

Yv =
∫
Rm
h(|v −u|)M(du), (C.5.2)

where M is a Lévy basis on Rm satisfying Assumption C.5.1. It is shown in [19, The-
orem A.1] that such a field has a continuous version when h : [0,∞)→ R satisfies
certain properties including being differentiable. Under much less restrictive assump-
tions on the kernel function h, we show that this is still the case. We only assume that
h is bounded and integrable ∫

Rm
h(|u|)du <∞, (C.5.3)

and that h is Lipschitz continuous. That is, there exist CL > 0 such that

|h(x)− h(y)| ≤ CL|x − y| (C.5.4)

for all x,y ≥ 0. Having Assumption C.5.1 satisfied for the basis M and (C.5.3)
and (C.5.4) satisfied for the bounded kernel function ensures in particular that
the integral (C.5.2) exists; see [18, Theorem 2.7].

To show continuity, we appeal to a result in [1], in which finite moments and
cumulants of the spot variable M ′ of the basis M are needed. As already mentioned,
(C.5.1) is equivalent to saying that M ′ has finite moments and thus cumulants of any
order; see [17, Corollary 3.2.2] for the relation between moments and cumulants.

Theorem C.5.2. If the field Y is given by (C.5.2) with the Lévy basis M on Rm satisfying
Assumption C.5.1, and if the kernel is bounded and satisfies (C.5.3) and (C.5.4), then the
field has a continuous version.

Proof. For r ∈ R and n ∈N we shall consider moments of the form E[(Yv+r − Yv)n].
Note that only indices in K are relevant, so in particular, 0 ≤ |r | ≤ diam(K). By (C.5.4)
and the triangle inequality, there is a finite C such that∣∣∣h(|v + r −u|)− h(|v −u|)

∣∣∣ ≤ C|r |.
Now let κn[ · ] denote the nth cumulant of a random variable; for a brief overview
of the relation between cumulants and moments we refer to [17, Chapter 3] and in
particular [17, Corollary 3.2.2]. The cumulants κn of the difference Yv+r −Yv satisfy
κ1[Yv+r −Yv] = 0 and, for n > 1,

|κn[Yv+r −Yv]| ≤
∣∣∣κn[M ′]

∣∣∣∫
Rm

∣∣∣h(|v + r −u|)− h(|v −u|)
∣∣∣ndu

≤
∣∣∣κn[M ′]

∣∣∣Cn−1|r |n−1
∫
Rm

∣∣∣h(|v + r −u|)− h(|v −u|)
∣∣∣du ≤ Cn|r |n−1,

where Cn ≥ 0 is a finite constant, chosen independently of r and v ∈ K by

Cn =
∣∣∣κn[M ′]

∣∣∣Cn−12
∫
Rm
h(|u|)du <∞,
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see e.g. [21, Appendix A] for the cumulant formulas. Consequently, for all n ∈N,
there exist finite constants C′n and natural numbers n′ ≥ n/2 such that

E[(Yv+r −Yv)n] ≤ C′n|r |n
′

with the equality n′ = n/2 whenever n is even; see [17, Corollary 3.2.2]. Using the fact
that |r | ≤ diam(K), we find finite C′ ≥ 0 and η > 4(m+ 1) such that

E|Yv+r −Yv |4(m+1) ≤ C′4(m+1)|r |2m|r |2 ≤
C′ |r |2m
|log|r ||1+η

for all v ∈ K . From a corollary to [1, Theorem 3.2.5] we conclude that (Yv)v∈K has a
continuous version on K . �

Next, we consider a field indexed by Rd ×R allowing for discontinuities in time,
and we show that it has a t-càdlàg version. For compact sets K ⊆Rd and [0,S], S > 0,
we let the random field Z = (Zv,t)(v,t)∈K×[0,S] be given by

Zv,t =
∫
Rd

∫
[0,t]

g(|v −u|)M(ds,du), (C.5.5)

where M is a Lévy basis satisfying Assumption C.5.1 with m = d + 1, and the inte-
gration kernel g : [0,∞)→ R is assumed to be bounded, integrable and Lipschitz
continuous, i.e. it satisfies (C.5.3) and (C.5.4) with m = d.

Choose 0 = t0 < · · · < tn in [0,S] and v ∈ K . Arguing as in Section C.2, the cumulant
function for (Zv,t1 ,Zv,t2 −Zv,t1 , . . . ,Zv,tn −Zv,tn−1

) can be found to be

C(λ † (Zv,t1 ,Zv,t2 −Zv,t1 , . . . ,Zv,tn −Zv,tn−1
))

=
n∑
j=1

(tj − tj−1)
(
iλja

∫
Rd
g(|v −u|)du − 1

2
θλ2

j

∫
Rd
g(|v −u|)2du

+
∫
Rd

∫
R

eig(|v−u|)λjz − 1− ig(|v −u|)λjz1[−1,1](z)ρ(dz)du
)

where λ = (λ1, . . . ,λn) ∈ Rn. By a change of measure, we see for fixed v ∈ K that
(Zv,t)t∈[0,S] is a one-dimensional Lévy process in law. In the following we shall extend
this to a result concerning the process of random fields indexed by time.

In this section we will often consider the field as being a collection of real-valued
functions defined on space K or K̃ = K ∩Qd , with the functions indexed by time in
[0,S] or S̃ = [0,S]∩Q. As such we introduce the notation Z t = (Zv,t)v∈K , with the
entire field denoted by Z = (Z t)t∈[0,S] when considered as a collection of random
functions. We use the same notation when space and time are indexed by K̃ and
S̃, respectively, although when it is unclear which is meant and it is necessary to
distinguish the cases, we explicitly state it.
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Let t ∈ [0,S] be fixed and choose v1, . . . , vn ∈ K . Then (Zv1,t , . . . ,Zvn,t) has cumulant
function given by

C(λ † (Zv1,t , . . . ,Zvn,t)) = tia
∫
Rd

n∑
j=1

λjg(|vj −u|)du

− t1
2
θ

∫
Rd

( n∑
j=1

λjg(|vj −u|)
)2

du

+ t
∫
Rd

∫
R

ei
∑n
j=1λjg(|vj−u|)z − 1− i

n∑
j=1

λjg(|vj −u|)z1[−1,1](z)ρ(dz)du.

(C.5.6)

Replacing (a,θ,ρ) by (ta, tθ, tρ), we see from (C.5.6) that Z t is the type of field defined
in (C.5.2). Thus, by Theorem C.5.2, (Zv,t)v∈K̃ is almost surely uniformly continuous.
This holds jointly for all rational time points t ∈ S̃, and therefore a version of (Z t)t∈S̃
can be chosen with Z t being continuous for all t ∈ S̃, i.e. it has values in the space of
real-valued functions on the compact set K . It will be useful in the following that this
space equipped with the uniform norm, here denoted (C(K,R),‖ · ‖∞), is a separable
Banach space; see [14, Theorem 4.19]. The following lemma concerns this specific
version of (Z )t∈S̃ taking its values in (C(K,R),‖ · ‖∞).

Lemma C.5.3. The process (Z t)t∈S̃ is a Lévy process in law, i.e. each Z t has an infinitely
divisible distribution, the process has stationary and independent increments, and it is
stochastically continuous with respect to the uniform norm.

Proof. As Z t is a version of the field studied in (C.5.6) for each t ∈ S̃, also the
cumulant function for (Zv1,t , . . . ,Zvn,t) will be as in (C.5.6). With similar considerations,
but heavier notation, it can be realised that for v1, . . . , vn ∈ K and 0 = t0 < t1 < · · · <
tm ∈ S̃, and defining Zntj = (Zv1,tj , . . . ,Zvn,tj ) for j = 1, . . . ,m, it holds that

C(λ † (Znt1 ,Z
n
t2 −Znt1 , . . . ,Zntm −Zntm−1

))

=
m∑
j=1

C(λj †Zntj −Zntj−1
) =

m∑
j=1

C(λj †Zntj−tj−1
),

where λ = (λ1, . . . ,λn) and each λj ∈Rn, and the natural convention Zn0 = (0, . . . ,0) is
applied. This shows that (Z t)t∈S̃ has stationary and independent increments.

To show stochastic continuity it suffices to show that

lim
n→∞P(‖Z tn‖∞ ≥ ε) = 0

for any rational sequence (tn) satisfying tn ↓ 0. As (C(K,R),‖·‖∞) is a separable Banach
space, this is equivalent to showing that Z tn converges to δ0 in law in the uniform
norm, where δ0 is the degenerate probability measure concentrated at 0. For t ∈ S̃, let
νt denote the distribution of Z t and let ν̂tn be its characteristic function defined on
the dual space of C(K,R), see [15, Section 1.7]. Since (C(K,R),‖ · ‖∞) is separable, νt is
a Radon measure [15, Proposition 1.1.3] and the results in [15, Chapters 2 & 5] apply.
Due to the infinite divisibility, ν1 = νtn ∗ ν1−tn for any n ∈N (assuming tn ≤ 1), and
we conclude that {νtn } is relatively shift compact [15, Theorem 2.3.1]. Following the
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proofs of [15, Propositions 5.1.4 & 5.1.5] we obtain that limn→∞ ν̂tn → 1 uniformly
on bounded sets of the dual space. Combining [15, Propositions 2.3.9 & 1.8.2] shows
that Z tn converges in law to δ0 as claimed. �

The next theorem states that the field Z defined in (C.5.5) indeed has a t-càdlàg
version.

Theorem C.5.4. Let the field Z be given by (C.5.5) such that the Lévy basis M on Rd+1

satisfies Assumption C.5.1 with m = d + 1, and the bounded kernel g satisfies (C.5.3)
and (C.5.4), with m = d. There is a field Z ′ = (Z ′v,t)(v,t)∈K×[0,S] that is a version of Z,
i.e. P(Z ′v,t = Zv,t) = 1 for all (v, t) ∈ K × [0,S], and such that lims↓tZ ′s(ω) = Z ′t(ω) and
lims↑tZ ′s(ω) exists with respect to ‖ · ‖∞ for all ω. Furthermore, the map v 7→ Z ′v,t from K
into R is continuous for all t ∈ [0,S]. In particular, Z ′ has t-càdlàg sample paths.

The desired t-càdlàg version will be an extension of the field (Z t)t∈S̃ studied
in Lemma C.5.3. Thus, (Z t)t∈S̃ will still be a version chosen such that each Z t is a
continuous random field. The result relies on a sequence of lemmas that are shown
using an adaption of the ideas of [24, Theorems 11.1 & 11.5] and [24, Lemmas 11.2-
11.4] for Lévy processes on R. Lemmas C.5.5 and C.5.6 are shown using similar
techniques for the Lévy process (Z t)t∈S̃ , and therefore we omit the proofs here, and
refer to the supplementary material for completeness.

For the statement and proof of these lemmas, the following notation will be useful.
We say that Z (ω) has ε-oscillation n times in a set M ⊆ Q ∩ [0,∞) if there exist
t0 < t1 < · · · < tn ∈M such that

‖Z tj (ω)−Z tj−1
(ω)‖∞ = sup

v∈K
|Zv,tj (ω)−Zv,tj−1

(ω)| > ε

for all j = 1, . . . ,n. We say that Z (ω) has ε-oscillation infinitely often in M if it has
ε-oscillation n times in M for any n ∈N. Consider Ω1 given by

Ω1 = {ω ∈Ω | lim
s∈Q,s↓t

Z s(ω) exists with respect to ‖ · ‖∞ for all t ∈ [0,S] and

lim
s∈Q,s↑t

Z s(ω) exists with respect to ‖ · ‖∞ for all t ∈ [0,S]}.

Furthermore define the sets

Ak = {ω ∈Ω | Z (ω) does not have 1
k -oscillation infinitely often in S̃},

and from these define Ω′1 = ∩k∈NAk . Each Ak is measurable as each Z t is continuous
on K for t ∈ S̃, such that ‖ · ‖∞ = supv∈K | · | = supv∈K̃ | · |.
Lemma C.5.5. Ω′1 ⊆Ω1.

Lemma C.5.6. P(Ω′1) = 1.

Having established that lims∈Q,s↓tZ s and lims∈Q,s↑tZ s exist almost surely, we now
prove the main result Theorem C.5.4 on the existence of a t-càdlàg version of Z.
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Proof of Theorem C.5.4. We have P(Ω′1) = 1 by Lemma C.5.6. For all t ∈ [0,S], define
Z ′t(ω) = 1Ω′1(ω)(lims∈Q,s↓tZ s(ω)), where the limit is with respect to ‖ · ‖∞, and exists
according to Lemma C.5.5. The càdlàg-assertion is trivially true for ω < Ω′1. Now
consider ω ∈Ω′1 but suppress ω in ease of notation. By definition of Z ′t ,

∀ε > 0 ∃N ∀s ∈ (t, t + 1
N )∩Q : ‖Z ′t −Z s‖∞ < ε. (C.5.7)

Let (tn) be any sequence satisfying tn ↓ t. Fix ε > 0, and let N ∈ N satisfy (C.5.7)
with the bound ε

2 . There is n0 ∈N such that |tn − t| < 1
N for all n ≥ n0. Now fix such

n. By another application of (C.5.7) there exist Nn such that tn + 1
Nn
≤ t + 1

N and

‖Z ′tn −Z s‖∞ < ε
2 for all s ∈ (tn, tn+ 1

Nn
)∩Q. For any of those s we in particular find that

‖Z ′tn −Z ′t‖∞ ≤ ‖Z ′tn −Z s‖∞ + ‖Z ′t −Z s‖∞ < ε.
As this is true for all n ≥ n0 we conclude that Z ′ = (Z ′t)t∈[0,S] is right-continuous
with respect to ‖ · ‖∞. Similar arguments show that Z ′ has limits from the left and
that the limits are unique. The mapping v 7→ Z ′v,t is continuous because the space
(C(K,R),‖ · ‖∞) is complete, and Z ′t is defined as the limit of such functions.

We now argue that Z ′ is indeed a version Z . If (tn) ⊂ S̃ with tn ↓ t then Zv,tn
P→ Zv,t

for all v ∈ K as (Zv,t)t∈[0,S] is a Lévy process in law and thus especially stochastically
continuous. Since P(Ω′1) = 1 we have Zv,tn → Z ′v,t almost surely, and by uniqueness
of limits we conclude that P(Z ′v,t = Zv,t) = 1 for all (v, t) ∈ K × [0,S].

It remains to show that Z ′ is t-càdlàg. Since we for given (v, t) ∈ K × [0,S] can write

|Z ′v,t −Z ′u,s | ≤ |Z ′v,t −Z ′u,t |+ ‖Z ′t −Z ′s‖∞
for any choice of (u,s) ∈ K × [0,S], we conclude that lim(u,s)→(v,t+)Z

′
u,s = Z ′v,t , from the

continuity of Z ′t and the uniform càdlàg property of (Z ′t)t∈[0,S]. Similar arguments
give that the limit lim(u,s)→(v,t−)Z

′
u,s exists in R and that it is unique. �

Theorem C.5.7 below is stated under Assumption C.2.2. However, in order to
establish t-càdlàg sample paths, the milder Assumption C.5.1 would have been suffi-
cient.

Theorem C.5.7. Let the field X = (Xv,t)(v,t)∈B′×T ′ be given by (C.2.10), where the Lévy
basis M satisfies Assumption C.2.2 and the kernel function f satisfies Assumption C.2.3.
Then X has a version with t-càdlàg sample paths.

Proof. We decompose the field (Xv,t) as

Xv,t =
∫
Rd×[0,t]

f (|v −u|, t − s)− f (|v −u|,0)M(ds,du)

+
∫
Rd×(−∞,0)

f (|v −u|, t − s)M(ds,du) +
∫
Rd×[0,t]

f (|v −u|,0)M(ds,du).

By Theorem C.5.4, choosing g(·) = f (·,0), the third term has a t-càdlàg version. Due
to continuity of the integrands, the first and second terms have continuous versions
by arguments similar to those in the proof of Theorem C.5.2: Defining the continuous
function φ : [0,∞)×R→R by

φ(x,y) = 1[0,∞)(y)
(
f (x,y)− f (x,0)

)
,
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the first term above reads

Y ′v,t =
∫
Rd×[0,∞)

φ(|v −u|, t − s)M(du,ds) = Yv,t + yv,t ,

where yv,t = EY ′v,t and Yv,t = Y ′v,t − yv,t . The field (Yv,t) is continuous by previous
arguments replacing the assumptions (C.5.3) and (C.5.4) by the conditions∫

Rd

∫ ∞
0

∣∣∣φ(|u|,T + ` − s)
∣∣∣dsdu <∞ (C.5.8)

and the Lipschitz continuity of φ∣∣∣φ(|u1|, t1 − s)−φ(|u2|, t2 − s)
∣∣∣ ≤ C∣∣∣(u1 −u2, t1 − t2)

∣∣∣
for all u1,u2 ∈Rd and t1, t2 ∈ T ′ . These conditions are easily seen to be satisfied under
Assumption C.2.3. As

yv,t = y0,t = E[M ′]
∫
Rd

∫ ∞
0
φ(|u|, t − s)dsdu <∞

the deterministic field (yv,t) is continuous by a dominated convergence argument
using (C.5.8). The continuity of the second term follows similarly. �
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Supplementary material

C.I Proofs of Section C.3

Proof of Lemma C.3.9. For sufficiently large x we find that

P(Zφ(U,S) > x) =
1

ν(A)
F
({

(u,s,z) ∈Rd ×R×R+ : zφ(u,s) > x
})

=
1

ν(A)

∫
B′×T ′

L
(x
c

)
exp

(
−β x
c

)
m(du,ds)

+
1

ν(A)

∫
(B′×T ′)c

L
( x
φ(u,s)

)
exp

(
−β x
φ(u,s)

)
m(du,ds),

where the first term equals L(x/c)exp(−βx/c) times the desired limit. The result
follows when the latter integral is shown to be of order o(L(x/c)exp(−βx/c)), as x→∞.
Let h(u,s;x) denote the integrand. For all (u,s) < B′ ×T ′ we have φ(u,s) < c. Combined
with (C.2.4), this implies the existence of γ > 0 and C > 0 such that

h(u,s;x)
L(x/c)exp(−βx/c) ≤ C exp(−γx)

for sufficiently large x. Thus, the integrand h(u,s;x) is o(L(x/c)exp(−βx/c)) at infinity.
By dominated convergence, the integral is of order o(L(x/c)exp(−βx/c)) if we can find
an integrable function g : Rd ×R→R such that

h(u,s;x)
L(x/c)exp(−βx/c) ≤ g(u,s)

for all (u,s) ∈Rd ×R. Returning to (C.2.5) we see that for all 0 < γ < β/c there is C > 0
and x0 such that

h(u,s;x)
L(x/c)exp(−βx/c) ≤ C exp

(
−x0(β −γc)

( 1
φ(u,s)

− 1
c

))
(C.I.1)

for all x ≥ x0. Independent of (u,s) we can find a finite constant C̃ such that the right
hand side of (C.I.1) is bounded by C̃φ(u,s), which is integrable by assumption. This
shows the desired order of convergence.

From [16, Lemma 2.4(i)] the distribution of Zφ(U,S) is convolution equivalent
with index β/c. The integrability result follows from [16, Corollary 2.1(ii)]. �

Corollary C.I.1. If V 1,V 2, . . . are i.i.d. fields with distribution ν1, then

E
[
exp

(
β sup
u∈B

sup
s∈[0,T ]

λu,s
(
(V 1
v,t + · · ·+V nv,t)(v,t)

))]
<∞

for all n ∈N.

Proof. Because each V i can be represented by (Z if (|v−U i |, t−S i)(v,t)∈B′×T ′ , the result
follows from (C.3.8) and (C.3.10). �
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Proof of Theorem C.3.10. We will show the claim by induction over n: We note
that the case n = 1 follows easily from Theorem C.3.7. Now assume that the result
holds true for some n ∈ N and let for convenience V ∗n = V 1 + · · · + V n. Also, let
y∗ = sup(v,t)∈B′×T ′ yv,t . Using (C.3.7) and the representation V i = Z if (|v −U i |, t − S i),
we find

P(Ψ (V ∗nv,t +V n+1
v,t + yv,t) > x)

≤ P
( n∑
i=1

Z iφ(U i ,S i) >
x − y∗

2
,Zn+1φ(Un+1,Sn+1) >

x − y∗
2

,

Ψ (V ∗nv,t +V n+1
v,t + yv,t) > x

)
+P

( n∑
i=1

Z iφ(U i ,S i) ≤ x − y
∗

2
,Ψ (V ∗nv,t +V n+1

v,t + yv,t) > x
)

+P
(
Zn+1φ(Un+1,Sn+1) ≤ x − y

∗

2
,Ψ (V ∗nv,t +V n+1

v,t + yv,t) > x
)
. (C.I.2)

The first term in (C.I.2) is bounded from above by

P
( n∑
i=1

Z iφ(U i ,S i) >
x − y∗

2

)
P
(
Zn+1φ(Un+1,Sn+1) >

x − y∗
2

)
.

In Lemma C.3.9 we showed that the distribution of Z iφ(U i ,S i) is convolution equiv-
alent with index β/c, and hence, from [9, Corollary 2.11] and (C.3.9), both factors
are asymptotically equivalent to ρ1((x/(2c),∞)) as x→∞. Following the proof of [8,
Lemma 2] we see that the product is o((ρ1 ∗ρ1)((x/c,∞))), and as such the first term in
(C.I.2) is o(ρ1((x/c,∞))) due to the convolution equivalence of ρ1. By Theorem C.3.7
it is of order o(P(Ψ (V 1

v,t) > x)) as x→∞.
By independence, the two remaining terms in (C.I.2) divided by P(Ψ (V 1

v,t) > x)
are∫

Cx

P(Ψ (
∑n
i=1 z

if (|v −ui |, t − si) +V n+1
v,t + yv,t) > x)

P(Ψ (V 1
v,t) > x)

F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+
∫
C̃x

P(Ψ (V ∗nv,t + z1f (|v −u1|, t − s1) + yv,t) > x)

P(Ψ (V 1
v,t) > x)

F1(d(u1, s1, z1)),

(C.I.3)
where F⊗n1 is the n-fold product measure of F1 and

Cx =
{
(u1, s1, z1; . . . ;un, sn, zn) :

n∑
i=1

ziφ(ui , si) ≤ x − y
∗

2

}
,

C̃x =
{
(u1, s1, z1) : z1φ(u1, s1) ≤ x − y

∗

2

}
.

Above we used the representation V i = Z if (|v −U i |, t − S i) again. By Theorem C.3.7
and the induction assumption, the integrands of (C.I.3) have the following limits as
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x→∞,

f1(u1, s1, z1; . . . ;un, sn, zn)

=

∫
B

∫ T
0 exp

(
βλu,s

(∑n
i=1 z

if (|v −ui |, t − si) + yv,t
))

dsdu

m(B× [0,T ])
,

f2(u1, s1, z1)

=
n
∫
B

∫ T
0 E

[
exp

(
βλu,s

(
V 1
v,t + · · ·+V n−1

v,t + z1f (|v −u1|, t − s1) + yv,t
))]

dsdu

m(B× [0,T ])
,

respectively. When integrated with respect to the relevant measures we find∫
f1(u1, s1, z1; . . . ;un, sn, zn)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+
∫
f2(u1, s1, z1)F1(d(u1, s1, z1))

=
n+ 1

m(B× [0,T ])

∫
B

∫ T

0
E

[
exp

(
βλu,s

(
V 1
v,t + · · ·+V nv,t + yv,t

))]
dsdu,

which is the desired expression. To show convergence of the integrals in (C.I.3), using
Fatou’s lemma, it suffices to find integrable functions g1(u1, s1, z1; . . . ;un, sn, zn;x) and
g2(u1, s1, z1;x) that are upper bounds of the integrands such that their limits exist
when x→∞ and such that∫

g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+
∫
g2(u1, s1, z1;x)F1(d(u1, s1, z1))

→
∫

lim
x→∞g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+
∫

lim
x→∞g2(u1, s1, z1;x)F1(d(u1, s1, z1))

as x→∞. Using (C.3.7) and properties of Ψ , we can choose the functions

g1(u1, s1, z1; . . . ;un, sn, zn;x) = 1Cx
P(Z1φ(U1,Z1) > x − y∗ −∑n

i=1 z
iφ(ui , si))

P(Ψ (V 1
v,t) > x)

and

g2(u1, s1, z1;x) = 1C̃x
P(

∑n
i=1Z

iφ(U i ,Z i) > x − y∗ − z1φ(u1, s1))

P(Ψ (V 1
v,t) > x)

.

From Theorem C.3.7 and (C.3.9) we find that

P(Z1φ(U1,S1) > x) ∼ m(B′ × T ′)
m(B× [0,T ])

P(Ψ (V 1
v,t) > x) (C.I.4)

as x→∞. The fact that the distribution of Z1φ(U1,S1) is convolution equivalent and
in particular has an exponential tail implies

g1(u1, s1, z1; . . . ;un, sn, zn;x)→ m(B′ × T ′)
m(B× [0,T ])

exp
(β
c

(
y∗ +

n∑
i=1

ziφ(ui , si)
))
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as x→∞. Similarly, (C.I.4) and an application of [9, Corollary 2.11] gives

g2(u1, s1, z1;x)

→ m(B′ × T ′)
m(B× [0,T ])

nexp
(β
c

(y∗ + z1φ(u1, s1))
)(
Eexp

(β
c
Z1φ(U1,S1)

))n−1

as x→∞, and we conclude that∫
lim
x→∞g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+
∫

lim
x→∞g2(u1, s1, z1;x)F1(d(u1, s1, z1))

=
m(B′ × T ′)
m(B× [0,T ])

(n+ 1)exp(βy∗/c)
(
Eexp

(β
c
Z1φ(U1,S1)

))n
. (C.I.5)

For notational convenience, we let µ denote the distribution of Z iφ(U i ,S i). Then,
again by [9, Corollary 2.11] and (C.I.4), (C.I.5) equals

lim
x→∞

m(B′ × T ′)
m(B× [0,T ])

µ∗(n+1)((x − y∗,∞))
µ((x,∞))

= lim
x→∞

µ∗(n+1)((x − y∗,∞))

P(Ψ (V 1
v,t) > x)

. (C.I.6)

Furthermore, we see

P(Ψ (V 1
v,t) > x)

(∫
g1(z1; . . . ;zn;x)µ⊗n(d(z1; . . . ;zn)) +

∫
g2(z;x)µ(dz)

)
=

∫ (x−y∗)/2

0
µ((x − y∗ − z,∞))µ∗n(dz) +

∫ (x−y∗)/2

0
µ∗n((x − y∗ − z,∞))µ(dz).

Since, in particular, the tails of µ and µ∗n are exponential with index β/c, we see from
[8, Lemma 2] that the sum of integrals is asymptotically equivalent to µ∗(n+1)((x −
y∗,∞)). Returning to (C.I.6) concludes the proof. �

Before proving the theorem on the extremal behavior of X1, we need the following
lemma for a dominated convergence argument.

Lemma C.I.2. Let V 1,V 2, . . . be i.i.d. fields with distribution ν1, and let (U,S,Z) be
distributed according to F1. There exist a constant K such that

P(Ψ (V 1
v,t + · · ·+V nv,t) > x) ≤ KnP(Zφ(U,S) > x)

for all n ∈N and all x ≥ 0.

Proof. By Lemma C.3.9 the distribution of Zφ(U,S) is convolution equivalent, and
it follows from [9, Lemma 2.8] that there is a constant K such that

P
( n∑
i=1

Z iφ(U i ,S i) > x
)
≤ KnP(Zφ(U,S) > x),

for i.i.d. variables (U1,S1,Z1), (U2,S2,Z2), . . . with distribution F1. The result follows
directly from (C.3.7). �
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Proof of Theorem C.3.11. From (C.3.8) and the representation V i = (Z if (|v −U i |, t −
S i))(v,t), we see that

E
[
exp

(
βλu,s

(
X1
v,t

))]
≤ exp

(
ν(A)

(
E[exp(βcZφ(U,S)]− 1

))
.

The first claim now follows from (C.3.10).
For the limit result, we find by independence and Lemma C.I.2,

P(Ψ (X1
v,t + yv,t) > x)

= e−ν(A)
∞∑
n=1

ν(A)n

n!
P(Ψ (V 1

v,t + · · ·+V nv,t + yv,t) > x)

≤ P(Zφ(U,S) > x − y∗)e−ν(A)
∞∑
n=1

ν(A)nKn

n!
,

where y∗ = sup(v,t) yv,t and e−ν(A) ∑∞
n=1

ν(A)nKn

n! < ∞. With the convention that V 1
v,t +

· · · + V n−1
v,t = 0 for n = 1, by dominated convergence, Theorems C.3.7 and C.3.10

and Lemma C.3.9 yield

lim
x→∞

P(Ψ (X1
v,t + yv,t) > x)

L(x/c)exp(−βx/c)

=
n

ν(A)
e−ν(A)

∞∑
n=1

ν(A)n

n!

∫
B

∫ T

0
E

[
eβλu,s(V

1
v,t+···+V n−1

v,t +yv,t)
]
dsdu

= e−ν(A)
∞∑
n=0

ν(A)n

n!

∫
B

∫ T

0
E

[
eβλu,s(V

1
v,t+···+V nv,t+yv,t)

]
dsdu

=
∫
B

∫ T

0
E

[
eβλu,s(X

1
v,t+yv,t)

]
dsdu.

This concludes the proof. �

Proof of Lemma C.3.12. First we show that

Eexp(γ sup
(v,t)∈B′×T ′

X2
v,t) <∞ (C.I.7)

for all γ > 0. Applying arguments as in Section C.2, we write X2 as the independent
sum X2

v,t = Y 1
v,t +Y 2

v,t . Here Y 1 is a compound Poisson sum

Y 1
v,t =

M∑
k=1

Jkv,t

with finite intensity ν(Ac∩D) <∞ and jump distribution ν2 = νAc∩D /ν(Ac∩D), where
D = {z ∈ RK : inf(v,t)∈K zv,t < −1}. Furthermore, Y 2 is infinitely divisible with Lévy
measure νAc∩Dc , the restriction of ν to the set Ac ∩Dc = {z ∈RK : sup(v,t)∈K |zv,t | ≤ 1}.
By arguments as before, both fields have t-càdlàg extensions to B′×T ′ . For each k, Jkv,t ≤
0 for all (v, t) ∈ B′ × T ′ almost surely, and in particular Eexp(γ sup(v,t)∈B′×T ′ Y

1
v,t) <∞

for all γ > 0. As (Y 2
v,t)(v,t)∈B′×T ′ is t-càdlàg on the compact set B′ × T ′, we find that
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P(sup(v,t)∈B′×T ′ |Y 2
v,t | <∞) = 1. Since also νAc∩Dc ({z ∈RK : sup(v,t)∈K |zv,t | > 1}) = 0, we

obtain from [7, Lemma 2.1] that Eexp(γ sup(v,t)∈B′×T ′ |Y 2
v,t |) <∞ for all γ > 0, which

yields the claim (C.I.7).
Appealing to properties of λu,s we find that

λu,s
(
Xv,t

) ≤ λu,s(X1
v,t + sup

(v,t)∈B′×T ′
X2
v,t

)
= λu,s

(
X1
v,t

)
+

sup(v,t)∈B′×T ′ X
2
v,t

c
.

The assertion now follows from (C.I.7) and the first claim of Theorem C.3.11. �

Proof of Theorem C.3.13. Let π be the distribution of (X2
v,t)(v,t)∈B′×T ′ . Conditioning

on (X2
v,t)(v,t) = (yv,t)(v,t) we find by independence that

P(Ψ (Xv,t) > x)

P(Ψ (X1
v,t) > x)

=
∫

P(Ψ (X1
v,t + yv,t) > x)

P(Ψ (X1
v,t) > x)

π(dy) =
∫
f (y;x)π(dy)

with f (y;x) = P(Ψ (X1
v,t+yv,t) > x)/P(Ψ (X1

v,t) > x), which, according to Theorem C.3.11,
satisfies

f (y;x)→ f (y) =

∫
B

∫ T
0 E

[
exp

(
βλu,s

(
X1
v,t + yv,t

))]
dsdu∫

B

∫ T
0 E

[
exp

(
βλu,s

(
X1
v,t

))]
dsdu

as x→∞. By another application of Theorem C.3.11 and since∫
f (y)π(dy) =

∫
B

∫ T
0 E

[
exp

(
βλu,s

(
Xv,t

))]
dsdu∫

B

∫ T
0 E

[
exp

(
βλu,s

(
X1
v,t

))]
dsdu

,

the proof is completed if we can find non-negative and integrable functions g(y;x)
and g(y) = limx→∞ g(y;x) such that f (y;x) ≤ g(y;x) and such that∫

g(y;x)π(dy)→
∫
g(y)π(dy)

as x→∞. With y∗ = sup(v,t)∈B′×T ′ yv,t we use the function

g(y;x) = P(Ψ (X1
v,t) + y∗ > x)/P(Ψ (X1

v,t) > x)

which, according to properties of λu,s and Theorem C.3.11, satisfies

g(y;x)→ g(y) = exp(βy∗/c)

as x→∞. From [16, Lemma 2.4(i)] and Theorem C.3.11 the distribution of Ψ (X1
v,t) is

convolution equivalent with index β/c. Now let G and H denote the distributions of
Ψ (X1

v,t) and sup(v,t)∈B′×T ′ X
2
v,t , respectively. If H(x) = o(G(x)), x→∞, it follows from

the integrability statement (C.I.7) and [16, Lemma 2.1] that∫
g(y;x)π(dy) =

P(Ψ (X1
v,t) + sup(v,t)∈B′×T ′ X

2
v,t > x)

P(Ψ (X1
v,t) > x)

→ Eexp
(β
c

sup
(v,t)∈B′×T ′

X2
v,t

)
=

∫
g(y)π(dy)

as x → ∞. From (C.I.7) we find that limx→∞ eγxP(sup(v,t)∈B′×T ′ X
2
v,t > x) = 0 for all

γ > 0. Combined with the convolution equivalence of the distribution of Ψ (X1
v,t), this

yields H(x) = o(G(x)) and the claim follows. �
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C.II Proofs of Section C.5

Proof of Lemma C.5.5. Let ω ∈Ω′1 and (sn) ⊂ S̃ such that sn ↓ t ∈ [0,S]. For all k ∈N
there exists N ∈N such that

‖Z sn(ω)−Z sN (ω)‖∞ ≤ 1
k for all n ≥N. (C.II.1)

This is seen by contradiction as follows: Assume that for anyN ∈N there exists n ≥N
such that

‖Z sn(ω)−Z sN (ω)‖∞ > 1
k .

Now fix p ∈N. By this there exist n0 < n1 < n2 < · · · < np such that

‖Z snj (ω)−Z snj−1
(ω)‖∞ > 1

k for j = 1, . . . ,p

and we conclude that Z (ω) has 1
k -oscillation p times in S̃ for any p. Hence ω ∈ Ack ,

which is a contradiction. From (C.II.1) and the fact that the metric space (C(K,R),‖·‖∞)
is complete, we know that limn→∞Z sn(ω) exists with respect to ‖ · ‖∞ as a continuous
function on K . To show uniqueness of the limit, let (tn) ⊂ S̃ be another sequence such
that tn ↓ t. Then limn→∞Z sn(ω) = limn→∞Z tn(ω): Let (rn) be the union of (sn) and (tn)
ordered such that rn ↓ t. Then similarly for any ε > 0 there is N ′ such that

‖Z rn(ω)−Z rN ′ (ω)‖∞ < ε
2 for n ≥N ′ .

Also there is N ∈N such that (sn)n≥N , (tn)n≥N ⊆ (rn)n≥N ′ , and hence

‖Z sn(ω)−Z tn(ω)‖∞ ≤ ‖Z sn(ω)−Z rN ′ (ω)‖∞ + ‖Z tn(ω)−Z rN ′ (ω)‖∞ < ε

for all n ≥ N . Thus, the limit lims∈Q,s↓tZ s(ω) exists uniquely with respect to ‖ · ‖∞.
Similarly for lims∈Q,s↑tZ s(ω). �

We let

B(p,ε,D) = {ω ∈Ω | Z (ω) has ε-oscillation p times in D},

with D ⊆Q∩ [0,∞), and

αε(r) = sup{P(‖Z t‖∞ ≥ ε) | t ∈ [0, r]∩Q}.

Note that a direct consequence of the stochastic continuity from Lemma C.5.3 is that
αε(r)→ 0 as r→ 0 for all ε > 0.

Lemma C.II.1. Let p be a positive integer, D = {t1, . . . , tn} ⊆Q∩ [0,∞) and u,r ∈Q such
that 0 ≤ u ≤ t1 < · · · < tn ≤ r. Then P(B(p,4ε,D)) ≤ (2αε(r −u))p.

Proof. We will show the statement by induction in p. For this, define

Ck = {‖Z tj −Zu‖∞ ≤ 2ε, j = 1, . . . , k − 1, ‖Z tk −Zu‖∞ > 2ε} ,
Dk = {‖Z tk −Z r‖∞ > ε}
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and note that C1, . . . ,Cn are disjoint and

B(1,4ε,D) ⊆
n⋃
k=1

{‖Z tk −Zu‖∞ > 2ε} =
n⋃
k=1

Ck

=
n⋃
k=1

(Ck ∩Dck)∪ (Ck ∩Dk) ⊆ {‖Z r −Zu‖∞ ≥ ε} ∪
n⋃
k=1

(Ck ∩Dk).

By the Lévy properties in Lemma C.5.3 we have P(‖Z r −Zu‖∞ ≥ ε) ≤ αε(r − u) and
furthermore that P(Ck ∩Dk) = P(Ck)P(Dk) ≤ P(Ck)αε(r −u). The fact that C1, . . . ,Cn
are disjoint then implies

P(B(1,4ε,D)) ≤ P(‖Z r −Zu‖∞ ≥ ε) +
n∑
k=1

P(Ck ∩Dk) ≤ 2αε(r −u),

which is the desired expression for p = 1. We now assume the result to be true for
arbitrary p ∈N. We define the sets

Fk = {ω : Z (ω) has 4ε-oscillation p times in {t1, . . . , tk},
but does not have 4ε-oscillation p times in {t1, . . . , tk−1}} ,

Gk = {ω : Z (ω) has 4ε-oscillation one time in {tk , . . . , tn}}.
Then F1, . . . ,Fn are disjoint, and P(Fk ∩Gk) = P(Fk)P(Gk) for all k = 1, . . . ,n due to the
Lévy properties. Also B(p,4ε,D) = ∪nk=1Fk , and furthermore

B(p+ 1,4ε,D) =
n⋃
k=1

(Fk ∩Gk)

with the inclusion ⊆ seen as follows: If ω ∈ B(p+1,4ε,D) then Z (ω) has 4ε-oscillation
p+ 1 times in some {tn0

, . . . , tnp+1
} ⊆D with n0 < n1 < · · · < np+1. Hence there is k ≤ np

such that ω ∈ Fk . Also ‖Z tnp+1
(ω)−Z tnp (ω)‖∞ > 4ε and as such also ω ∈ Gk . From the

induction assumption, the case p = 1 and the fact that F1, . . . ,Fn are disjoint we find
that

P(B(p+ 1,4ε,D)) =
n∑
k=1

P(Gk)P(Fk) ≤ 2αε(r −u)P
( n⋃
k=1

Fk

)
= 2αε(r −u)P(B(p,4ε,M)) ≤ (2αε(r −u))p+1 . �

Proof of Lemma C.5.6. To show that P(Ω′1) = 1 it suffices to prove P(Ack) = 0 for any
fixed k ∈N. Since αε(r)→ 0 as r ↓ 0 for any ε > 0, we can choose ` ∈N such that
2α1/(4k)(S/`) < 1. Then by continuity of P we get

P(Ack) ≤ P(Z has 1
k -oscillation infinitely often in S̃)

≤
∑̀
j=1

P(Z has 1
k -oscillation infinitely often in [ j−1

` S,
j
`S]∩Q)

=
∑̀
j=1

lim
p→∞P(B(p, 1

k , [
j−1
` S,

j
`S]∩Q)).
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Now fix j = 1, . . . , `, and enumerate the elements of [ j−1
` S,

j
`S]∩Q by (tm)m∈N. From

Lemma C.II.1 we know that

P(B(p, 1
k , {t1, . . . , tn})) ≤ (2α1/(4k)(

S
` ))p

for any n ∈N. By continuity of P we see that

P(B(p, 1
k , [

j−1
` S,

j
`S]∩Q)) = lim

n→∞P(B(p, 1
k , {t1, . . . , tn})) ≤ (2α1/(4k)(

S
` ))p

which tends to 0 as p→∞ since ` is chosen such that 2α1/(4k)(S/`) < 1. As this holds
for all j = 1, . . . , ` we conclude that P(Ack) = 0. �
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Abstract

First, we consider a stationary random field indexed by an increasing sequence
of subsets of Zd . Under certain mixing and anti–clustering conditions combined
with a very broad assumption on how the sequence of spatial index sets increases,
we obtain an extremal result that relates a normalized version of the distribution
of the maximum of the field over the index sets to the tail distribution of the
individual variables. Furthermore, we identify the limiting distribution as an
extreme value distribution.

Secondly, we consider a continuous, infinitely divisible random field indexed
by Rd given as an integral of a kernel function with respect to a Lévy basis with
convolution equivalent Lévy measure. When observing the supremum of this field
over an increasing sequence of (continuous) index sets, we obtain an extreme value
theorem for the distribution of this supremum. The proof relies on discretization
and a conditional version of the technique applied in the first part of the paper, as
we condition on the high activity and light–tailed part of the field.
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D.1 Introduction

In classical extreme value theory the aim is to describe the asymptotic distributional
properties of

Mn = max{ξ1, . . . ,ξn}
as n→∞, where ξ1,ξ2, . . . are independent and identically distributed. A main result
is that if there exist sequences (an) and (bn) such that P(an(Mn − bn) ≤ x) → G(x)
for all x, where G is a non–degenerate function, then G is in fact the distribution
function of a distribution belonging to one of three specific types called extreme value
distributions; see e.g the monographs [5, 11, 15] for thorough treatments of both the
classical extreme value theory and many important extensions and applications.

A very useful result, when relating the limiting extremal distribution with the
distribution of the individual ξ–variables, is the following theorem, cf. [11, Theo-
rem 1.5.1].

Theorem D.1.1. Let (ξn)n∈N be a sequence of independent and identically distributed
real random variables and let 0 ≤ τ ≤∞. Then for a real sequence (xn)n∈N,

nP(ξ1 ≤ xn)→ τ as n→∞

if and only if
P(Mn ≤ xn)→ e−τ as n→∞.

A relevant extension, studied in the literature, of the independent case is assuming
that (ξn)n∈N is a stationary sequence of random variables that are not necessarily
independent. Obtaining results on the extremal behavior of the maximum of depen-
dent variables will now be a question of controlling this dependence. A key property
in this framework is an adapted version of Theorem D.1.1: The result of the theorem
is still true under additional mixing and anti–clustering conditions ensuring that
the sequence on a large scale behaves like an independent sequence; see [11, Chap-
ter 3] for a detailed exposition. A generalization to stationary stochastic processes in
continuous time can be found in [11, Chapter 13].

In the present paper we extend the index set from a one–dimensional time axis
to a spatial setting with indices in Zd and Rd . The contribution of the paper will be
two–fold. First we consider a stationary random field (ξv)v∈Zd and a sequence of finite,
increasing index sets (Dn)n∈N with Dn ⊆Zd . A main result will be a new version of
Theorem D.1.1 in this setting, where we relate the convergence of P(ξv > xn) to that of
P(M(Dn) ≤ xn) with the notationM(Dn) = maxv∈Dn ξv , which will be used throughout.
This is formulated as Theorem D.3.5 in Section D.3 below. To obtain this result, we
need to impose conditions on the spatial dependence structure in the same spirit as
the mixing and anti–clustering conditions needed in the one–dimensional case, cf.
the conditions D(xn;Kn) and D′(xn) defined below.

While the index set in the one–dimensional case always has the form Dn =
{1, . . . ,mn}, most often with mn = n, a challenging part of the generalization to a
spatial setting is to obtain the desired result under realistic and useful assumptions
on the increasing behavior of the sequence of index sets (Dn). It is needed that Dn
expands in a particularly nice way such that it can be approximated by a certain class
of expanding cubes. The sufficient assumption, Assumption D.2.4, on (Dn) will be
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given in Section D.2 together with the introduction of relevant geometrical notation.
The assumption is formulated in terms of the so–called intrinsic volumes of the
(continuous version of) the sets.

The geometric assumption on (Dn) is formulated in a large generality, but as
illustrated in Example D.2.6 it includes the simple, but useful, situation, where a
fixed set is scaled up by an increasing sequence (rn),

Dn = (rnC)∩Zd .

Here C is a union of finitely many bounded, convex and full–dimensional sets.
Extreme value theory formulated in a spatial setting is, to the best of the authors’

knowledge, rare in the literature. However, in [12] a coordinate–wise spatial mixing
condition is formulated. Furthermore it is obtained that under this condition the
limiting distribution of a normalization of M(Dn) is an extreme value distribution in
the asymptotic scenario, where the index sets Dn constitutes an increasing sequence
of boxes.

The second part of the paper concerns a random field (Xv)v∈Rd defined by

Xv =
∫
Rd
f (|v −u|)M(du), (D.1.1)

where M is an infinitely divisible, independently scattered random measure on Rd

and f is an appropriate kernel function. We furthermore assume that the Lévy
measure of the random measure M has a convolution equivalent right tail; see [3,
4] for details about convolution equivalent distributions and [13] for the relation
between convolution equivalence and infinite divisibility. Examples of convolution
equivalent distributions that are also infinitely divisible counts the important cases of
the inverse Gaussian and the normal inverse Gaussian distribution; see examples 2.1
and 2.2 in [16].

Lévy-driven moving average models as defined in (D.1.1) form a very flexible
framework that recently have been used for multiple modeling purposes. This in-
cludes modeling of turbulent flows ([1]), growth processes ([9]), Cox point processes
([7]), and brain imaging data ([8, 19])

For a sequence (Cn)n∈N of index sets satisfying a continuous version of the as-
sumption imposed on discrete sets (Dn)n∈N above, and under mild restrictions on the
kernel function f , we obtain the main result that for all x ∈R,

P
(
a−1
n

(
sup
v∈Cn

Xv − bn
)
≤ x

)
→ exp

(
−e−xEeβXuρ((1,∞))

)
(D.1.2)

as n → ∞, where an,bn are norming constants chosen according to the extremal
behavior of the Lévy measure ρ relative to the volume |Cn| of the index set, such that
limn|Cn|ρ((anx+ bn,∞)) = e−xρ((1,∞)) for all x ∈R.

The proof of this result relies on a discretization, writing the supremum as a max-
imum of suprema over unit cubes. Here a result from [16] becomes rather beneficial:
The tail distribution of e.g. supv∈[0,1]d Xv is asymptotically equivalent with that of
the underlying Lévy measure ρ. Obtaining the result will, however, not be a direct
application of the result for stationary, discretely indexed random fields from the first
part of the paper. Showing directly that the mixing and anti–clustering conditions
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D(xn;Kn) and D′(xn) are satisfied is rather challenging, while it is easier to apply an
independent decomposition X = Z +Y , where Z is a compound Poisson random field
with relatively heavy tails, and Y represents the part of X with infinite activity but
lighter tails. The proof strategy will be to condition on Y = y and then establish a con-
ditional result on the extremal behavior of the field Z + y. The final result is obtained
by applying ergodic properties of the conditioning Y –field. This proof strategy has
the additional advantage that an extension of (D.1.2) follows directly with X replaced
by X + Ỹ , where Ỹ is a sufficiently light–tailed, stationary and ergodic random field
that is independent of X, cf. Theorem D.4.11 below.

In [6] a stochastic process (Xt)t≥0 on the form

Xt =
∫
R+×R

f (r, t − s)M(dr,ds)

is considered. Note that the index set here is one–dimensional. Furthermore, the ker-
nel function f is assumed to satisfy f (r, s) = 0 for s < 0. Under very similar conditions
on the random measure M, in particular it is assumed that ρ has a convolution equiv-
alent right tail, an asymptotic result, similar to (D.1.2), is obtained for supt∈[0,T ]Xt as
T →∞.

An asymptotic result for a discretely observed field on the form (D.1.1) in a
scenario with an increasing spatial index set can be found in [18]. The paper proposes
estimators for the mean and covariance function of the field and furthermore provides
central limit theorems for these estimators. The spatial asymptotic scenario of the
index sets is, however, less restrictive compared to the requirements in the present
paper. There it is only needed that the discrete index set Dn increases in a way, such
that the surface of Dn is asymptotically inferior to the volume of Dn.

The paper is organized as follows. In Section D.2 we introduce a few geometrical
concepts and formulate the assumption on the increasing sequence of index sets
both in the discrete and continuous setting. In Section D.3 we state and prove a
spatial version of Theorem D.1.1 under the assumption on (Dn) from Section D.2
and additional mixing and anti–clustering conditions. We furthermore show that
the limiting distribution of a normalized version of M(Dn) is an extreme value
distribution.

Section D.4 is devoted to the introduction of the Lévy–based model (D.1.1) and
the proofs of the main extremal results. The proofs that relates to the conditioning
(Yv)–field – in particular results on its ergodic behavior – are found in Section D.5,
while proofs of some further technical lemmas, used in the proof of the main theorem,
are deferred to Section D.6.

D.2 Geometrical assumption and result

The main purpose of this section will be to formulate the sufficient assumption on
the sequence of index sets. It turns out that in both the discrete and the continuous
setting a relevant property should be formulated through conditions on sets in Rd .
That means that for the sequence (Dn) of sets in Zd used for the discrete result we
will assume the existence of a sequence (Cn) of sets in Rd satisfying certain conditions
and that Dn = Cn ∩Zd .
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The relevant condition on the sequence of sets can be found in Assumption D.2.4
below. However, the formulation of this assumption requires a few concepts and
results from the classical theory of geometry for convex sets. This is summarized
below in Theorem D.2.1 and the properties immediately thereafter; see e.g. [21,
Chapter 4] for a detailed exposition of this topic.

Throughout the paper, the following notation will be used. For a subset A of either
Zd or Rd , we let |A| denote the size of the set A. Hence, |A| is the number of points in
A ⊆Zd , and |A| is the Lebesgue measure of A ⊆Rd . However, we will only consider
the Lebesgue measure of unions of convex and full–dimensional sets in Rd , so |A|
will in fact also be the Hausdorff measure of A. For a set A ⊆Rd and a constant λ > 0
we define λA = {λx | x ∈ A}. For two sets A,B ⊆Rd , we define the Minkowski sum by
A⊕B = {a+ b | a ∈ A,b ∈ B}. We let 0 ∈Rd denote the origin of Rd , and we define B(r)
as the closed ball in Rd centered in 0 and with radius r ≥ 0.

A compact convex set with non–empty interior will in the following be called a
convex body. The following theorem, called Steiner’s Theorem, constitutes a classical
result from convex geometry.

Theorem D.2.1. Assume that C is a convex body and let r > 0. Then the volume |C⊕B(r)|
is a polynomial in r, i.e.

|C ⊕B(r)| =
d∑
j=0

ωd−jVj (C)rd−j ,

where Vj(C) are coefficients that only depend on C, and ωj is the volume of the j–
dimensional unit ball.

The coefficients Vj (C) are called intrinsic volumes of the convex body C and satisfy

1. V0(C) = 1,

2. V1(C) = dωd
2ωd−1

b(C), where b(C) is the mean width of C,

3. Vd−1(C) = F(C)/2, where F(C) denotes the surface area of C, i.e. the d −1 dimen-
sional Hausdorff measure of the surface ∂C,

4. Vd(C) = |C|.
Furthermore, the functionals Vj :K→R, where K denotes the collection of all convex
bodies, satisfy some important properties, among which we mention

(i) They are non–negative, i.e. Vj (C) ≥ 0 for all C ∈ K.

(ii) They are motion invariant, i.e. Vj (gC) = Vj (C) for any euclidean motion g.

(iii) They are homogeneous, i.e. Vj (γC) = γ jVj (C) for all γ > 0.

(iv) They are monotone, i.e. C ⊆D implies Vj (C) ≤ Vj (D).

Corollary D.2.2. Let C ⊆Rd be a convex body and r > 0. Then

d−1∑
j=0

ωd−jVj (C)rd−j ≤ |∂C ⊕B(r)| ≤ 2
d−1∑
j=0

ωd−jVj (C)rd−j .
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Proof. For the first inequality, we apply Theorem D.2.1 to find

|∂C ⊕B(r)| ≥ |
(
C ⊕B(r)

)
\C| = |C ⊕B(r)| − |C| =

d−1∑
j=0

ωd−jVj (C)rd−j .

For the second inequality, we define C−r = C \
(
∂C ⊕B(r)

)
. Then C−r is a convex set:

Let x,y ∈ C−r and choose a point z on the line segment from x to y. If we can show
B(r) + z ⊆ C, we will have z ∈ C−r and thus convexity is obtained. For this, choose
z′ ∈ z +B(r), i.e. there is b ∈ B(r) such that z′ = z + b. Then z′ is on the line segment
from x + b to y + b, and furthermore both x + b and y + b are in C. The convexity of C
gives the desired result.

Arguing as above, using monotonicity of the intrinsic volumes and the fact that
C = C−r ⊕B(r), we find

|C \C−r | = |C−r ⊕B(r)| − |C−r | ≤
d−1∑
i=0

ωd−jVj (C)rd−j

Since ∂C ⊕B(r) =
(
(C ⊕B(r)) \C

)
∪

(
C \C−r

)
, we can deduce the desired inequality. �

Definition D.2.3. A set C ⊆Rd is said to be p–convex, if it is connected and has the form

C =
p⋃
i=1

Ci ,

where C1, . . . ,Cp are convex bodies in Rd .

In the following we give the assumption on the index sets (Cn) used in the paper.
Due to stationarity of all fields involved, we can without loss of generality in later
results assume that 0 ∈ Cn for all n ∈N. Although not formulated in the assumption,
this will be assumed throughout the paper.

Assumption D.2.4. The sequence (Cn)n∈N consists of p–convex bodies, where

Cn =
p⋃
i=1

Cn,i

and |Cn| →∞ as n→∞. Furthermore,∑p
i=1Vj (Cn,i)

|Cn|j/d
is bounded for each j = 1, . . . ,d − 1. (D.2.1)

Concerning the sequence (Dn)n∈N of discrete sets in Zd , we say that (Dn)n∈N
satisfies Assumption D.2.4 if there exists a sequence (Cn)n∈N of sets in Rd satisfying
the assumption, such that Dn = Cn ∩Zd .

For a sequence (Cn)n∈N satisfying Assumption D.2.4 we will for each k ∈N and
a fixed λ close to 1, define tn,k,λ = b d√|Cn|/(λk)c. Most often we will choose λ = 1,
but in Theorems D.2.5 and D.3.4 and Lemmas D.3.2 and D.3.3 we will use the full
generality. Subsequent to Theorem D.3.4, we set λ = 1 and λ will be suppressed from
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all notation. For z = (z1, . . . , zd) ∈Zd and n large enough relative to k we furthermore
define the cube In,k,λz as

In,k,λz =
d×
i=1

[
zitn,k,λ, (zi + 1)tn,k,λ

)
.

Let Pn,k,λ be the set of indices z for which In,k,λz is contained in Cn and Qn,k,λ be the
set of indices z for which In,k,λz is intersected by Cn, respectively. I.e.

Pn,k,λ = {z ∈Zd : In,k,λz ⊆ Cn} , and Qn,k,λ = {z ∈Zd : In,k,λz ∩Cn , ∅} .

Let furthermore
pn,k,λ = |Pn,k,λ| and qn,k,λ = |Qn,k,λ| .

Note that by construction, pn,k,λ ≤ λk and qn,k,λ ≥ λk for values of n large enough
relative to k. Let Jn,k,λz = In,k,λz ∩Zd be the integer numbers in In,k,λz . Define

D−n,k,λ =
⋃

z∈Pn,k,λ
Jn,k,λz and D+

n,k,λ =
⋃

z∈Qn,k,λ
Jn,k,λz .

With Dn = Cn∩Zd we have Jn,k,λz ⊆Dn for all z ∈ Pn,k,λ, and that z ∈Qn,k,λ for all Jn,k,λz

with Jn,k,λz ∩Dn , ∅. That gives

D−n,k,λ ⊆Dn ⊆D+
n,k,λ. (D.2.2)

Theorem D.2.5. Let (Cn)n∈N satisfy Assumption D.2.4, and let Dn = Cn ∩Zn. Then

(i) |Dn| ∼ |Cn| as n→∞,

(ii) for all λ the sequences pn,k,λ and qn,k,λ, defined above, satisfy that

liminf
n→∞ pn,k,λ ∼ λk and limsup

n→∞
qn,k,λ ∼ λk

as k→∞,

(iii) for each k, λ and n with n large enough relative to k, it holds that D+
n,k,λ ⊆ Kn,k,λ,

where Kn,k,λ is the cube
Kn,k,λ =

⋃
z∈Nk,λ

Jn,k,λz ,

and Nk,λ is on the form Nk,λ = [−ck,λ , ck,λ]d ∩Zd for some ck,λ <∞,

(iv) there exists c <∞ such that for all n ∈N

D+
n,k,λ ⊆ Kn =

[
− c · |Cn|1/d , c · |Cn|1/d

]d ∩Zd .

In (iii) above the important property is that Nk,λ does not depend on n. That
means in particular that for k and λ fixed, all Dn are included in the same finite
collection of (increasing) cubes Jn,k,λz .
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Proof. We start by demonstrating statement (ii). Defining t̃n,k,λ =
( |Cn |
λk

)1/d
for each

k,n ∈N and using Corollary D.2.2, we find

|∂Cn ⊕B(t̃n,k,λ)| ≤
p∑
i=1

|∂Cn,i ⊕B(t̃n,k,λ)| ≤ 2
d−1∑
j=0

ωd−j

 p∑
i=1

Vj (Cn,i)

 t̃d−jn,k,λ .

From straightforward calculations,

1
λk

1

t̃dn,k,λ
|∂Cn ⊕B(t̃n,k,λ)| ≤ 2

d−1∑
j=0

ωd−j

∑p
i=1Vj (Cn,i)

|Cn|j/d
( 1
λk

) d−j
d
,

such that (D.2.1) gives

limsup
n→∞

1
λk

1

t̃dn,k,λ
|∂Cn ⊕B(t̃n,k,λ)| → 0

as k→∞. Using that t̃n,k,λ/cd = ct̃n,k,λ and replacing λ by λ/cd in the limit above, we
find that in fact

limsup
n→∞

1
λk

1

t̃dn,k,λ
|∂Cn ⊕B(ct̃n,k,λ)| → 0

as k→∞ for all c > 0. Since tn,k,λ ≤ t̃n,k,λ, and tn,k,λ ∼ t̃n,k,λ as n→∞, we also have

limsup
n→∞

1
λk

1

tdn,k,λ
|∂Cn ⊕B(ctn,k,λ)| → 0 (D.2.3)

as k→∞ for all c > 0. Recall that the side length of In,k,λz is tn,k,λ, so if In,k,λz ∩∂Cn , ∅
then clearly In,k,λz ⊆ Cn ⊕B(2

√
d tn,kλ). Using that |In,k,λz | = tdn,k,λ, we then find

qn,k,λ − pn,k,λ
λk

≤ 1
λk

1

tdn,k,λ

∣∣∣∣ ⋃
In,k,λz ∩∂Cn,∅

In,k,λz

∣∣∣∣ ≤ 1
λk

1

tdn,k,λ
|Cn ⊕B(2

√
d tn,k,λ)|.

Together with (D.2.3) and the fact that pn,k,λ ≤ λk ≤ qn,k,λ for n chosen large enough
relative to k, this gives the statement in (ii).

For statement (i) we now use that |D−n,k,λ| = pn,k,λ · tdn,k,λ and |D+
n,k,λ| = qn,k,λ · tdn,k,λ

together with (D.2.2) to find

pn,k,λ · tdn,k,λ
|Cn|

≤ |Dn||Cn|
≤ qn,k,λ · t

d
n,k,λ

|Cn|
.

Letting n→∞ and subsequently k→∞ gives the desired result.
To see statement (iii), we have for each k and λ that the sequence (qn,k,λ)n is

bounded by a constant ck,λ for n large enough. Since 0 ∈ Cn, we have 0 ∈ Qn,k,λ.
Furthermore,Cn is connected, soQn,k,λ consists of at most ck,λ points that are pairwise
neighbors. Therefore,

Qn,k,λ ⊆ [−ck,λ , ck,λ]d ∩Zd

which, again, implies the desired result. Finally, (iv) follows easily from (iii). �
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Example D.2.6. Let C = ∪pi=1Ci be a p–convex set and define the sequence (Cn)n∈N
by

Cn = rnC =
p⋃
i=1

rnCi ,

where rn ↑ ∞ as n→∞. Then Vj (rnC) = rjnVj (C) for j = 0, . . . ,d. In particular,∑d
i=1Vj (rnCi)

|rnC|j/d
=

∑d
i=1Vj (Ci)

|C|j/d

will be constant for j = 1, . . . ,d − 1. Thus the sequence (Cn)n∈N satisfies Assump-
tion D.2.4.

D.3 Extreme value theorem for a spatial stationary field on Zd

In this section we consider a stationary random field ξ = (ξv)v∈Zd and a sequence
of index sets (Dn)n∈N in Zd satisfying Assumption D.2.4. Below we formulate the
sufficient mixing condition for ξ in terms of the behavior on the sufficient sets (Kn)
associated to (Dn) by Theorem D.2.5, however, before doing so we introduce some
further notation which will be used in this and the remaining sections of the paper.

We say that two subsets A,B of Zd (or Rd) are r-separated if dist(A,B) = inf{|a−b| :
a ∈ A, b ∈ B} ≥ r and there are two disjoint sets A′ ,B′ ⊆Rd , which are both connected,
such thatA ⊆ A′ and B ⊆ B′ . Moreover, when talking about a d–dimensional cube with
side–length s > 0, we mean a box with all side–lengths equal to s. If the side–lengths
of a box are not identical, we list them all.

Condition (D(xn;Kn)). The condition D(xn;Kn) is satisfied for the stationary random
field (ξv)v∈Zd if there exists a sequence γn = o( d

√|Dn|) such that for all n ∈ N and all
γn-separated sets A,B ⊆ Kn it holds that∣∣∣P(M(A∪B) ≤ xn)−P(M(A) ≤ xn)P(M(B) ≤ xn)

∣∣∣ ≤ αn, (D.3.1)

where αn→ 0 as n→∞.

We need an "approximate independence"similar to (D.3.1) for more than two sep-
arated sets. The lemma below follows easily by induction (and possibly a reordering),
using the fact that ∪r−1

i=1Ai and Ar are γn-separated if all Ai , i = 1, . . . , r, are pairwise
γn-separated for all i , j.

Lemma D.3.1. Let (ξv)v∈Zd be a stationary field satisfying D(xn;Kn), and let for r ∈N
the sets A1, . . . ,Ar be pairwise γn-separated. Then∣∣∣∣P( r⋂

i=1

{M(Ai) ≤ xn}
)
−

r∏
i=1

P(M(Ai) ≤ xn)
∣∣∣∣ ≤ (r − 1)αn.

Assuming D(xn;Kn) we have γn < tn,k,λ for n sufficiently large relative to a fixed k.
For z ∈Nk,λ we divide each Jz = Jn,k,λz into two disjoint subsets, Hz and H ∗z , where

Hz =
{
u ∈Zd : zjtn,k,λ ≤ uj ≤ (zj + 1)tn,k,λ − 1−γn, for all j = 1, . . . ,d

}
.
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We note that H ∗z is the union of the overlapping boxes L∗z,1, . . . ,L
∗
z,d given by

L∗z,j =
{
u ∈ Jz : (zj + 1)tn,k,λ −γn ≤ uj ≤ (zj + 1)tn,k,λ − 1

}
for all j = 1, . . . ,d.

Lemma D.3.2. Let (Dn)n∈N be a sequence of sets satisfying Assumption D.2.4, and let
(ξv)v∈Zd be a stationary field satisfying D(xn;Kn). Then∣∣∣P(M(D−n,k,λ) ≤ xn)−Ppn,k,λ(M(J0) ≤ xn)

∣∣∣
≤2pn,k,λP(M(H0) ≤ xn <M(H ∗0)) + (pn,k,λ − 1)αn,

(D.3.2)

and similarly ∣∣∣P(M(D+
n,k,λ) ≤ xn)−Pqn,k,λ(M(J0) ≤ xn)

∣∣∣
≤2qn,k,λP(M(H0) ≤ xn <M(H ∗0)) + (qn,k,λ − 1)αn.

(D.3.3)

Proof. Since Hz is a subset of Jz, it is easily seen that

0 ≤ P
( ⋂
z∈Pn,k,λ

{M(Hz) ≤ xn}
)
−P(M(D−n,k,λ) ≤ xn)

≤ P
( ⋃
z∈Pn,k,λ

{M(Hz) ≤ xn <M(H ∗z )}
)

≤ pn,k,λP(M(H0) ≤ xn <M(H ∗0))

by stationarity. Turning to Lemma D.3.1 and using stationarity again show that∣∣∣∣P( ⋂
z∈Pn,k,λ

{M(Hz) ≤ xn}
)
−Ppn,k,λ(M(H0) ≤ xn)

∣∣∣∣ ≤ (pn,k,λ − 1)αn,

and realizing that

0 ≤ Ppn,k,λ(M(H0) ≤ xn)−Ppn,k,λ(M(J0) ≤ xn)

≤ pn,k,λ
(
P(M(H0) ≤ xn)−P(M(J0) ≤ xn)

)
= pn,k,λP(M(H0) ≤ xn <M(H ∗0))

concludes (D.3.2). The claim (D.3.3) follows similarly. �

Lemma D.3.3. Let (Dn)n∈N be a sequence of sets satisfying Assumption D.2.4, and let
(ξv)v∈Zd be a stationary field satisfying D(xn;Kn). Then∣∣∣P(M(Dn) ≤ xn)−Pλk(M(Jn,k,λ0 ) ≤ xn)

∣∣∣ ≤ Rn,k,λ, (D.3.4)

where Rn,k,λ satisfies
limsup
n→∞

Rn,k,λ = o(1) (D.3.5)

as k→∞.
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Proof. Let Rpn,k,λ ≥ 0 and Rqn,k,λ ≥ 0 denote the upper bounds in (D.3.2) and (D.3.3),
respectively. First we show that

P(M(H0) ≤ xn <M(H ∗0))→ 0 (D.3.6)

as n→∞. Fix an integer r such that tn,k,λ ≥ (2r + 1)γn. Then, for all j = 1, . . . ,d, we
can write L∗0,j as the union of 2(d − 1) overlapping boxes each with side-lengths
γn, (tn,k,λ −γn), . . . , (tn,k,λ −γn), where we need one box (interval) if d = 1. Now let E∗j
be such a box. Since tn,k,λ ≥ (2r + 1)γn, we can construct boxes E1, . . . ,Er contained in
H0 which are simply translations of E∗j , such that they are separated from E∗j and each
other by γn. Hence, by Lemma D.3.1,

P(M(H0) ≤ xn <M(E∗j ))

≤ P
( r⋂
s=1

{M(Es) ≤ xn <M(E∗j )}
)

= P
( r⋂
s=1

{M(Es) ≤ xn}
)
−P

( r⋂
s=1

{M(Es) ≤ xn} ∩ {M(E∗j ) ≤ xn}
)

≤ xr − xr+1 + 2rαn,

where x = P(M(Es) ≤ xn) = P(M(E∗j ) ≤ xn) for all s by stationarity. For x ∈ [0,1] the

mapping x 7→ xr − xr+1 is bounded by 1/r, and we conclude that

P(M(H0) ≤ xn <M(E∗j )) ≤
1
r

+ 2rαn.

This can be done for all the 2(d − 1) sub-boxes of L∗0,j for all j = 1, . . . ,d. Since H ∗0 =

∪dj=1L
∗
1,j , we therefore find that

P(M(H0) ≤ xn <M(H ∗0)) ≤ 2d(d − 1)
(1
r

+ 2rαn
)
.

Letting n→∞ and then r→∞ show that (D.3.6) is satisfied, which implies that also

lim
n→∞R

p
n,k,λ = lim

n→∞R
q
n,k,λ = 0. (D.3.7)

Now define R̃pn,k,λ ≥ 0 and R̃qn,k,λ ≥ 0 by

R̃
p
n,k,λ = Rpn,k,λ +Ppn,k,λ(M(J0) ≤ xn)−Pλk(M(J0) ≤ xn), and

R̃
q
n,k,λ = Rqn,k,λ +Pλk(M(J0) ≤ xn)−Pqn,k,λ(M(J0) ≤ xn).

Since D−n,k,λ ⊆Dn ⊆D+
n,k,λ, it is seen that

Pλk(M(J0) ≤ xn)− R̃qn,k,λ ≤ P(M(D+
n,k,λ) ≤ xn)

≤ P(M(Dn) ≤ xn)

≤ P(M(D−n,k,λ) ≤ xn) ≤ Pλk(M(J0) ≤ xn) + R̃pn,k,λ,

and defining Rn,k,λ = max{R̃pn,k,λ, R̃
q
n,k,λ} then shows (D.3.4).
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It remains to show that (D.3.5) is satisfied, which follows if both limsupn→∞ R̃
p
n,k,λ

and limsupn→∞ R̃
q
n,k,λ are of order o(1) as k → ∞. We only show this for R̃pn,k,λ as

the behavior for R̃qn,k,λ follows similarly. First, since pn,k,λ ≤ λk, the mapping x 7→
xpn,k,λ − xλk is bounded by (1− pn,k,λλk ) for all x ∈ [0,1]. Hence

Ppn,k,λ(M(J0) ≤ xn)−Pλk(M(J0) ≤ xn) ≤ 1− pn,k,λ
λk

,

and, using (D.3.7) and (ii) in Theorem D.2.5, we conclude that

0 ≤ limsup
n→∞

R̃
p
n,k,λ ≤ 1− liminfn→∞pn,k,λ

λk
→ 0

as k→∞. Equation (D.3.5) is thus satisfied. �

The next theorem shows that under Assumption D.2.4 and D(xn;Kn), and when
normalized correctly, the limiting distribution of M(Dn) is necessarily an extreme
value distribution; see [11, Chapter 1] for a thorough exposition of extreme value
distributions and their connection to max–stable distributions.

Theorem D.3.4. Let (Dn)n∈N be a sequence of sets satisfying Assumption D.2.4, and let
(ξv)v∈Zd be a stationary field. Assume that there are sequences (an)n∈N with an > 0 and
(bn)n∈N such that D(anx + bn;Kn) is satisfied for all x ∈R. Assume furthermore that there
exists a constant a > 0 such that

|Dn| ∼ a ·n. (D.3.8)

If there exists a non–degenerate distribution function G such that for all x ∈R
P (M(Dn) ≤ anx+ bn)→ G(x), (D.3.9)

then G is the distribution function of an extreme value distribution.

Note that (D.3.8) is in particular satisfied if Cn = rnC for a p–convex set C and a
sequence (rn) with rn ∼ c d

√
n, cf. Example D.2.6 and (i) in Theorem D.2.5.

Proof. According to [11, Theorem 1.3.1] it suffices to show that there exists a sequence
of distribution functions (Fn)n∈N such that for all x ∈R and all k ∈N

Fn(ankx+ bnk)→ G1/k(x) (D.3.10)

as n→∞. To obtain this, we first relate the limiting distribution G to the distribution
of M(D̃k0

n ), where (D̃k0
n )n∈N is a sequence of discrete cubes defined as follows: Choose

k0 ∈ N such that 2/ d
√
λk0 ≤ c for all λ ∈ (1 − ε,1 + ε), with ε > 0 and c defined in

Theorem D.2.5, and define

C̃k0,λ
n =

[
0, d

√
|Cn|/(λk0)

]d
and D̃k0,λ

n = C̃k0,λ
n ∩Zd ,

which are easily seen to satisfy Assumption D.2.4. Note in addition that ˜2Dk0,λ
n ⊆ Kn

and |C̃k0,λ
n | = |Cn |

λk0
for all n. Now, with a notation very similar to the notation from

Section D.2, we define for each k ∈N
P̃ k0,λ
n,k = {z ∈Zd : In,k0·k,λ

z ⊆ C̃k0,λ
n } and

Q̃k0,λ
n,k = {z ∈Zd : In,k0·k,λ

z ∩ C̃k0,λ
n , ∅}.
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With the same arguments as before and in the proof of Theorem D.2.5 it is easily seen
that

|P̃ k0,λ
n,k | ≤ k ≤ |Q̃

k0,λ
n,k |

and
liminf
n→∞

∣∣∣P̃ k0,λ
n,k

∣∣∣ ∼ k resp. limsup
n→∞

∣∣∣Q̃k0,λ
n,k

∣∣∣ ∼ k
as k → ∞. Using that D̃k0,λ

n is approximated by roughly k of the cubes Jn,k0·k,λ
z in

exactly the same way as Dn can be approximated by roughly k of the cubes Jn,k,1z , we
find from Lemma D.3.3 that∣∣∣P(

M(D̃k0,λ
n ) ≤ anx+ bn

)
−Pk

(
M(Jn,k0·k,λ

0 ) ≤ anx+ bn
)∣∣∣ ≤ R̃n,k,λ,

where R̃n,k,λ satisfies limsupn→∞ R̃n,k,λ = o(1) as k → ∞. Using that x 7→ xλk0 is
Lipschitz continuous when restricted to [0,1], we find that also∣∣∣Pλk0

(
M(D̃k0,λ

n ) ≤ anx+ bn
)
−Pλk0·k

(
M(Jn,k0·k,λ

0 ) ≤ anx+ bn
)∣∣∣ ≤ R̃′n,k,λ,

where limsupn→∞ R̃′n,k,λ = o(1) as k→∞. Since we already have from Lemma D.3.3
that ∣∣∣P(

M(Dn) ≤ anx+ bn
)
−Pλk0·k

(
M(Jn,k0·k,λ

0 ) ≤ anx+ bn
)∣∣∣ ≤ Rn,k,λ,

we can, when combining with (D.3.9), conclude that for all x ∈R

Pλk0
(
M(D̃k0,λ

n ) ≤ anx+ bn
)
→ G(x)

as n→∞, and thereby also

Pk0
(
M(D̃k0,λ

n ) ≤ anx+ bn
)
→ G1/λ(x).

Now define

C
k0
n =

[
0, d

√
a ·n/k0

]d
and D

k0
n = C

k0
n ∩Zd .

By (D.3.8) and (i) in Theorem D.2.5 we find for all λ− < 1 < λ+ that

P
(
M(D̃k0,λ

−
n ) ≤ anx+ bn

)
≤ P

(
M(D

k0
n ) ≤ anx+ bn

)
≤ P

(
M(D̃k0,λ

+

n ) ≤ anx+ bn
)

for n large enough. Letting λ− ↑ 1 and λ+ ↓ 1 this gives

Pk0
(
M(D

k0
n ) ≤ anx+ bn

)
→ G(x) (D.3.11)

as n→∞. Let k ∈N and replace k0 by k0 ·k and n by n·k in (D.3.11). Since furthermore

D
k0·k
n·k =D

k0
n

by construction, we find that for all k ∈N and x ∈R the convergence

Pk0
(
M(D

k0
n ) ≤ ankx+ bnk

)
→ G1/k(x)

as n→∞ is satisfied. This shows (D.3.10) as desired. �

121



Paper D · Extreme value theory for spatial random fields – with application to a Lévy-driven
field

For the remainder of this paper we let λ = 1 and suppress it from the notation.
So far, assuming D(xn;Kn) has made it possible to relate the limiting distribution
of M(Dn) to the distribution of e.g. M(Jn,k0 ). However, to be able to relate this to
the distribution of the individual ξ–variables, it is necessary to make the following
further assumption.

Condition (D ′(xn)). The condition D′(xn) is satisfied for the stationary field (ξv)v∈Zd if

Sn,k = limsup
n→∞

tdn,k

∑
0,v∈Jn,k0

P(ξ0 > xn,ξv > xn) = o(k−1)

as k→∞.

Theorem D.3.5. Let (Dn)n∈N be a sequence of sets satisfying Assumption D.2.4, and let
(ξv)v∈Zd be a stationary field satisfying D(xn;Kn) and D′(xn). Let 0 ≤ τ <∞. Then, for
any v ∈Zd ,

|Dn|P(ξv > xn)→ τ as n→∞, (D.3.12)

if and only if
P(max

v∈Dn
ξv ≤ xn)→ e−τ as n→∞. (D.3.13)

Proof. Let Fξ denote the common distribution function of (ξv)v∈Zd , i.e.

Fξ (x) = 1−Fξ (x) = P(ξv ≤ x), for all v ∈Zd .

Writing J0 = Jn,k0 , it is not difficult to see that∑
v∈J0

P(ξv > xn)−
∑

v<v′∈J0
P(ξv > xn,ξv′ > xn)

≤ P(M(J0) > xn)

≤
∑
v∈J0

P(ξv > xn),

where the summation over {v < v′ ∈ J0} indicates the double sum of points in v ∈ J0 and
subsequent points v′ ∈ J0 falling strictly after v under some underlying enumeration.
This notation will be used in the following sections as well. By stationarity of (ξv) the
above implies that

tdn,kFξ (xn)− Sn,k ≤ P (M(J0) > xn) ≤ tdn,kFξ (xn),

where Sn,k satisfies limsupnSn,k = o(k−1) as k→∞ according to D′(xn). Appealing to
Lemma D.3.3 this implies that

(1− tdn,kFξ (xn))k −Rn,k
≤ P (M(Dn) ≤ xn)

≤ (1− tdn,kFξ (xn) + Sn,k)
k +Rn,k .

(D.3.14)
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Now assume that (D.3.12) is satisfied, that is, |Dn|Fξ(xn)→ τ and equivalently
tdn,kFξ (xn)→ τ/k. Then (D.3.5) and (D.3.14) imply that(

1− τ
k

)k
+ o(1) ≤ liminf

n→∞ P(M(Dn) ≤ xn)

≤ limsup
n→∞

P(M(Dn) ≤ xn)

≤
(
1− τ

k
+ o(k−1)

)k
+ o(1).

Taking the limit k→∞ and using the equivalence log(1− y) ∼ −y (y→ 0) show that
limn→∞P(M(Dn) ≤ xn) = e−τ .

Now assume that (D.3.13) is satisfied, i.e. P(M(Dn) ≤ xn)→ e−τ . Using this as-
sumption, (D.3.5) and (D.3.14) imply that

1−
(
e−τ + o(1)

)1/k ≤ k−1 liminf
n→∞ |Dn|Fξ (xn)

≤ k−1 limsup
n→∞

|Dn|Fξ (xn)

≤ 1−
(
e−τ + o(1)

)1/k
+ o(k−1).

Multiplying by k and taking the limit k→∞ show that limn→∞|Dn|Fξ (xn) = τ . �

The following corollary follows exactly as [11, Corollary 3.4.2].

Corollary D.3.6. For τ = ∞, the conclusions of Theorem D.3.5 hold if the conditions
D(xn;Kn) and D′(xn) are replaced by the following: For all τ ′ <∞ there is a real sequence
(sn)n∈N such that |Dn|P(ξv > sn)→ τ ′ and such that D(sn;Kn) and D′(sn) are satisfied.

Below we provide an example to which the results can be used, namely that of a
stationary Gaussian field, i.e. a field such that all finite dimensional distributions are
multivariate Gaussian.

Corollary D.3.7. Let (ξv)v∈Zd be a stationary Gaussian field with correlation function rv ,
v ∈Zd , satisfying

log(m) sup
|v|>m
|rv | → 0 (D.3.15)

asm→∞. Furthermore, let (Dn)n be a sequence of sets satisfying Assumption D.2.4. Then,
for all 0 ≤ τ ≤∞,

|Dn|P(ξv > xn)→ τ if and only if P(max
v∈Dn

ξv ≤ xn)→ e−τ

as n→∞.

Proof. Without loss of generality we assume that (ξv) is a standard Gaussian field.
First we note that

sup
v,0
|rv | < 1, (D.3.16)

which is seen by the following considerations: From the assumption (D.3.15) we have

sup
|v|>m
|rv | → 0 (D.3.17)
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as m → ∞. Now assume that |rv | = 1 for some 0 , v ∈ Zd . Then, by the Cauchy-
Schwarz inequality, ξ0 = ±ξkv almost surely for all k ∈N, and consequently |rkv | = 1
for all k ∈ N contradicting (D.3.17). Hence, |rv | < 1 for all 0 , v ∈ Zd , which, by
(D.3.17), implies (D.3.16). For all x ∈R and subsets A ⊆ Kn, a trivial generalization of
[11, Corollary 4.2.4] now gives∣∣∣∣P(

max
v∈A

ξv ≤ x
)
−Φ(x)|A|

∣∣∣∣ ≤ K |Kn| ∑
0,v∈Kn

|rv |exp
(
− x2

1 + |rv |
)
, (D.3.18)

where K is an appropriate constant, and Φ denotes the standard normal distribution
function, i.e. the distribution of ξv . If furthermore |Kn|(1 −Φ(xn)) is bounded, the
right-hand side of (D.3.18) tends to 0 as n→∞: Let δ = supv,0|rv | and choose 0 <
α < (1 − δ)/(1 + δ). Splitting the sum into the two parts for which |v| ≤ |Kn|α/d and
|v| > |Kn|α/d , respectively, the result follows by the same arguments as in the proof of
[11, Lemma 4.3.2], realizing that

log|Kn| sup
|v|>|Kn |α/d

|rv | = d
α log|Kn|α/d sup

|v|>|Kn |α/d
|rv | → 0

as n → ∞ by (D.3.15). It is now not difficult to see that D(xn;Kn) and D′(xn) are
satisfied.

Suppose that |Kn|(1−Φ(xn)) is bounded, and hence D(xn;Kn) and D′(xn) are sat-
isfied. Then the claim follows for all 0 ≤ τ <∞ from Theorem D.3.5. Now suppose
that |Kn|(1−Φ(xn)) is unbounded. Let τ ′ <∞ and define the sequence (sn) such that
|Kn|(1−Φ(sn)) = τ ′ . Then, from the considerations above, the conditions D(sn;Kn) and
D′(sn) are satisfied, and the claim follows for τ =∞ from Corollary D.3.6. �

Theorem D.3.8. Let (Dn)n∈N be a sequence of sets satisfying Assumption D.2.4, and let
(ξv)v∈Zd be a stationary field. Assume that there are sequences (an)n∈N with an > 0 and
(bn)n∈N such that D(anx + bn;Kn) and D′(anx + bn) are satisfied for all x ∈ R. Assume
furthermore that |Dn+1|/ |Dn| → 1 as n→∞. If there exists a non–degenerate distribution
function G such that for all x ∈R

P
(
M(Dn) ≤ anx+ bn

)
→ G(x),

then G is the distribution function of an extreme value distribution.

The assumption |Dn+1|/ |Dn| → 1 ensures that the growth of the (Dn) is not too
explosive. It will in particular be satisfied under the assumption given by (D.3.8). It
will also be fulfilled if e.g. Cn = rnC for a p–convex set C and a sequence (rn), where
rn+1/rn→ 1.

Proof. Let again Fξ denote the common distribution function of (ξv)v∈Zd . By Theo-
rem D.3.5 we have

|Dn|Fξ (anx+ bn)→− logG(x) (D.3.19)

for all x ∈R. Now define the two sequences (km)m∈N and (`m)m∈N by

km = max{|Dn| : |Dn| < m} and `m = min{|Dn| : |Dn| ≥m}.
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Then km < m ≤ `m and by assumption km/`m→ 1 as m→∞. We find

km
`m
`mFξ (a`mx+ b`m ) < mFξ (a`mx+ b`m ) ≤ `mFξ (a`mx+ b`m ).

Define a′m = a`m and b′m = b`m and let m→∞. Using the limit (D.3.19) then gives

mFξ (a′mx+ b′m)→− logG(x)

for all x ∈ R. Let (ξ ′m)m∈N be an independent and identically distributed sequence
with common distribution function Fξ and define Mm = max{ξ ′1, . . . ,ξ ′m}. Then, by [11,
Theorem 1.5.1] (which is in fact Theorem D.1.1 from the introduction), we find

P
(
Mm ≤ a′mx+ b′m

)
→ G(x)

for all x ∈R, showing by the classical Extremal Types Theorem [11, Theorem 1.4.2]
that G is indeed an extreme value distribution. �

D.4 Extreme theorem for stationary Lévy-driven random fields

In this section we consider a stationary random field (Xv)v∈Rd , given as an integral of
a kernel function with respect to a Lévy basis, and we wish to characterize the tail
behavior of supv∈CnXv , where (Cn)n∈N is a sequence of index sets in Rd satisfying
Assumption D.2.4.

We define a Lévy basis to be an infinitely divisible and independently scattered
random measure. The random measure M on Rd is independently scattered if for
all disjoint Borelsets (An)n∈N ⊆ Rd the random variables (M(An))n∈N are indepen-
dent and furthermore satisfy M(∪n∈NAn) =

∑
n∈NM(An). The random measure M is

infinitely divisible if M(A) is infinitely divisible for all Borelsets A ⊆Rd .
Moreover, in this paper we assumeM to be a stationary and isotropic Lévy basis on

Rd . With C(λ †Y ) = logEeiλY denoting the cumulant function for a random variable
Y , this means that the random variable M(A) has Lévy-Khintchine representation

C(λ †M(A)) = iλa|A| − 1
2
λ2θ|A|+

∫
A×R

(
eiλx − 1− iλx1[−1,1](x)

)
F(du,dx).

Here a ∈R, θ ≥ 0 and F is the product measure m⊗ρ of the Lebesgue measure m and
a Lévy measure ρ.

We assume that the Lévy measure ρ is convolution equivalent with index β > 0,
and we write ρ ∈ Sβ . Convolution equivalence is a property of the right tail of a
finite measure, and thus we may equivalently define it through the restriction ρ1 of
ρ to the set (1,∞). Note that Sβ usually denotes the class of convolution equivalent
distributions, however, we say that ρ is in Sβ if its (1,∞)-restriction ρ1 ∈ Lβ , the class
of finite measures with an exponential right tail with index β, i.e.

ρ1((x − y,∞))
ρ1((x,∞))

→ eβy as x→∞, (D.4.1)

for all y ∈R, and if it furthermore satisfies the convolution property

(ρ̃1 ∗ ρ̃1)((x,∞))
ρ̃1((x,∞))

→ 2
∫
R

eβy ρ̃1(dy) <∞ as x→∞,
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where ∗ denotes convolution and ρ̃1 is the normalization of ρ1. Moreover, we note that
ρ1 (equivalently ρ) lies in the maximum domain of attraction MDA(Λ) of the Gumbel
distribution, by which we mean that there are norming constants ãn > 0 and b̃n ∈R
such that

nρ̃1((ãnx+ b̃n,∞))→ e−x, (n→∞),

for all x ∈ R. This is seen by [5, Theorem 3.3.27] and (D.4.1) choosing the function
ã( · ) (as in the formulation of the theorem) constantly equal to 1/β. The norming
constants can be seen to satisfy

ãn→ β−1, and b̃n→∞

as n→∞, where we refer to [5, Chapter 3] for a description on the extreme value
distributions, their maximum domains of attraction, and the associated norming
constants. For convenience, we collect the assumptions on M and ρ in the following.
Assumption D.4.1 is assumed satisfied in the remainder of this paper.

Assumption D.4.1. The Lévy basis M on Rd is stationary and isotropic with a Lévy
measure ρ ∈ Sβ where β > 0. Moreover, ρ satisfies∫

|y|>1
|y|kρ(dy) <∞ ∀k ∈N. (D.4.2)

The integrability of ρ along its right tail is already given from the fact that ρ ∈ Sβ ,
and, since ρ is a Lévy measure, it also satisfies

∫
[−1,1] y

2ρ(dy) <∞. Moreover, by [20,

Theorem 25.3], the integrability E|M(A)|k <∞ with |A| > 0 is equivalent to (D.4.2).
We consider the Lévy-driven field X = (Xv)v∈Rd defined by

Xv =
∫
Rd
f (|v −u|)M(du), (D.4.3)

which, by [14, Theorem 2.7], is well-defined if only the Lévy measure satisfies (D.4.2)
for k = 1, and if the integration kernel f : [0,∞)→ [0,∞) is bounded and satisfies∫
Rd
f (|u|)du <∞. However, below we make a set of stronger assumptions on f which

are assumed satisfied throughout this paper. Combined with Assumption D.4.1, these
guarantee the existence of a continuous version of (Xv)v∈Rd , and furthermore they
give a sufficient mixing structure of the field.

Assumption D.4.2. The integration kernel f : [0,∞)→ [0,∞) satisfying

f (0) = 1, f (x) < 1 for x > 0, (D.4.4)

is bounded from above by a decreasing function g such that∫
Rd
g(|u|)du <∞. (D.4.5)

Moreover, the kernel f is Lipschitz continuous, that is, there is a constant CL such that

|f (x1)− f (x2)| ≤ CL|x1 − x2|

for all x1,x2 ≥ 0.
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Furthermore, if d ≥ 2, there is a sequence γn = o( d
√|Cn|) such that, as n→∞,

|Cn|g(γn/2)→ 0 and |Cn|(d−1)/d
∫ ∞
γn/2

g(x)dx→ 0 (D.4.6)

as n→∞.

We remark that the integrability of g and the fact that it is decreasing in particular
implies that ∫

Rd
sup

v∈[0,1]d
g(|v −u|)du <∞.

This will be used when referring to the results of [16] below.

Example D.4.3. If f is a Lipschitz continuous integration kernel satisfying (D.4.4),
and if there exist c ∈R and ε > 0 such that

f (x) ≤ g(x) =
c

(1 + x)d+ε
for all x ∈ [0,∞),

then (D.4.5) is satisfied. Defining γn = d+ε/2
√|Cn| it can be seen that also (D.4.6) is

satisfied, and thus Assumption D.4.2 holds.

We write M = M1 +M2 as the independent sum of two Lévy bases with Lévy–
Khintchine representations

C(λ †M1(A)) =
∫
A×R

(
eiλx − 1

)
F1(du,dx)

C(λ †M2(A)), = iλa|A| − 1
2
λ2θ|A|+

∫
A×R

(
eiλx − 1− iλx1[−1,1](x)

)
F2(du,dx) ,

respectively. Here, Fi =m⊗ ρi , where ρ1 and ρ2 are the restrictions of ρ to (1,∞) and
(−∞,1], respectively, and m is the Lebesgue measure. Similarly, we decompose the
field (Xv)v into a sum of two independent random fields Xv = Zv +Yv for all v ∈Rd ,
where

Zv =
∫
Rd
f (|v −u|)M1(du)

and

Yv =
∫
Rd
f (|v −u|)M2(du) (D.4.7)

are both stationary. By (Theorem C.5.2, Paper C) all three fields have continuous
versions on compact sets.

In [16, Theorem 4.2] an equivalence between the tail of the supremum of a field
defined as (D.4.3) and its associated convolution equivalent Lévy measure is given.
The result relies on a set of assumptions on the Lévy basis and the kernel function,
which differ slightly from Assumptions D.4.1 and D.4.2 given here. However, by
(Theorem C.5.2, Paper C) and Assumptions D.4.1 and D.4.2, the field (Xv)v∈Rd is
continuous on compact sets, and it can easily be seen that the results of [16] are valid.
In particular, if C ⊆ [0,1]d (or a translation hereof) then

P(supv∈CXv > x)
ρ((x,∞))

→ |C|EeβXu , (x→∞), (D.4.8)
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and
P(supv∈C Zv > x)

ρ((x,∞))
→ |C|EeβZu , (x→∞), (D.4.9)

where u ∈Rd is arbitrarily chosen.
In our arguments below we need to find a lower bound of Zv , which (as a field) is

approximately independent for large lag, and which has essentially the same limiting

behavior as Zv . Since f ≥ 0 and M1 ≥ 0, the field Z(t)
v defined by

Z
(t)
v =

∫
{|v−u|≤t}

f (|v −u|)M1(du)

therefore bounds Zv from below for all t > 0. Also, Z(t)
v and Z(t)

v′ are independent for
all v,v′ ∈ Rd satisfying |v − v′ | > 2t. Lastly, it can be seen by the arguments in [16]

that (D.4.9) also holds for the field (Z(t)
v )v if t is large enough relative to the size of

C ⊆ [0,1]d , i.e.
P(supv∈C Z

(t)
v > x)

ρ((x,∞))
→ |C|EeβZ

(t)
u , (x→∞), (D.4.10)

where u ∈Rd is arbitrarily chosen.
For the remainder of the paper, we assume that (Cn)n∈N satisfies Assumption D.2.4.
As mentioned, the conditions D and D′ do not show easily when Cn is properly

discretized, and we therefore continue by studying the extremal behavior of the
semi-deterministic field (Zv + yv)v∈Rd , where (yv)v is seen as a realization of the field
(Yv)v . Having characterized the extremal behaviour of (Zv + yv)v , we conclude the
behaviour of (Xv)v by an independence argument. To discretize, we need the notion
of a unit-cube C(z) in Rd : For a point z = (z1, . . . , zd) ∈Zd , we let C(z) ⊆Rd denote the
closed unit-cube given by

C(z) =
d×
j=1

[zj , zj + 1],

and we say that the corner z ∈Zd has (associated) unit-cube C(z), and vice versa. We
note that ⋃

z∈D−n,k
C(z) ⊆ Cn ⊆

⋃
z∈D+

n,k

C(z)

Thus,

max
z∈D−n,k

sup
u∈C(z)

(Zu + yu) ≤ sup
v∈Cn

(Zv + yv) ≤ max
z∈D+

n,k

sup
u∈C(z)

(Zu + yu). (D.4.11)

Before proceeding, we introduce some notation which will be convenient in the
formulation and proof of the results of this section. These should be read in the
context described above, however, the main result, Theorem D.4.10, is self-contained.
For any discrete set A ⊆Zd , we let My(A) and M(t)

y (A) be the supremas over the union
of (continuous) unit-cubes with corners in A,

My(A) = max
z∈A

sup
u∈C(z)

(Zu + yu), and M
(t)
y (A) = max

z∈A
sup
u∈C(z)

(Z(t)
u + yu).

Hence, with this notation, (D.4.11) translates to

My(D−n,k) ≤ sup
v∈Cn

(Zv + yv) ≤My(D+
n,k). (D.4.12)
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From now on, we let (xn)n∈N be a real sequence given by

xn = anx+ bn, x ∈R,

where an,bn denotes the norming constants relative to |Cn|, i.e

|Cn|ρ̃1((anx+ bn,∞))→ e−x

for all x ∈R as n→∞. Then xn→∞ as n→∞, and consequently we conclude from
(D.4.8) to (D.4.10) that

|Cn|P( sup
u∈C(v)

Xu > xn)→ e−xρ((1,∞))EeβX0

|Cn|P( sup
u∈C(v)

Zu > xn)→ e−xρ((1,∞))EeβZ0 , (D.4.13)

|Cn|P( sup
u∈C(v)

Z
(t)
u > xn)→ e−xρ((1,∞))EeβZ

(t)
0 (D.4.14)

as n→∞. For each fixed x ∈R we let for notational convenience τ and τ (t) be defined
by

τ = e−xρ((1,∞))EeβX0 , and τ (t) = e−xρ((1,∞))Eeβ(Z(t)
0 +Y0),

where t > 0. Note that τ (t)→ τ as t→∞ by monotone convergence.

For the results below, it is important that the tails of (Zv + yv)v and (Z(t)
v + yv)v

behave essentially like those of the stationary fields (Xv)v and (Z(t)
v +Yv)v , respectively.

The following lemma will be shown in Section D.6.

Lemma D.4.4. Let (Zv)v , (Z(t)
v )v and (Yv)v be given as above. Then, for almost all real-

izations (yv)v of (Yv)v , it holds for all z ∈Nk that

|Cn|
|Jz |

∑
v∈Jz

P
(

sup
u∈C(v)

(Zu + yu) > xn
)
→ τ (D.4.15)

and |Cn|
|Jz |

∑
v∈Jz

P
(

sup
u∈C(v)

(Z(t)
u + yu) > xn

)
→ τ (t). (D.4.16)

The result also holds true if Jz is replaced with a subset of Jz in the shape of a box, which
increases in size asymptotically as Jz.

The following lemma, which will be proved in Section D.6, gives that a conditional
version of D(xn;Kn) is satisfied for the field.

Lemma D.4.5. Let (Zv)v , (Z(t)
v )v and (Yv)v be given as above. There is a sequence γn =

o( d
√|Cn|) such that for all γn-separated sets A,B ⊆ Kn it holds that∣∣∣P(My(A∪B) ≤ xn)−P(My(A) ≤ xn)P(My(B) ≤ xn)

∣∣∣ ≤ αy,n,
where αy,n→ 0 as n→∞ for almost all realizations (yv)v of (Yv)v .
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As in the stationary case, the following generalization follows by induction.

Lemma D.4.6. Let (Zv)v , (Z(t)
v )v and (Yv)v be given as above, and let (yv)v be a realization

of (Yv)v . Let for r ∈N the sets A1, . . . ,Ar be pairwise γn-separated. Then∣∣∣∣P( r⋂
i=1

{My(Ai) ≤ xn}
)
−

r∏
i=1

P(My(Ai) ≤ xn)
∣∣∣∣ ≤ (r − 1)αy,n.

We state the following lemma without proof, as it follows by the exact argu-
ments as Lemma D.3.2 taking the lack of stationarity of the discretely indexed field
(supu∈C(v)(Zu + yu))v∈Zd into account.

Lemma D.4.7. Let (Zv)v and (Yv)v be given as above, and let (yv)v be a realization of
(Yv)v . Then it holds that∣∣∣∣P(My(D−n,k) ≤ xn)−

∏
z∈Pn,k

P(My(Jz) ≤ xn)
∣∣∣∣

≤2
∑
z∈Pn,k

P(My(Hz) ≤ xn <My(H ∗z )) + (pn,k − 1)αy,n,
(D.4.17)

and similarly ∣∣∣∣P(My(D+
n,k) ≤ xn)−

∏
z∈Qn,k

P(My(Jz) ≤ xn)
∣∣∣∣

≤2
∑
z∈Qn,k

P(My(Hz) ≤ xn <My(H ∗z )) + (qn,k − 1)αy,n.
(D.4.18)

Lemma D.4.8. Let (Zv)v and (Yv)v be given as above. Then, for almost all realizations
(yv)v of (Yv)v , the following is satisfied(

liminf
n→∞ min

z∈Nk
P(My(Jz) ≤ xn)

)q̃k ≤ liminf
n→∞ P

(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤ limsup
n→∞

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤
(

limsup
n→∞

max
z∈Nk

P(My(Jz) ≤ xn)
)p̃k
,

(D.4.19)

where p̃k = liminfnpn,k and q̃k = limsupn qn,k .

Proof. Let Rpn,k ≥ 0 and Rqn,k ≥ 0 denote the upper bounds in (D.4.17) and (D.4.18),
respectively. For all z ∈Nk , we have

P(My(Hz) ≤ xn <My(H ∗z )) ≤ P(My(H ∗z ) > xn)

≤
d∑
j=1

P(My(L∗z,j ) > xn)

≤
d∑
j=1

∑
v∈L∗z,j

P
(

sup
u∈C(v)

(Zu + yu) > xn
)
,
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where we recall that |L∗z,j | = td−1
n,k γn. We then find that |L∗z,j | = o(|Jz |) as n→∞ for all

j = 1, . . . ,d, and in particular Jz \L∗z,j is a box, which increases in size asymptotically
as Jz. Since the limit in (D.4.15) is finite and |Jz |, |Jz \L∗z,j | and |Cn| are asymptotically
of the same order, we conclude by Lemma D.4.4 that

P(My(Hz) ≤ xn <My(H ∗z )) ≤
d∑
j=1

∑
v∈Jz

P
(

sup
u∈C(v)

(Zu + yu) > xn
)

−
d∑
j=1

∑
v∈Jz\L∗z,j

P
(

sup
u∈C(v)

(Zu + yu) > xn
)

→ 0

almost surely for all z ∈Nk . By Lemma D.4.5 it now follows that

lim
n→∞R

p
n,k = lim

n→∞R
q
n,k = 0

almost surely. Turning to (D.4.12) and using Lemma D.4.7 show that

liminf
n

∏
z∈Qn,k

P(My(Jz) ≤ xn) ≤ liminf
n

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤ limsup
n

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤ limsup
n

∏
z∈Pn,k

P(My(Jz) ≤ xn).

Since the involved factors are probabilities and thus lie in the interval [0,1], we easily
obtain (D.4.19) as desired. �

The following lemma shows that a conditional version of the anti–clustering
condition D′(xn) is satisfied. The proof is deferred to Section D.6.

Lemma D.4.9. Let (Z(t)
v )v and (Yv)v be given as above. Then there is a function g of order

g(k) = o(k−1) as k→∞ such that

limsup
n→∞

∑
v<v′∈Jz

P
(

sup
u∈C(v)

(Z(t)
u + yu) > xn, sup

u∈C(v′)
(Z(t)
u + yu) > xn

)
≤ g(k) (D.4.20)

for almost all realizations (yv)v of (Yv)v and all t large enough.

The following theorem is the main result of the section and in the formulation we
explicitly state the assumptions under which the limit holds.

Theorem D.4.10. Let (Xv)v∈Rd be a Lévy-driven stationary field given by (D.4.3) where
the Lévy basis M satisfies Assumption D.4.1 and the kernel function f satisfies Assump-
tion D.4.2. Let (Cn)n∈N be a sequence of sets in Rd satisfying Assumption D.2.4, and let
an,bn be the norming constants of the Lévy measure ρ relative to |Cn|, i.e. limn|Cn|ρ((anx+
bn,∞)) = e−xρ((1,∞)) for all x ∈R. Then, as n→∞,

P
(
a−1
n

(
sup
v∈Cn

Xv − bn
)
≤ x

)
→ exp

(
−e−xEeβXuρ((1,∞))

)
(D.4.21)

for all x ∈R, where u ∈Rd is arbitrarily chosen.
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Proof. We use the same notation already used throughout this section. In particular,

xn = anx + bn, τ = e−xEeβXuρ((1,∞)) and τ (t) = e−xEeβ(Z(t)
u +Yu )ρ((1,∞)), where u ∈ Rd

is arbitrarily chosen due to stationarity. Moreover, τ (t)→ τ as t→∞.
Similarly as in the previous section, we can find upper and lower bounds to

the probability P(My(Jz) ≤ xn), now taking the lack of stationarity into account.

Using these in combination with Lemma D.4.8 and the fact that supC(v)(Z
(t)
u + yu) ≤

supC(v)(Zu + yu) imply that(
liminf

n
min
z∈Nk

(
1−

∑
v∈Jz

P
(

sup
u∈C(v)

(Zu + yu) > xn
)))q̃k

≤ liminf
n

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤ limsup
n

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤
(
limsup

n
max
z∈Nk

(
1−

∑
v∈Jz

P
(

sup
u∈C(v)

(Z(t)
u + yu) > xn

)
+ Sn,k(z)

))p̃k
,

(D.4.22)

where
Sn,k(z) =

∑
v<v′∈Jz

P
(

sup
u∈C(v)

(Z(t)
u + yu) > xn, sup

u∈C(v′)
(Z(t)
u + yu) > xn

)
,

and q̃k = limsupqn,k and p̃k = liminfnpn,k . By Lemma D.4.9, limsupnSn,k(z) = o(k−1)
as k→∞ uniformly in z. Since tdn,k ∼ |Cn|/k, we find by Lemma D.4.4 and (D.4.22)
that (

1− τ
k

)q̃k ≤ liminf
n

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤ limsup
n

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)

≤
(
1− τ

(t)

k
+ o(k−1)

)p̃k
almost surely. First taking the limit k→∞ combined with the fact that p̃k ∼ q̃k ∼ k,
and secondly taking the limit t→∞ show

lim
n→∞P

(
sup
v∈Cn

(Zv + yv) ≤ xn
)

= τ

almost surely. Let π denote the distribution of the field (Yv)v . Then, by independence
and dominated convergence,

P
(
sup
v∈Cn

Xv ≤ xn
)

=
∫

P
(
sup
v∈Cn

(Zv + yv) ≤ xn
)
π(dy)→ τ

as n→∞. This is exactly (D.4.21). �

Going through the arguments leading up to Theorem D.4.10 it is seen that the
Lévy based form behind the field (Yv)v is only used to obtain that it is independent of
(Zv)v and furthermore stationary, ergodic and satisfying the integrability result of
Lemma D.5.2. Therefore, Theorem D.4.10 is immediately extended to
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Theorem D.4.11. Let (Xv)v∈Rd be a Lévy-driven stationary field given by (D.4.3) where
the Lévy basis M satisfies Assumption D.4.1 and the kernel function f satisfies Assump-
tion D.4.2. Let (Cn)n∈N be a sequence of sets in Rd satisfying Assumption D.2.4, and let
an,bn be the norming constants of the Lévy measure ρ relative to |Cn|, i.e. limn|Cn|ρ((anx+
bn,∞)) = e−xρ((1,∞)) for all x ∈R. Let furthermore (Ỹv)v be a stationary and ergodic field
independent of (Xv)v which satisfies

Eexp
(
γ sup
v∈C(0)

Ỹv
)
<∞

for some γ > 2β, where β is introduced in Assumption D.4.1. Then, as n→∞,

P
(
a−1
n

(
sup
v∈Cn

Xv + Ỹv − bn
)
≤ x

)
→ exp

(
−e−xEeβ(Xu+Ỹu )ρ((1,∞))

)
for all x ∈R, where u ∈Rd is arbitrarily chosen.

D.5 Proofs related to the (Yv)–field

We start this section by considering the tail of a distribution in Lβ , and we give a
bound which will be useful in the proofs below. In the formulation of the result, y+ is
defined as y+ = max{y,0} for all y ∈R.

Lemma D.5.1. Let G ∈ Lβ be a distribution with exponential right tail with index β ≥ 0.
Let G be its tail. For all γ > β there is x0 ∈R and C̃ ∈R such that

G(x − y) ≤ G(x)C̃ exp(γ y+) (D.5.1)

for all x ≥ x0 and y ∈R.

Proof. Since G ∈ Lβ is follows that

G(x) = a(x)exp
(
−
∫ x

0
β(y)dy

)
,

where a(x)→ a > 0 and β(x)→ β as x→∞. This is due to Karamata’s representation
theorem (see e.g. [5, Theorem A3.3]) and the fact that G ◦ log is a regularly varying
function of index −β. Fix γ > β and find x0 such that

β(x) < γ, and |a(x)− a| ≤ a/3 (D.5.2)

for all x ≥ x0.
Now consider only x ≥ x0 and y ≥ 0. If y ≤ x − x0 and hence x − y ≥ x0, we find

from (D.5.2) above that

G(x − y) = G(x)
a(x − y)
a(x)

exp
(∫ x

x−y
β(y)dy

)
≤ G(x)2exp(γ y).

If on the other hand y > x − x0, we see that

G(x − y) ≤ G(x)

G(x)
= G(x)

[
a(x)exp

(
−
∫ x0

0
β(y)dy

)]−1
exp

(∫ x

x0

β(y)dy
)

≤ G(x)C̃0 exp(γ y),
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where the constant C̃0 can be chosen as

C̃0 =
[2a

3
exp

(
−
∫ x0

0
β(y)dy

)]−1
.

Choosing C̃ = max{2, C̃0} shows (D.5.1) for y ≥ 0.
If y < 0 the claim (D.5.1) reads G(x − y) ≤ G(x)C̃, which is clearly true since

x 7→ G(x) is decreasing. �

The following result will be used repeatedly in the subsequent proofs and helps
ensuring that the field (Yv)v has minor importance when determining the extremal
behaviour of (Xv)v .

Lemma D.5.2. Let the field (Yv)v∈Rd be given by (D.4.7). Then

Eexp
(
γ sup
v∈C(0)

Yv
)
<∞ (D.5.3)

for all γ > 0.

Note that the result in Lemma D.5.2 is equivalent with Eexp
(
γ(supC(0)Yv)+

)
<∞ for

all γ > 0, which will be used specifically in Section D.6.

Proof. By considerations as in [16], [17] and Paper C, the countable field (Yv)v∈Qd

is infinitely divisible with characteristic function as in [2, Eq. (1.1)], where its Lévy
measure ν on RQd

is given as follows: Define H : Rd × (−∞,1]→RQd
as

H(u,x) = (xf (|v −u|))v∈Qd .

Withm denoting the Lebesgue measure, we let ν = (m⊗ρ2)◦H−1 be the image-measure
of m⊗ ρ2. Since v 7→ Yv is continuous on compact sets,

P( sup
v∈C(0)

Yv <∞) = P( sup
v∈C(0)∩Qd

Yv <∞) = 1.

Moreover, ν({z ∈ RQd
: supC(0)∩Qd zv > 1}) = 0, and the claim now follows from [2,

Lemma 2.1]. �

In the remainder of this section we establish some useful ergodic properties of
the field (Yv)v . First, we recast some notation and a result from [10]. Let (S,A,µ) be
a probability space, and assume that Ti : S → S is a measurable map for i = 1, . . . ,d
such that T1, . . . ,Td commute, i.e. Ti ◦ Tj = Tj ◦ Ti for all i, j. Furthermore, assume for
all i = 1, . . . ,d that

Ti(µ) = µ.

Let V = Zd
+, and define for each v = (v1, . . . , vd) ∈ V the map Tv : S→ S by

Tv = T v1
1 T v2

2 · · ·T vdd ,

where e.g. T v1
1 means the composition of T1 with itself v1 times. Note that µ is also

Tv–invariant for all v ∈ V .
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We define a subset I ⊆ V to be a box if it has the form

I =
( d×
i=1

[ui ,vi[
)
∩Zd ,

for u = (u1, . . . ,ud),v = (v1, . . . , vd) ∈ V . The set of all such boxes in V will be denoted
I .

Definition D.5.3. A sequence I1, I2, · · · ⊆ V is said to be regular if there exists an in-
creasing sequence I ′1 ⊆ I ′2 ⊆ · · · ∈ I and c < ∞ such that Ii ⊆ I ′i and |I ′i | ≤ c|Ii | for each
i.

Now we can formulate an ergodic theorem, which can be found as Theorem 6.2.8
in [10]. The theorem is followed by a few definitions and theorems also know from
the classical ergodic theory.

Theorem D.5.4. Assume that (S,A,µ) and (Ti)i=1,...,d satisfies the above. Let furthermore
g : S → R be measurable and µ–integrable, and assume that I1, I2, · · · ∈ I is a regular
sequence. Then

1
|In|

∑
v∈In

g ◦ Tv → E[g | I]

µ–almost everywhere as n→∞, where I is the invariant σ–algebra, i.e. the σ–algebra
consisting of all sets in A invariant to Ti for i = 1, . . . ,d.

If the invariant σ–algebra I is trivial, we say that the family (Tv)v∈V is ergodic.

Definition D.5.5. The family (Tv)v∈V is mixing if

µ(F ∩ T −vn(G))→ µ(F)µ(G) (D.5.4)

for all F,G ∈ A and (vn)n∈N ⊂ V with |vn| →∞.

Theorem D.5.6. If (Tv)v∈V is mixing, then it is ergodic.

Proof. Let F ∈ I and choose any sequence (vn) ⊂ V with |vn| →∞. Then T −vn(F) = F,
so

µ(F) = µ(F ∩ T −vn(F))→ µ(F)2

leading to F being a trivial set. �

The following theorem is obtained by a standard extension argument.

Theorem D.5.7. For (Tv)v∈V being mixing, it is sufficient that (D.5.4) is satisfied for all
F and G in an intersection stable generating system for A.

We will apply the ergodic theory to the random field Y = (Yv)R defined in (D.4.7).
Thus we let S = C(Rd) be the set of all continuous functions on Rd , and let A be
the corresponding σ–algebra generated by all coordinate projections. Finally, we let
µ = Y (P). Each map Ti : S→ S is defined as

Ti
(
(xt1,...,td )(t1,...,td )∈Rd

)
=

(
(xt1,...,ti−1,ti+1,ti+1,...,td )(t1,...,td )∈Rd

)
,

which obviously commutes with Tj , i.e. Ti ◦ Tj = Tj ◦ Ti for all i, j = 1, . . . ,d. Moreover,
by stationarity of (Yv)v , the maps satisfy Ti(µ) = µ for all i.
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Lemma D.5.8. Let u1, . . . ,up,v1, . . . , vq ∈ Rd and (zn)n∈N ⊆ V with |zn| → ∞ be given.
Then

(Yu1
, . . . ,Yup ,Yv1+zn , . . . ,Yvq+zn )→ (Yu1

, . . . ,Yup )(P)⊗ (Yv1
, . . . ,Yvq )(P)

in distribution.

Proof. For λ1, . . . ,λp,β1, . . . ,βq ∈R we show that

logE
[
ei(λ1Yu1 +···+λpYup+β1Yv1+zn+···+βqYvq+zn )]
→ logE

[
ei(λ1Yu1 +···+λpYup )]+ logE

[
(ei(β1Yv1 +···+βqYvq )]

as n→∞. Defining g1(w) =
∑p
i=1λif (|ui−w|) and g2(w) =

∑q
i=1 f (|vi−w|), and utilizing

that
∫
R
y2ρ(dy) <∞, we can write

logE
[
ei(λ1Yu1 +···+λpYup+β1Yv1+zn+···+βqYvq+zn )]

= ia′
∫
Rd
g1(w) + g2(w − zn)dw − 1

2
θ2

∫
Rd

(
g1(w) + g2(w − zn)

)2
dw

+
∫
Rd

∫
R

ei(g1(w)+g2(w−zn))x − 1− i(g1(w) + g2(w − zn))xρ(dx)dw
(D.5.5)

for an appropriate constant a′ . The proof is complete, when it is shown that the limit
of (D.5.5) is

2∑
j=1

[
ia′

∫
Rd
gj (w)dw − 1

2
θ2

∫
Rd
gj (w)2dw+

∫
Rd

∫
R

egj (w)x − 1− igj (w)xρ(dx)dw
]
.

For the first term in (D.5.5) we have the equality∫
Rd
g1(w) + g2(w − zn)dw =

∫
Rd
g1(w)dw+

∫
Rd
g2(w)dw.

The integral in the second term of (D.5.5) equals∫
Rd
g1(w)2dw+

∫
Rd
g2(w)2dw+ 2

∫
Rd
g1(w)g2(w − zn)dw,

where the last term converges 0 due to dominated convergence, since g1 is integrable,
and g2(w − zn) is bounded and has pointwise limit 0 by assumptions on the kernel f .

Finally, for the convergence of the third term in (D.5.5) we let ε > 0 be given and
choose D > 0 such that for i = 1,2,∫

B(D)c
gi(w)2dw ·C < ε/4, (D.5.6)

where C =
∫
R
x2ρ(dx). With h(w,x) denoting the integrand in the third term of (D.5.5),

the integral, denoted Jn, can for large n be rewritten as

Jn =
∫
B(D)

∫
R
h(w,x)ρ(dx)dw+

∫
B(D)

∫
R
h(w+ zn,x)ρ(dx)dw

+
∫

(B(D)∪(B(D)+zn))c

∫
R
h(w,x)ρ(dx)dw.

(D.5.7)
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Using |eix − 1− ix| ≤ x2 it is seen that the third term in (D.5.7) is bounded from above
by

C ·
(∫

B(D)c
g1(w)2dw+

∫
(B(D)+zn)c

g2(w − zn)2dw+ 2
∫
Rd
g1(w)g2(w − zn)dw

)
≤ ε/2 + 2C

∫
Rd
g1(w)g2(w − zn)dw,

where the integral has limit 0 with an argument similarly as above.
The limit of the sum of the first two terms in (D.5.7) is∫

B(D)

∫
R

eig1(w)x − 1− ig1(w)xρ(dx)dw

+
∫
B(D)

∫
R

eig2(w)x − 1− ig2(w)xρ(dx)dw

due to dominated convergence. Collecting the limit results for the three terms of
(D.5.7) and referring to (D.5.6) again, we find

limsup
n→∞

∣∣∣∣Jn −∫
Rd

∫
R

eig1(w)x − 1− ig1(w)xρ(dx)dw

−
∫
Rd

∫
R

eig2(w)x − 1− ig2(w)xρ(dx)dw
∣∣∣∣ ≤ ε ,

from which the desired conclusion is obtained, since ε was chosen arbitrarily. �

Theorem D.5.9. Let (Yv)v be defined as above and let (In)n be a regular sequence of boxes
in Zd

+. If g : S→R satisfies E|g((Yu)u)| <∞ then

1
|In|

∑
v∈In

g((Yu+v)u)→ Eg((Yu)u)

almost surely as n→∞.

Proof. Let A be the set of continuity points for the distribution of, say, Y0, which due
to the stationarity is the set of continuity points for all Yv . Note that A is dense in R.
Lemma D.5.8 implies that for all a1, . . . , ap, b1, . . . , bq ∈ A,

P(Yu1
≤ a1, . . . ,Yup ≤ ap,Yv1+zn ≤ b1, . . . ,Yvq+zn ≤ bp)

→ P(Yu1
≤ a1, . . . ,Yup ≤ ap)P(Yv1

≤ b1, . . . ,Yvq ≤ bp).

Since sets on the form
{y ∈ S : yu1

≤ a1, . . . , yup ≤ ap} ,
where p ∈N0, u1, . . . ,up, a1, . . . , ap ∈ A constitutes an intersection stable generating
system forA, we have from Theorems D.5.4, D.5.6 and D.5.7 that for any µ–integrable
map g : S→R,

1 = µ
( 1
|In|

∑
v∈In

g ◦ Tv →
∫
gdµ

)
= P

( 1
|In|

∑
v∈In

g(Tv(Y ))→ E(g(Y ))
)
,

This concludes the proof. �
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The following corollary adapts Theorem D.5.9 into the specific setting that will
be useful in the further arguments.

Corollary D.5.10. Let the field (Yv)v∈Rd be given by (D.4.7), and let g be a function
satisfying E|g((Yu)u∈C(0))| <∞. For all z ∈Nk it then holds that

1
|Jz |

∑
v∈Jz

g((Yu+v)u∈C(0))→ Eg((Yu)u∈C(0))

almost surely as n→∞. The result also holds true if Jz is replaced with a subset of Jz in
the shape of a box, which increases in size asymptotically as Jz.

Proof. In principle, we can only apply Theorem D.5.9 to the collection Jn,kz of sets
contained in Zd

+. But by symmetry, the same result can be obtained for Jn,kz sets in all
the 2d other placements relative to 0.

Let z ∈Nk be fixed and consider Jz = Jn,kz . By construction, (Kn,k)n is an increasing
sequence of cubes such that Jn,kz ⊆ Kn,k and |Kn,k | = |Nk | · |Jn,kz |. In particular, (Jn,kz )n is
a regular sequence of boxes in Zd , and the first part of the result thus follows from
Theorem D.5.9.

Now let Lnz ⊆ Jnz be a box such that |Jnz |/ |Lnz | → c ∈ [1,∞) as n → ∞. Then, for
sufficiently large n, the relation |Kn,k | ≤ 2c |Nk | · |Lnz | holds, and (Lnz )n is thus a regu-
lar sequence of boxes in Zd . The proof is completed by yet another application of
Theorem D.5.9. �

D.6 Remaining proofs

In what follows, Cr(v) is an r-cube with corner v ∈ Rd , that is, a box in Rd with
side-length equal to r > 0. Moreover, as up until now, we let C(v) = C1(v) denote the
unit-cube with corner v.

Proof of Lemma D.4.4. We only show the convergence (D.4.15) as (D.4.16) and the
expressions for Jz replaced by an asymptotically size-equivalent box follow identically.

Let L ∈N be fixed. For all v ∈Zd define AL(v) as the set of corners in a grid with
distance 1/L for which the associated 1/L-cubes are contained in C(v), i.e.

AL(v) = {u ∈ (L−1Z)d : C1/L(u) ⊆ C(v)}.

With this construction it follows that

C(v) =
⋃

u∈AL(v)

C1/L(u).

For v ∈ Zd , define y∗(v) = supu∈C(v) yu . Similarly, for all u ∈ (L−1Z)d , define y∗L(u) =
sups∈C1/L(u) ys, and yL(u) = infs∈C1/L(u) ys. We now let FL denote the distribution of

sups∈C1/L(u)Zs, which, by stationarity, is independent of v ∈Zd and u ∈ AL(v). Then,
from (D.4.13),

|Cn|FL(xn)→ L−de−xρ((1,∞))EeβZ0 (D.6.1)

138



D.6 · Remaining proofs

as n→∞, where FL is the tail of FL. Since ρ ∈ Lβ the equivalence (D.4.9) implies that
also FL ∈ Lβ . From Lemma D.5.1 we conclude for any γ > β the existence of a finite
constant C̃L such that

FL(xn − y) ≤ FL(xn)C̃L exp(γ y+), for all y ∈R, (D.6.2)

for n sufficiently large.
Writing the supremum over C(v) as a maximum of supremas over C1/L(u) for

u ∈ AL(v), it is not difficult to see that∑
v∈Jz

∑
u∈AL(v)

FL(xn − yL(u))−
∑
v∈Jz

SL(v)

≤
∑
v∈Jz

P
(

sup
u∈C(v)

(Zu + yu) > xn
)

≤
∑
v∈Jz

∑
u∈AL(v)

FL(xn − y∗L(u)),

(D.6.3)

where

SL(v) =
∑

u<u′∈AL(v)

P
(

sup
s∈C1/L(u)

Zs > xn − y∗(v), sup
s∈C1/L(u′)

Zs > xn − y∗(v)
)
.

First, we consider the upper bound in (D.6.3). Since FL ∈ Lβ , we find that the conver-
gence FL(xn − y)/FL(xn)→ exp(βy), n→∞, is uniform for y ≤ K for all K ∈N; see e.g
[13, Definition 2.1]. Using Corollary D.5.10 and this uniform convergence, (D.6.1)
and (D.6.2) now imply for all fixed K ∈N that

|Cn|
|Jz |

∑
v∈Jz

∑
u∈AL(v)

FL(xn − y∗L(u))

≤ |Cn|FL(xn)
1
|Jz |

∑
v∈Jz

∑
u∈AL(v)

(FL(xn − y∗L(u))

FL(xn)
1y∗(v)≤K

+ C̃L exp(γ(y∗L(u))+)1y∗(v)>K

)
→ e−xρ((1,∞))EeβZ0E

[
exp

(
β sup
v∈C1/L(0)

Yv
)
1supv∈C1(0) Yv≤K

+ C̃L exp
(
γ( sup
v∈C1/L(0)

Yv)+
)
1supv∈C1(0) Yv>K

]
almost surely as n→ ∞, where the stationarity of (Yv)v has also been used. Since
(D.5.3) holds for all γ > 0 and v 7→ Yv is continuous, letting K →∞ and then L→∞
show by dominated convergence that

limsup
n→∞

|Cn|
|Jz |

∑
v∈Jz

P
(

sup
u∈C(v)

(Zu + yu) > xn
)
≤ e−xρ((1,∞))Eeβ(Z0+Y0)

= e−xρ((1,∞))EeβX0 = τ

almost surely. Concerning the lower bound of (D.6.3), we find for all fixed u , u′ ∈
(L−1Z)d that

1

FL(xn)
P
(

sup
s∈C1/L(u)

Zs > xn − y, sup
s∈C1/L(u′)

Zs > xn − y
)
→ 0 (D.6.4)
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uniformly for y ≤ K , for all K ∈N. This is easily seen from (D.4.9) and the inclusion-
exclusion principle, with the convergence being uniform due to FL ∈ Lβ . Turning to
(D.6.2) and repeating the arguments above, we conclude for all L ∈N that

|Cn|
|Jz |

∑
v∈Jz

SL(v)→ 0

almost surely as n→∞. For the former term of the lower bound, arguing as for the
upper bound shows that

liminf
n→∞

|Cn|
|Jz |

∑
v∈Jz

P
(

sup
u∈C(v)

(Zu + yu) > xn
)
≥ τ

almost surely, which concludes the proof. �

Proof of Lemma D.4.5. We show the claim for d ≥ 2 first. Let the sets A and B be
given as in the lemma and define

A =
⋃
v∈A

C(v) and B =
⋃
v∈B

C(v).

Recall that B(r) denotes the closed ball in Rd of radius r ≥ 0 with center in 0 ∈ Rd ,
and define An = A⊕ B(γn/2) and similarly Bn = B ⊕ B(γn/2), where γn is given by
Assumption D.4.2. For all v ∈ A let

ZAv =
∫
An
f (|v −u|)M1(du), and Z

A
v =

∫
Acn
f (|v −u|)M1(du).

Similarly, for all v ∈ B,

ZBv =
∫
Bn
f (|v −u|)M1(du), and Z

B
v =

∫
Bcn
f (|v −u|)M1(du).

Since M1 is a positive measure all ZAv , Z
A
v , ZBv and Z

B
v are non–negative, and we have

sup
v∈A

Z
A
v ≤

∫
Acn

sup
v∈A

f (|v −u|)M1(du) (D.6.5)

and

sup
v∈B

Z
B
v ≤

∫
Bcn

sup
v∈B

f (|v −u|)M1(du) .

Let rn ∼ c d
√|Cn| for some c < ∞, such that Kn ⊆ B(rn). By Assumption D.4.2, equa-

tions (D.4.5) and (D.4.6), we may choose a sequence (εn)n∈N such that εn ↓ 0 and

1
εn
|Cn|g(γn/2)→ 0 and

1
εn

∫ ∞
γn/2

g(x)(x+ rn)d−1dx→ 0 (D.6.6)

as n→∞, where we recall that g is a decreasing upper bound to f . Define the events
SAn and SBn by

SAn =
(
sup
v∈A

Z
A
v ≤ εn

)
and SBn =

(
sup
v∈B

Z
B
v ≤ εn

)
.
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From Markov’s inequality and (D.6.5) we find

P
(
(SAn )c

)
≤ 1
εn

E(M ′1)
∫
Acn

sup
v∈A

f (|v −u|)du

≤ 1
εn

E(M ′1)
[∣∣∣B(rn +γn/2)

∣∣∣g(γn/2) +
∫
B(rn+γn/2)c

g(|u| − rn)du
]
,

(D.6.7)

with an identical upper bound for the probability P
(
(SBn )c

)
. Similarly to the notation

introduced in Section D.4, we define

MA
y (A) = max

v∈A
sup
u∈C(v)

(ZAu + yu) = sup
v∈A

(ZAv + yv), and

MB
y (B) = max

v∈B
sup
u∈C(v)

(ZBu + yu) = sup
v∈B

(ZBv + yv).

Utilizing that MA
y and MB

y are independent, it can be seen from straightforward
calculations that∣∣∣P(My(A∪B) ≤ xn)−P(My(A) ≤ xn)P(My(B) ≤ xn)

∣∣∣
≤ P(MA

y (A) ≤ xn,SAn )P(MB
y (B) ≤ xn,SBn )

−P(MA
y (A) ≤ xn − εn,SAn )P(MB

y (B) ≤ xn − εn,SBn )

+ 2
(
P
(
(SAn )c

)
+P

(
(SBn )c

))
≤ P(MA

y (A) ≤ xn,SAn )−P(MA
y (A) ≤ xn − εn,SAn )

+P(MB
y (B) ≤ xn,SBn )−P(MB

y (B) ≤ xn − εn,SBn )

+ 2
(
P
(
(SAn )c

)
+P

(
(SBn )c

))
.

(D.6.8)

To obtain the desired conclusion it suffices to show that all three terms of (D.6.8)
have upper bounds which are independent of A and B and which tend to 0 as n→∞.
Concerning the first term we see that

0 ≤ P(MA
y (A) ≤ xn,SAn )−P(MA

y (A) ≤ xn − εn,SAn )

≤ P(∃v ∈ A : xn − εn <MA
y ({v}) ≤ xn,SAn )

≤ P(∃v ∈ A : xn − εn <My({v}) ≤ xn + εn,S
A
n )

≤ P(∃v ∈ Kn : xn − εn <My({v}) ≤ xn + εn)

≤
∑
v∈Kn

P(My({v}) ≤ xn + εn)−
∑
v∈Kn

P(My({v}) ≤ xn − εn).

Since εn → 0, the considerations that led to (D.4.15) also show that the two sums
above have the same limit as n → ∞ for almost all realizations (yv)v of (Yv)v . As
neither sum depend on the choice of A and B, we conclude that the first term of
(D.6.8) satisfy the desired convergence. The convergence of the second term follows
identically. Concerning the convergence of the third term, we see from (D.6.7) above
that P

(
(SAn )c

)
and P

(
(SBn )c

)
have a common upper bound independent of A and B.

Realizing that
∣∣∣B(rn +γn/2)

∣∣∣ asymptotically equals |Cn|, we obtain from (D.6.6) and
a coordinate change that the upper bound in (D.6.7) tends to 0 as n → ∞. This
completes the proof when d ≥ 2.
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Now let d = 1 and let γn be any sequence such that γn = o( d
√|Cn|). Note that we

must have a z0 such that

A ⊆ (−∞, z0 −γn/2] and B ⊆ (z0 +γn/2,∞),

where A and B again denote the continuous extensions of A and B, respectively.
Hence, with the notation as before, we may consider An and Bn as given by

An = (−∞, z0] and Bn = (z0,∞).

Following the exact same arguments as above it suffices to show that∫
Acn

sup
v∈A

f (|v −u|)du ≤
∫ ∞
z0

sup
v≤z0−γn/2

f (|v −u|)du→ 0

as n→∞ (with similar arguments forB). As g is an upper bound of f and furthermore
decreasing, we find that the integral is bounded by∫ ∞

z0

sup
v≤z0−γn/2

g(|v −u|)du ≤
∫ ∞
z0

g(u − z0 +γn/2)du

≤
∫ ∞
γn/2

g(u)du→ 0

as n→∞, which proves the claim for d = 1. �

Proof of Lemma D.4.9. With a slight change of notation (as compared with FL de-
fined in the proof of Lemma D.4.4), we now let Ft ∈ Lβ denote the distribution of

supu∈C(v)Z
(t)
u for t > 0. Hence, by (D.4.14),

|Cn|Ft(xn)→ τ (t) (D.6.9)

as n→∞, for t large enough.
For all z ∈ Nk and all v,v′ ∈ Jz with |v − v′ | > 2t we have by construction that

Z
(t)
v and Z(t)

v′ are independent. Writing y∗(v) = supu∈C(v) yu for all v ∈Zd , turning to
Lemma D.5.1, we find for all γ > β that there is a constant C̃ such that∑

v<v′∈Jz
|v−v′ |>2t

P
(

sup
u∈C(v)

(Z(t)
u + yu) > xn, sup

u∈C(v′)
(Z(t)
u + yu) > xn

)
≤

∑
v<v′∈Ji

Ft(xn − y∗(v))Ft(xn − y∗(v′))

≤ C̃
(∑
v∈Ji

Ft(xn)exp(γ(y∗(v))+)
)2

for sufficiently large n and all z ∈Nk . Since the field (Yv)v satisfies (D.5.3), and since
|Cn|/k ∼ |Jz | as n→∞, we conclude by Corollary D.5.10 and (D.6.9) that

limsup
n→∞

C̃
(∑
v∈Jz

Ft(xn)exp(γ |y∗(v)|)
)2

=
1
k2 C̃

(
τ (t)Eexp

(
γ( sup
v∈C(0)

Yv)+
))2
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almost surely. This is independent of z and of order o(k−1) as k → ∞. This shows
(D.4.20) for the terms in the sum with indices more than 2t apart.

Now consider v,v′ ∈ Jz such that |v − v′ | ≤ 2t. As in (D.6.4), we have for all fixed
v , v′ ∈Zd that

1

Ft(xn)
P
(

sup
u∈C(v)

Z
(t)
u > xn − y, sup

u∈C(v′)
Z

(t)
u > xn − y

)
→ 0

uniformly for y ≤ K , for all K ∈N. Define y∗(v,v′) = max{y∗(v), y∗(v′)} and similarly
for (Yv)v and note that

Eexp(γ(Y ∗(v,v′))+) ≤ Eexp(2γ( sup
v∈C(0)

Yv)+) <∞ (D.6.10)

for all γ > 0 by the Cauchy-Schwarz inequality and (D.5.3). Arguing as in the proof
of Lemma D.4.4, the uniform convergence combined with Corollary D.5.10 and the
stationarity of (Yv)v then yield

limsup
n→∞

∑
v<v′∈Jz
|v−v′ |≤2t

P
(

sup
u∈C(v)

(Z(t)
u + yu) > xn, sup

u∈C(v′)
(Z(t)
u + yu) > xn

)

≤ limsup
n→∞

∑
v<v′∈Ji
|v−v′ |≤2t

P
(

sup
u∈C(v)

Z
(t)
u > xn − y∗(v,v′), sup

u∈C(v′)
Z

(t)
u > xn − y∗(v,v′)

)

≤ C̃
k

∑
|v|≤2t

E
[
exp(γ(Y ∗(0,v))+)1Y ∗(0,v)>K

]
for all γ > 0 and K ∈N, where the constant C̃ is chosen according to (D.5.1). Since
this is independent of z, and due to the fact that there are only finitely many terms
in the sum, we conclude (D.4.20) by letting K →∞ using a dominated convergence
argument, which is justified by (D.6.10). �
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