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Preface

This dissertation presents the research results obtained through my PhD studies at
the Department of Mathematics, Aarhus University, from August 2016 to July 2021.
During this period I also obtained a master’s degree in Mathematics. My studies were
carried out under the supervision of Associate Professor Markus Kiderlen and were
funded jointly by the Graduate School of Natural Sciences (GSNS formerly known
as GSST) and the Centre for Stochastic Geometry and Advanced Bioimaging (CSGB)
through a grant from the Villum Foundation. Four months of funding were also
provided by the Department of Mathematics at Aarhus University. The dissertation
consists of an introductory chapter and the following three self-contained papers:

Paper A Uniqueness of the Measurement Function in Crofton’s Formula. Published
in Advances in Applied Mathematics.

Paper B Reconstructing Planar Ellipses from Translation-Invariant Minkowski Ten-
sors of Rank Two. Submitted to Discrete and Computational Geometry.

Paper C Mean Surface and Volume Particle Tensors under Restricted L-isotropy and
Associated Ellipsoids. Submitted to Advances in Geometry.

Besides layout and minor adjustments, all papers correspond to their submitted ver-
sions. A draft of Paper A was included in my progress report used for the qualification
examination in June 2019. This was later submitted and published in Advances in
Applied Mathematics with only minor changes. Papers B and C are the result of the
last two years of my studies and have thus not appeared in the progress report in any
form. I have contributed extensively in both the research phase and the writing of all
three papers.

The introductory chapter is meant to provide the reader with some basic theory and
notation, which is beneficial for reading the papers of the dissertation. The chapter
also gives an overview of the results of the papers and how they relate to the existing
literature.

During my PhD studies I have been surrounded by a lot of amazing people, who
each in their own way, have helped fill my everyday life with interesting challenges,
laughs and exciting experiences. Here I first and foremost owe my gratitude to my
supervisor Markus Kiderlen without whom this PhD dissertation would never have
been possible. So thank you for the many hours of discussions and guidance which
have been invaluable. My thousands upon thousands of questions must sometimes
have taken a toll on your patience, but you somehow managed to keep a smile on your
face even doing the most trivial of discussions for which I am grateful. I further want
to thank Eva B. Vedel Jensen for allowing me to be a part of the amazing research
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environment that was CSGB. A lot of my most treasured memories of my PhD study
come from events with the people from this group.

I would also like to thank Professor Monika Ludwig from the University of Technology
(TU) in Vienna for her hospitality, even though COVID-19 ended my visit in Vienna
after only two weeks.

A huge thanks also goes out to all my colleagues at Aarhus University and CSGB for
creating a great working environment. Without weekly meetings, daily lunches and
weekly cake my PhD studies would have been a colorless affair. In particular, I want
to thank Nick Larsen, Stine Hasselholt, Helene Svane, Jakob Thestesen and Ragnhild
Laursen for laughs, Friday beers and great discussions. A special thanks goes to
Mads Stehr and Louis Jensen for being amazing officemates. Thank you for the many
random conversations, much needed brain breaks and laughs. Helene Hauschultz
also deserves a special thanks for being a great support both academically and socially
these past eight years. Your support was particularly valuable doing the COVID-19
lockdowns, where our many walks might have prevented my research from coming
to a complete standstill.

Finally, I owe my gratitude to my family and friends for their constant support. Here
my boyfriend Jakob Krejberg Orhgj deserves extraordinary attention. He has been my
rock through my entire PhD study, always believing in me and listening attentively
to every frustration and idea, that has risen over the past five years. Without him
to pull me back up again, I might have been swallowed by one of the black holes of
frustration that research contains, never to be seen again. His IXTEX skills have also
prevented me from throwing my computer out of the window on multiple occasions
for which both me and my computer are grateful.

Rikke Eriksen
Aarhus, July 2021
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Summary

In convex geometry there exist a number of different integral geometric relations.
One of these relations is the classical Crofton formula which states that the (n — j)th
intrinsic volume of a compact convex set in IR” can be obtained as an invariant
integral of the (k — j)th intrinsic volume of sections with k-planes. In the first part
of the dissertation we consider the possibility of replacing the (k — j)th intrinsic
volume in Crofton’s formula by other functionals. Linearity of the integral implies
that this is equivalent to investigating the functionals in the kernel of the invariant
integral defined by Crofton’s formula. The non-triviality of this kernel is shown by
constructing examples of non-trivial local functionals in the kernel, where local refers
to translation invariant, continuous and additive functionals, which only depend on
a small neighbourhood around the location of interest. For k = 1, these examples
turn out to be the only local functionals in the kernel and for k = 2 they are the only
local even functionals in the kernel. Thus we provide a complete description of all
local functionals in the kernel when k = 1 and all even local functionals in the kernel
when k = 2. If the evenness assumption is omitted or k > 2 we prove that there exists
additional examples of local functionals in the kernel.

The Minkowski tensors are the focus of the second part of the dissertation, more
specifically, the volume and surface tensors. The volume and surface tensors are of
great interest, as they contain information about the shape and orientation of the
underlying convex body. In fact, it has previously been proven that the volume tensor
of rank 2 uniquely determines centered full-dimensional ellipsoids. We investigate
whether a similar result holds for the rank-2 surface tensor. We prove that this is in
fact the case, when we consider ellipses in the two-dimensional Euclidean space. For
the n-dimensional case, n > 2, we prove the result for all ellipsoids of revolution of
dimension at least n— 1, meaning all ellipsoids of dimension at least #n — 1, which are
invariant under rotations fixing a one-dimensional plane pointwise. An algorithm
for constructing the underlying ellipsoid given the surface tensor of rank 2 is also
introduced.

The homeomorphism on the set of full-dimensional centered ellipsoids, given by
the rank-2 volume tensor, has in the literature been used to define ellipsoidal set-
valued summary statistics for stationary marked point processes with convex bodies
as marks. Our newly proven homeomorphism, defined by the rank-2 surface tensor
on ellipsoids of revolution, allows for an introduction of an alternative summary
statistic when the stationary marked point process satisfies certain rotation invariance
assumptions. When n = 2 the extra assumptions can be dropped.

Finally, we prove that, under these rotation invariance assumptions, the average
volume and surface tensors of the typical particle (or mark) can be derived from
lower dimensional sections.






Resumeé

Crofton’s formel giver, at det (1 — j)’te indre volumen af en konveks og kompakt
delmengde K af IR” kan bestemmes ved det invariante integral af det (k — j)’te indre
volumen af snit af K med k-dimensionelle affine planer. I forste del af afhandlingen
undersoger vi om det (k — j)’te volumen er entydigt givet. Med andre ord om det er
muligt at erstatte det (k — j)’te indre volumen med andre funktionaler. Vi viser, at
det er muligt ved at konstruere eksempler pa sddanne funktionaler. Da integralet er
linezrt kan en beskrivelse af alle funktionaler, som kan erstatte det (k—j)’te volumen,
findes ved at kortleegge kernen af det invariante integral defineret ved Crofton’s
formel.

Vi er specielt interesseret i de lokale funktionaler, som er indeholdt i kernen, dvs.
funktionaler som er translations invariante, kontinuerte og additive samt kun af-
henger af smé omegne omkring de omrader som betragtes. Dette skyldes at denne
egenskab ofte ses hos estimatorer, og at Crofton’s formel anvendes indenfor f.eks.
stereologi til at udlede sadanne estimatorer.

Vores undersegelser viser, at nar k = 1, kan alle lokale funktionaler beskrives ved den
samme formel. Lignende geelder for alle lige, lokale funktionaler i kernen nér k = 2.
Hvis antagelsen om lige droppes eller k > 2 findes der lokale funktionaler som ikke
kan beskrive pa denne made.

Anden del af afhandlingen omhandler Minkowski tensorer, mere preecist volumen-
og overfladetensorer for kompakte legemer. Volumen- og overfladetensorer generali-
serer velkendte geometriske begreber sd som volumen og overfladearea og derudover
indeholder de information om formen og orienteringen af det underliggende lege-
me. Et velkendt resultat fra litteraturen er at volumentensoren af rang 2 entydigt
fastleegger fuld-dimensionelle centrerede ellipsoider. Vi viser, at lignende gaelder
for overfladetensoren af rang 2 i det to-dimensionelle Euklidiske rum. I det n-di-
mensionelle Euklidiske rum viser vi, at rang-2 overfladetensoren entydigt fastlegger
omdrejningsellipsoider af dimension mindst n—1, dvs. ellipsoider som er invariante
under rotationer som fastholder en linje punktvist.Vi introducerer ogsa algoritmer til
bestemmes af ellipsoiden givet dens rang-2 overfladetensor.

Volumentensoren af rang 2 definerer altsd en homeomorfi mellem fuld-dimensionelle
ellipsoider og symmetriske, positiv definite n x n-matricer. Denne homeomorfi har i
litteraturen veeret brugt til at definere estimatorer for den gennemsnitlige form og
orientering af den typiske partikel (eller markering) af en stationaer markeret punkt-
process med kompakte konvekse markeringer. Det nye resultat for overfladetensoren
af rang 2 kan pa lignende vis bruges til at introducere nye estimatorer, nar bestemte
rotationsinvariansantagelser er opfyldt. Under disse rotationsinvariansantagelser
viser vi ogsa at volumen- og overfladetensorerne kan bestemmes gennem lavere
dimensionelle snit.
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Introduction

This chapter serves as an introduction to the topics and main results of the disser-
tation. Seen as a whole, the dissertation lies within the area of convex, integral and
stochastic geometry. As the subtitle indicates the dissertation contains considerations
of uniqueness problems, more specifically two problems, the first being uniqueness
in Crofton’s formula where the research resulted in Paper A and secondly uniqueness
of ellipsoids given their Minkowski tensors of rank 2 which resulted in Paper B and
Paper C. Section 1 serves as an introduction to some notation and basic theory from
convex geometry. This will be useful for the reading of all of the papers. Section 2
is an introduction to Paper A. It firstly contains a brief overview of some essential
background material used in Paper A, such as Crofton’s formula, local functionals and
spherical harmonics. Afterwards, a short introduction to the main results and proofs
of Paper A is given. Section 3 is an overview of papers B and C. An introduction to
Minkowski tensors and hypergeometric functions is in this section, followed by a
summary of the main results of the two papers.

1 Convex Geometry

The notation here widely follows [17]. Let n € IN. We will generally work in the
n-dimensional Euclidean vector space IR” equipped with the usual inner product
(-,-y and norm || -||. Let H¥ denote the k-dimensional Hausdorff measure. The n-
dimensional Hausdorff measure of the unit ball B” and the (n — 1)-dimensional Haus-
dorff measure the unit sphere S"~! are denoted «x,, = 7"/?/T'(1 + n/2) and w,, = nx,,
respectively.
A set K C R" is called a convex body, if K is non-empty, convex and compact. The set
of all convex bodies in R” is denoted K". In Paper A we will consider the set of all
convex compact sets in a linear subspace X of IR" and denote it by X(X), hence here
the empty set is included. Also the subfamily of all convex compact sets of dimension
at most k, 0 < k < dim X, is denoted i (X).
The support function of a convex body K is

hg(u) = sup({x,u)

xeK

for u € R". As an example the unit ball B” has support function |lu|| for u € IR".
The support function of an ellipsoid K = AB", with A being a symmetric positive
semi-definite n x n-matrix, can be given as

hi (1) = |AC"ul| (1.1)

where C € SO(n) and the diagonal matrix A are given by the spectral decomposition,
A=CAC".
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Figure 1: The figure shows a convex compact set K and the set (K + pB?) in light green. If v = v1 x v, then
the local parallel set M (K, v) is the set in green.

The distance between two convex bodies K,M € K" is defined by the Hausdorff
metric,
dip(K,M)=min(1>0: K C M+ AB", M CK + AB").

This distance can also be expressed using support functions as (see [17, Lemma
1.8.14])
dy(K,M) = sup |hg(u)=hp(u)l.
uesn-1
The metric projection of a convex body K € K" is the mapping p(K,-) such that for
x € R", p(K, x) is the closest point to x in K. The normalized vector, u(K, x), pointing
from p(K,x) to x is the outer unit normal of K in direction x,

where d(K, x) = ||x — p(K, x)||. Pairs (p(K,v), u(K,p)) for y € R"\K are support elements
of K and the set of all these in ¥ = R" x S"~! is called the normal bundle of K, denoted
NorK (see [17, Chapter 2.6]). With this in mind we can define positive finite measures
Ao(K,),...,A_1(K,-) on B(X) called the support measures by

n—1

An(Mp(Kv) = 0" ", A(K, V) (1.2)
=0

3

for v e B(X) and p > 0, where A, is the Lebesgue measure and
M,(K,v) ={xeR" : 0<d(K,x) < p and (p(K,x), u(K,x)) € v}

is the local parallel set (see [17, Theorem 4.2.1]). The local parallel set consists of
all x e R"\K within a fixed distance p of K and where the corresponding support
element is contain in the given subset v C . An example of such a set is illustrated
in Figure 1.

The support measures are concentrated on Nor K and they are closely connected to
some of the fundamental measures in convex geometry, e.g. the total mass of the
support measures of K are the intrinsic volumes, V;(K) = A;(K,X). The measures V;(-)
are called intrinsic as they are independent of the ambient space. For a convex body
K with dim K = m, V,,,(K) is the volume of K, 2V,,_;(K) the surface area and V;(K) is
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K +pB?
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U

K
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Figure 2: By the Steiner formula the volume of set K + pB? can be determined by decomposing it into the
parts shown in the figure. Hence V,(K + sz) =V(K)+2pV1(K)+ npz.

the Euler characteristic.
A useful formula called the classical Steiner formula follows from (1.2),

n
V,(K +pB") = Z 0"y Vi (K.
m=0

Thus the nth intrinsic volume of the expansion K + pB” of K can be determined by
cutting the set into smaller pieces. An illustration of this can be found in Figure 2.
The support measures also give rise to marginal measures called the area measures,

MKn—j n
S]'(K,a)) = WA](K,IR X a))
]
for w € B(S™!), j=1,...,n—1. These measures are locally determined, weakly contin-
uous and additive. They further satisfy the following motion covariance. For a rigid
motion g of IR” with corresponding rotation C

S](gK, Cow) = S](K,a))
and for a > 0,
S;(aK,w) = a Sj(K, ).

The (n—1)th area measure is called the surface area measure. This is due to the following
relation between this measure and the (n — 1)-dimensional Hausdorff measure on the
boundary of K € K", with dimK =,

Siu-1 (K, a)) = Hn_l (T(K, a))),

where 7(K, w) is called the reversed spherical image of K at w and is the set of all
boundary points of K at which there exists a normal vector of K belonging to w [17,
Chapter 2.2]. An illustration of this mapping can be found in Figure 3. If w = $"~!
then the surface area measure is exactly the surface area of K and if further K € C2
then S,_;(K,-) is closely connected to the Gauss-Kronecker curvature, H" 1 as

_ 1 n-1
Su-1(K,w) = L —H”‘l(xK(u)) H'"™ (du) (1.3)

for w € B(S""!), where xg is the reversed spherical image map. Further details can be
found in [17, Chapter 2.5].
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Figure 3: The figure shows a convex compact set K in blue. If w is given as in the figure then the reverse
spherical image at w, 7(K, w), is the part of the boundary of K which is highlighted by dark blue.

2 Paper A

2.1 Crofton’s formulae

In convex geometry a number of integral geometric relations exist. Here we will only
mention Crofton’s formula, as this formula is the focus of Paper A. As a reference we
use [17] where Crofton’s formula and multiple other integral geometric relations can
be found.
Let G(n, k) be the Grassmannian of k-dimensional linear subspaces and A(n, k) be the
group of affine k-dimensional subspaces in IR”. On G(n,k) an invariant probability
measure v, and on A(n, k) a rigid motion invariant measure py can be defined using
the normalized Haar measure on SO(n) (combined with the (n — k)-dimensional
Lebesgue measure). See [17, Chapter 4.4] for further details.

Crofton’s formula now states that the intrinsic volume of a convex body K can be
determined by lower dimensional sections, i.e. for k € {0,...,n} and j € {0,...,k} then

[ VKB ) = a4, (2.1)
A(n,k)
where 5
i)k Rntj—k
(])K Kinvj
njk =~y
(k_j)Kan

Crofton’s formula can be seen as a consequence of the famous Hadwiger characteriza-
tion Theorem [6]. For this we observe that the left hand side of (2.1) is continuous,
rigid motion invariant and additive. Due to Hadwiger’s theorem it is a linear combi-
nation of intrinsic volumes. As the left hand side of (2.1) is further homogeneous of
degree n—k + j, the equation follows. The constant a,j; can be determined by letting
K =B".

Crofton’s formula is particularly interesting in practical applications, as it can be
used to extract different stereological estimators. Examples of such can be found in
[13], where for instance an unbiased estimator of the surface area of a convex body K
from one-dimensional linear sections is introduced or in [8] where Crofton’s formula
is used for calculating sampling probabilities associated with random grids.
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2.2 Local functions

In Paper A we focus mainly on functionals satisfying similar properties as estimators
known from stereology. Such estimators often only depend on small neighborhoods
around the locations of interest. This property was formalized by Wolfgang Weil in
his papers [19] (for functionals acting on the set of polytopes) and [20] (for functionals
acting on convex bodies). He called the property local and the precise definition of
this for functionals acting on K" is the following.

Definition 2.1. A functional ¢ : K" — R is local if there is functional ® : K" x B(R") —
R which is measurable on K" in the first variable, a finite signed Borel measure in the
second and

s p(K)=D(K,R") for all K € K"

» O is translation covariant, i.e. D(K+x,A+x) = D(K,A) for all K e K", A € B(R")
and x € R".

* O is locally determined, i.e. for M,K € K" and A € B(R") then ®(M,A) = O(K,A)
if there exists U C R" open such that KNU =MNU and Ac U.

* K- O(K,) is weakly continuous (in the Hausdorff metric).

By this definition, local functionals are clearly translation invariant and continuous.
Note that the intrinsic volumes are clearly local with one possible local extension
being the curvature measures.

Note further that a local functional is also local when restricted to the set of all
polytopes in R”, P", where local in P” is in the sense of the definition from [19].
However the opposite does not necessarily hold, i.e. a functional acting on K" which
is local when restricted to P", does not necessarily satisfy Definition 2.1.

Wolfgang Weil also proved in [20] an important theorem, which states that all local
functionals on K" admit a decomposition into local, homogeneous and additive parts.
This implies in particular that all functionals satisfying Definition 2.1 are standard
functionals (where standard is defined as in [18], i.e. continuous, translation invariant
and additive).

2.3 Spherical harmonics

This section will give a brief introduction to the theory of spherical harmonics which is
mainly important for that proofs in Paper A. However, the Laplace-Beltrami operator
is also interesting in relation to Paper B.
We will consider functions f : R” — R" and denote the restriction of f to the unit
sphere S""! by f or f. A function F acting on the unit sphere can be extended to
R"\{0} by the radial extension

F(x) =F(i) (2.2)

[l

for x € R"\{0}. The Laplace operator A is important for the theory of spherical har-
monic and acts on twice continuous differentiable functions, so for f € L?(IR")

N S
Af_;(axl)Z'
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This operator gives rise through the radial extension to the Laplace-Beltrami operator
(or the spherical Laplace operator) by

AgF = (AE)y

for F € L?(S™!). Tt is especially important for the proofs of Paper B, that the Laplace-
Beltrami operator is self-adjoint with respect to the inner product

(F,G)= - F(u)G(u)oy—(du),
where 0,_; is the spherical Lebesgue measure on S"~!. This can be proven using
Greens formula (for further details see [5, section 1.2]). Hence

(F,AsG) =(AsF,G)

for all F,G € L?(S™1).

We can now define harmonic polynomials as the polynomials p which are homo-
geneous with Ap = 0. Examples of such polynomials are of course the constant
polynomial and linear functions. Restrictions of harmonic polynomials on R"” to the
unit sphere are called spherical harmonics of dimension n. The vector space of all
harmonic polynomials of homogenuity degree k on R" is denoted by Q) and the
restriction of these to S”:l by H ={p: peQ;}.

The isomorphism f — f from Q} to H} implies that H; N H;, = {0} for m = k (for
further details see [5, Lemma 3.1.3]). So we can define the order of a non-zero n-
dimensional harmonic H as the (unique) number k such that H € H}!. Thus H has
order k, if it is the restriction to S”~! of a k-homogeneous polynomial. The isomor-
phism further yields that 7 has finite dimension (see [5, Chapter 3.1]).

The Legendre polynomials, P/, are the unique polynomials satisfying that for an or-
thonormal basis, Hy,..., Hy, of HZ,

Y Hilu)Hi(w) = - P(¢u,0)). (23)

(see [5, Theorem 3.3.3]). The degree of P} is k and for fixed v € S P((,v)) is a
spherical harmonic of order k. We adapt the notation P",(¢) = 0. By (2.3) it follows
that the Legendre polynomials are even (odd) if k is even (odd). Also Py(1) = 1. For
n = 3 we get the classical Legendre polynomials which are used in Paper A. These

take the simpler form
5 1 4k

— P42 _1\k
Py(t) = KA dtk(t 1) (2.4)
by the formula of Rodrigues (see [5, Prop. 3.3.7]) or alternatively,
k .
1 . (25)! i
P3(t) = — S S o A V)
K=o ],ZO( ) i1(2j —k)!(k—j)!

where we understand t27% = 0 if 2j — k < 0. Paper A uses the above expression with

k =5, which is
1
Pi(t) = g(63t5 — 7083 +15¢).
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2.4 Spherical projections and liftings

In Paper A we further use the theory of spherical projections and liftings. This will
be a brief introduction to these operators based on the article [4]. For a compact
set W Cc R", M(W) will denote the dual space of W. This space is equivalent to the
space of finite signed Borel measures on W. In this section we will assume that
kef{l,...,n—1}, m>—kis an integer and L € G(n, k). Let

H" 8L, v) = {u e S"N\L p; (1) = v) (2.5)
with
pr(u) = u_IL
[lulL]l

being the spherical projection of S"'\L+ onto S¥"'(L) = S""1 N L, where ulL is the
orthogonal projection of u onto L. We let M,,,,L(S”’l) be the subspace of M(S"!)
given by

Mya(8™) = e M(s"™): |

S?l

ML (d ) < o).

We are now able to introduce mappings between M,, 1 (S"~!) and M(S*¥1(L)). The
first being the m-weighted spherical projection, 7y ,,, given by

L et = f ) (py ()Ml ()
Sn—l\LJ_

for p € M,,1(S"1). The other mapping is the m-weighted spherical lifting which
disperses the measure y € M(S¥"1(L)) with a weight along the half-spheres orthogonal
to L. In more detail, the m-weighted lifting is the function 7 ,, : M(SF1(L)) —
M(S"1) such that

win= (0, wY " dwp(dv)
’ Sk‘l(L) H”-k(L,v)ﬂ(')

for yue M(S*1(L)). The weights are chosen such that ”2,0‘71571 = 0,_1, with 01571 being
the spherical Lebesgue measure on S¥1(L). Both maps are weakly continuous and
linear and maps positive measures to positive measures. A measurable function f,
which is integrable with respect to 0,,_; respectively O‘kL_l, can be identified with the
measure f(.)f(u)du, which in turn yields the spherical projections and the spherical
liftings of functions. With this in mind 7 , and 77 ,,, can be seen as the transpose of

each other, (see [4, Section 5]).
(k)

The above gives rise to the mean lifted projection, 7, j

rj<001

k *
(nin,)j}l)(A) :f (7], 7L, i) (A)dL
G(nk)

for y € M(S™ ') and A € B(S"™!). By the definitions of the spherical projection and
the spherical lifting, the mean lifted projection acts on integrable functions f on S"~!

k k
Ln—l (N;’,Lf)dﬂ - J;n—l fd(ﬂfin,)]]/l)

as
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gn)j is a self-adjoint and intertwining continuous linear oper-

It further follows that 7

ator on the set of continuous functions on $"~!, C(S""!), (for details see [4, Section
7=9]). So there are a,, k ,j,a € R such that

k
ki = (o PG (),

see [4, Section 4]. The constants a,, k »,,j,4 can be calculated using the Legendre poly-
nomials and an explicit form is given in [4, Theorem 9.1]. We will only mention here
that these formulas imply especially that a3, 5,5 = %T( and as5115= %, which
are the constants used in Paper A.

2.5 Paper A

In Section 2.1 we introduced the classical Crofton formula and using this we can
define the Crofton operator, Cy : (Kx(R"))R — R, as

(C)(K) = L( SUOE(E),

where @ : K¢ (R") — R is y-integrable. With this in mind, we consider the question
of whether there exist other measurable functionals than the jth intrinsic volume
satisfying

(Cx @)(K) = ayjk Viyjk(K).

By linearity of the Crofton operator, this question becomes equivalent to asking for a
description of the kernel of Cy, which is exactly the set-up in Paper A.

Paper A gives a partial answer to the question by proving that there indeed exist
non-trivial functionals in the kernel of Cy. However a full description of the kernel is
not given.

The existence of functionals in ker Cy is proven by construction. So we prove that for
a non-trivial vi-integrable function f : G(n, k) — R, satisfying

[ rwman=o 2.6
G(n,k)
a non-trivial functional in the kernel of Cy can be given by
Vi(K)f(lin(K)) if dimK =k
pr(K) = / S, (2.7)
0 otherwise

see Proposition A.1.1. Now ¢y is translation invariant and additive. Also if f is con-
tinuous, then ¢ is continuous. Hence the functionals ¢ satisfy most of the natural
geometric properties. Note that there are no non-trivial continuous additive rigid
motion invariant functionals in the kernel of Cy due to Hadwiger’s characterization
theorem [6].

As described in Section 2.2 the interest in the kernel of the Crofton operator comes
from the use of Crofton’s formula for deriving estimators in fields such as stereology.
Hence local functionals as defined in Section 2.2 are the main focus of Paper A.

In Paper A we extend the definition of local to include functionals acting on convex
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compact sets of dimension at most k < n, by saying, that such a functional is local if
it is translation invariant in the entire space and local in the sense of Definition 2.1
for each restriction to a k-dimensional linear subspace. As stated in Section 2.2 every
local functional on K" has a decomposition into homogeneous parts. We prove in
Theorem A.1.2 that this also holds for local functionals on K (IR"). A consequence of
this theorem is that all local functionals in the kernel of C; can be written as ¢ for
some measurable function f satisfying (2.6). When k = 2, a similar result holds for
even, local functionals, i.e. all even local functionals in ker C, can be written as Pr
for some measurable function f satisfying (2.6). Thus Paper A contains a complete
description of all local functionals in the kernel of C; and all even local functionals
in kerC,.

The paper further provides a proof of the existence of additional local function-
als in the kernel of the Crofton operator for k > 2. The proof of this is treated in
two parts. Firstly when k > 2, it turns out that the Klain function of a local even
(k —1)-homogeneous functional ¢ is in the kernel of the Radon transform if and only
if

[ ptpnemmian -0
A(nk)

for all convex polytopes P € K,_1(R") (see Proposition A.2.5). As the kernel of the
Radon transform is non-trivial when k > 2 we get the desired non-trivial (k —1)-
homogeneous even local continuous functionals in the kernel of Cy (see [10] for
details on Klain functions and [3] for detail on the Radon transform).

When k = 2 a construction of a non-trivial 1-homogeneous local functional in the
kernel of C, is possible using spherical harmonics. Thus we construct a non-trivial
function 6 : {(L,v): L € G(n, k), v € sr1n L} = R such that O(L, ) is continuous and
centered on "' N L for each L € G(n, k). Letting

p(K) = Ln_m O(L,v)St_ (K -x,dv)

for all compact convex sets K contained in L+ x, x € L+, we get a local (k — 1)-
homogeneous functional. If

f 705 1 O(L, )i (dL) = 0, (2.8)
G(n,k)

then ¢ is in the kernel of C,. Constructing this non-trivial continuous function 6
satisfying (2.8) can be done using the theory of spherical liftings and projections
introduced in Section 2.4. In Paper A, an example of such a construction is given as

O(L,v) = (amy,y + Brig2) PR((py (10), ) = (x1, ),

where «, § chosen such that 6 is non-trivial and satisfy (2.8).

The last part of Paper A is devoted to discussing the kernel of Cy for functionals now
acting on My, the set of all section profiles of the subset M C K" (i.e. Cy is now an
operator acting on M,iR). For M being the set of all rigid motions of a fixed Ky € K",
the problem of describing the kernel of C is closely related to the Pompeiu problem
(see for instance [15]), which is unsolved in the general case. However, Ramm [16]
proved that the kernel is trivial, when K, has C!-smooth boundary and n = 3. Paper
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A fills a bit of this gap by proving, that, when M is the set of all n-dimensional balls
and ¢ is a motion invariant functional, then ¢ is in the kernel of Cy if and only if
@(KNE)=0 for yr-almost all E € A(n, k). In particular as all 1-dimensional convex
compact sets are balls, this implies that for k = 1, there do not exist non-trivial motion
invariant functionals in the kernel of the Crofton operator.

10
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3 Papers Band C

3.1 Tensors

In papers B and C we work with surface and volume tensors. This section is therefore
an introduction to the concept of tensors and some important properties of these.
The notation widely follows [7].

An r-linear map from (R")" into R is called a rank-r tensor and if it is invariant under
permutations of the arguments it is symmetric. The real vector space of all rank-r
symmetric tensors on IR” is denoted T". The symmetric tensor product is for a; € T",
i=1,...,k given by

k
1
(aq @---@ak)(xl,...,xsk) = Q Z )I_llai(xn(si1+1),...,XU(51.))

UES(Sk i=

with xy,...,x;, € R", where s) = 0,s; = r; +---+r; and S(m) denotes the group of
permutations of {1,...,m}. Thus a; ©---©ay € T **k. To ease notation we abbreviate
and write a®b = ab and

ad =a®a---Oa.
————
r

With this notation 4 = 1 and a"(xy,...,x,) = {(a,%;)---{a,x,) for r > 1 and x; € R",
i=1,...,r. The scalar product of R" given by

Q(x,v) =(x,9)

for x,y € R", is a symmetric rank-2 tensor which we call the metric tensor.
Let (eq,...,e,) be the standard basis of IR". A coordinate representation of T € T” is

T = E tiy..i € €,

1<iy <<ip<n
with
r

t =
1.1y (m] .. _mn

)T(Eil,. ey eir),

where my count the number of times k appears among the indices iy,...,i,. Hence T
can be represented as the array of elements

(T)iy,...i, = Tler, [i1), - enlin]) = Tler, ... €1, €, 80)-
———— —————

i i
This implies that rank-r tensors with r = 0,1, 2 can be identified with numbers, vectors
and symmetric n x n-matrices, respectively.

A functional T : K" — T is said to be rotation covariant if T(CK) = CT(K) for all
C € O(n) and to have polynomial translation behaviour if

r

T(K +1t) = Z],l—!F,_j(K)tj

j=0

for all K € K", t € R" where I,_;(K) € T’/ are independent of t. If both rotation
covariance and polynomial translation behaviour are satisfied, then T said to be

11



Introduction

isometric covariant.
For r,s € Ng and k € {0,...,n— 1} the Minkowski tensors of a convex body K € K" are

I wyg

r,s _ r,,Ss
ch (K) = EM‘J-"X u Ak(K,d(x,M)).

If k =nand s = 0, we define

®(K) = 1 x"dx,
n r! K

and if k € {0,...,n} or r € Ny or s € Nj or k = nand s = 0, we put @ := 0.

In Paper B and C we consider the surface tensors CDS’_SI and volume tensors ®}°.
Note that the volume tensors are isometric covariant while the surface tensors are
translation invariant, due to the translation covariance of the surface measure.

For p € Ny, Alesker’s characterization theorem for tensors [1, Thm 2.5] states that,
the space of all isometry covariant continuous valuations ¢ : K" — TP is spanned
by QmQJI:’S, where m,r,s € Ny, with 2m+r+s=pand k €{0,...n}, and where s = 0 if
k=n.

As the total mass of the jth support measure A;(K,-) is the jth intrinsic volume, then

%K) = Vi(K).

Thus the Minkowski tensors are an extension of the set of intrinsic volumes. The
intrinsic volumes satisfy the rather strong properties of continuity, additivity and
motion invariance which limit their ability of describing the underlying set. E.g. the
rotation invariance implies that orientation of the underlying set is not captured. The
same is true for position in space due to the translation invariance. The Minkowski
tensors however capture more information about the underlying set which makes
them interesting for fields such as stereology and physics. It was for example proven
in [12] and [11] that the surface tensors (Dg’fl (K),s=0,1,...,q for large g or g = o0
uniquely determines the convex body K.

3.2 Hypergeometric functions

Here we will give a brief introduction to the theory of hypergeometric functions.
This is important for the proofs in both Paper B and C. We use the book [2] as
main reference and proofs of results presented in this section can be found there. A
hypergeometric series is a sum of the form

(o)
e
m=0

where “£L is a rational function of m, so

m
[o9)
E cm = o pFglar,...,ap;by,...,b45%x)
m=0

for non-negative integers (and not zero) b;, where

a ({’ll)m-'-
qu(al,...,ap,bl,...,bq,x) = Zmﬁ,

m=0

12
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with (a),, being the Pochhammer symbol,

1 form=20
(@) = .
a(a+1)...(a+m-1) form>0

The function qu(ul,..., ap; by,..., bq;x) converges absolutely for all x if p <g, and for
llx|| <1if p =g+ 1 (see for instance [2, Theorem 2.1.1]). Some examples of functions
which can be represented as a hypergeometric series are for instance log(1 + x) =
x-,F1(1,1;2;—x) or e* = gFy(x). In Paper C we will work mainly with ,F; called the
hypergeometric function, which is defined as

- b
»F1(a,b;c;x) = wam (3.1)
(¢)pm!

m=0
for a,b,c € R and ||x|| < 1. This extend continuously to all other x. Easing notation
we will from now on write ,F; = F. Due to Euler we have the following integral

representation of a hypergeometric function (see for instance [2, Theorem 2.2.1]),

1
B(b,c—b)F(a,b;c;x) = f 01— 1) (1 — xt) ", (3.2)
0

where B(3, j) is the beta function. This integral representation, called Euler’s integral
representation, is useful for different rewritings of the hypergeometric functions. In
particular it yields the following two transformations,

F(a,b;c;x) = (1 -x)""F(a,c - b;c; 1)
called the Pfaff transformation and
F(a,b;c;x) = (1 - %) P F(c—a,c - b;c;x)

called the Euler transformation, see [2, Theorem 2.2.5]. Note that the Pfaff transfor-
mation extents the series representation of the hypergeometric functions to include
x < % and it can be used to prove known formulas for the trigeometric functions such

as
-1 11.3...2 ad 1 1.3, 2 -1 ad

tan” (x) = xF(5,1;5;-x") = F(5,5;3; ) = sin ( )

2 Viexz ETIE V1 +x2

The integral representation (3.2) also implies that for c —a — b > 0 the radius of
convergence of the series representation of the hypergeometric functions include

x=1,as
I(c)[(c—a-Db)

F a b.c. I — .
(@ bic:1) I(c—a)l(c-b)
If ¢ = a+ b we get the convergence

F(a,b;a+b;x) T(a+b)

Jim “log(I-x) L(a)T(b)

Both convergences are important for the results of Paper C and can be found in [2,
Theorem 2.1.3, 2.2.2].

13



Introduction

It is easy to check that differentiating a hypergeometric function will again yield
a hypergeometric function

iF(a,b;c;x) = @F(a+l,b+l;c+ 1;x).
dx c

This combined with the previously mentioned transformations can be used to yield
six contiguous relations, meaning relations between two hypergemetric functions
with the same power-series variable, two parameters which are pairwise equal and
a third that only differs by one. We will only list the two which are used to make
differential formulas for elliptic integrals in the next section, details on proofs can
be found in [2, Section 2.5]. We oppress the variables and write F = F(q, b;¢; x) and
F(a,b+1;¢;x) = F(b+). So

xi—i = b(F(b+)-F), (3.3)
and
x(1 —x)Z—}: =(c=b)F(b=)+(b—-c+ax)F. (3.4)

An interesting application of these differential forms are the definition of the Jacobi
polynomials of degree ,

(a+1)n

g =

F(-mn+a+p+La+1;15%)

which by putting o = = 0 yields the Rodrigues formula for the Legendre polynomi-
als as described in (2.4), (see [2, Definition 2.5.1] for further details).

3.3 Elliptic integrals

For the proofs given in Paper B we use the complete elliptic integrals of first and
second kind denoted K and E respectively. These are defined as

2 1
K(k):J- 1 e,
0 V1-ksin?6
s
E(k) = jz V1 —ksin264d0,
0

for k € (0,1). They are closely related to the hypergeometric functions, as the binomial

expansion of (1 —ksin?0)*2 implies

The two mentioned contiguous relations for the hypergeometric functions (3.3), (3.4)
yield the following differential formulas of the elliptic integrals

d _E(k) - (1 -Kk)K(k)
ax Ktk = 2k(1-k)
and d E(k) - K(k)
2k PR = =5

14
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3.4 PaperB

As described in Section 3.1 the Minkowski tensors play a crucial role, when consider-
ing tensor-valued continuous isometry covariant valuations on K". Their ability to
capture certain shape and orientation information of the underlying set is the focus
of Paper B. In [9] it was proven that a full-dimensional centered ellipsoid is uniquely
determined by its rank-2 volume tensor. This result follows as a full-dimensional
centered ellipsoid E is an affine transformation of the unit ball, hence there is a
symmetric positive definite n x n-matrix A such that E = AB". Spectral decomposition
of A yields the desired uniqueness and solving a system of equations gives an explicit
reconstruction of E given @3’0(15).

This uniqueness result found an application in stereology, where the Miles ellipsoid
was defined in [21] for n = 3. Here the volume tensors up to rank 2 were used to
associate an ellipsoid to a stationary marked point process giving an estimate of
the average shape and orientation of the typical particle (or mark). The polynomial
translation behaviour of the volume tensors implies that the volume tensors are
dependent on both position and shape of the underlying set. Now, the translation
covariance of the surface area measure implies that the surface tensors are translation
invariant, and they therefore only depend on the shape of the underlying set. A
natural continuation of the work on volume tensors is therefore to consider if similar
results can be reached for the surface tensors, i.e. if the rank-2 surface tensor uniquely
determines a centered ellipsoid. In Paper B we focus on the two-dimensional case
and prove that in this setting the result holds. A sketch of the proof is as follows.
The spectral decomposition combined with motion covariance of the surface area
measure allow us to restrict considerations to centered ellipses which are axis-parallel,
meaning ellipses with principal axis along the standard basis of IR?. The surface
area measure of an ellipse is connected to the support function of E through the
Laplace-Beltrami operator, as

S1(E,-) =hg(-) + Aghg(-) := Ohg ().

As mentioned in Section 2.3, the Laplace-Beltrami operator is self-adjoint, and so the
problem simplifies to proving that E is uniquely determined by the following rank-2
tensor

f u?hg(u)du. (3.5)
Sl

Representing (3.5) as a diagonal matrix and using (1.1) imply that each diagonal entry
in (3.5) can be expressed as a linear combination of the complete elliptic integrals of
the first and second kind. Properties of these elliptic integrals finally yield that E is
uniquely determined by (132121 (E).

This result also implies that a centered ellipse is uniquely determined by its first three
non-trivial Fourier coefficients. The proof of uniqueness further yields an algorithm
for reconstructing the underlying centered ellipse given its rank-2 surface tensor. In
Paper B, an algorithm allowing for an error of the inversion is also given, meaning an
algorithm constructing an ellipse E from (132;21 (E) such that the Hausdorff distance
between E and E is no larger than a fixed € > 0.

The established uniqueness and reconstruction are then used in relation to stationary
particle processes X with convex particles (or stationary marked point processes) in

15
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IR?. Here Paper B introduces a counterpart to the Miles ellipse by the Blaschke ellipse
ep(X), which is the associated centered ellipse with rank-2 surface tensor equal to the
rank-2 average surface tensor of the typical particle, Ky, i.e.

D2 (ep(X)) = D2 (EK). (3.6)

The name ”Blaschke” is chosen as the right hand side of (3.6) is the surface tensor
of the Blaschke body of X (up to multiplication with the intensity of X) due to
Minkowski’s existence theorem (see for instance [18]).

Paper B continues by introducing an estimator of the right hand side of (3.6) which is
ratio-unbiased.

Now the mean surface particle tensor of rank 2 contains information on both shape
and orientation. However, this information is intertwined, which implies e.g. that a
process consisting of the same particle K, rotated isotropically, will yield a ball as
Blaschke ellipse. We therefore introduce another ellipse called the mean shape ellipse
as an alternative. Here we treat the orientation and shape information separately by
letting the length of each principal axis of this ellipse be the average of each principal
axis lengths of the typical particle and the orientation be determined by the mean
direction. Examples of the performance of the two ellipses can be found in Paper B.

3.5 Paper C

As in Paper B this paper considers the mean volume and surface particle tensors for
stationary random collections of particles. However, in this paper we work in the
n-dimensional Euclidean space R", n > 2. More specifically, we consider stationary
marked point processes X with marks in K" and the typical particle being the random
convex body K, with distribution equal to the mark distribution. We will restrict our
considerations to processes where the distribution of the typical particle is invari-
ant under rotations fixing a linear subspace L pointwise, which we call L-restricted
isotropy.

For such a process X, with L € G(n,k), k < n—1, which satisfies some appropriate
integrability assumptions, we prove that the mean volume particle tensor ED;°(Ko)
can be derived from (k + 1)-dimensional sections. This follows from the decompo-
sition of R" into L and L+ and some basic integral transformations. The result is a
generalization of the result given in [14], where the case n =3 and k = 1 was treated.
Under the further assumption of X being non-degenerate, a similar result is proven
for the mean surface particle tensor, E®Y*(K,). The proof of this is a bit more in-
volved than the proof of the result for the mean volume particle tensors. In fact, we
need a proposition saying that if a convex body K is invariant under rotations fixing L
pointwise, then the surface area measure of K can be expressed as an integral relation
dependent on the support measure in (k + 1)-dimensional sections. We prove this
using the Steiner formula for surface area measures combined with multiple integral
transformations. This proposition now yields that the mean surface particle tensor
can be derived from (k + 1)-dimensional sections.

As previously mentioned the mean volume particle tensors up to rank 2 have been
used in stereology to yield estimators of the average shape and orientation for the
typical particle through e.g. the Miles ellipsoid. In Paper B we proved, that in the
two-dimensional setting the mean surface particle tensor of rank 2 could also be used
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to introduce ellipsoidal set-valued summary statistics, as it too uniquely determines
centered ellipses. In Paper C we prove that the surface tensor of rank 2 is a homeo-
morphism from the set of all centered ellipsoids of revolution of dimension at least
n—1, n> 2, to the set of all symmetric positive semi-definite n x n-matrices with one
eigenvalue of multiplicity n—1, and the other being positive, i.e. all centered ellipsoids
of at least dimension n—1, which are invariant under rotations fixing a 1-dimensional
linear subspace pointwise, are uniquely defined by their rank-2 surface tensor. This
result relies heavily on the theory of hypergeometric functions (see Section 3.2), as the
eigenvalues of the rank-2 surface tensor of a centered ellipsoid of revolution can be
expressed in terms of these functions. This is due to the relation between the surface
area measure and the Gauss-Kronecker curvature mentioned in Section 1.
As in the two dimensional setting an algorithm for constructing the centered ellipsoid
of revolution given its rank-2 surface tensor can be introduced. Also, an algorithm
allowing for a fixed error € > 0 is introduced, meaning an algorithm where the Haus-
dorff distance between the constructed ellipsoid and the ”real” ellipsoid does not
exceed ¢.
The last section of the paper concerns stationary marked point processes X, with
marks in K". Here we introduce associated ellipsoids based on the mean volume
particle tensor up to rank 2 and the mean surface particle tensor of rank 2. We start
by introducing the Miles ellipsoid, (known when n = 3 from [21]), and the inertia
ellipsoid. These are both determined using the average volume tensors of the typical
particle up to rank 2. Their difference lie in the way they center the typical parti-
cle before taking the average rank-2 volume tensor. The Miles ellipsoid centers the
typical particle at
ED, " (Ko)

EV,(Ko)

If K is deterministic and full-dimensional, ¢ is the center of mass of K;. How-
ever if Ky is random, then ¢ might differ from the average center of mass of K,
IE((IJ}/O(KO)/V”(KO)). Hence, in practice, if the reference points are systematically
away from the centers of mass of the marks, the Miles ellipsoid might not be rep-
resentative for the average shape of the typical particle. As the inertia ellipsoid is
based on averaging the marks with center of mass at the origin, it does not suffer from
this problem. However, in practice, estimation of the centers of mass of individual
sampled particles can be subject to large variances.

When X is L-restricted isotropic with L € G(n, 1), the previous mentioned homeo-
morhism defined by the rank-2 surface tensor allows for the introduction of a Blaschke
ellipsoid eg(X) as the centered ellipsoid of revolution with ]ECDSLZI (Ko) = (132;21 (eg(X)),
which corresponds to the definition given in Paper B. We conclude Paper C with a
discussion of different estimation procedures for these three ellipsoids.

¢ =
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Abstract

Crofton’s intersection formula states that the (n—j)th intrinsic volume of a compact
convex set in IR” can be obtained as an invariant integral of the (k — j)th intrinsic
volume of sections with k-planes. This paper discusses the question if the (k — j)th
intrinsic volume can be replaced by other functionals, that is, if the measurement
function in Crofton’s formula is unique.

The answer is negative: we show that the sums of the (k — j)th intrinsic volume
and certain translation invariant continuous valuations of homogeneity degree
k yield counterexamples. If the measurement function is local, these turn out to
be the only examples when k = 1 or when k = 2 and we restrict considerations
to even measurement functions. Additional examples of local functionals can be
constructed when k > 2.
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Paper A - Uniqueness of the Measurement Function in Crofton’s Formula

A.1 Introduction and main results

A.1.1 Uniqueness of local measurement functions in Crofton’s formula

The classical Crofton formula [20] for compact convex sets K states that the invariantly
integrated j-th intrinsic volume V; of the intersection of K with a k-dimensional flat
E is essentially an intrinsic volume of K:

[ VKA BB =y Vg4 50, (AL1)
A(nk)

Here iy is an (appropriately normalized) invariant measure on the space A(#n,k) of
all k-flats (k-dimensional affine subspaces of R"), a;, j x > 0 is a known constant and
0<j<k<n-1.

We will make use of the following notation. For a linear topological space X
of finite dimension, we will write 5(X) for the Borel o-algebra on X and denote
the family of all compact convex subsets of X by K(X). We will write Ky (X) for the
subfamily of all such sets of dimension at most k, 0 < k < dim X. Clearly, Kgim x(X) =
K(X). In contrast to the standard literature (e.g. [20]) we include the empty set in
these classes.

To simplify notation, we introduce the Crofton operator Cy : (Ki(R"))R — (I(R"))R
by

(Cep)(K) = L( PUOER(E), K eK(®) (A12)

for a measurement function @ : Ky(R") — R. Here and in the rest of the paper we
assume that E — @(K N E) is integrable for all K € (IR"). Due to (A.1.1) there exists
a measurement function ¢ solving Cy(¢) = V; for any j € {n—k,..., n}. The purpose
of the present paper is to discuss uniqueness of such a solution, possibly under
additional restrictions on ¢. As Cy is linear, the equality Cy(¢) = V; has at most one
solution if and only if its kernel ker Cy is trivial. We will therefore describe properties
of the kernel of the Crofton operator.

Unless otherwise stated, we will assume that n € {2,3,...} and k € {1,...,n -1},
thereby excluding the trivial case k = 0. However, the case k = 0 will be discussed
when measurement functions on smaller domains are considered; see Subsection
A.1.2.

For general k € {1,...,n — 1} the kernel of Cy is not trivial and we will give non-
vanishing examples of measurement functions in ker Cy later. We therefore impose
additional assumption on ¢, which are typically geometrically motivated. A set of
rather strong assumptions would be the defining properties of the intrinsic volumes:
continuity, motion invariance and additivity. However, due to Hadwiger’s charac-
terization theorem of the intrinsic volumes, applied in k-flats, such a measurement
function must be a linear combination of V,..., Vi, and thus ¢ € ker Cy if and only if
@ =0by (A.1.1).

Can the assumptions imposed on ¢ be relaxed? The first result shows that there
are non-trivial elements in ker Cy, if the motion invariance is weakened and replaced
by translation invariance.

To state the result let lin K = aff K — x, where affK is the affine hull of K, and x is
an arbitrary element of K € X(IR")\{0}. We will write v} for the invariant probability
measure on the Grassmannian G(#, k) of k-dimensional linear subspaces of IR".
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Proposition A.1.1. Let f : G(n,k) — R be a vy-integrable function and define
Vi(K)f(linK), if dimK =k,
Ppr(K) = { / /

0, otherwise,

for K € Ky (IR"). Then
(i) @y is translation invariant and additive.
(ii) If f is continuous, then @y is continuous.
(iii) If f 2 O then @5 2 0.
(iv) We have
J. f(L)ve(dL) =0 (A.1.3)
G(nk)

if and only if C (¢¢) = 0 on K(R").

The aim of the following considerations is to introduce a natural geometric property
and impose it to the measurement function ¢. The Crofton formula and a number of
other integral geometric relations are widely used in geometric sampling. Many of the
stereological estimators obtained this way share a local property. Roughly speaking,
this means that they can be seen as sums or integrals of contributions which only
depend on an infinitesimal neighbourhood of the location considered. This is not
only true for volume and surface area estimators under IUR sampling [3] but also
under vertical and local designs. For instance the nucleator and the surfactor, defined
as in [12], are of this type. Wolfgang Weil gave in [27] a formal definition of the local
property (basing it on his work with polytopes in [26]), which we will recall below. He
named functionals which have the local property and are in addition continuous and
translation invariant, local functionals on JC(IR"). Among other things, he showed that
every local functional ¢ is a standard functional in the sense of translation invariant
valuation theory, that is, ¢ is continuous, translation invariant and additive on K(R").
It is an open problem if every standard functional is local, however the two notions
are indeed equivalent for n € {1, 2}; see for instance Proposition A.2.3 combined with
equation (A.1.8). As our main focus is Crofton formulae in R3, where only planes
of dimension k € {1, 2} are of practical interest, we thus could have developed our
theory using standard functionals. An exact definition of local functionals on IC(IR")
is given in Definition A.2.1 in Section A.2.3, below. We already mention here that ¢
has the local property if it satisfies the following condition. For each K € K(IR") there
exists a finite signed Borel measure ®(K,-), such that ¢(K) = ®(K,R"), and D(K,-) is
local, meaning that the intersection of K with an open neighbourhood of a Borel set
A already determines ®(K, A). The transition kernel @ is called a local extension of
@. For our considerations we need to extend this definition to include functionals
only acting on compact convex sets of dimension at most k. A natural way of doing
this is to consider the restrictions of ¢ to compact convex subsets of linear subspaces
L € G(n,k) and to require them to be local in the sense of Definition A.2.1, when
identifying L with IR¥. However, this would only give us translation invariance of the
functional in each L € G(n, k) and not necessarily in all of IR”. We therefore say that a
functional ¢ : K¢ (IR") — R is local if it is translation invariant and each restriction
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of @ to subsets of a k-dimensional linear subspace L are local in L in the sense of
Wolfgang Weil; see Definitions A.2.1 and A.2.2 for details. Note that a local functional
@ : K¢ (R") — R is continuous on K(L) for all L € G(n, k).

Our first main result is an extension of [27, Theorem 2.1] to local functionals on
Kr(R"), k € {1,...,n} and it gives a decomposition of a local functional ¢ : ¢ (R") - R
into homogeneous, local functionals (p(j), j=0,... k.

Before stating this result we need to fix some notation. Let x; be the k-dimensional
volume of the unit ball in IRK. For each L € G(n, k), define the Euclidean unit ball in
Ltobe By = B"NL,where B" is the unit ball in R" and let S,f_l(K,-) be the (k- 1)th
surface measure of a compact convex set K € (L) with L as ambient space. Let
gbjk_’ll (L) be the family of spherical polytopes of dimension at most j—1 in L, where the
dimension of a spherical polytope is defined to be one smaller than the dimension j
of its positive hull in L. For k = n, we simplify notation and write @jrf'll = g?)jr}’ll (R™). For
a polytope P, let 7;(P) be the collection of j-faces of P, j =0,...,n and for F € F;(P)
we denote by Ap the restriction to F of the Lebesgue measure in the affine hull of
F. We further let Ny (P, F) be the normal cone of P C L at F in the subspace L and let
ny (P, F) denote the intersection of the unit sphere S"~! with N (P, F). For k = n, we
write, n(P, F) = ngu(P, F). A function ¢ : S""! N L — R is called centered if

J u(uyH*(du) =0,
sn=1nL

where H*"! is the (k — 1)-dimensional Hausdorff measure in R".

Theorem A.1.2. Let ¢ : Ki(IR") — R be a local functional with local extension @y :
K(L)x B(L) = R for each L € G(n, k). Then ¢ has a unique representation

k
p(K)=) oK) (A.1.4)
i=0

with j-homogeneous local functionals @\ on KCr(R™).
In addition, for each L € G(n, k) there is a decomposition

k .
oK) =) oK), (A.15)
j=0

K € K(L), such that CDg) is a local extension of (p(j) restricted to L, for j = 0,...,k.
For a polytope P € K(L), each CDg) has the form

o)=Y g m (P A, (A.1.6)
FeF;(P)

where gy) : @i:]{l(L) — R, j=0,...,k are (uniquely determined by CDg)) simple additive
and continuous functions, the so-called associated functions of ®;.
Moreover we have
(&) = Vi (K) (A.1.7)

for all K € K(L), where c(Lk) = go(k)(K,:UkBL) and

P (K) = cOVy(K) (A.1.8)
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for K € Ki(IR"), where ¢(© = (O ({0}). If further x € LL, then

(p(k_l)(K):J. O(L,v)SF (K —x,dv) (A.1.9)
SminL

(k-1

for all K € K(L+x), where O(L,v) = g, \({v)), is continuous in v and centered for fixed L.

Note that (A.1.4)-(A.1.7) is an extension of [27, Theorem 2.1] to functionals acting on
the subfamilies Ky (IR") of K(IR"), k < n. However, continuity of géj) appears to be a
new result.

By linearity of the Crofton operator Cy, a local functional is in the kernel of Cy if
and only if each homogeneous functional in its decomposition is in the kernel of Cy.
By (A.1.7),(A.1.8) and (A.1.9) we have explicit descriptions of local functionals acting
on compact convex sets of dimension at most 2. Using these descriptions our main
result can be proven. It shows that the only local functionals in ker C; and the only
even local functionals in kerC, are the examples given in Proposition A.1.1. This
result cannot be improved as there are other examples in all remaining cases.

Theorem A.1.3. Let n € N and k <n—1 be given.

(1) For k =1 the local functionals in ker Cy are precisely the functionals ¢ = @y with
some f : G(n, k) — R satisfying (A.1.3).

(2) For k = 2 the even local functionals in ker C, are precisely the functionals ¢ = ¢f
with some [ : G(n,k) — R satisfying (A.1.3).

(3) For k > 2 there is a local functional ¢ of homogeneity degree k — 1 in ker Cy, which
is not trivial, as there exists K € KC(IR") such that {E € A(n, k) : (K NE) = 0} is not
a set of py-measure zero.

Thus we have a complete description of the kernel of the Crofton operator, when
considering local and even functionals acting on intersections of compact convex sets
in R" with either 1- or 2-dimensional flats. The proof of the theorem makes use of
the decomposition of ¢ into homogeneous parts (Theorem A.1.2), which reduces the
problem to considering homogeneous local functionals in the kernel of the Crofton
operator. The explicit expression for the 0-homogeneous functional ¢(?) in (A.1.7)
shows that ¢(?) € ker Cy if and only if ¢(®) = 0. Together with (A.1.8) this gives the
claim for k = 1. For k = 2 and ¢ being even rewriting the 1-homogeneous functional
gives a connection to the kernel of the Radon transform on Grassmannians, which has
well understood properties (see, for instance [7]). Using injectivity properties of this
transform, the 1-homogeneous functional must vanish, yielding Theorem A.1.3(2).

The relation to the Radon transform also leads to the existence of a non-trivial
(k — 1)-homogeneous local functional in the kernel of the Crofton operator, when
k > 2, hence yielding Theorem A.1.3(3) for k > 2. For k = 2 we start by explicitly
constructing a 1-homogeneous local functional in the kernel of the Crofton operator
when n = 3. Examples in higher dimensions are then constructed by averaging a
three-dimensional counterexample over all three-dimensional subspaces containing
a given K € K»(IR"); for details see Section A.2.3. This yields Theorem A.1.3(3).

We conclude this section with some remarks connecting our results to the more
algebraic oriented convex geometry literature. Alesker [1] defined a product on the
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space Val®™ of smooth standard functionals (which is a dense subspace of the suitable
normed space of all standard functionals). For any two smooth convex bodies K; and
K, with positive Gauss curvature at every boundary point, the Alesker product of the
smooth functionals

K > @;(K) = Vy(K +Kp), (A.1.10)

i=1,2,1s given by
@1 @2(K) = Vo, (AK + (K; xK3)), K € K(R"),

where A: R" — R"” xIR", is the diagonal embedding. This property, combined with
bilinearity and continuity, determines the Alesker product uniquely on Val®. The
Crofton integral of a smooth standard functional ¢ can be expressed by means of
Alesker’s product:

Cr @ = an0k Vi - ¢5 (A.1.11)

with the constant a,,,; x from (A.1.1). For a proof, see [4, Equations (2) and (16)]. Hence,
a smooth standard functional ¢ is an element of ker Cy if and only if V, _;-¢ = 0. One
might expect that our constructions, possibly slightly modified, also yield non-trivial
smooth standard functionals satisfying this equation. We give one particular example
showing that this is generally not the case. By the hard Lefschetz theorem (see [2,
Theorem 3.12] and the references therein) the only smooth standard functional ¢
of homogeneity degree j < n/2 satisfying V) - ¢ = 0 is trival. Hence, in contrast to
Theorem A.1.3(3), there is no non-trivial 1-homogeneous smooth standard functional
in ker C, in R3.

The tools of algebraic integral geometry appear not to be directly applicable for
local functionals on K (R") — note that such functionals need not even be continuous.
However, at least some of our results are related or can even be proven using Alesker’s
product, and we illustrate this below by an example. Typically, as products of smooth
standard functionals are difficult to evaluate, (A.1.11) is used to establish Crofton
formulae by employing the Alesker-Fourier transform [F on Val®. It satisfies the
Plancherel-type formula [F2¢p = ¢, where ¢(K) = ¢(-K), K € KC(R"). In addition, we
have

Flp=¢')=Fo-F¢’,
for all ¢, ¢’ € Val™. Here, the convolution product # is uniquely determined by
bilinearity, continuity and the requirement that

@1+ @2(K) =V, (K+K +K;), KeK(R"), (A.1.12)

holds for any two standard functionals as defined in (A.1.10). Hence, if the convo-
lution product i of Vi = FV,,_; and F@ can be determined, a,,gxF1ip = Cy ¢ is a
Crofton integral for ¢.

This can for instance be used to generalize our observation that the standard
functional of the form (A.2.20) in the kernel of the Crofton operator must be trivial.
We now sketch a proof showing that the smooth standard functional

(pj,w(K) = Lnl w(M)Sj(K,du),
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where w is a smooth function on the sphere, can only be in the kernel of the Crofton
operator Cg, k > j, when it is trivial. Such standard functionals are called spherical
valuations; see [23] and [22]. It follows from [5, Theorem 1] that the Alesker-Fourier
transform of the (non-vanishing) spherical valuation ¢; , is a (non-vanishing) spher-
ical valuation ¢,,_j ;, so we have to show that Vy x¢,_;; = 0 only has the trivial
solution. In view of [20, Lemma 1.7.8], the function @ can be written as difference of
support functions of smooth convex bodies M and M with positive Gauss curvature
at every boundary point. Hence ¢,_; 5(K) is the difference of two mixed volumes;
see [20, (5.19)]. The convolution product of mixed volumes is easy to determine by
applying Steiner’s formula and the characterizing property (A.1.12); see [4, Section
3.8]. Using this result, Vi * ¢,,_; ; = 0 turns out to be equivalent to

V(K[k—-j],M,B"[n—k+j—-1])= V(K[k-j],M,B"[n—k+j—1]);

see [20, p. 284] for notation. As this equality must hold for all K € K£(IR"), the convex
bodies M and M must coincide up to translation by the multi-linearity of mixed
volumes and [20, Theorem 7.6.2]. Thus, ¢,,_j,; = 0, as claimed.

A.1.2 Variations: Measurement functions on smaller domains

The problem becomes more involved when considering functionals acting on specific
subsets of IC(IR"). To discuss this more general setting, we fix M C K(IR") and consider
the collection

M ={KNE: KeM,EeA(nk)}

of section profiles of sets in M with k-flats. The uniqueness of the measurement
function ¢ : M} — R in a suitable Crofton formula is again equivalent to a trivial
kernel ker Cy, where the Crofton operator Cy is now a function from M,If to MR
defined by (A.1.2), but with K € M.

To appreciate the difficulty of the problem consider k = 0 and let f(x) = @({x}).
The measurement function ¢ : My — R is an element of ker C if and only if ¢(0) = 0
and

j f(x)dx=0 (A.1.13)
K

for all K € M. When M is ’large’, for instance when it contains all axis-parallel cubes,
we obviously have f = 0 almost everywhere by Dynkin’s lemma (see, [6, Theorem
1.6.1]). However if

M ={gK, : g is arigid motion in R"}

consists of all rigid motions of a fixed non-empty compact convex set K, the existence
of non-vanishing functions f is not trivial at all. When K| is a Euclidean ball, a non-
vanishing solution f of (A.1.13) can be given in terms of a Bessel function, and all
solutions (within the Schwartz class of distributions) can be characterized. Whether
there are other sets K, for which (A.1.13) has a non-vanishing solution f, is the
Pompeiu problem; see, for instance [17]. This long-standing problem is still open in
arbitrary dimension, but the case n = 3 has been settled by Ramm [18] even without
convexity assumptions. His result implies that if K, has C!-smooth boundary, but is
not a Euclidean ball, and (A.1.13) holds for all K € M, then f = 0 almost everywhere.
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We cannot solve this uniqueness problem in full generality, but state a result in
the special case where M consist of all n-dimensional balls. We restrict attention to
motion invariant measurement functions.

Theorem A.1.4. Let n€ N, k €{0,...,n— 1} and M be the set of all n-dimensional balls
and assume that @ : My — R is motion invariant. Then

J P(KNE)ur(dE)=0 (A.1.14)
A(n,k)

for all K € M if and only if
e(KNE)=0

for pg-almost all E € A(n, k).

Remark that all compact convex sets of dimension 1 are balls and hence the above
theorem states that the kernel of the Crofton operator is trivial when considering
motion invariant functionals defined on all 1-dimensional compact, convex sets in
R".

The proof of this theorem makes use of the fact that a translation invariant
functional of a lower dimensional ball does not depend on the center of the ball.
Furthermore, due to rotation invariance each intersection K N E can be replaced
by a k-dimensional ball of equal radius within a fixed flat in G(n, k). Hence ¢ only
depends on the radius of the ball E N K. The proof of Theorem A.1.4 will be given
in Section A.2.4. It exploits the fact that the left side of (A.1.14) can be written as a
Riemann-Liouville integral whose injectivity properties are known.

A.1.3 Table of contents

The paper is structured as follows. In Section A.2.1 some preliminary definitions and
notations are introduced. In Section A.2.2 the proof of Proposition A.1.1 is given
by constructing non-zero functionals in the kernel of the Crofton operator. Section
A.2.3 is devoted to considering local functionals. The definition of these is given
and the first main result, Theorem A.1.2 is proven. The section ends with a proof
of Theorem A.1.3, using the results of Theorem A.1.2. Finally, in Section A.2.4, we
consider functionals on subsets of Ki(IR") and give a proof of Theorem A.1.4.

A.2 Proofs

A.2.1 Notation and preliminaries

Before giving the proofs of the above stated results we will introduce some further
notation. Let A C IR”, we will denote its boundary by bd 4, its interior by int A and its
relative interior by relint A. The orthogonal complement of A is given by AL and the
convex hull by conv(A). If A is convex, its dimension is defined to be the dimension
of its affine hull. The dual cone of A is given by

A°={xeR":{(x,y) < 0Vy € A}

Note that the dual of the convex cone C ={aa:a € A and a > 0} of A satisfies C° = A°.
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We have already introduced the notation 57()]?‘_’11, the set of spherical polytopes in
R" of dimension at most j — 1. We will make use of the subset gojrf'll, consisting of all
spherical polytopes of exact dimension j— 1.

Throughout this paper we consider G(n,k) and A(n, k) endowed with the Fell
topology, which induces Borel o-algebras as in [21, p. 582]. Let j,/ € N with j,/ <nand
consider E € A(n,1), (E € G(n,k)). We define the space of all affine (linear) subspaces
of dimension j incident to E by A(E, j), (G(E,j)). As in [21, Section 13.2] we denote
the appropriately normalized, invariant measures of these spaces by yf and VJE,
respectively. Further, for L € G(n, k), we let the set of all convex polytopes in L be
denoted by P(L).

A.2.2 Construction of non-zero kernel functionals

Proof of Proposition A.1.1: Fix f : G(n,k) — R and let ¢ ¢ be defined as in Proposition
A.1.1. We show (i). By translation invariance of the intrinsic volume and the function
K = linK, ¢; becomes translation invariant. To show additivity, we need to prove
that

holds for all K,M e K (IR") with K UM € K (R"). Equation (A.2.1) is trivially true
when dim(K UM) < k, so we may assume dim(K UM) = k. If dimK = dim M =k, then
linM =1inK =lin(K U M) and (A.2.1) follows by additivity of the intrinsic volume.
This leaves us with the case where dim(K U M) = k and one of the sets has dimension
strictly less than k. Without loss of generality we may assume that j = dimM < k. As
dim(K U M) = k then there exists z € K\ aff M. Since K U M is convex we have

{aM+(1-a)z: a€[0,1)} c KUM\aff M.

As K is closed, we obtain M C K and hence in this case (A.2.1) trivially follows. Thus
@y is additive.

We now show (ii). Assume that f is continuous and let (K,,) be a sequence with
K., € Ki(IR") converging to K € Ky (IR"). If dim K = k then lin(K,,,) converges to lin(K)
and so by continuity of the intrinsic volumes and f we get

(pf(Km) - (Pf(K) for m — co.
If dimK < k then

lpf (Kin) = @5 (K) =l (Kl < | flloo Vie(Ki) = 0

as m — oo, where we used the facts that the continuous function f has a finite
maximum norm on the compact set G(n, k), and that Vj is continuous. Hence ¢ is
continuous yielding (ii). As (iii) is obvious it remains to show (iv). For fixed K €
K(R"), L € G(n,k) and x € L+ remark that if dim(KN(L+x)) = k then lin(KN(L+x)) =L
and otherwise V(K N (L + x)) = 0. Hence using Fubini’s theorem

f |<pf<KmE>|uk<dE>=vn<K>f F(D)ve(dD).
A(n,k) G(n,k)

Thus, the integrability of f implies the integrability of ¢¢. The same arguments also
show [Cy(@f)]( fG n, k L)vi(dL), which clearly implies (iv). This finishes
the proof of Proposmon A1 O
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It should be remarked that the vector space of integrable real functions f on
G(n, k) satisfying (A.1.3) is infinite dimensional. Hence Proposition A.1.1 yields a
large number of non-trivial functionals in ker Cy.

A.2.3 Local functionals

For the reader’s convenience, we recall the definition of local functionals ¢ due to
Wolfgang Weil in [27]. In contrast to [27] the empty set is an element of the domain
of @ here.

Definition A.2.1. A functional ¢ : K(R") — R is called local, if it has a local extension
D : K(R") x B(R") — R, which is a measurable function on IC(IR") in the first variable
and a finite signed Borel measure on R" in the second variable and such that ®@ has the
following properties:

(i) (K)=®(K,R") for all K € K(R"),

(ii) D is translation covariant, that is, (K+x, A+x) = ®(K, A) for K € K(IR"), A € B(R")
and x € R",

(iii) @ is locally determined, that is, (K, A) = ®(M, A) for K, M € K(R"), A € B(R"), if
there is an open set U C R" with KNU =MnNUand AC U,

(iv) K - D(K,") is weakly continuous on K(IR") (w.r.t. the Hausdorff metric).

If ¢ is local with local extension @, then ®(0,-) = 0 due to (ii), and hence ¢(0) = 0 by
(i)
To prove Theorem A.1.2 we first need to extend the above definition to include

functionals acting on compact convex subsets of IR" of dimension at most k, k €
{1,...,n}.

Definition A.2.2. A functional ¢ : K (IR") — R is called local if and only if ¢ is trans-
lation invariant and for all L € G(n, k), ¢ restricted to (L) is local, i.e. ¢r : K(L) — R,
K + @(K) is local in the sense of Definition A.2.1 where L is identified with R¥. The local
extension of @y is denoted by Oy : K(L)x B(L) —» R.

More explicitly, choosing an orthonormal basis uy, ..., u; of L € G(n,k), we can identify
L with Rk using the isometry *: R > L, a— Zf:l a;u;. Then ¢y is local on L if and
only if ¢p : K(R¥) - R, K - ¢(K) is local on R,

Now for k = n Theorem A.1.2 was proven by Wolfgang Weil in [27] except for the
continuity of the associated functions and equations (A.1.8) and (A.1.9), which both
are consequences of this continuity property. We will therefore start out by proving
the mentioned continuity in the case k = n. This will afterwards be used to prove
Theorem A.1.2 for general k e {1,...,n}.

Proof of continuity of associated functions: Let ¢ : (R") — R be local with exten-
sion @ : L(IR")x B(IR") — IR. The associated functions of @, f(f) : g{")ﬁjj{l — R are shown

in [27] to vanish on @g:jl_l \g)g:jl_l for all j €{0,...,n}. Fix j € {0,...,n} and consider the
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mapping P : g)n] | = P(R"), p = P(p) =p°NQ, where Q =[-1/2,1/2]". This mapping
is continuous which can be seen by decomposing it into the following three maps

p — conv(p U{0}) — [conv(p U{0})]° =p° —p°NQ.

Continuity of the first and the last map is due to the continuity of the convex hull
operator and the intersection operation of compact convex sets which cannot be
separated by a hyperplane (see for instance [20, Theorem 1.8.10]), respectively. We
note that the dual cone map on convex sets in the unit ball B" is continuous in the
Hausdorff metric by [24, Theorem 1]. The relationship between the Hausdorff metric
and the Fell topology combined with the characterization of the Fell topology (see
for instance [21, Theorem 12.2.2, 12.3.3]), yields continuity of the second map and
therefore also continuity of P.

Ifpe 50" i1 with i > j, then there is an i-face F € F(P(p)) with 0 € relintF and
n(P(p), F) = p. Furthermore FNintQ C relintF and all other i- faces of P(p) do not hit
int Q. Now let (p,,) be a sequence in Q7 1 converging to p € 97 J ; and put A = eB"

with € < —. The fact that A CintQ and the above observations imply

1y-j)(dimp,,) fU (p)el i = DV (P(p,,), A)

. . ‘ (A.2.2)
— ®UN(P(p), A) = 1y, j_1)(dimp) f V) (p)e/ k;

as m — oo, where the weak continuity of K — @ (K, ) combined with the Portmanteau
theorem was used, as ®)(P(p),bd A) = 0. As f/) vanishes on 50“] 1 \gonJ 1» we have

l{n,]-,l}(d1mq)f( (q) = f( (q) for all g € gonl 1, 50 (A.2.2) implies the continuity of

Proof of Theorem A.1.2: Let ¢ : K¢(R") — R be local in the sense of Definition
A.2.2. Fix L € G(n,k) and x € L. Let E denote the affine subspace L + x and let
uy,..., u denote an orthonormal basis of L. It follows that ¢; : K(RF) — R is local by
Definition A.2.2. Due to [27, Theorem 2.1], applied to IRk there are j- homogeneous
local functionals goL on K(RRF) such that Qr = Z] O(pL Furthermore, qoL = C(Lk)Vk

with some constant C(L Ve R, possibly depending on L. Let™: L — R be the inverse of

*: R > L and put ¢} (K) = ¢ (K=x) for K € K(E) and j = 0,..., k. Then

k-1
P(K) = pL(K-x) = pr(K=%) = ) ¢ (K), (A.2.3)
j=0

where (p(L]) is local on L and j-homogeneous, and (pék) = C(Lk)Vk.

For each j € {0,...,k} we make the above definition independent of L by defining
the functionals (p(j)(K) = (p(L])(K) for all K € Ki(IR") contained in a translation of
L € G(n,k). Note that this definition is independent of the choice of L. If L, L’ € G(n, k)
are such that K is contained in translates of L and L’ then (A.2.3) and the homogeneity
of (p(L] ) give

0= al(ef (K)- o (K)),

\,
I M»
o
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for all & > 0, implying (pg)(K) = (p(L],)(K). Hence (A.2.3) becomes (A.1.4). Representa-
tion (A.1.4) is unique, due to a standard homogeneity argument.

For the proof of the second part of the theorem, we let L € G(n,k). By [27, The-
orem 2.1] there is a local extension, (ISL : K(R¥) x B(R¥) - R of ¢ with a unique
representation

for K € K(IR¥), such that CIADg) is a local extension of (ﬁg). Using the identification of L
with R¥ yields (A.1.5). Furthermore [27, Theorem 2.1] also gives that for a polytope
PcLand A€ B(L)

&P, A) = ZfL n(B, ) Az(A).

We remark that Fe ]3(13) if and only if F € F;(P) and by defining géj) : @Ii:}_l (L) > R,

(p) = fL ), equation (A.1.6) follows from n(P,F) = n; (P, F) and

o) (P,4)=d (P, A)= ) g (n.(P,F)Ar(A).
FeF;(P)

We have previously proved that f/) is continuous for all j and so géj is continuous.

Also by direct calculation it follows that gg Vinherits simple additivity from fU/) for all
j and for any fixed local extension uniqueness follows by uniqueness of f/) given in
[27, Theorem 2.1]. This proves the asserted properties of the decomposition (A.1.6).
We remark that

o (P =0 (PR = ) g (P ENVI(F) (A2.4)
FeF;(P)

For j = 0, V4(0) = 0 = ¢!?(0) and hence, for fixed L € G(n,k), we may consider a
non-empty convex polytope P C L. Using (A.2.4) combined with the simple additivity
of gio) yields

Z gL nLPx go)(S"_lﬂL),

xevert(P

where vert(P) denotes the set of vertices of the polytope P. Applying this twice, first
with P = {0}, and then with an arbitrary P € P(L), shows qoéo)(P) = ¢9({0})V,(P) for
all P € P(L). The functional (pio) is local, so Definition A.2.1 (i) and (iv) imply that it
is continuous on K(L). A standard approximation argument in L now shows

on K(L), which yields (A.1.8).
Concerning the case j = k, we have already remarked after (A.2.3), that

k k
M (K) = oY (K) = PV (K)

for all K € (L) holds. O
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For the proof of the case j = k — 1 we will show the following more general
result which essentially follows from Wolfgang Weil’s paper [27] and McMullen’s
characterization of standard functionals of homogeneity degree n—1; see [16] and e.g.
[2, Theorem 3.1(ii7)]. Recall that a standard functional ¢ : K (R") — R is a continuous
translation invariant valuation.

Proposition A.2.3. Let ¢ : Ki(R") — R be given. The following statements are equiva-
lent:

(1) @ is alocal functional of homogeneity degree k — 1.

(2) @ is translation invariant and homogeneous of degree k — 1. For each L € G(n, k) the
restriction of ¢ to L is a standard functional.

(3) There is a function
O:{(Lv): LeG(nk),veS" 'NnL} >R

such that O(L,-) is continuous and centered on S"™' N L for each L € G(n, k), and
P(K) = f O(L,v)St (K —x,dv) (A.2.5)
sm=inL

for all K € K(L + x), where x € L+ and S,f_l(K —x,-) is the (k — 1)th surface measure
of K —x with L as ambient space.

The function 0 in (3) is uniquely determined by .

Note that uniqueness of the function 6 in (3) implies that ¢ is even if and only if
O(L,-) is even for each L € G(n, k).

Another consequence of Proposition A.2.3 is the fact that every (k — 1)-homoge-
neous local functional on s (IR") is a valuation. This can be seen as in the proof of
Proposition A.1.1 taking into account the additivity in the first variable of the surface
area measure (see, for instance [21, Theorem 14.2.2]).

Proof of Proposition A.2.3: Start by assuming that ¢ : K (IR”) — Ris local and (k—1)-
homogeneous. Identifying L with R¥ it follows that ¢; : IC(IRF) — R is local, hence it
satisfies Definition A.2.1 and so by [27] it is a standard functional yielding the second
statement.

Assuming (2) it follows by translation invariance of ¢ that it is enough to consider
compact convex subsets of L € G(n, k). For each L € G(n, k) the restriction of ¢ to KC(L)
has a representation (A.2.5) with a function 6(L,-) that is centered and continuous
on $"~! N L by McMullen’s characterization of standard functionals applied in L; see
[2, Theorem 3.1(iii)]. This proves the implication (2) = (3)

Assume now that (3) holds. Due to [2, Theorem 3.1(ii7)] the restriction of ¢ to
KC(L) is a standard functional on (L) of homogeneity degree k — 1. Relation (A.2.5)
implies @(K + x) = ¢(K) for all x € (linK)* and therefore ¢ is translation invariant
and homogeneous of degree k—1. By [27, Theorem 3.1] it follows that each restriction
of ¢ to L € G(n, k) is local and so ¢ is local of homogeneity degree k — 1. O

We remark the following consequences of Theorem A.1.2 for the solution of our
uniqueness problem.
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Lemma A.2.4. For ke {l,...,n—1}, a local functional ¢ : Ki(R") — R with decomposi-
tion (A.1.4) satisfies

1 € kerCy if and only i P € ker Cy.

(1) @ ekerCy if and only if p'9,..., %) € kerC

(2) @9 e kerCy if and only if % = 0.

(3) @) e kerCy if and only if p*) = @ with f : G(n, k) — R satisfying (A.1.3).

Proof. Let k € {1,...,n—1} and ¢ be given as in the lemma. By decomposition (A.1.4)
we have

[ ptaxnepme

A(n,k)
k . o

= Za”_k+1 J f @K N (L+ 1) Ao (dt)ve(dL)
=0 G(n,k) JL+

k
=Y i [ K dE)
= A(nk)

for all & > 0, which yields (1) by comparing coefficients. Due to (A.1.8), combined
with Crofton’s formula (A.1.1), we have (p(o) € ker Cy if and only if

0= f PO (0)Vo(K N E)jig(dE) = 9 (0] 04 Vi _1(K)
A(n,k)

for all K € I(IR"), where the constant a,, ¢  is positive. Thus 2. holds.

In view of (A.1.7) we have (p(k) = @y with f(L) = c(Lk) for all L € G(n,k), and the last
claim follows from Proposition A.1.1(iv). O

This lemma implies Theorem A.1.3(1). For A.1.3(2) we need to treat the (k—1)-
homogeneous part. Let therefore ¢ be a local functional of homogeneity degree k — 1,
and assume that @ is even. In particular, due to Theorem A.1.2 and the remark given
below the Theorem, ¢ is a translation invariant even valuation. Its Klain function

Ky : G(n,k—1) > Ris defined by

K, (M) = L(p(B” nM),

Kk-1

for M € G(n,k —1). Strictly speaking, this is a slight extension of Klain’s [13] original
definition (he calls K, the generating function of ¢), which was only formulated for
continuous translation invariant even valuations. In the present context ¢ need not be
continuous, but (A.2.5) and the fact that 6(L,-) in this formula must be even, imply

K, (M) = 20(span(M U {u}),u) (A.2.6)
for all unit vectors u € M+, and thus, using (A.2.5) again,

P(K) = Ky (M) Vi1 (K) (A.2.7)
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for all K € K(M). Although K(p need not be continuous on G(n,k — 1), it determines
@ like in the classical case. In fact, (A.2.5) and (A.2.6) yield the explicit inversion

formula .

p(K) = ELH_W K, (LNvh)SE (K, dv) (A.2.8)

for all K € (L) and L € G(n, k).

For i,j € {1,...,n — 1} the Radon transform on Grassmannians R; ; : LY(G(n,i)) —
L'(G(n,j)) is defined by

(R F)(L) = L(L Syt

for L € G(n, ) and an integrable function f € L'(G(n,i)). We remark that R;;j is well
defined since for f € L'(G(n,i)) we have

[ pwmn < | o,
G(n,j) G(n,i)
This also implies that the Radon transform is Lipschitz continuous.

Proposition A.2.5. Let k € {1,...,n—1}. Assume that the even (k — 1)-homogeneous local
functional ¢ : Kx(R") — R has Klain function K.
Then

J @(PNE)u(dE)=0 (A.2.9)
A(nk)
for all convex polytopes P € K,,_1(R") if and only if Ry_1 1 (K(P ) =0.

Proof. Let P C v! be a convex polytope of dimension n — 1 with v € S"~!. For any
fixed L € G(n,k) (A.2.7) implies

J (p(Pn(L+x)))\L¢(dx):Kq,(LﬁvL)f Vi (PN (L+x))Apc(dx).
Lt LL

The translative integral on the right is proportional to the mixed volume
2
V(P[n =1}, B[1]) = ~[[wlLIIV, -1 (P);

see, e.g. [25, p. 177] and [20, Section 5.1]. Hence, (A.2.9) holds for all convex polytopes
of dimension n —1 if and only if

[ Ryl 0wt iz =0
G(n,n—k)

for all v € S""!. Here we also replaced the integration with respect to v; by an
integration with respect to v,,_y by taking orthogonal complements. Using a Blaschke-
Petkantschin formula (see, for instance [21, Theorem 7.2.4]) this can be shown to be
equivalent to

J K, (L) h(Lv) v L) = o,
G(span{v},n—k+1)
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where
h(L,v) = f [vIM*(|[M, span{v}F vl (dM)
G(L,n—k)

depends on the subspace determinant [M,span{v}], which is here the sine of the
angle between v and M. The function h(L,v) is clearly positive and independent of
L € G(span{v},n—k + 1), as any plane in this space can be rotated to any other plane
by a rotation fixing v.

Putting things together, we see that (A.2.9) holds for all convex polytopes of
dimension n —1 if and only if

J K, (L)v}~,(dL) =0
G(v+,k-1)

for all unit vectors v, where we again took orthogonal complements. This is the
assertion. m|

By [7], the Radon transform, R; j, i < j, on the set of all square integrable functions
L2(G(n,i)) is injective if and only if i + j < n. Hence Ry_; ,,_ is injective when acting
on L%(G(n,i)) if and only if k € {1,2}. We note that the kernel of R;; when R; ; acts on
L%(G(n,i)) is trivial if and only if its kernel is trivial when it acts on L'(G(n,1)). This
can be proven using similar arguments as given in the proof of the theorem below.

Theorem A.2.6. There is no non-trivial even local functional on K, (IR") of homogeneity
degree 1 in the kernel of the Crofton operator with 2-flats.

Let 2 <k < n. There are non-trivial even local functionals on ICi(R") of homogeneity
degree k — 1 in the kernel of the Crofton operator with k-flats.

Proof. For k = 2 the kernel of Ry_; ,,_; is trivial and for any ¢ € ker Cy, Proposition
A.2.5 gives that its Klain function K, is in the kernel of Ry_y ;,_1, which implies that
K, = 0 and hence @ is trivial. This proves that there are no non-trivial even local
functionals on K, (IR") of homogeneity degree 1 in the kernel of the Crofton operator
with 2-flats.

On the other hand if 2 < k < n then there exists a non-trivial function f in
kerRg_1 ,-1. Using convolution on the compact Lie group SO(n) of all proper rotations
and the subgroup SO(n)/SO(k x (n—k)), which can be identified with G(#n, k) (see [10])
we can approximate f with continuous functions in the kernel of Ry_; ,_;. This
implies that there exist non-trivial continuous functions in kerRy_y,,,_1. Letting K,
be one such function we can construct ¢ by (A.2.8) yielding a continuous even local
(k — 1)-homogeneous function. By Proposition A.2.5 we have (Cy ¢)(P) = 0 for all
polytopes P € K,,_1(R"). Using approximation of compact convex sets by polytopes
from the outside implies that ¢ € ker Cy and so the last statement of the theorem
follows. O

Proof of Theorem A.1.3(1) and A.1.3(2): Note that by Lemma A.2.4 a local functional
@ with decomposition (A.1.4) is in kerCy if and only if ¢(?) = 0, the functionals
W,..., %V are in ker Cy and @™ = ¢ for some f satisfying (A.1.3). If k = 1 the
latter condition is equivalent to ¢ = ¢y proving Theorem A.1.3(1). Assuming that
k = 2 and that ¢ is in addition even, ¢'!) = 0 by Theorem A.2.6 and hence again,
@ € kerCy is equivalent to ¢ = ¢y. O
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For the proof of Theorem A.1.3(3) we note that Theorem A.2.6 states that if k > 2
then there exists non-trivial (k — 1)-homogeneous even local functionals ¢ € ker Cy
and hence we only need to construct examples of non-trivial 1-homogeneous local
functionals in ker C,. To explicitly make such a construction, we need to consider
local functionals which are not necessarily even. For this we will make use of the
translational Crofton formula for the surface area measures; see [8, Theorem 3.1]: For
K € K(R") and L € G(n, k), we have

L Sf (K=x)NL,-)Aps(dx) =111 S, 1(K, ). (A.2.10)

This relation makes use of the operator 7 , with m = 1, which is described in the
following. For m € Z, m > —k, the m-weighted spherical projection 7ty ,, maps any finite
signed Borel measure y on S"~!
S"1 N L. The measure 7y, is defined as the image of the measure p,,, given by

into the space of finite signed Borel measures on

o A) :Luuwnm u(du),

(where A c $"~! is a Borel set) under the spherical projection

v|L

(ST S SN Ly s ——.
Pr I

For m < 0 one must restrict considerations to a subclass of measures to assure that
7r,mM is a well-defined finite signed measure.

If f is a continuous function on the sphere, its m-weighted spherical projection
on L is the density of the m-weighted spherical projection of the measure f(')f(v)dv.
More explicitly, this is the function given by

(72, mf 1(u) =J f)u, vy d, (A.2.11)

prt({u})

for u € S"~! N L. For more details on 71 ,, and the m-weighted spherical lifting 10} ., see
[9]. For later use, we remark that

(7L mf (D)) = ulLI™ f (pr(u)) (A.2.12)

for all integrable functions f: S""!NL — R, u € S" '\ L' and L € G(n,k). By [9, (5.4)
and (5.5)], g, and 71}, can be considered as transpose operators, as

| (A.2.13)
S”’lﬂL Sn—l

for all integrable functions f on S"~! N L and all finite signed measures y, and

[ wnrdn= | s (A.2.14)
S”’lﬁL Sn—l

for all integrable functions f on S"~! and all finite signed measures y on S""! N L.

The following proposition is a counterpart to Proposition A.2.5 for (k — 1)-ho-
mogeneous local functionals, but without the evenness assumption. We recall that,
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according to (A.1.9) for any (k — 1)-homogeneous local functional ¢ there is an as-
sociated function 6 on the compact domain D = {(L,v) € G(n,k) x S""! : v € L} such
that

p(K) = L lnLe(L,v)s,gl(K—x,dv) (A.2.15)

for all compact convex sets K contained in x + L, where L € G(n,k) and x € L. To
avoid technicalities, we consider only the case where the associated function 6 is
continuous on D.

Theorem A.2.7. Let @ be a (k—1)-homogeneous local functional on K (IR") such that its
associated function 6(L,v) given by (A.2.15) is continuous.
Then @ € ker Cy if and only if

L( i [71.10(L, )] vi(dL) = 0 (A.2.16)

on S™ 1,

Proof. Let ¢ be a (k—1)-homogeneous local functional on Ky (IR") and let 8(L,v) given
by (A.2.15). Due to (A.2.15) and (A.2.10), we have

o= Lv[nusnl (o) (L)
G(n,k) JS"1InL

J (k) Ln 1[7-( ] Sp-1(K,dv)vi(dL)

for all K € K(IR"), where we used (A.2.13) for the last equality. In view of (A.2.12)
and the assumption that 0 is continuous, (L,v) [7‘(2’19(11, ~)](v) is continuous and
hence bounded, so an application of Fubini’s theorem implies

(Ckp)(K) = Ln_l h(v)S,-1(K,dv), (A.2.17)

where

h(v) = me [nzIIB(L,-)](v)vk(dL)

defines a continuous function on S"~!. For instance by decomposing the Hausdorff
measure on the sphere like in [9, (3.3)], one can show that the function 4 is centered.
Concluding, we see that ¢ € ker Cy if and only if the right hand side of (A.2.17) is
zero for all K € K(IR"). [16, Theorem 3] now shows that this is equivalent to (A.2.16).
O

We use the notation in [9] to give an example of a function 0 satisfying (A.2.16)
by writing it as linear combination of spherical projections of spherical harmonics.

Let w be a continuous function on $"~1. If we put 6(L,) = 717 @, then (A.2.16) is
(k)

Lm@=0o0n S$"1 where

equivalent to 7t

k *
77(1,1)410) = J- (7} 1 7L, m@] vi(dL). (A.2.18)
G k)
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The operators n(k) act as multiples of the identity on any space of spherical harmonics
P 1Lm p y y sp P

of order r € Ny if w, is a spherical harmonic of order r, then
" = A.2.19
T m@r = Ank,1,m;r ©rs (A.2.19)

with the multiplier a4, 1 , , given as a rather complicated finite sum in [9, Theorem
9.1]. This suggests finding m,r such that the multipliers vanishes. However, the
choice of m is non-trivial. If we for instance choose m = 1 — k, which can be shown to
correspond to
o(K) :("_1)j w()S_1 (K, du), (A.2.20)
k=1) Jgn

K € K(R"), by [9, Theorem 6.2], then all multipliers in (A.2.19) are non-vanishing by
[9, p. 41]. Hence there are only trivial maps ¢ of type (A.2.20) in ker Cy. For many
other choices of m explicit formulae for a, 1 ,, » are not available.

We therefore construct counterexamples as follows: Fix r € N \ {1} and choose
different integers m and m’. As two numbers are always linearly dependent, there are
a, € R with (a, ) # 0 such that

Ay k1,myrt ﬁan,k,l,m’,r =0. (A.2.21)
Let w, be an n-dimensional spherical harmonic of order r and set
O(L,-) = [0(7'[le + ﬂnL,m’]wr —{x1,°), (A.2.22)

where x; € L is chosen such that 6(L,) is centered. This defines a continuous function
0. Due to (A.2.19) and (A.2.21), equation (A.2.16) holds on $"~!, and Theorem A.2.7
thus implies that the (k — 1)-homogeneous local functional ¢ with this associated
function 60 is an element of ker Cy.

Proposition A.2.8. There exist non-trivial local functionals ¢ on ICo(IR") of homogeneity
degree 1 in ker C,.

Before giving the proof we will introduce some notation. Let j,l e N with j <I<n
and L € G(n,1). The spherical projection on the sphere in L’ € G(L, j) in the ambient
space L is

L . an—ly rni nel ~ 17 v|L’
S (STANL)T)NL - ST AL v
PL I

If L = R" then pf, coincides with the already defined spherical projection.
Proof. Let n €N, n> 3 and fix uy € S"~!. For each L € G(n,3) define ' : K(L) —» R
as follows. For L’ € G(L, 2) put
PHK') = J oL (L, v)SE (K, dv),
sn=1nL

K’ € Ky(L) with K’c L’ and L € uy. When L C uj put PL(K’) = 0. Here the function
OF - {(L',v) € G(L,2) x S™ ! : v € L’} = R is given as in (A.2.22) when identifying L
with R? and choosing w, to be a certain spherical harmonic of order r = 5. More
explicitly, we set

O (L)) = (anp, y + g, ») P ((prlto), ) = (xrr, ). (A.2.23)
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with

(i) = -LpL )*1<{v}>f(u)<v'u>m+ldu

and P53(t) = %(63t5—70t3+15t) being the fifth order Legendre polynomial of dimension
3; see for instance [11, p. 85]. P53(<pL(u0), -)) is a 3-dimensional spherical harmonic of
order 5 on S"" ! NL for any L € G(n,3) with uy € S" ' NL. As P53 is odd also 6L(L’, ")
is an odd function. Furthermore, we define !**(K) = (K - x) for all x € R” and
K € K5(L + x). Using this we define ¢ : K;(R") —» R as

¢(K') = J oF (KK (dF) (A.2.24)
A(affK’,3)

for K’ € K,(IR"). Note that by definition of 1, the map ¢ is translation invariant.
As pF is 1-homogeneous and local for each F € A(n,3) the map ¢ is 1-homogeneous
and local. If OF satisfies (A.2.16) for k = 3 then by Theorem A.2.7, f € ker C, for all
F € A(n,3) and using [21, Theorem 7.1.2] we get

j @(KnEmz(dE):f f WF (K NEWE(dE)us(dF) = 0
A(n,2) A(n,3) JA(F,2)

for K € K(R"). Hence we need to construct functionals 6 satisfying (A.2.16) for all
L € G(n, 3) such that ¢ is non-trivial. In view of Lemma A.2.9, below, we need to find
Ly € G(n,2), Ly € G(n,3) with ug € L), C Ly and a set K’ € K(L}) such that 20 (K’) > 0
holds. From now on we fix Lj € G(n,2) and L, € G(n, 3) with uy € L C Ly (implying
pr,(to) = 1g) and show the existence of K’ C L with the required properties. We
identify these spaces with R? and a two-dimensional subspace L of IR3, respectively.
With this identification in mind, the map K’ + (K’) given by the right hand side of
(A.2.15) corresponds to plo. Let OR’ = 0 be given as in (A.2.22) withm =1, m’ =2
and r = 5. Explicit calculation gives

97 344
a3,2,1,2,5 = mﬂ and a3,2’1’1’5 = ﬁ

We therefore put
a=-176128 and f=50925m. (A.2.25)

This implies that the function 0 satisfies (A.2.16) when n =3 and k = 2. Let u; be a
unit vector in L orthogonal to ug. For abbreviation, we put f,,(:) = nL,mPg((pL(uo), ).
Note that O(L,) is the sum of the function f = af; + ff, and the linear function (xg,-).
In view of its definition, x; is invariant under all rotations p € O(3) such that pug = u,
and pL = L. Hence x; is a multiple of u; and it is therefore enough to show that
s> f(sug+ V1 —s2uy) is not linear. Now, for m € N and s € (0, 1) we have

94

gm(s) = @fm(suo + V1 -s2uy)
o4 j

- ost prt ({sug+V1-s2uy))

1 84
= 2J- ﬁpg‘(st)t'”“(l — 121244
0 S

P53(<u0,v))(su0 + mul,v>m+1dv

1
= 18905} £m0(1 —12)"124¢,
0
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Now
+1

|V
L\S]
~—

jl (1 -t2)7V24t = \/—Er(
0

> I‘( , y>-1,

2

|Y
N+
~—

yields

+7)

|§
¥

L1890y I(
2

gm(s) = I(

3
T

8)’

N|

S0 £5(s) = 3310275”5 and g;(s) = 864s. Due to (A.2.25), we obtain

4
%f(suo +V1-52u;)=ag(s)+pg(s) =—15120007s = 0,

for s # 0. So 6(L,-) does not vanish. As 6(L,-) is centered and non-vanishing, the
associated local functional i given by (A.2.15) cannot be vanishing by Proposition
A.2.3. Therefore, there must be a set K’ € K(L) with (K’) # 0. Possibly changing the
signs of @ and B, we can assure 1(K’) > 0 and the proposition is shown. m|

In the above proof Lemma A.2.9 was used. In the proof of this lemma we will
work with Lipschitz functions and therefore introduce metrics that induce the natural
topologies. Identifying rotations with their matrix representations with respect to the
standard basis, we can for instance use the Frobenius norm on SO(n). On G(n, k) we
can work with the metric dy given by

dy(L,L)=d(B"NnL,B"NnL), LLeG(nk),

where d is the Hausdorff metric on /C(IR"). It is now clear that for Ly € G(n,k), 9 — 9L
is non-expansive, that is, this mapping is Lipschitz with constant at most 1.

Lemma A.2.9. Let n >3, ug € S"!, L) € G(n,2) and Ly € G(n,3) with ug € Ly C Ly be
given. Furthermore, let @ be defined as in (A.2.24).

If there is a compact convex set K’ € K, (L) with Pro(K’) > 0, then there is a compact
convex set Ky in IR" such that

G={E€G(n,2): p(KyNE)> 0} (A.2.26)

contains an open neighbourhood of Ly, and therefore has positive y,-measure.
Proof. Let Ly, L, K" and 1 as assumed in the Lemma. The assumption on K’ implies
PHK) =P (K') >0 (A.2.27)

for all L € G(L;, 3). In fact, if 9 is a rotation fixing L;, pointwise and satisfying 9L = Ly,
then

L
[, B3 (o, M) = [, P (Suto, NI(Sv) = [y, P (Cuug, D](w),
v e S" I nLy, implying OL(Ly,-) = OF0(L},-) and hence L (K’) = pro(K”).
As 0Mo(Ly,-) is an odd function, K’ € K(L;)) must be two-dimensional by (A.2.27)

and without loss of generality, we may assume that 0 is a relative interior point of K’.
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Let Ry > 0 be such that K’ is contained in the interior of RyB", and put K, =
(K’ +(Ly)*) N RB". Then L hits the interior of Ky and Ky N L = K’. More generally,
for all z € (Ly)* in a bounded neighbourhood U of 0 the plane L, hits the interior
of Ky —z and (Ko —z) N Ly = K’. All the sets Ky —z with z € U are contained in a
ball of radius R > 0, say. In addition, we may assume that all these sets contain the
ball »B" for some r > 0. We will later require that all translations Ky — x with x € R"
and ||x|| < sup,.y llzll are contained in a given neighbourhood W of K. This can be
achieved by shrinking U even further, if necessary.

For all L € G(L;, 3) we have uy|L = u, so [lug|9Loll > % in a neighbourhood of the
identity id in SO(n). It is therefore easy to show that 9 > pgr (1) is Lipschitz in this
neighbourhood with a Lipschitz constant that is independent of L. As P? is Lipschitz
on [-1,1], the function

8 P37 par o), v))

is Lipschitz in a neighbourhood of id in SO(#n) with a Lipschitz constant that can be
chosen independent of v € S"! and L € G(Ly, 3). It follows that

9 ndf, B ((por o)) )(Sw)
= J -1 P53((S_1p9L(u0),v))(v,w)m”dv
pL/ ({wh)
( Lo
and hence 8 — 6%(9L), Sw) is Lipschitz in a neighbourhood of id with a Lipschitz

constant that can be chosen independent of w € sl La and L € G(L{), 3). Now let K
be a convex body in RB" containing the ball rB" and observe that

(K N SL)) :f 6°L(SLy, Sw)sf5(<s—1K)nLg,dw).

Sn=InLy
Hence,
[ (K N SLy) - ph (Ko N Ly) (A.2.28)
< f sup |0°L(SL), Sw) - eL(L'O,w)|sf°((s-1K) N L(’),dw)
S"1nLj wes™1nL)

+

, Ly( o= ’ L ,
L . 0" (Lo, w)[S,° (7' K) N LG,-) = S,° (Ko N LG, )(dw)
n-1n 6

Due to the monotonicity and motion invariance of the first intrinsic volume V;, the
L, _ .
total mass of SIO((S 'K)n LE),-) is

2Vi((87'K)N L)) < 2V (871 K) < 2V (RB"),

so the first expression in (A.2.28) is Lipschitz in § in a neighbourhood of id with a
Lipschitz constant that does not depend on K or L. The expression of 6 in (A.2.23)
and continuity of P53 implies that the integrand in the second term of (A.2.28) is
bounded by a constant M, which does not depend on L, and thus this second term is
bounded by

M‘Vl(KOSLE))—Vl(KonLg)I.
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Now (9,K) = V(KN SLy) is a Lipschitz function when we restrict considerations to
compact convex sets contained in RB" and containing rB", with a Lipschitz constant
that depends on r and R only. In fact, that L +— K N L is Lipschitz with a constant that
depends on r and R only, follows for instance from [14, Lemma 2.2] and the explicit
form of the Lipschitz constant in [15]. Due to its interpretation as multiple of the
mean width (see for instance [20, pages 50, 297 and 231]) the first intrinsic volume is
Lipschitz with constant nk,/x,_;.

Concluding, as (A.2.27) implies that 2e = '(Ky N L) is positive, the bound
(A.2.28) yields

YK NIL)) >e>0 (A.2.29)

for all 9 in a sufficiently small open neighbourhood V of id, all L € G(L('), 3), and all K
in a sufficiently small neighbourhood W of K. Hence, if z€ U and 9 € V, we get

P(KgNS(Ly+2) = J (K- 92) N SLg)vﬁf)(dL) > e,
G(Ly,3)

where we used K = Ky — 9z in (A.2.29). It follows that G in (A.2.26) contains an open
neighbourhood of L, and the assertion is shown. m]

A.2.4 Motion invariant functionals

The proof of Theorem A.1.4 makes use of the Riemann-Liouville integral

(I"¢)(x) = ()" fo ¢(1)(x— ™ A(dr)

of locally integrable functions g : [0,00) — R, where a > 0 is a parameter. For arbitrary
a,p >0 we have

[1%*Pg =191Pg (A.2.30)
and p
%(I“”g) =1%; (A.2.31)

see [19] for details.

Lemma A.2.10. Let a > 0 and a locally integrable function g : [0,00) — R be given. If
1%g(x) =0 on [0,00) then g = 0 almost everywhere on [0, c0).

Proof. Let m > a be an integer and set f = m—a > 0. The assumption [“g = 0 and
(A.2.30) yield I"g = 0 on [0, 00), and applying (A.2.31) (m —1) times gives

0=1" = ’ d
¢(x) J;gmt

for all x > 0. As the Radon-Nikodym derivative of a measure is uniquely determined
almost everywhere, the claim follows. m|

This can now be used to prove Theorem A.1.4.
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Proof of Theorem A.1.4: Let L € G(n,k) and let ¢ : My — IR be a motion invariant
map. Let ki : (0,00) — R be given by h(r) = ¢(r'/>(B" N L)). By the motion invariance
of @, his independent of L € G(n, k). Since rB" N (L + x) is either empty, a point or a
k-dimensional ball of radius /7% —||x||? for x € L+ we get that

[ gustnpm@rr= [ el @
A(nk) G(n,k) JL+nrB"
r
=(n—k)k,x J h(r? = s?)s" k14
0

for all rB" € M with r > 0. The last equality follows by identifying L+ with R
and introducing spherical coordinates (see, for instance [12]). As v is a probability
measure and (n —k)x,_; # 0, a substitution shows that the left hand side of the last
displayed formula is zero if and only if

2

o:J”hmu%¢w*uw=rmnwmw%
0

where a = 25K > 0. Concluding, (A.1.14) is equivalent to (I*h)(¢) = 0 for all t > 0, and
Lemma A.2.10 proves the claim. O
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Reconstructing Planar Ellipses from
Translation- Invariant Minkowski Tensors of
Rank Two
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Abstract

Minkowski tensors contain information about shape and orientation of the un-
derlying convex body. We make this precise by showing that reconstructing a
centered ellipse in two-dimensional Euclidean space from its rank-2 surface tensor
is a well-posed inverse problem. It turns out that this result can be restated equiv-
alently with other geometric tomography data derived from the support function
of the ellipse, such as the first three non-trivial Fourier coefficients. We present
explicit reconstruction algorithms for all three types of input. The relevance of
these findings is illustrated in an application to stationary particle processes. We
define and discuss two shape ellipses, each containing information about the
mean shape and orientation of the typical particle.

MSC: 52A10; 52A22; 52A38; 60G55

Keywords: Blaschke ellipse; Geometric tomography; Minkowski tensor; Particle process; Support
function
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Rank Two

B.1 Introduction

Hadwiger’s famous characterization theorem [8] states that any real-valued continu-
ous, rigid motion invariant and additive functional on the family K" of convex bodies
(non-empty compact convex subsets of IR") is a linear combination of the intrinsic
volumes. In the seminal work [1], Alesker extended this result to tensor-valued func-
tionals on K", where the role of the intrinsic volumes is now assumed by the so-called
Minkowski tensors

;" (K) = cf;jf KA (K d(xu)
R xSn-1

j=0,...,nand r,s € Ny. Here x"u° is to be understood as a symmetric tensor product
of rank r +s, A]-(K, -) is the jth support measure of K, S$"1 is the unit sphere in R",
and c:f] is a known constant.

In view of their crucial role in pure convex geometry, it is not surprising that
Minkowski tensors (of low rank) have been used as summary statistics in mathemati-
cal physics [21] for instance as anisotropy indices for galaxies [2], and for the analysis
of ice grains in arctic drill cores [20]. A biological application is given in [25].

In contrast to the motion invariant intrinsic volumes, Minkowski tensors capture
certain orientation and shape information of the underlying set. This can be illus-
trated by restricting attention to the volume tensors (I),r,’O(K), r=0,1,2,3,...; see for
instance [10] for an overview of uniqueness, reconstruction and stability results when
volume tensors up to a certain (usually large) rank are known. We only name here
that if p is a polynomial of degree at most d > 2 such that K ={x e R" : p(x) > 0} is a
full-dimensional convex body, then K is determined by {CD,Z'O(K) :r=0,1,...,d}; see
[10] and [13]. In particular, an ellipsoid in IR” is determined by its volume tensors up
to rank 2 and an explicit reconstruction of this ellipsoid can be given; cf. [9, p. 266].

Uniqueness, stability and reconstruction algorithms based on surface tensors
CDS’fl(K), s=0,1,2,3,...,q for large g or q = co can be found in [12] for n = 2 and
[11] for n > 3. In contrast to the volume tensors, the surface tensors are translation
invariant, so uniqueness can only hold up to translation. Strikingly though, it appears
to be unknown if an ellipsoid is uniquely determined up to translation by surface
tensors up to rank 2 and if so, how to reconstruct the ellipsoid from the tensors.

The present paper fills this gap in the planar case n = 2, showing in Theorem
B.2.1 that a centered ellipse in R? is uniquely determined by its rank-2 surface tensor.
This theorem also implies a weak stability result: if the rank-2 surface tensors of
two centered ellipses are close to one another, the two ellipse must be close in the
Hausdorff metric. This stability statement will be slightly strengthened in Proposition
B.2.4. In Section B.2 we state equivalent formulations of this result in terms of
data derived from the support function (Theorem B.2.2) and its Fourier coefficients
(Theorem B.2.3). Our paper is therefore also a contribution to the field of geometric
tomography [3]. After proving these results in Section B.3, we will give explicit
reconstruction algorithms in Section B.4 for all three kinds of input data. Finally, in
Section B.5, these findings are applied to stationary particle processes by inferring
certain shape and orientation information using two ‘mean particle ellipses’, which
will be called the ‘Blaschke ellipse’ and the ‘mean shape ellipse’.
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B.2 Main uniqueness and continuity results

Let € be the family of (possible degenerate) centered ellipses in R?. Here, an ellipse
is called centered if its center of symmetry coincides with the origin. We will work in
R? and focus on the surface tensor q)?'z(-) of rank s = 2, which simplifies to

D(E) = D (K) = ij u?S,(E,du). (B.2.1)
s1

37

Here, S;(E,-) denotes the first order surface area measure of E. If E has interior points
the latter is the spherical image of the one-dimensional Hausdorff-measure restricted
to the boundary of E. For this and other notions from convex geometry, we refer the
reader to the monograph [18]. Continuity statements on K? will be understood with
respect to the Hausdorff metric. Choosing a suitable basis, we will always identify the
occurring rank-two tensors with symmetric 2 x 2-matrices. For instance, the entries
®(E);; of the matrix ®(E) are Isl uju;Sy(E,du),i,j =1,2,s0 ®(E) is an element of the
class U consisting of all positive semi-definite symmetric real 2 x 2-matrices. Our first
result implies that reconstructing E € £ from W(E) is a well-posed inverse problem in
the sense of Hadamard.

Theorem B.2.1. The function ® : £ — U given by (B.2.1) is a homeomorphism.

To formulate this result in a slightly different setting, we will make use of the support
function hg(-) = max,cg(x,-) of E. (Here (-,-) denotes the usual inner product in R".)
It is well-known that S;(E,-) can be represented by the support function hg(-): in fact,
there is a self-adjoint second order differential operator 0 on the unit circle S! such
that Sy (E,-) = Ohg(-); see for instance [18]. This implies that @ is closely related to
the mapping W : £ — U given by

W(E) = Ll u?hp(u)du, (B.2.2)

E € £. We will see that no eigenvalue of W(E) can be larger than twice the other, so
W(E) eV where

V={A€U: eigenvalues yi, u, of A satisfy Sp; < pp <21}

The connection between S;(E,-) and hg implies that Theorem B.2.1 is equivalent to
the following statement.

Theorem B.2.2. The function W : £ — 'V given by (B.2.2) is a homeomorphism.

The equivalence of Theorem B.2.1 and B.2.2 will be shown in Section B.3 and a proof
of Theorem B.2.2 will also be given there.

Using the standard parametrization ¢ - u, = (cos ¢,sin @)" of the unit circle, the
support function of E € £ can be identified with the continuous 27-periodic function
¢ — hg(uy), ¢ € R, with Fourier series representation

4o
Up) =5 ; a,cos(ng)+b, sm(n(p)) (B.2.3)
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where we used the well-known fact that a; = by = 0 as E is centered; see Section
B.3. Clearly, all Fourier coefficients determine the support function hg, and thus
the ellipse E. The following equivalent reformulation of Theorem B.2.2 however
shows that the first three non-trivial Fourier coefficients actually are sufficient for
this purpose. To see this, define Y : £ — R by

Y(E) = (ag, az,bs), (B.2.4)

where ag,a,,b, are the first three non-trivial Fourier coefficients of E € £ in (B.2.3).
An easy calculation using trigonometric identities shows that the injective map

S: V- IR?,,A = (AI]) (g %(All +A22,A11 —A22,A12 —A21) (BZS)

satisfies S o W = Y. Thus, if W = Y(£) denotes the range of Y, it can be concluded
that Theorem B.2.2 is equivalent to the following reformulation; see Section B.3.2 for
details, where we will also show

W:{a(l,y,z): a>0, 3/2+z2 S(%)z} (B.2.6)
Theorem B.2.3. The function Y : £ — W given by (B.2.4) is a homeomorphism.

As mentioned above, Theorem B.2.3 implies in particular that any E € £ is uniquely
determined by its Fourier-coefficients (ag, 4, b;). In view of the geometric interpreta-
tion of a; and b; described in Section B.3.2, this also shows that any (not necessarily
centered) ellipse in IR? is determined by the five coefficients (ag, a1, by, a5, b,).

A (weak) stability result can be stated in terms of the Hausdorff metric dy, which
can be defined by

dH(K,K'):max|hK(u)—hKr(u)|. (B27)

ueS!
for K,K’ € K. We will use the Frobenius norm ||- || on V.

We can show a weak stability result for W, @ and Y, but we only state it explicitly
for the former. An ellipse E € £ has its image under W in the interior int) of V if and
only if it has interior points (and is thus not a line-segment or a singleton).

Proposition B.2.4. For any A € intV there is a ¢ = c(A) > 0 such that
dy(W(A), w1 (A) < clA-Allg,
for all A" in a neighborhood of A in V.

Another consequence of the above Theorems can be seen by considering an ellipse
E and letting X be a uniform stochastic variable on the boundary JE of E. In other
words, the distribution of X is the normalized one-dimensional Hausdorff measure,
restricted to dE. As E is smooth, there is a unique outer unit normal Ug to E at X.
By definition, the distribution of Ug coincides up to normalization with S;(E,-) so
Theorem B.2.1 implies the following stochastic result.

Corollary B.2.5. Assume that E,E’ € £ are not singletons. Then Var Ug = Var U if and
only if E and E’ are dilatations of one another, i.e. there exists A > 0 such that E’ = AE.
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B.3 Proofs

B.3.1 Preliminaries on elliptic integrals

We will repeatedly make use of elliptic integrals of the first and second kind, given
by

s

K(z) = J-z (1-zsin® @) V2d¢,
0

forz€[0,1), and

s

E(z) = Jz (1-zsin @) 2d ¢,
0

for z € [0,1], respectively. These functions are described for instance in [6], but in a
slightly modified notation replacing the parameter z used here by z? on the right sides
of the above definitions. We will also need the following differentiation formulas (see
[6, p. 863, formula 8.123]):

d _ E(z2)-(1-2)K(2)
EK(Z) = 2(1 —Z)Z (B31)
and d_ . E(z)-K@)
zZ)— Z
EE(Z) == (B.3.2)

for z € (0,1). The functions f and g in the following lemma will play a prominent
role later.

Lemma B.3.1. The following statements hold.

(i) The function f :[0,1] — [—1,—%], given by

(B.3.3)

1-z)K(z)-E
o [ przcon,
forz=0,

1
2
is continuous, strictly decreasing and surjective. Its inverse is Lipschitz continuous
with Lipschitz constant 8.

(ii) The function g:[0,1] — [0, %], given by

—2__ forzel0,1),
{(1+z)E(2)+(12)K(2) ;Or . [1 ) (B.3.4)

is continuous, strictly increasing and surjective. In addition, for any 0 <z < 1, the
function g is Lipschitz on [0,z] with Lipschitz constant K(z)/2.

Proof. To show (i) we note that lim,_,o, f(z) =—1/2 and f(1) = -1, so f is continuous
and its image contains [-1,—1/2]. We will see that f is strictly decreasing, implying
that this interval is the range of f.

We want to bound f’. For z € (0,1), the relations (B.3.1), and (B.3.2) yield

1

f(z) = 2(?(2))2f1(z)

51



Paper B - Reconstructing Planar Ellipses from Translation- Invariant Minkowski Tensors of
Rank Two

where fi(z) = (1 —z)K(z)? + 3E(z)? - 2(2 - 2) K(2) E(2).
We define
h(z) = (z—1)K(z)? + E(z)%.

Now h'(z) = %(E(z) ~K(2))? > 0 for all z€ (0,1). As h(0) = 0 this implies h(z) > 0 for all
z€[0,1). Hence, (1 —z)K(z)? < E(z)? and so

fi(z) £ 2E(2)fa(2),
where f,(z) = 2E(z) — (2 — z) K(z). Differentiating this function gives

, 1

f(2) = —4(1—_f3(2) (B.3.5)

where f3(z) = 2E(z) - 2(1 —z)K(z) and f;(z) = K(z) > /2 for all z € (0, 1).
As f3(0) = 0 this implies f3(z) > (1t/2)z for all z € [0,1). We now work our way up
through the functions again. From (B.3.5) get f,(z) < —(7/8)z, and f,(0) = 0 yields
fo(z) < —(1/16)z2. Hence, as E(z) < t/2 for z € [0,1], we get
) 1 1 1
fiz) < ZQT(Z)fz(Z) e E@) < Y

Nk

for z € (0,1). In conclusion, this shows that f is strictly decreasing on (0, 1).
Hence, the inverse f ! of f exists, and |[(f')| = 1/|f" o f~!| < 8 on (~1,-1/2). This
implies the Lipschitz property of f~! and (i) is shown.

We turn to the proof of (ii). The continuity of g follows from lim, ,;_g(z) = 1/2.
The function w(z) = 1/g(z) has derivative
, 1 1 (7 Iy 3
w (Z) = 2—22(ZE(Z)—4K(Z)) < 2—22(5 —43) < —ZT( < 0.
Hence, w is strictly decreasing and g is strictly increasing and surjective. Similar
arguments show that g(z)/z is strictly increasing, so g(z)/z < g(1) = 1/2.
For 0 <z <z <1 thus get

7 _ w’(z) _ g Z) 2.7
/e = |- = £ [P )
1 K(z)
<= - < =2
< 8(4K(z) zE(z)) < 5
This implies the asserted Lipschitz property of g and the proof is complete. O

B.3.2 Proof of the equivalence of Theorems B.2.1, B.2.2 and B.2.3

Proposition B.3.2. Theorem B.2.1 implies Theorem B.2.2 and vice versa.

Proof. Let Ag denote the Laplace-Beltrami operator on the circle S' and =1+ Ag,
so we have Sy (E,-) = Ohg(-) for any E € £. If E is degenerate, this equality holds in the
sense of generalized functions; see e.g. [5] for details. We thus obtain

1

J-S1 w?(Qhg(u))du = % Sl(Duz)hE(u)du,
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where we used the self-adjointness of Ag (see for instance [7, Chapter 1]) for the
second equality, and where Ou? is understood component-wise. Applying the last
displayed formula in [18, p. 119] component-wise to the 2-homogeneous function
x - x2, x € R?, we see that Ou? = 2I — 3u?, where I € U is the identity matrix.

In view of the definition (B.2.2) of ¥, and the fact that tr W = ISI hg(u)du we arrive
at

O(E) = %(2&&(5))1—3\1!(15)). (B.3.6)

If yy, py are the two (possibly coinciding) eigenvalues of W(E), the matrix in (B.3.6)
has eigenvalues (2p1 — p)/(87) and (2, — p1)/(87). As this matrix is positive semi-
definite, we conclude W(E) € V. Hence, (B.3.6) can be written more concisely as

1
P=—ToV, B.3.7
i (B.3.7)

with T(A) = 2(tr A)I — 3A, A € V. It is not difficult to see that the range of T is i/, and
that T~! : U — V is given by

T (A) = }(2(tr A)T - A). (B.3.8)

Hence, T : V — U is a homeomorphism and (B.3.7) shows that Theorem B.2.1 is a
consequence of Theorem B.2.2, and vice versa. O

For a centered ellipse E € £ there exist a symmetric positive semi-definite matrix
A € U such that E = AB?, where B? is the Euclidean unit disk in R%. Now by eigende-
composition we can write E = CAB?, where C is an element of the special orthogonal
group SO(2) with columns which are eigenvectors of A. The diagonal matrix A has
the corresponding eigenvalues on its diagonal. The support function of E now takes
the simple form

hg(u) = max(x,u) = ||AC"u||, (B.3.9)
x€E

for u € S'. The Fourier coefficients of ¢ > hg(u,) for E = CAB?, are given by

21 1 271
w=1 | IACtlcostup)dg, b= 1 | IACsiniup)dy,

for n > 0 due to (B.3.9). For reference, the monograph [7] can be consulted. By
definition [18, Equation (1.30)], the mean width w(E) = %Isl hg du of E coincides with
ag. By [7, Theorem 4.2.1] the vector (a,b;)" is the Steiner point of E. As the Steiner
point coincides with the center of symmetry of E, and E is centered, a; = b; = 0. The
Fourier coefficients for n > 2 do not have similarly simple geometric interpretations.

Proposition B.3.3. Theorem B.2.2 implies Theorem B.2.3 and vice versa.

Proof. We first remark that the mapping S in (B.2.5) is injective on V and that its
inverse is continuous on the range of S. The relation S oW = 7Y follows from the
definitions and the trigonometric identities cos® ¢ + sin¢ = 1, cos’> @ —sin’¢ =
cos(2¢), and cos @ sin @ + sin @ cos @ = sin(2¢).

Now if Theorem B.2.2 holds W : £ — V is surjective, so S o W =Y implies S(V) =
S(W(€)) =W, and Theorem B.2.3 follows. On the other hand, if Theorem B.2.3 holds,
S :V — W is surjective, so W = S~! 0 Y is a homeomorphism, implying Theorem
B.2.2. O

53



Paper B - Reconstructing Planar Ellipses from Translation- Invariant Minkowski Tensors of
Rank Two

The explicit representation of WWin (B.2.6) can easily be derived from the parametriza-
tion A, 1, = CpACy, of all elements of V, where C,, is a rotation about 0 with angle
@ €[0,2m) and A is a diagonal matrix with non-negative eigenvalues y; and y,, with
#1/2 < pp < 2py. In fact, in the nontrivial case pq + pip > 0, we have

S(Agy ) = (1 + p2)(1, Bcos 2¢p, Bsin 2¢p)

: _ MK 11
with g = H1tH2 € [_grg]-

B.3.3 Proofs of Theorem B.2.2, Proposition B.2.4, and Corollary B.2.5

This section is dedicated to the proof of Theorem B.2.2 (implying, as we have seen,
Theorems B.2.1 and B.2.3), the weak stability result in Proposition B.2.4, and Corollary
B.2.5. For later use, we note that the definitions of W(E) and hg imply

CW(E)C' = W(CE) (B.3.10)

for all C in the orthogonal group O(2).

We say that an ellipse E € £ is axis-parallel if its principal axes directions are
parallel to the standard coordinate axes. By convention, if E is a disk, any direction
is a principal axis direction, so any centered disk is axis-parallel. The next two
propositions show that W(E) can be used to find a rotation C of E € £ such that CE is
axis-parallel with the largest principal axis parallel to the y-axis.

Proposition B.3.4. The following statements hold.

(i) If the axis-parallel ellipse

_ x 0 2
E_(O y)B €€ (B.3.11)
with x,y > 0 is given, then
W(E) = (”1 0 ) (B.3.12)
0

with py, py > 0.
(ii) In (i) we have x <y if and only if py < py. Furthermore, x =y if and only if py = py.
(iii) An arbitrary E € £ is a disk if and only if V(E) is a multiple of the identity matrix.

Proof. Let E be given by (B.3.11) in (i). Direct calculations using (B.3.9) and the
standard parametrization of S! show that the off-diagonal elements of W(E) are zero
and that

/2
= J. ulhg(u)du = 4J sin? @ \/x2sin? @ + p2cos2 pdep, (B.3.13)
st 0

and

/2
,u2:4j cos? py/x2sin? @ +p2cos? pde. (B.3.14)
0
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This shows (i).
Trigonometric identities allow a split of these integrals at ¢ = 77/4 to obtain

/4
J2 - =4f (2cos® - 1)x
0

(\/x2 sin? @ + 92 cos? @ — y[x2 cos? ¢ + y2 sin? (P)d(P-

Without loss of generality, we may assume (x,y) = (0,0). Putting

a= \/x2 sin? @ +p2cos? @ and b = /x2cos? ¢ + y2sin’ ¢,

we see from the binomial formula (a - b)(a + b) = a®> — b? that

/4 (

2cosZp—1)2
H2— 1 :4(y2_x2)f —(P)

de.
0 a+b ¢

The integrand is positive on (0,7t/4), so the difference p, — y; has the same sign as
v — x, and vanishes iff y — x vanishes. This proves (ii).

In (ii) we have shown x = y iff y; = p,, which directly implies that W(E) of a
disk E is a multiple of I. For the converse assume that W(E) is a multiple of I. Then
W(CE) = W(E) for all C € SO(2) due to (B.3.10), so we may apply the above to CyE,
where Cy € SO(2) is chosen so that CyE is axes-parallel. We infer that CyE, and hence
E, must be a disk. m|

Proposition B.3.5. Fix E € £. If C € SO(2) is such that CW(E)C" has diagonal form, then
CE is an axis-parallel ellipse.

Proof. As W(E) is symmetric, there is a rotation C € SO(2) such that C¥(E)C' has
diagonal form. By (B.3.10) we see that W(E’) with E’ = CE is a diagonal matrix. Due to
Proposition B.3.4(iii), E’ is a disk (and hence axis parallel) if W(E’) is a multiple of the
identity matrix I. We may therefore assume that W(E’) has two different eigenvalues
1 # o

Now let v € S! be a principal axis direction of E’ and let Cy = 2vv! —I € S(2) be the
matrix of the reflection across the line spanned by v. As CoE’ = E’, equation (B.3.10)
implies CoW(E’)C}) = W(E’), that is, W(E’) and Cy commute. This, and the fact that ¢,
is an eigenvector of W(E’) with eigenvalue y; shows that Cye; is also an eigenvector
of W(E’) with the same eigenvalue. As p # y, this implies Cye; = +e;, so v must be
parallel to one of the coordinate axes. This shows that E’ = CE is axes-parallel and
concludes the proof. O

Proposition B.3.6. The mapping WV : £ — V is bijective.

Proof. To show the injectivity, let E € £. In view of Propositions B.3.4 and B.3.5, we
may assume an axis-parallel ellipse (B.3.11) with x <y and have to show that x and y
can be recovered from the two numbers y; and y; in (B.3.12).

Clearly, y = 0 occurs if and only if py = yp = 0 due to (B.3.13) and (B.3.14), so we
may assume p > 0 and y, > 0 from now on. It is convenient to work with the squared
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eccentricity z=1— xz/y2 €[0,1] of E, as

2 /2
i :yzf sin® p+/1 —zsin? pdg
0

- %((22—1)E(z)+(1—z)K(z)), (B.3.15)
where the first equality follows from (B.3.13) and the second equality is a special case
of [6, p. 186, formula 2.583(4.)]. Similarly,

Z”F %’((Hz)E(z)—u—z)K(z)), (B.3.16)

which can be derived from (B.3.15) and (B.3.14) observing that z(y; + p,)/4 = yzE(2).
The function f(z) = 3u1/(p1 + p2) — 2 can be derived from W(E) and is independent of
y when z € [0,1] is given. In fact, when z > 0, Equations (B.3.15) and (B.3.16) show

that
(1-2)K(z) - E(2)

fl2)= 2E(2)

When z = 0, we must have x = y and thus p; = y, by Proposition B.3.4(ii), hence
f(0) =-1/2. By Lemma B.3.1, the function f is strictly decreasing on [0, 1], implying
that z is uniquely determined by p; and p,. Solving (B.3.15) with the z-value just
obtained determines y and we must have x = V1 - z. Concluding, we have shown
that W(E) determines E uniquely.

To show surjectivity, let A €V be given. Applying a suitable rotation C, we may
assume that e; and e, are eigenvectors of C'AC, where the corresponding eigenvalues
p1 and pp satisfy py < pp < 2py. It follows that the number b = 3u;/(py + pp) — 2
is an element of [-1,-1/2], so there is a zy € [0,1] such that f(z;) coincides with b
due to Lemma B.3.1. Inserting z; into (B.3.15) yields a value yy = y and we may
put xo = yoV1 —zg. Then the ellipse E, of the form (B.3.11) with x = xy and y = yj
satisfies W(E,) = C'AC. In view of (B.3.10), we thus arrive at W(CEy) = CW(E,)C! = A,
showing surjectivity. This concludes the proof. m]

Proof of Theorem B.2.2: Endow the space of continuous functions on S! with the
maximum norm. In view of our definition (B.2.7) of the Hausdorff metric, E + h is
an isometry. This clearly implies the Lipschitz-continuity of W.

Due to Proposition B.3.6, the inverse of W exists. It thus remains to show that the
inverse is continuous. For a given r > 0 we consider the set

V(r)={A eV : all eigenvalues of A are in [0, r]}.

As it is enough to show the continuity of W~! on V(r) for all r > 0, we now fix r > 0.
We will show below that there is an R > 0 such that

W (V(r)) CE(R)={E €& : ECRB?). (B.3.17)

As £ is closed in the family K? of convex bodies, the set £(R) is compact due to the
Blaschke selection theorem (see, e.g. [18, Theorem 1.8.7]), so the continuity of p-l
on W(E(R)) D V(r) follows from topological standard arguments for continuous maps
on compact spaces; see for instance [23, Proposition 5.2.5].
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It remains to show (B.3.17). If E € £ is such that W(E) € V(r), the same holds true
for any rotation of E due to (B.3.10), so we may assume that E is axis-parallel with
half-axes lengths 0 < x <y. By (B.3.13), the eigenvalue y; of W(E) satisfies

%
y1:4J. sin @+/x2sin @ + 2 cos? @ dg

0
3 4
>4 | " sin? P+Jy2coslpde = ?}) (B.3.18)
0

As py <r,(B.3.17) holds with R = 3r/4. This completes the proof of Theorem B.2.2. O

Tracking the continuity properties of all involved mappings in the proof above,
the stability result in Proposition B.2.4 can be shown.

Proof of Proposition B.2.4: Let A € int) be given, and let C € SO(2) be such that
CAC! is the diagonal matrix with diagonal entries y; < y,. Perturbation theory (see,
e.g. [22, Lemma 4.3]) yields the existence of a neighborhood N of A and a constant
c1 = ¢1(A) > 0 such that the following holds: for any A" in N there is a C’ € SO(2) such
that C’A’(C’)" is a diagonal matrix with diagonal entries y] < i}, and

IC-Cllr < c1llA=Allp. (B.3.19)

We may additionally assume that A is a compact subset of int ).

The properties of the Frobenius norm imply |u; — p;| < [|A—A’||g for i = 1,2. Hence,
the eigenvalues of A’ € A/ are uniformly bounded away from 0 and from above; and
w1/15 is uniformly bounded away from 1/2. Setting b = 3p/(puy + pp) = 2,z = fL(b),
and b’ = 3uy/(uy + py) — 2,z = f71(b’), using this boundedness and the Lipschitz
property of f~! in Lemma B.3.1 gives the existence of a constant ¢, = c;(A) > 0

lz-2/| <ol A=Al

We may in addition conclude that b’ is uniformly bounded from below by a constant
b=0b(A)>-1. As f is strictly decreasing,

=)< f ) =2<1.
Solving (B.3.16) for y suggests the definition y = 3u,¢(z) and v’ = 3p)g(2’). As
both, the restriction of g to [0,z] (by Lemma B.3.1), and the eigenvalue ;4’2 are bounded
and Lipschitz, there is a constant c3 = c3(A) > 0 such that

ly =/ < csllA=A'llg. (B.3.20)

Similar arguments for x = yV1 —z and x" = y’V1 — 2z’ yield the existence of a constant
cg = c4(A) > 0 such that

|x —x'| < cqllA=A||p. (B.3.21)

Due to (B.3.10), the ellipses E = C'AB? and E’ = (C’)' A’B? with the diagonal ma-
trices A = diag(x,y) and A’ = diag(x’,y’) satisfy W(E) = A and W(E’) = A’. Equations
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(B.2.7) and (B.3.9), imply

du (™ (A), 9 (A) = du(E,E)
= max [[[ACul| - |A"C ull|
ues!t
<max|[(AC-A'C’)ul|

ues!
<||AC-A'C'|lf
<ANENC = Cllg + 1A = AYENC I,

as the Frobenius norm is subordinated and sub-multiplicative. As ||C’||f = V2, the
assertion now follows from (B.3.19), (B.3.20), and (B.3.21). O

Corollary B.2.5 is a simple consequence of Theorem B.2.1.

Proof of Corollary B.2.5: Firstly observe that
Var(Ug) = E(Uf) = a®(E) = ®(aE),

with a™! = S;(E,S!)/(8n) > 0. Similarly we get Var(Ug/) = ®(a’E’) with (a’)™! =
Si(E’,S')/(87). Hence, if Var(Ug) = Var(Ug), Theorem B.2.1 implies E’ = SE.If, on
the other hand, there exist A > 0 such that E’ = AE then a’E’ = «E, which proves the
corollary. ]

B.4 Reconstruction algorithms

The proof of Theorem B.2.2 is constructive and gives rise to the following recon-
struction algorithm based on the functions f and g given in (B.3.3) and (B.3.4),
respectively.

Algorithm SupportTensorData
Input: Let A €V be given.
Task: Find E € € such that W(E) = A.
Action:  Find C € SO(2) such that C!'AC = (’g P? ) with py < pp.
2

(a) Find the squared eccentricity z € [0,1]

; - a1
by solving f(z) = 3141+V2
(b) Put y = 3p5g(2z) and x =pV1 -z

Output: The ellipse E = C(g 2)B2.

To find f~!, a numerical procedure is required. The following variant of the above
algorithm takes into account that this inversion comes with an error.
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Algorithm SupportTensorData*
Input: Let A€V and ¢ > 0 be given.
Task: Find E € € such that di(E, W' (A)) <e.
Action:  Find C € SO(2) such that C'AC = (’g ;l) ) with py < py.
2

— # ; _ _3
Ifb_3m+1m—21sequalto—l,letx_Oandy_Z/,tl.

Otherwise,

(a) Find zand z in [0, 1) with f(z) <b < f(2)
and z -z < 01, where

:

1 1—2}
K@) b

(b) Put z = yTE, Y= %yzg(z) and x=yV1l-z.
Output: The ellipse E = C(x 2)B2.

01 =01(z,¢) = e% min{

0

The two numbers z and z in step (a) can be found iteratively by the method of
nested intervals that are halved in each iteration, starting with z, = 0 and Z, = 1. One
first iterates ignoring the requirement z,, — z, < ;. Eventually we will have z,, <1 as
b > -1, and the corresponding 6, will be positive. In each consecutive step, 6; will
remain unchanged or become larger, and the condition in step (a) can be reached in
finitely many steps.

That Algorithm SupportTensorData* yields an ellipse within the desired preci-
sion when b > —1 can be seen as follows. Let 0 < xy < yy be the half-axes lengths
of the ellipse Ey = W™1(A) and let z, be its squared eccentricity. If x, y and z are
the corresponding quantities determined in the algorithm, we have z < z,z5 <z, so
|z—2zo| <z—2z < 6;. Hence,

[y =0l < 312lg(2) - glz0)] < 31K @1 <5, (B.4.1)
by Lemma B.3.1(ii) and the definition of 0. In addition, using the inequality (B.3.18)
and the bound |z — z5| < 61, and (B.4.1), we see that

I —xol = [y VI =z = po/1 - 2o
< V1 =z|[y = 0| + po| VI =z = V1 = 2|

<[y 30|+ $11 —=le =
o=z

™

<5+5=¢

N
(S}

As E( and E are obtained from rotating axis-parallel ellipses with the same rotation,
it is easy to see that their Hausdorff distance is not exceeding ¢.

Algorithm SurfaceTensorData
Input: Let A € U be given.
Task: Find E € € such that ®(E) = A.
Action:  Apply Algorithm SupportTensorData
to T~1(87A), given by (B.3.8), with output E.
Output: The ellipse E.
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The reconstruction from Fourier coefficients makes use of the inverse

-1 _ x| 9 taz by
S (ag,az,by) =% b
2 ap—4ap

(ag,ay,by) € W, of the mapping S in (B.2.5).
Algorithm FourierData

Input: Let (ag,a,,b;) € W be given.

Task: Find E € € such that Y'(E) = A.

Action:  Apply Algorithm SupportTensorData
to S~!(ag, a,, b,) with output E.

Output: The ellipse E.

Naturally, the last two algorithms also can be defined in ‘starred’ versions by ap-
plying Algorithm SupportTensorData® instead of Algorithm SupportTensorData
in either of them.

B.5 An application to particle processes

In this section we will consider a number of set-valued summary statistics for sta-
tionary particle processes making use of the results in the previous sections. Let
X be a stationary particle process in IR? with convex particles, intensity y > 0 and
grain distribution Q. For details on the theory of particle processes we recommend
[19, Sections 4.1 and 4.2]. The grain distribution is concentrated on

K3 =1{K e K*:2(K) =0},

where z: K2 > R?is a center function, that is, it is measurable and satisfies z(K + x) =
z(K) + x for all K € K? and x € R?. We will use the canonical choice for z(K), which is
the circumcenter of K, unless stated otherwise.

Let Ky be a random convex body with distribution Q. It can be considered as
the typical particle of X in the Palm sense. Here and in the following, we restrict
considerations to convex particles, although extensions to polyconvex particles, or
even larger set classes that allow for well-defined support measures, are possible.

By definition, the intensity measure of X is locally finite. This property is by
[19, Theorem 4.1.2] equivalent to the Q-integrability of the perimeter 2V;(Kj) and
the area V,(Kj) of K. Hence, [ES;(Kj, ) is a finite measure, as S1(K,-) < 2V,(K), and
the smallest disk containing K has an integrable radius.

We now give a short overview of common set-valued summary statistics of X and
their interrelation. The Aumann expectation IEK is also called selection expectation, as
it is defined as the closure of the set containing all means of integrable selections of
K. Equivalently, by the convexity of K, the expectation [EK| is the unique convex
body satisfying

hgk, (1) = Ehg, (),
u € S'; see [17, Thorem 2.1.35]. As Minkowski-addition (corresponding to the addi-
tion of support functions) and Blaschke-addition (corresponding to the addition of
surface area measures) coincide in IRZ, we also have

S,(EKy, @) = ES, (Ko, @), (B.5.1)
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for any measurable w C S!.
Due to Minkowski’s existence theorem, there exists a unique set B(X) € IC(z) such
that

SI(B(X),CL)) = )/IESl(Ko,(U), (BSZ)

for any measurable w C S!, and this set is called the Blaschke body of X. In contrast
to higher dimensions this construction also works for degenerate particle processes in
the planar case. It follows that the usual mean body M(X) and the Blaschke body B(X)
of X are closely related to EK,, as a comparison of (B.5.1) and (B.5.2) shows that
EK is a translate of the Blaschke shape ' B(X). In a similar way, it can be seen that
EKj is a translate of y "' M(X), as the latter is defined as a support function mean
(though with the Steiner point map as center function).

Hence, the mean EK, and the sets ¥ ! B(X) and y ' M(X) contain essentially
the same mean information about the typical particle. Direct estimation of these
sets is not practical in many applications, as they cannot be described by a finite-
dimensional parameter vector. We therefore suggest to pool this information even
further by considering the surface tensor of EK and representing it as an ellipse.
This simplified set-valued summary statistic still captures certain orientation and
shape information. To implement this program, the results of Section B.2 are needed.

For any convex body K € K? the tensor ®(K) is clearly in ¢/, so Theorem B.2.1
yields the existence of a unique centered ellipse e(K) € £ with

D(e(K)) = D(K).
Clearly, e(K) remains unchanged when K is translated.

Definition B.5.1. The Blaschke ellipse of a stationary particle process X of convex
particles is the unique centered ellipse eg(X) € £ with

D(eg(X)) = P(EKy). (B.5.3)
Equivalently, eg(X) = e(EKj).

We decided to define the Blaschke ellipse without the factor y (present in the
definitions of M(X) and B(X)) to ease comparison with the Miles ellipsoid in [25],
which is based on an average of rank-2 volume tensors of K. In view of the above,

ep(X) =y e(M(X)) =y e(B(X)), (B.5.4)

and the Blaschke ellipse can be derived from any of the above set-valued means.
But it is not necessary to determine these set-valued means to derive eg(X), as the
standard proof of measure theory shows ED(Ky) = P(EKj), so

O(ep(X)) = ED(Ky), (B.5.5)

by (B.5.3), and eg(X) € £ is uniquely determined by (B.5.5). In view of Theorems
B.2.2 and B.2.3, the Blaschke ellipse could equivalently be defined as the ellipse in
& with rank-2 support tensor or first non-trivial three Fourier coefficients equal to
the corresponding means of K. If K coincides almost surely with a deterministic
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convex body K, then eg(X) = e(K). If K is isotropic, eg(X) is a disk, but the converse
is false.

We now turn attention to the estimation of eg(X) based on observations of X in
a compact window W € K2. The idea is to reconstruct eg(X) from an estimator of
®(eg(X)) = '@ (B(X)), which can be based on known estimators for S; (B(X),-) in the
literature. However, many such estimators, like those that can be naturally derived
from [24, Theorem 4.4] are only asymptotically unbiased when the window grows in
an appropriate manner. If W is the unit square, an unbiased procedure can be derived
from [24, Cor. 4.5] suggesting to estimate ®(B(X)) by

Dy (X) = Z[@(KmW)—qn(Knmwn, (B.5.6)
KeX

where 9t W = {(x1,x,) € R? : max(x;,x,) = 1} is the upper right boundary of W, and
@ is additively extended. However, we base our later analysis on the estimator

Dy (X) = %, (B.5.7)
where
1

Dy (K)

= —f w? A (KNW,d(x,u))
270 Jintwxs!

only takes into account the part of the boundary of the particle K which is contained
in the interior int W of W. Firstly, &y (X) is more flexible and not restricted to rectan-
gular windows, and secondly, for W = [0, 1]2 its variance is smaller than the one of
®yy(X), at least when X is isotropic. The latter statement is made precise in Propo-
sition B.5.2(ii), where a rank-2 tensor @ is identified with the vector (D;1,D;,, Dq5)
of its essential entries, so the covariance matrices are in R3*3. This Proposition also
collects other basic properties of ®yy (X).

Proposition B.5.2. For any W € K? with positive area we have:
(i) The estimator &y (X) in (B.5.7) is unbiased for ®(B(X)).

(ii) If W =[0,1]? and X is isotropic, the covariance matrix of Oy (X) is larger or equal
to the covariance matrix of @y (X) in (B.5.6) in the sense of Loewner partial order.

Proof. To show (i) we use the fact [4, p. 103] that the support measure is locally
determined, implying that

A (KNW,intW xw) = A{(K,int W x w)

holds for all measurable w c S!. Combining this with Campbell’s theorem [19,
Theorem 3.1.2], and the motion covariance [19, Theorem 14.2.2] of A{(K,-) yields the
asserted unbiasedness.

To show (ii) assume W = [0, 1]? and note that the definition of the support measure
implies

DK W)= D(K NI W) = Dy (K) + % [(K N o W)=D(K NI W)],
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where J~W consists of all boundary points of W which are not in J*W. Hence,
Dy (X) = Dy (X) + Ty (X) with

Ty (X) = % Z [D(KNdW)-D(K NI W)].
KeX

Let X’ be the rotation of X about the midpoint of W with angle 7. Stationarity and
isotropy of X imply that X and X’ have the same distribution. But Dy (X7) = Dy (X)
and Iy (X') = Ty (X), so (Dyy (X), Ty (X)) has the same distribution as (Dyy (X), ~Tiy (X)).
We conclude

Cov Dy (X), Ty (X)) = = Cov (D (X), Ty (X)),

Hence, the two stochastic vectors are uncorrelated, and
Var (Dyy (X)) = Var (D (X)) + Var (T (X)),

We see that Var (CI3W(X)) — Var (<13W(X)) is positive semi-definite, so the former vari-
ance is larger or equal than the latter by definition of Loewner’s partial order. This
concludes the proof. O

Let y be an unbiased estimator of the intensity y. Canonically, y is chosen as
the mean number of particles with center function in W, divided by the area V,(W).

Then .
Dy (X)

A

4

is a ratio-unbiased estimator for y~!®(B(X)). In view of (B.5.4), an estimator &5(X)
for eg(X) can now be obtained using Algorithm SurfaceTensorData” with (B.5.8) as
input. In the examples given in Figure B.1 we employed this method with the lower
tangent point [19, p. 110] as center function for intensity estimation, and with precision
€ =5-107° in Algorithm SurfaceTensorData*. We considered several stationary
Poisson particle processes and sampled them in the compact unit square W = [0, 1]?.
In all examples the intensity y = 300 was chosen, but the distribution Q varied. Each

(B.5.8)

row in Figure B.1 corresponds to a different process model. The first column shows
realizations of X in W, where in (a) we chose Q({K}) = 1 for a fixed triangle K € K2,
in (d) Q is the image of a uniform distribution of ¢ € [0, 27t) under the mapping

@ CyK, (B.5.9)

where C,, is the rotation about 0 with angle @, turning X into an isotropic process, and
in (g) the opening angle of the random isosceles triangle K is distributed uniformly
in [7/100,7t/7]. The second column depicts the corresponding €g(X) in black. The
gray-shaded shape ellipse in the second column and the directional histogram in the
last column will be explained after Definition B.5.3. Both estimators of the Blaschke
ellipse in Figures B.1(b) and B.1(h) capture the intuitive ‘orientation” and summarize
the peakedness of the triangles. However, in the isotropic case (e) the Blaschke
ellipse is a disk and contains no particle shape information (other than their average
perimeter).

As noted before, isotropic processes are not the only cases where the Blaschke
ellipse eg(X) is a disk. In fact, due to Proposition B.3.4, eg(X) is a disk if and only if
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Figure B.1: Simulation of three different Poisson particle processes and their associated ellipses and
directional information. The first column shows one realization of each process with intensity y = 300.
In (a) the typical particle Ky is a fixed triangle, in (d) K is the isotropic rotation of this triangle, and
in (g) Ko can attain triangles with different shapes but the same ‘orientation’. In the second column the
corresponding estimated Blaschke ellipses (black) and the mean shape ellipses (shaded gray) are shown.
The last column shows the histograms of the directions of e(K) for each sampled particle K with reference
pointin W.

the mean surface tensor is a multiple of the identity matrix. A possible example is a
modification of the process in Figure B.1(a), where every other triangle is rotated by
Z (not shown here). Another example of such an anisotropic process with circular
ep(X) can be seen in Figure B.2(d) where Q is the image under (B.5.9) of a uniform
angle ¢ € [0,7), and K is a fixed triangle.

In a way, the Blaschke ellipse mixes information about orientation and shape. This
undesirable behaviour of the Blaschke ellipse is due to the averaging over all observed
particles in its definition. If individual particles can be analyzed, we therefore suggest
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Figure B.2: Simulation of two different Poisson particle processes and their associated ellipses and di-
rectional information. The intensity was y = 300 in both cases. The first row depicts a process with
one deterministic triangle, rotated by a scaled beta-distributed angle. In (b), the estimated mean shape
ellipse (gray shaded) clearly has a larger eccentricity than the estimated Blaschke ellipse (black), and the
directional histogram in (c) captures the scaled beta-distribution. The second row depicts a process with
one deterministic triangle, rotated by a uniform angle in [0, 7). In the corresponding (e), the estimated
mean shape ellipse (gray shaded) captures (an ellipsoidal approximation of) the triangle shape, whereas
€p(X) (black) is a disk. But in this case, the directional histogram in (f) is close to a uniform distribution,
although the process is not isotropic.

to separate orientation and shape for each of them. This is made precise in the
following definition of the mean shape ellipse. For K € K?, we will write 1;(K) < 1,(K),
u(K)eS! = {up 1 @ €[0,m)}, and (K) € [0, ) for the smallest eigenvalue, the largest
eigenvalue, the direction of the longest principal axis of e(K) and the angle of this
direction with the x-axis, respectively.

Definition B.5.3. The mean shape ellipse of a stationary particle process X of convex
particles is the unique centered ellipse es(X) € € with lengths of principal axis

11 = IE/\l(Ko), and 12 = IE/\z(Ko),
and the longer principal axis direction U, where U is the mean direction of u(K).

The mean direction of u(K,) must be understood as an appropriate modification
of the standard notion in directional statistics [14, Section 2.2.1], taking into account
that the direction is an element of S!, but with antipodal points identified. Thus,
U = u, with ¢ € [0, 7) must satisfy

uZ(p = YIEM2¢(KO) (B510)
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with some r > 0. If the mean on the right is zero, U is undefined and we set U = (0, 1)
in this case. In simulations, we estimated U replacing the expectation in (B.5.10) with
an empirical mean. From a theoretical point of view, one could have chosen to define
U as the Fréchet mean of u(Ky) on the manifold S! with endpoints identified, if we
insisted on an intrinsic mean. However, the Fréchet mean is computationally more
involved. Furthermore, the analysis of the performance of these two estimators for a
variety of circular distributions in [15] indicates that none of them is generally worse
than the other.

The estimation of eg(X) from observations in a sampling window W requires a
careful treatment of edge effects. To avoid censoring by the window, we employed
Miles’ associated point rule [16] where all particles with their center function (lower
tangent point) in W are assumed to be observable, even though they may not be
completely contained in W. The numbers A, and A, where then estimated using
empirical averages. As the number of observations contributing to these averages is
random, the resulting estimators are only ratio-unbiased.

Returning to Figure B.1, we see that the estimated mean shape ellipse (gray
shaded) coincides with €g(X) in (b) and (/). The corresponding empirical histograms
of u(Kp) in (c) and (i) reveal why this is the case: the individual ellipses associated to
the observed particles all have the same principal axis direction. This is different in
the isotropic case: in (f) the empirical histogram is close to a uniform distribution,
but the estimated eq(X) captures an elliptical approximation of a ‘mean shape’, which
clearly indicates elongated particles. These examples illustrate how eg(X) separates
certain ‘shape’ and ‘direction’ information of the particles, which is mixed when eg(X)
is considered. This can also be observed in the first row of Figure B.2 for a process
where Q is the image under (B.5.9), where ¢ = Brr and B follows a beta distribution
with shape parameters & =2 and § = 3.

We emphasize the value of the histograms in the last columns of Figures B.1
and B.2. Clearly, if this histogram is close to uniform or is multimodal, the value of
the direction U is debatable. In such cases, it might be better to report eg(X) in an
axis-parallel version to avoid misinterpretations.

As the histogram is close to uniform when the process is isotropic, one may employ
a statistical test with the null hypotheses of isotropy. In the present context, where the
Poisson assumption implies independence of the observed particles, a Kolmogorov-
Smirnov test can be used for this purpose. Examples where the hypothesis is not
rejected can be seen in Figures B.1(f) and B.2(f). Here they each have a p-values
above 0.05, but only the first process is actually isotropic. False positives like in
Figure B.2(f) occur as the distribution of #(Kj) (like any other summary statistic in a
sufficiently complex setting) captures certain but not all features of the underlying
process. In practical applications the observed particles may stochastically depend
on one another and thus more elaborate inference tools must be used instead of a
Kolmogorov-Smirnov test.

We summarize this applied section. We introduced two new ellipsoidal summary
statistics for stationary particle processes. The first one is the Blaschke ellipse, which
does not depend on the choice of the center function in contrast to the volume-tensor-
based Miles ellipse in [25]. The second one is the mean shape ellipse, which allows
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to make inference on an average shape even if the Aumann expectation and thus a
number of other set-valued means are disks.

Acknowledgements

This research was partially supported by Centre for Stochastic Geometry and Ad-
vanced Bioimaging, funded by the Villum Foundation.

67



Paper B - Reconstructing Planar Ellipses from Translation- Invariant Minkowski Tensors of
Rank Two

References

(1]

2]

(3]

[4]

[6]

[7]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

68

Alesker, S. 1999. Description of Continuous Isometry Covariant Valuations on
Convex Sets. Geom. Dedicata 74(3), 241-248.

Beisbart, C., R. Dahlke, K. Mecke, and H. Wagner. 2002. “Vector- and Tensor-
Valued Descriptors for Spatial Patterns”. Morphology of Condensed Matter:
Physics and Geometry of Spatially Complex Systems. Ed. by K. Mecke and D.
Stoyan. Berlin, Heidelberg: Springer Berlin Heidelberg, 238-260.

Gardner, R.J. 2006. Geometric Tomography. 2nd ed. Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press.

Glasauer, S. 1997. A Generalization of Intersection Formulae of Integral Geom-
etry. Geom. Dedicata 68(1), 101-121.

Goodey, P. and W. Weil. 2010. Generalized Averages of Section and Projection
Functions. Adv. Appl. Math. 44(2), 111-123.

Gradshteyn, I.S. and I.M Ryzhik. 2007. Table of Integrals, Series, and Products.
Ed. by J. Alan and Z. Daniel. 7th ed. Academic Press, Elsevier.

Groemer, H. 1996. Geometric Applications of Fourier Series and Spherical Harmon-
ics. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge.

Hadwiger, H. 1975. Vorlesungen iiber Inhalt, Oberfliche und Isoperimetrie. Vol. 93.
Grundlehren der mathematischen Wissenschaften. Springer, Berlin.

Jensen, E.B.V. and J.E. Ziegel. 2014. Local Stereology of Tensors of Convex
Bodies. Methodol. Comput. Appl. Probab. 16(2), 263-282.

Kiderlen, M. Shape Reconstruction from Minkowski Tensors.

Kousholt, A. 2017. Reconstruction of n-dimensional Convex Bodies from Sur-
face Tensors. Adv. Appl. Math. 83, 115-144.

Kousholt, A. and M. Kiderlen. 2016. Reconstruction of Convex Bodies from
Surface Tensors. Adv. Appl. Math. 76, 1-33.

Kousholt, A. and J. Schulte. 2021. Reconstruction of Convex Bodies from
Moments. Discrete Comput. Geom. 65, 1-42.

Mardia, K. V. and P.E. Jupp. 1999. Directional Statistics. Wiley series in proba-
bility and statistics. Wiley, Chichester.

McKilliam, R.G., B.G. Quinn, and I.V.L. Clarkson. 2012. Direction Estimation
by Minimum Squared Arc Length. IEEE Trans. Signal Process. 60(5), 2115-2124.

Miles, R.E. 1978. The Sampling, By Quadrats, of Planar Aggregates. J. Microsc.
113(3), 257-267.

Molchanov, I. 2005. Theory of Random Sets. Probability and Its Applications.
Springer-Verlag London.



(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

References

Schneider, R. 2014. Convex Bodies: The Brunn-Minkowski Theory. 2nd ed. Cam-
bridge University Press, Cambridge.

Schneider, R. and W. Weil. 2008. Stochastic and Integral Geometry. Springer,
Berlin.

Schroder-Turk, G.E., S. Kapfer, B. Breidenbach, C. Beisbart, and K. Mecke. 2010.
Tensorial Minkowski Functionals and Anisotropy Measures for Planar Patterns.
J. Microsc. 238(1), 57-74.

Schroder-Turk, G.E. et al. 2011. Minkowski Tensor Shape Analysis of Cellular,
Granular and Porous Structures. Adv. Mater. 23(22-23), 2535-2553.

Sun, D. and J. Sun. 2002. Strong Semismoothness of Eigenvalues of Symmetric
Matrices and Its Application to Inverse Eigenvalue Problems. SIAM ]. Nu-
mer. Anal. 40(6), 2352-2367.

Waldmann, S. 2014. Topology, an Introduction. Springer International Publish-
ing, Switzerland.

Weil, W. 1995. The Estimation of Mean Shape and Mean Particle Number in
Overlapping Particle Systems in the Plane. Adv. Appl. Probab. 27(1), 102-119.

Ziegel, ].F,, J.R. Nyengaard, and E.B.V. Jensen. 2015. Estimating Particle Shape
and Orientation Using Volume Tensors. Scand. J. Stat. 42(3), 813-831.

69






PAPER

Mean Surface and Volume Particle Tensors
under Restricted L-isotropy and Associated
Ellipsoids

Rikke Eriksen and Markus Kiderlen

Submitted to Advances in Geometry (July 2021)

Abstract

The convex-geometric Minkowski tensors contain information about shape and
orientation of the underlying convex body. They therefore yield valuable summary
statistics for stationary marked point processes with marks in the family of convex
bodies, or, slightly more specialised, for stationary particle processes. We show
here that if the distribution of the typical particle is invariant under rotations
about a fixed k-plane, then the average volume tensors of the typical particle can
be derived from k + 1-dimensional sections. This finding extends the well-known
three-dimensional special case to higher dimensions. A corresponding result for
the surface tensors is also proven.

In the last part of the paper we show how Minkowksi tensors can be used to
define three ellipsoidal set-valued summary statistics, discuss their estimation
and illustrate their construction and use in a simulation example. Two of these,
the so-called Miles ellipsoid and the inertia ellipsoid are based on mean volume
tensors of ranks up to 2. The third, based on the mean surface tensor of rank-2 will
be called Blaschke ellipsoid and is only defined when the typical particle has a
rotationally symmetric distribution about an axis, as we then can use uniqueness
and reconstruction results for centered ellipsoids of revolution from their rank-2
surface tensor. The latter are also established here.
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Associated Ellipsoids

C.1 Introduction

Any real-valued continuous, rigid motion invariant and additive functional on the
family K" of convex bodies (non-empty compact convex subsets of R") is a linear
combination of the intrinsic volumes due to Hadwiger’s famous characterization
theorem [5]. Alesker [1] extended this result to the space of certain tensor-valued
functionals on K", which are in turn spanned by the Minkowski tensors

D*(K) = cr’s.J X' A(K, d(x,u)), (C.1.1)
J ] RxSn1 ]( )

with r,s e Ny if j =0,...,n—1, and r € Ny, s = 0 for j = n. Here x"u® is a symmetric
tensor of rank r +s, A;(K,) is the jth support measure of K, S"~1 is the unit sphere

in R", and c;j is a known constant. We call ®*(K) = CDS'_Sl(K) the surface tensors of K

and W'(K) = CD;’O(K) the volume tensors of K.

Alesker’s characterization theorem gives the Minkowski tensors a crucial role in
convex geometry. As they also capture certain orientation and shape information
of the underlying set, they have been used as summary statistics, e.g. as anisotropy
indices for galaxies [3], or for the analysis of ice grains in arctic drill cores [17]. They
also found applications in biology, where cells in tissue were modelled as particles
with their nucleus or nucleolus as reference points, (see for instance [19]). We will
follow [19] and model stochastic collections of particles with associated reference
points as stationary marked point processes with convex particles as marks. For
abbreviation, a mean Minkowski tensor of the typical particle (typical mark) of such
a process will be called mean particle tensor. The present paper gives in Section C.2 a
simplification of the mean volume and surface particle tensors under the assumption
that the distribution of the typical particle is invariant under rotations about a fixed
linear plane L. The latter property will be called L-restricted isotropy as it is a weak
form of the common isotropy assumption. We will show how the average volume
tensor of the typical particle can be derived from the intersection of this particle with
a linear subspace of dimension dim L+1 containing L. This generalizes the main result
in [11], where the three-dimensional case has been treated. A corresponding result
for the surface tensor is also discussed. This is of particular interest in local stereology
where estimators such as the nucleator are made by intersecting the particles with
linear subspaces, see for instance [6].

To illustrate the orientation and shape information carried by the Minkowski
tensors consider a polynomial p of degree at most d > 2 such that K = {x ¢ R" :
p(x) > 0} is a convex body. Then K is determined among all Borel sets up to a set of
Lebesgue measure zero by {(¢"(K):r=0,1,...,d}; see [8] and [10]. In particular, an
ellipsoid in R" is determined by its volume tensors up to rank 2 among all convex
bodies and an explicit reconstruction of this ellipsoid can be given; cf. [7, p. 266].
This uniqueness has been used in stereology to construct ellipsoids that capture
the shape and orientation of the typical particle of stationary particle processes.
The Miles ellipsoid, a set-valued summary statistic based on this construction was
introduced in [19] in the three-dimensional case — its extension to general dimension
is straightforward and will be given in Section C.4. As shown in Example C.4.5,
the Miles ellipsoid as a test statistic for isotropy loses power as it mixes shape and
position information of the individual particles. We therefore introduce the so-called
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inertia ellipsoid, which is based on the same volume tensors but centers the particles
more appropriately before averaging their tensors.

An alternative, which also eliminates the influence of particle position are ellip-
soids based on surface tensors. In contrast to the volume tensors, the surface tensors
are translation invariant, so a set K can at the best be determined up to translation
by finitely many surface tensors. In Paper B it was proven that for n = 2 the rank-2
surface tensor of a centered ellipse determines this ellipse uniquely among all planar
convex bodies. The corresponding result in higher dimensions is still open. We will in
Section C.3 narrow this gap by showing uniqueness in the case where the ellipsoids
are rotation invariant about a fixed line. This allows us to introduce the so-called
Blaschke ellipsoid of processes that are L-restricted isotropic with L being a line. The
Blaschke ellipsoid is based on the mean rank-2 surface tensor of the typical particle
and turns out to be the unique centered ellipsoid that has the same rank-2 surface
tensor as the Blaschke shape of the process.

The paper is structured as follows. Section C.1.1 introduces basic definitions
and notations including some facts about hypergeometric functions, which will be
useful later on. In Section C.2 we consider a stationary marked point process in
IR" with convex bodies as marks which is L-restricted isotropic, and we show how
the mean volume and the mean surface particle tensors can be derived from the
intersection with a linear (dim L + 1)-dimensional subspace containing L. Section C.3
is devoted to proving that the rank-2 surface tensor uniquely determines centered
ellipsoids of revolution, i.e. centered ellipsoids which are invariant under rotations
about a fixed axis. It also contains an algorithm to reconstruct the ellipsoid given its
surface tensor. This is then used in Section C.4 to introduce the Blaschke ellipsoid
in the case of L-restricted isotropy, where L is a line. By definition, its rank-2 surface
tensor coincides with the mean surface particle tensor. Section C.4 also contains
definitions and an introduction to the inertia and the Miles ellipsoids both of which
are associated ellipsoids constructed using the mean volume particle tensors of ranks
up to 2. A discussion of the strengths and weaknesses of these ellipsoids can also be
found in Section C.4.

C.1.1 Preliminaries and notation

In this section we introduce basic concepts and results relevant for the rest of the
paper. The notation follows widely [13], which also is an excellent reference for
convex geometric notions. We will write ey, ..., e, for the standard basis in IR”, n € IN.
For k,r € N and iy,...,i; €{0,...,r} with i; +--- + i} = r we use the notation

(z1lir )+ zelix]) = (z15 -9 2150 Zkr -+ - 25) € R,
~—_——— ~—_——

i i
z1...,2, € R". If one of these vectors only occurs once, we sometimes omit the corre-
sponding parenthesis as in (z([r — 1],2z;5) = (z1[r — 1], 25[1]).

For u € R",u # 0, we define the closed half space

ut ={xeR" : (x,u) >0},
where (x,u) is the usual inner product of x and u.

n
The m-dimensional Hausdorff measure is H"(-), and w, = H"'(S"!) = 22/ (%)
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n
and x, = H"(R") = w2 /I (1 + 5) denote the surface area of the unit sphere S ! and
the volume of the Euclidean unit ball B” in IR", respectively.

C.1.2 Volume- and surface tensors

The family of non-empty compact convex sets in R” will be denoted by K". Its
elements are called convex bodies. Two convex bodies K,L € K" have Hausdorff
distance dy(K,L). For K € K" and x € R"\K there is a unique point nearest point
p(K,x) € K to x. The normalized vector pointing from p(K, x) to x will be denoted by
u(K,x), and is given by

x—-p(K,x)
I R

where d(K, x) = ||x — p(K, x)||. The projection onto a linear subspace M C R” will be
denoted by p,,(-). The support function

hy (u) = max{u, x),
xeK

u € S""1, determines K € K" uniquely.

For k € {1,...,n}, G(n, k) is the Grassmannian of k-dimensional linear subspaces of
IR". Given M € G(n, k), the support set of a convex body K in M with ambient space
M, is denoted by Nor,(K) and the j’th support measure in M by A;VI(K, ). If k=mn,
and hence the ambient space is IR”, we shorten the notation and write Nor(K) and
Aj(K,-) respectively. The total mass of the j’th support measure

V.

H(K) = Aj(K,R" x S"71)

is called the j’th intrinsic volume.
The j’th surface measure is up to normalization the marginal measure of the
support measure defined on the set of normal vectors:

-1
n
S]‘(K,u)) = TlKn]‘(],) A]'(K,IRn X a)),

w C S" ! measurable.

We will work with symmetric tensors on IR”, which are r-linear symmetric func-
tionals on IR” x --- x R" (r copies) for some r € INy. The number r is called the rank of
the corresponding tensor. For x € R", z+ (x, z) is a tensor of rank 1, and

xX'=x0x---0Ox
———
r

is a tensor of rank r, where © is the symmetrized tensor product. We will also write
x"u® =x" ©u®, where u € R”. Using the standard basis of R", a tensor T of rank r can
be identified with a symmetric array, as

n n
T(z1,...,2,) = Z ZT(eh'“"ejr)zllh 2y

j1=1j,=1
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z1,...,2, € R". With this identification, tensors of rank 0,1, 2 are identified with real
numbers, vectors and symmetric n x n matrices, respectively. Due to the symmetry of
this array, T can equivalently be described by the numbers

T...iy = T(exlir) - enlin]) (C.1.2)
where iy,...,1, € Ny with Z;’Zl i; = r. For instance, (x);,, i = x’ll ~..xl. Adopting the
usual notation for the metric tensor Q with Q(zy,z,) = (z1,2,), the definition of the
symmetric tensor product implies

Noizi =[. " 2 ) C.1.3
(Q )211 ..... 21,,_(i1, ) 21.”) ( .. )

cin\2iy,.

for Z?:l ij=r.
The Minkowski tensors (D].r’S(K), K € K", are defined by (C.1.1) with the constant

= 1
Ml @y

Hence we get the following expressions for the volume tensors

1
W (K) = p Lxrdx.

r € Ny, and the surface tensors,

1
O*(K) = J usS, (K, du),
W1 Jgn-1

s € Ny. When K € K" is full-dimensional, ¢(K) = W!(K)/%°(K) (identified with a
vector) is simply the physical center of mass of the rigid body K when assumed to have
constant density. In contrast, ®!(K) = 0 does not carry any information on K.
Section C.3 will rely heavily on the theory of hypergeometric functions. We will
therefore introduce some of the basic theory of these functions in the next subsection.

C.1.3 Preliminaries on hypergeometric functions

The Gaussian hypergeometric functions (see e.g. [2, Chapter 2]) can be represented
by the following power series for a,b € R, ¢ >0

(C.1.4)

NP AU

L (0)y n

|z| < 1, where (g), is the Pochhammer symbol.

For ¢ > a+b the value F(a, b;c; 1) is well-defined as (C.1.4) converges in this case
at z=1.In any case, there exists an analytic continuation of this function on the cut
complex plane C\ [1, o), but we will only work with real arguments here.

The derivative of a hypergeometric function is

F'(a,b;c;z):ac—bF(a+1,b+l;c+l;z), (C.1.5)
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see [2, Section 2.5]. For ¢ > b > 0 and z < 1, Euler’s integral representation is given by
1

B(b,c - b)F(a, b;c;z) = j xP7H (1 = x) (1 - 2x) %, (C.1.6)
0

Pfaff’s transformation by
F(a,b;c;2) = (1 -2) " F(c—a,b;c; 757) (C.1.7)
and Euler’s transformation by
F(a,b;c;2) = (1 —2) P F(c—a,c - b;c;2). (C.1.8)
Further details can be found in (2, Section 2.2]. For z =1 we have [2, Thm 2.2.2]

[(c)[(c—a-b)

Fabie) = F e aTe=p)

(C.1.9)

ifc>a+b,and if c=a+b then [2, Thm 2.1.3] states

. F(a,b;a+b;z) 3 [(a+0b)
Jim “In(l-z) T(b)T(a) (C.1.10)

The following Lemma will be applied in Subsection C.3.1 with the function f, =
fim g

Lemma C.1.1. Let a,b,c € R with 0 <a <c. The function f, . (—o0,1] = [0, c0) given

by
F(a,b;c;z)

fupe(z) =4 Flarbbicz)’ ifz<l,
a,n,c - .
0, ifz=1,

is a homeomorphism.

Proof. We start by proving that f = f, }, . is a strictly decreasing function.
Note that if z < 0, Pfaff’s transformation (C.1.7) yields

f(z)= (1-2)"F(c—a bic; %) _(F(C—a—l,b;c;ﬁ))_1

(1-2)PF(c—(a+1),b;6;.%) \ Fle—ab;e )

As z+ %7 is monotonically decreasing when z < 0 it is enough to prove the mono-

tonicity for 0 < z < 1. We abbreviate F(z) = F(u, b;c;z) and F (z) = F(a + 1,b;c;z).

Now
_ fi(2)
- F,(2)?

f(2) (C.1.11)

with
fi(2) = (B, () F'(2) - F/(2) E(2).
The differentiation formula (C.1.5) gives
filz)= é(aF(a+ 1,b+1;c+1;2)F(a+1,b;¢;2)

—(a+1)F(a,b;c;z)F(a+2,b+1;C+1;z)).
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Putting v, = (n, , the series representation (C.1.4) combined with (x+1),, = &2(x),

pe
yield

= b
Fla+1,b+1;c+1;2) = %Z}JHWZH,
n=0

Fla+1,b;¢;2) = Zy,,a+n

F(a,b;c;z) = Z}/nzn,

a+n)(a+n+1)(b+n) ,
Fla+2,b+1;c+1;2) = a+1 Zy,, o .
Hence,
1 [ee)
;ZO = )2 (C.1.12)
n=

where Cauchy’s product formula implies

(a+k)(b+k
Cn:Z}}k n —k C+k )(a+n—k),

(a+k)(b+k
—kaynk @O (o ke,

Hence . .
1
Cp—Cy = Zykyn—ksk = E Zykyn—k[sk + Sn—k]’ (C-l‘l?’)
k=0 k=0
with @+ k)b + )
a+ +
=~ (n-2k-1).
k c+k (1 )

We claim that sy +s,,_x is negative for all k = 0,..., n. By symmetry, and the fact that s,,,
is negative for even #, it is enough to consider k < n/2. For these k we have k <n—k.
As 0 < a < ¢ the monotonicity of x - (a+x)/(c + x) and of x — (b + x), gives
(a+n—k)(b+n-k)
c+n—k

Sk +Spu_k < [(mn-2k-1)+(n-2(n-k)-1)]<0.

Thus, in view of (C.1.13), all coefficients in the expansion (C.1.12) are negative,
implying fi(z) <0 for all 0 <z < 1, and the continuity of f now yields that f is strictly
decreasing. This implies injectivity and surjectivity of f. The continuity of its inverse
is a consequence of the fact that f is strictly decreasing. O

We will also need the following lemma, which is a direct consequence of (C.1.5) and
the definition of hypergeometric functions. To ease notation we define functions

F(z) = F(3, "5 5 + 1;2) and F, (2) = (3, %55, 4 + 2;2).

Lemma C.1.2. For 0 <a<b <1 the function

1
ln(Z) = F(z)fﬂ

n

is strictly decreasing and Lipschitz on [a,b] with constant s——F.(b)F(a) n-1.

(n+2)
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C.2 L-restricted isotropy

In this section we will consider a stationary random collection of particles X and show
that the mean tensors of the typical particle can be derived from (k + 1)-dimensional
sections when X is L-restricted isotropic, L € G(n, k).

In view of applications, we model X = {(x;,K;) : i = 0,1,2,...} as a stationary
marked point process with marks K; in the family K" of convex bodies, see [16,
Chapter 3.5] for details. Its intensity ¥ > 0 is the mean number of points per unit
volume, and its mark distribution Q can be understood as the distribution of the mark
of a typical point in the Palm sense. The typical particle K is the random convex body
with distribution Q.

We denote the associated process consisting of the translated marks by

X = {Xi +Ki|(xl-,Ki) GX}

The point x; will be called the reference point of the particle x; + K;. For X to become a
stationary particle process, Q-integrability of all intrinsic volumes

EV;(Kg)<oco, i=0,...,1, (C.2.1)

is needed. We therefore assume from now on that this integrability condition is met.

Modelling collections of particles via the stationary marked point process model
X is slightly more general then modelling them as a classical stationary particle
process. In fact, any particle process is a germ-grain process and thus can be written
as X with X being a marked point process with a centered typical particle satisfying
(C.2.1). To do so, one chooses x; = z(K;) and K; = K; — x; for particle K;, where z(-) is a
translation covariant center function, see [16, Section 4.2]. But the representation as
marked point process is more general, as it can be thought of as collection of particles,
each of which carrying a individually selectable reference point. This is relevant for
instance in biological applications, where cells are modelled as particles with their
nucleus or nucleolus as reference points.

We say X is degenerate if there is a hyperplane such that the orthogonal projection
of Kq on this hyperplane has a.s. vanishing H"~!-content, see [16, Chapter 4.6]. If,
for instance V,(Kg) > 0 with positive probability, then X is not degenerate. For non-
degenerate processes Minkowski’s theorem (see for instance [16, Theorem 14.3.1])
yields the existence of a full dimensional convex body B,(X) such that

Sn-1(Bs(X),-) = ES,-1 (Ko, -). (C.2.2)

Adopting the usual convention that the circumcenter of B;(X) coincides with the
origin, this determines By(X) uniquely. The body B¢(X) is called Blaschke shape in [18].
Note that [16, Section 4.6] works with a scaled version of this mean set, the so-called
Blaschke body B(X) = yﬁ B, (X).

We will work under the assumption of the typical particle being invariant under
rotations fixing a lower dimensional subspace L € G(n, k) pointwise. The group of
such rotations will be denoted by SO,,(L+) = {C € SO(n)|Cy =y Yy € L}. This property
of X is called L-restricted isotropy and is defined as follows.
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Definition C.2.1. Let k€ {l,...,n—1}and L € G(n,k).
For k <n—1, X is called L-restricted isotropic if its mark distribution Q is invariant
under rotations fixing the linear subspace L pointwise, that is, if the distributions of K
and C Ky coincide for all C € SO, (L*).

Ifk =n-1, X is L-restricted isotropic if the distribution, Q, is invariant under the
reflection in L.

In the case n =3, k = 1 the L-restricted isotropy of X was called restricted isotropy in
[11]. Adopting usual parlance, the property in Definition C.2.1 should be called weak
L-restricted isotropy, in analogy to weakly stationary processes X, which need not be
stationary, but have the property that their intensity measure is translation invariant.
However, we will omit the word weakly throughout for brevity.

Under such isotropy assumptions we can simplify the general expression of the
mean volume tensor EW’(Kj) and the mean surface particle tensor E®*(Kj) to tensors
only depending on the section profiles of the typical particle with L Uspan(w), where
w € L, |lw|| = 1, is fixed. To assure that EW"(Kj) is finite, we will assume

IE.L(O lx]"H" (dx) < 0. (C.2.3)

Note that this assumption is necessary when r = 2 and does not follow from the
general assumption (C.2.1). One may for instance consider the case n = 1 and the
typical particle Ky = [-T, T], where T is a positive random variable with finite mean
and infinite third moment. An even stronger condition than (C.2.3) for processes in
R"”, which is easier to check, is the condition that

R(K) = max{|lx|| : x € Ko}
has finite moments up to order n +r.

Theorem C.2.2. Let r € Ny, k € {1,...,n— 2} and L € G(n,k) be given. If X is an
L-restricted isotropic marked point process satisfying (C.2.3) then

3]
2
E¥’(Ko) :_Z( ! )MQL

r! gy 25| woss1

j f P((aw +v) € Ko)a" 142 day =2 H* (dy), (C.2.4)
LJO

for any w € L+ N S""1. Here, Q1(zy,25) = (pr1(21),pro(22)) is the metric tensor in L.

Theorem C.2.2 generalizes the main theoretical result in [11], where the case n =3
and k = 1 was treated, see its reformulation in Corollary C.2.5, below.
Note that if L is a hyperplane, and thus k = n — 1, the simpler expression

EV’ (Ko) = 2EW" (Ko NM,)

can be obtained using a decomposition of the Lebesgue measure on L+ and L. Here
M, is one of the closed half planes in R"” with L as its boundary.

Although this theorem is stated in terms of marked point processes, it has a
deterministic counterpart, which is obtained in a straightforward manner assuming
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that K, coincides with a fixed convex body K almost surely. The statement involves
the radial function
pr(x)=sup{a 20:axeK}, xeR”

of K.

Corollary C.2.3. Let k € {1,...,n—2} and L € G(n, k) be given. If K € K" is invariant
under all rotations in SO, (L*), then

W(K) =

( r )K25+n—k SLJ- J;pisjyn—k(w)yr—ZSHk(dy)’

r! 2s Wos+1

s=0

for any w e L+ N S" 1 and r € Ny,

A similar result can be obtained for the mean surface particle tensor. In contrast
to the case of volume tensors, no additional integrability assumption is needed, as
(C.2.1) with j = n—1 implies the existence of ED*(Ky) for all s € Ng. Fubini’s theorem
implies that

ED*(K,) = ED*(By(X)) (C.2.5)
if X is non-degenerate. If X is L-restricted isotropic, the rotation covariance of the
surface measure (see for instance [16, Theorem 14.2.2]) implies that the Blaschke
shape B,(X) must be rotation invariant under all rotations fixing L pointwise.

Theorem C.2.4. Let s € Ny, k €{0,...,n—2}, L€ G(n,k), M € G(n,k+ 1) with LC M
and w € MNL-NS™ ! be given. If X is a non-degenerate L-restricted isotropic point
process then

L5]
ED(Kp) = ) bygs(H)QLs
t=0

J- <M, w>2t<x, w>n—k—1
Norp(Bs(X)NM,)

x pp (1) A (By(X) N M, d(x,u)), (C.2.6)

for s € Ny, where M, = M Nw* and

b X (t): S 4w2t+n7k
e 2t)slwgy1wops1

As before, this theorem has a deterministic counterpart when K = K is a deterministic
convex body that is invariant under rotations in SO(L1). In this case, Bg(X) = K can
be inserted into (C.2.6) yielding an expression for ®*(K) only depending on K N M.

C.2.1 Proof of Theorem C.2.2

Proof of Theorem C.2.2: Let k, 7, w, L and X be given as in the theorem. In view of
(C.2.3), Fubini’s theorem implies

EV"(Kg) = l'IEJ x"dx
ri Ko

= % J-L L (x+)P(x+y € Ko)H" (dx)H"(dy).
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For each x € Lt there is a rotation C € SO,,(L*) such that Cx = ||x||w and, obviously,
Cy =y for all y € L. Thus, the L-restricted isotropy assumption, the use of spherical
coordinates in L+, and Fubini’s theorem give

EV"(Ky) = % J; J; a”_k_lf,(a,y)ll’(aw +yeKg)da Hk(dy),

where

fila,y) = J-Sn_lnu(au + 1) H" N (du), (C.2.7)

a €[0,00) and y € L. Evaluating the integral defining f, (using the binomial formula
for tensors and, for instance, [14, Equation (24)]) yields

L5

r\w _ _
frla,p)=2 (25)6352;11"06%’ Q5. (C.2.8)
5=0 S

which implies the assertion. O

Identifying tensors with finitely many numbers, as outlined in Subsection C.1.2,
Equation (C.1.2), allows us to restate (C.2.4) in a form which emphasizes that the
mean volume particle tensor only depends on Ko N\M where M is a (k+1)-dimensional
subspace containing L. We state this only for axes parallel subspaces and use the
notation Wy, (K) for the relative volume tensor of a convex body K contained in a
linear subspace M.

Corollary C.2.5. Let r € Ny, k € {1,...,n—2}, and put
L =span{e,_jy1,...,e,}, M =span{e,_,...,e,, M, =MnNe, ;. (C.2.9)

Assume that X is L-restricted isotropic and satisfies (C.2.3). For iy,...,i, €{0,...,r} with
27:1 ij = r the mean volume particle tensor satisfies

_ (r+n-k-1)!
EW(Ko)iy,....i, =51 Ciyosi
+n—k-1
x BWY M (Ko ML )i i
wherei=n—-k—-1+ Z;’;{‘ ij and

2 n—k ij+1 . .

T ]_[j:1 T(T) foriy,...,i,_x even,
Cit i = Iz . (C.2.10)
0 otherwise.

Proof. Fixiy...,i, €{1,...,r} such that r = 27:1 ij and abbreviate r’ = Z;:{‘ ij. Using
the same notation for f,(a,y) as in the proof of Theorem C.2.2, Equation (C.2.8) gives

e D),y = z(’)wa”[y’-” Q7 J(erlit).. ealin))

']y

Ovonp T T .
—pLrin-k [QLZL(el[11],-~-;€n7k[1n7k])]

Wy 41

x [yr_r,(enfkﬂ [in-k+1]-- -ren[in])]:
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as the metric tensor in L+ and y"~%

and L, respectively. If at least one of the indices iy, ...,i,_; is odd, this expression is
zero. Otherwise Equation (C.1.3) (L+ can be identified with R"*) yields

are zero when applied to at least one vector in L

( r'/2 )
Wy'yn—k ¢ dp_ks1 iy \i1/2peip /2
fr(a,}/)zl ,,,,, i =2————a'y, v Sk S
Wyl ¢ ")
11 50ees Iy—k
_ 7 kel iy
= Yy ka1 Y Cipig g (C.2.11)

where Legendre’s duplication formula was used in the last step. This implies

xy ey daH (dy)
—k-1
=(r+n—k=lc;,_i, B (Ko MMy ) nk-147iy i

as M =span(L U {e,_x}), and proves the Corollary. O

C.2.2 Proof of Theorem C.2.4

Before we can prove Theorem C.2.4 we need a decomposition of the surface area
measure which is given in the following proposition. It makes use of the unique
invariant probability measure v;1 on SO, (L1); see e.g. [16].

Proposition C.2.6. Let k € {0,...,n—2}, L € G(n, k) and M € G(n,k+ 1) with L C M. Fix
weMNLtNS" ! and set M, = M Nw*.
If K € K" satisfies CK = K for all rotations C € SO,,(L*) then

Su-1(K,B) = 2(‘)n—kj j ]lC*lﬁ(v)“pspan(w)(x)”nikil
50, (L) INory (KnM)

x AM(K N M,,d(x,v))v.(dC), (C.2.12)
for all g€ B(S"™1).
Proof. Let ¢ > 0 be given and consider B, (K, ) = {x € (K + ¢eB")\K|u(K,x) € 8}. By a
version of the Steiner formula (see for instance [13, p. 215])

n-2

1 1 v
~H'(BK.B) = Ze"—m—l(,’;)smac B)+Su1 (K, B). (C.2.13)

m=0

Hence for ¢ — 0 the expression S,,_; (K, ) is the limit of the left hand side of (C.2.13).
By a decomposition of the Lebesgue measure as in the proof of Theorem C.2.2, and
using the rotational invariance of K, the latter can be written as

1 1
p H"(B(K, B)) = j Lk repmnk (X)Ly(k,x)ep 4%

& R"
Wy o
ZLJ Jf Lik+eprpx(aw+y)
€ SO, (L) JL Jo

x Ly, Clawspyepa™ ™ da Hr(dy) vy (dC)
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The innermost two integrals can be combined and one obtains

1 W,
L.k, ) = "kf j Lieep(2)
€ € Jso,(Lt) Im,
X 11u(K,Cz)e[}||pspan(w)(z)”n_k_ldzVLJ- (dC)

The rotational invariance property of K implies p(K,Cz) = Cp(C~'K,z) = Cp(K, z)
and so u(K, Cz) = Cu(K,z). We also have p(K,z) = p(KNM,,z) € M, as ze€ M, due to
the Pythagorean theorem implying in particular u(K,z) = u(K N M,,z) and

(K+eBYNM, =[(KNM,)+e(B"NnM)]NM,.

Combining these facts yields

Wk
—H"( (K, B)) =—— Lo " JM ot L(knm,)+eB1nm)(2)

X ]lu(KﬂM+,z)eC*1ﬁllpspan(w)(z>|ln_k_l dzvp. (dC)

The isometric identification of M with R**! which sends w to the first vector of the
standard basis of R¥*! and [13, Theorem 4.2.8] imply

Wg—j+1 K
LHBAK, ) = j f ’f fen
" Z SOk+1(e7) Nor(K) ﬁ

X 1ef(x + pv)“pspan(el)(x + PV)”" k= lAj(Krd(x; v))dp ng.(dC), (C.2.14)

where the convex body K ¢ RF*! is the image of K N M, under this identification.
There exists R > 0 such that K ¢ RB**1. If 0 < & < 1 the contraction property of the

orthogonal projection implies that the absolute jth summand in (C.2.14) is bounded
by

Wk—j+1
&£

L p"Idp(R+1)"*1Vi(K)=ce*T -0,

as ¢ — 0 whenever j <k.

The function

glp) = ]lef (x+ pv)”pspan(el)(x + PV)”"_k_l

is continuous at p = 0. In fact, the indicator can only be discontinuous at zero when

x € e, but in this case lim, ,0g(p) = 0=g(0) as n—k—1> 0. Hence the summand in
(C.2.14) with j = k converges for ¢ — 0 to

2 | f L1 (17 Ad(Ro 50 v, (40
SOk41( el Nor(K

by dominated convergence. We thus may take the limit ¢ — 0 in (C.2.13) and arrive
at

Sia®p =200 [ | tea
SOk+1(ef) INor(K)
X I|pspane) (X" AR(K, d(x,v)) v (dC).

This is the claim (C.2.12) if we again use the identification of R**! with M. O
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Proof of Theorem C.2.4: By (C.2.5) it is enough to consider the surface tensor of the
Blaschke shape of X. The L-restricted isotropy and Proposition C.2.6 yield

20,
(B, = 32 | [ ewrnatac
S:Wst1 JNor s (Bs(X)NM,,) JSO,(LL)

X ”pspan(w)(x)”n_k_lAQA(BS(X) N M+r d(x’ u))

Note that Cu = (u, w)(Cw) + p; (1), and that the image of the measure w,,_;v;. under
C — Cw is the restriction of H"*~1 on §"1 N L. Hence,

s _ 2
(X)) = LorM(BS(X)mM+)fs(<“;W>'PL(M))

x (x,w)" FTAM(By(X) N M, d(x,u)). (C.2.15)

with the function f; given by (C.2.7) with r = 5. Inserting the representation (C.2.8)
for f; into (C.2.15) now yields the assertion (C.2.6). O

As in Corollary C.2.5 we can represent the mean surface particle tensor as an
array of elements.

Corollary C.2.7. Under the assumptions of Theorem C.2.4 let in addition iy,...,i, €
{0,...,s} with Z;’Zl ij = s and (C.2.9) be given. The mean surface particle tensor can be
represented as

s’ in—k+1 in
Wk Uyfs1” " Un

_ e
Slwgyy ik J;\IorM(BS(X)ﬂMJ,)
x X' KV AM(B(X) N M., d(x,u)), (C.2.16)

n
with the constants s’ = Z?j ijandc; ;i from Corollary C.2.5.

Proof. Putting w = e, i and inserting the representation (C.2.11) into (C.2.15), the
assertion follows. O

Corollary C.2.5 (or Theorem C.2.2 after applying Tonelli’s theorem to (C.2.4)) implies
that the mean volume particle tensor can be written as average of tensors of lower-
dimensional sections of K. This is relevant for applications, since the average can
be replaced by an empirical mean in an inference procedure. Equation (C.2.16) in
Corollary C.2.7 (and thus also (C.2.6) in Theorem C.2.4) is qualitatively different,
as the right hand side involves By(X) N M™, which is a full-dimensional set-valued
average intersected with a lower-dimensional set. We note that the integral w.r.t. the
support measure in (C.2.16) cannot be written as an average integral of a relative
support measure of a section of K. Indeed, we claim that

ED*(Ko)j,,..i, = E@(KoNM,) (C.2.17)

cannot hold for any j € {0,..., k} and any real-valued function ¢ on the set of convex
bodies in M,. For n=3,s=2and k =1 it is enough to consider a stationary marked
point process for which the typical particle is a uniform random rotation about the
e3-axis of the fixed triangle K with vertices —e3, e3, tey, t > 0. Then the right hand side
of (C.2.17) is independent of t as Ko NM, is almost surely the line segment from —e;
to ez, but the left hand side depends on t when i; = 2.
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C.3 Rank-2 surface tensors and ellipsoids

Let X be a stationary process as in Section C.2. The mean rank-2 volume tensor of its
typical particle is the volume tensor of a unique centered ellipsoid. This follows from
[7] where it was proven that the rank-2 volume tensor W? is a continuous bijective
map from the space of all centered full-dimensional ellipsoids in IR” into the space of
symmetric, positive definite # x n-matrices. The inversion formula given in [7, p. 266]
and standard topological arguments imply that W? is in fact a homeomorphism
between these spaces.

A corresponding result for the rank-2 surface tensor in R? was proven in Paper B.
However it is still an unsolved problem if the statement also hold for general n > 2.
In this section we will consider ellipsoids of revolution, that is, ellipsoids which are
invariant under rotations fixing a one-dimensional linear subspace pointwise. We
will prove that the rank-2 surface tensor uniquely determines these.

If we consider a stationary marked point process X which is non-degenerate
and L-restricted isotropic with L € G(n, 1), then the Blaschke shape of X is rotation
invariant under rotations fixing L pointwise and so Theorem C.3.1 below yields the
existence of a unique ellipsoid of revolution with its rank-2 surface tensor coinciding
with the mean rank-2 surface particle tensor of the typical particle of X. This will be
used in Section C.4 to define an ellipsoidal summary statistic for X based on surface
tensors.

Let n > 3 and & be the space of all centered ellipsoids of revolution of dimension
at least n—1. As we only will work with surface tensors of rank two in this section, we
will write @ (K) instead of ®?(K) for abbreviation. We will later see that ®(E) for E € £
is an element of the space A of all n x n positive semidefinite symmetric matrices
such that one eigenvalue has multiplicity n —1 and the other eigenvalue is positive.
The following theorem is actually stronger than the mentioned uniqueness result.

Theorem C.3.1. The function @ : £ — A is a homeomorphism.

C.3.1 Proof of Theorem C.3.1

For a centered ellipsoid E € £ of revolution there exists a symmetric positive semidef-
inite matrix M such that E = M B" with one positive eigenvalue of multiplicity n— 1.
Spectral decomposition allows us to find a rotation C € SO(n) and a diagonal ma-
trix with a(E) > 0 on the first n — 1 diagonal entries and b(E) on the remaining, i.e.
A = diag(a(E)[n—1],b(E)) such that M = CAC". Let z(E) =1 - (%)2 be the squared
eccentricity of E. Clearly, E is uniquely determined by a(E),z(E) and the rotation
C € SO(n). For later use, we note that the definition of ®(E) implies

CD(E)C' = (CE) (C.3.1)
for all C in the orthogonal group O(n).

Proposition C.3.2. Let E € £ with rotation axis direction e,, principal axes lengths
a=a(E) and b = b(E) and squared eccentricity z = z(E) be given.
Then ®(E) = diag(yl [n— 1],;42) with

1 = %a"_l(l ~2)F(}, 518 4 152) (C.3.2)
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(continuously extended with value 0 at z=1) and

o = %a”‘l(l—z)F(%,%;%+l;z), (C.3.3)

(continuously extended with value a" 'x,_,/(4m) at z=1).
As a consequence,

B 3.
i fa(2), (C.3.4)

where f, = f%’%’%ﬂ is given in Lemma C.1.1.
For later use, we remark that (C.3.3) can be rewritten as
K
po=gha"F(3, 5+ 152) (C.3.5)
T
using Euler’s transformation (C.1.8) and the symmetry of the hypergeometric function

in its first two arguments.

Proof. Consider first the case where z < 1, which is equivalent to dimE = n. As
E = AB" with A = diag(a[n—1],b) the support function of E is differentiable and takes
the simple form

hp(u) = [|Aull

By [13, Cor 1.7.3 and p. 115] the reverse spherical image map is given by

1
= Au
hg(u)

xg(u)

for u € S"~1. The (n—1)th normalized elementary symmetric function of the principal
radii of curvature of E is equal to the inverse of the Gauss-Kronecker curvature,
composed with the reverse spherical image map (see [13, p 117]), hence the standard
proof of measure theory and [13, p. 217] yield

Z(n—l)bZ 1
D(E) = ”—J wW——du. (C.3.6)
87‘[ gn-1 hE(u)n+1
as the Gauss-Kronecker curvature of E at x in the boundary of E is given by

1
a2(n—1)b2||A—2p”n+1

K(p) =

where we used a,b > 0, see [12, Prop. 3.1]. Note that ®(E) has diagonal form. Using
(C.3.6), cylindrical coordinates, szmL vizH”_z(dv) = k-1, Euler’s integral represen-
tation (C.1.6) and F(a, b;c;z) = F(b,a;c;z) we get

a?"(1-z2) 2 _

i=1,...,n—1,and, in a similar way,

2n(1 _
Uy = MI w2hp(u) ) dy (C.3.7)
871 gn-1
= g—;a”_l(l —2)F(3, ML, 8 4 1;2), (C.3.8)
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Hence we have ®(E) = diag (yl [n— 1],y2) with its eigenvalues given by (C.3.2) and
(C.3.3) whenever z < 1.

We now consider the case z = 1. The ellipsoid E has dimension #n — 1, and its
surface area measure is concentrated on the two points +e, with mass a" '«,_; at
each, so

n-1
B(E) = e,
proving that ®(E) is a diagonal matrix with eigenvalues y; = 0 and yy = a" x,,_ /(470).
In view of (C.1.10), Equation (C.3.2) thus also holds for z =1 if the right hand side
is continuously extended. Similarly, (C.1.9) and (C.3.5) show that the continuous
extension of the right side of (C.3.3) at z = 1 attains the correct value a" 'x,_;/(4m).
This shows the assertions. O

Proposition C.3.3. Any E € £ with ®(E) = diag(yl[n - 1],;42) for some py > 0 and
Uy > 0 has rotation axis direction e, (and possibly others).

Proof. The set E € € is rotationally symmetric about an axis with direction u € $"~!,
say. We have CE = E for all rotations C fixing u. From (C.3.1), we deduce that ®(E)
commutes with all such rotations. If u # +e, the matrix ®@(E) must thus be a multiple
of the identity matrix and y; = pp as n > 3. Due to (C.3.1), we thus have ®(CE) = O(E)
for all rotations C, and in particular for a rotation Cy which maps u to e,,. As CyE
is rotationally symmetric about the axis with direction e,, Proposition C.3.2 can be
applied to it. By (C.3.4) and Lemma C.1.1 its eccentricity is zero, so CyE, and hence
E, is a ball. This shows that u can always be chosen equal to e,,. O

Using these two propositions we can now prove the main theorem of this section.

Proof of Theorem C.3.1: As the surface area measure S,_;(E,-) is weakly continuous
as a function of E (see for instance [13, page 215]), ® is continuous.

To show surjectivity let A € A be given. There is a rotation C € SO(n) such that
A = Cdiag(p;[n—1], up)C', where p; >0 and py > 0. In view of (C.3.1) it is enough to
find an ellipsoid E € € such that ®(E) = diag(p[n—1], 4). Lemma C.1.1 yields the
existence of zg € (—oo, 1] such that

#i
i fi n(ZO)-
Define ag = a as the solution of (C.3.3) when z = z;,. By construction, the ellipsoid E
with rotation axis e,, squared eccentricity z; and axes lengths ag in all directions in
e;r satisfies @ (E) = diag(p [n — 1], up) by Proposition C.3.2, proving surjectivity.

To show injectivity assume that E and E’ € £ have the same rank-2 surface tensor.
In view of (C.3.1) and Proposition C.3.2 we may assume that E and E’ have been
mapped by the same rotation in such a way that E has rotation axis ¢, and thus
®(E) = P(E’) = diag(p [n— 1], up). By Proposition C.3.3 also E’ has rotation axis e,,,
so Proposition C.3.2 can be applied to both ellipsoids. Due to (C.3.4) and Lemma
C.1.1 they have the same eccentricity, and (C.3.3) shows a(E) = a(E’). As the centered
ellipsoids E and E’ have the same orientation, this gives E = E’. The injectivity
assertion is shown.
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To show the continuity of the inverse of ® let P(E;) — O(E) for k — oo in A be

given. Assume first that all ellipsoids Ej have rotation axis direction e,,. By Proposition
C.3.2, the matrix CD(Ek) has diagonal form diag(y(lk)[n - 1],],t(2k)) with non-negative
diagonal elements, ,u2 )>0andz (Ex) = fi \( ylk)/y(zk)). The continuity of eigenvalues
shows O (E) = diag(pi[n — 1], p2), where p; = limy_,, ygk), i = 1,2. Note that E has
rotation axis direction e, by Proposition C.3.3. As ®(E) € A we must have p, > 0. Due
to Lemma C.1.1, the function f, ! is continuous, so z(E;) — z(E), k — oo by (C.3.4).
From (C.3.3) we now deduce a(E;) — a(E) and thus also b(E;) — b(E) as k — co. As
all ellipsoids have the same orientation, we arrive at Ex — E, k — oo.
If not all ellipsoids Ey have rotation axis direction e,, suppose for contradiction that
there is € > 0 and a subsequence (Ey) of (Ey) such that dy(Ey,E) > €. Let (Cy/) be a
sequence of rotations such that Cy Ey has rotation axis direction e,. By compactness
of SO(n) there is a subsequence (Cy~) converging to some rotation Cy. Applying the
above to the rotated ellipsoids gives Cy»Ex» — CyE, so

€ <dy(Ep, E)
=dy(CrEyr, CirE)
< dpy(CorEgr, CoE) + dpy(CoE, CurE) — 0,

which is a contradiction. Hence, E; — E as k — oo, so the inverse of @ is continuous.
O

C.3.2 Reconstruction algorithm

Theorem C.3.1 implies that given a positive semidefinite, symmetric n x n-matrix A
such that one eigenvalue has multiplicity # — 1 and the other eigenvalue is positive,
then there exists a unique centered ellipsoid of revolution E with surface tensor
@(E) = A. As the proof of Theorem C.3.1 is constructive, it gives rise to the following
reconstruction algorithm. To simplify notation we introduce the function g, on

(—o0;1] given by
1

gnl2) = (KS"F’Z) )

1 n-1.n . :
(2, g+l z)is used. Re-

+1 1s given in Lemma C.1.1.

which is (C.3.5) solved for a where the abbreviation F(z

call also that F, (z) = F(3, 51,2 4+ 2;7) and that f, = f1

z)=
2’ 35

n
2t

Algorithm TensorData

Input: Let Ac A
Task: Find E € £ such that ®(E) = A.
Action:  Find C € SO(n) such that C'AC = diag(p[n—1], up).
(a) Find the squared eccentricity z € (—oo, 1]
by solving f,,(z) = ”1
(b) Put a = g,,(z) and b = a\/m.
Output: The ellipsoid E = C diag(a[n—1],b)B".

As finding f, ! requires a numerical procedure the following variant of Algorithm
TensorData is introduced to take the error of a numerical inversion into account. It

88



C.3 - Rank-2 surface tensors and ellipsoids

makes use of the constants c; = c;(¢) for some ¢ > 0 satisfying 0 <c¢; <1 and
lgn(1)—gu(1=c})| <&, (C.3.9)

— ZK11—1
and ¢; = (ST

Algorithm TensorData*

Input:  Let Ae Aand € > 0 be given.

Task: Find E € € such that dy(E,®71(A)) <e.

Action:  Find C € SO(n) such that C'AC = diag(pu[n—1], uo).
2

(a) Find Putzg =1 - (min{cl,s/g,,(l - cf)}) .
(b) Find z; € (—00,0] such that F(z;) < cou,
(i) If ’Z—; < fu(Zo) put a = g,(1) and b = 0.
(ii) If % > f,(2y) determine z,z € [50,20]
such that f,(z) < % < fu(z)and [z—z| < c3,

where ¢3 = gn(g)—lgmin(%\)j%, V1-2).

Putz= ZLZZ, a=g,(z)and b=aVl-z.
Output: The ellipsoid E = C diag(a[n—1],b)B".

Let ag, by be the lengths of the semi-axis of Eg = ®~!(A) and let z; be its squared
eccentricity. Note first that using the notation from the algorithm we have z; > z,,. To
see this define Ey = diag(ag[n — 1],by)B" and consider the circular disc D = agB" N e
As D C E, the monotonicity of the intrinsic volumes gives

a1 = Vo1 (D) < Vi (Bo) = dr((n = 1)y + ).

as the trace of ®(Ey) is V,,_1(E)/(4m). Using (C.3.5), we conclude c, iy < F(z) and so
F(zy) < F(29). The monotonicity of F now yields z; < z.

That Algorithm TensorData* yields an ellipsoid within the desired precision can
be seen as follows. In the case where the algorithm used (ii), let a, b and z be the
quantities determined in the algorithm. As f,(zy) = p1/p,, we have f,(z) < f,(z9) <
f1(z) and the monotonicity of f,, shows

2<29<Z (C.3.10)

By construction, we also have z < z <z so |z—zy| < Z-z < c3. Hence, using the notation
and result of Lemma C.1.2 we have

1
8Ty \n—1
la=aol = (L2} 1y 2) - (zo)
KH
o
< 1 (8ny2)n—1 F+(zn Iz — 2|
2(n+2)\ «, F(z)-T

&

: 241~z

(C.3.11)

89



Paper C - Mean Surface and Volume Particle Tensors under Restricted L-isotropy and
Associated Ellipsoids

by the definition of c3. This implies |a — ay| < &/2.
In addition, (C.3.10) and the monotonicity of g, show g,(z) > g,(z¢) = 49. Combining
this with (C.3.11) and the bound |z — zy| < ¢3, we see that

|b—bg| = |a\/1—z—a0\/1 —ZO)
< V1 —z|a—ag|+ao|V1-z- 1 -z

<4/1 —go(a—a0(+a02 i—Z|Z_ZO|

<

+E&=¢.

I\)I‘*‘
I\)I"‘

Hence, the Hausdorff distance of (any simultaneous rotations of) Ey and E is not
exceeding ¢.

In the case where the algorithm determines E using (i) the following lemma ensures
that dy(E, Eg) < e.

Lemma C.3.4. Let € > 0. Like in Algorithm TensorData* choose 0 < ¢y < 1 such that
2

(C.3.9) holds and put zy =1 - (min{cl,e/gn(l - c%)}) . If the eigenvalues py, u, of ©(Ey),

Ey € &, are such that % < fu(2g), then the circular disc

E = C'diag(g,(1)[n—1],0)B"
satisfies dy(Eg, E) < e.

Proof. As before let ay, by, zy be the lengths of the semi-axis and the squared eccen-
tricity of Ey. By assumption, we have f,(2y) > p1/us = f4(20), so Lemma C.1.1 implies
1- cf < zg < 1. Formula (C.3.5) gives ay = g,(2z¢) and the monotonictity of g, yields

gn(l) < ap < gn(l _C%)'

The definition of z; now gives

bo=+1-2pag <\1-2pg,(1-c})<e

and this implies

|hE0 \/ao 2q(1 12+ +u )+ bzun
< max{lag - gn( ), bo}

< max {gn(l—Cl) gn( ),bo},
&

IA

so the Hausdorff distance is not larger than ¢. O

C.4 Associated ellipsoids

Let X be a stationary marked point process with marks K; in the family X" of convex
bodies as defined in Section C.2. As the rank-2 volume tensor uniquely determines a
centered ellipsoid (see [7]) an ellipsoidal approximation of the typical particle K, of
X can be introduced using this tensor. This was the starting point in [19] where the
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so-called Miles ellipsoid was defined in the three-dimensional case. In order to limit
the dependence of the Miles ellipsoid from the position of the reference point, also
the volume tensors of ranks zero and one play a role. We first give a definition of the
Miles ellipsoid in general dimension.

Definition C.4.1. Let X satisfy (C.2.3) with r = 2. The Miles ellipsoid is the unique
centered ellipsoid, ey (X), with ep(X) = {0} if EV,,(K() = 0 and otherwise

EWH(Ky) ) (C.4.1)

\PZ(EM(X)) = OCMIE\I’Z(KO —m

where ap; > 0 is chosen such that V,(ep(X)) = EV,,(Kg).

Using [13, Equation (5.104)], which describes how W? behaves under translations
of the argument, (C.4.1) can also be written as

(IE‘I’l(Ko))z)

W2 (e (X)) = aM(lE‘I’z(KO) " 2EV,(K,)

(C.4.2)
A stochastic interpretation of the Miles ellipsoid makes use of the so-called particle

cover density
IP(X € Ko)

~ EV,(Kp)’
which can be defined whenever EV,(Kg) > 0. This is indeed a probability density
function as fg, is non-negative and integrates to 1.

fi, (%) eR",

Lemma C.4.2. Assume that EV, (K() > 0 and X satisfy (C.2.3) withr = 2. Let Y € R" be
a multivariate random variable with density fx . Then the Miles ellipsoid is the unique
centered ellipsoid satisfying

f x%dx = a’Var(Y) (C.4.3)
em(X)

where a’ > 0 is chosen such that V, (em(X)) = EV,(Kp).

Proof. The mean and the covariance matrix of Y are

B! (Ko)

EY = J\ . XfKO(X) dx = m

and

Var(Y) = J;Rn xszO(x)dx - ( JIR" foO(x)alx)2

2

__ 2 w)
- EV,(Ko) ’

2
(IE\P (Ko) - 2EV,(Ko)

respectively. Hence, Var(Y) is proportional to the right hand side of (C.4.2) and the
claim follows from the fact that a full-dimensional centered ellipsoid is uniquely
determined by its rank-2 volume tensor. O
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In [19] the Miles ellipsoid was defined in the three-dimensional setting using
(C.4.3), so Lemma C.4.2 shows that Definition C.4.1 is an extension of this notion
to arbitrary dimensions. We have added the proportionality constant a” in (C.4.3)
which appears to be missing in [19]

The Miles ellipsoid is scaled in such a way that its volume equals the mean volume
of the typical particle. By (C.4.1) it is proportional to the mean rank-2 volume tensor
of the typical particle centered at

EV!(K,)
EV,(Kp) '

¢ =

If the typical particle is deterministic and coincides with the full-dimensional set
K € K", the vector ¢ is just the center of mass ¢(K) of K and ey;(X) does not change
when K is translated. However, if K is random and such that c(Kj) = 0 with positive
probability (this is usually the case in applications) then the ‘ratio-of-means’ esti-
mator ¢ will typically be different from c(Kj), and even different from [Ec(Kj). As a
consequence ey (X) not only depends on the ‘shape’ of K, but also on its position
and these two kinds of properties are inseparably entangled in ey((X). If the mean
ellipsoid is supposed to summarize the mean shape of K, this sensitivity of ep(X)
to the position of the typical particle, and, in practice, the position of the reference
point, is problematic.

We therefore suggest another mean ellipsoid. It is also based on the rank-2 volume
tensor of the typical particle, but now each realization is centered individually before
taking the average tensor.

Definition C.4.3. Let the stationary marked point process X satisfy (C.2.3) with r = 2.
The inertia ellipsoid is the unique centered ellipsoid, e;(X), with e;(X) = {0} if EV,(K{) =
0 and otherwise

(C.4.4)

2 _ 2 W!(K,)
2 er(X)) = e B (Ko~ )
with a; > 0 such that V,(e;(X)) = EV,,(Kj).

Clearly, (C.4.4) can be rewritten as
W2(er(X)) = s BW2( Ko —c(Ko)),

showing that we now average particles with their centers of mass at 0. Both, the Miles
ellipsoid and the inertia ellipsoid are based on mean volume tensors. Section C.3
allows us to define an ellipsoid based on the mean surface tensor if X is L-restricted
isotropic with L € G(n,1).

Definition C.4.4. Let L € G(n,1) and let X be a stationary, L-restricted isotropic marked
point process with EV,,_;(Kj) > 0. The Blaschke ellipsoid is the unique centered ellipsoid
of revolution such that

®?(eg(X)) = ED*(K,). (C.4.5)

Note that the right hand side of (C.4.5) is well-defined due to (C.2.1). Seen as a
matrix, it is an element of A, so Theorem C.3.1 implies existence and uniqueness of
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the centered ellipsoid of revolution eg(X) satisfying (C.4.5). In view of (C.2.5) the
Blaschke ellipsoid could alternatively be defined by

D2 (ep(X)) = P(By(X)),

stating that the eg(X) and the Blaschke shape have the same rank-2 surface tensor.
Taking the trace on both sides of (C.4.5) we see

Vi-1(ep(X)) = EV;,_1(Kop),

which can be considered as the natural proportionality relation and shows that
rescaling with a proportionally constant «, like in the definitions of Miles- and inertia
ellipsoids are not necessary.

The assumption of L-restricted isotropy with L € G(n,1) is needed in the defini-
tion of Blaschke ellipsoid due to the lack of a general result stating that the rank-2
surface tensor induces a uniquely determined centered ellipsoid. However for n = 2
this assumption can be omitted as Theorem B.2.1 in Paper B implies the needed
uniqueness.

Example C.4.5. We give an example illustrating the dependency between the Miles
ellipsoid and the choice of reference points. Let K = diag(a[n —1],b)B" be a centered
ellipsoid of revolution with lengths of its semi-axes a> 0 and b > 0. Put K; = K + Te,,
where T is a uniformly distributed stochastic variable in [-b, b]. There is a stationary
marked point process X with typical particle Kg, for instance an independently
marked Poisson process with intensity ¥ = 1. By construction X is L-restricted
isotropic.

Now EW!(K) = 0 so by [7, page 266]

P2 (em(X)) = aBW?(Ko)
_ Oy w1y s 21 2 2
_2(n+2)a bdiag(a“[n—1],b°+ (n+2)ET")

o diag(a®[n — 1], 252b?).

Fora= ,/"T*Sb # b the Miles ellipsoid becomes a ball even though the typical particle

is always a translation of the same ellipsoid K, which is not a ball. In contrast, both
the inertia and the Blaschke ellipsoid coincide with K.

This example illustrates how the Miles ellipsoid may yield poor results if the
reference points are ‘far away’ from the centers of mass of the particles. In a practical
application using ep;(X) it is therefore recommended to chose the reference points of
the individual particles close to the respective centers of mass, if possible.

For practical applications we need estimators of the right hand sides of (C.4.1),
(C.4.4) and (C.4.5). We will from now on assume that the integrability condition
(C.2.3) with r = 2 is satisfied when talking about the Miles ellipsoid and the inertia
ellipsoid. When talking about the Blaschke ellipsoid we will assume that there is
L € G(n,1) such that X is L-restricted isotropic and EV,,_;(Ky) > 0. We now consider
estimators of these mean ellipsoids from observations of X in a full-dimensional
window W € K". To avoid treating boundary effects, we follow the approach in [19]
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assuming that all particles with reference point in W can be observed even if they
are not completely contained in W. If this assumption is not satisfied, estimators of
the average rank-2 surface tensor of the typical particle solely based on the particle
process X N W in W can be found in [15].

Let Ny be the number of particles with reference point in W. For r € N define

gro L Z W (K).

NW (x,K)eX,xeW
Let .
N A V]
B (W) = p2 - .
(W) T

be an estimator of the unscaled right side of (C.4.2) (and thus of (C.4.1)),

‘i’z(W)ZL Z \pz(K_\yl(K))

WO(K)
(x,K)eX,xeW

be an estimator of of the unscaled right side of (C.4.4) and lastly

byw)=— ) @K

N
w (x,K)eX,xeW

be an estimator of (C.4.5).

Proposition C.4.6. Let X be an ergodic stationary marked point process and W be a
convex body in R" with V(W) > 0. For i) and ii) we assume (C.2.3) with r = 2, whereas
for iii) we assume that X is L-restricted isotropic with respect to a line L.

i) Let &)1 be the unique centered ellipsoid with
W2 (en) = dy (W),

where dp; > 0 is given such that V(&) = WO, The ellipsoid &,y is a consistent
estimator of ep(X).

ii) Let é; be the unique centered ellipsoid with
W2 (&) = ardp(W),

where &; > 0 is given such that V,(é) = PO, The ellipsoid &} is a consistent estimator
of el(X).

iii) The unique ellipsoid ég in £ with

is a consistent estimator of eg(X).

Proof. Let {W,,} be an increasing sequence of convex bodies such that r(W,) — oo
with
r(W,)) = max{r > 0: W,, contains a ball of radius r}.
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As X is assumed to be ergodic it follows from [4, Cor. 12.2.V] that
W 225 BW(Ky).

Hence
BV (Ko)?

P (W) 25 BUA(K)) - —— 2

As W? is a homeomorphism from the set of all full-dimensional centered ellipsoids
into the set of all positive definite symmetric n x n-matrices, and d,, is a composition
of (W?)71, P and \i’M(Wm) we conclude that @), converges to a); almost surely
implying that é); converges almost surely to ep(X) in the Hausdorff metric making
é)r a consistent estimator.

Again by [4, Cor. 12.2.V] it follows that

R 5. w1(K,)
@ (w,,) 22 IE(\I/Z(K 2 ))
1(Wi) — 0 WO(K,)
Hence by a similar argument as before then é; converges almost surely to e;(X) in the

Hausdorff metric.
Now [4, Cor. 12.2.V] also yields

N

dp(W,,) 225 EO2(Ko)

and by Theorem C.3.1 the sets ég converges almost surely to eg(X) in the Hausdorff
metric. This shows the last consistency claim. m|

Note that Campbell’s theorem (see for instance [16, Theorem 3.5.5]) implies that by
is in fact a ratio unbiased estimator of (C.4.5).

Besides inference from observations in full-dimensional windows, estimators
from lower dimensional sections are also of great practical interest. For instance,
a stereological estimator of the rank-2 mean surface particle tensor is derived in
[15] where Crofton’s section formula with hyperplanes for surface tensors yields
an estimator from sections of the entire germ-grain process X with hyperplanes. A
similar estimator from linear sections can be derived from the corresponding Crofton
formula in [9]. As the mean volume particle tensors depend on the choice of reference
points they cannot be derived from lower-dimensional affine sections of X without
additional information outside the sectioning flat. However, local stereological es-
timators of these tensors are available as the sections are here taken individually
through the reference point of each particle of the process. An example of such an
estimator is the slice estimator in [11].

Under the further assumption of X being L-restricted isotropic, Theorem C.2.2 allows
for a generalization of the section estimator defined for n =3 and k =1 in [11]: if
L =span(e,_k41,...,€,) then a ratio unbiased estimator of EW’"(K) is

Y kex (kjew P (K = x(K))
N(W)

where 1)
WKy, . = Enok=1E

k-1
- ~ W K N M)

1reorln—k Llp—k+1-sln
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only depends on lower-dimensional sections of the particles. However, in view of the
remark after Corollary C.2.7 then Theorem C.2.4 does not allow for a similar ratio
unbiased estimator of ED?(Ky).

In Figure C.1(a) we see a realization of a stationary particle process in W =[0,1]3
induced by the stationary independently marked Poisson point process X in R3,
where all marks are uniform rotations about the z-axis of a deterministic 3-simplex S.
The center of mass of S coincides with the origin. By construction, X is L-restricted
isotropic with L = span{es;} € G(3,1). In Figure C.1(b) the above defined estimators
of Miles (black) and Blaschke (grey) ellipsoids are depicted. As the reference points
were chosen to be the centers of mass of the particles, the inertia and Miles ellipsoids

coincide. We note that all three estimators capture the elongation and the orientation
of S.

Figure C.1: Simulation in W = [0,1]3 of the particle process induced by a stationary marked point process
with intensity y = 30. The marks are rotations of a deterministic 3-simplex with vertices at the origin, at
(1/10,0,0), (0,1/10,0) and at (0,0,—1/2), rotated uniformly about the z-axis after translating its center of
mass at the origin. The reference points are formed by a stationary Possion point process. In b. the Miles
and inertia ellipsoids are depicted in black (coinciding) and the Blaschke ellipsoid in grey.
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