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DEPENDENT RATIONAL POINTS ON CURVES OVER FINITE
FIELDS - LEFSCHETZ THEOREMS AND EXPONENTIAL SUMS

JOHAN P. HANSEN

ABSTRACT. For an algebraic curve defined over I, we study the probability that
T randomly chosen F,;-rational points on the curve impose dependent conditions
on the functions in a given 7-dimensional vectorspace of rational functions on the
curve. This probability tends to be close to .

The proofs involves a geometric construction, Lefschetz theorem for quasi-
projective varieties and majorizations of exponential sums.

The results has applications in the assessment of the performance of decoding
algorithms for algebraic geometry codes.

1. INTRODUCTION

Let p be a prime number, let I, be a the finite field with char(F,) = p

and let k = Fq be an algebraic closure. Let G, denote the multiplica-
tive group of k.

For an algebraic curve defined over I, we study the probability that
7 randomly chosen [,-rational points on the curve impose dependent
conditions on the functions in a given 7-dimensional vectorspace of
rational functions on the curve. This probability tends to be close to
%. We obtain two such results.

The results have applications in the assessment of the performance of
decoding algorithms for algebraic geometry codes according to [JNH].
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In section 2, we recall the asymtotic result that the probability con-
verges to % for larger and larger field extensions I of the ground

field F,. This result is obtained in [H-L] with G. Lachaud for smooth,
projective curves C' and vectorspaces of functions of the form L(D),
where D is a divisor on the curve with degD > 2g + 1.

The proof is based on a geometric construction and a Lefschetz the-
orem for quasi-projective smooth varieties.

In section 3, the same geometric construction is used in a different
setup, namely where C* is a curve in a torus G,, X G,,, with no re-
strictions on smoothness and irreducibility. The difference between
the sought probability and % is expressed as an exponential sum on
a subvariety of a torus G,, X --- X G,,. The works of A. Adolphson
and S. Sperger [A-S] allows to determine explicit majorisations for the
exponential sums.

2. ASYMPTOTIC RESULT - LEFSCHETZ THEOREMS

Let C' be a smooth and absolutely irreducible curve of genus g de-
fined over the finite field I, and let D be a F,-rational divisor on C
with [(D) = .

Let X be 7-tuples of pairwise different points on C, i.e.

X ={(P,...,P)| B # P fori# j}

and let I' € X be 7-tuples of pairwise different points on C failing to
impose independent conditions on the linear system of divisors equiv-
alent to D. Specifically, if F,(C)) denotes the field of rational functions
on C, then

I={(P,...,P;) € X|3f € F,(C) : div(f) + D — (P, + ...+ P;) > 0}.

Let | X (F,)| and |I'(F,; )| denote the number of F,;-rational points on
X and TI'.

With G. Lachaud we obtain in [H-L] the following theorem. As
the geometric construction in the proof is also used in section 3, we
recollect the proof of the theorem.
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Theorem 1. In the notation above assume that deg(D) > 2g + 1
and let 7 = deg(D) + 1 —g. Assume I' # (. There is a constant c
(independent of j), such that

- T+1

X (Fp)l — ¢ IPEH)I < e () (1)

The bounding term ¢ (g’ )TTJF1 can not in general be replaced by a

smaller power of ¢/, as the following example show.
Example 2. Let C be an elliptic curve with |C'(F,)| = 1+ ¢ and let
D = 3Fy. Then 7 = 3 and I is triples of collinear points on C'. In this
case we have
X (F,)| = [CE)(ICEF) = 1)(IC[EF)| - 2) =¢° — g
ID(Fy)| = (IC(F,)| = 9 (|C(Fy)[ -1 —4) =
(q—8)(¢ —4) =¢° — 129 + 32

assuming that the 2-torsion and 3-torsion points are [F,-rational. This
follows from the fact that 3 points on C are collinear if and only if
they have sum 0 in the group structure on the elliptic curve. Vi now
have for all uneven j, that

| X (F,i)| — q |D(F,)| = —12(¢")* — 36¢.
Central to the proof of the theorem is the following lemma, which is
obtained through a geometric construction.
Lemma 3. In the notation above
i) X\I' is affine.
ii) I is smooth if deg(D) > 2g + 1
Proof. Let (a;1 : ... : a;r) be homogenous coordinates on the i’th copy
of PP 1in P Ix...xPlandlet VCP I x...xP ! be the closed
subscheme defined by the vanishing of the determinant
ari1 --. Qari1
ar2 ... Aar2
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Consider for a moment the Segre embedding
T—fold

Ve

Pl x Pl BES PN N g
the morphism defined by

(@1 i) X oo X (Qrp et Q) > (Co 2 Qg - Aoy e G )

Then we see, that V' C P! x ... x P"7! is the inverse image of a
hyperplane H € PV .

By assumption deg(D) > 2g+1, therefore 7 = [(D) = deg(D)+1—g
by Riemann-Roch, and the divisor D defines an embedding of the curve
C as a smooth curve in P7!:

b:C =P L

By the definition of X and I', we have that (Py,..., P;) isin [ if and
only if ¢(P1),...,¢(P;) are linear dependent in P7, equivalently lie
in a hyperplane L C IP", therefore we have the cartesian diagrams of
intersections:

7—fold T—fold

A

—f— - T S
X — Cx..xC N IV N )y

T T T T

I — (dx...x9) (V) — % —— H

and we note the important fact that
T—fold

X\[=Cx..xC\(¢x...x¢) (V).

It follows that X \I' is isomorphic to the complement of a hyperplane
section in a projective variety and therefore affine, which was the first
assertion.

As for assertion on smoothness, assume to the contrary that (P, ..., P;) €
[" is a singular point on I, this implies that H (and thereby V') do not
intersect X transversally at (P, ..., P;).
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Let L be a hyperplane in P™~! through P, ..., P-, which exist as
(P, ..., P;) €. All T-tuples of points in L are linear dependent, i.e.
for all 7, therefore we have

Li=Pix...PpyXxLxPx..xPCV CPtx. .. .xP
Consider the Cartesian diagrams of intersections in P™~1 x ... x P71
X —— Pl x.. .. xP!

T

r — V
P1X...f)j_1XLﬂCXPj+1X...XPT—> L]'
As the intersection between X and V' isn’t transversal at (P, ..., P;),
the intersection between X and Py X ... Pj_y X LX Pj 1 X...X P can’t
be either, consequently L is a tangent hyperplane to the curve C' at P;.
This is true for all P,..., P, i.e. , there exists a rational functions
in L(D) vanishing to at least second order at Pi,..., P;, therefore

I(D— (2P + ...2F;)) > 0, however this contradicts the assumption
as

deg(D — (2P, +...2P;)) = deg(D) — 2l(D) =

deg(D) — 2(deg(D) +1—g) =29 — 2 —deg(D) < 0.
]
Assume that the prime [ is different from the characteristic of the
ground field. Let @ denote the /-adic numbers. For a constructible
sheaf F of (-vector spaces H'(X, F) (resp. H,(X, F)) denote the étale
l-adic chomology groups (resp. the étale [-adic chomology groups with

compact support), see [M].
Finally for an integer ¢ we denote by F(c) the Tate twist of F and
H'(X, Qy(c)) = H'(X, 01(c)) ® Oi(c)

The second main ingredient in the proof is a Lefschetz Theorem for
quasi-projective varieties. We have not been able to find a reference
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for it and gives a proof along the lines of [J, Corollaire 7.2], see also
[G-L] for related results.

Lemma 4. A Lefschetz Theorem for quasi-projective varieties.
Let X C PN be a quasi-projective, smooth scheme of dimension n and
let Y = X N H be a smooth hyperplane section, such that X\Y is
affine. Then there are isomorphisms:

H, (Y, Q(—1)) = HL(X, Q)
fori>n+ 2.

Proof. For any locally constant sheaf F of Z/(l)-modules, the inverse
image morphisms:

H (X, F) — H(Y, F) (2)

are isomorphisms for i+ < n — 2 as follows from the long exact coho-
mology sequence using the assumption that X\Y is affine. As both
X and Y are assumed to be smooth, Poincaré duality applied to (2)
gives the result. ]

We are ready to prove Theorem 1.

Proof. The ground field is the finite field IF, and H%(X, Qy) is endowed
with an action of the Frobenius morphism Frob. The Lefschetz trace
formula [M, p.292] by A. Grothendieck determines the number of F,-
rational points in terms of the traces of Frob on the etale cohomology
spaces.

We have accordingly

2T

| X(F )I—Z( 1) Tr(Frob | H.(X, Q) (3)

g [T(F \—QZ )' Tr(Frob | H (T, Q1)) (4)
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As for the high dimensions, we obtain from Lemma 4 applied to X
and I', that
212

¢ > (~1)' Tx(Frob | H{(T, Q) =

27—2

Z(—l)iTr(FFOb\ H(I, Qi(-1))) =
.Z (—=1)! Tr(Frob | H (X, Q))
Combining this Wit}; (3) and (4) gives:
(X ()| — g [T(F)| =

> (=1 Te(Frob | Hi(Y, Q)

¢ 3 (~1) Te(Frob| H(T, Q)
i=0
Deligne’s main theorem [D] gives that the eigenvalues of Frob’s action
on the 7’th cohomology group have absolute values < gz. This imme-
diately implies (5) of Theorem 1 as the dimensions on the cohomology
groups do not depend on the power j of ¢ and the highest power of ¢
being qTTH. ]

3. CURVES IN A 2-DIMENSIONAL TORUS. EXPONENTIAL SUMS

In this section we will be concerned with subvarieties C* C (G,,)?
defined over [, with no restrictions on smoothness and irreducibility,
and exponential sums.

The probability that 7 randomly chosen [F,-rational points on the
curve impose dependent conditions on the functions in a given 7-
dimensional vectorspace of rational functions on the curve is close to
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%. In fact, the difference between the sought probability and % is ex-
pressed as an exponential sum on a subvariety of a torus G,, X - - x(G,,.
The works of A. Adolphson and S. Sperger [A-S] allows to determine
explicit majorisations for the exponential sums, bounding the differ-
ence between the sought probability and %.

3.1. Exponential sums. Let V C (G,,)" X A® be a subvariety defined
over [F,. Set n =r + s.
Let

G=) a;X €Fy[X1,..., X, (X1...X,)7]
jeJ
be a regular function on V', where the sum is over a finite subset J
and we assume that a; # 0 for all 5 € J.

The Newton polyhedron A(G) of G is the convex hull in R" of the
set JU{(0,...,0)}. Let vol(G) be the volume of A(G) with respect
to Lebesques measure on R".

Let Sy ={r+1,...,n}. For each B C Sy, let R}, = {(z1,...,2,) €
R*| x;=0 if i€ B} and let volg(G) be the volume of A(G) NR}
with respect to Lebesques measure on R%. Finally set

vs,(G) = Y (=1)"l(n — | B|)volp(G) (5)

BCS,

For a face o (of any dimension) of A(G), set

Go‘ == Z anj.

jeonJ

The function G is nondegenerate if for every face o of A(G) that
does not contaion the origin, the polynomials %, cee % have no
common zero in (k*)". The function G is commode if for all subsets
B C Sy,dimAg, = dimAg, + [S2 — B|, where Gp is the polynomial

obtained from G by substituting X; = 0 for all z € B.
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Let x : F, — C* be a nontrivial additive character on F, and set

A. Adolphson and S. Sperger determine explicit majorisations for cer-
tain exponential sums. There is a set Sa consisting of all but finitely
many prime numbers associated to the Newton polyhedron. This set

can be effectively determined, see [A-S] (proof of LEMMA 4.4).

Theorem 5. ([A-S], THEOREM 4.20) If char(k) € Sa and G is non-

denerate and commode, then

[S((Gm)" x A%, G)| < ws,(G)V/g

Besides this result we will need a result that relates a certain expo-
nential sum, the number of F,-rational points on a variety V' C (G, )"
defined by homogenous equations over [, and the number of [F,-
rational points on a hyperplane section Viz := V N {G = 0} for
G € F,[X1, ..., X,] homogenous, see also [Sh-Sk, Sk].

Lemma 6. Let V C (G,,)" be defined by homogenous equations over
F, and let G € F,[X3,...,X,] homogenous of degree d. Assume that
g — 1 and d are coprime. Then

(¢ —=1)S(V,G) = q[Va(F,)| — [V ().
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Proof. As V' is defined by homogenous equations the mapping FF,* x
V(F,) = V(F,), (t,z) — tz is a (¢ — 1)-fold covering of V (F,). There-

fore
6= ¥ 6= T T
zeV (Fy) q telF,” zeV (F,
1|2 Z (e Z (G0, 0) | =
telF, zeV (F, zeV (F
— [ D X(G(x) - V(E,)|| =
teF, zeV (F,)
1
g_1 [q |V (Fy)| — |V (Fy)]
by ortogonality of characters, as d is coprime to g — 1. ]

3.2. Curves in a 2-dimensional torus. Let C = Z(F) C A? be an
affine plane curve defined over F, by an equation F(X,Y) € F,[X,Y].
One should remark, that we neither assume that F' is irreducible nor
that C' is smooth. Let

C*=Z(F)N (G, xGy,) C G, X Gy,

be the corresponding algebraic subset of the 2 dimensional torus.

Let L C F,[X, Y] be a F,-linear subspace of dimension 7. The locus
['* we are going to study consists of 7-tuples (P, = (z1,41),... P =
(z;,y;)), of points on C* failing to impose independent conditions
on L, i.e. there is a polynomial i L vanishing at all the points P, =
(z1,11), ... Pr = (zr,y,). f Gy,...,G; is a basis for L as a vectorspace
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over [, this amounts to the vanishing of the determinant of the 7 x 7-

matrix:
Gl(wl, yl) G1(902, y2) . Gl(lb"r, yr)
Go(z1, 1) Ga(x2,92) - . Golzr,yr)
GT(xlayl) GT($2,3/2) . GT($T7yT)

Let D € F,[Xy, V1, ..

., X, Y;] be the polynomial

Gl(Xlayi) Gl(X27}/2) . Gl(XT7YT)

GQ(Xl)}/l) GQ(XQ)YQ) . GQ(XT)YT)
D= : : :

GT(Xl)}/I) GT(XQ)YQ) . GT(XT)YT)

Let d be the maximum of the degrees deg(G;),i = 1,...,7 and let
D e F,[X1,Y1,Z1,...,X;,Y:, Z;] be the homogenous polynomial of
degree 7d obtained as the determinante:

S
I

(6)

| ZﬁGT('X—T Y

Z{Gr (3 3) 235G+ (22 ) 7 7)

Z17Z1 Z2’Z2

Note that all polynomials in the above matrix are homogenous of
degree d.

Definition 7. The locus I'* of 7-tuples of points failing to impose
independent conditions on the functions in L is in the notation above
the subvariety of (C*)” C ((Gy,)?)" defined by D:

I ={(P,...,P) € (C7)|D =0} C ((Gw)*)’ (7)

Theorem 8. Let L C F,[X,Y] be a F;-linear subspace of dimension
T with basis Gy, ...,Gr. Let deg(G;) = d;,i = 1,...,7. Let (C*)" C
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((G)?)" and let T* be defined as in (7). Let D be the determinate
(6). Assume that ¢ — 1 and Td are coprime. Then

S((C*), D)
(¢ — 1)
where S((C*)7, D) is the exponential sum on (C*)7.

= q | (Fy)| = [(C7)"(F)I,

Proof. Let F(X,Y,Z) € F,[X,Y, Z] be the homogenized equation. Let
C* = Z(F)N (G, x Gy, x Gy,) C Gy, X Gy, X Gy,

be the corresponding algebraic subset of the torus and let V' C (G, X
Gy X Gy, )™ be defined by the homogenous equations F'(X;,Y;, Z;),i =
1,...,7. Lemma 6 gives that

(¢ = 1)S((C*), D) = q|[Vi(F,)| — [V (E,)|-

Finally use the fact that C* is a punctured cone over C* such that
C*(FF,) is a (g — 1)-fold covering of C*(F,) and consequently (C*)"(F,)
is a (¢ — 1)"-fold covering of C*(F,) Likewise as D is homogenous
Vi (F,) is a (¢ — 1)"-fold covering of I'*(IF,). O

Remark 9. Let F(X,Y,Z) € Fy[X, Y, Z] be the homogenized equation

and F; = F(X,,Y;, Z;),i=1,...,7, then D + > 7_; S;F; is a function

on (G,, )" x A™ and there is the following relation for exponential sums,
see ([B]):

¢ S((C*)", D) = S((Gw)¥ x A", D+ S;F)). (8)

i=1
The symmetric group ¥, acts on (Z*)™ and (Z)™ by permutation of
the factors and consequently on (Z*)7 x (Z)™. The set J of indices for

the function D + Z;.rzl S; F; is stable under this action. Also ¥, acts
on the index set via permutation of Gy, ..., G;.
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Under the combined action of ¥, x ¥, on J, the indices I C J of
the polynomial

X1 Y

X2 }/2 d
..... 7 GT
7" 7 Z

d d
Z Gl( )ZQG1(22 ZZ) T

N[

)+Sl (Xh}/laZl)

is a complete set of representatives for the orbits. The function D+
> 1_1 SiF; is therefore nondegenerate if the condition of 3.1 is true for
every face of the Newton polygon containing an element of I.

We can also simplify the calculation of vg,(D + >_[_; S;F;) defined
n (5). Let A be the Newton polyhedron of D+ S°7_, S;F; and let A;
be the convex hull of (0,...,0) and the elements in J having the last
j coordinates equal to 0. Let vol; denote the volume of A; in R 7.
Using the above group action on the J and hence on the Newton
polyhedron and its coordinateplane sections, we obtain

s (D+ Y 8F) = Y 0T —iol, @

J=0

Theorem 10. In the notation above, let A be the Newton polyhedron
of D + Yo S;F;. Let A; be the conver hull of (0,...,0) and the
elements in J having the last j coordinates equal to 0. Let vol; denote
the volume in R/ of A;.
Assume that D+3"T_, S;F; is nondegenerate and assume that char(F,) =
p € SaA, as defined in 3.1.
Then
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Proof. Combining Theorem 8, (8) and Theorem 5 we get

g [T (F)| = [(C7)"(Fy)[] <

VS2(D + i Siﬁi)\/agﬂﬁ _
- (g —1)=bgr N

~ T ~ q
vs, (D + E SZFZ)W
i=1

T

Using (9) the conclusion follows. O

As for the field extension F, it follows by the same methods, that

‘ IC(Fil 1
(RN

e <”> el \<c*>}<wqi>\ (qiq—i 1)

J=0
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