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DEPENDENT RATIONAL POINTS ON CURVES OVER FINITE

FIELDS - LEFSCHETZ THEOREMS AND EXPONENTIAL SUMS

JOHAN P. HANSEN

Abstract. For an algebraic curve de�ned over Fq we study the probability that
� randomly chosen Fq -rational points on the curve impose dependent conditions
on the functions in a given � -dimensional vectorspace of rational functions on the
curve. This probability tends to be close to 1

q
.

The proofs involves a geometric construction, Lefschetz theorem for quasi-
projective varieties and majorizations of exponential sums.

The results has applications in the assessment of the performance of decoding
algorithms for algebraic geometry codes.

1. Introduction

Let p be a prime number, let Fq be a the �nite �eld with char(Fq ) = p
and let k = F q be an algebraic closure. Let G m denote the multiplica-
tive group of k.
For an algebraic curve de�ned over Fq we study the probability that

� randomly chosen Fq -rational points on the curve impose dependent
conditions on the functions in a given � -dimensional vectorspace of
rational functions on the curve. This probability tends to be close to
1
q
. We obtain two such results.
The results have applications in the assessment of the performance of

decoding algorithms for algebraic geometry codes according to [JNH].
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2 JOHAN P. HANSEN

In section 2, we recall the asymtotic result that the probability con-
verges to 1

qi
for larger and larger �eld extensions Fqi of the ground

�eld Fq . This result is obtained in [H-L] with G. Lachaud for smooth,
projective curves C and vectorspaces of functions of the form L(D),
where D is a divisor on the curve with degD � 2g + 1.
The proof is based on a geometric construction and a Lefschetz the-

orem for quasi-projective smooth varieties.
In section 3, the same geometric construction is used in a di�erent

setup, namely where C� is a curve in a torus G m � G m , with no re-
strictions on smoothness and irreducibility. The di�erence between
the sought probability and 1

q
is expressed as an exponential sum on

a subvariety of a torus G m � � � � � G m . The works of A. Adolphson
and S. Sperger [A-S] allows to determine explicit majorisations for the
exponential sums.

2. Asymptotic result - Lefschetz Theorems

Let C be a smooth and absolutely irreducible curve of genus g de-
�ned over the �nite �eld Fq and let D be a Fq -rational divisor on C
with l(D) = � .
Let X be � -tuples of pairwise di�erent points on C, i.e.

X = f(P1; : : : ; P� )j Pi 6= Pj for i 6= jg
and let � � X be � -tuples of pairwise di�erent points on C failing to
impose independent conditions on the linear system of divisors equiv-
alent to D. Speci�cally, if F q(C) denotes the �eld of rational functions
on C, then

� = f(P1; : : : ; P�) 2 Xj9f 2 F q(C) : div(f) +D � (P1 + : : :+ P� ) � 0g:

Let jX(Fqj )j and j�(Fqj )j denote the number of Fqj -rational points on
X and �.
With G. Lachaud we obtain in [H-L] the following theorem. As

the geometric construction in the proof is also used in section 3, we
recollect the proof of the theorem.
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Theorem 1. In the notation above assume that deg(D) � 2g + 1
and let � = deg(D) + 1 � g. Assume � 6= ;: There is a constant c
(independent of j), such that��jX(Fqj )j � qj j�(Fqj )j

�� � c (qj)
�+1
2 : (1)

The bounding term c (qj)
�+1
2 can not in general be replaced by a

smaller power of qj , as the following example show.

Example 2. Let C be an elliptic curve with jC(Fq)j = 1 + q and let
D = 3P0. Then � = 3 and � is triples of collinear points on C. In this
case we have

jX(Fq)j = jC(Fq )j(jC(Fq)j � 1)(jC(Fq)j � 2) = q3 � q

j�(Fq)j = (jC(Fq)j � 9)(jC(Fq)j � 1� 4) =

(q � 8)(q � 4) = q2 � 12q + 32

assuming that the 2-torsion and 3-torsion points are Fq -rational. This
follows from the fact that 3 points on C are collinear if and only if
they have sum 0 in the group structure on the elliptic curve. Vi now
have for all uneven j, that

jX(Fqj )j � q j�(Fqj )j = �12(qj)2 � 36qj:

Central to the proof of the theorem is the following lemma, which is
obtained through a geometric construction.

Lemma 3. In the notation above

i) Xn� is aÆne.
ii) � is smooth if deg(D) � 2g + 1

Proof. Let (ai;1 : : : : : ai;� ) be homogenous coordinates on the i'th copy
of P��1 in P��1� : : :�P��1 and let V � P��1� : : :�P��1 be the closed
subscheme de�ned by the vanishing of the determinant�������

a1;1 : : : a�;1
a1;2 : : : a�;2
: : : : : : : : : : : :
a1;� : : : a�;�

�������



4 JOHAN P. HANSEN

Consider for a moment the Segre embedding

��foldz }| {
P��1 � : : :� P��1

Segre���! PN ; N = � !� 1

the morphism de�ned by

(a1;1 : : : : : a1;� )� : : :� (a�;1 : : : : : a�;� ) 7! (: : : : a1;i1 � a2;i2 � : : : � a�;i� : : : :):

Then we see, that V � P��1 � : : : � P��1 is the inverse image of a
hyperplane H 2 PN :
By assumption deg(D) � 2g+1, therefore � = l(D) = deg(D)+1�g

by Riemann-Roch, and the divisorD de�nes an embedding of the curve
C as a smooth curve in P��1 :

� : C ! P��1:

By the de�nition of X and �, we have that (P1; : : : ; P� ) is in � if and
only if �(P1); : : : ; �(P�) are linear dependent in P� , equivalently lie
in a hyperplane L � P� , therefore we have the cartesian diagrams of
intersections:

X ���!

��fold
z }| {
C � : : :� C

��:::��
����!

��fold
z }| {
P
��1 � : : :� P

��1 Segre
���! P

N

x
?
?

x
?
?

x
?
?

x
?
?

� ���! (�� : : :� �)�1(V ) ���! V ���! H

and we note the important fact that

Xn� =

��foldz }| {
C � : : :� C n (�� : : :� �)�1(V ):

It follows that Xn� is isomorphic to the complement of a hyperplane
section in a projective variety and therefore aÆne, which was the �rst
assertion.
As for assertion on smoothness, assume to the contrary that (P1; : : : ; P� ) 2

� is a singular point on �, this implies that H (and thereby V ) do not
intersect X transversally at (P1; : : : ; P� ).
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Let L be a hyperplane in P��1 through P1; : : : ; P� , which exist as
(P1; : : : ; P� ) 2 �. All � -tuples of points in L are linear dependent, i.e.
for all j, therefore we have

Lj := P1 � : : : Pj�1 � L� Pj+1 � : : :� P� � V � P��1 � : : :� P��1:

Consider the Cartesian diagrams of intersections in P��1 � : : :� P��1:
X ���! P

��1 � : : :� P
��1

x
?
?

x
?
?

� ���! V
x
?
?

x
?
?

P1 � : : : Pj�1 � L \ C � Pj+1 � : : :� P� ���! Lj

As the intersection between X and V isn't transversal at (P1; : : : ; P�),
the intersection between X and P1� : : : Pj�1�L�Pj+1� : : :�P� can't
be either, consequently L is a tangent hyperplane to the curve C at Pj .
This is true for all P1; : : : ; P� , i.e. , there exists a rational functions
in L(D) vanishing to at least second order at P1; : : : ; P� , therefore
l(D � (2P1 + : : : 2P� )) > 0, however this contradicts the assumption
as

deg(D � (2P1 + : : : 2P� )) = deg(D)� 2l(D) =

deg(D)� 2(deg(D) + 1� g) = 2g � 2� deg(D) < 0:

�

Assume that the prime l is di�erent from the characteristic of the
ground �eld. Let Q l denote the l-adic numbers. For a constructible
sheaf F of Q l -vector spaces H

i(X;F) (resp. Hi
c(X;F)) denote the �etale

l-adic chomology groups (resp. the �etale l-adic chomology groups with
compact support), see [M].
Finally for an integer c we denote by F(c) the Tate twist of F and

Hi(X; O l(c)) = Hi(X; O l(c))
 O l(c)

The second main ingredient in the proof is a Lefschetz Theorem for
quasi-projective varieties. We have not been able to �nd a reference
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for it and gives a proof along the lines of [J, Corollaire 7.2], see also
[G-L] for related results.

Lemma 4. A Lefschetz Theorem for quasi-projective varieties.
Let X � PN be a quasi-projective, smooth scheme of dimension n and
let Y = X \ H be a smooth hyperplane section, such that XnY is
aÆne. Then there are isomorphisms:

Hi�2
c (Y;Q l(�1))! Hi

c(X;Q l)

for i � n+ 2.

Proof. For any locally constant sheaf F of Z=(l)-modules, the inverse
image morphisms:

Hi(X;F)! Hi(Y;F) (2)

are isomorphisms for i � n � 2 as follows from the long exact coho-
mology sequence using the assumption that XnY is aÆne. As both
X and Y are assumed to be smooth, Poincar�e duality applied to (2)
gives the result. �

We are ready to prove Theorem 1.

Proof. The ground �eld is the �nite �eld Fq and Hi
c(X; O l) is endowed

with an action of the Frobenius morphism Frob. The Lefschetz trace
formula [M, p.292] by A. Grothendieck determines the number of Fq -
rational points in terms of the traces of Frob on the �etale cohomology
spaces.
We have accordingly

jX(Fq)j =
2�X
i=0

(�1)iTr(Frob j Hi
c(X;Q l)) (3)

q j�(Fq )j = q
2��2X
i=0

(�1)iTr(Frob j Hi
c(�;Q l)) (4)
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As for the high dimensions, we obtain from Lemma 4 applied to X
and �, that

q
2��2X
i=�

(�1)iTr(Frob j Hi
c(�;Q l)) =

2��2X
i=�

(�1)iTr(Frob j Hi
c(�;Q l(�1))) =

2�X
i=�+2

(�1)iTr(Frob j Hi
c(X;Q l))

Combining this with (3) and (4) gives:

jX(Fq)j � q j�(Fq)j =
�+1X
i=0

(�1)iTr(Frob j Hi
c(X;Q l))�

q
��1X
i=0

(�1)iTr(Frob j Hi
c(�;Q l))

Deligne's main theorem [D] gives that the eigenvalues of Frob's action

on the i'th cohomology group have absolute values � q
i
2 . This imme-

diately implies (5) of Theorem 1 as the dimensions on the cohomology
groups do not depend on the power j of q and the highest power of q
being q

�+1
2 . �

3. Curves in a 2-dimensional Torus. Exponential sums

In this section we will be concerned with subvarieties C� � (G m)
2

de�ned over Fq , with no restrictions on smoothness and irreducibility,
and exponential sums.
The probability that � randomly chosen Fq -rational points on the

curve impose dependent conditions on the functions in a given � -
dimensional vectorspace of rational functions on the curve is close to
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1
q
. In fact, the di�erence between the sought probability and 1

q
is ex-

pressed as an exponential sum on a subvariety of a torus G m�� � ��G m .
The works of A. Adolphson and S. Sperger [A-S] allows to determine
explicit majorisations for the exponential sums, bounding the di�er-
ence between the sought probability and 1

q
.

3.1. Exponential sums. Let V � (G m)
r�A s be a subvariety de�ned

over Fq . Set n = r + s.
Let

G =
X
j2J

ajX
j 2 Fq [X1; : : : ; Xn; (X1 : : :Xr)

�1]

be a regular function on V , where the sum is over a �nite subset J
and we assume that aj 6= 0 for all j 2 J .
The Newton polyhedron �(G) of G is the convex hull in Rn of the

set J [ f(0; : : : ; 0)g. Let vol(G) be the volume of �(G) with respect
to Lebesques measure on Rn .
Let S2 = fr + 1; : : : ; ng. For each B � S2, let R

n
B = f(x1; : : : ; xn) 2

Rn j xi = 0 if i 2 Bg and let volB(G) be the volume of �(G)\Rn
B

with respect to Lebesques measure on Rn
B . Finally set

�S2(G) =
X
B�S2

(�1)jBj(n� jBj)!volB(G) (5)

For a face � (of any dimension) of �(G), set

G� =
X
j2�\J

ajX
j :

The function G is nondegenerate if for every face � of �(G) that
does not contaion the origin, the polynomials ÆG

ÆX1
; : : : ; ÆG

ÆXn
have no

common zero in (k�)n. The function G is commode if for all subsets
B � S2; dim�GB

= dim�GS2
+ jS2 � Bj, where GB is the polynomial

obtained from G by substituting Xi = 0 for all i 2 B.



DEPENDENT RATIONAL POINTS ON CURVES 9

Let � : Fq ! C � be a nontrivial additive character on Fq and set

S(V;G) =
X

x2V (Fq )

�(G(x)):

A. Adolphson and S. Sperger determine explicit majorisations for cer-
tain exponential sums. There is a set S� consisting of all but �nitely
many prime numbers associated to the Newton polyhedron. This set
can be e�ectively determined, see [A-S] (proof of LEMMA 4.4).

Theorem 5. ([A-S], THEOREM 4.20) If char(k) 2 S� and G is non-
denerate and commode, then

jS((G m)
r � A s ; G)j � �S2(G)

p
q

Besides this result we will need a result that relates a certain expo-
nential sum, the number of Fq -rational points on a variety V � (G m)

n

de�ned by homogenous equations over Fq and the number of Fq -
rational points on a hyperplane section VG := V \ fG = 0g for
G 2 Fq [X1; : : : ; Xn] homogenous, see also [Sh-Sk, Sk].

Lemma 6. Let V � (G m)
n be de�ned by homogenous equations over

Fq and let G 2 Fq [X1; : : : ; Xn] homogenous of degree d. Assume that
q � 1 and d are coprime. Then

(q � 1)S(V;G) = q jVG(Fq)j � jV (Fq)j:
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Proof. As V is de�ned by homogenous equations the mapping Fq
� �

V (Fq)! V (Fq); (t; x) 7! tx is a (q� 1)-fold covering of V (Fq). There-
fore

S(V;G) =
X

x2V (Fq )

�(G(x)) =
1

q � 1

X
t2Fq

�

X
x2V (Fq )

�(G(tx)) =

1

q � 1

2
4X
t2Fq

X
x2V (Fq )

�(G(tx))�
X

x2V (Fq )

�(G(0; : : : ; 0))

3
5 =

1

q � 1

2
4X
t2Fq

X
x2V (Fq )

�(tdG(x))� jV (Fq)j
3
5 =

1

q � 1
[q jVG(Fq)j � jV (Fq)j]

by ortogonality of characters, as d is coprime to q � 1. �

3.2. Curves in a 2-dimensional torus. Let C = Z(F ) � A 2 be an
aÆne plane curve de�ned over Fq by an equation F (X; Y ) 2 Fq [X; Y ].
One should remark, that we neither assume that F is irreducible nor
that C is smooth. Let

C� = Z(F ) \ (G m � G m) � G m � G m

be the corresponding algebraic subset of the 2 dimensional torus.
Let L � Fq [X; Y ] be a Fq -linear subspace of dimension � . The locus

�� we are going to study consists of � -tuples (P1 = (x1; y1); : : : P� =
(x� ; y�)), of points on C� failing to impose independent conditions
on L, i.e. there is a polynomial i L vanishing at all the points P1 =
(x1; y1); : : : P� = (x� ; y� ). If G1; : : : ; G� is a basis for L as a vectorspace
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over Fq , this amounts to the vanishing of the determinant of the ��� -
matrix: ���������

G1(x1; y1) G1(x2; y2) : : G1(x� ; y�)
G2(x1; y1) G2(x2; y2) : : G2(x� ; y�)

: : : : :
: : : : :

G� (x1; y1) G� (x2; y2) : : G� (x� ; y�)

���������
Let D 2 Fq [X1; Y1; : : : ; X� ; Y� ] be the polynomial

D =

���������
G1(X1; Y1) G1(X2; Y2) : : G1(X� ; Y�)
G2(X1; Y1) G2(X2; Y2) : : G2(X� ; Y�)

: : : : :
: : : : :

G� (X1; Y1) G� (X2; Y2) : : G� (X� ; Y�)

���������
Let d be the maximum of the degrees deg(Gi); i = 1; : : : ; � and let
~D 2 Fq [X1; Y1; Z1; : : : ; X� ; Y� ; Z� ] be the homogenous polynomial of
degree �d obtained as the determinante:

~D =

����������

Zd
1G1(

X1

Z1
; Y1
Z1
) Zd

2G1(
X2

Z2
; Y2
Z2
) : : Zd

�G1(
X�

Z�
; Y�
Z�
)

Zd
1G2(

X1

Z1
; Y1
Z1
) Zd

2G2(
X2

Z2
; Y2
Z2
) : : Zd

�G2(
X�

Z�
; Y�
Z�
)

: : : : :
: : : : :

Zd
1G� (

X1

Z1
; Y1
Z1
) Zd

2G� (
X2

Z2
; Y2
Z2
) : : Zd

�G� (
X�

Z�
; Y�
Z�
)

����������
(6)

Note that all polynomials in the above matrix are homogenous of
degree d.

De�nition 7. The locus �� of � -tuples of points failing to impose
independent conditions on the functions in L is in the notation above
the subvariety of (C�)� � �(G m)

2
��

de�ned by D:

�� = f(P1; : : : ; P�) 2 (C�)� jD = 0g � �(G m)
2
��

(7)

Theorem 8. Let L � Fq [X; Y ] be a Fq -linear subspace of dimension
� with basis G1; : : : ; G� . Let deg(Gi) = di; i = 1; : : : ; � . Let (C�)� �
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�
(G m)

2
��

and let �� be de�ned as in (7). Let ~D be the determinate
(6). Assume that q � 1 and �d are coprime. Then

S(( ~C�)� ; ~D)

(q � 1)(��1)
= q j��(Fq )j � j(C�)�(Fq)j;

where S(( ~C�)� ; ~D) is the exponential sum on ( ~C�)� .

Proof. Let ~F (X; Y; Z) 2 Fq [X; Y; Z] be the homogenized equation. Let

~C� = Z( ~F ) \ (G m � G m � G m) � G m � G m � G m

be the corresponding algebraic subset of the torus and let V � (G m �
G m � G m)

� be de�ned by the homogenous equations ~F (Xi; Yi; Zi); i =
1; : : : ; � . Lemma 6 gives that

(q � 1)S(( ~C�)� ; ~D) = q jV ~D(Fq)j � jV (Fq)j:
Finally use the fact that ~C� is a punctured cone over C� such that
~C�(Fq) is a (q�1)-fold covering of C�(Fq) and consequently ( ~C�)�(Fq)

is a (q � 1)� -fold covering of C�(Fq ) Likewise as ~D is homogenous
V ~D(Fq) is a (q � 1)� -fold covering of ��(Fq ). �

Remark 9. Let ~F (X; Y; Z) 2 Fq [X; Y; Z] be the homogenized equation

and ~Fi = ~F (Xi; Yi; Zi); i = 1; : : : ; � , then ~D +
P�

i=1 Si
~Fi is a function

on (G m)
3��A � and there is the following relation for exponential sums,

see ([B]):

q�S(( ~C�)� ; ~D) = S((G m)
3� � A � ; ~D +

�X
i=1

Si ~Fi): (8)

The symmetric group �� acts on (Z3)� and (Z)� by permutation of
the factors and consequently on (Z3)� � (Z)� . The set J of indices for
the function ~D +

P�
i=1 Si

~Fi is stable under this action. Also �� acts
on the index set via permutation of G1; : : : ; G� .
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Under the combined action of �� � �� on J , the indices I � J of
the polynomial

Zd
1G1(

X1

Z1

;
Y1

Z1

)Zd
2G1(

X2

Z2

;
Y2

Z2

) � � � � � Zd
�G� (

X�

Z�

;
Y�

Z�

) + S1
~F (X1; Y1; Z1)

is a complete set of representatives for the orbits. The function ~D +P�
i=1 Si

~Fi is therefore nondegenerate if the condition of 3.1 is true for
every face of the Newton polygon containing an element of I.
We can also simplify the calculation of �S2( ~D +

P�
i=1 Si

~Fi) de�ned

in (5). Let � be the Newton polyhedron of ~D+
P�

i=1 Si
~Fi and let �j

be the convex hull of (0; : : : ; 0) and the elements in J having the last
j coordinates equal to 0. Let volj denote the volume of �j in R4��j .
Using the above group action on the J and hence on the Newton
polyhedron and its coordinateplane sections, we obtain

�S2( ~D +
�X
i=1

Si ~Fi) =
�X

j=0

(�1)jjj
�
�

j

�
(4� � j)!volj (9)

Theorem 10. In the notation above, let � be the Newton polyhedron
of ~D +

P�
i=1 Si

~Fi. Let �j be the convex hull of (0; : : : ; 0) and the
elements in J having the last j coordinates equal to 0. Let volj denote
the volume in R4��j of �j.
Assume that ~D+

P�
i=1 Si

~Fi is nondegenerate and assume that char(Fq) =
p 2 S�, as de�ned in 3.1.
Then ��� j��(Fq )j

j(C�)� (Fq )j
� 1

q

��� � 
�X

j=0

(�1)jjj
�
�

j

�
(4� � j)!volj

!
1

j(C�)� (Fq )j
�

q

q � 1

���1

:



14 JOHAN P. HANSEN

Proof. Combining Theorem 8, (8) and Theorem 5 we get

jq j��(Fq)j � j(C�)�(Fq)jj �
�S2( ~D +

P�
i=1 Si

~Fi)
p
q3�+�

(q � 1)(��1)q�
=

�S2( ~D +
�X
i=1

Si ~Fi)
q�

(q � 1)(��1)
:

Using (9) the conclusion follows. �

As for the �eld extension Fqi , it follows by the same methods, that��� j��(Fqi j

j(C�)� (Fqi )j
� 1

qi

��� � 
�X

j=0

(�1)jjj
�
�

j

�
(4� � j)!volj

!
1

j(C�)� (Fqi )j
�

qi

qi � 1

���1
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