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Abstract

In the setting of stochastic recourse programs, we consider the problem of mini-

mizing the probability of total costs exceeding a certain threshold value. The problem

is referred to as the minimum risk problem and is posed in order to obtain a more

adequate description of risk aversion than that of the accustomed expected value prob-

lem. We establish continuity properties of the recourse function as a function of the

�rst-stage decision, as well as of the underlying probability distribution of random pa-

rameters. This leads to stability results for the optimal solution of the minimum risk

problem when the underlying probability distribution is subjected to perturbations.

Furthermore, an algorithm for the minimum risk problem is elaborated and we present

results of some preliminary computational experiments.

Keywords: Stochastic Programming; Risk Aversion; Continuity; Stability.

1 Introduction

Stochastic recourse programs arise as optimization problems in situations where some para-

meters of the underlying model are not known with certainty. Assuming that some informa-

tion on the probability distribution of the unknown parameters is available, the objective is

to formulate an optimization problem, explicitly taking all outcomes of the random parame-

ters into account rather than simply replacing them by their expected values. It is assumed

that some decisions must be taken before the outcome of random parameters is revealed and
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hence must be based on the knowledge of the distribution of the parameters only. This is

referred to as the �rst stage. In the second stage, outcomes of all random parameters have

been observed and some corrective (or recourse) actions may be taken.

We start out by presenting a standard two-stage stochastic linear program with recourse

in which the sum of �rst-stage costs and the expected value of second-stage costs is mini-

mized. Assuming that randomness occurs only in the technology matrix and the second-stage

right-hand side, this problem is stated as follows:

EV P minfcTx +QE(x) : x 2 Xg; (1.1)

where QE(x) denotes the expected second-stage cost given the �rst-stage decision x,

QE(x) = IE!�
�
h(!)� T (!)x

�
;

and the second-stage value function � is de�ned by

�(�) = minfqTy :Wy � �; y 2 IRn2
+ g: (1.2)

Here X � IRn1 is assumed to be non-empty and closed, c 2 IRn1 and q 2 IRn2 are known

vectors and W is a known rational m�n2-matrix. The technology matrix T and the second-

stage right-hand side h, on the other hand, are dependent on the outcome of a random

event !. Denoting by IRm�n the space of realm�n-matrices, we assume that T : 
 7! IRm�n1

and h : 
 7! IRm are measurable mappings de�ned on some probability space (
;F ; P ).

Several objections may be put forward against the formulation of the expected value

problem given by (1.1), a primary objection being that minimization of the expected cost

does not always constitute an appropriate objective. The appropriateness of this criterion

is dependent on the assumption that the decision process is to be repeated a great number

of times, implying by the law of large numbers that, in the long run, average cost will be

equal to the expected cost. This assumption, however, will frequently not be justi�ed and

consequently the expected cost may not be of much interest to the decision maker. Another

major objection against the expected cost as the object of minimization, is the fact that

the optimal solution of the expected value problem may only assure the achievement of

the corresponding expected cost with a relatively small probability. These considerations

imply that the risk averse decision maker will not consider the solution of the expected

value problem to be \optimal". Instead, what may be desired is a solution ensuring a low

probability of very large costs. This leads us to apply the minimum risk criterion (see e.g.

Bereanu [4]) to the setting described above. The minimum risk problem is the problem of

minimizing the probability of total costs exceeding some threshold value �. The threshold
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value may be thought of as the level of bankruptcy or even just a budget limit. Formally,

the problem is stated as follows:

MRP min
�
QP (x) : x 2 X

	
; (1.3)

where the recourse function QP (x) now denotes the probability of total costs incurred in the

two stages, exceeding the threshold value �, given the �rst-stage decision x,

QP (x) = P
�
f! 2 
 : cTx+ �

�
h(!)� T (!)x

�
> �g

�
;

and the second-stage value function � is still de�ned by (1.2).

Since we are going to address the issue of stability of the minimum risk problem when

the underlying distribution of ! is subjected to perturbations, we will be interested in the

structural properties of the recourse function QP as a function of x as well as the distribution

of !. To facilitate such an analysis it will be convenient to introduce the induced probability

measure � = P Æ (h; T )�1 on IRm�(1+n1) and restate the minimum risk problem as follows:

MRP (�) min
�
Q(x; �) : x 2 X

	
;

where

Q(x; �) = �
�
f(h; T ) 2 IRm�(1+n1) : cTx + �

�
h� Tx

�
> �g

�
;

so that the recourse function Q now explicitly depends on the distribution �.

Structural properties of the expected value problem (1.1) have been studied by numerous

authors. We refer to the textbooks by Birge and Louveaux [7], Kall and Wallace [15] and

Pr�ekopa [21] and research papers by e.g. Dupa�cov�a [9], Kall [14], Robinson and Wets [26],

R�omisch and Schultz [27, 28, 29], Shapiro [36] and Wets [39]. In this paper we will show

that the minimum risk problem (1.3) is equivalent to an expected value problem in which a

binary variable and an additional constraint have been included in the second stage. Thus,

the minimum risk problem belongs to the general class of two-stage stochastic programs with

mixed-integer recourse. Structural properties for this class of problems have been studied

by e.g. Artstein and Wets [2], Klein Haneveld and van der Vlerk [10], Louveaux and van

der Vlerk [20], Rinnooy Kan and Stougie [16], Schultz [31, 32, 33, 34] and Stougie [38]. The

minimum risk problem, however, possesses a much simpler structure than that of a general

stochastic program with mixed-integer recourse and in this paper we will show that some

of the results previously established for this general class of problems, remain valid for the

minimum risk problem under more general assumptions. Early results in this direction were

obtained by Raik [23, 24] who established lower semicontinuity of the recourse function QP ,

as well as a suÆcient condition for continuity. (See also Kibzun and Kan [17].)
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Also, the issue of solution procedures for the expected value problem has been the center

of extensive research for a number of years. In 1969 van Slyke and Wets [37] introduced

the L-shaped algorithm. Since then much work has been done to improve performance of

this algorithm and to develop alternative solution procedures. Currently, the most power-

ful algorithms for this class of problems include regularized decomposition introduced by

Ruszczynski [30] and stochastic decomposition introduced by Higle and Sen [12]. We will

present an algorithm for the minimum risk problem, which may be seen as a specialized

version of the L-shaped algorithm. Since regularized decomposition as well as stochastic de-

composition are similar in spirit to this procedure, extensions of the algorithm incorporating

these techniques are natural. Such an approach is not carried completely to an end in the

present paper, although we will discuss the inclusion of some regularizing mechanism.

This paper is organized as follows: in Section 2 we present some prerequisites from

probability theory, needed for the subsequent analysis. Next, in Section 3 we establish lower

semicontinuity and a suÆcient condition for continuity of Q as a function of x, as well as a

suÆcient condition for joint continuity ofQ as a function of x and �. Furthermore, we present

a quantitative continuity result for Q as a function of �. Having established these continuity

properties of Q it is straightforward to arrive at stability results for the optimal solution

value and the optimal solution set of MRP (�) when the underlying probability measure

is subjected to perturbations. Such an analysis is carried out in Section 4. In particular,

the stability properties established in Section 4 justify numerical procedures that rely on

approximating the distribution of � by simpler (discrete) ones. In Section 5 such a procedure

is elaborated. The procedure, which is a modi�ed version of the L-shaped algorithm, was

implemented in C++ and a number of computational experiments were performed to test

its practicability. In Section 6 we describe some implementational details and report results

of our computational experiments. Finally, in Section 7 we give some concluding remarks.

2 Prerequisites

In this section we present some basic concepts and results from probability theory used

throughout the paper. For a more thourough discussion of these topics we refer to the

textbook by Ho�mann-J�rgensen [13].

We shall be concerned with the set of all Borel probability measures on IRn which we

denote by P(IRn). We recall that a set A � IRn is said to be measurable if A 2 B(IRn),

where B(IRn) denotes the Borel �-algebra on IRn. In particular, all open sets and all closed

sets are measurable. Also, a function f : IRn 7! IR is said to be measurable if and only if

fx 2 IRn : f(x) � ag 2 B(IRn) 8 a 2 IR
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and hence, in particular, the indicator function of a measurable set is measurable.

Next, consider a sequence of measurable sets fAng in B(IR
n). The lim inf and lim sup of

this sequence are de�ned by

lim inf
n!1

An =
[
j�1

\
n�j

An and lim sup
n!1

An =
\
j�1

[
n�j

An: (2.1)

Hence, the lim inf is the set of all those x 2 IRn for which there exists N 2 IN such that

x 2 An for all n � N , whereas the lim sup is the set of all those x 2 IRn such that x 2 An

for in�ntely many n. We will need the following result:

Proposition 2.1. Let � 2 P(IRn), A 2 B(IRn) and let fAng be a sequence of sets in B(IRn).

Then,

(a) lim inf
n!1

�(An) � �(lim inf
n!1

An);

(b) lim sup
n!1

�(An) � �(lim sup
n!1

An),

cf. chapter 1.4 in Ho�man-J�rgensen [13].

While studying continuity properties of the recourse function Q and stability of the mini-

mum risk problemMRP (�) with respect to � we shall adopt the notion of weak convergence

on P(IRn) de�ned as follows. Let � 2 P(IRn) and let f�ng be some sequence of probability

measures in P(IRn). If for any bounded continuous function, g : IRn 7! IR, we haveZ
IRn
g(x)�n(dx)

n!1
����!

Z
IRn
g(x)�(dx);

then the sequence f�ng is said to converge weakly to � and we write �n
w
�! �.

In the subsequent sections we will let � 2 P(IRm�(1+n1)) describe the joint distribution

of the technology matrix and the second-stage right-hand side. At some points we shall also

consider marginal and conditional distributions. To this end, we denote by �1 and �2 the

marginal distributions of h and T , respectively, and for T 2 IRm�n1 we denote by �21(�; T ) the

conditional distribution of h given T . The marginal and conditional distributions possess

the following properties:

� �1 and �2 are probability measures on IRm and IRm�n1 , respectively.

� �21(�; T ) is a probability measure on IRm for any T 2 IRm�n1 .

� �21(A; �) is a measurable function on IRm�n1 for any A 2 B(IRm).

� For any B 2 B(IRm�(1+n1)), we have �(B) =

Z
IRm�n1

Z
IRm

1B(h; T ) �
2
1(dh; T )�2(dT ),

where 1B denotes the indicator function of the set B.
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3 Structural properties

In this section we discuss the structural properties of the minimum risk problem, and in

particular of the recourse function Q. We will show that the problem is equivalent to an

expected value problem with mixed-integer second stage, and hence shares the structural

properties established for this class of problems. These properties, however, will be shown

to remain valid for the minimum risk problem under more general assumptions than those

employed when studying the general class of problems. We will make just the following two

assumptions, ensuring that the second-stage value function � is real-valued.

(A1) There exists a vector u 2 IRm
+ satisfying W Tu � q.

(A2) For all t 2 IRm there exists a second-stage solution y 2 IRn2
+ satisfying Wy � t.

Assumption (A1) is employed to ensure dual feasibility and hence boundedness of all second-

stage problems while assumption (A2) is the assumption of complete recourse, ensuring

feasibility of all second-stage problems for all possible right-hand sides. For practical purposes

it is often suÆcient to replace assumption (A2) by the weaker assumption of relative complete

recourse, ensuring feasibility of all second-stage problems only for those right-hand sides

corresponding to a feasible �rst-stage solution. That is, for all ! 2 
 and for all x 2 X there

is a second-stage solution y 2 IRn2
+ satisfying Wy � h(!)� T (!)x. We note, that if relative

complete recourse is not inherent in the problem, it may be established by the inclusion of

feasibility cuts (see e.g. Birge and Louveaux [7]). Under assumptions (A1) and (A2) the

second-stage value function � is a real-valued, piecewise linear and convex function on IRm.

Evidently, the minimum risk problem (1.3) is equivalent to an expected value problem

where the expectation is taken of an appropriately de�ned indicator function. Speci�cally,

for x 2 IRn1 we may de�ne the set of all outcomes of random parameters yielding total costs

exceeding the threshold value,

M(x) :=
�
(h; T ) 2 IRm�(1+n1) : cTx+ �

�
h� Tx

�
> �

	
and introduce the corresponding indicator function,  : IRn1 � IRm � IRm�n1 7! IB. (Here

IB � IR denotes the subset of binary numbers.) Hence, we de�ne

 (x; h; T ) :=

(
1 if (h; T ) 2 M(x);

0 otherwise:
(3.1)

We now have

QP (x) = E! (x; h(!); T (!)) =

Z



 (x; h(!); T (!))P (d!)
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and

Q(x; �) = �(M(x)) =

Z
IRm�(1+n1)

 (x; h; T )�(d(h; T )):

One way to de�ne such an indicator function is to let  be the value function of the

following mixed-integer program:

 (x; h; T ) = min
�
z : Wy � h� Tx; qTy �M1z � �� cTx; y 2 IRn2

+ ; z 2 IB
	
; (3.2)

where M1 > 0 is some large number. Assuming that cTx � � for all x 2 X, a suÆcient

condition for (3.2) to be feasible is to choose M1 as an upper bound on the second-stage

value function:

M1 � sup
�
�(h(!)� T (!)x) : x 2 X; ! 2 


	
:

Note that the supremum exists and is �nite, assuming that 
 and X are bounded. Hence

we see that the minimum risk problem (1.3) is equivalent to a two-stage stochastic program

with mixed-integer recourse. In particular, the continuity properties established for such

programs by e.g. Schultz [32, 33] and Stougie [38] apply to the recourse functionQ. Obviously

though, the structure of the minimum risk problem is much simpler than that of a general

stochastic program with mixed-integer recourse and hence we may strengthen some of the

previously established results. This will be the aim of our subsequent analysis. We will

show, that in order to obtain the desired continuity properties of the recourse function Q

and the resulting stability properties of the minimum risk problem MRP (�), it is no longer

necessary to assume that � has �nite �rst moment. This is a crucial assumption when

studying the general two-stage stochastic program with mixed-integer recourse, which is

needed to establish the existence of integrable minorants and majorants of the second-stage

value functions.

When studying the structural properties of Q as a function of x, we will �nd it convenient

to de�ne for x 2 IRn1 the set E(x) of all those (h; T ) 2 IRm�(1+n1) such that  (�; h; T ) is

discontinuous at x. By continuity of � this set is easily seen to be equal to the set of all

outcomes of random parameters yielding total costs equal to the threshold value,

E(x) :=
�
(h; T ) 2 IRm�(1+n1) : cTx+ �

�
h� Tx

�
= �

	
:

Using this de�nition and recalling the de�nition of lim inf and lim sup of sequences of sets

in Section 2, we can prove the following lemma.

Lemma 3.1. Assume (A1) and (A2), let x 2 IRn1 and let fxng be some sequence in IRn1

converging to x. Then,

(a) lim inf
n!1

M(xn) � M(x);

(b) lim sup
n!1

M(xn) �M(x) [ E(x).
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Proof. (a) If (h; T ) 2 M(x) we have by de�nition of M(x) that cTx + �(h � Tx) > �.

By continuity of � this means that there exists some N 2 IN such that for all n > N we

have cTxn + �(h � Txn) > � and hence (h; T ) 2 M(xn) for all n > N . The result follows

immediately, cf. the de�nition of lim inf (2.1).

(b) Let (h; T ) 2 lim supn!1M(xn) nM(x). This means that cTx + �(h � Tx) � � while

cTxn + �(h � Txn) > � for in�nitely many n, cf. the de�nition of lim sup (2.1). Now, by

continuity of �, we see that cTx+ �(h� Tx) = � and hence (h; T ) 2 E(x).

Lemma 3.1 is suÆcient to establish the qualitative continuity properties ofQ as a function

of x expressed in the following propositions.

Proposition 3.1. Assume (A1) and (A2) and let � 2 P(IRm�(1+n1)). Then Q(�; �) is a

real-valued lower semicontinuous function on IRn1.

Proof. By continuity of � it is easily seen that M(x) is an open set and hence measurable

for any x 2 IRn1 . Thus Q(�; �) is well-de�ned and obviously real-valued. Now, let x 2 IRn1

and let fxng be a sequence in IRn1 converging to x. By Proposition 2.1 (a) and Lemma 3.1

(a) we now have

Q(x; �) = �(M(x)) � �(lim inf
n!1

M(xn)) � lim inf
n!1

�(M(xn)) = lim inf
n!1

Q(xn; �):

Hence, Q(�; �) is lower semicontinuous at x.

Proposition 3.2. Assume (A1) and (A2) and let � 2 P(IRm�(1+n1)) and x 2 IRn1 be such

that �(E(x)) = 0. Then Q(�; �) is continuous at x.

Proof. Let fxng be a sequence in IRn1 converging to x. By the assumption �(E(x)) = 0 we

have �(M(x)) = �(M(x) [ E(x)) and hence by Proposition 2.1 (b) and Lemma 3.1 (b) we

get

Q(x; �) = �(M(x)) � �(lim sup
n!1

M(xn)) � lim sup
n!1

�(M(xn)) = lim sup
n!1

Q(xn; �):

Hence, observing Proposition 3.1, we see that Q(�; �) is continuous at x.

Recalling the properties of the marginal and conditional distributions of the second-

stage right-hand side and the technology matrix listed in Section 2, we obtain the following

corollary as an immediate consequence of Proposition 3.2.

Corollary 3.1. Assume (A1) and (A2) and let � 2 P(IRm�(1+n1)) be such that �21(�; T ) is

absolutely continuous with respect to the Lebesgue measure on IRm for �2-almost all T . Then

Q(�; �) is a continuous function on IRn1.
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Proof. Let x 2 IRn1 . Under assumptions (A1) and (A2) we have by linear programming

duality that

�(�) = max
j=1;:::;N

dTj �;

where d1; : : : ; dN are the vertices of the set fu 2 IRm
+ : W Tu � qg. Hence the set of all those

� 2 IRm such that cTx+�(�) = � is contained in a �nite union of hyperplanes H := [Nj=1Hj

in IRm where Hj :=
�
� 2 IRm : dTj � = �� cTx

	
. Thus we see that for any x 2 IRn1 we have

E(x) �
�
(h; T ) 2 IRm�(1+n1) : h� Tx 2 H

	
and hence

�(E(x)) =

Z
IRm�n1

Z
IRm

1E(x)(h; T )�
2
1(dh; T )�2(dT )

�

Z
IRm�n1

Z
Tx+H

�21(dh; T )�2(dT )

= 0;

(3.3)

where the last equality follows since the inner integral is equal to zero �2-almost surely

under the assumption that �21(�; T ) is absolutely continuous with respect to the Lebesgue

measure on IRm for �2-almost all T . Thus we may apply Proposition 3.2 to obtain the desired

result.

We now turn to the joint continuity of Q as a function of x and �. As previously

mentioned, we will restrict the feasible region of the probability measure � to the set of all

Borel probability measures on IRm�(1+n1) and adopt the notion of weak convergence on this

set. To establish joint continuity of the recourse function of a general two-stage stochastic

program with mixed-integer recourse, using this notion of convergence, one must further

restrict the feasible region of the probability measure � to ensure boundedness of certain

integrals. As is evident from the following proposition, such a restriction is not necessary for

the minimum risk problem.

Proposition 3.3. Assume (A1) and (A2) and let � 2 P(IRm�(1+n1)) and x 2 IRn1 be such

that �(E(x)) = 0. Then Q : IRn1 � P(IRm�(1+n1)) 7! IR is continuous at (x; �).

Proof. Let fxng be a sequence in IRn1 converging to x and let f�ng be a sequence in

P(IRm�(1+n1)) converging weakly to �. First, we introduce functions fn : IRm�(1+n1) 7! IR

and f : IRm�(1+n1) 7! IR de�ned by

fn(h; T ) =  (xn; h; T ) and f(h; T ) =  (x; h; T ):

Note that all these functions are measurable due to measurability of the sets M(xn) and

M(x), cf. the discussion in Section 2. Also, we de�ne the set E0(x) consisting of all those
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(h; T ) 2 IRm�(1+n1) for which there exists a sequence f(hn; Tn)g in IRm�(1+n1) such that

(hn; Tn)! (h; T ) but fn(hn; Tn) 6! f(h; T ) as n!1.

We will show that E0(x) � E(x). So let (h; T ) 2 E0(x) and let f(hn; Tn)g be a sequence

in IRm�(1+n1) converging to (h; T ) which satis�es fn(hn; Tn) 6! f(h; T ) as n ! 1. Assume

that (h; T ) 2M(x), i.e. cTx+�(h�Tx) > �. Now, by continuity of � there exists a number

N 2 IN such that (hn; Tn) 2M(xn) for all n > N and hence limn!1 fn(hn; Tn) = 1 = f(h; T ),

a contradiction. Likewise, the assumption cTx+�(h�Tx) < � leads to a contradiction and

hence (h; T ) 2 E(x).

Thus, by the assumption �(E(x)) = 0 we get �(E0(x)) = 0 and we may apply Rubin's

Theorem (see e.g. Billingsley [6]) to obtain

�n Æ f
�1
n

w
�! � Æ f�1; as n!1:

Now, we introduce a bounded continuous function g : IR 7! IR, satisfying g(0) = 0 and

g(1) = 1. Note that we have g(t) = t; �n Æ f
�1
n -almost surely for all n and g(t) = t; � Æ f�1-

almost surely. Since the �-integral of two functions which are equal �-almost surely is the

same, we have by the above weak convergence of �n Æ f
�1
n to � Æ f�1 thatZ

IR

t �n Æ f
�1
n (dt) =

Z
IR

g(t) �n Æ f
�1
n (dt)

n!1
����!

Z
IR

g(t) � Æ f�1(dt) =

Z
IR

t � Æ f�1(dt);

and we obtain the desired result by changing variables:Z
IRm�(1+n1)

fn(h; T )�n(d(h; T ))
n!1
����!

Z
IRm�(1+n1)

f(h; T )�(d(h; T )):

Once again, as an immediate consequence of Proposition 3.3, we obtain the following

corollary:

Corollary 3.2. Assume (A1) and (A2) and let � 2 P(IRm�(1+n1)) be such that �21(�; T ) is

absolutely continuous with respect to the Lebesgue measure on IRm for �2-almost all T . Then

Q : IRn1 � P(IRm�(1+n1)) 7! IR is a continuous function on IRn1 � f�g.

Proof. The proof is similar to that of Corollary 3.1.

Quantitative continuity of Q as a function of the underlying measure � relies on iden-

tifying a (pseudo-) distance on P(IRm�(1+n1)) that is properly adjusted to the de�nition of

Q via probabilities of level sets of value functions. Adapting probability (pseudo-) distances

to the underlying structures is a proven tool in quantitative stability analysis of stochastic

programs. We refer to Rachev and R�omisch [22] for a general framework and applications

10



to expectation-based recourse models and chance-constrained problems. For our purposes,

the following discrepancy de�ned for �; � 2 P(IRm�(1+n1)) will turn out useful:

�Bk(�; �) := sup
�
j�(B)� �(B)j : B 2 Bk

	
:

Here, Bk � B(IRm�(1+n1)) denotes the family of all polyhedra in IRm�(1+n1) with at most k

faces, k 2 IN. The discrepancy �Bk is easily seen to be a pseudometric on P(IRm�(1+n1)).

Furthermore, as we will discuss in Section 4, the class Bk is in fact a Vapnik-�Cervonenkis

class. This fact will allow us to derive conclusions on the stability of optimal solutions for the

minimum risk problem when the probability measure � is estimated by empirical measures.

Proposition 3.4. Assume (A1) and (A2). Then there exists a k 2 IN such that for all

x 2 IRn and all �; � 2 P(IRm�(1+n1)) we have��Q(x; �)�Q(x; �)�� � �Bk(�; �):

Proof. Denoting by M c(x) the complement of M(x) we have for any x 2 IRn

M c(x) =
�
(h; T ) 2 IRm�(1+n1) : cTx + �(h� Tx) � �

	
=
�
(h; T ) 2 IRm�(1+n1) : dTj h� dTj Tx � �� cTx; j = 1; : : :N

	
;

where, once again, d1; : : : ; dN are the vertices of the set fu 2 IRm : W Tu � qg. It follows

that fM c(x) : x 2 IRng is a family of polyhedra in IRm�(1+n1) whose numbers of facets are

bounded above by a uniform constant, i.e. a constant not depending on x. Hence, there

exists a k 2 IN such that��Q(x; �)�Q(x; �)
�� = ���(M(x))� �(M(x))

��
=
���(M c(x))� �(M c(x))

��
� sup

�
j�(B)� �(B)j : B 2 Bk

	
;

and the proof is complete.

A coherence between the discrepancy �Bk and weak convergence of probability measures

may be established using the concept of a �-uniformity class de�ned for some probability

measure � 2 P(IRm�(1+n1)) as follows. A class B0 � B(IRm�(1+n1)) is called a �-uniformity

class if sup
�
j�n(B) � �(B)j : B 2 B0

	 n!1
����! 0 for every sequence of probability measures

f�ng in P(IR
m�(1+n1)) converging weakly to �. According to Theorem 2.11 in Bhattacharya

and Ranga Rao [5], the class Bc of all convex Borel sets in IRm�(1+n1) is a �-uniformity class

for all those � 2 P(IRm�(1+n1)) that are absolutely continuous with respect to the Lebesgue

measure on IRm�(1+n1). Since Bk � Bc, we see that �Bk(�n; �)
n!1
����! 0 for any sequence

of probability measures f�ng in P(IRm�(1+n1)) converging weakly to such �. Thus, if � is

absolutely continuous with respect to the Lebesgue measure on IRm�(1+n1) and �21(�; T ) is

absolutely continuous with respect to the Lebesgue measure on IRm for �2-almost all T , then

Proposition 3.4 may be seen as a quanti�cation of the result in Corollary 3.2.
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4 Stability

In this section, we turn to the issue of stability of optimal solution values and optimal solution

sets of the minimum risk problem MRP (�) when the underlying probability distribution is

subjected to perturbations. Since the minimum risk problem is a non-convex problem, local

minimizers should be included in the analysis. To this end, we introduce for any non-empty

open set V � IRn1 a localized version, 'V : P(IRm�(1+n1)) 7! IR, of the optimal-value function,

de�ned by

'V (�) := inf
�
Q(x; �) : x 2 X \ cl V

	
;

and a localized version, 	V : P(IRm�(1+n1)) 7! IRn1 , of the solution set mapping, de�ned by

	V (�) :=
�
x 2 X \ cl V : Q(x; �) = 'V (�)

	
;

where cl V denotes the closure of V . Note that if X \ cl V is non-empty and bounded

the in�mum in the de�nition of 'V is always attained since we are minimizing a lower

semicontinuous function over a compact set, and hence in this case 	V (�) is non-empty for

any � 2 P(IRm�(1+n1)).

Having established the joint continuity of Q with respect to x and � it is straightforward

to prove continuity of 'V and Berge upper semicontinuity of 	V for any bounded open set

V � IRn1 . (Recall that the point-to-set mapping, 	V , is Berge upper semicontinuous at

some � 2 P(IRm�(1+n1)) if for any open set G � IRn1 with 	V (�) � G there exists some

neighbourhood U of � in P(IRm�(1+n1)) such that 	V (�) � G for all � 2 U .) For the analysis

of local minimizers, however, we will not �nd these properties quite suÆcient in their own,

the shortcoming being that they do not preclude certain pathologies that may occur when

dealing with stability of local minimizers. Particularly, one easily constructs examples such

that 	V (�) is a set of local minimizers ofMRP (�) for some � 2 P(IRm�(1+n1)) and V � IRn1

while for any neighbourhood U of � in P(IRm�(1+n1)) there exists � 2 U such that 	V (�)

does not contain any local minimizers of MRP (�).

To preclude such pathologies Robinson [25] and Klatte [18] proposed a local stability

analysis for non-convex problems, emphasizing the need for considerations to include all

local minimizers that are, in some sense, nearby the minimizers one is interested in. The

crucial concept is that of a complete local minimizing set, or simply a CLM set, which may

be formulated as follows. Let � be a Borel probability measure and let M be a non-empty

subset of IRn1. If there exists an open set V � IRn1 such that M � V and M = 	V (�),

then M is called a CLM set for MRP (�) with respect to V . Obvious examples of CLM

sets are the set of global minimizers as well as any set of strict local minimizers. Hence, the

subsequent propositions stated in general for CLM sets are valid in particular for the set of

global minimizers and for any set of strict local minimizers.
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Proposition 4.1. Assume (A1) and (A2), let � 2 P(IRm�(1+n1)) be such that �21(�; T ) is

absolutely continuous with respect to the Lebesgue measure on IRm for �2-almost all T and

let V � IRn1 be a bounded open set such that 	V (�) is a CLM set for MRP (�) with respect

to V . Then,

(a) 'V : P(IRm�(1+n1)) 7! IR is continuous at �;

(b) 	V : P(IRm�(1+n1)) 7! IRn1 is Berge upper semicontinuous at �;

(c) There exists some neighbourhood U of � in P(IRm�(1+n1)) such that 	V (�) is a CLM set

for MRP (�) with respect to V for all � 2 U .

Proof. (a) Continuity of 'V is an immediate consequence of Corollary 3.2 and compactness

of X \ cl V , cf. e.g. the proof of Theorem 4.2.2 in Bank et al. [3].

(b) Let f�ng be a sequence in P(IRm�(1+n1)) converging weakly to � and let xn 2 	V (�n)

for all n such that the sequence fxng converges to some x 2 IRn1. By Corollary 3.2 and

continuity of 'V we now have

Q(x; �) = lim
n!1

Q(xn; �n) = lim
n!1

'V (�n) = 'V (�):

Thus x 2 	V (�) implying that 	V is a closed mapping and hence Berge upper semicontin-

uous by compactness of X \ cl V , cf. Lemma 2.2.3 in Bank et al. [3].

(c) By Berge upper semicontinuity of 	V there exists some neighbourhood U of � in

P(IRm�(1+n1)) such that 	V (�) � V for all � 2 U . Non-emptyness of 	V (�) for � 2 U follows

from non-emptyness of 	V (�), boundedness of V and lower semicontinuity of Q(�; �).

Once again we may quantify the result in Proposition 4.1 (a) using the pseudometric �Bk .

Proposition 4.2. Assume (A1) and (A2), let � 2 P(IRm�(1+n1)) and let V � IRn1 be a

bounded open set such that 	V (�) is a CLM set for MRP (�) with respect to V . Then there

exists a k 2 IN such that for all � 2 P(IRm�(1+n1)), we have��'V (�)� 'V (�)
�� � �Bk(�; �):

Proof. Let � 2 P(IRm�(1+n1)) and note once again that 	V (�) is non-empty by non-emptyness

of 	V (�), boundedness of V and lower semicontinuity of Q(�; �). Now, let x� 2 	V (�) and

x� 2 	V (�) and apply Proposition 3.4 to obtain the existence of some k 2 IN such that

'V (�)� 'V (�) �
��Q(x�; �)�Q(x�; �)

�� � �Bk(�; �)

and

'V (�)� 'V (�) �
��Q(x�; �)�Q(x�; �)

�� � �Bk(�; �):

Hence, ��'V (�)� 'V (�)
�� � �Bk(�; �);

and the proof is complete.
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Now, let us brie
y discuss an interesting implication of the result in Proposition 4.2 for

the asymptotic convergence of optimal solutions to MRP (�) when the probability measure

� is estimated by empirical measures. We let
�
(hn; Tn)

	
be a sequence of independent and

identically distributed m�(1 + n1)-dimensional random vectors de�ned on the probability

space (
;F ; P ) and consider the corresponding sequence of empirical measures on IRm�(1+n1)

de�ned by

�n(!) :=
1

n

nX
i=1

Æ(hi(!);Ti(!)) for ! 2 
; n 2 IN;

where Æ(hi(!);Ti(!)) denotes the measure with unit mass at (hi(!); Ti(!)). Also, we denote

by � the common distribution of the random vectors (hn; Tn); n 2 IN. Following the lines

of Schultz [34] it is easily seen that the class Bk is a Vapnik-�Cervonenkis class, i.e. there

exists some number r such that for any �nite set E � IRm�(1+n1) with r elements, not

all subsets of E are of the form E \ B; B 2 Bk. Next, using this fact and establishing

measurability of �Bk(�n(!); �) as a function of !, Schultz applies well-known results to show

that �Bk(�n(!); �)
n!1
����! 0 for P -almost all ! 2 
. Hence, if V � IRn1 is a bounded open

set such that 	V (�) is a CLM set for MRP (�) with respect to V , we get by Proposition 4.2

that

'V (�n(!))
n!1
����! 'V (�) for P -almost all ! 2 
.

Furthermore, it is straightforward to establish the CLM property of 	V (�n(!)) for large n

for P -almost all ! 2 
. For further details we refer to Schultz [34].

5 An algorithm for the minimum risk problem

In this section we elaborate a solution procedure for the minimum risk problem. For practical

purposes we need to make the following assumptions:

(A3) The �rst-stage solution set X is non-empty and compact.

(A4) The probability distribution P is discrete and has �nite support, say 
 = f!1; : : : ; !Sg

with corresponding probabilities P
�
f!1g

�
= �1; : : : ; P

�
f!Sg

�
= �S.

We shall refer to a possible outcome (h(!s); T (!s)) of the random parameters, corresponding

to some elementary event !s 2 
, as a scenario and denote it simply by (hs; T s). Note

that assumption (A4) may be justi�ed by the results established in the previous section.

Thus, according to Proposition 4.1, the solution of a problem with continuous distribution

of random parameters may be approximated to any given accuracy by solutions of problems

using only discrete distributions.
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As already pointed out, the minimum risk problem is equivalent to an expected value

problem where the expectation is taken of an appropriately de�ned indicator function. A

possible way to go is to de�ne such an indicator function by (3.2), including a binary variable

and an additional constraint in the second stage, and solve the problem by one of the

solution procedures developed for the general class of two-stage stochastic programs with

mixed-integer recourse. (See e.g. Ahmed, Tawarmalani and Sahimidis [1], Car�e and Schultz

[8], Hemmecke and Schultz [11], L�kketangen and Woodru� [19] or Schultz, Stougie and

van der Vlerk [35].) Including a binary variable in the second stage, however, drastically

increases the problem complexity. In particular, the second-stage value function of the

expected value problem is piecewise linear and convex, whereas that of the miminum risk

problem would lose these appealing properties. In this section we show how one may avoid

the inclusion of a binary second-stage variable by solving the minimum risk problem using

a modi�ed version of the L-shaped procedure. The idea is for each scenario (hs; T s) to

represent the general indicator function  (�; hs; T s), de�ned by (3.1), by a binary variable

and a number of optimality cuts, similar to those used for ordinary two-stage stochastic

linear programs. By not applying the de�nition of the indicator function given by (3.2), we

obtain a formulation in which integer variables occur only in a master problem and not in

the second-stage subproblems.

Given a �rst-stage solution x 2 X and a scenario (hs; T s), the optimality cuts needed to

represent  (�; hs; T s) at x are derived considering the following linear programming problem:

min
�
eT t + t0 : Wy + It � hs � T sx; qTy � t0 � �� cTx; y 2 IRn2

+ ; (t; t0) 2 IRm+1
+

	
(5.1)

and the corresponding dual problem

max
�
(hs � T sx)Tu+ (cTx� �)u0 : W

Tu� u0q � 0; Iu � e; u0 � 1; (u; u0) 2 IRm+1
+

	
(5.2)

where e 2 IRm is a vector of 1's and I 2 IRm�m is the identity matrix. Note that both the

primal problem (5.1) and the dual problem (5.2) are always feasible and have optimal value

equal to zero if and only if  (x; hs; T s) = 0. In the following we will denote by D the feasible

region of the dual problem (5.2). Also, we let M2 > 0 be some large number bounding from

above the optimal value of the dual problem:

M2 � sup
n
(h(!)� T (!)x)Tu+ (cTx� �)u0 : x 2 X; (u; u0) 2 D; ! 2 


o
:

Note once again that, employing assumptions (A3) and (A4), the supremum exists and is

�nite, since D is obviously bounded.

The following lemmas which elucidate the basic structure of the optimality cuts are an

immediate consequence of the de�nition of M2 and the previously discussed relationship

between the optimal value of the problems (5.1) and (5.2) and the indicator function (3.1).
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Lemma 5.1. Let (u; u0) 2 D and x 2 X. Then for any scenario (hs; T s) the indicator

function  (x; hs; T s) should satisfy the following inequality:

M2 (x; h
s; T s) � (hs � T sx)Tu+ (cTx� �)u0:

Lemma 5.2. Let x 2 X be such that  (x; hs; T s) = 1 for some scenario (hs; T s). Then

there exists an extreme point (u; u0) 2 D such that (hs � T sx)Tu+ (cTx� �)u0 > 0.

Using Lemma 5.1 and Lemma 5.2 it is easily seen that the minimum risk problem is

equivalent to the following mixed-integer program:

MRP z� = min
SX
s=1

�s�s

s.t. (hs � T sx)Tu+ (cTx� �)u0 �M2�
s 8(u; u0) 2 D;

x 2 X; � 2 IBS:

The algorithm progresses by sequentially solving a master problem and adding violated

optimality cuts generated through the solution of subproblems (5.1). Assuming that the

number of optimality cuts generated before iteration � is J�, the current master problem is:

z� = min
SX
s=1

�s�s

s.t. (hs � T sx)Tuj + (cTx� �)uj0 �M2�
s 8j = 1; : : : ; J�;

x 2 X; � 2 IBS:

(5.3)

We are now in a position to present a modi�ed version of the L-shaped algorithm for the

minimum risk problem.

Algorithm 1

Step 1 (Initialization) Set � = 0 and J0 = 0.

Step 2 (Solve master problem) Solve the current master problem (5.3) and let (x�; ��)

be an optimal solution vector.

Step 3 (Solve subproblems) Solve the second-stage problem (5.1) corresponding to

all scenarios for which �s� = 0. Consider the following situations:

1. If all of these problems have optimal value equal to zero, then the current

solution x� is optimal for the minimum risk problem (1.3) and z� = z� .

2. If some, say k, of these problems have optimal value greater than zero,

then an equal number of extreme points (uj; uj0) 2 D, each of which satisfy

(hs� T sx�)
Tuj + (cTx� � �)uj0 > 0 for some scenario (hs; T s), are identi�ed

and the corresponding violated optimality cuts are added to the master.

Set J�+1 = J� + k and � = � + 1; go to step 2.
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It is easily seen that Algorithm 1 terminates �nitely:

Proposition 5.1. Assume (A1)-(A4). Then Algorithm 1 terminates with an optimal solu-

tion in a �nite number of iterations.

Proof. By assumption (A3) and Proposition 3.1 an optimal solution of the minimum risk

problem exists. Let x� be one such solution. First of all note that the optimal solution value

z� of the master problem in iteration � is a lower bound on the optimal solution value of the

minimum risk problem, since the master problem is a relaxation of MRP :

SX
s=1

�s�s� = z� � z� =
SX
s=1

�s (x�; hs; T s):

Now, suppose in some iteration � for some scenario (hs; T s) that �s� <  (x�; h
s; T s). By

Lemma 5.2 a violated optimality cut, cutting o� the current solution (x� ; ��), is identi�ed

in step 3 and the algorithm proceeds. Since the number of dual extreme points is �nite this

can only happen a �nite number of times and we will eventually have

�s� �  (x� ; h
s; T s) s = 1; : : : ; S;

at which point the current solution, x� is optimal.

Note that Algorithm 1 works equally well for problems which do not satisfy the (relative)

complete recourse property. The optimal �rst-stage solution determined by the algorithm,

however, may not guarantee feasibility for all second-stage problems in this case. Still, the

algorithm may easily be modi�ed to accomodate the possible requirement of feasibility of all

second-stage problems by using feasibility cuts as in the original L-shaped algorithm.

6 Computational experiments

Algorithm 1 was implemented in C++ using procedures from the callable library of CPLEX

7.0. As previously pointed out, the algorithm is similar in spirit to the ordinary L-shaped

algorithm and hence it is bound to su�er from some of the same drawbacks. Of particular

importance in this respect, is the fact that early iterations will usually be quite ineÆcient

since solutions tend to oscillate heavily. This deplorable behaviour may be surmounted by

adding to the master objective a regularizing term, penalizing divergence from the current

solution, cf. the regularized decomposition procedure introduced in the setting of the ex-

pected value problem by Ruszczynski [30]. Furthermore, adding a regularizing term to the

master objective potentially allows the algorithm to take advantage of a starting solution x0.

Regularized decomposition as introduced by Ruszczynski as well as most bundle methods for
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nonsmooth optimization, gain considerable advantage by adding a quadratic penalty term

to the objective. To avoid a nonlinear mixed-integer formulation of the master problem,

however, we chose the following linear formulation:

z� = min
SX
s=1

�s�s + 
eTd

s.t. (hs � T sx)Tuj + (cTx� �)uj0 �M2�
s 8j = 1; : : : ; J�;

d � x� x��1;

d � x��1 � x;

x 2 X; � 2 IBS; d 2 IRn1
+ :

(6.1)

where e 2 IRn1 is a vector of 1's and 
 is a scaling factor. Because of the mixed-integer nature

of the minimum risk problem, the inclusion of the regularizing term is not theoretically

justi�ed as in regularized decomposition, in the sense that convergence of optimal solutions

of problem (6.1) to an optimal solution of the minimum risk problem cannot be established in

general. In practice, we chose to start o� the algorithm with the regularizing term included

in the objective and remove the regularization once solutions had stabilized. In most cases

the algorithm terminated with an optimal solution after just one additional iteration but on

a few occasions several iterations had to be performed after removing the regularization.

To investigate the practicability of Algorithm 1, we used three sets of problem instances

subsequently referred to as EPS1, EPS2 and EPS3, respectively. The problems were obtained

as linear programming relaxations of certain mixed-integer programs arising as scheduling

problems in chemical production. We ran the algorithm with varying number of scenarios S

as well as varying values of the threshold value �. Each run was performed with two di�erent

versions of the algorithm. In the following, MRP refers to the algorithm as presented in

Section 5 while MRPREG refers to the algorithm using the regularization of the master

problem described above. At termination of each run we recorded the optimal value, the

number of iterations performed, the number of generated cuts and the CPU time spent by

the procedure. Finally, we �xed the �rst-stage variables at their values from the optimal

solution of the expected value problem to calculate what we refer to as the value of the EVP

solution (VEVP). All computational experiments were carried out on a SUN Enterprise 450,

300 MHz Ultra-SPARC.

Let us �rst consider the EPS1 instance. This problem contains 2 constraints and 3

variables in the �rst stage and 50 constraints and 51 variables in the second stage. For this

instance we ran the algorithm with 20, 50, 100, 200 and 500 scenarios and each time we

chose the threshold value close to the optimal value of the expected value problem. Results

are reported in Table 1.
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Table 1: Computational results for the EPS1 instance

MRP MRPREG
S � Opt. VEVP Ite. Cuts CPU Ite. Cuts CPU
20 18.9 0.250 0.250 5 73 0.31 6 58 0.29
50 50.9 0.120 0.140 5 110 0.51 7 110 0.63
100 32.7 0.860 0.860 4 300 0.88 6 300 0.93
200 28.4 0.115 1.000 8 940 8.15 8 761 6.55
500 757.5 0.048 0.048 5 1518 6.56 6 1518 6.62

Next we turn to the EPS2 instance. This problem contains 5 constraints and 12 variables in

the �rst stage and 157 constraints and 164 variables in the second stage. For this instance

we always used 100 scenarios and solved the problem for a number of di�erent threshold

values surrounding the optimal value of the expected value problem which was 65.4. Results

are reported in table 2.

Table 2: Computational results for the EPS2 instance

MRP MRPREG
S � Opt. VEVP Ite. Cuts CPU Ite. Cuts CPU
100 60 0.91 0.92 19 851 36.98 14 728 22.93
100 63 0.81 0.81 19 1098 61.11 15 920 28.51
100 65 0.71 0.71 18 1146 196.96 14 868 53.77
100 67 0.17 0.17 24 1811 34.46 12 880 8.54
100 70 0.08 0.08 18 1322 12.12 13 782 10.50

Finally, we consider the EPS3 instance. This problem contains 9 constraints and 30 variables

in the �rst stage and 280 constraints and 326 variables in the second stage. Once again, we

always used 100 scenarios and solved the problem for a number of di�erent threshold values

surrounding the optimal value of the expected value problem which in this case was 191.3.

Results are reported in table 3.

Table 3: Computational results for the EPS3 instance

MRP MRPREG
S � Opt. VEVP Ite. Cuts CPU Ite. Cuts CPU
100 170 0.94 0.97 41 1407 8164.01 46 1093 1858.37
100 180 0.85 0.88 45 1418 5564.62 30 1326 4632.01
100 190 0.59 0.60 37 1996 4716.74 25 1328 2019.36
100 200 0.13 0.14 44 2317 178.90 24 1280 88.26
100 210 0.02 0.02 62 2656 142.89 23 1455 36.30

We note that the optimal value of the expected value problem of the EPS1 instance with
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200 scenarios was 28.7 with all scenarios having costs above 28.4 and hence the seemingly

strange result for this instance reported in table 1 was obtained. Apart from this instance,

however, the value of the EVP solution is always relatively close to the optimal value of the

minimum risk problem and hence the gain of solving the minimum risk problem rather than

the expected value problem is negligible for the instances considered here. We did, however,

also test the algorithm on the linear programming relaxation of a small stochastic program,

previously used as test instance in the papers by Car�e and Schultz [8] and Schultz, Stougie

and van der Vlerk [35], and for this problem the gain of solving the minimum risk problem

rather than the expected value problem was more signi�cant as is evident from table 4. We

should mention that this instance has 2 variables and no constraints in the �rst stage and 4

variables and 2 constraints in the second stage.

Table 4: Computational results for a small test instance

MRP MRPREG
S � Opt. VEVP Ite. Cuts CPU Ite. Cuts CPU
4 50 0.500 0.750 3 3 0.07 4 3 0.10
9 50 0.111 0.556 4 9 0.09 5 9 0.08
36 50 0.167 0.306 3 17 0.11 4 17 0.12
121 50 0.132 0.182 5 58 0.34 6 58 0.38
441 50 0.120 0.152 6 216 1.65 8 216 2.06

7 Conclusions

In the setting of two-stage stochastic recourse programs we have sought a problem formu-

lation containing a more adequate description of risk aversion than that of the accustomed

expected value problem. This lead to the formulation of the minimum risk problem in which

the probability of total cost exceeding a certain threshold value is minimized. The recourse

function Q(�; �) of this problem was shown to be well-de�ned and lower semicontinuous un-

der basic assumptions guaranteeing feasibility and boundedness of second-stage problems

(Proposition 3.1). Furthermore, assuming that the probability of random parameters yield-

ing optimal cost equal to the threshold value is zero, the function Q(�; �) was shown to be

continuous (Proposition 3.2). Equipping the space of underlying probability measures with

the notion of weak convergence, this assumption is in fact suÆcient for the joint continuity

of Q as a function of the �rst-stage decision and the probability measure (Proposition 3.3).

Having established the joint continuity of Q it is a small step to arrive at stability results

for the minimum risk problem in the form of continuity of local optimal values and upper
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semicontinuity of local optimal solutions (Proposition 4.1). Finally, the results of Proposi-

tion 3.3 and 4.1 were quanti�ed using a certain variational distance of probability measures

(Propositions 3.4 and 4.2).

Assuming that the distribution of random parameters is discrete, an assumption which

is justi�ed by the results in Proposition 4.1, we elaborated an algorithm for the minimum

risk problem. The algorithm was shown to terminate with an optimal solution in a �nite

number of iterations under the additional assumption of a compact �rst-stage solution set

(Proposition 5.1) and preliminary computational experiments exhibit promising results, in

particular when a regularizing mechanism is incorporated.
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