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Abstract

We present a new model, which is a generalization of the bicriterion median prob-
lem. We introduce two sum objectives and criteria dependent edge lengths. For this
NP complete problem a solution method �nding all the eÆcient solutions is presented.
The method is a two-phases approach, which can easily be applied as an interactive
method.

In Phase 1 the supported solutions are found, and in Phase 2 the unsupported
solutions are found. This method can be thought of as a general approach to BOCO
(Bi-objective Combinatorial Optimization) problems.

Keywords: MCDM, biobjective optimization, facility location, networks, MOCO.

1 Introduction

We begin by a motivating example. Assume we have to locate a money reserve, consider-

ing the two objectives of minimizing the transportation costs and the risk of having the

transports robbed. The depot serves a number of clients varying in size, and we are given

a connected network and interpret each of the n nodes as the clients. A relevant (node)

weight for a client with respect to transportation costs is the number of monthly deliver-

ies, and a weight for the risk objective is the maximum value of a money-transport. The
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edge-lengths with respect to transportation costs could be the distance, and for the risk

objective the edge-length could be the probability of an assault. If we assume that the cost

of opening the new facility is independent of location, this particular cost is unimportant.

A solution to this problem consists of two decisions. The �rst (and probably the most

important) one is to decide where to locate the new facility (depot), and the second one

consists in determining how to route the 
ow from the new facility to the nodes. The


ow problem consists of n� 1 Bicriterion Shortest Path (BSP) problems, which is a NP

complete problem.

If each edge has only one length, we have the usual median problem. Now that we have

one length for each criterion, the BSP problem becomes a subproblem. Therefore, this

re�nement has severe consequences on the complexity of the problem.

Before presenting the ideas behind the proposed solution method, some concepts from

bicriterion analysis are reviewed. For a textbook introduction see Steuer [7] or Ehrgott

[4]. Suppose we want to simultaneously minimize two functions f1(x) and f2(x) over some

feasible set S. In our case S is a �nite set of solutions.

min f1(x)
min f2(x)
s.t.

x 2 S

(1)

It is generally accepted, that solving (1) means �nding the set of eÆcient (or Pareto

optimal) solutions. A solution x 2 S is called eÆcient if one of the objective function

values cannot be improved without worsening the other. Let f(x) = (f1(x); f2(x))t,

where t denotes transpose. The mathematical de�nition of eÆciency is as follows.

De�nition 1 A point x 2 S is eÆcient i� there does not exist a point �x 2 S such that

f(�x) � f(x) with at least one strict inequality. Otherwise x is ineÆcient.

EÆcient points are de�ned in decision space. There is a natural counterpart in criterion

space Z = fz 2 IR2j9x 2 S; z = f(x)g.

De�nition 2 z(x) 2 Z is a nondominated criterion vector i� x is an eÆcient solution.

Otherwise z(x) is a dominated criterion vector.

In De�nition 2 we have used that z(x) = f(x). The set of eÆcient (E) solutions is denoted

SE , and the set of nondominated (ND) criterion vectors is denoted ZND, and is given by

ZND = z(SE).
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The criterion vectors can be partitioned into two kinds, namely supported and unsup-

ported. De�ne the weighted objective function W (x; �) as:

W (x; �) = �f1(x) + (1� �)f2(x); � 2 (0; 1): (2)

The function W (x; �) is a convex combination, or weighted sum, of the two objective

functions. Optimizing this function over the feasible set S parametrically in � 2 (0; 1)

will give all the supported nondominated solutions to (1). The method is therefore often

referred to as the weighting method.

It is important to note that each unsupported nondominated criterion vector is domi-

nated by a convex combination of some set of nondominated criterion vectors. Supported

nondominated (SND) criterion vectors are denoted ZSND and the corresponding set of

solutions are denoted SSE.

The solution method proposed is a variant of the two-phases approach due to Ulungu

and Teghem [9] and Vis�ee et al. [10]. In Phase 1 all (or a representative subset of) the

supported extreme solutions are found by using the weighting method. In Phase 2 a search

between the supported solutions is conducted to �nd unsupported eÆcient solutions. The

procedure is explained in details in Section 3.

The remaining parts of the paper is organized as follows. In Section 2 the bicriterion

problem is presented, and some properties of the problem is given. In Section 3 the solution

procedure is outlined, and an example is presented. In Section 4 the generalization to more

than two criteria is discussed, and �nally Section 5 contains the conclusions.

2 Problem formulation

We are given a connected directed network G(V; E) with node set V = fv1; v2; : : : ; vng

where jVj = n nodes, and edge set E = f(vi; vj); (vk; vl); : : : ; (vp; vq)g with jEj = m edges.

The underlying graph is denoted by G, and edges may be referred to by e 2 E , by

(vi; vj) 2 E or simply by (i; j) 2 E , where node i is the tail and node j is the head. Each

node vi carries two weights (w1
i ; w

2
i )
t, where wq

i 2 IR+; q = 1; 2, so we may refer to the

matrix of weights by W2�n. Each edge e 2 E has length l(e) = (l1(e); l2(e)) 2 IR2
+. Let us

de�ne a matrix of edges Em�(4) with the following entries. Ei1 is the tail of edge ei, Ei2

is the head, Ei3 = l1(ei) is the length with respect to criteria one and Ei4 = l2(ei) is the

length with respect to criteria two.

Notice that an undirected network can be modeled as a directed network with the double
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amount of edges. De�ne binary decision variables as follows:

xi =

�
1 if the facility is located in node i
0 else

yijk =

�
1 if edge (i; j) is used in the path to node k
0 else

We examine the so-called median objectives or weighted sum objectives:

f q(y) =
nX

k=1

nX
i=1

nX
j=1

l
q
ijw

q
kyijk q = 1; 2

Combining the coeÆcients to cqijk = l
q
ijw

q
k, we get

f q(y) =

nX
k=1

nX
i=1

nX
j=1

c
q
ijkyijk q = 1; 2 (3)

There are two types of constraints. The �rst constraint ensures that exactly one facility is

located and the second set of constraints ensures the existence of paths from the facility

to the remaining nodes. This leads to the following problem:

min f1(y)

min f2(y)

s.t.
nP
i=1

xi = 1

nP
j=1

yjik �
nP

j=1
yijk = �xi i 6= k; 8 i; k

xi 2 f0; 1g 8i
yijk 2 f0; 1g 8 i; j; k

(4)

Notice that we have omitted the following redundant constraints

nX
j=1

yjik �
nX

j=1

yijk = 1� xi 8 i; where i = k:

The reason being that this part of the constraint matrix consists of n totally unimodular

sub-matrices forming the n sets of paths, see (5). Notice that one path is non-existing,

since the node in which the new facility is located, ships nothing through the network.

To understand the structure of the constraint matrix of (4), we write it out. We de�ne

the vector yijk (in bold) as the vector of all combinations of i and j, but with a �xed

k. This way yij1 contains all edge variables for node 1 and so forth. The matrix Mk is
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the totally unimodular sub-matrix forming paths from node xi to node k. These matrices

have dimension (n � 1) � n2. I�k is an (n � 1) � n identity matrix with the k'th row

deleted. 2
666666664

1 � � � 1 0 � � � 0 � � � 0
I�1 M1 � � � 0 � � � 0
...

...
. . .

...
...

I�k 0 � � � Mk � � � 0
...

...
...

. . .
...

I�n 0 � � � 0 � � � Mn

3
777777775

2
666666664

x

yij1
...

yijk
...

yijn

3
777777775
=

2
666666664

1
0
...
0
...
0

3
777777775

(5)

It turns out that this matrix is not totally unimodular.

Theorem 1 The constraint matrix in (5) is not totally unimodular.

An example of a sub-matrix of (5) with determinant two is given in the appendix. Since

the constraint matrix is not totally unimodular, solving the LP relaxation of (4) is not

guaranteed to return integer solutions, as is often the case in network problems.

Weighting the two objective functions in (4), using the weights � and 1 � �; � 2 (0; 1),

results in the weighted version of (4)

min �f1(y) + (1� �)f2(y)
s.t.

nP
i=1

xi = 1

nP
j=1

yjik �
nP

j=1
yijk = �xi i 6= k 8 i; k

xi 2 f0; 1g 8i
yijk 2 f0; 1g 8 i; j; k

(6)

In Section 3.4 we describe how problem (6) can be solved in O(n4) running time using

Benders' decomposition for a �xed �.

3 Solution procedure

In this section the solution procedure for solving the bicriterion problem (4) is outlined.

Before stating the procedure it may be helpful to consider a naive method. One possible

way of solving the problem could be to solve problem (6) n times, namely one time for

each possible location of the new facility. Suppose that the location of the new facility is

�xed at a speci�c node, say node i (so xi = 1). Using the weighting method, the supported

eÆcient solutions (paths) with respect to node i can be revealed. We call these eÆcient
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solutions locally eÆcient with respect to node i. Given � 2 (0; 1) and x the corresponding

locally eÆcient solution can be found in O(n3) running time, since we are faced with n�1

shortest path problems.

Finding the locally unsupported eÆcient solutions that are in fact globally eÆcient, con-

stitutes a more diÆcult problem. These cannot be found using the weighting method.

This fact is known from studying the BSP problem alone [5].

We thus have three types of eÆcient solutions:

� supported eÆcient solutions

� locally supported eÆcient solutions

� (locally) unsupported eÆcient solutions

The reason why locally supported eÆcient solutions are interesting, is that they may be

unsupported eÆcient solutions in the main problem (4). These three kinds of solutions

are illustrated in Example 3.1.

3.1 Example

We examine the network presented in Figure 1 with the following weights and edges. Each

column of W consists of the two node-weights.

W =

�
200 300 500 100 400 500 400
7 4 2 6 6 2 8

�

The �rst two columns of E are the tail and head nodes. The next two columns are the

two edge-lengths.

E =

2
66666666666666666666666664

1 2 78 22
1 3 24 72
1 4 26 71
1 5 13 71
1 7 86 12
2 3 98 29
2 5 17 90
3 5 29 97
3 6 87 28
3 7 7 69
4 5 4 77
4 7 89 5
5 6 17 92
5 7 40 74
6 7 69 12

3
77777777777777777777777775
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1 2 3

4 5 6

7

Figure 1: Network for Example 3.1.

The resulting 11 nondominated criterion vectors are presented in Table 1. These crite-

rion vectors are visualized in Figure 2 and it is seen that there are 6 supported and 5

unsupported criterion vectors. Of the 5 unsupported solutions, only one, (89200; 1868), is

locally unsupported. The other four unsupported solutions are locally supported by the

nodes indicated in Figure 2. The last nondominated solution, (89200; 1868), is dominated

by a convex combination of the following two locally supported solutions:

9

11
(91200; 1684) +

2

11
(80200; 2587) = (89200; 1848:18)

There are a total of 2128 feasible criterion vectors, using only eÆcient paths between

nodes. All these vectors are illustrated in Figure 3.

3.2 Two-phases approach

The procedure that we propose instead of the naive method, is a variant of the two-

phases approach due to Ulungu and Teghem [9] and Vis�ee et al. [10], and may be stated

generically as:

� Phase 1: Find all (or a representative subset of) the supported solutions.
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Node f1 f2

5 45500 3025
5 47100 2289
1 78200 2062
7 89200 1868
7 91200 1684
1 92600 1506
7 97200 1376
1 107500 1182
7 111600 1112
7 129300 856
7 203800 798

Table 1: Nondominated values for Example 3.1.

� Phase 2: Conduct a search between the supported solutions in order to �nd unsup-

ported nondominated solutions.

3.3 Phase 1

As explained in Section 2 all supported solutions to (4) may be obtained by solving the

weighted program (6) parametrically in � 2 (0; 1). We will do that by employing NISE

(Non-Inferior Set Estimation), a method presented in Cohon [3]. NISE guides the choice

of � 2 (0; 1).

First, the weighted program (6) is solved using � = 1 and � = 0. This results in the

minimum values f1� and f2� of the two objectives f1 and f2 respectively. Say there

are alternative optima for the problem with � = 1, then we choose a solution with the

lowest objective function value of the second objective f2. This automatically gives upper

bounds, �f2 and �f1, on the other objective. The initial nondominated criterion vectors (in

ZSND) are E1 = (f1�; �f2) and E2 = ( �f1; f2�).

Next we �nd the outward normal, �n = (�n1; �n2), to the line between the two initial points,

E1 and E2. Using � = �n1
�n1+�n2

in solving (6), may result in two cases. We either get a

new unique solution E3, or we get E1 or E2 again. In the �rst case, the point E3 is in

ZSND, and we continue by examining the two line-segments E1 � E3 and E2 � E3. In

the latter case we know that there does not exist a supported (extreme) criterion vector

between E1 and E2. The procedure proceeds until no new supported criterion vectors

are found, or until a desired number of solutions are found. The outward normal to the

line-segment between two points can easily be found as di�erences between the objective

function values.
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f2

f1

Locally unsupported

5

5

1

7

7

1

7

1
7

7
7

7 (80200,2587)

Figure 2: Nondominated vectors for Example 3.1. Large dots illustrate the supported
solutions, and only one solution is locally unsupported. The numbers indicate the location
node.

3.4 Benders' decomposition in Phase 1

In this section we present how Benders' decomposition can be used to �nd the supported

solutions given a weight � in Phase 1. Let � be �xed and de�ne

cijk(�) = �w1
kl
1
ij + (1� �)w2

kl
2
ij (� 0 since l; w � 0):

When x is �xed, we can use the path constraints being totally unimodular, and relax the

integrality constraints on y. Fixing x means locating the facility at a particular node. For

a �xed x satisfying
P

i xi = 1; xi 2 f0; 1g, we get the following Benders' subproblem:

min
P
k;i;j

cijk(�)yijk

s:t P
j

yjik �
P
j

yijk = �xi i 6= k 8i; k

0 � yijk � 1 8i; j; k

(7)
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5000
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Figure 3: Illustration of 2128 criterion vectors for Example 3.1.

This linear programming problem has the following dual program:

max
P
i;k
i6=k

�ik(�xi) +
P
k;i;j

�ijk

s:t

�jk � �ik + �ijk � cijk(�) i 6= k 8i; j; k

� � 0

(8)

The variables � are free variables corresponding to the path constraints in (7) and the �

variables correspond to the upper bound on y. These dual variables can be found when

the n� 1 shortest path problems are solved in the Benders' subproblem, so we need not

actually solve the dual problem (8). The dual leads to the following Benders' master
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problem:

min v

s:t

v � �
P
i;k
i6=k

�likxi +
P
k;i;j

�lijk 8l

P
i xi = 1

xi 2 f0; 1g 8i

(9)

where l is an index for the added inequalities.

The �rst time we generate a redundant inequality (or suggests a node picked earlier), the

solution at hand is optimal (eÆcient). This is true because the subproblem (7) will return

an earlier found solution.

Notice that Benders' master problem (9) is easy to solve in this case. It can be reformulated

as a minimax problem. Let us rewrite the �rst constraint in (9), keeping in mind that

only one xi will be one.

v � �
X
i

X
k
i6=k

�likxi +
X
k;h;j

�lhjk

v �
X
i

0
BB@�

X
k

i6=k

�lik +
X
k;h;j

�lhjk

1
CCAxi

v �
X
i

clixi

where cli = �
P
k
i6=k

�lik+
P
k;h;j

�lhjk. If we think of these c coeÆcients in a matrix, the optimal

xi is to �nd the column where the largest element cli is as small as possible.

Notice, that we have to solve problems (7) and (9) at most n � 1 times. Since Benders'

subproblem consists of n� 1 shortest path problems, problem (7) can be solved in O(n3)

running time. Therefore the overall running time in Phase 1, given �, is O(n4) running

time.

3.5 Phase 2

Here we can �rst �nd the locally supported nondominated vectors by using the weighting

method for a �xed node(s).

To �nd locally unsupported eÆcient points of (4), we use the Tchebyche� theory. Let

z = (z1; z2) denote a �xed reference point with z � z� =
�
f1�; f2�

�
, where z� is the ideal
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point. Then the augmented non-weighted Tchebyche� program (10) may be stated as

min �+ �
�
f1(y) + f2(y)

�
s.t.

f q(y)� � � zq q = 1; 2
nP
i=1

xi = 1

nP
j=1

yjik �
nP

j=1
yijk = �xi i 6= k 8i; k

xi 2 f0; 1g 8i
yijk 2 f0; 1g 8i; j; k

� 2 IR+

(10)

where � is a small positive constant ensuring that the solution found is in fact eÆcient.

A few comments are in order. Note that instead of solving the usual weighted Tchebyche�

program as found in Steuer and Choo [8], we propose to solve the augmented non-weighted

Tchebyche� program (10). It was shown by Alves and Climaco [1] that all nondominated

solutions to (4) can be found using the non-weighted program for integer problems (IP),

and in Alves and Climaco [2] this result was generalized to mixed integer problems (MIP).

Note that the augmented Tchebyche� program (10) has the same constraints as our orig-

inal problem (4), as well as two additional constraints. The two new constraints are the

reference point constraints, linking the reference point to the objective function in (10).

These two new constraints complicate the problem, since they destroy the nice structure

of the constraint matrix. Using Lagrange relaxation of these constraints does not solve our

problem, as described in Appendix 2. We simply end up with the weighting method. How-

ever, problem (10) is a one objective MIP, which can be solved by the usual IP methods,

such as branch and bound.

Next we explain how to determine the appropriate reference point(s). Assume that we

want to search for locally unsupported solutions between the two nondominated points E1

and E2. First, we determine a maximum deviation factor

Æ = max
�
Æ1; Æ2

	

where Æq = �f q � f q� q = 1; 2. This deviation factor is going to ensure that our reference

point is below the ideal point z�. Next we �nd reference points corresponding to our two

nondominated solutions, E1 and E2:

z(Ei) = (E1
i � Æ; E2

i � Æ) i = 1; 2
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The search reference point znew can then be determined as the maximum of the reference

point coordinates, because this point has a maximum distance of Æ to both z(E1) and

z(E2):

znew =
�
max

�
z1(E1); z

1(E2)
	
;max

�
z2(E1); z

2(E2)
	�

:

Using znew in (10) can result in two things. If a new solution is returned, this solution is

nondominated and de�nes two new search areas. Otherwise one of the points E1 or E2 is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 3.1 we �nd Æ = maxf203800 � 45500; 3025 � 798g = 158300. Next we

search for locally unsupported solutions between the two points E1 = (78200; 2062) and

E2 = (91200; 1684) (on either side of the single locally unsupported point in Figure 2).

This leads to the reference point znew = (�67100;�156238), where � = 158300 can �nd

both E1 and E2. In this case E3 = (89200; 1868) is found with � = 158106.

4 Generalization to multiple criteria

Most of the ingredients in our approach easily generalize to more than two criteria. How-

ever, the NISE procedure used in Phase 1 to �nd supported nondominated points in a

\spread-out" way, does not generalize. In two dimensions we �nd upper bounds on the

objectives by minimizing the other objective alone. Forming the hyperplane between these

two upper bounds, and then moving this hyperplane, we are guaranteed not to miss any

supported nondominated solution. In three dimensions we may set upper bounds as the

highest value from minimizing the other two objectives. The problem is that we may

have supported nondominated solutions above this hyperplane. In Solanki et al. [6] these

diÆculties are explained.

Using another way to set the weights in Phase 1 in order to �nd the supported nondomi-

nated solutions, will leave us with a similar problem in Phase 2. Near the borders of the

eÆcient frontier it may be diÆcult to determine a reference point in order to search for

unsupported solutions.

5 Concluding remarks

In this paper we present a new, interesting location problem. This formulation incorporates

both the location and the routing aspects in a multiobjective setting. We also present

a solution method for the problem, and illustrate the problem structure and solution

procedure by an example. The presented method can easily be made interactive, since the

procedures in both phases are easily made interactive.
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Appendix 1

Proof of Theorem 1:

Consider the complete directed network with 4 nodes (n = 4). This includes both directed

edges between all nodes given k: (i; j; k) and (j; i; k) 8i; j; k where i 6= j. From (5) choose

the �rst 4 columns corresponding to the x variables. Choose also the three columns

corresponding to y124,y132 and y143. Next we specify the seven rows. Choose the �rst row

corresponding to the sum of xi constraint. From I�4 choose rows 1 and 2, from I�2 choose

rows 1 and 2 and from I�3 choose rows 1 and 3. This lead to the following 7 � 7 matrix

with determinant two:
��������������

1 1 1 1 0 0 0
1 0 0 0 �1 0 0
0 1 0 0 1 0 0
1 0 0 0 0 �1 0
0 0 1 0 0 1 0
1 0 0 0 0 0 �1
0 0 0 1 0 0 1

��������������

= 2

Appendix 2

Lagrange relaxation in the augmented Tchebyche� problem

As we will show, this approach does not help! We end up with the weighting method, if

we relax the reference point constraints.

Let � be the Lagrange multiplier on the reference point constraints of problem (10). We

are then left with the constraints of our original problem (4), and the constraint � � 0.

Let's assume that � is �xed at ��. �� can then be updated using for example a subgradient.

The new objective function is given by

f(x; y) = �+ �
�
f1(y) + f2(y)

�
+ �1(f1(y)� �� z1) + �2(f2(y)� �� z2):

Rearranging terms, we get

f(x; y) = (1� �1 � �2)�+ (�+ �1)f1(y) + (�+ �2)f2(y)� �1z1 � �2z2 (11)

Let's evaluate the optimal value of �. If 1 � �1 � �2 � 0, we choose � = 0, and if

1 � �1 � �2 < 0, we choose � = 1. Neither solution is good, because � = 0 makes no

improvement when we update �� using the usual sub-gradient direction

d = (f1(y)� �� z1; f2(y)� �� z2)t

14



Since z is a reference point f(y) > z, and we will simply increase �� until we get the

situation where � =1. We therefore conclude that �1+�2 = 1, so � can be any positive

number. Since � is almost zero, we recognize this to be the weighting method applied in

Phase 1.
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